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Abstract 

The design of automotive suspension systems is concerned with ride comfort and handling performance of the 
vehicle. In the last decade, semi-active suspension systems have been greatly analyzed for automotive applications 
as they offer the reliability of passive devices, but maintain the versatility and adaptability of active systems. Semi-
active Magneto-Rheological {MR) dampers present a viable choice for suspension systems. In an MR damper, the 
damping characteristics can be modified with the application of a magnetic field to the coil inside the tube of the 
device. Although MR dampers are greatly promising for the control of vehicle suspension systems, their major 
drawback lies on their non-linear and hysteretic behavior. This behavior makes it a challenge to develop a model 
for the system. Furthermore, the first step in designing a control strategy for a suspension system is modeling the 
behavior of the damper in an accurate manner. 

The present research is focused on the modeling of an MR damper. The problem statement is centered on what 
type of model of an MR damper can be developed, which can accurately predict the highly non-linear behavior of 
the system and can be optimal for online control. For this purpose, various sets of experimental data were obtained 
from an industrial MR damper. Then, four state-of-the-art MR damper models were trained, analyzed and compared 
using quantitative and qualitative techniques. Each of the models was selected from four main modeling approaches, 
phenomenological, semi-phenomenological, black-box, and fuzzy-based. By the end of the research, a novel model 
for an MR damper was presented, which combined fuzzy techniques with semi-phenomenological modeling. The 
results showed that the proposed structure was able to accurately predict the behavior of the MR damper and was 
suitable for control purposes. The final results can be greatly applicable to the automotive industry, where better 
comfort and handling control systems could be developed. In addition, the results could be useful to the vast number 
of industries and applications where MR dampers are employed. 
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Table 1. Description of variables. The variables are shown in order of appearance. 

Variable Description Model Units 

x(t) Linear displacement of the MR damper In 
x(t) Linear velocity of the MR damper In/s 
m Linear acceleration of the MR damper In/s2 

i(t) Electric current on the coil of the MR damper A 
V(t) MR damper voltage V 
F(t) MR damper output force lbf 
F(t), Fest Estimated MR damper force lbf 
F(t) Second derivative of F(t) lbf/s2 

F(t) First derivative of F(t) Ibf/s 
F*(t) Fifth power of F(t) lbf5 

F*(t) Third power of F(t) lbf3 

K Discrete sample -
T Total number of discrete samples -
Pi Parameters for the model Eq. 2.1 -
Sj Parameters for the model Eq. 2.2 -
CO Coefficient for the viscous damping at large velocities Eq. 2.2 lb f s / i n 
Cl Damping coefficient for the roll-off at low velocities Eq. 2.2 lb f s / i n 
k0 Stiffness control coefficient for large velocities Eq. 2.2 N/cm 

ki Accumulator stiffness coefficient Eq. 2.2 N/cm 
x0 

Initial displacement of spring ki Eq. 2.2 N/cm 
z(t),y(t) Evolutionary coefficients for the model Eq. 2.2 -
A! Dynamic yield force coefficient Eq. 2.3 -
A 2 Post-yield viscous damping coefficient Eq. 2.3 -
^ 3 Pre-yield viscous damping coefficient Eq. 2.3 -
V0 

Hysteretic critical velocity coefficient Eq. 2.3 -
X0 

Hysteretic critical displacement coefficient Eq. 2.3 -
Cyj Viscous coefficient for the model Eq. 2.4 lbf - s/in 
kyj Stiffness coefficient for the model Eq. 2.4 lbf/in 

Zw(t) Hysteretic variable Eq. 2.4 -
a Scale factor of hysteresis Eq. 2.4 -
fo Damper force offset coefficient Eq. 2.4 -
0 Hysteretic slope coefficient Eq. 2.4 -
8 Hysteretic width coefficient Eq. 2.4 -

Positive acceleration parameters for the model Eq. 2.5 -
Ljn Negative acceleration parameters for the model Eq. 2.5 -
kL 

Stiffness coefficient Eq. 2.5 lbf/in 

FP{t) Positive acceleration MR damper force Eq. 2.5 lbf 
Negative acceleration MR damper force Eq. 2.5 lbf 

fe Coefficient for the pre-load of the accumulator Eq. 2.6 -
Cb Coefficient for the viscous damping Eq. 2.6 lbf-s/in 

xiii 



Table 2. Description of variables continued 

Variable Description Model Units 

fy Yielding force coefficient Eq. 2.6 lbf 
h Shape coefficient for the model Eq. 2.6 -
XQ Hysteretic velocity coefficient Eq. 2.6 in/s 
m Virtual mass coefficient for the model Eq. 2.6 lb 
bij, b2j Coefficients for the model Eq. 2.7 -
Fk-j Discrete value of the force of the MR damper at sample k — j lbf 
%k-j Discrete value of the displacement of the MR damper at sample k — j in 
Xk—j Discrete value of the velocity of the MR damper at sample k — j in/s 
CLj Coefficients for the model Eq. 2.8 -
LlNj Input layer neurons of the neural network Fig. 2.4 -
Lij First hidden layer neurons of the neural network Fig. 2.4 -

Second hidden layer neurons of the neural network Fig. 2.4 -
Loj Output layer neurons of the neural network Fig. 2.4 -
MAj Fuzzy sets for the first input of the fuzzy-based model Fig. 2.6 -
MBj Fuzzy sets for the second input of the fuzzy-based model Fig. 2.6 -
MCi Fuzzy sets for the third input of the fuzzy-based model Fig. 2.6 -
fj(x,x, i, t) Output functions of the fuzzy model Fig. 2.6 -
Wt Degree of fitness of the fuzzy rules Fig. 2.6 -
Wrij Normalized degree of fitness of the fuzzy rules Fig. 2.6 -
Oj,qj,n,Uj Output parameters of the model Fig. 2.6 -
e(t) Uniformly distributed white noise Eq. 3.1 -
NICPS Number of constant amplitude samples Eq. 3.1 -

Normally distributed random number Eq. 3.2 -
a Probability variable Eq. 3.2 -
S(f) Power spectral density of the elevation of the road profile Eq. 3.3 Hz 

Cr Roughness coefficient of the road profile Eq. 3.3 ft2/cycles/ft 

Ncr Constant coefficient corresponding to the roughness of the road profile Eq. 3.3 -
Vc Speed of the vehicle Eq. 3.3 in/s 

Ux Number of cycles per feet Eq. 3.3 cycles/ft 

<t>j Random phase angle normally distributed between 0 - 27r Eq. 3.4 -
ui Frequency within the interval of S(f) Eq. 3.4 -
Au Frequency increment Eq. 3.4 -

Minimum frequency for the spectrum Eq. 3.4 -
Wmax Maximum frequency for the spectrum Eq. 3.4 -
Nf Total number of frequency intervals within w m j„ — u>max Eq. 3.4 -
GLPF(S) Transfer function for the low-pass filter Eq. 3.5 -
MFj Fuzzy sets for the non-linear fuzzy-based model Fig. 4.13 -
WFj Degree of fitness of the fuzzy rules Fig. 4.13 -
fj{x, x, i) Output functions of the non-linear fuzzy model Fig. 4.13 -

xiv 
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Chapter 1 

Introduction 

1.1 Presentation 

With the development of science and technology for automobiles and the continuously increasing need for safety and 
comfort, great attention has been drawn to automotive suspension systems. The primary concerns that a suspension 
system has to address are ride comfort and handling performance of the vehicle. Ride is primarily associated with 
the ability of a suspension system to accommodate vertical inputs. On the other hand, handling relates more to 
horizontal forces acting through the center of gravity and moments acting through the wheels. 

Among automotive suspensions, three main groups can be identified. The first, passive suspension systems, 
are the most widely used systems in vehicles. As their name suggests, the role of a passive suspension system is 
to withstand perturbations without the use of an external power supply or feedback control system. Thus, passive 
suspensions are designed as a compromise between ride comfort and handling performance. The second group 
is active suspension systems. Active systems are meant to provide independent treatment of perturbations using 
inertial forces through active control of some of the suspension system functions. In theory this means that the 
mentioned compromise in passive suspension systems can be eliminated. Active suspension systems, however, 
usually involve a continuous power supply, fast-acting mechanical devices, complex control algorithms, and closed-
loop control systems. The final group is that of semi-active suspension systems. These systems offer the reliability 
of passive devices, but maintain the versatility and adaptability of active systems. A semi-active suspension can be 
adjusted in real time, but cannot input energy into the system being controlled. Hence, the force delivered by the 
suspension is constrained to be proportional and opposite to the elongation speed of the damper. Nonetheless, the 
power requirement of these systems is considerably lower than that of an active system. 

In semi-active suspension systems for vehicles, the most commonly used damping devices are mono-tube 
dampers. A widely investigated mono-tube semi-active damper is the one denominated Magneto-Rheological (MR) 
damper. An MR damper is a non-linear dynamical system where the inputs can be the elongation speed and an 
electric current. The electric current is the control input that modulates the damping characteristic of the MR fluid 
through the variation of a magnetic field. The output is the force delivered by the damper. Fig. 1.1 illustrates the 
main components of an MR damper. 

MR fluids are non-colloidal suspensions of particles with a size on the order of a few microns [4]. These fluids 
are unique due to their ability to change their properties reversibly between fluid and solid-like states upon the 
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Figure. 1.1. MR damper configuration. The coil is connected to an external power supply. The MR fluid is energized 
as it passes through the annular gaps. 

application of a magnetic field. As discussed in [5], when a certain magnetic field is applied to an MR fluid, the 
particles in the fluid become polarized and form polarization chains in the direction parallel to the applied field. The 
mechanical energy needed to yield these chain-like structures increases proportional to the applied magnetic field, 
resulting in a field dependent yield stress. This region is referred to as the pre-yield region. When the external shear 
stress is increased and exceeds a certain value, the polarization chains will be broken and MR fluids start to flow 
like regular Newtonian fluids. This last region is referred to as the post-yield region. If the shear stress is gradually 
decreased again, the broken polarization chains will tend to reform, but with a stress value less than the one with 
which they were broken. Thus, a hysteretic behavior is observed on the material. Fig. 1.2 shows the force-velocity 
behavior of an industrial MR damper under various constant electric current inputs. 

(a) (b) 

Figure. 1.2. Force-velocity behavior of an industrial MR damper. On the left side, the force is plotted against the 
velocity and electric current. On the right side, the force is plotted against the velocity for various 
constant electric current inputs. 

As mentioned in [1], in the past decade there has been an increasing interest of scientists and engineers on 
MR fluid dampers and their applications. MR dampers have been utilized in a broad range of areas. Large MR 
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damping systems have been studied for civil engineering applications when damping is required to withstand the 
high vibrations generated by earthquakes [6]. Also, vibration control systems that include MR dampers have been 
developed for railcar comfort [7]. On the biotechnological side, MR dampers are being studied as part of intelligent 
prosthesis [8] and bionic legs [9]. According to [10], concerning the automotive industry MR fluids are appealing 
for vehicle suspension systems since they can operate at temperatures ranging from 40 to 150 °C with only slight 
variations in the yield stress. Additionally, MR fluids are almost insensitive to impurities and can be controlled with 
low voltages (12-24 V) and a current driven power supply outputting 1-2 A . 

1.2 Problem Statement 

Although MR dampers are greatly promising for the control of vehicle suspension systems, their major drawback 
lies on their non-linear and hysteretic behavior. Furthermore, the first step in designing a control strategy for a 
suspension system is modeling the behavior of the damper in an accurate manner. High-accuracy black-box and 
semi-phenomenological models have been developed recently. The models utilize displacement, velocity, electric 
current, and, many times, old values of the damping force as process variables in order to predict the output force 
of the MR damper. Nonetheless, to accurately predict the output force of the MR damper, the models are required 
to include a high number of parameters or complex mathematical functions. Thus, the computational necessities of 
those models become non-practical for commercial online application. 

Due to the aforementioned, what type of model of an MR damper can be developed, which can accurately 
predict the highly non-linear and hysteretic behavior of the system and be suitable for online implementation of a 
control system? To answer this question, a broad spectrum of modeling techniques will be analyzed and employed. 
To obtain experimental data sets, a series of experiments will be carried out on a commercial MR damper 1 . The 
experiments will be designed to test the behavior of the damper under various input profiles. Then, various MR 
damper models will be tested and validated using the experimental data. At the end of the research, an MR damper 
model will be proposed. 

1.3 Objectives 

1.3.1 General Objective 

The general objective of the present research is to explore various models and modeling techniques for an MR 
damper in order to compare them and analyze their strengths and weaknesses based on experimental data. 

1.3.2 Specific Objectives 

1. Perform experiments on an industrial MR damper in order to obtain real data and useful information for model 
identification. 

2. Test models that describe in a precise and simple manner the behavior of an MR damper. 

3. Compare how the models predict the behavior of an MR damper, using established criteria. 

4. Identify input patterns that allow a better identification of models for the MR damper. 

5. Present novel techniques to model an MR damper. 

'Thanks to Metalsa www.metalsa.cotn.mx 
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1.4 Justification 

As mentioned before, the areas where MR dampers can be utilized abound. Over the past decade, sustained interest 
in MR devices has increased due to the controllable interface provided by the MR fluid inside the damper. This fluid 
enables the mechanical system to interact with an electronic controller, which can be used to continuously adjust the 
mechanical properties of the damper. Some examples of devices in which MR fluids have been employed include 
dampers, clutches, brakes, and transmissions [11]. 

Nonetheless, the development of an effective control algorithm is reliant on the accurate modeling of the system 
to be controlled. The MR damper system includes both the process and the actuator. Thus, the adequate characteri-
zation of this system has shown to be a challenge due to its highly nonlinear dynamic response [12]. 

The present research is motivated by the aforementioned challenge that involves the correct modeling of an MR 
damping system. Various models and modeling techniques will be analyzed in order to compare their strengths 
and weaknesses. In addition, the training input patterns utilized for the identification of models will be discussed. 
Moreover, a new model for an MR damper will be proposed. The obtained results could be applicable to the 
automotive industry, where better comfort and handling control systems could be developed. Also, the results could 
be useful to the vast number of industries and applications where MR dampers are employed. 

1.5 Hypothesis 

The present research seeks to propose and compare models and modeling techniques for an MR damper. In conse-
quence and based on the elements discussed in the previous sections, the following thesis statements are proposed. 

1. Models for an MR damper can be developed, which can precisely describe its behavior. 

2. There are certain modeling techniques that outperform the rest and help to develop precise and optimal models 
of an MR damper. 

3. There are certain experimental input patterns that facilitate the identification of models for an MR damper. 

1.6 Research Strategy 

The present research will be divided into four main areas. 

1. First, the previous work done on modeling of MR dampers will be revised. Then, the literature review will be 
centered on the various modeling approaches and techniques that have already been used for modeling MR 
dampers. The review will be the starting point for selecting various models for comparison. 

2. Second, experiments to be performed on a commercially available MR damper will be designed. Once the 
experiments have been defined, experimental data will be obtained using an industrial MR damper. 

3. Third, various models for the MR damper will be trained using the generated experimental data. The models 
will be compared against each other by using various performance indexes and qualitative indicators. After 
comparing the models, a set of different modeling techniques will be analyzed and new models for the MR 
damper may be developed. 

4. Fourth, based on the results, a novel modeling technique for the MR damper will be documented. 
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1.7 Thesis Outline 

The present work is divided into six chapters and five appendixes. This chapter presented the introduction, problem 
definition, and general outline of the research. In Chapter 2, a literature review on the modeling of MR dampers is 
discussed. In Chapter 3, the design of experiments and experimental setup are described. In Chapter 4, the results 
obtained on the comparison of MR damper models are presented. In Chapter 5, the obtained results are analyzed 
and discussed. Finally, in Chapter 6 the final conclusions of the research are presented. 



Chapter 2 

Literature Review 

A literature review on the modeling of MR dampers is presented. In the first section, the state-of-the-art models of 
MR dampers are discussed according to various modeling approaches. Next, a summary of previous work done on 
comparing MR damper models and training patterns is presented. 

2.1 State-of-the-Art Models 

The models were divided into four different approaches: Phenomenological, Semi-Phenomenological, Black-Box, 
and Fuzzy-Based. 

2.1.1 Phenomenological (P) Models 

Phenomenological models are obtained by analyzing the physical characteristics of the systems they seek to model. 
Thus, in this type of models the parameters can be said to have a physical interpretation. 

The model presented in [5] represents a phenomenological model based on the phase shifting dynamics of MR 
fluids. The authors based the analysis on the differential equations that characterize the behavior of the MR fluid as 
it flowed through the gap between the piston and the cylinder in the MR damper. The proposed model is shown in 
equation 2.1. 
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where the five parameters pj need to be determined under a given loading velocity x(t); F(t) is the generated force; 
F(t) and F(t) are the first and second derivatives of the force, respectively; and F(t)3 and F(t)5 are the third 
and fifth powers of the force, respectively. Notice that the model is a second order differential equation, with five 
parameters, that uses the velocity and force as inputs. 

Using the experimental data employed in [1] (specified in the next section), the parameters for the model were 
identified using nonlinear least-squares approximation. After numerical experimentation, the authors concluded that 
the model that was constructed captured the hysteretic behavior of the damper precisely. In addition, hysteresis loops 
with various loading frequencies, applied field intensities, and excitation amplitudes were all modeled successfully 
by the proposed model. The authors commented that in the model, all the coefficients are to be assumed to be 
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dependent on the applied electrical current. That is, the coefficients should be functions of the applied magnetic 
field. This dependency is to be approximated by a polynomial of order 2 and must be identified from experimental 
data. 

2.1.2 Semi-Phenomenological (S-P) Models 

Semi-phenomenological models combine the analysis of the physical characteristics of the systems and various 
mathematical techniques in order to model those systems. 

The model presented in [1] has been widely used to compare models for MR dampers. The authors modified 
a previously proposed structure in order to include the regions where the acceleration and velocity have opposite 
signs. The structure of the model is shown in Fig. 2.1 and in equation 2.2. 

Figure. 2.1. Diagram of the semi-phenomenological model presented in [1]. 

where Co and ko represent the viscous damping and stiffness characteristics at large velocities, respectively, ci is 
the damping coefficient for the roll-off induced at low velocities. k\ and xo represent the accumulator stiffness 
and its initial displacement, respectively. Sj represents coefficients that are to be determined from experimental 
data. In addition, z(t) and y(t) are evolutionary coefficients for the model. The model can be seen to include 10 
parameters, and be dependent on the displacement and the velocity. To validate the proposed structure, the authors 
calculated the prediction error as a function of time, displacement, and velocity. The experimental data explored 
sinusoidal, step, triangle, and pseudo-random displacement patterns with frequencies lower than 3 Hz. The electric 
current pattern was constant stepped increments. The model was capable of exhibiting a wide variety of hysteretic 
behaviors. Moreover, the model could be effectively employed for control algorithm development and for system 
evaluation. Nonetheless, the model does not include the effect of the varying electric current. 
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Continuing in the search of semi-phenomenological models, the one presented in [2] has been greatly analyzed 
in the past years. The proposed model is said to describe the bi-viscous and hysteretic behaviors of the MR damper 
with high precision. The structure is described in Fig. 2.2 and in equation 2.3, 

Figure. 2.2. Diagram of the semi-phenomenological model presented in [2]. 

where A\ represents the dynamic yield force of the MR fluid. A2 and A3 are parameters related to post-yield and 
pre-yield viscous damping coefficients respectively. VQ and XQ denote the absolute value of hysteretic critical veloc-
ity and hysteretic critical displacement, respectively. In the equation, the model can be seen to use the displacement 
and velocity as inputs and only depend on five parameters. The experiments performed on the MR damper consisted 
on sinusoidal sweeps for the displacement and constant steps for the electric current. The authors used a non-linear 
least-squares algorithm in order to identify the coefficients of the model. The results obtained in the experimentation 
were said to prove the correctness of the proposed structure. In addition, the concise form of the model was men-
tioned as its best feature. Nevertheless, the authors did not use experiments in which the current varied over time 
to prove the effectiveness of the model under varying current scenarios. Although, the authors noted that parameter 
A3 could be said to be independent from the applied electrical current. 

Another semi-phenomenological model that is to be considered is the one presented in [3]. The model is intended 
to include the hysteretic force-velocity characteristic of the MR damper. The authors employed a component-wise 
additive strategy that captured the viscous damping, spring stiffness, and hysteretic behavior of the MR damper. The 
model is presented in 2.3 and in 2.4. 

where, cw and kw are the viscous and stiffness coefficients, respectively, a is the scale factor of the hysteresis, zw(t) 
is the hysteretic variable given by the hyperbolic tangent function, and fo represents the damper force offset. Also, 
P and 5 define the slope and width of the hysteretic loop, respectively. Notice that the model only depends on six 
parameters and uses the displacement and velocity as inputs. 
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Experimental data was obtained by a series of experiments performed on a commercially available MR damper. 
Sinusoidal displacement patterns of frequencies between 1 and 2 Hz were used. Also, the electric current was 
applied to the damper as constant steps. A performance-enhanced technique, based on particle swarm optimization, 
was proposed to identify the coefficients of the model. In order to make the model depend on the applied electrical 
current, the authors made the coefficients equal to a linear time function of that current. According to the authors, 
the results obtained by the new model showed highly satisfactory coincidence with the experimental data, and also 
proved the effectiveness of the proposed identification technique. In addition, as the proposed model contained 
only a simple hyperbolic tangent function it was said to be computationally efficient in the context of parameter 
identification and its subsequent inclusion in controller design and implementation. 

Along the same modeling approach, in [9] a sigmoidal model of the MR damper was proposed. The authors 
took a previously proposed model and divided it into two parts corresponding to positive and negative acceleration, 
respectively. The model is presented in equation 2.5. 

where kL is said to be the rigidity coefficient and the parameters Lj must be identified from experimental data. 
Additionally, the subscript p denotes the positive acceleration region and n the negative acceleration one. As shown, 
the model uses the velocity as input and depends on 10 parameters, five per equation. Unspecified experimental 
data was employed to test the proposed model. The identification of the coefficients was done using nonlinear least 
squares. The resulting model was tested and proved to match the behavior of the MR damper. In order to introduce 
the electric current to the model, every parameter was made equal to a linear time function of the electric current. 
The model was further used to successfully design and test a control scheme for an intelligent bionic leg. 

Finally, in [13] a model that modified the one in [2] was presented. The authors included a nonlinear stiffness 
term, in addition to an inertial force part. The model is shown in equation2.6. 



where fe is said to be the pre-load of the accumulator, ct, the coefficient of viscous damping, fv the yielding force, 
kb the shape coefficient, XQ the hysteretic velocity, and m represents a virtual mass. It can be seen that the model 
depends on the velocity and acceleration of the MR damper and it has six coefficients. Experiments that employed 
sinusoidal displacement patterns between 0.6 and 2.55 Hz were selected. The electric current was applied as constant 
stepped increments of 0.2 A. In order to identify the coefficients of the model, nonlinear least squares was used. The 
performance of the model was analyzed by calculating the error functions used by [1]. The proposed model could 
successfully be used to describe the behavior of the damper and to develop control algorithms. In respect to the 
model in [2], the modified one is said to predict the hysteresis to a higher degree of accuracy. As for other models, 
the analysis never included varying electric current scenarios. 

2.1.3 Black-Box Models 

Black-Box models utilize polynomials, recurrence relations, or artificial neural networks (ANN) to emulate the be-
havior of a system. This usually implies that the coefficients of such models do not have a physical interpretation. 
There are two fundamental objectives in the development of nonlinear black-box modeling of MR-dampers: im-
proved model numerical stability at low-integration step rate for real-time embedded applications and generalized 
model structure for a wide range of dynamics [6]. 

In [14], a polynomial model was proposed and analyzed to predict the behavior of an MR damper. The structure 
of the model is shown in equation 2.7. 
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where b\j and b2j are the coefficients that are to be learned from experimental data. It can be seen that the model 
has the velocity and electric current as inputs and depends on 14 parameters. To validate the model, experiments 
were performed using sinusoidal displacement patterns and constant electric current steps. The coefficients were 
estimated via nonlinear least squares. According to the authors, the proposed polynomial structure predicted fairly 
well the non-linear and hysteretic behavior of the MR damper. In addition, an inverse version of the model was 
tested in order to track a desired damping force. The reported results were equally successful when an open-loop 
controller was tested. 

In [10], an Autoregressive with exogenous (ARX) term model for an MR damper was proposed. The model is 
shown in equation 2.8, 

where Fk, Xk, and ±k represent the discrete force, displacement, and velocity values at instant k, respectively. 
In the same manner, the subscripts k - 1 and k - 2 represent old values of the respective variables. Additionally, a, 
are the coefficients that ought to be learned from experimental data. Thus, the model uses present and old values of 
the displacement, velocity and force as inputs and depends on six coefficients. 
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The selected experimental data employed constant and random electric current input patterns. The most impor-
tant regressors of the model were found to be the ones for x and the old values of F. If those two regressors were 
used, the role played by the regressors of x was negligible. In addition, old values of F were said to be extremely 
important for the quality of the model. If only x and x were used, the model quality remained very poor even if a 
great number of old values was employed. When the model was to be made dependent on the electric current, the 
authors added two regressors to the proposed structure, corresponding to the present and past values of the electric 
current, respectively. The results obtained showed that the ARX model was able to predict, with high precision, the 
behavior of the MR damper. Furthermore, for the varying current case the ARX model was said to outperform by far 
other phenomenological models. 

Among Black-Box modeling, ANNs have been greatly exploited recently. As mentioned in [15], a ANN is a 
mathematical model inspired from the basic understanding of biological nervous systems. They are devices that 
can accept multiple inputs and be trained exclusively from experimental data using various learning techniques. 
Artificial neurons are the elementary units in an ANN. Incoming information is in the form of signals that are passed 
between neurons through connection links. Each connection link has a proper weight that multiplies the transmitted 
signal. Each neuron has an internal action resulting in an activation function being applied to the weighted sum of 
the input signals to produce an output signal. 

Fig. 2.4 depicts a three layer ANN with three inputs and one output. It is to note that each connecting arrow 
has a multiplicative weight that is determined by the learning algorithm. In the figure, the L\j, L2J, LOJ neurons 
represent the first hidden, second hidden, and output layers of the network, respectively. 

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 

Figure. 2.4. Three layer ANN with three inputs and one output. Two hidden layers are presented, which are hidden 
in the sense that their direct output cannot be accessed. From input patterns, one can only observe the 
output pattern from the output layer. 

In [ 16] an ANN was proposed in order to model the direct and inverse dynamics of an MR damper. For the direct 
model, a recurrent^NN) was used, in which the output is delayed and fed back to the input layer. Fifteen input layer 
neurons, five for each input (displacement, velocity, and force) were utilized. Additionally, 15 hidden layer neurons 
and one output layer neuron were selected. The form of the input and hidden layers was sigmoidal and that of the 
output layer was linear. To train the ANN, the Levenberg-Marquardt algorithm was utilized. To test the correctness 
of the proposed structure, the authors compared the predicted force with that predicted by the model propose in [1], 
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After the validation, the authors noted that the trained ANN could reasonably predict the damping force of the MR 
damper. Nonetheless, the effect of the commanding electric current was never considered. 

An additional study on modeling using ANNs was presented in [17]. The structure employed the displacement, 
velocity, and electric current as inputs to predict the MR damping force. The selected experimental data was obtained 
by using sinusoidal displacement patterns with frequency of 6 Hz and constant steps of 0.2 A increments for the 
electric current. It was proposed to train the ANN using Recursive Lazy Learning. To validate the results, the error 
functions presented in [1] were utilized. It was concluded that the proposed model satisfactorily emulated the MR 
damper. The model could be adjusted when new data was present and it could be used for the design of control 
algorithms. 

One more research of modeling with ANN can be found in [18]. Here, a 25 hidden-layer ANN structure that 
employs the present and one past value of the displacement, velocity, and electric current as inputs, in addition to the 
past value of the damping force was proposed. Hence, the structure had seven inputs and one output. Experimental 
data was obtained using sinusoidal displacement input patterns of frequencies between 0.5 and 4 Hz. The electric 
current was held constant at various values. To train the structure, a back-propagation algorithm was employed. The 
validation procedure confirmed that the proposed ,4 AW model was able to accurately predict the behavior of the MR 
damper. In addition, a reversed structure was proposed in order to predict the necessary electric current to obtain a 
desired damping force. As for the forward model the reported results showed great accuracy between predicted and 
experimental data. 

2.1.4 Fuzzy-Based Models 

Fuzzy systems have been recently employed for modeling and control of physical processes. Said systems have 
very strong functional capabilities and may, if properly designed, satisfy the universal approximation property [19]. 
A fuzzy system is a static nonlinear mapping between inputs and outputs. Fig. 2.5 presents a block diagram of a 
general fuzzy system. The inputs and outputs of the system are crisp, that is, they are real numbers and not fuzzy 
sets. The fuzzyfication block converts the crisp inputs to fuzzy sets (membership functions) the inference mechanism 
uses the fuzzy rules in the rule-base to produce fuzzy conclusions, and the defuzzification block converts these fuzzy 
conclusions into the crisp outputs. 

Figure. 2.5. Fuzzy system block diagram. 

Among fuzzy systems, a Takagi-Sugeno-Kang (TSK) fuzzy system is one whose output conclusions are linear 
functions. A TSK fuzzy system can be selected for modeling complex systems. The fuzzy rules of the model can 
be determined by adaptively generating them based on input and output data or by selecting them by hand. The 
total output of the system is calculated using the weighted average of the output functions [20], Unlike ANNs, fuzzy 
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systems can include human knowledge in the form of fuzzy rules. Nonetheless, it may take a considerable amount of 
time to design and tune pure fuzzy models by hand. In this regard and as mentioned in [15], AW learning techniques 
can automate the learning process of a fuzzy model by extracting rules directly from experimental data. 

If a first-order TSK model consists of three inputs (with three membership functions each) and one output 
(described by linear output functions), and only three fuzzy rules are selected as shown in equations 2.9 - 2.11, 

where x{t), x(t), and i(t) are input language variables; MAJ, MBJ, and MCJ are fuzzy sets; fi(t), f2(t) and f3(t) 

are output language variables; Oj, qj, rx, and Uj are the output parameters of the fuzzy conclusions, then Fig. 2.6 
would represent the TSK structure for the first-order fuzzy system. The Wj and Wrij represent the degree of fitness 
and the normalized fitness of the fuzzy rules, respectively. For simplicity, the example considers only three of the 
27 possible fuzzy rules. 

A system as the one shown in the figure can use a hybrid learning algorithm that combines the backpropagation 
gradient descent and least squares methods. A TSK fuzzy model trained in this manner is often named Adaptive 
Neuro-Fuzzy Inference System (ANFIS). In general, the ANFIS learning algorithm consists of adjusting the param-
eters of the structure from sample data. Many other learning techniques, including Genetic Algorithms (GA), can 
be selected and will be discussed in detail when required. 

In [12], ANFIS is used to determine the parameters of a TSK model of the MR damper. The selected fuzzy 
structure was similar to the one in 2.6. It utilized three inputs (displacement, velocity, and voltage) and one output 
(damping force). Two, four, and three membership functions were selected for the displacement, velocity, and 
control voltage, respectively. The total number of fuzzy rules was 27 and the output functions were linear. 

The data selected for training and validating the model was generated from numerical simulation of the model 
presented in [1]. To validate the accuracy of the fuzzy-based structure, it was compared to the mathematical model 
when subjected to an identical input. The results showed excellent performance of the proposed model except for 
the low frequency damper dynamics. Nonetheless, the error was regarded as conservative for vibration control 
purposes. 

(2.9) 

(2.10) 

(2.11) 

In [7], the authors designed, fabricated, and modeled an MR damper for a railcar. The later was done by 
employing fuzzy logic. As the model before, the selected structure employed the displacement, velocity, and voltage 
as inputs with three, two, and four bell membership functions, respectively. A total of 27 fuzzy rules combined 

13 



14 

Figure. 2.6. Structure of a first-order TSK fuzzy-based model with three inputs and one output. For simplicity, only 
three fuzzy rules, out of the 27 possible combinations are considered. Each of the inputs is evaluated 
by the membership functions and their outputs are combined according to the defined fuzzy rules. Each 
output from the rules is then combined according to the selected sum method. 

with linear output functions of the force were selected. The validation process was done by using experimental 
data obtained with the fabricated MR damper. Sinusoidal and random displacement signals were utilized with 
constant and sinusoidal voltages. The displacement frequencies were always kept lower than 3 Hz. To assess the 
performance of the model, the error functions employed in [1] were selected. The results confirmed the correctness 
of the proposed fuzzy model and it was labeled as computationally efficient. Additionally, the authors highlighted 
the structure as being a suitable option for real time control. 

A similar approach was followed in [21]. The inputs for the fuzzy structure were selected as displacement, 
velocity, and control voltage, while the output was the damping force. The structure was trained using a GA that 
simultaneously evolved the membership function parameters. Hence, the proposed structure was regarded as an 
evolutionary fuzzy model. In this case, the authors also generated simulated data for the training of a TSK model of 
the MR damper using the model presented in [1]. The performance of the evolutionary fuzzy model was validated 
against the damping force generated by the mathematical model. The results showed that the structure emulated the 
behavior of the MR damper quite well. Additionally, the fuzzy model was tested using an unknown input pattern for 
which the results were very acceptable. 

A self-tuning fuzzy structure was analyzed in [22] to model an MR damper. As inputs for the model were 
selected the displacement, velocity, and electric current with five triangular membership functions each. The output 
functions were selected as constants combined using the centroid method. To validate the model, experimental 
data were obtained. Both the displacement and electric current patterns were sinusoidal, the first with frequencies 
between 1 and 2.5 Hz. The training algorithm of choice was back-propagation. The proposed structure modeled the 



Literature Review 15 

hysteresis of the damper better than a physical model. As for other fuzzy models, the suitability of the structure for 
real time control was mentioned. 

In [20], direct and inverse fuzzy models of the MR damper were identified using ANFIS. The identification data 
was obtained using a mathematical model of the damper. The fuzzy structure for the direct model resembled the 
one in Fig. 2.6, with velocity, acceleration, and control voltage as inputs and damping force as output. On the other 
hand, for the inverse model the control voltage and damping force were swapped with respect to the direct one. For 
both models, three membership functions for each input were selected as the best compromise between simplicity 
and performance. The results obtained with both fuzzy models proved that the proposed structures could accurately 
model the behavior of the MR damper. 

2.1.5 Comparison 

Table 2.1 summarizes the state-of-the-art models of MR dampers. The selected columns portray the main de-
scriptions of the proposed or studied models. The column Parameters compares the number of parameters of the 
proposed models. In the case of phenomenological, semi-phenomenological, and non-ANN black-box models, the 
column represents the number of coefficients in the model. For the ANN black-box structures, the column describes 
the number of hidden layers in the network. For the fuzzy-based models, the column represents the number of 
membership functions per input. Additionally, the column Validation Data specifies whether the model presented 
by the authors was validated using experimental or simulated data. 

The phenomenological model presented in [5] presents a good option for modeling the MR damper. Nonethe-
less, the dependency on the variable electric current would need to be added to the model, which would increase 
significantly the number of parameters. An additional consideration relies on the fact that, to compute the damping 
force, the model requires a non-linear differential function with four inputs that depend on the same force. This 
consideration could make the model impractical for online implementation. 

Among the semi-phenomenological models, the ones presented in [2], [3], and [13] stand out due to their low 
number of parameters. Nonetheless, in order to include the dependency on the electric current to the models the 
number of parameters would be increased. On the other hand, the model presented in [1] has been greatly employed 
for comparison of new models for MR dampers, even when it employs 10 or more parameters. For all the ana-
lyzed semi-phenomenological models, their major drawback lies on the use of complex mathematical functions that 
resemble the behavior of the MR damper.. 

For black-box structures proposed to model the MR damper, the ARX structure presented in [10] appears to be 
the more compact one. Nevertheless, its dependency on old values of the damping force may be a challenge for 
implementation. On the other hand, ANNs propose a feasible modeling approach. Although, a high number of 
inputs and hidden layers may be required in order to obtain acceptable results. 

Finally, fuzzy-based models stand as an interesting option for modeling the MR damper. A l l the analyzed models 
employed three inputs, including the control variable (voltage or electric current). The selection of inputs, fuzzy 
sets, and output functions may require a deep knowledge of the behavior of the system, buy may be alleviated by 
the use of ANFIS and GA. As for ANNs, a high number of fuzzy sets and fuzzy rules may be required in order to 
successfully model the MR damper. 



Table 2.1. Comparison of Models. The state-of-the-art models are compared by modeling approach, number of 

2.2 Previous Work 

The research done in [10] compared the semi-phenomenological modified Bouc-Wen model presented by [1] in 
equation 2.2 and an ARX structure as in equation 2.8. The selected performance index for comparing the results 
was the Error to Signal Ratio (ESR), defined later in equation 4.2. The authors first compared the models using the 
three experimental data sets in which the electrical current was held constant. For those data sets, both models were 
reported to obtain very low error values. For varying electric current scenarios, the reported results showed that the 
semi-phenomenological model was not able to predict the behavior of the damper and obtained high error values. 
On the other hand, the ARX model was reported to obtain error values as low as for the constant electric current 
experiments. In relation to the input patterns selected, the authors did not comment on the effect of those patterns 
on the identification process of the models. 

In [23], the work from [10] was continued. Three models of an MR damper were selected and compared. The 
author divided the experiments performed into two groups. The first group employed constant displacement and 
constant electric current inputs. The second group of tests employed constant velocity patterns. Once the velocity 
was measured stable and constant, a constant electrical current was applied to the damper. To compare the models, 
the ESR index was utilized. The author selected the same two models used in [10] and added to the research the 
semi-phenomenological model presented in [2]. The dependency on the electric current was added to the models 
by making their coefficients equal to time varying functions of the current or by adding regressors in the case of the 
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ARX one. In this case, the author selected a polynomial of order five instead of a linear function. After identifying 
the models, the author concluded that the model presented in [2] obtained the best compromise between exactness 
and overall simplicity. Nonetheless, the other two models were reported to obtain acceptable results. At the end of 
the research, the effect of the input patterns on the identification process was not analyzed. 

In the thesis work presented in [24], linear, non-linear, and probabilistic models for an MR damper were ana-
lyzed. Experimental data was obtained using an industrial MR damper. The selected input patterns were designed 
to be bounded according to real-life scenarios. The velocity and displacement patterns were selected as uniform 
random distributions. The electric current input was also continuously varied according to a uniform random dis-
tribution. To compare the MR damper models, force-time and force-velocity plots were employed. The general 
conclusion of the research was that a deterministic model was insufficient to model the behavior of an MR damper. 
In addition, it was said that the number of parameters required for a phenomenological model that includes all the 
dynamic effects would be too high to be implementable. For the non-linear model, the addition of a hysteresis term 
was observed to dramatically improve its performance. 

In [25], various input patterns for MR damper modeling were analyzed. A neural network that emulated the 
behavior of an MR damper modeled by an ARX structure was used. The objective of the research was to determine 
which experimental input pattern allowed the adaptation mechanism of the neural network to be more precise on 
its prediction of the behavior of the damper. The authors concluded that a sinusoidal displacement with modulated 
frequency and constant amplitude, plus an Increased Clock Period Signal (JCPS) current pattern between 0 and 4 A 
provided the best combination for model identification. For the ICPS signal, the authors noted that the amplitude 
duration was to be held constant and that the duration of each step was to be at least equal to the settling time of 
the MR damper force step response. Additionally, the authors proposed a modification to the model presented in 
[2] in order to make it dependent on the electric current. The resulting model was successfully compared against 
simulated experimental data sets. 

2.3 Opportunities 

After reviewing the state of the art, the following areas of opportunity were identified. 

• There is a need for an extensive quantitative and qualitative comparison of MR damper models. This com-
parison should take into account the performance of the models, as well as their overall complexity and ease 
of implementation. The present work is meant to fulfill this need by selecting various state-of-the-art models 
and presenting an in depth comparison. 

• There is a need for MR damper models that can precisely model the hysteretic and non-linear behavior of the 
system. The present work is determined to analyze how various MR damper models mimic the behavior of 
the system. 

• There is a need for MR damper models that can accurately characterize the role of the electric current without 
being excessively complex. In the present work, a novel method for introducing the electric current depen-
dency to models will be presented. 



2.4 Summary 

The chapter presented a literature review on the modeling of MR dampers. The first section various state-of-
the-art MR damper models were summarized according to four modeling approaches: phenomenological, semi-
phenomenological, black-box, and fuzzy-based. The following section discussed previous work done on the com-
parison of MR damper models and training patterns. Later, Table 2.1 presented a chronological synthesis of the 
latest contributions to MR damper modeling. At the end, the areas of opportunity in MR damper modeling were 
identified. 
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Chapter 3 

Experiments 

The description of the design of experiments, experimental setup, and experimental results is discussed in the fol-
lowing sections. In order to model a dynamical system, such as the MR damper, experimental data was obtained 
from an industrial damper. A set of experiments was designed in order to test the behavior of the system under 
various input patterns. The experimental setup consisted of measuring devices, electric current controllers, and 
displacement actuators. 

3.1 Design of Experiments 

Experiments were designed in order to generate displacement and electric current input patterns that would char-
acterize the behavior of an MR damper for automotive applications. Special attention was placed on the proper 
frequency content of the displacement signals. Additionally, the patterns were selected in order to aid the modeling 
process of the system. The experiments were based on the work presented in [26], where a set of training patterns 
was reviewed and designed for the identification of MR dampers. 

3.1.1 Electric Current Patterns 

Electric current patterns are very important for the correct identification of the MR damper. The selection of these 
patterns is to take into account the settling time of the electric circuit involved in the coil, the electric current input 
limits of the MR damper, and the capabilities of the experimental setup. The electric current input patterns selected 
for the experimental tests are described as follows. 

Increased Clock Period Signal (ICPS) 

For an ICPS signal, the amplitude is modified randomly at a constant period of time. Due to its random content, this 
signal is rich in frequencies. According to [27], the signal can be calculated as shown in equation 3.1, 

where [q\ represents the integer part of q; e(t) is a uniformly distributed white noise signal; NICPS represents the 
number of samples for which the amplitude of the signal is to be held constant; and t is time. 

(3.1) 
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As mentioned in [27], ICPS signals provide various advantages over white noise signals for system identification 
purposes. First, for an ICPS signal the amplitude is held constant over long periods of time. This is significantly 
important, as the measured data would approximately contain information for a transient analysis of the system. 
Second, an ICPS signal is advantageous for processes where the wearing of the actuators is a main concern, as the 
input to the system is not continuously varying. For the MR damper, the ICPS signal is employed to extract the 
steady and transient behavior of the damper by a constant excitation of the MR fluid. The period at which the value 
of the signal is changed is to be greater than the settling time of the MR damper. 

For the present work, the ICPS signal was designed to contain electric current values between 0 and 2.5 A, 
uniformly distributed. The period for which the amplitude of the signal was held constant was set to 0.20 s, according 
to the typical settling time of an MR damper. Thus, the value of NICPS was calculated for a sampling frequency 
of 512 Hz. Additionally, the uniformly distributed signal e(t) was obtained in MATLAB™ by means of the rand 
function. 

Pseudo-Random Binary Signal (PRBS) 

A PRBS signal is very common for system identification. The amplitude of the signal is shifted between two values, 
with a certain period of time. The duration of every step is governed by a binary algorithm that is to be dependent 
on the settling time of the system to identify. As mentioned in [27], a PRBS is a purely deterministic signal. This 
is, future states can be computed exactly. Nonetheless, the correlation function of the signal resembles one of white 
random noise. 

In order to compute the PRBS signal, the idinput function from the System Identification Toolbox in MATLAB™ 
was selected. The function computes a maximum length PRBS based on the desired length of the signal, the 
minimum constant interval, and the two levels at which the signal is to shift. For the present work, a PRBS signal 
of 30 s (a total of 15360 samples, base on a sampling frequency of 512 Hz) was employed. The minimum constant 
interval was set to 0.195 s (a total of 100 samples, based on a sampling frequency of 512 Hz). In addition, the 
electric current values were bound between 0 and 2.5 A. 

Amplitude Pseudo-Random Binary Signal (APRBS) 

An APRBS signal is one in which the amplitude is randomly modified every certain period of time. The signal can 
be defined as shown in equation 3.2, 

where p is a normally distributed random number and a is a number between 0 and 1 that specifies the probability 
of i(t) being equal to i(t — 1). If a is one, the amplitude of the signal becomes constant. If a is zero, the amplitude 
of the signal becomes normally distributed white noise. APRBS signals were employed in [10] to train ANNs in 
order to model an MR damper. 
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For the present work, the algorithm to compute the APRBS signal was programmed in MATLAB™. In order to 
obtain a signal with normally distributed amplitude, the value of a was set to 0.01. In addition, the electric current 
values were bound between 0 and 2.5 A. 

Stepped Increments Signal (SC) 

A SC signal is one in which the amplitude is held constant for a predetermined period of time. At the end of the 
period, the value of the signal is incremented to a different constant value. The purpose of the signal is to identify 
the various operational zones of the MR damper. In the present work, the electric current values were held constant 
for 30 seconds. Constant steps of 0.0, 0.4,0.8, 1.2, 1.6,2.1, and 2.5 A were employed. 

3.1.2 Displacement Pattern 

As mentioned in [28], it is common to employ sine waves, step functions, or triangular waves as displacement pat-
terns for vehicle testing. While these inputs provide a basis for comparative evaluation of various designs, they do 
not serve as a valid basis for studying the real ride behavior of a suspension system since surface profiles are rarely 
of simple forms. In consequence, it is found that road profiles are more realistically resembled by random functions. 
As discussed in [29] and [30], these random functions can be generally described by means of their frequency com-
position. According to the ISO 8606:1995 standard, there are eight different degrees of road roughness according to 
their power spectral density. Based on the work in [28], equation 3.3 describes the power spectral density of a road 
profile, 

Once a roughness coefficient has been selected, according to [30] the road profile x(t) can be generated based 
on a standard procedure as the sum of a series of harmonics. Equation 3.4 presents the calculation of a road profile, 

where S(f) represents the power spectral density of the elevation of the surface profile, / is a frequency in Hz, Cr 

is the roughness coefficient of the road, uix is the number of cycles per feet, Ncr is a constant corresponding to the 
roughness coefficient, and vc is the speed at which the vehicle is traveling. 

Table 3.1 presents the values for C r and Ncr depending on the desired road profile. 

Table 3.1. Roughness coefficients for power spectral density functions of road profiles. Taken from [28]. 
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where <j>j is a random phase angle normally distributed in the interval 0 - 27r; ujj is a frequency within the interval 
at which S(f) is defined and calculated as Wj = w m j n + Aw(j — 1); the frequency increment Aw is defined as 
Aw = (ojmax - uimin)/Nf; Nf is the total number of frequency increments in the interval ujmin - w m a x ; the term 
inside the square root represents the amplitude of the harmonics; w m j n and u)max are the minimum and maximum 
frequencies at which the spectrum is defined; and t represents the time. 

In the present work, road profile (RP) displacement patterns were chosen for all tests. The employed roughness 
coefficient was that of a smooth highway. The number of harmonics was selected as 100 with minimum and maxi-
mum frequencies of 0.2 and 20.5 Hz, respectively. The number of cycles per feet was set to 0.5 and the speed of the 
vehicle was selected as 440 in/s (25 mi/h). The values were employed in order to recreate the displacement pattern 
of a highway under standard conditions and contain a time-changing frequency with peak values around 6 Hz. In 
order to obtain the signals, the algorithm was programmed in MATLAB™. RP signals were employed in [31] to test 
passive suspension systems and in [10] to train ANNs in order to model the behavior of an MR damper. 

The selected experimental system can be divided into four parts: an MR damper, the actuators, the control sys-
tem, and the data acquisition system. An ACDelco™MR damper, part of a Delphi MagneRide™ suspension from 
a Cadillac 2008, was employed. An MTS™GT controller testing system was used to control the position of the 
damper. A Flextest™ data acquisition system commanded the controller and recorded the position and force of the 
MR damper, as well as the electric current on the coil. A sampling frequency of 512 Hz was used. The displacement 
actuator was a hydraulic servo-controlled piston of 3000 psi and displacement bandwidth of 15 Hz. The displace-
ment and electric current ranges were: 0-1.6 in, and 0 - 2.5 A , respectively. The damping force was measured using 
an Instron load cell and the measured span was 0 - 640 lbf. The experimental setup was controlled and monitored by 
a Human-Machine Interface (HMI) developed in LabView™. A block diagram of the experimental setup is shown 
in Fig. 3.1. 

The measured signals were observed to be highly permeated by noise. In order to remove the undesired noise 
frequencies, a filter was designed as a second order low-pass filter with a cutoff frequency of 20 Hz. Equation 3.5 
presents the transfer function for the designed filter. 

3.2 Experimental Setup 

3.3 Signal Conditioning 

3.3.1 Noise Filter 
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Figure. 3.1. Block diagram of the experimental setup. The designed experiments are loaded as text files to the HMI. 
The HMI converts the files and sends the patterns to the control system. Then, a voltage respective to 
the desired position is sent to the actuation system, at the same time that the desired electric current 
is sent to the MR damper. The position, force, and temperature measurements are sent to the data 
acquisition system and are then passed to the HMI in the appropriate format. Finally, the HMI is in 
charge of formatting and saving the data. 

3.3.2 Discrete Derivative 

In order to compute the velocity of the MR damper, a discrete-time derivative was employed after the displacement 
signal was filtered. The calculations were performed using Simulink (see appendix A). 

3.4 Experimental Results 

Eight sets of experimental data were obtained for the identification of MR damper models. In the selected experi-
ments, the electric current patterns were CS, ICPS, PRBS, and APRBS signals. On the other hand, RP patterns were 
employed as the displacement input. Three 30 s experiments were performed for the highly varying electric current 
patterns. In addition, two 600 s experiments with APRBS and ICPS electric current patterns were performed in order 
to test the behavior of the MR damper as the temperature of the device increased. Finally, three 210 s experiments 
were carried out employing SC electric current patterns. Various replicates of the experiments were performed and 
used as validation data. 

The specific patterns of the eight experiments are shown in Table 3.2, where the experiments have been la-
beled according to the patterns employed. The table specifies the utilized input patterns, the number of replicates 
performed, the duration of the experiments, the maximum displacement frequency, and the displacement span. 
Moreover, figures 3.2 and 3.3 show 20 and 100 second windows of the patterns employed for the first and last ex-
periments, respectively. In addition, 30 and 60 second windows present the frequency content of the experiments. 
See Appendix A for a complete comparison of the experimental data sets . 

3.5 Summary 

A description of the design of experiments, experimental setup, and resulting data sets was presented in this chapter. 
Various electric current patterns were selected in order to characterize the behavior of the MR damper. On the other 
hand, displacement patterns that resembled usual operating conditions of an automotive suspension system were 
chosen. The experimental setup and process were specifically described. At the end, eight experimental data sets 
were obtained in order to be used as training patterns for models of an industrial MR damper. 
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Table 3.2. Experimental data sets 

Figure. 3.3. Description of experiment RP3-CS. Displacement and electric current patterns (left). Frequency content 
(right). 



Chapter 4 

Results 

An extensive comparison of MR damper models is presented. The study is motivated on the challenge that involves 
the correct modeling of an MR damping system. Four models were selected among the state of the art, one from each 
modeling technique presented in the previous chapter. The models were trained using eight sets of experimental data 
and two error indexes were calculated. The results are presented by means of box-and-whisker diagram plots. 

4.1 Error Calculation 

Among the state of the art, the selected models were the ones presented in [5], [32], a black-box model structure 
used in [10] and [33], and a fuzzy model that uses ANFIS as presented in [12] and [20]. The models were compared 
against each other by using the Square Root of the Sum of the Squared Errors (RSSE) and the Error to Signal Ratio 
(ESR) indexes. The RSSE and ESR are presented in equations 4.1 and 4.2, respectively. The RSSE presents the 
square root of the sum of the errors between the predicted and experimental output forces normalized by the total 
number of samples. The ESR is the ratio of the sum of squared errors and the variance of the experimental force. 
This last index is equal to one if the model is trivial and zero if the model is perfect. 

The eight selected sets of experimental data discussed in the previous chapter were employed to train the struc-
tures. The models were identified using the first replicate of each experiment and cross validated with the remaining 
ones. The first three models were first identified in their passive form. This is, no electric current dependency was 
included. Then, the models were identified in their semi-active form. This is, the electric current was taken into ac-
count. The fuzzy-based structure was only identified in its semi-active form. At the end of the chapter, a non-linear 
fuzzy structure is proposed as an alternative for modeling an MR damper. 

25 
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4.2 ARX Model 

The ARX structure shown in 2.8 was modified to consider three regressors for each input variable (x(t), x(t), F(t)) 
instead of two (see equation 4.3). Using the first replicate of each experiment, the nine coefficients of the model were 
identified with MATLAB™ using a nonlinear least squares algorithm. Then, the RSSE and ESR were calculated by 
comparing the experimental force with the force predicted by the models. The coefficients were randomly initialized 
25 times and the lowest error value was recorded. The resulting identification errors are shown in Table 4.1. The 
identified coefficients for the different ARX structures can be seen in Appendix B. 

Notice that for every ARX model identified, the RSSE and ESR lie below 12 lbf and 0.03, respectively even for 
the experiments with high electric current variations. In addition, a marked improvement can be seen for the models 
trained with the experiments that use constant steps of the electric current. Next, the eight identified models were 
validated using the remaining replicates and experiments. The resulting RSSE and ESR values by model are depicted 
in Figs. 4.1 and 4.2, respectively. The figures present a box and whisker plot with one box for each ARX model. 
The boxes have lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from 
each end of the boxes to show the extent of the rest of the data. Outliers are data with values beyond the ends of the 
whiskers. The models are named according to the experiments with which they were trained. 

From the figure, it can been seen that the models trained with the experimental data sets with constant electric 
current obtained various RSSE and ESR values over 20 lbf and 0.10, respectively. On the other hand, the ARX 
models identified with experiments that contain varying electric current can be observed to have less error values 
overall. 

In order to include the variant electric current in the model, the ARX structure was modified by adding three 
regressors. Equation 4.4 shows the final structure. 
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RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.1. RSSE results for the passive ARX model 

RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.2. ESR results for the passive ARX model 

As for the passive model, the modified ARX semi-active model was trained using the first replicate of each of 
the eight sets of experimental data. As for the passive structure, 25 random initializations of the 12 coefficients 
were performed and the lowest error was recorded. The resulting identification errors are shown in Table 4.2. The 
identified coefficients for the different ARX structures can be seen in Appendix B. 

It should be noted that the addition of the three electric current regressors improved only slightly the performance 
of the ARX models. To further analyze the performance, the eight identified semi-active models were cross validated 
using the remaining replicates and experiments. The resulting RSSE and ESR values by model are depicted in Figs. 
4.3 and 4.4, respectively. 

It can be observed that the results are nearly identical to the results obtained with the passive ARX model for the 
first five models. Nonetheless, for the models trained with experiments that held the electric current constant, the 
validation results were not satisfactory. 
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Table 4.2. Identification RSSE and ESR for the semi-active ARX model. 

RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS 
Model 

RP3-CS 

Figure. 4.3. RSSE results for the semi-active ARX model. 

RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.4. ESR results for the semi-active ARX model. 
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4.3 Semi-Phenomenological (S-P) Model 

The model shown in equation 2.3 was identified for the first replicate of each of the eight sets of experiments 
aforementioned. The identification algorithm was chosen as non-linear least squares. The five coefficients of the 
model were randomly initialized 25 times and the lowest error value was recorded. The resulting identification 
errors are shown in Table 4.3. Again, the identified coefficients are specified in Appendix B. 

Table 4.3. Identification RSSE and ESR for the passive S-P model. 

It can be noticed that the passive S-P model obtained high identification errors for most of the experiments. A 
later cross validation was performed using all the data sets and replicates. This validation confirmed that the passive 
S-P model was not able to predict the damping force in an accurate manner. Even for the models that obtained the 
lowest identification errors, RSSE and ESR values of more than 50 lbf and 0.30, respectively were observed. 

In order to include the electric current into the model, each of the parameters (A\, A-i, A3, Vb, and XQ) was 
made equal to a second order polynomial dependent on the electric current. Thus, the S-P model, now semi-active, 
is represented in equation 4.5. 

F(t)= (An + A12i(t) + A13i(t)2) • 

~* ( < * , + * , « , > + ( « > + *«>)) 

The structure depends on 15 coefficients that were identified for the first replicate of each of the eight sets of 
experimental data. One more time, 25 random initializations of the coefficients were done and the lowest error 
values were recorded. The resulting identification errors for the semi-active S-P model are shown in Table 4.4. 

Contrary to the passive one, the semi-active S-P model was able to obtain lower error values for all the experi-
mental data sets. A considerable decrease in error was seen for the models trained using experiments with constant 
electric current. As for the passive model, a cross validation was performed using the semi-active version. Figs. 4.5 
and 4.6 present the RSSE and ESR by model, respectively. 



Table 4.4. Identification RSSE and ESR for the semi-active S-P model. 

RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.5. RSSE results for the semi-active S-P model. 

RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.6. ESR results for the semi-active S-P model. 
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The figures show that for all the identified semi-active S-P structures, the median of the RSSE laid around 25 Ibf, 
while the median for the ESR was 0.09. Thus, the addition of the electric current parameters significantly improved 
the performance of the model. 

4.4 Phenomenological (P) Model 

The model previously shown in equation 2.1 was identified for the first replicate of each of the eight data sets using 
MATLAB™ and a least squares optimization algorithm. The relationship shown in equation 4.6 was utilized as the 
objective function in order to capture the dynamics of the damper. 

Model Training RSSE (lbf) ESR 

RP-ICPS 27.06 0.0832 
RP-APRBS 24.89 0.0682 
RP-PRBS 22.76 0.0854 

RP-APRBS-L 21.23 0.0499 
RP-ICPS-L 23.06 0.0606 

RP1-CS 27.17 0.0821 
RP2-CS 29.57 0.0975 
RP3-CS 26.01 0.0712 

It can be seen that the passive P model obtained low identification error values for all the experimental data 
sets, even for the ones with highly variant electric current. A cross validation was employed to further compare the 
performance of the model in different scenarios. The validation can be seen in Figs. 4.7 and 4.8. Notice that RSSE 
and ESR outliers of more than 35 lbf and 0.15 were observed for the models identified with highly variant electric 
current experiments. 

Afterwards, in order to make the model dependent on the electric current, each coefficient in equation 4.6 was 
replaced by a second order polynomial electric current equation (see equation 4.7). This modified model was again 
identified using the first replicate of each of the eight experimental data sets. The obtained identification errors are 
displayed in Table. 4.6. 

(4.7) 

(4.6) 

The coefficients of the model were randomly initialized 25 times and the lowest error values were recorded. The 
identification errors for the passive P model are shown in Table 4.5. 

Table 4.5. Identification RSSE and ESR for the passive P model. 
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RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.7. RSSE results for the passive P model. 

RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L 
Model 

RP1-CS RP2-CS RP3-CS 

Figure. 4.8. ESR results for the passive P model. 

Table 4.6. Identification RSSE and ESR for the semi-active P model. 

Model Training RSSE (lbf) ESR 

RP-ICPS 25.08 0.0713 
RP-APRBS 22.60 0.0564 
RP-PRBS 18.62 0.0576 

RP-APRBS-L 22.29 0.0560 
RP-ICPS-L 25.59 0.0749 

RP1-CS 22.26 0.0551 
RP2-CS 21.65 0.0522 
RP3-CS 13.32 0.0187 

It is important to mention that the semi-active P model outperformed the passive one for all the experiments 
when comparing the identification errors, except for experiment RP-ICPS-L. For this last one, the RSSE increased 
by 2 lbf. The cross validation performed using the semi-active P model is shown in Figs. 4.9 and 4.10. 

Notice that, even when the semi-active P model obtained low identification errors for most experimental data 
sets, the validation results do not show a significant improvement with respect to the passive model. 
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RP-ICPS RP-APRBS RP-PRBS RP-APRBS-L RP-ICPS-L RP1-CS RP2-CS RP3-CS 
Model 

Figure. 4.10. ESR results for the semi-active P model. 

4.5 Fuzzy-Based Model 

A TSK fuzzy-based model that used ANFIS was analyzed for modeling the MR damper. Displacement, velocity, and 
electric current were used as inputs, and the damper force was the output. The model resembled the one in Fig. 2.6, 
but contained 27 fuzzy rules for all possible combinations of inputs. Three Gaussian membership functions were 
utilized for each input and the outputs of the system were selected as 27 linear functions. 

One fuzzy-based model was trained using the first replicate of each set of experimental data after being normal-
ized. A hybrid learning algorithm was selected to train the structure by means of the ANFIS toolbox in MATLAB™. 
The training was performed 50 times or until the error decreased by less than a threshold. After the training, the 
RSSE and ESR were calculated in Simulink as specified in Appendix C. The identification errors are shown in Table 
4.7. 

Notice that the fuzzy-based model obtained low identification errors when trained with all the experimental data 
sets, especially for the ones with constant electric current patterns. A cross validation was performed using the rest 
of the experimental data sets to further analyze the structure . Figs. 4.11 and 4.12 present the obtained RSSE and 
ESR values by model, respectively. 

It can be seen that the models trained using experimental data with constant electric current steps outperformed 
those trained with highly variant electric current by far. 
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Table 4.7. Identification RSSE and ESR for the fuzzy-based model. 

Model 

Figure. 4.11. RSSE results for the fuzzy-based model. 

Figure. 4.12. ESR results for the fuzzy-based model. 
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4.6 Non-Linear Fuzzy-Based Model 

A non-linear fuzzy-based model is proposed in the present work in order to model the behavior of an MR damper. 
The structure can be regarded as a fuzzy-based method to introduce the dependency on the electric current to a 
non-linear model of an MR damper. The model uses the electric current as input, and the fuzzy rules are denned as 
specified in equation 4.8. 

Notice that each output function (t) depends on the displacement and the velocity of the MR damper. Mpj are 
fuzzy sets of i (t). The output functions for the model were selected to be of the form of the semi-phenomenological 
model of the MR damper presented in [2] and shown again in equation 4.9, 

where Wj represents the membership degree of i(t) on each of the membership functions. Fig. 4.13 depicts the 
proposed non-linear fuzzy-based structure. 

Figure. 4.13. Non-linear fuzzy-based model. 

As equation 4.9 only depends on the displacement and velocity of the damper, the experimental data sets where 
the electric current was employed as constant step increments were selected as identification sets. Each experimental 
data set (RCI-CS, RC2-CS, and RC3-CS) was broken into seven subsets, each corresponding to a time span with 

where the coefficients dij, d^j, dzj, and d&j are to be determined from experimental data. 

The overall output force of the damper was selected to be computed as specified by equation 4.10, 
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constant electric current values. Then, coefficients were identified using non-linear least squares and yielded one 
non-linear equation for each of the seven electric current stepped increments on the experiments. In this manner, 
one non-linear fuzzy-based model with seven output functions was obtained from experiment RC1-CS, one from 
experiment RC2-CS, and one from experiment RC3-CS. The fuzzy-based models were labeled according to the 
experiments with which they were trained. 

The input membership functions for each model were defined as seven Gaussian functions with variance equal 
to 0.2 and means of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A, respectively. Additionally, seven output functions were 
selected in the form of equation 4.9 with coefficients previously identified (see Appendix B). 

Once the three structures were trained, a cross validation was performed using the eight sets of experimental 
data. Figs. 4.14 and 4.15 present the resulting RSSE and ESR by model, respectively. Notice that the models trained 
with the three experimental data sets obtained validation errors with medians below 29 lbf and 0.1. The details of 
the calculations for the proposed structure can be seen in Appendix D. 

RP1-CS RP2-CS RP3-CS 

Figure. 4.14. RSSE results for the non-linear fuzzy model. 

Figure. 4.15. ESR results for the non-linear fuzzy model. 

4.7 Summary 

This chapter presented an extensive comparison of four models for MR dampers. The models were trained using 
eight different sets of experimental data and the RSSE and ESR were computed. Box plots were utilized in order 
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to compare the performance of the structures under different input patterns. At the end of the chapter, a non-linear 
fuzzy-based model was proposed, identified, and tested. 



Chapter 5 

Analysis and Comparison of Results 

An analysis of the identification results for MR damper models is presented. The models that obtained the lowest 
average validation errors were selected and then further compared by means of force-time and force-velocity plots. 
Experiment RP-APRBS was employed to test the models in the time domain, due to its variant electric current 
content. Experiment RP1-SC was employed to test the models in the force-velocity behavior, due to its constant 
electric current increments. 

5.1 Best Models 

The average RSSE and ESR values were calculated for each of the models presented in the previous chapter. The 
errors are shown in Tables 5.1 and 5.2 by model and divided according to the experimental data set with which they 
were identified. 

Table 5.1. Average RSSE (lbf) by model and experimental data set. 

It can be noticed from the tables that the ESR values are almost proportional to the RSSE ones for all the models. 
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Table 5.2. Average ESR by model and experimental data set. 

5.1.1 ARX Model 

The ARX model obtained the lowest validation errors when trained with experiments with highly variant electric 
current patterns. The inclusion of regressors for the electric current was not seen to improve the results. In fact, 
when the model was trained with experimental data sets that employed constant increments of the electric current, 
the errors were observed to significantly increase for the semi-active version. This phenomenon confirmed that the 
ARX structure depends greatly on the damping force regressors and not on the electric current ones. Moreover, the 
addition of three electric current regressors only complicated the identification process. Based on the average error 
calculations, the semi-active ARX model trained with experiment RP-ICPS-L was selected as the best one among 
the ARX structures, with RSSE and ESR values of 10.9766 lbf and 0.0163, respectively. 

Fig. 5.1 presents a two second window that compares the experimental force and the force estimated by the 
model. Fig. 5.2 compares the force-velocity behavior of the experimental and estimated damper force at six differ-
ent constant electric current values. The experimental data was taken from experiments RP-APRBS and RP1-CS, 
respectively. 

Time (sec) 

Figure. 5.1. Experimental and estimated damper force by the selected ARX model. Experimental data taken from 
experiment RP-APRBS. 

It can be noticed from the time comparison plot that the ARX model very accurately matches the experimental 
force, with only slight differences at the lower peaks. The force-velocity plots reveal that at the lower electric current 
values, the ARX structure struggles to model the non-linearities of the MR damper. As the electric current increases, 
the ARX model starts to almost perfectly model the behavior of the damper. If analyzed in detail, a minor shift can 
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Figure. 5.2. Experimental and estimated F-v behavior of the selected ARX model. Each of the figures presents the 
behavior at a constant value of the electric current using the data from experiment RP1-CS. 
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be noticed between the experimental and predicted forces. This shift may be due to the fact that the ARX structure 
is highly dependent on the previous values of the damping force. Moreover, the model may be merely expecting for 
the future value of the force to be equal to the previous one and hence the observed shift. 

5.1.2 S-P Model 

It was observed that the S-P model performed uniformly for all the experimental data sets. The inclusion of the 
electric current to the model significantly diminished the RSSE and ESR values by approximately 15 lbf and 0.15, 
respectively. Nonetheless, this inclusion of the electric current incremented considerably the number of parameters. 
Based on the average error calculations, the semi-active S-P model trained with experiment RP-ICPS-L was selected 
as the best S-P model, with RSSE and ESR values of 24.5619 lbf and 0.0771, respectively. 

Fig. 5.3 presents a two second window that compares the experimental force and the force estimated by the 
model. Fig. 5.4 compares the force-velocity behavior for the experimental and estimated damper force at six 
different constant electric current values. Once again, the experimental data was taken from experiments RP-APRBS 
and RP1-CS, respectively. 

Time (sec) 

Figure. 5.3. Experimental and estimated damper force by the selected S-P model. Experimental data taken from 
experiment RP-APRBS. 

It can be seen from the force-time plot that the S-P model follows the pattern of the experimental force with 
a minor lead time. On the other hand, the force-velocity plots confirm that the S-P model correctly follows the 
non-linearities of the M R damper, but overly exaggerates the width of the hysteresis loop. As for the ARX one, the 
S-P model seems to improve its performance as the electric current is increased, but never reaches an acceptable 
performance. 

5.1.3 P Model 

The P model was observed to perform almost constantly for all the experimental data sets. The addition of the elec-
tric current to the model was not seen to significantly improve its performance. Moreover, the RSSE and ESR values 
were seen to significantly increase for five experimental data sets when the semi-active P model was employed. As 
for the ARX model, this phenomenon is due to the fact that the model places greater importance on the force inputs 
than on the electric current. Based on the average error calculations, the P model trained with the RP-ICPS data set 
was selected as the best P model, with RSSE and ESR values of 23.9550 lbf and 0.0723, respectively. 
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Figure. 5.4. Experimental and estimated F-v behavior of the selected S-P model. Each of the figures presents the 
behavior at a constant value of the electric current using the data from experiment RP1-CS. 
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Fig. 5.5 presents a two second window that compares the experimental force and the force estimated by the 
model. Fig. 5.6 compares the force-velocity behavior for the experimental and estimated damper force at six 
different constant electric current values. 

Figure. 5.5. Experimental and estimated damper force by the selected P model. Experimental data taken from 
experiment RP-APRBS. 

It can be noticed from the force-time plot that the P model follows the experimental damping force with slight 
variations. On the other hand, the force-velocity plots depict that the P model is not able to closely resemble the 
non-linearities of the MR damper. For all electric current values, the models appears rigid and struggles at the 
extreme velocity values. Contrary to other models, the P structure was not seen to improve as the electric current 
increased. 

5.1.4 Fuzzy-Based Model 

The fuzzy-based model identified using ANFIS showed considerably lower error values when trained using experi-
mental data sets with constant steps of the electric current. When those experiments were employed, the RSSE and 
ESR were observed to drop by more than 10 lbf and 0.08, respectively. Based on the average error calculations, the 
fuzzy-based model identified with experiment RP1-CS was selected as the best fuzzy-based structure, with RSSE 
and ESR values of 25.9376 lbf and 0.0864, respectively. 

Fig. 5.7 presents a two second window that compares the experimental force and the force estimated by the 
model. Fig. 5.8 compares the force-velocity behavior for the experimental and estimated damper force at six 
different constant electric current values. 

It can be observed from the force-time figure that the fuzzy-based model follows the experimental force with 
lead time. Additionally, at instants the predicted force seems to be affected by noise, which may be due to the form 
in which the various membership functions of the model interact. From the force-velocity plots, it is noted that while 
the fuzzy-based model correctly mimics the non-linearities of the MR damper, the hysteresis loop is exaggerated for 
all electric current values. 

5.1.5 Non-Linear Fuzzy-Based Model 

The proposed non-linear fuzzy-based model was observed to obtain almost constant error values for the three ex-
perimental data sets with which it was trained. Based on the average error calculations, the non-linear fuzzy-based 
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Figure. 5.6. Experimental and estimated F-v behavior of the selected P model. Each of the figures presents the 
behavior at a constant value of the electric current using the data from experiment RP1-CS. 
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Time (sec) 

Figure. 5.7. Experimental and estimated damper force by the selected fuzzy-based model. Experimental data taken 
from experiment RP-APRBS. 

structure trained with experiment RP3-CS was selected as the best structure, with RSSE and ESR values of 27.8199 
lbf and 0.0993, respectively. 

Fig. 5.9 presents a two second window that compares the experimental force and the force estimated by the 
model. Fig. 5.10 compares the force-velocity behavior for the experimental and estimated damper force at six 
different constant electric current values. 

It can be noted from the force-time figure that the proposed non-linear fuzzy-based model acceptably follows 
the experimental force. Nonetheless, minor noise is observed at at certain moments, which may be produced by the 
shifting dynamics of membership functions. The force-velocity plots confirm that the non-linear fuzzy-based model 
accurately follows the non-linear behavior of the MR damper. Nevertheless, the hysteresis loops can be observed to 
be slightly wide in comparison to the experimental force. Moreover, as the electric current increases the proposed 
structure is seen to improve its performance. 

5.2 Discussion 

After selecting the best models based on the average error values, the force-time and force-velocity plots greatly 
allowed for a more in depth comparison of the results. Overall, the ARX structure was seen to outperform the other 
structures and closely mimic the dynamics of the MR damper. The best A R X model obtained RSSE and ESR values 
that were 10 lbf and 0.06 lower than those of the other models, respectively. Nonetheless, with 12 parameters and a 
high dependency on past values of the damping force, the model may not be adequate for an implementation where 
the experimental force is not being measured. As it was noted, i f the initial conditions were not set properly, the ARX 
model would not predict correctly the damping force during the first sampling periods. In addition, it was proven 
that as the experimental sampling period increased, the RSSE and ESR values for the ARX model also increased. 
This confirmed that the great performance of the structure is highly based on the damping force regressors. On the 
other hand, the use of the model for the design of controllers may not be practical. 

It took 15 parameters for the S-P model to obtain low RSSE and ESR values. Nevertheless, as it was observed 
in the force-velocity plots, the model could not accurately predict the non-linear and hysteretic behavior of the MR 
damper. This performance may be in part due to the restrictive way in which the electric current dependency was 
introduced to the model, as linear functions. Performance aside, the 15 parameters, along with the tanh function 
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Figure. 5.8. Experimental and estimated F-v behavior of the selected fuzzy-based model. Each of the figures 
presents the behavior at a constant value of the electric current using the data from experiment RP1-CS. 
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Time (sec) 

Figure. 5.9. Experimental and estimated damper force by the selected non-linear fuzzy-based model. Experimental 
data taken from experiment RP-APRBS. 

on the S-P model, make it impractical for online implementation. On the controller design side, the model may be 
promising for the synthesis of non-linear control strategies. 

The analyzed P model was observed to have acceptable average RSSE and ESR values. Nevertheless, the force-
velocity plots revealed that the model is too rigid when it comes to modeling the non-linearities of the MR damping 
system. Moreover, the 15 parameters and high complexity of the P structure make it greatly impractical for online 
implementation. When it comes to designing controllers, the third and fifth powers of the damping force on which 
the P model depends, make it hard to utilize even for space-state strategies. 

The fuzzy-based model trained with ANFIS obtained average RSSE and ESR values comparable to those obtained 
by other structures. However, the force-velocity plots showed that the model struggled to resemble the hysteretic 
behavior of the MR damper. On the other hand, the fuzzy-based structure may be well suited for online imple-
mentation, as it can be regarded as 27 if statements and simple sums. In regard to the potential for the design of 
controllers, the fuzzy-based model may be utilized to design linear control strategies based on the output functions 
of the structure. These controllers may be combined according to the membership functions of the model. 

Finally, the proposed non-linear fuzzy based model was observed to obtain RSSE and ESR values slightly higher 
than to those of the S-P and fuzzy-based models. Nonetheless, the force-velocity plots allowed to see that the model 
very closely mimics the non-linear and hysteretic behavior of the MR damper. When it comes to implementation, 
the non-linear fuzzy-based structure consists of simple / / statements, and the only consideration may be the tanh 
function of the seven output equations. As for the fuzzy-based model trained with ANFIS, the proposed model may 
be employed to design individual control strategies based on the output functions of the structure. In addition, if 
the model was trained using more closely spaced steps of the electric current, the performance may see a significant 
improvement. 

5.3 Summary 

This chapter presented an analysis of the modeling results. First, the best MR damper models were selected ac-
cording to the average RSSE and ESR values. Then, each of the selected models was analyzed in detail by mean of 
force-time and force-velocity plots. At the end, the overall performance of the models, as well as their suitability 
for online implementation and control, was discussed. 
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Figure. 5.10. Experimental and estimated F-v behavior of the selected non-linear fuzzy-based model. Each of the 
figures presents the behavior at a constant value of the electric current using the data from experiment 
RP1-CS. 



Chapter 6 

Conclusions 

6.1 Final Conclusions 

The present research work was aimed to answer the question of what type of model of an MR can accurately predict 
the highly non-linear and hysteretic behavior of the system and be suitable for online implementation of a control 
system. In order to obtain an answer, a literature review allowed for an in depth investigation of current models 
and modeling techniques. Out of the state of the art, 16 models of an MR damper were reviewed and four models 
were selected according to their reported performance and overall complexity. Each of the four models was selected 
from a specific modeling approach: phenomenological, semi-phenomenological, black-box, and fuzzy-based. Eight 
experiments were designed to test the models and experimental data was obtained from an industrial MR damper. 
The experimental data sets were selected in order to emulate the dynamics of a damper for automotive applications. 
From there, an extensive comparison and analysis of the four selected models was done. Each model was trained 
separately with the eight experimental data sets, and their performances were measured by means of the RSSE 
and ESR indexes. Based on the obtained results, a new model for an MR damper was proposed, which employed 
fuzzy-based methods in order to include the electric current dependency into a semi-phenomenological function. 
The models that obtained the lowest average validation errors were selected and then further compared by means of 
force-time and force-velocity plots. 

It was proven from the analysis of the results that there are models for an MR damper that can precisely describe 
its behavior. An ARX black-box structure that depended on the displacement, velocity, electric current, and old 
values of the damping force was seen to accurately mimic the non-linear and hysteretic behavior of the MR damper. 
Phenomenological, semi-phenomenological, and fuzzy-based models were observed to be able to resemble the non-
linearities of the MR damper, but struggled greatly to predict the hysteresis loops. On the other hand, the proposed 
non-linear fuzzy-based model was observed to acceptably follow the hysteretic behavior of the MR damper and 
accurately predict its non-linearities. 

Concerning the modeling techniques, black-box modeling was noticed to outperform all the other analyzed 
techniques. Nonetheless, black-box models had to include old values of the damping force in order to succeed. This 
fact made the developed structures not optimal for online implementation when the damping force was not directly 
measured. For the phenomenological technique, its high complexity and poor performance were seen as reasons for 
which the analyzed structures were not suitable for online implementation. The semi-phenomenological approach 
was observed to produce acceptable models. Nevertheless, these models required a high number of parameters and 
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complex mathematical functions in order to correctly predict the damping force. On the other hand, linear fuzzy-
based modeling techniques were observed to be highly suitable for online implementation, as they were comprised of 
simple / / statements and linear output functions. Finally, when fuzzy-based and semi-phenomenological techniques 
were combined, the resulting non-linear structure was seen as viable for online implementation. The only drawback 
was identified on the non-linear form of its output functions. 

Regarding experimental input patterns, a marked difference was seen for the ARX and fuzzy-based structures. 
For the first, the experimental data sets with highly variant electric current were seen to facilitate the identification of 
the structures. When these patterns were employed, the average RSSE and ESR values were significantly lower than 
those obtained with other training patterns. On the other hand, fuzzy-based structures saw a considerable improve-
ment when trained with experimental data sets with stepped increments of the electric current. Said experimental 
data sets permitted the fuzzy-based model to identify the various operational zones of the MR damper. Concern-
ing training patterns, no significant difference was observed for the phenomenological and semi-phenomenological 
models. 

The proposed non-linear fuzzy-based model was seen as the model with best compromise between modeling 
precision and ease of implementation. Individual non-linear controllers may be developed according to the selected 
output functions of the structure. Moreover, the proposed structure may be improved by employing more closely 
spaced steps of the electric current. In this manner, more non-linear output functions would allow the model to 
characterize the behavior of the MR damper on a greater number of operational zones. In general terms, the research 
results are greatly applicable to the automotive industry, where better comfort and handling control systems can be 
developed based on the analyzed models of MR dampers. In addition, based on the results, experimental patterns 
may be designed according to a desired modeling technique. 

6.2 Future Work 

Along the same line of investigation, the following specific areas could be studied: 

• Other modeling techniques, such as Linear Parameter-Varying (LPV) systems, may be explored for better 
characterization of the behavior of an MR damper. 

• Different methods of introducing the electric current dependency to phenomenological and semi-phenomenological 
models may be explored. These methods may include complex mathematical representations or other fuzzy-
based techniques. 

• Various output functions may be tested for the proposed non-linear fuzzy-based model. These functions may 
include MR damper models that work correctly under constant electric current inputs. 

• MR damper controllers may be developed based on the results obtained for the fuzzy-based and non-linear 
fuzzy-based models. These controllers could be individually designed according to output functions and 
combined by employing fuzzy sets. 
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Appendix A 

Experiments 

A.l Experimental Setup 

A.l . l Experimental System 

The employed experimental system consisted of three main blocks: actuation, control, and data acquisition. An 
HMI was created to interact with the control and acquisition systems. The acquisition system captured six signals 
from the experiment: the displacement; the generated force; the commanded reference from the MR damper piston 
position control system; a voltage, from the electric current driver, proportional to the electric current through the 
coil of the MR damper; the temperature of the case of the damper; and the room temperature. 

A.1.2 Actuation System 

The actuation system installed on the laboratory was an MTS™ system that included: an actuator of3000 psi with a 
15 Hz bandwidth, the controller hardware unit Flextest GT, the software Station Manager™ and the Multipurpose 
TestWare™. The controller hardware unit was operated through the MTS™ Station Manager™ which was 
located on a control room. The computer and controller were communicated via a 100 Mb/sec ethernet connection. 

The Station Manager™ and the Multipurpose TestWare™ softwares were utilized before the experimentation 
in order to calibrate the signal levels. During the experimentation, the main tasks of the Station Manager™ 
software were the MTS™ hardware startup and the monitoring of the generated force and displacement. 

The hardware components of the position control system were: an actuator, a 3,000 psi hydraulic pump, a load 
control unit, a servovalve, a hydraulic manifold, a work station, a load cell, a linear variable differential transformer 
(LVDT), and various signal conditioners. The actuator was a hydraulic Instron™ piston, double action, controlled 
by the servovalve. The load capacity of the system was 5620 lbf at 3000 psi, with a maximum stroke of 6 in. 

A.1.3 Control System 

The employed control system was based on two slave controllers: the position controller (MTS™ system) and the 
electric current driver with a proportional integral control. Then, a supervisory system was in charge of commanding 
the slave controllers. 
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The supervisory system consisted of an HMI programmed in LabView™. The HMI would read the desired 
displacement and electric current values from a file with the extension .txt. Then, the information was sent to a 
National Instruments™ (A7) analog output card. The Flextest GT™ and the electric current driver High Country 
Tek™ were commanded via two analog outputs. The commanding signals were utilized in voltage units. The 
number of replicates were specified on the HMI before each of the experimental tests. During each experiment, the 
HMI displayed the displacement and electric current commanded to the controllers. 

The displacement control was done by the MTS™ Flextest GT™ controller. The Flextest GT™ was set to 
receive an external set point, which defined the position of the MR damper piston. The span of the position command 
was set to ±0.25 V, which was equivalent to ±0.3 in. The electric current control adjusted the electric current in the 
coil of the MR damper according to the received voltage signal. The span of the electric current was set from 0 to 9 
V, which were linearly proportional to 0 and 2.5 A. 

A.1.4 Data Acquisition System 

The employed data acquisition system consisted of a HMI programmed in LabView™, two signal conditioner 
circuits, one analog input A7 card, and one thermocouple M card. The captured information was visualized in real 
time on the HMI. The measured information was recorded in a file with a .txt extension with a sampling frequency 
of 512 Hz. The order of the columns in the files was: sampling time stamp, piston displacement, generated force, 
electric current on the coil, environment laboratory temperature, damper case temperature, and the position set point 
commanded to the Flextest GT™. 

The displacement measurement was done via an LVDT. The LVDT was located over the actuator piston and 
served as feedback to the position controller. An Instron™ load cell delivered the generated force in voltage units. 
A peak detector converted the LVDT signal into a corresponding voltage. The electric current measurement was 
done via a 1 f2 resistor in series with the coil of the MR damper. The voltage from the resistor was conditioned by 
means of an industrial instrumentation amplifier. Finally, two type J thermocouples provided the damper case and 
laboratory room temperatures. 

A.2 Experimental Data Sets 

Figures A . l - A.6 show 20 and 100 second windows of the patterns employed for the experiments that complement 
the ones described in the report. In addition, 30 and 60 second windows present the frequency content of the 
experiments. 
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Figure. A . l . Description of experiment RP-APRBS. Displacement and electric current patterns (left). Frequency 
content (right). 

(a) (b) 

Figure. A.2. Description of experiment RP-PRBS. Displacement and electric current patterns (left). Frequency 
content (right). 

A.3 Discrete Derivative 

In order to compute de velocity of the MR damper, a discrete derivative was employed. Fig. A.7 presents the 
calculation of the velocity of the MR damper using Simulink. 
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Figure. A.3. Description of experiment RP-APRBS-L. Displacement and electric current patterns (left). Frequency 
content (right). 

(a) (b) 

Figure. A.4. Description of experiment RP-ICPS. Displacement and electric current patterns (left). Frequency 
content (right). 

Figure. A.5. Description of experiment RPI-CS. Displacement and electric current patterns (left). Frequency 
content (right). 
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Figure. A.6. Description of experiment RP2-CS. Displacement and electric current patterns (left). Frequency 
content (right). 

Figure. A.7. Velocity calculation using Simulink. The time and displacement patterns are read from the workspace 
and low-pass filtered. Then, a discrete derivative block is used to calculate the respective velocity. The 
results are saved to the workspace and plotted. 



Appendix B 

Identified Coefficients 

The coefficients for the passive and semi-active ARX, S-P, and P models were calculated using the Optimization 
Toolbox from MATLAB™. The selected identification function was Isqcurvefit. The full identification process is 
specified in the block diagram of Fig. B . l . 

Figure. B.l. Identification of the coefficients for the models. The experimental data is loaded from a file into 
MATLAB™. Then, the identification algorithm begins. Once the identification has been done 25 times, 
the coefficients with which the model obtained the lowest ESR are recorded. Finally, the coefficients 
are saved to a .mat file. 

B.l ARX Model 

For the ARX structure, the three regressors of the damping force required the experimental data to be utilized from 
the fourth sampling interval. Table B. 1 shows the identified coefficients for the passive ARX model. 

* In order to include the semi-active action to the model, three regressors of the electric current were added to the 
structure. Tables B.2 and B.2 show the identified coefficients for the semi-active ARX model. 
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Table B.l. Identified coefficients for the passive ARX model. 

Table B.2. Identified coefficients for the semi-active ARX model. 

Table B.3. Identified coefficients for the semi-active ARX model continued. 
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B.2 S-P Model 

Following the procedure described in Fig. B . l , the coefficients for the passive S-P model were obtained. Table B.4 
shows the identified coefficients for the passive S-P model. 

Table B.4. Identified coefficients for the passive S-P model. 

In order to include the electric current into the model, each of the coefficients was made equal to a second order 
polynomial dependent on the electric current. This resulted in 15 coefficients for the semi-active S-P model. Tables 
B.5 and B.6 show the identified coefficients for the semi-active S-P model. 

Table B.5. Identified coefficients for the semi-active S-P model. 

B.3 P Model 

The coefficients for the passive P model were obtained as described in Fig. B . l . Table B.7 shows the identified 
coefficients for the passive P model. 

In order to make the model dependent on the electric current, each coefficient was replaced by a second order 
polynomial electric current equation. Tables B.8 and B.9 show the identified coefficients for the semi-active P 
model. 
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Table B.6. Identified coefficients for the semi-active S-P model continued 

Table B.7. Identified coefficients for the passive P model. 

Table B.8. Identified coefficients for the semi-active P model. 
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Table B.9. Identified coefficients for the semi-active P model continued. 



Appendix C 

Fuzzy-Based Model 

A fuzzy-based model was identified using the ANFIS toolbox in MATLAB™. For the eight experimental data sets, 
one model was trained for 50 epochs or until de identification error decreased by less than 0.01. After the training, 
a FIS file was obtained for each data set. The experimental data were first normalized by subtracting the mean and 
dividing by the standard deviation. The normalizing constants were recorded for future use in the error calculations. 

With each of the FIS files, the corresponding error was calculated using the Simulink diagram presented in Fig. 
C . l . 

Figure. C . l . Fuzzy-based model validation. The displacement, velocity, and electric current are connected to 
the fuzzy-based model. The model predicts the damping force, and this force is compared with the 
experimental force. Finally, the estimated force and error calculations are saved. 

In order to calculate the RSSE and ESR values, the resulting validation error values were denormalized using 
the normalizing constants respective to each model. The following MATLAB™ code describes in detail the FIS 
files obtained for the fuzzy-based models trained with the eight experimental data sets. The inputs were ordered as: 
displacement, velocity, and electric current. 

•/<MRDamper*NF]S-expRP.]CPS.F]S 
[System] 
Name^MRDamperANFIS-expRP-lCPS' 
Type^'sugeno ' 
Ver»ion=2.0 
NumInpuls-3 
NumOutputs-l 
NumRulcs=27 
AndMelhod = 'prod' 
OrMelhod=' probor' 
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lmpMethod=' prod' 
AggMethod=' sum * 
DefuzzMethod*' wtaver' 

[Input!] 
Name=' displacement., (x)' 
Range=[ -3.07646220933282 3.42434553818148] 
NumMFs=3 
MFl-'inlmfl ': ' gaussmf',[ 1.3689046073 95 73 -3.10651988064284] 
MF2='inlmf2 ' gaussmf',[ 1.39020527161337 0.129201710845673] 
MF3=*inlmf3 ': * gaussmf \ [ 1.34055648552855 3.44818226667927J 

[lnput2] 
Name=* velocity..(v)' 
Range=[-3.80656224325263 3.32105057454475] 
NumMFi*=3 
MFI = 'in2mfl ': ' gaussmf',[ 1.58499823382204 -3.73340989649714] 
MF2-'in2mf2 ': 'gaussmf' ,[1.62165663339208 -0.251911183353459] 
MF3=*in2mr3 ': ' gaussmf \[1.5716363681 1725 3.26353672277654] 

[Input3] 
Name-' e l e c t r i c current. . ( i )* 
Range-[ -1.52237296227663 1.9140554673793] 
NumMFs-3 
MFl-'iit3nifl ': 'gaussm!" ,[0.760280896727532 -1.52187637402028] 
MF2-fin3mf2 •; • gaussmf • .[0.774521446528792 0.20151054545624] 
MF3=*in3mf3 ': * gaussmf' ,[0.546317498760088 2.04304075703716] 

[Outputl ] 
Name=' Force ' 
Range=[ -3.47772985404031 3.21627620909248] 
NumMFs=27 
MFl = 'outlmfl *: * linear ',[0.464023100928815 0.800584499096287 -2.71471727958833 O.87078828I33441] 
MF2='outlmf2 *: * linear ',[-2.0764761048272 0.9213504317401JI - 1.89132650018032 -3.54752537349722] 
MF3='outlmf3 * linear ',[2.14173055233575 -4.90224585264209 -6.55165019840417 -5.69595446591223] 
MF4='outlmf4 ': * linear ',[ - 0.425362113910831 2.77533497507699 -0.225469799728866 0.73591597397361] 
MF5='outlmf5 ': * linear ',[ -0.566896242439656 2.04968617779207 -0.514527774104327 0.083278957418992] 
MF6='outlmf6 ': ' linear ',[ -0.000785706049594412 -3.97700403136401 1.1980576822134 -0.791744475212608] 
MF7='outlmf7 ': ' linear ' ,[0.861288287978477 6.67448381125321 5.84062985260716 -4.04428646094623] 
MF8='outlmf8 'linear ' ,[2.7 1610605937332 -0.214636487994583 6.156363 17371037 4.30600335642062] 
MF9='outlmf9 ': 'linear ',[10.905500340232 -9.11165768055795 13.4315946076296 28.3201047242427] 
MFlO^'ouilmflO'; ' linear ' ,[0.454954078373769 3.44149010304783 -1.72703236709368 9.53616528061549] 
MFll^'oullmfl 1 ': ' linear ',[ - 1.20816326219813 -0.412702896403016 -O.OO591047328108204 - 1.13059442820757] 
MF12='outlmfl2 •:'linear ' ,[1.13439191255124 5.69456784323474 4,29664760078491 7.25874600064211] 
MF!3=*outlmri3 ': ' linear ',[ -0.253925091306101 2.72650382246202 0.132342977099077 0.310907800554836] 
MFl4~'outlmfl4*: ' linear ',[ -0.484808059692907 1.50585503393663 0.166478400682325 0.0543734356922698] 
MFI5=*outlmfl5 ': ' linear ',[0.851917472878223 3.58050699016802 0.37433745523383 -1.24516830853921] 
MF16='outlmfI6*: 'linear ' ,[0.43601283415099 1.84767196656029 1.13341925930485 -4.83916447723381] 
MF17='outlmfl7 ': ' linear ',[1.20460413093026 0.666528613763943 0.144985154553262 -0.426363800597523] 
MF18='outlmfl8': ' linear ' ,[4.23227! 18582391 1.78831086448754 0.14553976246167 -3.39358635199552] 
MF19='outlmfl9': ' linear ',[2.14782700597832 18.039932158262 -7.37051734566451 25.6316120795057] 
MF20='outlmf20': ' linear ' , [ - 1.88861123957583 2.O8O57178O2O705 -9.40742153112397 18.6288987193072] 
MF21 = 'oullmf21 ': ' linear ',[16.1664792951251 - 15.5660636015159 -40.1298621290279 - 1.42725605304748] 
MF22='outlmf22 ': ' linear 1,[-0.492228747283104 3.27138297940307 0.0579012712872881 -2.15028076534326] 
MF23=*outlmf23 ': ' linear ',[-0.83106187015993 3.1 1296947523154 0.222326873050576 0.846458527687652] 
MF24='outlmf24 ' linear ',[3.38462109277454 -2.5618380070044 0.636621872417985 -11.3011294299312] 
MF25='outlmf25 ': ' linear ' ,[0.176335555166733 0.144692429521922 -0.735536213985422 -2.77139891873146] 
MF26=,outlmf26'; ' linear ',[2.05014409362528 3.3 1541196912942 -0.0117238789587628 - 12.834746057298] 
MF27='outlmf27 ': ' linear ' ,[15.3333805255476 -5.91016932697546 1.9669761710683 7 -21.7675229262666] 

[Rules] 
1 1 1 , 1 ( 1 ) : ) 
I 1 2 , 2 ( 1 ) : 1 
1 1 3 , 3 ( 1 ) : 1 
12 1 , 4 ( 1 ) : ! 
I 2 2, 5 (I) : 1 
12 3 , 6 ( 1 ) : 1 
1 3 I, 7 (1) : I 
13 2 , 8 ( 1 ) : 1 
13 3 , 9 ( 1 ) : 1 
2 1 1,10 (I) : I 
2 1 2 , 1 1 ( 1 ) : ) 
2 I 3, 12 (I) : I 
2 2 I, 13 (I) : 1 
2 2 2, 14 (I) : 1 
2 2 3, 15 (I) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) : 1 
2 3 3, 18 (1) : 1 
3 1 I, 19*(1) : 1 
3 I 2, 20 (1) : I 
3 1 3, 21 (1) : 1 
3 2 1, 22 (1) : 1 
3 2 2, 23 (1) : I 
3 2 3, 24 (1) : I 
3 3 I, 25 (1) : 1 
3 3 2, 26 (I) : I 
3 3 3, 27 (1) : 1 
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WRDimporANFlS.MpRP.APRBS. FIS 
[System] 
Name=1 MRDamperANFlS_expRP.APRBS * 
Type^'sugeno ' 
Version=2.0 
Numlnputs=3 
NumOutputs=I 
NumRules-27 
AndMethod=' prod ' 
OrMethod=' probor ' 
lmpMelhod='prod' 
AggMethod = * sum' 
DefuzzMeihod = 'wiaver' 

[Input!] 
Name=' input I * 
Ranged - 3.1 1977176557615 3.5215050174981] 

MFl-'inlmfl *: ' gaussmf ,[ 1.43983971404427 - l.U9yi%W>W)W^ 
MF2='inlmf2 ': 'gaussmf' ,[1.47820058141561 0.196627169824823] 
MF3='inlmr3 ': 'gaussmf ,[1.56014888937955 3.43 14192 1729424] 

tlnput2] 
Name^'inpuiZ ' 
Range=[-4.12599812765608 3.97906349835775] 
NumMFs=3 
MFl = 'in2mfl ': ' gaussmf',[1.8282117475869 -4.O6085276747947] 
MF2-'in2mf2 ': * gaussmf ,(! .85214228419147 - 0.0415869024152758J 
MF3='in2mf3 *: ' gaimmf ',(1.78278034139502 3.9824584151 1505) 

[Input3] 
Name11' input3 ' 
Range=[ - 2.13969686934153 2.84962693872519] 
NumMFs=3 
MFl = ,in3mfl 'gaussmT\[ 1.04422805803326 -2.15946952102991] 
MF2='in3mr2 ' gaussmf 1 ,[0.998 784474616955 O.347339155099881] 
MF3=-in3mf3 ': ' gaussmf' ,[0.974] 1 6886743692 2.90324498 532764] 

[Outputl ] 
Name '̂output ' 
Range=[-3.15048990465981 2.7994891 S309713] 
NumMFs=27 
MFl-'ouIlmfl ':'linear \[-3.14609080754551 -8.26663292865714 6.60341194767937 -23.1354080278521) 
MF2='outlmr2linear'.[-0.123840893800529 1.52875388968008 4.11604522926384 1.75690176O6515I] 
MF3='oullmf3 *:* linear * ,[3.29238953773353 1.9029349095295 5.40986629224824 - 1.33820287855715] 
MF4-'outlmr4 ': • linear ',[ -0.5444621341379 -1.30885798851467 -0.733744077403974 -0.219684525010343] 
MF5='outlmf5 ' : ' linear ' , [ - 1.37074788859097 2.37393355414971 -1.65575877425715 -1.70109574296999] 
MF6-ouIlmf6':• linear',[-1.60072028014755 2.31358771690997 -4.4096183401404 7.56317503154458) 
MF7='outlmf7 ' : ' linear ',[-3.48064889693448 2.0415020442426 5.47596232607809 -2.33872198854525] 
MF8='oullmf8 •:'linear',[).24609366358969 3.03974593402286 4.99087754431372 -7.07971139795016] 
MF9=*outlmf9':'linear',[-13.2734219234199 4.93628344769851 9.288O0O76181109 -63.2467632373648] 
MFlO^outlmflO': "linear *,[-4.622)0226467023 2.62885140010742 -3.81841397244968 1.85494765412574] 
MFll- 'oullmfl 1 ' linear ',[-0.102905187896383 0.0493283820630618 -3.38246972309652 O.O978063367081735] 
MF12='outlmfl2 linear \ [ 1.6515070II33439 0.198247244217839 -5.59290045522168 10.8036249469334] 
MFn-'oullmfiS ' : ' linear ',[ - 0.30244942111195 3.24922635874948 O.0073737O7639147 0.49638270605255) 
MFI4='outlmfl4 ': 'linear ',[-0.890255165309091 1.70622217446658 0.742246628688991 0.3643345)974791) 
MFI5-'oullrnri5 ': ' linear ',[-2.61564773599254 2.52340896563666 2.85886787042512 -6.38960613274879] 
MFie-'oullmfle': ' linear ',[-4.11142915310134 2.13430267988121 4.06556173965928 -6.88232978199353] 
MFI7-'ouilmri7 • : ' linear ' ,[0.9207044403 I 1778 1.20300425685797 -0.348665887666673 -3.21094413070036] 
MFI8='outlmf!8':'linear',[-3.3982910231731 1.39188284173855 -3.32463815117878 6.7514148089238] 
MF19-'oullmf)9 ': ' linear ',[ - 19.3580347885022 37.2522033662086 11.1032173151037 159.482731479266] 
MF20-'oul)mf20': " linear',[-0.404080240533533 2.80624525588877 3.99715061734 7.68596684686588] 
MF2>.'oullmf2) ': • linear '.[-5.62085382512167 -1.96768924673728 12.925292057719 -27.1442289649474] 
MF22-'oullmf22 •;• linear • ,[1.23401517708275 9.23778978346199 -1.41502862900106 - 11.9149029776414] 
MF23«'oullmf23 ': ' linear ',! - 1.0072486)009389 1.79329743018673 -1.37780369665483 0.975856IO8O73I92] 
MF24-'ouIlmf24-: ' linear ',[-4.41656211753792 0.912692264169717 -8.4730355O350362 28.6527343773058] 
MF25-,oullmf25 ': ' linear ',[-9.44322019496194 5.17)92937)69913 - j.02696203820349 5.05865574376337] 
Nf l^ 'out lm!^ 1 : ' linear ' ,[0.7036567281 16056 -0.373864341475067 1.099677583282 — 0.1815346362325! 1] 
MF27= 'our!mr27 ': ' linear ",[0.1 17187057741692 2.25832016544275 10.0038029587821 -18.567296817706)] 

[Rules] 
I I I. I (1) : I 
I 1 2, 2 (1) : 1 
1 1 3, 3 (1) : I 
I 2 I, 4 (I) : 1 
1 2 2 , 5 ( 1 ) : I 
1 2 3, 6 (I) : 1 
1 3 *l , 7 ( 1) : 1 
13 2 , 8 ( 1 ) : I 
13 3 , 9 ( 1 ) : I 
2 I 1, 10 (I) : I 
2 I 2, II (1) : I 
2 I 3, 12 (1) : 1 
2 2 I, 13 (I) : I 
2 2 2, 14 (I) : 1 
2 2 3, 15 (I) : 1 



Fuzzy-Based Model 

"/•MRDamperANFlS-expRP-PRBS. F1S 
(System J 
Name=' MRDamperANFIS. expRP.PRBS ' 
Type = 'sugeno ' 
Version =2.0 
Numlnputs=3 
NumOulputs=l 
NumRules=27 
AndMethod^' prod ' 
OrMethod^'probor * 
JmpMethod '̂ prod' 
AggMetbod = 'sum' 
DefuzzMethod^' wtaver * 

tInput J J 
Name='inputl " 
Range=[ -3.08899881674069 4.27266398753162] 
NumMFs=3 
MFl = 'in)mfI ' gaussmf ',[1.57163487312992 -3.08622325968734] 
MF2="inlmf2 *: ' gaussmf',[ 1.56438802771854 0.581655449085396] 
MF3-'inlmf3 ': ' gaussmf ',(1.58713383840115 4.25748392564793] 

[ Inpui2] 
Name-'input2 ' 
Range=[-3.56221312793547 3.65 1355 19869651] 
NumMFs=3 
MFl = *in2mfl ':'gaussmf',[ 1.59480190420293 -3.47805496879854] 
MF2='m2mf2 ': ' gaussmf',[ 1.65323061417955 0.0527288519016438] 
MF3='in2mf3 ': 'gaussmf',[ 1.59912232362747 3.55798))6275664} 

[lnput3] 
Name=* input3 ' 
Range=[ -0.842039836019602 1.88506482625885] 
NumMFs=3 
MFt--in3mn *: * gaussmf ' ,[0.51788 114768 1429 -0.955684437623483] 
MF2='in3mf2 *: ' gaussmf' ,[0.656461203307079 0.431814237076301] 
MF3='in3mf3 ': ' gaussmf ' .[0.4768324 7635852 1 1.95161045404253] 

[Outputl ] 
Name='output ' 
Range=[-4.08928856525157 3.5723 7566398979] 
NumMFs=27 
MFl = "ouilmfl ": ' linear *,[ 
MF2='outlmf2 ' : ' linear ' ,[0 
MF3='oullmf3 ': ' I i near ' ,[4 
MF4='gutlmf4 
MF5='outImf5 
MF6='outlmf6 
MF7='outl mf7 
MF8='ouilmf8 '; ' 
MF9-'outfmf9 ': 
MF10='outlmfl0 ' 
MFIl-'outlmn 1 ' 
MF12-'outlmfl2 ' 
MF13='outlmfI3 ' 
MFI4-'outlmfl4' 
MF15='outlmfl5 ' 
MF16='outlmfl6 * 
MF)7- ,outlmfl7' 
MF18«'outlmfl8 ' 
MF19='outlmri9' 
MF20='outfmf20 ' 
MF21 = 'outlmf21 ' 
MF22"'outlmf22 ' 
MF23-'outlmf23 ' 
N t f ^ ' o u t l n ^ ' 
MF2S*-outlmf25 ' 
MF26=>'outlmf26' 
MF27='outlmf27 ' 

linear ',( -
linear ',[ -
linear ',[ -
linear ' ,[0 
linear ' ,[4 
linear ',[1 

near 
near 

near 
near 
near 
near 
near 
near 
near 
near 
near 
near 
near 
near 

0.459149593222616 0.0103349587759533 -3.6941339464557 -3.69003125562649] 
.892463775171 51 1 0.814123493057967 - 1.6663757152562 6.0647896845363 1] 
46450815789651 7.38857318649154 -2.24741214161923 39.900242883408] 
0.147084812432798 1.57325747656983 1.31189800017712 2.10103873088827] 
1.6002636729019 4.3415631 1498157 0.612751158701448 -0.914725543348957] 
0.895289776326591 7.66890195014895 -0.07526899483472 -0.14243838581119] 
23391 15388161 12 4.23980253437635 8.69754682048171 -2.77777361351658] 
60429711592359 13.7790916778962 3.82141406628982 -22.9583043725211] 

.638431 1 1500868 15.4057788073321 5.9083612548749 -45.8293387124856] 
[-0.13434291837106 1.99440817888553 -5.76928333308192 1.69670428043627] 
,[1.68432664810292 -1.01773526755709 -2.78278679640451 -2.5311324543842] 
,[11.016993840617 8.27287106377984 -4.67966781239967 33.7664790765351] 
[-0.158727416315939 1.98512612843651 -0.204880450741457 -0.176415152326665] 
I -2.35670376361328 1.1 1887768051863 0.0825334298299887 -0.0230232820504858] 
[-1.4527262728624 6.77815139663204 1.48176809227898 -1.89750096123261] 
[-0.0368623248816352 2.03093373473336 4.81611212352669 -2.93939069935904] 
,[4.9476659733669 -1.657591784866 2.155)7969484213 2.84740363655221J 
[-0.25517306878742 1 1.9574640169524 0.919131560562099 -31.079297416671] 
.[1.24341146368114 2.40602029884503 -8.93443841018205 -2.43704673855514] 
[-16.9050612058123 22.0223561084158 -6.17322622245426 69.125282)036377] 
,[151.26245496037 61.1594977456149 4.92720140841521 -160.880050104673] 
,[0.14336991839493 -0.861006539340023 -0.0851492911619035 -2.77688275663818] 
,[ -3.9732391192274 8.55206599382727 0.753172378806062 14.2665077716653] 
[-9.30494035998815 19.519411661535 -4.32981091554839 10.6630374346038] 
[-2.26367783666519 -4.6908237208472 -2.56638583994964 18.4404480458475) 
.[11.0890175038562 12.0860020094769 -4.47648668190052 -76.0154217674246] 
,[6.61719165350706 2.42)1938759423 0.229816605148412 -32.7849297904517] 

[Rules] 
I I I , I (I) : I 
I I 2 , 2 ( 1 ) : 1 
1 1 3 , 3 ( 1 ) : ! 

67 



68 

%MRDamperANFIS.expRP.APRBS_L. F1S 
[System] 
Name=' MRDamperANFIS- expRP.APRBS-L' 
Typc'sugeno ' 
Version =2.0 
Numinputs=3 
NumOutputs=l 
NumRules=27 
AndMethod = * prod ' 
OrMethod"' probor' 
impMcihod^'prod ' 
AggMechod •»' sum' 
DefuzzMethod='wiaver' 

[Input!] 
Name='input 1 ' 
Range=[-2.65425169055877 3.15451 15947056] 
NumMFs=3 
MFl = 'inlmfl ': ' gaussmf *,[ 1.241653 15146706 -2.63942716569738] 
MF2='inlmf2 *: ' gaussmf',[ 1.2 2327362112448 0.246473171221562] 
MF3 = 'inImf3 ': 'gaussmf • ,[1.23801334273052 3.13705436064304] 

[ Input2] 
Name=* input2 * 
Range=[-2.86296208086463 3.50373215375182] 
NumMFs=3 
MFi = 'in2mfl ': ' gaussmf',[ 1.40012 635228044 -2.79796532774504] 
MF2='in2mf2 ': 1 gaussmf \ [ 1.52952190086198 0.364525207694143] 
MF3=-in2mf3 1 gaussmf \ | J .5 14066562461 53 3.4236975 164607] 

[lnput3] 
Name='inpu(3 ' 
Range=[-2.53577487519O09 2.77 157538581688] 
NumMFs=3 
MF! = 'in3mfl *: 1 gaussmf *,[ 1.2054078673 5098 -2.474063556331] 
MF2='in3mf2 *: * gaussmf *,[ 1.1 1628267184873 0.129781832507806] 
MF3='in3mf3 ': ' gaussmf' ,[1.05687318987525 2.79954641243359] 

12 1 , 4 ( 1 ) : I 
12 2 , 5 ( 1 ) : I 
1 2 3, 6 (I) : 1 
13 1 , 7 ( 1 ) : ! 
13 2 , 8 ( 1 ) : 1 
13 3 , 9 ( 1 ) : 1 
2 I 1, 10 (1) : 1 
2 I 2, II (I) : I 
2 I 3, 12 (1) : I 
2 2 1, 13 (1) : 1 
2 2 2, 14 (I) : I 
2 2 3, 15 (!) : I 
2 3 I, 16 (I) : I 
2 3 2, 17 (I) : I 

2 3 3, 18 (I) : I 
3 I I, 19 (I) : I 
3 I 2. 20 (I) : I 
3 I 3, 21 (!) : 1 
3 2 1, 22 (I) : 1 
3 2 2, 23 (I) : I 
3 2 3, 24 (1) : 1 
3 3 I, 25 (1) : I 
3 3 2, 26 (I) : I 
3 3 3, 27 (1) : I 

[Output! J 
Namc='output ' 
Range=[ -2.74459419317953 2.83015011897707] 
NumMF8=27 
MFl = 'outlmfl ': ' linear ',[ 1.88023 185 150927 2.83353218226612 -2.43388960891542 5.27571258779132] 
MF2='outlmf2':'linear',[0.0750668856464077 I.379O04742981O3 - 1.868874891 12555 2.78396452495606] 
MF3='outlmf3 ' ; ' linear ',[-2.21384745444829 0.162858372303207 -3.5857560! 173371 -0.162794938426955] 
MF4='oullmf4 *:'linear'.[-0.830588587769736 5.53661809758396 1.11196176598799 4.93530036286063] 
MFS^'outlmfS':'linear',[-1.02771115431278 2.50474039501814 1.27970651563466 -0.801501870479968] 
MF6='outlmf6 ': ' linear '.[ -0.585836196412626 -0.174910844045921 3.12300348100453 -7.21536138154119] 
MF7='outlmr7 ': ' linear ' ,[4.320414197008B6 13.8445823997959 0.529280377079838 -35.8713866214357] 
MF8='outimf8 ' : ' linear ',[-0.540021536615091 5.3134190917018 -3.62387661545074 - 12.4656578917068] 
MF9="outlmf9 ' linear ',[9.24354 571875253 - 14.6197244913282 - 14.7551158049782 72.7207322964814] 
MF10=*outlmfl0': ' linear ',[1.01651 33 1793 135 3.16967577083318 -0.608357888292203 6.87806593252789] 
MFll='outlmfl 1 ' ; ' linear *,[-0.0286417234842563 0.0788591108543387 -0.183581609666463 -1.37235837183178] 
MFI2*'outlmfl2 ': 'linear ',[-2.69081731475296 2.99369390850922 0.3654740S0514646 4.28919375991759] 
MF13='outlmfl3 ': ' linear ',[-0.290854441903515 4.16408195607997 -0.561091151929515 - 1.21958760233728] 
MF14='outlmfl4 ': ' linear ',[ -0.751314886996793 1.34840936779356 -O.5O8334679140152 0.4258105465541 14] 
MFI5='outlmf!5': ' linear ',[0.940231045325705 2.79882047395778 -0.659611712363153 1.14484278877033] 
MF16='outlmfl6 * linear ',[0.00177788816602391 5.87268331817985 1.49415324815094 - 14.3630817420456] 
MF17='outlmfl7 ': ' linear ',[0.530460767727473 -0.155351001404136 1.11898230861697 0.639416888224718] 
MF18='outlmfl8 ': * linear ',[-0.884721570675963 2.6002817535069 0.0543600953661774 -6.10663279522891] 
MF19='oullmfl9':'linear',[2.25254003950579 4.42526909892315 6.01545275547224 16.6516825424732] 
MF20='ouilmf20': ' linear ',[ - 1.64380967284586 0.385621324840957 2.82050345103488 0.546775696121565] 



Fuzzy-Based Model 

inear ',( -3.1799210163445! -6.1911798498391 -2.875591531*6718 -8.16137940943252] 
ineur ' , [ - 1.15017672734899 3.17440692879354 -0.818597581067691 -0.625672033180652] 
inttr'.[-0.10402834286188 0 50567213129551 -0.JIJ029357S87SJ7 -0.831710473203168] 
inear ',[0.555174002688335 — 2.71710323197307 - 0.379085882946192 -1.62062586969276) 
inear ' ,[0.38882378023508 2.49695365130134 -0.092828I24I6S0904 -8.58840778901096] 
inear '.[0.00II933609894039S -2.51039747772265 0.402150754051726 8.68297471391425] 
inear ',(1.62184869066052 -1.89677774402824 4.29014592564396 0.968698615751689] 

[Rule:] 
1 1 1 , 1 ( 1 ) : ] 
I I 2. 2 (I) : I 
I I 3, 3 (I) : I 
12 1 , 4 ( 1 ) : I 
I 2 2, 5 (I) : 1 
1 2 3, 6 (I) : 1 
I 3 1, 7 (1) : I 
I 3 2, 8 (I) : 1 
1 3 3, 9 (1) : I 

MF2l-'otitImr21 
MF22='outlmf22 
MF23-'ouilmf23': 
MF24='outImf24 ': 
MF25='outlmf25 ': 
MF26='outlmf26': 
MF27='outlmf27 ': 

V*1RDamp«rANFIS.cxpRP.ICPS-L. FIS 
1 System] 
Name='MRDarnperANFiS.expRP_ICPS.L ' 
Type-'sugeno ' 
Version-2.0 
Numlnpuis=3 
NumOutputs l̂ 
NumRutes =27 
AmJMethod = 'prod * 
OrMethod"' probor * 
ImpMethod=' prod' 
AggMeihod = 'sum' 
DefuzzMethod = 'wtaver' 

[Input)] 
Name='inputl * 
Range=[ - 2.85364935661455 3.1121 3420022853] 
NomMFs-3 
MFl = 'inlmfl ':'gaussmf',[ 1.19070241452016 -2.903251O6575453] 
MF2='inlmf2 ': 'gaussmf' ,[1.26327129587382 0.0979932488126096] 
MB='.nJmf3 *: 'gaussmf- ,[1.38517632850882 3.00798454103428] 

[ lnput2] 
Name='input2 ' 
Range=[ -2.97291027771105 4.89826510788298] 
NumMFs=3 
MFI = *in2mfl ': ' gaussmf',[ 1.634969142701)8 -2.95728259424643] 
MF2='in2mr2 ': ' gaussmf',[ 1.60764719207885 1.04178271397505] 
MF3='in2mf3 ': 'gaussmf' ,[1.64034253553537 4.95792755824252] 

[ Input3] 
Name='input3 ' 
Ranged - 1.65891316527171 1.94813003677832] 
NumMF9=3 
MFi-'in3mfl ': ' gaussmf' ,[0.748572159826103 - 1.68354209313507] 
MF2='in3mf2 ': 'gaussmf' ,[0.688346037868495 0.042163894364409]] 
MF3='in3mf3 '; ' gaussmf' ,[0.63 1446021815979 2.00216646592816] 

[Outputl ] 
Name='output ' 
Range-[-3.32161549336933 3.84442316556507] 
NumMFs-27 
MFl = 'oullmfl ' ; ' linear ',[ -0.302714631414606 -0.146111078533192 -1.99128216493503 -4.51645636978976] 
MF2-'outlmf2':'linear',[- 1.2365734375452 0.269231117072439 - 1.72410950444132 -3.96922213768335] 
MF3-'outlmf3':'linear',[-0.140357582404287 2.77278223632195 -2.61325397393101 9.18128230681905] 
MF4='outlmf4':'linear',[-0.368358447507383 1.18181241101792 0.920738769629458 2.06366300237189] 
MF5-'outlmf5 ': ' linear ',[ -0.255898690742313 1.00552117217617 0.928084861555202 0.9 19160543002961 ] 
MF6- -oullmr6': 'linear ',[-1.87058892445021 5.31162772881458 1.95258I004275O7 -5.11227214924362] 
MF7='oullm(7':'linear ' .[13.0508433594659 18.1458126954487 -4.16621886912418 -34.0481712956766] 
MF8-'outlmr8':'linear'.[-8.72049224252168 12.3032794819756 -5.67785167673918 -39.603681943878] 

2 1 1, 10 (I) : 1 
2 12 ,11 (1) : 1 
2 1 3, 12 (1| : 1 
2 2 1,13 (1) : 1 
2 2 2, 14 (1) : 1 
2 2 3, 15 (1) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) ; 1 
2 3 3, 18 (1) : 1 
3 1 1, 19 (I) : 1 
3 1 2, 20 (1) : 1 
3 1 3, 21 (I) : 1 
3 2 I, 22 (1) : I 
3 2 2, 23 (I) : 1 
3 2 3, 24 (1) : I 
3 3 1, 25 (1) : 1 
3 3 2, 26 (1) : 1 
3 3 3, 27 (1) : I 
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MF9='out!mf9 ': ' linear ' ,[ I 17.388864257209 15.1075349131033 -30.0644033456656 149.593287171889] 
MFlO-'oullmflO': 'linear ' ,[0.0434871 145528278 O.OS82I0837369494! -1.04679657209577 - 1.59877185171209] 
MFll-'outlmfll ' : ' linear',[ - 1.09300313009335 0.342924453255439 —0.776452717537719 - 1.26263189827236) 
MFI2-'oullmri2 ': ' linear ',[-0.368651367191627 0.0416288010465347 -1.4050036763901 - 1.1774132857246) 
MFI3='outlmfl 3 ': ' linear ',[-0.310932847835641 1.18525049722989 0.430687081123609 1.17204900191858] 
MFI4«'outlmfl4 ': ' linear ',[-0.485170671741205 1.51741726064017 0.274637553003176 0.304220297473731] 
MFI5-'outlmfl5 ': ' linear ',[-0.432991230981821 0.193820779823074 0.332053375488135 0.182467426317327] 
MFI6='outlmfl 6 ': ' linear ',[3.88490561283527 9.53320884307946 1.096O65O2692787 -26.7812793013309] 
MF17='outtmri7 ' : ' linear ',[2.9981719865101 2.72746993746066 0.142732299304472 -8.58091434415445] 
MFI8-'outlmfl8 ': ' linear ',[ 1 7.9110777229967 -5.99222704752003 0.541104272871395 18.6690480408163] 
MFI9-'outlmfl 9 ': 'linear ',[0.605246879664748 i .45329132715723 -0.69336580022614 1.1441965083522] 
MF20-'oullmf20 ': 'linear ',[-2.476467663112 16 -0.173215091663222 -0.470020875456371 4.13778158597918] 
MF2|.'outlmf21 ' : ' linear ' ,[2.0147873749641 I -3.46368698038775 3.47225675639151 -15.4791167392812] 
MF22^'outlmf22 ': ' linear '.[-0.268141841029581 2.52139484203645 -0.304521193445016 - I.2579266610O287] 
MF23-'outlmf23 ': ' linear ',[ -0.28685256040318 1.07483328276321 -0.841745776717022 0.0622554079074232] 
MF24«'oullmf24': 'linear ',[-0.905054138756031 0.854690519737901 - 1.84396826361204 5.3239196914891] 
MF25-'outlmf25':'linear ' ,[4.7429690251049 7.11 536505906416 8.86033192248125 -24.2689722326039] 
MF26-'outlmf26':'linear',[3.27391823514808 -3.364482606O3902 13.3834894736389 -2.10469109705929] 
MF27^'outlmf27':'linear',[24.2975426021798 3.26452615789596 34.753349456847 - 127.46171806933] 

%MRDamperANFISixpRCl.CS. FIS 
[ System) 
Name=' MRDamperANFIS-expRC I JCS * 
Type='sugeno ' 
Vcrsiun-2.0 
Num]nputs=3 
NumOutputs l̂ 
NumRu1es=27 
AndMethod='prod ' 
OrMethod=*probor ' 
lmpMethod='prod ' 
AggMethod =' sum * 
DefuzzMethod = ' wtaver * 

[inputl] 
Name='inputl ' 
Range«[ - 3.42237630328106 3.2930284523191 3] 
NumMFs=3 
MFl-'inlmfl - : ' gaussmf ,[ 1.4309804 1010664 -3.42006790324062) 
MF2='in]mf2 *: ' gaussmf ,(1.42 752592504453 - 0.0694193043394365] 
MF3=-inlmT3 ': ' gaussmf ,[1.42563340657259 3.28896509338 J 91 ] 

[input2] 
Name=* in put 2 ' 
Range=[ -3.77188584123213 3.32767706994718] 
NumMFs=3 
MF! = 'in2mfl ': ' gaussmf ,[ 1.56960210094698 -3.72428308874678] 
MF2='in2mf2 ': ' gaussmf ,[ 1.55704933537479 -0.235136747602453] 
MF3='in2mf3 ': ' gaussmf ,[ 1.4946923031 365 3.3232OOO5O5409] 

[ Input3] 
Name='input3 ' 
Range=[ -1.48599517330948 1.52383 301336969] 
NumMF»=3 
MF) = "in3mn - : * gaussmf ,[0.63075241 7360684 -1.49739360082896) 
MF2='in3mf2 ': ' gaussmf ,[0.662987909248046 O.OO556822O09380193] 
MF3=Mn3mf3 ': ' gaussmf ,[0.63724068228087 1.527O4203778426] 

[Rule.J 
1 1 I, I (I) : I 
I 1 2 , 2 ( 1 ) : I 
1 1 3 , 3 ( 1 ) : I 
I 2 I, 4 (]) : I 
1 2 2, 5 (I) : I 
12 3 , 6 ( 1 ) : I 
13 1 , 7 ( 1 ) : ) 
13 2 , 8 ( 1 ) : I 
13 3 , 9 ( 1 ) : I 
2 1 1 , 1 0 (I) : I 
2 I 2, II (I) : I 
2 1 3, 12 (!) : 1 
2 2 1, 13 (I) : 1 
2 2 2, 14 (I) : I 
2 2 3, 15 (1) : I 
2 3 I, 16 (I) : I 
2 3 2, 17 (1) : I 
2 3 3, 18 (I) : I 
3 1 1 , 1 9 ( 1 ) : ) 
3 I 2, 20 (I) : 1 
3 I 3, 21 (I) : I 
3 2 I, 22 (1) : 1 
3 2 2, 23 (1) : I 
3 2 3, 24 (I) : 1 
3 3 1, 25 (1) : 1 
3 3 2, 26 (I) : 1 
3 3 3, 27 (I) : 1 



Fuzzy-Based Model 

[Outputl] 
Name='outpul' 
Rinie-1 -3.918960I3T»3«6« 3.96632822939564] 
NumMFr-27 

%MRDampcrANFISxxpRC2XS. F1S 
[System] 
Name= "MRDamperANFlS-expRCZjCS * 
Type='sugeno ' 
Version =2.0 
Numlnputs=3 
NumOuipim = l 
NumRules=27 
AndMethod = 'prod * 
OrMethod=' prober * 
ImpMethod=' prod ' 
AggMeihod = 'sum' 
DefuzzMethod=' wtaver' 

[Input!] 
Name='inputl * 
Range-H-3.78501984696143 3.517O7372823506] 
NumMFs^ 
MFI = 'inlmfl *: ' gaussmf',[ 1.77049561379651 -3.69286420665269] 
MF2='inlmf2 ' gaussmf \ [ 1.61 391677496437 -0.163980624459519] 
MF3='in)mf3 ': 'gaussmf ',[1.502 15773500331 3.5635 157562555 1] 

[ Inpu(2] 
Name='input2 ' 
Range-[ -4.03792384181093 8.17518309181665] 
NumMFs=3 
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MFI-'oullmfl •: • li near ',[ - 0.186579417882172 0.367909438418147 -0.94763776359529 -0.57763853704613J 
MF2-'outlmf2 ': ' lineal ' ,[0.0287861790954439 0.428225362571167 - 1.17835391682051 0.563054769051825) 
MF3-'ou!lmf3':'linear',[-1.57456226369366 0.519480300857278 -0.831551707100836 -4.3559681675606) 
MF4='outlmf4 ' : ' linear ',[-0.117073942693168 1.22895651689925 O.5938I9O5340063 1.52444359969549) 
M F 5 - ' o n l l m f 5 ' : ' linear ',[-0.553622540925557 1.88513959262909 0.383304140113207 0.14264151 850596] 
MF6-'outlmf6 ': ' linear ',[-0.48713164628898 1.68197359918357 0.211443773238603 -0.103852154212855] 
MF7-'outlmf7 • : ' linear ' ,[0.491311305879797 3.75557224220391 0.294623399867962 -6.32496258788094] 
MF8-'out lmf8l inear ' ,[1.42915186851999 2.41301046439345 1.52880979506194 -1.61250308748698) 
M F 9 = ' 0 U l l m r e ' : • linear ' ,[1.76669684798766 0.622940985138066 1.18104067892594 4.3270468488567] 
MF10='outImflO*; 'linear ' ,[0.095450652 3563329 1.49778828722862 - 1.43498595322659 3.00330208448305] 
MFII-'outlmfll •: 1 linear ',[0.456751883395579 0.687013126716324 - 1.73829833095625 1.459011 77789304] 
MF12-'oiitlmfl2 ': ' linear ',[-0.851339153583837 1.49475916224489 - 1.20538712499199 3.32734502470224] 
MF]3-'outlmf]3 ' : ' linear '.[-0.182877013372773 1.37018436913156 0.0723874535517321 O.0110297489O79504] 
MF14-'ouIlmfl4': ' linear ',[ -0.468774547490662 1.49165668047238 O.OI038385372538S3 -0.155757961749541] 
MFI5='out!mfl5 ': ' linear ',[ -0.472557958279048 1.92382735909387 -0.00147615163915287 -0.176533798750336] 
MFI6='out I mfl 6 ' . ' linear ',[0.351394155978173 1.05277512173513 0.630802439327103 -2.08081577703127] 
MF17='outlmfl7 ' : ' linear ',[0.526068098604245 0.324192492274885 1.26070289368083 0.283205858006584] 
MF18.'oullmfl8 ': ' linear ',[0.577031573606015 1.15767665870399 0.905112739700874 - 1.48145372203829] 
MFI9='outlrnfl9 ': ' linear ',[ -0.917085097828929 8.42180147871158 -0.899854973995931 22.0245390530826] 
MF20-'outlmf20':'linear ' ,[2.14360280410234 3.37133282745394 -3.22332680719515 4.02030539058575] 
MF21~'outlmf2l ' : ' linear ' ,[0.716080733684552 3.39065791707091 -1.85148070841108 10.4319648229879 J 
MF22='outlmf22 ': ' linear ',[-0.366076082644453 2.11405568680143 -0.373882246168311 - 1.42128303373222] 
MF23.'oullmf23 ' : ' linear ',[-0.944248715576832 1.97439048182686 -0.275750973799191 0.590048899181359) 
MF24='outlmf24 ': ' linear ',[ - 1.32184179272466 3.49394036391433 -0.197204709978259 1.82274521818196] 
MF25='outlmf25 ' : ' linear ' ,[0.3486793 13808849 0.473815760175479 0.319300494819747 -2.04305536194827] 
MF26='oullmr26\ 'linear ',[0.546338938093462 0.773296379144569 0.777719742511295 -2.65035690982666] 
MF27-'oullmf27':'linear ',[1.16547413435979 2.91373903498176 0.643576755854014 -10.7395029488658] 

[Rules] 
1 1 1 . 1 1 1 1 : 1 
I I 2, 2 (1) : I 
I I 3, 3 (I) : I 
I 2 I, 4 (I) : I 
12 2 , 5 ( 1 ) : I 
I 2 3, 6 (I) : I 
I 3 I, 7 (I) : I 
13 2 , 8 ( 1 ) : I 
1 3 3, 9 (I) : 1 
2 1 I. 10 (1) : I 
2 12 ,11 (I) : I 
2 I 3, 12 (I) : I 
2 2 I, 13 (I) : I 
2 2 2. 14 (1) . I 
2 2 3, 15 (1) : I 
2 3 1 , 1 6 ( 1 ) : ) 
2 3 2, 17 (I) : 1 

2 3 3, 18 (I) : 1 
3 I I, 19 (1) : I 
3 1 2, 20 (1) : I 
3 1 3, 21 (I) : 1 
3 2 I. 22 (I) : I 
3 2 2, 23 (1) : 1 
3 2 3. 24 (I) : I 
3 3 I. 25 (I) : I 
3 3 2, 26 (I) : 1 
3 3 3, 27 (I) : I 
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MFl = 'in2mfl gaussmf * ,[2.34651 502081 502 -4.0159237165299] 
MF2='in2mf2 ' gaussmf ' ,[2.38595521 629585 2.35709222180533] 
MF3«'in2mf3 ': 'gaussmf',[2.76446400308016 8.103 70129964483] 

[ Input3] 
Name='input3 ' 
Range=[ - 1.48599517330948 1.52383301 336969] 
NumMFs-3 
MFl = 'in3mfl ': ' gaussmf' ,[0.533870387633702 -1.59026043932265] 
MF2='in3mf2 ': 'gaussmf ',[0.731761837010892 -0.0738724854514102] 
MF3=',n3mf3 *: 'gaussmf *,[0.7772159851 75257 1.43024516304312] 

[Output! ] 
Name-'output ' 
Range=[ -4.03561773965864 4.21865734197246] 
NumMFs=27 

VoMRDamperANFlS^xpRC3XS. FIS 
[System] 
Name=' MRDamperANFlS.expRC3XS' 
Type-'sugeno ' 
Version =2.0 
Numrnputi=3 
NumOutputs-J1 

NumRulea=27 
AndMethod = ' prod ' 
OrMethod=' probor' 
ImpMethod-'prod * 
AggMethod = * sum' 
DefuzzMethod=' wiaver' 

MFI-'oullmfl ' linear \ [ -0.119735144031826 0.383106485936537 -1.16273022865113 -0.914237051711183] 
MF2-'outlrnf2':'linear ' ,[0.258639915426856 1.85835889366686 -0.91472147938745 6.77493531661756] 
MF3-'outlmf3 ' : ' linear ' , [ - 1.98880747439853 0.975119325767678 -0.654473454169569 -4.72284441079215] 
MF4-'oullmf4 •:'linear ' ,[0.138136317359431 2.461901 51306421 1.99419857821335 6.85209108789825] 
MF5^'outlmf5 ' : ' linear ',[-4.01467774886967 13.0529727392936 0.886045556422097 13.4221657345197] 
MF6.'outlmf6':'linear',[-2.38050709366913 3.01749314631757 0.544943613372273 -1.32875335318484) 
MF7-'uutlrnf7 ' : ' linear ',[-2.04421030252989 43.4852347711311 17.0561671331322 - 150.475488232] 
MF8='ourlmf8':'linear ' ,[49.2437571071434 287.758080578973 28.2887600868844 -997.431835963485] 
MF9-'0UIlmre':'linear',[-62.1756480977556 60.3172729250696 19.9919239294315 -384.989278373912] 
MFIO-'outlmflO': 'linear ',[-0.0636513202352946 0.111423906199018 - 1.63893300840553 -2.43441594245695] 
MFII-'outlmf! 1 ': ' linear •,[0.207912639330152 -0.647829614622377 - 1.61132482083016 -3.88805332547265] 
MF12-'outlmfl2 ': 'linear ',[ -1.24739809403138 0.155129841877754 -1.124866442423 -1.21951481911021] 
MFI3='outlmfl3': ' linear ',[-0.153802638512727 0.826075378490769 1.00079985530848 2.03181730991807] 
MF14-'outlmfl4': ' linear ',[ -1.95622887578243 0.I207892820O5797 0.693675349664146 1.33006422180051] 
MF15-'ouIlmfl5 ': ' linear ',[ -1.37630348460951 0.816408627518816 0.50445473045055 0.349596986310587] 
MF16-'oullmfl6 ': ' linear ',[4.33496099964384 5.32982155753832 -5.43517607848781 -39.0138778857031] 
MFI7-'oullmfl7 ': ' linear ' ,[22.5985629065376 - 16.3520554790002 -0.749395647190257 36.0829141100679] 
MFI8-'outlmfl8 ': ' linear ' , [ - 11.0507241403943 -8.69228585228252 - 1.0740928702198 46.1463226883637] 
MFI9='outlmfl9 ': 'linear ',[-0.00642597948629535 -2.37463434751046 -2.16833820734759 - 10.413294311732] 
MF20-'outlmf20': ' linear ',[-0.165211026541312 1.71471632282884 -2.17752222741916 4.14732811953654] 
MF21-'ouIlmf21 ' : ' linear ',[-2.34638783067784 1.23543337264077 - 1.54254471168516 8.67702817221895] 
MF22-'uullmf22 ': ' linear ',[-0.0820232989920042 -3.25068760459041 0.35863472734984 -0.164813905838952] 
MF23='outlrnf23':'linear',[- 1.53809064970565 4.86163369664884 0.252763994084335 6.60882598992046] 
MF24-'uullmf24': ' l inear ' , [ - 1.22318567304467 2.73283400445242 0.200326766581652 2.85948590190795] 
MF25='outlmf25':'linear ' ,[0.453201960389842 -30.6331809419151 11.2881800481532 165.336024735383] 
MF26-'outlrnf26': ' linear ' ,[12.2 137582823273 39.9143493295616 6.94032559234475 -239.358594245961] 
MF27-'outlmf27 ': ' linear ' , [ - 10.2019793741768 8.24105639195665 4.81865804632485 -19.6745448360813] 

[Rule.] 
I I I, I (I) : 1 
I 1 2, 2 (1) : I 
I I 3, 3 (I) : 1 
I 2 I, 4 (1) : 1 
I 2 2, 5 (1) : I 
1 2 3, 6 (1) : I 
1 3 I, 7 (I) : 1 

13 2 , 8 ( 1 ) : ! 
1 3 3, 9 (I) : I 
2 I 1, 10 (I) : 1 
2 I 2, II (I) : I 
2 1 3, 12 (1) : I 
2 2 1, 13 (1) : 1 
2 2 2, 14 (1) : I 
2 2 3, 15 (I) : 1 

2 3 1, 16 (I) : 1 

2 3 2, 17 (I) : I 
2 3 3, 18 (!) : I 
3 I 1, 19 (1) : 1 
3 I 2, 20 (1) : I 
3 1 3, 21 (I) : I 
3 2 1, 22 (1) : I 
3 2 2, 23 (1) : I 
3 2 3, 24 (I) : 1 
3 3 I, 25 (1) : I 
3 3 2, 26 (I) : I 
3 3 3, 27 (I) : I 



Fuzzy-Based Model 

[Rules] 
I I I, I (I) : I 
1 I 2, 2 (II : I 
1 I 3, 3 (1) : I 
12 1 , 4 ( 1 ) : 1 
I 2 2, 5 (I) : 1 

I 2 3, 6 (I) : I 
13 1 , 7 ( 1 ) : ! 
13 2 , 8 ( 1 ) : ) 
1 3 3, 9 (I) ; I 
2 1 1 , 1 0 ( 1 ) : I 
2 1 2 , 1 1 ( 1 ) : 1 
2 I 3, 12 ( 1 ) : 1 
2 2 1, 13 ( 1 ) : I 
2 2 2, 14 ( 1 ) : I 
2 2 3, 15 ( 1 ) : I 
2 3 1, 16 ( 1 ) : I 
2 3 2, 17 (I) ; ) 
2 3 3, 18 (I) : I 
3 1 1 , 1 9 ( 1 ) : ! 
3 1 2, 20 (1) : 1 
3 1 3 , 2 1 ( 1 ) : 1 
3 2 I, 22 (I) : I 
3 2 2,"23 (1) : I 
3 2 3, 24 (1) : 1 

3 3 I , 25 (1) : I 
3 3 2, 26 (1) : 1 
3 3 3, 27 (I) : 1 
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[Input 1] 
Name='input! ' 
Rangc-[ - 3.04464377265303 4.63593933027745] 
NumMFs=3 
MFI = 'inlmfl ':* gaussmf',[ 1.65208604654202 -3.02250188879322] 
MF2=,inlmf2 * gaussmf',[ 1.64997458656274 0.81167241427774] 
MF3='inlmf3 ' gaussmf ,[ 1.684501108363 18 4.61075299098043] 

Ilnput2] 
Name=* input2 * 
Rang?=[ -5.03739828228762 3.63758745739507] 
NumMFs=3 
MFl = 'in2mfl ' gaussmf',[ 1.96276258184005 -4.96454249943251] 
MF2='in2mf2 ' gaussmf',[ 1.87464149617569 -0.756733966373629] 
MF3=*in2mf3 ': ' gaussmT',[ 1.76320905389868 3.65401618259546] 

[ Input3] 
Name='input3 ' 
Range=[ - 1.48599517330948 1.52383301336969] 
NumMF»=3 
MFl = 'in3mfl ': ' gaussmf' ,[0.572976626855999 -1.55220695273178] 
MF2='in3mf2 ': 'gaussmf',[0.69758391791 1525 -0.0347036834334241] 
MF3 = 'in3mf3 ': ' gaussmf * ,[0.675793490457244 1.50379816692398] 

[Outpuil] 
Name"'output ' 
Range=[- 3.58006417685791 3.87803992022025] 
NumMFs=27 
MFI-'outlmfl ': ' linear ',[0.596619931809332 -4.28064598198994 -2.95080784645972 - 15.3950589810284] 
MF2"'outlmf2 ': ' linear ' ,[0.250409922284571 3.32133294495946 -2.56031430472386 14.5961334371417] 
MF3=*outlmf3':'linear',[-0.681520850965558 4.91374332838383 -1.76273390442241 18.9770039684258] 
MF4='outlmf4 '; ' linear ',[ -0.16001954201733 0.0426372500566457 0.268774027095O29 1.01021022864873] 
MF5='outlmf5':'linear',[-0.522888979901607 3.24873751394576 0.100910225734164 0.192925926924864] 
MF6='outlmf6 ' linear ',[ -0.543653833681936 4.17220396321092 0.076663095966418 O.525526105821637] 
MF7-'outlmf7 ' : ' linear ' ,[0.5379156742327 0.306346521570586 2.15502807296773 3.5287112163I05] 
MF8='outlmf8 ': ' linear ' ,[0.432654961162901 4.06228697990035 2.77437875694369 -8.63376956004433] 
MF9='outlmf9': ' linear \[-0.487759494213583 6.95773208985185 1.64443975718811 -17.1928895784703] 
MFlO-'outlmflO': ' linear ',[0.939227885651517 3.22785320564162 0.0882151573031469 11.21559637395] 
MFll = 'oullmfl I ' : ' linear ' ,[0.560017662290975 3.44994597776871 -2.53776384964873 12.6950620482471] 
MF12''ogtlmfl2':'linear *,[-0.92413255476826 1.983154623021 -1.70602199810054 8.44492364367583] 
MF13='outlmfl3 ': ' linear ',[-0.168296570366654 1.05392426958813 -0.795741526450922 - 1.38015749318591] 
MF14-'outlmfl4': * linear ',[ -0.894441805242348 1.96496444781168 -0.324158029883774 -0.673000721280061] 
MF15='outlmfl5 ': ' linear ',[-1.05084713043718 2.21513078821604 -0.242286882627146 0.0829413747679325] 
MF16='ou ( l rar i6 ': ' linear ' ,[0.212664004277602 0.482017129865981 2.13873170296643 1.47559536072342] 
MF17='outlmfl7 ': ' linear ' ,[0.483349102443477 0.249456183065072 1.68791855674)7 -0.01225445788420O6] 
MF18='cJut!mfl8 *: * linear ',[-0.206985383808439 1.07913854439829 1.29793737666999 -2.44808927577674] 
MF19='oullmfl9 *: ' linear ' ,[0.692431827816262 7.49816923130044 -7.66723177186487 8.02157198432951] 
MF20='outlmf20*: 'linear ',[ ~ 6.79908183301994 25.7606868772409 -2.24656105414705 86.7184688452328] 
MF21 = 'oullmr21 ': ' linear ',[ - 10.5124933317734 16.8426954476949 -0.272847928339462 78.0116639395749] 
MF22='outlmf22 ' : ' linear ',[-0.0189949879433825 1.0741 1992327657 -0.650486085695143 -2.10398683688076] 
MF23='outlmf23linear',[-1.40932840845209 2.47658593568019 -0.945453783056805 1.29284535108196] 
MF24-'ouilmf24': ' l inear ' , [ - 1.86215497690313 3.395504106105 -0.712105222515327 5.16000828123044] 
MF25-'outlmf25 ': ' linear ',[-0.0741522813087878 0.140150879909878 0.507341053203205 0.606543804550321] 
MF26='outlmf26': ' linear ',[0.55093417198326 0.410544384644308 1.15469301664704 -2.21249446195775] 
MF27='outlmf27 ': ' linear ',[-0.459489140619349 1.82053459349413 0.896501322961647 -2.99968367513259] 



Appendix D 

Non-Linear Fuzzy-Based Model 

The proposed non-linear fuzzy model was trained using the three sets of experimental data for which the electric 
current was held constant. Each data set was divided into seven equal parts, each corresponding to a constant step 
of the electric current (0.0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A). For each value of the electric current, one non-linear 
equation, as the one presented in equation 4.9, was identified using non-linear least squares in MATLAB™. Table 
D . l presents the identified coefficients for the each of output functions of the non-linear fuzzy based model. 

Table D.l. Identified coefficients for the non-linear fuzzy-based model. 
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Non-Linear Fuzzy-Based Model 75 

Once the output functions had been obtained, Simulink was employed to create the non-linear fuzzy-based model 
as shown in Fig. D. 1. The input fuzzy sets were selected as seven Gaussian functions with variance equal to 0.2 and 
means of 0, 0.4,0.8, 1.2, 1.6, 2.1, and 2.5 A. 
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Figure. D
.l. N

on-linear fuzzy-based m
odel validation. The electric current pattern is connected to the seven m

em
-

bership functions. The fuzzy conclusions are then connected to the non-linear output functions, and 
their output is sum

m
ed in order to obtain the final estim

ated force. 
The m

odel saves the error and 
estim

ated force values. 
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Abstract 

A Magneto-Rheologial (MR) damper exhibits a hysteretic and non-linear behav-
ior. This behavior makes it a challenge to develop a model for this system. The 
present research is centered on proposing and analyzing two different fuzzy mod-
els of an MR damper based on experimental data. The first model uses an Adap-
tive Neuro-Fuzzy Inference System (ANF1S) and the second combines fuzzy 
methods with semi-phenomenological models. The results showed that fuzzy 
modelling can be a powerful framework to capture the behavior of highly non-
linear systems. Among the various input patterns analized, stepped electric current 
signals allowed a better training of the ANF1S model. Both proposed structures 
obtained Error to Signal Ratio (ESR) values of less than 0.1 for the majority of 
the experiments. This intensive experimental study confirmed previous theoretic 
work done for MR damper model fitting. 

Keywords: MR Damper, Modelling, Fuzzy, ANFIS, Non-Linear Systems. 
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