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Abstract

The design of automotive suspension systems is concerned with ride comfort and handling performance of the
vehicle. In the last decade, semi-active suspension systems have been greatly analyzed for automotive applications
as they offer the reliability of passive devices, but maintain the versatility and adaptability of active systems. Semi-
active Magneto-Rheological (MR) dampers present a viable choice for suspension systems. In an MR damper, the
damping characteristics can be modified with the application of a magnetic field to the coil inside the tube of the
device. Although MR dampers are greatly promising for the control of vehicle suspension systems, their major
drawback lies on their non-linear and hysteretic behavior. This behavior makes it a challenge to develop a model
for the system. Furthermore, the first step in designing a control strategy for a suspension system is modeling the
behavior of the damper in an accurate manner.

The present research is focused on the modeling of an MR damper. The problem statement is centered on what
type of model of an MR damper can be developed, which can accurately predict the highly non-linear behavior of
the system and can be optimal for online control. For this purpose, various sets of experimental data were obtained
from an industrial MR damper. Then, four state-of-the-art MR damper models were trained, analyzed and compared
using quantitative and qualitative techniques. Each of the models was selected from four main modeling approaches,
phenomenological, semi-phenomenological, black-box, and fuzzy-based. By the end of the research, a novel model
for an MR damper was presented, which combined fuzzy techniques with semi-phenomenological modeling. The
results showed that the proposed structure was able to accurately predict the behavior of the MR damper and was
suitable for control purposes. The final results can be greatly applicable to the automotive industry, where better
comfort and handling control systems could be developed. In addition, the results could be useful to the vast number
of industries and applications where MR dampers are employed.
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Table 1. Description of variables. The variables are shown in order of appearance.

I Variable | Description | Model | Units
z(t) Linear displacement of the MR damper In
Z(t) Linear velocity of the MR damper In/s
Z(t) Linear acceleration of the MR damper In/s?
i(t) Electric current on the coil of the MR damper A
Vi(t) MR damper voltage \Y%
F(t) MR damper output force Ibf
ﬁ‘(t), F.q Estimated MR damper force Ibf
E(t) Second derivative of F(t) Ibf/s?
F(t) First derivative of F'(t) Ibf/s
F5(¢t) Fifth power of F(t) Ibf®
F3(t) Third power of F(t) Ibf3
K Discrete sample -

T Total number of discrete samples -

D Parameters for the model | Eq. 2.1 -

8; Parameters for the model | Eq. 2.2 -

co Coeflicient for the viscous damping at large velocities | Eq. 2.2 | Ibf - s/in
c1 Damping coefficient for the roll-off at low velocities | Eq. 2.2 | Ibf- s/in
ko Stiffness control coefficient for large velocities | Eq. 2.2 | N/cm
ky Accumulator stiffness coefficient | Eq. 2.2 | N/cm
T Initial displacement of spring k; | Eq. 2.2 | N/cm
z(t), y(t) Evolutionary coefficients for the model | Eq. 2.2 -

A Dynamic yield force coefficient | Eq. 2.3 -

Aa Post-yield viscous damping coefficient | Eq. 2.3 -

Az Pre-yield viscous damping coeflicient | Eq. 2.3 -

Vo Hysteretic critical velocity coefficient | Eq. 2.3 -
Xo Hysteretic critical displacement coefficient | Eq. 2.3 -

Cuw Viscous coefficient for the model | Eq. 2.4 | 1bf - s/in
kw Stiffness coefficient for the model | Eq. 2.4 Ibf/in
2w (t) Hysteretic variable | Eq. 2.4 -

o Scale factor of hysteresis | Eq. 2.4 -

fo Damper force offset coefficient | Eq. 2.4 -

¢} Hysteretic slope coefficient | Eq. 2.4 -

é Hysteretic width coefficient | Eq. 2.4 -
L;, Positive acceleration parameters for the model | Eq. 2.5 -
L, Negative acceleration parameters for the model | Eq. 2.5 -

kr Stiffness coefficient | Eq. 2.5 Ibf/in
Fy(t) Positive acceleration MR damper force | Eq. 2.5 Ibf
F.(t) Negative acceleration MR damper force | Eq. 2.5 Ibf
fe Coefficient for the pre-load of the accumulator | Eq. 2.6 -

Ch Coefficient for the viscous damping | Eq. 2.6 | 1bf - s/in

Xiii




Table 2. Description of variables continued

| Variable Description | Model Units
fy Yielding force coefficient | Eq. 2.6 Ibf
kp Shape coefficient for the model | Eq. 2.6 -
Zo Hysteretic velocity coefficient | Eq. 2.6 in/s
m Virtual mass coefficient for the model | Eq. 2.6 Ib
bij, baj Coefficients for the model | Eq. 2.7 -
Fy_; Discrete value of the force of the MR damper at sample k — j Ibf
Th—j Discrete value of the displacement of the MR damper at sample k — j in
Er_j Discrete value of the velocity of the MR damper at sample k — j in/s
a; Coefficients for the model | Eq. 2.8 -
Linj Input layer neurons of the neural network | Fig. 2.4 -
Ly; First hidden layer neurons of the neural network | Fig. 2.4 -
Ly; Second hidden layer neurons of the neural network | Fig. 2.4 -
Lo; Output layer neurons of the neural network | Fig. 2.4 -
My Fuzzy sets for the first input of the fuzzy-based model | Fig. 2.6 -
Mp; Fuzzy sets for the second input of the fuzzy-based model | Fig. 2.6 -
Mc; Fuzzy sets for the third input of the fuzzy-based model | Fig. 2.6 -
filz, 2,1,t) Output functions of the fuzzy model | Fig. 2.6 -
W; Degree of fitness of the fuzzy rules | Fig. 2.6 -
Wn; Normalized degree of fitness of the fuzzy rules | Fig. 2.6 -
0j, Qj, T1, Uj Output parameters of the model | Fig. 2.6 -
e(t) Uniformly distributed white noise | Eq. 3.1 -
Nicps Number of constant amplitude samples | Eq. 3.1 -
o Normally distributed random number | Eq. 3.2 -
(e Probability variable | Eq. 3.2 -
S(f) Power spectral density of the elevation of the road profile | Eq. 3.3 Hz
Cr Roughness coefficient of the road profile | Eq.3.3 | ft?/cycles/ft
N Constant coefficient corresponding to the roughness of the road profile | Eq. 3.3 -
Ue Speed of the vehicle { Eq. 3.3 in/s
Wy Number of cycles per feet | Eq. 3.3 cycles/ft
o; Random phase angle normally distributed between 0 - 27 | Eq. 3.4 -
wj Frequency within the interval of S(f) | Eq. 3.4 -
Aw Frequency increment | Eq. 3.4 -
Wnin Minimum frequency for the spectrum | Eq. 3.4 -
Wrnaz Maximum frequency for the spectrum | Eq. 3.4 -
N¢ Total number of frequency intervals within wpin — wmes | Eq. 3.4 -
GLpr(s) Transfer function for the low-pass filter | Eq. 3.5 -
Mk Fuzzy sets for the non-linear fuzzy-based model | Fig. 4.13 -
Wr; Degree of fitness of the fuzzy rules | Fig. 4.13 -
Jilz, 2,t) Output functions of the non-linear fuzzy model | Fig. 4.13 -
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Chapter 1

Introduction

1.1 Presentation

With the development of science and technology for automobiles and the continuously increasing need for safety and
comfort, great attention has been drawn to automotive suspension systems. The primary concerns that a suspension
system has to address are ride comfort and handling performance of the vehicle. Ride is primarily associated with
the ability of a suspension system to accommodate vertical inputs. On the other hand, handling relates more to
horizontal forces acting through the center of gravity and moments acting through the wheels.

Among automotive suspensions, three main groups can be identified. The first, passive suspension systems,
are the most widely used systems in vehicles. As their name suggests, the role of a passive suspension system is
to withstand perturbations without the use of an external power supply or feedback control system. Thus, passive
suspensions are designed as a compromise between ride comfort and handling performance. The second group
is active suspension systems. Active systems are meant to provide independent treatment of perturbations using
inertial forces through active control of some of the suspension system functions. In theory this means that the
mentioned compromise in passive suspension systems can be eliminated. Active suspension systems, however,
usually involve a continuous power supply, fast-acting mechanical devices, complex control algorithms, and closed-
loop control systems. The final group is that of semi-active suspension systems. These systems offer the reliability
of passive devices, but maintain the versatility and adaptability of active systems. A semi-active suspension can be
adjusted in real time, but cannot input energy into the system being controlled. Hence, the force delivered by the
suspension is constrained to be proportional and opposite to the elongation speed of the damper. Nonetheless, the
power requirement of these systems is considerably lower than that of an active system.

In semi-active suspension systems for vehicles, the most commonly used damping devices are mono-tube
dampers. A widely investigated mono-tube semi-active damper is the one denominated Magneto-Rheological (MR)
damper. An MR damper is a non-linear dynamical system where the inputs can be the elongation speed and an
electric current. The electric current is the control input that modulates the damping characteristic of the MR fluid
through the variation of a magnetic field. The output is the force delivered by the damper. Fig. 1.1 illustrates the
main components of an MR damper.

MR fluids are non-colloidal suspensions of particles with a size on the order of a few microns [4]. These fluids
are unique due to their ability to change their properties reversibly between fluid and solid-like states upon the



MR Fluid
Reservoir

Accumulator
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Electromagnet
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Figure. 1.1. MR damper configuration. The coil is connected to an external power supply. The MR fluid is energized
as it passes through the annular gaps.

application of a magnetic field. As discussed in [5], when a certain magnetic field is applied to an MR fluid, the
particles in the fluid become polarized and form polarization chains in the direction parallel to the applied field. The
mechanical energy needed to yield these chain-like structures increases proportional to the applied magnetic field,
resulting in a field dependent yield stress. This region is referred to as the pre-yield region. When the external shear
stress is increased and exceeds a certain value, the polarization chains will be broken and MR fluids start to flow
like regular Newtonian fluids. This last region is referred to as the post-yield region. If the shear stress is gradually
decreased again, the broken polarization chains will tend to reform, but with a stress value less than the one with
which they were broken. Thus, a hysteretic behavior is observed on the material. Fig. 1.2 shows the force-velocity
behavior of an industrial MR damper under various constant electric current inputs.

Force(lbf)
(1bf)

Force
-I.
2
=1

[}

N
E=3
o

1

0
Electric Current(A) 0 -10 Velocity (in/s) Velocity (in/s)

(@) ®

Figure. 1.2, Force-velocity behavior of an industrial MR damper. On the left side, the force is plotted against the
velocity and electric current. On the right side, the force is plotted against the velocity for various
constant electric current inputs.

As mentioned in [1], in the past decade there has been an increasing interest of scientists and engineers on
MR fluid dampers and their applications. MR dampers have been utilized in a broad range of areas. Large MR



Presentation 3

damping systems have been studied for civil engineering applications when damping is required to withstand the
high vibrations generated by earthquakes [6]. Also, vibration control systems that include MR dampers have been
developed for railcar comfort [7]. On the biotechnological side, MR dampers are being studied as part of intelligent
prosthesis [8] and bionic legs [9]. According to {10], concerning the automotive industry MR fluids are appealing
for vehicle suspension systems since they can operate at temperatures ranging from 40 to 150 °C with only slight
variations in the yield stress. Additionally, MR fluids are almost insensitive to impurities and can be controlled with
low voltages (12-24 V) and a current driven power supply outputting 1-2 A .

1.2 Problem Statement

Although MR dampers are greatly promising for the control of vehicle suspension systems, their major drawback
lies on their non-linear and hysteretic behavior. Furthermore, the first step in designing a control strategy for a
suspension system is modeling the behavior of the damper in an accurate manner. High-accuracy black-box and
semi-phenomenological models have been developed recently. The models utilize displacement, velocity, electric
current, and, many times, old values of the damping force as process variables in order to predict the output force
of the MR damper. Nonetheless, to accurately predict the output force of the MR damper, the models are required
to include a high number of parameters or complex mathematical functions. Thus, the computational necessities of
those models become non-practical for commercial online application.

Due to the aforementioned, what type of model of an MR damper can be developed, which can accurately
predict the highly non-linear and hysteretic behavior of the system and be suitable for online implementation of a
control system? To answer this question, a broad spectrum of modeling techniques will be analyzed and employed.
To obtain experimental data sets, a series of experiments will be carried out on a commercial MR damper !. The
experiments will be designed to test the behavior of the damper under various input profiles. Then, various MR
damper models will be tested and validated using the experimental data. At the end of the research, an MR damper
model will be proposed.

1.3 Objectives

1.3.1 General Objective

The general objective of the present research is to explore various models and modeling techniques for an MR
damper in order to compare them and analyze their strengths and weaknesses based on experimental data.

1.3.2 Specific Objectives

1. Perform experiments on an industrial MR damper in order to obtain real data and useful information for model
identification.

2. Test models that describe in a precise and simple manner the behavior of an MR damper.
3. Compare how the models predict the behavior of an MR damper, using established criteria.
4, Identify input patterns that allow a better identification of models for the MR damper.

5. Present novel techniques to model an MR damper.

! Thanks to Metalsa www.metalsa.com.mx



1.4 Justification

As mentioned before, the areas where MR dampers can be utilized abound. Over the past decade, sustained interest
in MR devices has increased due to the controllable interface provided by the MR fluid inside the damper. This fluid
enables the mechanical system to interact with an electronic controller, which can be used to continuously adjust the
mechanical properties of the damper. Some examples of devices in which MR fluids have been employed include
dampers, clutches, brakes, and transmissions [11].

Nonetheless, the development of an effective control algorithm is reliant on the accurate modeling of the system
to be controlled. The MR damper system includes both the process and the actuator. Thus, the adequate characteri-
zation of this system has shown to be a challenge due to its highly nonlinear dynamic response [12].

The present research is motivated by the aforementioned challenge that involves the correct modeling of an MR
damping system. Various models and modeling techniques will be analyzed in order to compare their strengths
and weaknesses. In addition, the training input patterns utilized for the identification of models will be discussed.
Moreover, a new model for an MR damper will be proposed. The obtained results could be applicable to the
automotive industry, where better comfort and handling control systems could be developed. Also, the results could
be useful to the vast number of industries and applications where MR dampers are employed.

1.5 Hypothesis

The present research seeks to propose and compare models and modeling techniques for an MR damper. In conse-
quence and based on the elements discussed in the previous sections, the following thesis statements are proposed.

1. Models for an MR damper can be developed, which can precisely describe its behavior.

2. There are certain modeling techniques that outperform the rest and help to develop precise and optimal models
of an MR damper.

3. There are certain experimental input patterns that facilitate the identification of models for an MR damper.

1.6 Research Strategy

The present research will be divided into four main areas.

1. First, the previous work done on modeling of MR dampers will be revised. Then, the literature review will be
centered on the various modeling approaches and techniques that have already been used for modeling MR
dampers. The review will be the starting point for selecting various models for comparison.

2. Second, experiments to be performed on a commercially available MR damper will be designed. Once the
experiments have been defined, experimental data will be obtained using an industrial MR damper.

3. Third, various models for the MR damper will be trained using the generated experimental data. The models
will be compared against each other by using various performance indexes and qualitative indicators. After
comparing the models, a set of different modeling techniques will be analyzed and new models for the MR
damper may be developed.

4. Fourth, based on the results, a novel modeling technique for the MR damper will be documented.
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1.7 Thesis Outline

The present work is divided into six chapters and five appendixes. This chapter presented the introduction, problem
definition, and general outline of the research. In Chapter 2, a literature review on the modeling of MR dampers is
discussed. In Chapter 3, the design of experiments and experimental setup are described. In Chapter 4, the results
obtained on the comparison of MR damper models are presented. In Chapter 5, the obtained results are analyzed
and discussed. Finally, in Chapter 6 the final conclusions of the research are presented.



Chapter 2
Literature Review

A literature review on the modeling of MR dampers is presented. In the first section, the state-of-the-art models of
MR dampers are discussed according to various modeling approaches. Next, a summary of previous work done on
comparing MR damper models and training patterns is presented.

2.1 State-of-the-Art Models

The models were divided into four different approaches: Phenomenological, Semi-Phenomenological, Black-Box,
and Fuzzy-Based.

2.1.1 Phenomenological (P) Models

Phenomenological models are obtained by analyzing the physical characteristics of the systems they seek to model.
Thus, in this type of models the parameters can be said to have a physical interpretation.

The model presented in [5] represents a phenomenological model based on the phase shifting dynamics of MR
fluids. The authors based the analysis on the differential equations that characterize the behavior of the MR fluid as
it flowed through the gap between the piston and the cylinder in the MR damper. The proposed model is shown in
equation 2.1.

#(t) = pLF(t) + p2F(t) + p3F(t) + paF(t)® + psF(t)® 2.1

where the five parameters p; need to be determined under a given loading velocity (t); F'(t) is the generated force;
F{t) and F(t) are the first and second derivatives of the force, respectively; and F(t)® and F(t)3 are the third
and fifth powers of the force, respectively. Notice that the model is a second order differential equation, with five
parameters, that uses the velocity and force as inputs.

Using the experimental data employed in [1] (specified in the next section), the parameters for the model were
identified using nonlinear least-squares approximation. After numerical experimentation, the authors concluded that
the model that was constructed captured the hysteretic behavior of the damper precisely. In addition, hysteresis loops
with various loading frequencies, applied field intensities, and excitation amplitudes were all modeled successfully
by the proposed model. The authors commented that in the model, all the coefficients are to be assumed to be
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dependent on the applied electrical current. That is, the coefficients should be functions of the applied magnetic

field. This dependency is to be approximated by a polynomial of order 2 and must be identified from experimental
data.

2.1.2 Semi-Phenomenological (S-P) Models

Semi-phenomenological models combine the analysis of the physical characteristics of the systems and various
mathematical techniques in order to model those systems.

The model presented in [1] has been widely used to compare models for MR dampers. The authors modified
a previously proposed structure in order to include the regions where the acceleration and velocity have opposite
signs. The structure of the model is shown in Fig. 2.1 and in equation 2.2.

y(t) x(t)
Hysteresis
47
s

L F(t)

Figure. 2.1. Diagram of the semi-phenomenological model presented in [1].

F(t) = co(i(t) — §(2)) + kola(t) — y(8)) + ki (2(t) — 20) + 512

i) = - Jlr — (51 2+ cod(8) + hoa(®) ~ y(t)
() = —s2|£(t) — gt)|2(1)|2(8)*> 7Y — 94 (£(t) — §(t)) [2()]|* + s5 (£(t) — 9(2)) (22)

where ¢y and ko represent the viscous damping and stiffness characteristics at large velocities, respectively. c; is
the damping coefficient for the roll-off induced at low velocities. k; and ¢ represent the accumulator stiffness
and its initial displacement, respectively. s; represents coefficients that are to be determined from experimental
data. In addition, 2(¢) and y(t) are evolutionary coefficients for the model. The model can be seen to include 10
parameters, and be dependent on the displacement and the velocity. To validate the proposed structure, the authors
calculated the prediction error as a function of time, displacement, and velocity. The experimental data explored
sinusoidal, step, triangle, and pseudo-random displacement patterns with frequencies lower than 3 Hz. The electric
current pattern was constant stepped increments. The model was capable of exhibiting a wide variety of hysteretic
behaviors. Moreover, the model could be effectively employed for control algorithm development and for system
evaluation. Nonetheless, the model does not include the effect of the varying electric current.



Continuing in the search of semi-phenomenological models, the one presented in [2] has been greatly analyzed
in the past years. The proposed model is said to describe the bi-viscous and hysteretic behaviors of the MR damper
with high precision. The structure is described in Fig. 2.2 and in equation 2.3,

x(t)

A, Vo/ Xo I

F(t)
Shape
Function

A;tanh |

Figure. 2.2. Diagram of the semi-phenomenological model presented in [2].

F@:AmW{&@@+%ﬁm0+A%ﬂﬁf%mw) (2.3)

where A; represents the dynamic yield force of the MR fluid. A and A3 are parameters related to post-yield and
pre-yield viscous damping coefficients respectively. V5 and X denote the absolute value of hysteretic critical veloc-
ity and hysteretic critical displacement, respectively. In the equation, the model can be seen to use the displacement
and velocity as inputs and only depend on five parameters. The experiments performed on the MR damper consisted
on sinusoidal sweeps for the displacement and constant steps for the electric current. The authors used a non-linear
least-squares algorithm in order to identify the coefficients of the model. The results obtained in the experimentation
were said to prove the correctness of the proposed structure. In addition, the concise form of the model was men-
tioned as its best feature. Nevertheless, the authors did not use experiments in which the current varied over time
to prove the effectiveness of the model under varying current scenarios. Although, the authors noted that parameter
A3 could be said to be independent from the applied electrical current.

Another semi-phenomenological model that is to be considered is the one presented in [3]. The model is intended
to include the hysteretic force-velocity characteristic of the MR damper. The authors employed a component-wise
additive strategy that captured the viscous damping, spring stiffness, and hysteretic behavior of the MR damper. The
model is presented in 2.3 and in 2.4.

F(t)
Zw(t)

Cw Z(t) + ku z(8) + @ 2(t) + fo
tanh (B &(t) + & sign(z(t))) (24)

where, ¢, and k., are the viscous and stiffness coefficients, respectively. « is the scale factor of the hysteresis, 2z, (t)
is the hysteretic variable given by the hyperbolic tangent function, and f; represents the damper force offset. Also,
B and & define the slope and width of the hysteretic loop, respectively. Notice that the model only depends on six
parameters and uses the displacement and velocity as inputs.
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x(t)

Hysteresis

F(t)

Figure. 2.3. Diagram of the semi-phenomenological model presented in [3].

Experimental data was obtained by a series of experiments performed on a commercially available MR damper.
Sinusoidal displacement patterns of frequencies between 1 and 2 Hz were used. Also, the electric current was
applied to the damper as constant steps. A performance-enhanced technique, based on particle swarm optimization,
was proposed to identify the coefficients of the model. In order to make the model depend on the applied electrical
current, the authors made the coefficients equal to a linear time function of that current. According to the authors,
the results obtained by the new model showed highly satisfactory coincidence with the experimental data, and also
proved the effectiveness of the proposed identification technique. In addition, as the proposed model contained
only a simple hyperbolic tangent function it was said to be computationally efficient in the context of parameter
identification and its subsequent inclusion in controller design and implementation.

Along the same modeling approach, in [9] a sigmoidal model of the MR damper was proposed. The authors
took a previously proposed model and divided it into two parts corresponding to positive and negative acceleration,
respectively. The model is presented in equation 2.5.

1- e—L2p(i(t)—L3p)
Lip 1 + e~ L2p(2(t)—Lap)
1 - e-LZn(i(t)’“LSn)

Fo(t) + Lapi(t) + kpx(t)

F.(t) = L,

1 + e—L2n(&(t)—Lan) + Lan2(t) + krz(t) 2.5)

where ky, is said to be the rigidity coefficient and the parameters L; must be identified from experimental data.
Additionally, the subscript p denotes the positive acceleration region and n the negative acceleration one. As shown,
the model uses the velocity as input and depends on 10 parameters, five per equation. Unspecified experimental
data was employed to test the proposed model. The identification of the coefficients was done using nonlinear least
squares. The resulting model was tested and proved to match the behavior of the MR damper. In order to introduce
the electric current to the model, every parameter was made equal to a linear time function of the electric current.
The model was further used to successfully design and test a control scheme for an intelligent bionic leg.

Finally, in [13] a model that modified the one in [2] was presented. The authors included a nonlinear stiffness
term, in addition to an inertial force part. The model is shown in equation2.6.
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F(t) = fo +cp +2(t) + %f,, tan™! (kp(2(t) ~ Tosgn(&(t)))) + ma(t) (2.6)

where f, is said to be the pre-load of the accumulator, ¢, the coefficient of viscous damping, f, the yielding force,
kp the shape coefficient, £y the hysteretic velocity, and m represents a virtual mass. It can be seen that the model
depends on the velocity and acceleration of the MR damper and it has six coefficients. Experiments that employed
sinusoidal displacement patterns between 0.6 and 2.55 Hz were selected. The electric current was applied as constant
stepped increments of 0.2 A. In order to identify the coefficients of the model, nonlinear least squares was used. The
performance of the model was analyzed by calculating the error functions used by [1]. The proposed model could
successfully be used to describe the behavior of the damper and to develop control algorithms. In respect to the
model in [2], the modified one is said to predict the hysteresis to a higher degree of accuracy. As for other models,
the analysis never included varying electric current scenarios.

2.1.3 Black-Box Models

Black-Box models utilize polynomials, recurrence relations, or artificial neural networks (ANN) to emulate the be-
havior of a system. This usually implies that the coefficients of such models do not have a physical interpretation.
There are two fundamental objectives in the development of nonlinear black-box modeling of MR-dampers: im-
proved model numerical stability at low-integration step rate for real-time embedded applications and generalized
model structure for a wide range of dynamics [6].

In [14], a polynomial model was proposed and analyzed to predict the behavior of an MR damper. The structure
of the model is shown in equation 2.7.

6
F(t) = 3 (b + bay i(t)) &t @n

=0

where b;; and by; are the coefficients that are to be learned from experimental data. It can be seen that the model
has the velocity and electric current as inputs and depends on 14 parameters. To validate the model, experiments
were performed using sinusoidal displacement patterns and constant electric current steps. The coefficients were
estimated via nonlinear least squares. According to the authors, the proposed polynomial structure predicted fairly
well the non-linear and hysteretic behavior of the MR damper. In addition, an inverse version of the model was
tested in order to track a desired damping force. The reported results were equally successful when an open-loop
controller was tested.

In [10], an Autoregressive with eXogenous (ARX) term model for an MR damper was proposed. The model is
shown in equation 2.8,

F, = a1Fr_1+axF;_o+aszg + aqTr-1

+asty + agli-1 (2.8

where Fj, xx, and Z represent the discrete force, displacement, and velocity values at instant k, respectively.
In the same manner, the subscripts k — 1 and k — 2 represent old values of the respective variables. Additionally, a;
are the coefficients that ought to be learned from experimental data. Thus, the model uses present and old valtues of
the displacement, velocity and force as inputs and depends on six coefficients.
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The selected experimental data employed constant and random electric current input patterns. The most impor-
tant regressors of the model were found to be the ones for & and the old values of F. If those two regressors were
used, the role played by the regressors of x was negligible. In addition, old values of F were said to be extremely
important for the quality of the model. If only & and x were used, the model quality remained very poor even if a
great number of old values was employed. When the model was to be made dependent on the electric current, the
authors added two regressors to the proposed structure, corresponding to the present and past values of the electric
current, respectively. The results obtained showed that the ARX model was able to predict, with high precision, the
behavior of the MR damper. Furthermore, for the varying current case the 4RX model was said to outperform by far
other phenomenological models.

Among Black-Box modeling, ANNs have been greatly exploited recently. As mentioned in [15], a ANN is a
mathematical model inspired from the basic understanding of biological nervous systems. They are devices that
can accept multiple inputs and be trained exclusively from experimental data using various learning techniques.
Artificial neurons are the elementary units in an ANVN. Incoming information is in the form of signals that are passed
between neurons through connection links. Each connection link has a proper weight that multiplies the transmitted
signal. Each neuron has an internal action resulting in an activation function being applied to the weighted sum of
the input signals to produce an output signal.

Fig. 2.4 depicts a three layer ANN with three inputs and one output. It is to note that each connecting arrow
has a multiplicative weight that is determined by the learning algorithm. In the figure, the Ly;, Loj, Lo; neurons
represent the first hidden, second hidden, and output layers of the network, respectively.

Input Layer Hidden Layer 1 Hidden Layer2  Output Layer

Figure. 2.4. Three layer 4NN with three inputs and one output. Two hidden layers are presented, which are hidden
in the sense that their direct output cannot be accessed. From input patterns, one can only observe the
output pattern from the output layer.

In [16] an ANN was proposed in order to model the direct and inverse dynamics of an MR damper. For the direct
model, a recurrent ANN) was used, in which the output is delayed and fed back to the input layer. Fifteen input layer
neurons, five for each input (displacement, velocity, and force) were utilized. Additionally, 15 hidden layer neurons
and one output layer neuron were selected. The form of the input and hidden layers was sigmoidal and that of the
output layer was linear. To train the ANN, the Levenberg-Marquardt algorithm was utilized. To test the correctness
of the proposed structure, the authors compared the predicted force with that predicted by the model propose in [1].
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After the validation, the authors noted that the trained ANN could reasonably predict the damping force of the MR
damper. Nonetheless, the effect of the commanding electric current was never considered.

An additional study on modeling using ANNs was presented in [17]. The structure employed the displacement,
velocity, and electric current as inputs to predict the MR damping force. The selected experimental data was obtained
by using sinusoidal displacement patterns with frequency of 6 Hz and constant steps of 0.2 A increments for the
electric current. It was proposed to train the ANN using Recursive Lazy Learning. To validate the results, the error
functions presented in [1] were utilized. It was concluded that the proposed model satisfactorily emulated the MR

damper. The model could be adjusted when new data was present and it could be used for the design of control
algorithms.

One more research of modeling with ANN can be found in [18). Here, a 25 hidden-layer ANN structure that
employs the present and one past value of the displacement, velocity, and electric current as inputs, in addition to the
past value of the damping force was proposed. Hence, the structure had seven inputs and one output. Experimental
data was obtained using sinusoidal displacement input patterns of frequencies between 0.5 and 4 Hz. The electric
current was held constant at various values. To train the structure, a back-propagation algorithm was employed. The
validation procedure confirmed that the proposed ANN model was able to accurately predict the behavior of the MR
damper. In addition, a reversed structure was proposed in order to predict the necessary electric current to obtain a

desired damping force. As for the forward model the reported results showed great accuracy between predicted and
experimental data.

2.14 Fuzzy-Based Models

Fuzzy systems have been recently employed for modeling and control of physical processes. Said systems have
very strong functional capabilities and may, if properly designed, satisfy the universal approximation property {19].
A fuzzy system is a static nonlinear mapping between inputs and outputs. Fig. 2.5 presents a block diagram of a
general fuzzy system. The inputs and outputs of the system are crisp, that is, they are real numbers and not fuzzy
sets. The fuzzyfication block converts the crisp inputs to fuzzy sets (membership functions) the inference mechanism

uses the fuzzy rules in the rule-base to produce fuzzy conclusions, and the defuzzification block converts these fuzzy
conclusions into the crisp outputs.

N s
Inference

h u

) &

g g Fuzzified mechanism | Ft.xzzy c -3
k=1 ; conclusions <]

a E> = 3

2 g inputs % 3
a Y

2 9 5, 2

S z 3 ”
2
Rule-base &

— ] ——

Figure. 2.5. Fuzzy system block diagram.

Among fuzzy systems, a Takagi-Sugeno-Kang (TSK) fuzzy system is one whose output conclusions are linear
functions. A TSK fuzzy system can be selected for modeling complex systems. The fuzzy rules of the model can
be determined by adaptively generating them based on input and output data or by selecting them by hand. The
total output of the system is calculated using the weighted average of the output functions [20]. Unlike ANNs, fuzzy
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systems can include human knowledge in the form of fuzzy rules. Nonetheless, it may take a considerable amount of
time to design and tune pure fuzzy models by hand. In this regard and as mentioned in {15], NN learning techniques
can automate the learning process of a fuzzy model by extracting rules directly from experimental data.

If a first-order TSK model consists of three inputs (with three membership functions each) and one output
(described by linear output functions), and only three fuzzy rules are selected as shown in equations 2.9 - 2.11,

I1f z(t) is Ma;1 and &(t) is M1 and i(t) is Mc,

2.9
then f1 (t) = 01.’L’(t) + qlrfv(t) + Tl’i(t) + Uy
If z(t) is Ma2 and &(t) is Mpa and i(t) is Moo 2.10)
then fa(t) = 02x(t) + q2i(t) + rai(t) + ua .
If x(t) is Mas and ©(t) is Mps and i(t) is Mcs @.11)

then f3(t) = osz(t) + g32(t) + rai(t) + us

where z(t), £(t), and i(t) are input language variables; M4, Mp;, and Mc; are fuzzy sets; f1(¢), f2(t) and f3(t)
are output language variables; o5, g;, 71, and u; are the output parameters of the fuzzy conclusions, then Fig. 2.6
would represent the 7SK structure for the first-order fuzzy system. The W; and Wn; represent the degree of fitness
and the normalized fitness of the fuzzy rules, respectively. For simplicity, the example considers only three of the
27 possible fuzzy rules.

A system as the one shown in the figure can use a hybrid learning algorithm that combines the backpropagation
gradient descent and least squares methods. A TSK fuzzy model trained in this manner is often named Adaptive
Neuro-Fuzzy Inference System (ANFIS). In general, the ANFIS learning algorithm consists of adjusting the param-
eters of the structure from sample data. Many other learning techniques, including Genetic Algorithms (GA), can
be selected and will be discussed in detail when required.

In [12], ANFIS is used to determine the parameters of a 7SK model of the MR damper. The selected fuzzy
structure was similar to the one in 2.6. It utilized three inputs (displacement, velocity, and voltage) and one output
(damping force). Two, four, and three membership functions were selected for the displacement, velocity, and
control voltage, respectively. The total number of fuzzy rules was 27 and the output functions were linear.

The data selected for training and validating the model was generated from numerical simulation of the model
presented in [1]. To validate the accuracy of the fuzzy-based structure, it was compared to the mathematical model
when subjected to an identical input. The results showed excellent performance of the proposed model except for
the low frequency damper dynamics. Nonetheless, the error was regarded as conservative for vibration control
purposes.

In [7], the authors designed, fabricated, and modeled an MR damper for a railcar. The later was done by
employing fuzzy logic. As the model before, the selected structure employed the displacement, velocity, and voltage
as inputs with three, two, and four bell membership functions, respectively. A total of 27 fuzzy rules combined
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Figure. 2.6. Structure of a first-order 75K fuzzy-based model with three inputs and one output. For simplicity, only
three fuzzy rules, out of the 27 possible combinations are considered. Each of the inputs is evaluated
by the membership functions and their outputs are combined according to the defined fuzzy rules. Each
output from the rules is then combined according to the selected sum method.

with linear output functions of the force were selected. The validation process was done by using experimental
data obtained with the fabricated MR damper. Sinusoidal and random displacement signals were utilized with
constant and sinusoidal voltages. The displacement frequencies were always kept lower than 3 Hz. To assess the
performance of the model, the error functions employed in [1] were selected. The results confirmed the correctness
of the proposed fuzzy model and it was labeled as computationally efficient. Additionally, the authors highlighted
the structure as being a suitable option for real time control.

A similar approach was followed in [21]. The inputs for the fuzzy structure were selected as displacement,
velocity, and control voltage, while the output was the damping force. The structure was trained using a GA that
simultaneously evolved the membership function parameters. Hence, the proposed structure was regarded as an
evolutionary fuzzy model. In this case, the authors also generated simulated data for the training of a 7SK model of
the MR damper using the model presented in [1]. The performance of the evolutionary fuzzy model was validated
against the damping force generated by the mathematical model. The results showed that the structure emulated the
behavior of the MR damper quite well. Additionally, the fuzzy model was tested using an unknown input pattern for
which the results were very acceptable.

A self-tuning fuzzy structure was analyzed in [22] to model an MR damper. As inputs for the model were
selected the displacement, velocity, and electric current with five triangular membership functions each. The output
functions were selected as constants combined using the centroid method. To validate the model, experimental
data were obtained. Both the displacement and electric current patterns were sinusoidal, the first with frequencies
between 1 and 2.5 Hz. The training algorithm of choice was back-propagation. The proposed structure modeled the



Literature Review 15

hysteresis of the damper better than a physical model. As for other fuzzy models, the suitability of the structure for
real time control was mentioned,

In [20], direct and inverse fuzzy models of the MR damper were identified using ANFIS. The identification data
was obtained using a mathematical mode! of the damper. The fuzzy structure for the direct model resembled the
one in Fig. 2.6, with velocity, acceleration, and control voltage as inputs and damping force as output. On the other
hand, for the inverse model the control voltage and damping force were swapped with respect to the direct one. For
both models, three membership functions for each input were selected as the best compromise between simplicity
and performance. The results obtained with both fuzzy models proved that the proposed structures could accurately
model the behavior of the MR damper.

2.1.5 Comparison

Table 2.1 summarizes the state-of-the-art models of MR dampers. The selected columns portray the main de-
scriptions of the proposed or studied models. The column Parameters compares the number of parameters of the
proposed models. In the case of phenomenological, semi-phenomenological, and non-4NN black-box models, the
column represents the number of coefficients in the model. For the ANN black-box structures, the column describes
the number of hidden layers in the network. For the fuzzy-based models, the column represents the number of
membership functions per input. Additionally, the column Validation Data specifies whether the model presented
by the authors was validated using experimental or simulated data.

The phenomenological model presented in [51 presents a good option for modeling the MR damper. Nonethe-
less, the dependency on the variable electric current would need to be added to the model, which would increase
significantly the number of parameters. An additional consideration relies on the fact that, to compute the damping
force, the model requires a non-linear differential function with four inputs that depend on the same force. This
consideration could make the model impractical for online implementation.

Among the semi-phenomenological models, the ones presented in [2], [3], and [13] stand out due to their low
number of parameters. Nonetheless, in order to include the dependency on the electric current to the models the
number of parameters would be increased. On the other hand, the model presented in [1] has been greatly employed
for comparison of new models for MR dampers, even when it employs 10 or more parameters. For all the ana-
lyzed semi-phenomenological models, their major drawback lies on the use of complex mathematical functions that
resemble the behavior of the MR damper..

For black-box structures proposed to model the MR damper, the ARX structure presented in [10] appears to be
the more compact one. Nevertheless, its dependency on old values of the damping force may be a challenge for
implementation. On the other hand, ANNs propose a feasible modeling approach. Although, a high number of
inputs and hidden layers may be required in order to obtain acceptable results.

Finally, fuzzy-based models stand as an interesting option for modeling the MR damper. All the analyzed models
employed three inputs, including the control variable (voltage or electric current). The selection of inputs, fuzzy
sets, and output functions may require a deep knowledge of the behavior of the system, buy may be alleviated by
the use of ANFIS and GA. As for ANNs, a high number of fuzzy sets and fuzzy rules may be required in order to
successfully model the MR damper.
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Table 2.1. Comparison of Models. The state-of-the-art models are compared by modeling approach, number of
inputs and parameters, and the type of validation data employed.

Modeling Number of | Validation
Approach | Authors Inputs Parameters Data Year
p L. Wang and H. Kamath i(t), F(t), F(t), 5 Experimental | 2006
F3(t), F5(¢)
B. Spencer et al. z(t), z(t) 10 Experimental | 1996
S. Guo et al. z(t), Z(t) 5 Experimental | 2006
S-P N. Kwok ef al. z(t), z(t) 6 Experimental | 2006
F.Lietal z(t), Z(t) 10 Experimental | 2009
S. Cesmeci and T. Engin z(t), £(t) 6 Experimental | 2010
S. Choi et al. z(t),4(t) 14 Experimental | 2001
D. Wang and W, Liao Tk, Tk, Fr1 15 Simulated 2001
S. Savaresi ef al. Tk, Th—1,Tk, 6 Experimental | 2005
Black-Box | = :'ck_l,.Fk_l', Fi_2
M. Boada z(t), 2(t), i(t) N/S Experimental | 2008
E. Chen * Ty Tr—1, Lk, 25 Experimental | 2009
Th1, bk, bk—1, Fr—1
C. Schurter and P. Roschke | z(t), £(t), V(1) 2,4,3 Simulated | 2000
V. Atray z(t), z(t), V(¢) 3,2,4 Experimental | 2003
Fuzzy H. Du and N. Zhang z(t), £(t), V(1) N/S Simulated | 2006
K. Ahn z(t), z(t),i(t) 5,5,5 Experimental | 2008
H. Wang and H. Hu z(t), £(t),i(t) 3,3,3 Simulated | 2009

2.2 Previous Work

The research done in [10] compared the semi-phenomenological modified Bouc-Wen model presented by [1] in
equation 2.2 and an ARX structure as in equation 2.8. The selected performance index for comparing the results
was the Error fo Signal Ratio (ESR), defined later in equation 4.2. The authors first compared the models using the
three experimental data sets in which the electrical current was held constant. For those data sets, both models were
reported to obtain very low error values. For varying electric current scenarios, the reported resuits showed that the
semi-phenomenological model was not able to predict the behavior of the damper and obtained high error values.
On the other hand, the ARX model was reported to obtain error values as low as for the constant electric current
experiments. In relation to the input patterns selected, the authors did not comment on the effect of those patterns
on the identification process of the models.

In [23], the work from {10] was continued. Three models of an MR damper were selected and compared. The
author divided the experiments performed into two groups. The first group employed constant displacement and
constant electric current inputs. The second group of tests employed constant velocity patterns. Once the velocity
was measured stable and constant, a constant electrical current was applied to the damper. To compare the models,
the ESR index was utilized. The author selected the same two models used in [10] and added to the research the
semi-phenomenological model presented in [2]. The dependency on the electric current was added to the models
by making their coefficients equal to time varying functions of the current or by adding regressors in the case of the
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ARX one. In this case, the author selected a polynomial of order five instead of a linear function. After identifying
the models, the author concluded that the model presented in [2] obtained the best compromise between exactness
and overall simplicity. Nonetheless, the other two models were reported to obtain acceptable results. At the end of
the research, the effect of the input patterns on the identification process was not analyzed.

In the thesis work presented in [24], linear, non-linear, and probabilistic models for an MR damper were ana-
lyzed. Experimental data was obtained using an industrial MR damper. The selected input patterns were designed
to be bounded according to real-life scenarios. The velocity and displacement patterns were selected as uniform
random distributions. The electric current input was also continuously varied according to a uniform random dis-
tribution. To compare the MR damper models, force-time and force-velocity plots were employed. The general
conclusion of the research was that a deterministic model was insufficient to model the behavior of an MR damper.
In addition, it was said that the number of parameters required for a phenomenological model that includes all the
dynamic effects would be too high to be implementable. For the non-linear model, the addition of a hysteresis term
was observed to dramatically improve its performance.

In [25), various input patterns for MR damper modeling were analyzed. A neural network that emulated the
behavior of an MR damper modeled by an 4RX structure was used. The objective of the research was to determine
which experimental input pattern allowed the adaptation mechanism of the neural network to be more precise on
its prediction of the behavior of the damper. The authors concluded that a sinusoidal displacement with modulated
frequency and constant amplitude, plus an Increased Clock Period Signal (/CPS) current pattern between 0 and 4 A
provided the best combination for model identification. For the /CPS signal, the authors noted that the amplitude
duration was to be held constant and that the duration of each step was to be at least equal to the settling time of
the MR damper force step response. Additionally, the authors proposed a modification to the model presented in
(2] in order to make it dependent on the electric current. The resulting model was successfully compared against
simulated experimental data sets.

2.3 Opportunities
After reviewing the state of the art, the following areas of opportunity were identified.

o There is a need for an extensive quantitative and qualitative comparison of MR damper models. This com-
parison should take into account the performance of the models, as well as their overall complexity and ease
of implementation. The present work is meant to fulfill this need by selecting various state-of-the-art models
and presenting an in depth comparison.

o There is a need for MR damper models that can precisely model the hysteretic and non-linear behavior of the
system. The present work is determined to analyze how various MR damper models mimic the behavior of
the system.

o There is a need for MR damper models that can accurately characterize the role of the electric current without
being excessively complex. In the present work, a novel method for introducing the electric current depen-
dency to models will be presented.
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2.4 Summary

The chapter presented a literature review on the modeling of M R dampers. The first section various state-of-
the-art MR damper models were summarized according to four modeling approaches: phenomenological, semi-
phenomenological, black-box, and fuzzy-based. The following section discussed previous work done on the com-
parison of MR damper models and training patterns. Later, Table 2.1 presented a chronological synthesis of the

latest contributions to MR damper modeling. At the end, the areas of opportunity in MR damper modeling were
identified.



Chapter 3

Experiments

The description of the design of experiments, experimental setup, and experimental results is discussed in the fol-
lowing sections. In order to model a dynamical system, such as the MR damper, experimental data was obtained
from an industrial damper. A set of experiments was designed in order to test the behavior of the system under
various input patterns. The experimental setup consisted of measuring devices, electric current controllers, and
displacement actuators.

3.1 Design of Experiments

Experiments were designed in order to generate displacement and electric current input patterns that would char-
acterize the behavior of an MR damper for automotive applications. Special attention was placed on the proper
frequency content of the displacement signals. Additionally, the patterns were selected in order to aid the modeling
process of the system. The experiments were based on the work presented in [26], where a set of training patterns
was reviewed and designed for the identification of MR dampers.

3.1.1 Electric Current Patterns

Electric current patterns are very important for the correct identification of the MR damper. The selection of these
patterns is to take into account the settling time of the electric circuit involved in the coil, the electric current input
limits of the MR damper, and the capabilities of the experimental setup. The electric current input patterns selected
for the experimental tests are described as follows.

Increased Clock Period Signal (ICPS)

For an ICPS signal, the amplitude is modified randomly at a constant period of time. Due to its random content, this
signal is rich in frequencies. According to [27], the signal can be calculated as shown in equation 3.1,

ity=e (HI;:SJ + 1) 3.1

where |¢] represents the integer part of g; e(t) is a uniformly distributed white noise signal; N;cps represents the

number of samples for which the amplitude of the signal is to be held constant; and £ is time.
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As mentioned in [27], /CPS signals provide various advantages over white noise signals for system identification
purposes. First, for an JCPS signal the amplitude is held constant over long periods of time. This is significantly
important, as the measured data would approximately contain information for a transient analysis of the system.
Second, an JCPS signal is advantageous for processes where the wearing of the actuators is a main concern, as the
input to the system is not continuously varying. For the MR damper, the JCPS signal is employed to extract the
steady and transient behavior of the damper by a constant excitation of the MR fluid. The period at which the value
of the signal is changed is to be greater than the settling time of the MR damper.

For the present work, the JCPS signal was designed to contain electric current values between 0 and 2.5 A,
uniformly distributed. The period for which the amplitude of the signal was held constant was set to 0.20 s, according
to the typical settling time of an MR damper. Thus, the value of N;¢cps was calculated for a sampling frequency
of 512 Hz. Additionally, the uniformly distributed signal e(t) was obtained in MATLAB™ by means of the rand
function.

Pseudo-Random Binary Signal (PRBS)

A PRBS signal is very common for system identification. The amplitude of the signal is shifted between two values,
with a certain period of time. The duration of every step is governed by a binary algorithm that is to be dependent
on the settling time of the system to identify. As mentioned in [27], a PRBS is a purely deterministic signal. This
is, future states can be computed exactly. Nonetheless, the correlation function of the signal resembles one of white
random noise.

In order to compute the PRBS signal, the idinput function from the System Identification Toolbox in MATLAB™
was selected. The function computes a maximum length PRBS based on the desired length of the signal, the
minimum constant interval, and the two levels at which the signal is to shift. For the present work, a PRBS signal
of 30 s (a total of 15360 samples, base on a sampling frequency of 512 H z) was employed. The minimum constant
interval was set to 0.195 s (a total of 100 samples, based on a sampling frequency of 512 Hz). In addition, the
electric current values were bound between 0 and 2.5 A.

Amplitude Pseudo-Random Binary Signal (4PRBS)

An APRBS signal is one in which the amplitude is randomly modified every certain period of time. The signal can
be defined as shown in equation 3.2,

u ift=0
i(t) = < i(t — 1)with probability o ift >0 3.2)
p with probabilityl —a  ift >0

where p is a normally distributed random number and « is a number between 0 and 1 that specifies the probability
of i(t) being equal to i(t — 1). If « is one, the amplitude of the signal becomes constant. If « is zero, the amplitude
of the signal becomes normally distributed white noise. APRBS signals were employed in [10] to train ANNs in
order to model an MR damper.
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For the present work, the algorithm to compute the APRBS signal was programmed in MATLAB™. In order to

obtain a signal with normally distributed amplitude, the value of a was set to 0.01. In addition, the electric current
values were bound between 0 and 2.5 A.

Stepped Increments Signal (SC)

A SC signal is one in which the amplitude is held constant for a predetermined period of time. At the end of the
period, the value of the signal is incremented to a different constant value. The purpose of the signal is to identify
the various operational zones of the MR damper. In the present work, the electric current values were held constant
for 30 seconds. Constant steps of 0.0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A were employed.

3.1.2 Displacement Pattern

As mentioned in [28], it is common to employ sine waves, step functions, or triangular waves as displacement pat-
terns for vehicle testing. While these inputs provide a basis for comparative evaluation of various designs, they do
not serve as a valid basis for studying the real ride behavior of a suspension system since surface profiles are rarely
of simple forms. In consequence, it is found that road profiles are more realistically resembled by random functions.
As discussed in [29] and [30], these random functions can be generally described by means of their frequency com-
position. According to the ISO 8606.:1995 standard, there are eight different degrees of road roughness according to
their power spectral density. Based on the work in [28], equation 3.3 describes the power spectral density of a road
profile,

Ner
s() = = (33)

Ve

where S(f) represents the power spectral density of the elevation of the surface profile, f is a frequency in Hz, C,
is the roughness coefficient of the road, w, is the number of cycles per feet, V., is a constant corresponding to the
roughness coefficient, and v, is the speed at which the vehicle is traveling,

Table 3.1 presents the values for C,. and N,, depending on the desired road profile.
Table 3.1. Roughness coefficients for power spectral density functions of road profiles. Taken from [28].

[ Description rNcr | Cr (ft2/cycles/ ft) I

Smooth runway 3.8 1.6 x 101!
Rough runway 2.1 23x10°°
Smooth highway 2.1 1.2x 106
Highway with gravel | 2.1 1.1x1073
Pasture 1.6 1.6x10°3
Plowed field 1.6 34x103

Once a roughness coefficient has been selected, according to [30] the road profile z(t) can be generated based
on a standard procedure as the sum of a series of harmonics. Equation 3.4 presents the calculation of a road profile,
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Ny
z(t) = Z v/ 28w S(f) wj cos{w;t — ;) (3.4)
j=1

where ¢; is a random phase angle normally distributed in the interval 0 - 27r; w; is a frequency within the interval
at which S(f) is defined and calculated as w; = wWmin + Aw(j — 1); the frequency increment Aw is defined as
Aw = (Wmee — Wmin)/Ny; Ny is the total number of frequency increments in the interval W, — Wiae; the term
inside the square root represents the amplitude of the harmonics; Wi and wy,q, are the minimum and maximum
frequencies at which the spectrum is defined; and ¢ represents the time.

In the present work, road profile (RP) displacement patterns were chosen for all tests. The employed roughness
coefficient was that of a smooth highway. The number of harmonics was selected as 100 with minimum and maxi-
mum frequencies of 0.2 and 20.5 Hz, respectively. The number of cycles per feet was set to 0.5 and the speed of the
vehicle was selected as 440 in/s (25 mi/h). The values were employed in order to recreate the displacement pattern
of a highway under standard conditions and contain a time-changing frequency with peak values around 6 Hz. In
order to obtain the signals, the algorithm was programmed in MATLAB™. RP signals were employed in {31] to test
passive suspension systems and in [10] to train 4NNs in order to model the behavior of an MR damper.

3.2 Experimental Setup

The selected experimental system can be divided into four parts: an MR damper, the actuators, the control sys-
tem, and the data acquisition system. An ACDelco™MR damper, part of a Delphi MagneRide™ suspension from
a Cadillac 2008, was employed. An MTS™GT controller testing system was used to control the position of the
damper. A Flextest™ data acquisition system commanded the controller and recorded the position and force of the
MR damper, as well as the electric current on the coil. A sampling frequency of 512 Hz was used. The displacement
actuator was a hydraulic servo-controlled piston of 3000 psi and displacement bandwidth of 15 Hz. The displace-
ment and electric current ranges were: 0 - 1.6 in, and 0 - 2.5 A, respectively. The damping force was measured using
an Instron load cell and the measured span was 0 - 640 1bf. The experimental setup was controlled and monitored by
a Human-Machine Interface (HMI) developed in LabView™. A block diagram of the experimental setup is shown
in Fig. 3.1.

3.3 Signal Conditioning

3.3.1 Noise Filter

The measured signals were observed to be highly permeated by noise. In order to remove the undesired noise
frequencies, a filter was designed as a second order low-pass filter with a cutoff frequency of 20 Hz. Equation 3.5
presents the transfer function for the designed filter.

1

Grpr(s) = OBrs+1)? (3.5)
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Figure. 3.1. Block diagram of the experimental setup. The designed experiments are loaded as text files to the HMJ.
The HMI converts the files and sends the patterns to the control system. Then, a voltage respective to
the desired position is sent to the actuation system, at the same time that the desired electric current
is sent to the MR damper. The position, force, and temperature measurements are sent to the data
acquisition system and are then passed to the HM/ in the appropriate format. Finally, the HMI is in
charge of formatting and saving the data.

3.3.2 Discrete Derivative

In order to compute the velocity of the MR damper, a discrete-time derivative was employed after the displacement
signal was filtered. The calculations were performed using Simulink (see appendix A).

3.4 Experimental Results

Eight sets of experimental data were obtained for the identification of MR damper models. In the selected experi-
ments, the electric current patterns were CS, ICPS, PRBS, and APRBS signals. On the other hand, RP patterns were
employed as the displacement input. Three 30 s experiments were performed for the highly varying electric current
patterns. In addition, two 600 s experiments with APRBS and /CPS electric current patterns were performed in order
to test the behavior of the MR damper as the temperature of the device increased. Finally, three 210 s experiments
were carried out employing SC electric current patterns. Various replicates of the experiments were performed and
used as validation data.

The specific patterns of the eight experiments are shown in Table 3.2, where the experiments have been la-
beled according to the patterns employed. The table specifies the utilized input patterns, the number of replicates
performed, the duration of the experiments, the maximum displacement frequency, and the displacement span.
Moreover, figures 3.2 and 3.3 show 20 and 100 second windows of the patterns employed for the first and last ex-
periments, respectively. In addition, 30 and 60 second windows present the frequency content of the experiments.
See Appendix A for a complete comparison of the experimental data sets .

3.5 Summary

A description of the design of experiments, experimental setup, and resulting data sets was presented in this chapter.
Various electric current patterns were selected in order to characterize the behavior of the MR damper. On the other
hand, displacement patterns that resembled usuval operating conditions of an automotive suspension system were
chosen. The experimental setup and process were specifically described. At the end, eight experimental data sets
were obtained in order to be used as training patterns for models of an industrial MR damper.
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Table 3.2. Experimental data sets

Experiment | Displacement | E. Current | Number of | Duration | Max. Frequency | Displacement
Name Pattern Pattern Replicates (sec) Value (Hz) Span (in)
RP-ICPS RP ICPS 11 30 55 1.04
RP-APRBS RP APRBS 11 30 45 1.08
RP-PRBS RP PRBS 11 30 42 1.17
RP-APRBS-L Long RP APRBS 3 600 4.5 1.08
RP-ICPS-L Long RP ICPS 4 600 5.5 1.02
RP1-CS RP CS 1 210 5.5 1.32
RP2-CS RP CS 1 210 4.5 1.31
RP3-CS RP CS 1 210 4.5 1.42
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Figure. 3.2. Description of experiment RP-ICPS. Displacement and electric current patterns (left). Frequency
content (right).
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Figure. 3.3. Description of experiment RP3-CS. Displacement and electric current patterns (left). Frequency content
(right).



Chapter 4

Results

An extensive comparison of MR damper models is presented. The study is motivated on the challenge that involves
the correct modeling of an MR damping system. Four models were selected among the state of the art, one from each
modeling technique presented in the previous chapter. The models were trained using eight sets of experimental data
and two error indexes were calculated. The results are presented by means of box-and-whisker diagram plots.

4.1 Error Calculation

Among the state of the art, the selected models were the ones presented in [5], [32], a black-box model structure
used in [10] and [33], and a fuzzy model that uses ANFIS as presented in [12] and [20]. The models were compared
against each other by using the Square Root of the Sum of the Squared Errors (RSSE) and the Error to Signal Ratio
(ESR) indexes. The RSSE and ESR are presented in equations 4.1 and 4.2, respectively. The RSSE presents the
square root of the sum of the errors between the predicted and experimental output forces normalized by the total
number of samples. The ESR is the ratio of the sum of squared errors and the variance of the experimental force.
This last index is equal to one if the model is trivial and zero if the model is perfect.

T
RSSE = \j :lr v (F(t) - F(t))2 @.1)
t=1
ESR = (RSSE)* 42)

A5, (Fo) - (355 FG))

The eight selected sets of experimental data discussed in the previous chapter were employed to train the struc-
tures. The models were identified using the first replicate of each experiment and cross validated with the remaining
ones. The first three models were first identified in their passive form. This is, no electric current dependency was
included. Then, the models were identified in their semi-active form. This is, the electric current was taken into ac-
count. The fuzzy-based structure was only identified in its semi-active form. At the end of the chapter, a non-linear
fuzzy structure is proposed as an alternative for modeling an MR damper.
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4.2 ARX Model

The ARX structure shown in 2.8 was modified to consider three regressors for each input variable (z(t), (), F(t))
instead of two (see equation 4.3). Using the first replicate of each experiment, the nine coefficients of the model were
identified with MATLAB™ using a nonlinear least squares algorithm. Then, the RSSE and ESR were calculated by
comparing the experimental force with the force predicted by the models. The coefficients were randomly initialized
25 times and the lowest error value was recorded. The resulting identification errors are shown in Table 4.1. The
identified coefficients for the different ARX structures can be seen in Appendix B.

Fr, = a1Fr1+a2Fy o+ a3zFi 34 agxp +asxi_1 + agT—2

+arZi + aglip_1 + Aglr_2 4.3)

Table 4.1. Identification RSSE and ESR for the passive ARX model.

| Model Training | RSSE (l6f) | ESR |

RP-ICPS 11.19 0.0146
RP-APRBS 9.87 0.0112
RP-PRBS 11.02 0.0211
RP-APRBS-L 10.47 0.0124
RP-ICPS-L 11.42 0.0152
RP1-CS 0.84 0.0002
RP2-CS 1.28 0.0002
RP3-CS 1.24 0.0002

Notice that for every ARX model identified, the RSSE and ESR lie below 12 [bf and 0.03, respectively even for
the experiments with high electric current variations. In addition, a marked improvement can be seen for the models
trained with the experiments that use constant steps of the electric current. Next, the eight identified models were
validated using the remaining replicates and experiments. The resulting RSSE and ESR values by model are depicted
in Figs. 4.1 and 4.2, respectively. The figures present a box and whisker plot with one box for each ARX model.
The boxes have lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from
each end of the boxes to show the extent of the rest of the data. Outliers are data with values beyond the ends of the
whiskers. The models are named according to the experiments with which they were trained.

From the figure, it can been seen that the models trained with the experimental data sets with constant electric
current obtained various RSSE and ESR values over 20 lbf and 0.10, respectively. On the other hand, the ARX
models identified with experiments that contain varying electric current can be observed to have less error values
overall.

In order to include the variant electric current in the model, the ARX structure was modified by adding three
regressors. Equation 4.4 shows the final structure.
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Figure. 4.1, RSSE results for the passive ARX model
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Figure. 4.2. ESR results for the passive ARX model
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As for the passive model, the modified ARX semi-active model was trained using the first replicate of each of
the eight sets of experimental data. As for the passive structure, 25 random initializations of the 12 coefficients

were performed and the lowest error was recorded. The resulting identification errors are shown in Table 4.2. The

identified coefficients for the different ARX structures can be seen in Appendix B.

It should be noted that the addition of the three electric current regressors improved only slightly the performance
of the 4RX models. To further analyze the performance, the eight identified semi-active models were cross validated

using the remaining replicates and experiments. The resulting RSSE and ESR values by model are depicted in Figs.

4.3 and 4.4, respectively.

It can be observed that the results are nearly identical to the results obtained with the passive 4RX model for the
first five models. Nonetheless, for the models trained with experiments that held the electric current constant, the

validation results were not satisfactory.
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Table 4.2. Identification RSSE and ESR for the semi-active ARX model.

| Model Training | RSSE (1bf) | ESR |

RP-ICPS 11.18 0.0145
RP-APRBS 9.86 0.0112
RP-PRBS 11.02 0.0210
RP-APRBS-L 10.46 0.0124
RP-ICPS-L 11.40 0.0152
RP1-CS 0.84 0.0002
RP2-CS 1.22 0.0002
RP3-CS 1.09 0.0001
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Figure, 4.3. RSSE results for the semi-active ARX model.
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Figure. 4.4. ESR results for the semi-active 4RX model.
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4.3 Semi-Phenomenological (S-P) Model

The model shown in equation 2.3 was identified for the first replicate of each of the eight sets of experiments
aforementioned. The identification algorithm was chosen as non-linear least squares. The five coefficients of the
model were randomly initialized 25 times and the lowest error value was recorded. The resulting identification
errors are shown in Table 4.3. Again, the identified coefficients are specified in Appendix B.

Table 4.3. Identification RSSE and ESR for the passive S-P model.

| Model Training | RSSE (Ib) | ESR |

RP-ICPS 38.35 0.1681
RP-APRBS 31.23 0.1098
RP-PRBS 44.74 0.3410
RP-APRBS-L 27.27 0.0837
RP-ICPS-L 35.95 0.1472
RP1-CS 43.18 0.2073
RP2-CS 45.16 0.2264
RP3-CS 44.79 0.2105

It can be noticed that the passive S-P model obtained high identification errors for most of the experiments. A
later cross validation was performed using all the data sets and replicates. This validation confirmed that the passive
S-P model was not able to predict the damping force in an accurate manner. Even for the models that obtained the
lowest identification errors, RSSE and ESR values of more than 50 Ibf and 0.30, respectively were observed.

In order to include the electric current into the model, each of the parameters (A, A2, Az, Vp, and Xj) was
made equal to a second order polynomial dependent on the electric current. Thus, the S-P model, now semi-active,
is represented in equation 4.5.

F(t) = (A + An2i(t) + Awi(t)?) -

. . . (Vor + Voai(t) + Vosi(t)?)
fant <(A21 + i) + AasiC)) (x(t) + Xo1 T Xozi(t) + Xoai(t)?) z(t)>>

(4.5)

) , ) (Vo + Voai(t) + Voai(t)?)
+ (As1 + As2i(t) + Assi(t)’) (:c(t) " (Xo1 + Xoz2i(t) + Xo3i(t)?) x(t)>

The structure depends on 15 coefficients that were identified for the first replicate of each of the eight sets of
experimental data. One more time, 25 random initializations of the coefficients were done and the lowest error
values were recorded. The resulting identification errors for the semi-active S-P model are shown in Table 4.4,

Contrary to the passive one, the semi-active S-P model was able to obtain lower error values for all the experi-
mental data sets. A considerable decrease in error was seen for the models trained using experiments with constant
electric current. As for the passive model, a cross validation was performed using the semi-active version. Figs. 4.5
and 4.6 present the RSSE and ESR by model, respectively.
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Table 4.4. Identification RSSE and ESR for the semi-active S-P model.

| Model Training | RSSE (Ibf) | ESR |

RP-ICPS 2647 0.0801
RP-APRBS 23.72 0.0633
RP-PRBS 22.39 0.0826
RP-APRBS-L 23.04 0.0597
RP-ICPS-L 24.55 0.0666
RP1-CS 21.65 0.0521
RP2-CS 22.96 0.0588
RP3-CS 20.98 0.0463
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Figure. 4.5, RSSE results for the semi-active S-P model.
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Figure. 4.6. ESR results for the semi-active S-P model.
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The figures show that for all the identified semi-active S-P structures, the median of the RSSE laid around 25 Ibf,
while the median for the £SR was 0.09. Thus, the addition of the electric current parameters significantly improved
the performance of the model.

4.4 Phenomenological (P) Model

The model previously shown in equation 2.1 was identified for the first replicate of each of the eight data sets using
MATLAB™ and a least squares optimization algorithm. The relationship shown in equation 4.6 was utilized as the
objective function in order to capture the dynamics of the damper.

F(t) = p1a(t) + p2F(t) + ps F(t) + paF(t)® + ps F(2)° (4.6)

The coefficients of the model were randomly initialized 25 times and the lowest error values were recorded. The
identification errors for the passive P model are shown in Table 4.5.

Table 4.5. Identification RSSE and ESR for the passive P model.

Model Training | RSSE (Ibf) | ESR |

RP-ICPS 27.06 0.0832
RP-APRBS 24.89 0.0682
RP-PRBS 22.76 0.0854
RP-APRBS-L 21.23 0.0499
RP-ICPS-L 23.06 0.0606
RPI1-CS 27.17 0.0821
RP2-CS 29.57 0.0975
RP3-CS 26.01 0.0712

It can be seen that the passive P model obtained low identification error values for all the experimental data
sets, even for the ones with highly variant electric current. A cross validation was employed to further compare the
performance of the model in different scenarios. The validation can be seen in Figs. 4.7 and 4.8. Notice that RSSE
and ESR outliers of more than 35 Ibf and 0.15 were observed for the models identified with highly variant electric
current experiments.

Afterwards, in order to make the model dependent on the electric current, each coefficient in equation 4.6 was
replaced by a second order polynomial electric current equation (see equation 4.7). This modified model was again
identified using the first replicate of each of the eight experimental data sets. The obtained identification errors are
displayed in Table. 4.6.

F(t) = (p11 + p12i(t) + p13i(t)?) &(t) + (p21 + po2i(t) + pasi(t)?) F(t)
+ (p31 + pa2i(t) + pasi(t)?) F(t) + (pa1 + pa2i(t) + pasi(t)?) F(t)®
+ (ps1 + ps2i(t) + psai(t)?) F(t)° “.7)
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Figure. 4.7. RSSE results for the passive P model.
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It is important to mention that the semi-active P model outperformed the passive one for all the experiments
when comparing the identification errors, except for experiment RP-ICPS-L. For this last one, the RSSE increased

Figure. 4.8. ESR results for the passive P model.

Table 4.6. Identification RSSE and ESR for the semi-active P model.

Model Training | RSSE (Ibf) | ESR |

RP-ICPS 25.08 0.0713
RP-APRBS 22.60 0.0564
RP-PRBS 18.62 0.0576
RP-APRBS-L 22.29 0.0560
RP-ICPS-L 25.59 0.0749
RP1-CS 22.26 0.0551
RP2-CS 21.65 0.0522
RP3-CS 13.32 0.0187

by 2 Ibf. The cross validation performed using the semi-active P model is shown in Figs. 4.9 and 4.10.

Notice that, even when the semi-active P model obtained low identification errors for most experimental data

sets, the validation results do not show a significant improvement with respect to the passive model.
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Figure. 4.9. RSSE results for the semi-active P model.
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Figure. 4.10. ESR results for the semi-active P model.

4.5 Fuzzy-Based Model

A TSK fuzzy-based model that used ANFIS was analyzed for modeling the MR damper. Displacement, velocity, and
electric current were used as inputs, and the damper force was the output. The model resembled the one in Fig. 2.6,
but contained 27 fuzzy rules for all possible combinations of inputs. Three Gaussian membership functions were
utilized for each input and the outputs of the system were selected as 27 linear functions.

One fuzzy-based model was trained using the first replicate of each set of experimental data after being normal-
ized. A hybrid learning algorithm was selected to train the structure by means of the ANFIS toolbox in MATLAB™.,
The training was performed 50 times or until the error decreased by less than a threshold. After the training, the
RSSE and ESR were calculated in Simulink as specified in Appendix C. The identification errors are shown in Table
4.7.

Notice that the fuzzy-based model obtained low identification errors when trained with all the experimental data
sets, especially for the ones with constant electric current patterns. A cross validation was performed using the rest
of the experimental data sets to further analyze the structure . Figs. 4.11 and 4.12 present the obtained RSSE and
ESR values by model, respectively.

It can be seen that the models trained using experimental data with constant electric current steps outperformed
those trained with highly variant electric current by far.
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Model Training | RSSE (1bf) | ESR |

Table 4.7. Identification RSSE and ESR for the fuzzy-based model.

RP-ICPS 26.27 0.0729
RP-APRBS 23.43 0.0565
RP-PRBS 22.64 0.0781
RP-APRBS-L 24.50 0.0645
RP-ICPS-L 25.43 0.0718
RP1-CS 21.69 0.0523
RP2-CS 22,07 0.0543
RP3-CS 20.68 0.0450
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Figure. 4.11. RSSE results for the fuzzy-based model.
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Figure. 4,12, ESR results for the fuzzy-based model.
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4.6 Non-Linear Fuzzy-Based Model

A non-linear fuzzy-based model is proposed in the present work in order to model the behavior of an MR damper.
The structure can be regarded as a fuzzy-based method to introduce the dependency on the electric current to a
non-linear model of an MR damper. The model uses the electric current as input, and the fuzzy rules are defined as
specified in equation 4.8.

If i(t)is Mp; then fi(t) = g;(=(t),z(t)) (4.8)

Notice that each output function f;(t) depends on the displacement and the velocity of the MR damper. Mg ; are
fuzzy sets of i(t). The output functions for the model were selected to be of the form of the semi-phenomenological
model of the MR damper presented in [2] and shown again in equation 4.9,

[i(t) = dyj tanh (d2; (£(¢) + ds; z(t)))

' 4.9
+dy; (Z(t) + ds; z(t))
where the coefficients dy ;, d2;, ds;, and dy; are to be determined from experimental data.
The overall output force of the damper was selected to be computed as specified by equation 4.10,
7 .
., Wr;i(i(t)) f;(t
F(t) = Z]—l F;i(i(t)) £5(t) (4.10)

i1 Wrs(i(t))

where W; represents the membership degree of i(t) on each of the membership functions. Fig. 4.13 depicts the
proposed non-linear fuzzy-based structure.

Figure. 4.13. Non-linear fuzzy-based model.

As equation 4.9 only depends on the displacement and velocity of the damper, the experimental data sets where
the electric current was employed as constant step increments were selected as identification sets. Each experimental
data set (RCI-CS, RC2-CS, and RC3-CS) was broken into seven subsets, each corresponding to a time span with
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constant electric current values. Then, coefficients were identified using non-linear least squares and yielded one
non-linear equation for each of the seven electric current stepped increments on the experiments. In this manner,
one non-linear fuzzy-based model with seven output functions was obtained from experiment RCI-CS, one from

experiment RC2-CS, and one from experiment RC3-CS. The fuzzy-based models were labeled according to the
experiments with which they were trained.

The input membership functions for each model were defined as seven Gaussian functions with variance equal
to 0.2 and means of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A, respectively. Additionally, seven output functions were
selected in the form of equation 4.9 with coefficients previously identified (see Appendix B).

Once the three structures were trained, a cross validation was performed using the eight sets of experimental
data. Figs. 4.14 and 4.15 present the resulting RSSE and ESR by model, respectively. Notice that the models trained
with the three experimental data sets obtained validation errors with medians below 29 lbf and 0.1. The details of
the calculations for the proposed structure can be seen in Appendix D.
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Figure. 4.14, RSSE results for the non-linear fuzzy model.
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Figure. 4.15. ESR results for the non-linear fuzzy model.

4.7 Summary

This chapter presented an extensive comparison of four models for MR dampers. The models were trained using
eight different sets of experimental data and the RSSE and ESR were computed. Box plots were utilized in order
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to compare the performance of the structures under different input patterns. At the end of the chapter, a non-linear
fuzzy-based model was proposed, identified, and tested.



Chapter 5

Analysis and Comparison of Results

An analysis of the identification results for MR damper models is presented. The models that obtained the lowest
average validation errors were selected and then further compared by means of force-time and force-velocity plots.
Experiment RP-APRBS was employed to test the models in the time domain, due to its variant electric current
content. Experiment RP1-SC was employed to test the models in the force-velocity behavior, due to its constant
electric current increments.

5.1 Best Models

The average RSSE and ESR values were calculated for each of the models presented in the previous chapter. The
errors are shown in Tables 5.1 and 5.2 by model and divided according to the experimental data set with which they
were identified.

Table 5.1. Average RSSE (Ibf) by model and experimental data set.

Model/Exp. RP- RP- RP- RP- RP- RP1- | RP2- | RP3-
ICPS | APRBS | PRBS | APRBS-L | ICPS-L | CS CS CS
Passive ARX 10.99 | 11.06 10.99 11.11 1098 ! 20.98 | 15.18 | 18.36
Semi-Active ARX | 1099 | 11.06 10.98 11.13 10.98 | 24.21 | 37.51 | 41.32
Passive S-P 4045 | 41.16 | 44.49 41.32 40.23 | 39.86 | 40.20 | 39.92
Semi-Active S-P 25.10 | 2545 25.27 24.75 24.56 | 25.40 | 25.66 | 25.15
Passive P 26.50 | 28.93 29.11 32.66 2696 | 27.57 | 28.79 | 28.30
Semi-Active P 2396 | 24832 34.15 24.82 36.07 | 45.66 | 35.66 | 29.50
Fuzzy-Based 36.12 | 3855 38.19 40.11 37.96 | 25.94 | 26.32 | 26.12
N-L Fuzzy-Based - - - - - 28.41 | 28.21 | 27.82

[t can be noticed from the tables that the ESR values are almost proportional to the RSSE ones for all the models.

38
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Table 5.2. Average ESR by model and experimental data set.

Model/Exp. RP- RP- RP- RP- RP- RP1- | RP2- | RP3-
ICPS | APRBS | PRBS | APRBS-L | ICPS-L CS CS CS
Passive ARX 0.0164 | 0.0167 | 0.0163 0.0168 0.0164 | 0.0592 | 0.0314 | 0.0456
Semi-Active ARX | 0.0164 | 0.0167 | 0.0163 0.0169 0.0163 | 0.0841 | 0.2104 | 0.2525
Passive S-P 0.2279 | . 0.2378 | 0.2574 0.2400 02252 | 0.2161 | 0.2196 | 0.2169
Semi-Active S-P 0.0813 | 0.0838 | 0.0807 0.0786 0.0771 | 0.0816 | 0.0840 | 0.0803
Passive P 0.0875 { 0.1046 | 0.1029 0.1337 0.0911 | 0.0941 | 0.1029 | 0.0996
Semi-Active P 0.0723 | 0.0782 | 0.1603 0.0764 0.1815 | 0.3051 | 0.1827 | 0.1145
Fuzzy-Based 0.1655 | 0.1956 | 0.1607 0.2148 0.1736 | 0.0864 | 0.0879 | 0.0875
N-L Fuzzy-Based - - - - - 0.1035 | 0.1024 | 0.0993

51.1 ARX Model

The ARX model obtained the lowest validation errors when trained with experiments with highly variant electric
current patterns. The inclusion of regressors for the electric current was not seen to improve the results. In fact,
when the model was trained with experimental data sets that employed constant increments of the electric current,
the errors were observed to significantly increase for the semi-active version. This phenomenon confirmed that the
ARX structure depends greatly on the damping force regressors and not on the electric current ones. Moreover, the
addition of three electric current regressors only complicated the identification process. Based on the average error
calculations, the semi-active ARX model trained with experiment RP-ICPS-L was selected as the best one among
the ARX structures, with RSSE and ESR values of 10.9766 [bf and 0.0163, respectively.

Fig. 5.1 presents a two second window that compares the experimental force and the force estimated by the
model. Fig. 5.2 compares the force-velocity behavior of the experimental and estimated damper force at six differ-
ent constant electric current values. The experimental data was taken from experiments RP-4PRBS and RPI-CS,
respectively.
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Figure. 5.1. Experimental and estimated damper force by the selected ARX model. Experimental data taken from
experiment RP-APRBS.

It can be noticed from the time comparison plot that the ARX model very accurately matches the experimental
force, with only slight differences at the lower peaks. The force-velocity plots reveal that at the lower electric current
values, the ARX structure struggles to model the non-linearities of the MR damper. As the electric current increases,
the ARX model starts to almost perfectly model the behavior of the damper. If analyzed in detail, a minor shift can
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Figure. 5.2. Experimental and estimated F-v behavior of the selected ARX model. Each of the figures presents the
behavior at a constant value of the electric current using the data from experiment RP1-CS.
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be noticed between the experimental and predicted forces. This shift may be due to the fact that the ARX structure
is highly dependent on the previous values of the damping force. Moreover, the model may be merely expecting for
the future value of the force to be equal to the previous one and hence the observed shift.

5.1.2 S-P Model

It was observed that the S-P model performed uniformly for all the experimental data sets. The inclusion of the
electric current to the model significantly diminished the RSSE and ESR values by approximately 15 [bf and 0.15,
respectively. Nonetheless, this inclusion of the electric current incremented considerably the number of parameters.
Based on the average error calculations, the semi-active S-P model trained with experiment RP-ICPS-L was selected
as the best S-P model, with RSSE and ESR values of 24.5619 [bf and 0.0771, respectively.

Fig. 5.3 presents a two second window that compares the experimental force and the force estimated by the
model. Fig. 5.4 compares the force-velocity behavior for the experimental and estimated damper force at six
different constant electric current values. Once again, the experimental data was taken from experiments RP-APRBS
and RPI-CS, respectively.

Time (sec)

Figure. 5.3. Experimental and estimated damper force by the selected S-P model. Experimental data taken from
experiment RP-APRBS.

It can be seen from the force-time plot that the S-P model follows the pattern of the experimental force with
a minor lead time. On the other hand, the force-velocity plots confirm that the S-P model correctly follows the
non-linearities of the MR damper, but overly exaggerates the width of the hysteresis loop. As for the ARX one, the
S-P model seems to improve its performance as the electric current is increased, but never reaches an acceptable
performance.

5.1.3 P Model

The P model was observed to perform almost constantly for all the experimental data sets. The addition of the elec-
tric current to the model was not seen to significantly improve its performance. Moreover, the RSSE and ESR values
were seen to significantly increase for five experimental data sets when the semi-active P model was employed. As
for the ARX model, this phenomenon is due to the fact that the model places greater importance on the force inputs
than on the electric current. Based on the average error calculations, the P model trained with the RP-ICPS data set
was selected as the best P model, with RSSE and ESR values of 23.9550 [bf and 0.0723, respectively.
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Figure, 5.4, Experimental and estimated F-v behavior of the selected S-P model. Each of the figures presents the
behavior at a constant value of the electric current using the data from experiment RPI-CS.
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Fig. 5.5 presents a two second window that compares the experimental force and the force estimated by the

model. Fig. 5.6 compares the force-velocity behavior for the experimental and estimated damper force at six
different constant electric current values.
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Figure. 5.5. Experimental and estimated damper force by the selected P model. Experimental data taken from
experiment RP-APRBS.

It can be noticed from the force-time plot that the P model follows the experimental damping force with slight
variations. On the other hand, the force-velocity plots depict that the P model is not able to closely resemble the
non-linearities of the MR damper. For all electric current values, the models appears rigid and struggles at the
extreme velocity values. Contrary to other models, the P structure was not seen to improve as the electric current
increased.

5.1.4 Fuzzy-Based Model

The fuzzy-based model identified using ANFIS showed considerably lower error values when trained using experi-
mental data sets with constant steps of the electric current. When those experiments were employed, the RSSE and
ESR were observed to drop by more than 10 [bf and 0.08, respectively. Based on the average error calculations, the
fuzzy-based model identified with experiment RPI-CS was selected as the best fuzzy-based structure, with RSSE
and ESR values of 25.9376 Ibf and 0.0864, respectively.

Fig. 5.7 presents a two second window that compares the experimental force and the force estimated by the
model. Fig. 5.8 compares the force-velocity behavior for the experimental and estimated damper force at six
different constant electric current values.

It can be observed from the force-time figure that the fuzzy-based model follows the experimental force with
lead time. Additionally, at instants the predicted force seems to be affected by noise, which may be due to the form
in which the various membership functions of the model interact. From the force-velocity plots, it is noted that while
the fuzzy-based model correctly mimics the non-linearities of the MR damper, the hysteresis loop is exaggerated for
all electric current values.

5.1.5 Non-Linear Fuzzy-Based Model

The proposed non-linear fuzzy-based model was observed to obtain almost constant error values for the three ex-
perimental data sets with which it was trained. Based on the average error calculations, the non-linear fuzzy-based



44

1007 1507
80
100
60
40 50
w o
2 20 £
@ ® 0
Z 0 g
= =
-20 -50:
-40
=100
-60
—BG L . i L - L L 1 i " J
-6 -4 -2 0 . 2 1596 -4 -2 0 2 4 8
Velocity (in/s) Velocity (in/s)
(a) 0.0A (b) 04A
2007 2507
200
150
150
100 100
Z s g %
g g O
s 0 S
= m —50
-50 =100
-150
-100 .
200
-1 . . . . . , - . X ,
596 -4 = 0 2 4 6 8 2596 -4 - 0 2 4 6 8
Velocity (in/s) Velocity (in/s)
(c) 0.8A @12A
300 400
200
100

Force (Ibf)

~100
~200
-3096 "y 2 4 ) 8 -4096 -4 -2 6 8

0 2 0 2
Velocity (in/s) Velocity (in/s)

(e) 2.1 A ) 25A

Figure. 5.6. Experimental and estimated F-v behavior of the selected P model. Each of the figures presents the

behavior at a constant value of the electric current using the data from experiment RP/-CS.
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Figure. 5.7. Experimental and estimated damper force by the selected fuzzy-based model. Experimental data taken
from experiment RP-APRBS.

structure trained with experiment RP3-CS was selected as the best structure, with RSSE and ESR values of 27.8199
Ibf and 0.0993, respectively.

Fig. 5.9 presents a two second window that compares the experimental force and the force estimated by the
model. Fig. 5.10 compares the force-velocity behavior for the experimental and estimated damper force at six
different constant electric current values.

It can be noted from the force-time figure that the proposed non-linear fuzzy-based model acceptably follows
the experimental force. Nonetheless, minor noise is observed at at certain moments, which may be produced by the
shifting dynamics of membership functions. The force-velocity plots confirm that the non-linear fuzzy-based model
accurately follows the non-linear behavior of the MR damper. Nevertheless, the hysteresis loops can be observed to
be slightly wide in comparison to the experimental force. Moreover, as the electric current increases the proposed
structure is seen to improve its performance.

5.2 Discussion

After selecting the best models based on the average error values, the force-time and force-velocity plots greatly
allowed for a more in depth comparison of the results. Overall, the ARX structure was seen to outperform the other
structures and closely mimic the dynamics of the MR damper. The best ARX model obtained RSSE and ESR values
that were 10 [bf and 0.06 lower than those of the other models, respectively. Nonetheless, with 12 parameters and a
high dependency on past values of the damping force, the model may not be adequate for an implementation where
the experimental force is not being measured. As it was noted, if the initial conditions were not set properly, the ARX
model would not predict correctly the damping force during the first sampling periods. In addition, it was proven
that as the experimental sampling period increased, the RSSE and ESR values for the ARX model also increased.
This confirmed that the great performance of the structure is highly based on the damping force regressors. On the
other hand, the use of the model for the design of controllers may not be practical.

It took 15 parameters for the S-P model to obtain low RSSE and ESR values. Nevertheless, as it was observed
in the force-velocity plots, the model could not accurately predict the non-linear and hysteretic behavior of the MR
damper. This performance may be in part due to the restrictive way in which the electric current dependency was
introduced to the model, as linear functions. Performance aside, the 15 parameters, along with the tanh function
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Figure, 5.8. Experimental and estimated F-v behavior of the selected fuzzy-based model. Each of the figures
presents the behavior at a constant value of the electric current using the data from experiment RP/-CS.
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Figure. 5.9. Experimental and estimated damper force by the selected non-linear fuzzy-based model. Experimental
data taken from experiment RP-APRBS.

on the $-P model, make it impractical for online implementation. On the controller design side, the model may be
promising for the synthesis of non-linear control strategies.

The analyzed P model was observed to have acceptable average RSSE and ESR values. Nevertheless, the force-
velocity plots revealed that the model is too rigid when it comes to modeling the non-linearities of the MR damping
system. Moreover, the 15 parameters and high complexity of the P structure make it greatly impractical for online
implementation. When it comes to designing controllers, the third and fifth powers of the damping force on which
the P model depends, make it hard to utilize even for space-state strategies.

The fuzzy-based model trained with ANFIS obtained average RSSE and ESR values comparable to those obtained
by other structures. However, the force-velocity plots showed that the model struggled to resemble the hysteretic
behavior of the MR damper. On the other hand, the fuzzy-based structure may be well suited for online imple-
mentation, as it can be regarded as 27 if statements and simple sums. In regard to the potential for the design of
controllers, the fuzzy-based model may be utilized to design linear control strategies based on the output functions
of the structure. These controllers may be combined according to the membership functions of the model.

Finally, the proposed non-linear fuzzy based model was observed to obtain RSSE and ESR values slightly higher
than to those of the S-P and fuzzy-based models. Nonetheless, the force-velocity plots allowed to see that the model
very closely mimics the non-linear and hysteretic behavior of the MR damper. When it comes to implementation,
the non-linear fuzzy-based structure consists of simple if statements, and the only consideration may be the tanh
function of the seven output equations. As for the fuzzy-based model trained with ANFIS, the proposed model may
be employed to design individual control strategies based on the output functions of the structure. In addition, if
the model was trained using more closely spaced steps of the electric current, the performance may see a significant
improvement.

5.3 Summary

This chapter presented an analysis of the modeling results. First, the best MR damper models were selected ac-
cording to the average RSSE and ESR values. Then, each of the selected models was analyzed in detail by mean of
force-time and force-velocity plots. At the end, the overall performance of the models, as well as their suitability
for online implementation and control, was discussed.
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Figure. 5.10. Experimental and estimated F-v behavior of the selected non-linear fuzzy-based model. Each of the

figures presents the behavior at a constant value of the electric current using the data from experiment
RPI-CS.



Chapter 6

Conclusions

6.1 Final Conclusions

The present research work was aimed to answer the question of what type of model of an MR can accurately predict
the highly non-linear and hysteretic behavior of the system and be suitable for online implementation of a control
system. In order to obtain an answer, a literature review allowed for an in depth investigation of current models
and modeling techniques. Out of the state of the art, 16 models of an MR damper were reviewed and four models
were selected according to their reported performance and overall complexity. Each of the four models was selected
from a specific modeling approach: phenomenological, semi-phenomenological, black-box, and fuzzy-based. Eight
experiments were designed to test the models and experimental data was obtained from an industrial MR damper.
The experimental data sets were selected in order to emulate the dynamics of a damper for automotive applications.
From there, an extensive comparison and analysis of the four selected models was done. Each model was trained
separately with the eight experimental data sets, and their performances were measured by means of the RSSE
and ESR indexes. Based on the obtained results, a new model for an MR damper was proposed, which employed
fuzzy-based methods in order to include the electric current dependency into a semi-phenomenological function.
The models that obtained the lowest average validation errors were selected and then further compared by means of
force-time and force-velocity plots.

It was proven from the analysis of the results that there are models for an MR damper that can precisely describe
its behavior. An ARX black-box structure that depended on the displacement, velocity, electric current, and old
values of the damping force was seen to accurately mimic the non-linear and hysteretic behavior of the MR damper.
Phenomenological, semi-phenomenological, and fuzzy-based models were observed to be able to resemble the non-
linearities of the MR damper, but struggled greatly to predict the hysteresis loops. On the other hand, the proposed
non-linear fuzzy-based model was observed to acceptably follow the hysteretic behavior of the MR damper and
accurately predict its non-linearities.

Concerning the modeling techniques, black-box modeling was noticed to outperform all the other analyzed
techniques. Nonetheless, black-box models had to include old values of the damping force in order to succeed. This
fact made the developed structures not optimal for online implementation when the damping force was not directly
measured. For the phenomenological technique, its high complexity and poor performance were seen as reasons for
which the analyzed structures were not suitable for online implementation. The semi-phenomenological approach
was observed to produce acceptable models. Nevertheless, these models required a high number of parameters and
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complex mathematical functions in order to correctly predict the damping force. On the other hand, linear fuzzy-
based modeling techniques were observed to be highly suitable for online implementation, as they were comprised of
simple if statements and linear output functions. Finally, when fuzzy-based and semi-phenomenological techniques
were combined, the resulting non-linear structure was seen as viable for online implementation. The only drawback
was identified on the non-linear form of its output functions,

Regarding experimental input patterns, a marked difference was seen for the ARX and fuzzy-based structures.
For the first, the experimental data sets with highly variant electric current were seen to facilitate the identification of
the structures. When these patterns were employed, the average RSSE and ESR values were significantly lower than
those obtained with other training patterns. On the other hand, fuzzy-based structures saw a considerable improve-
ment when trained with experimental data sets with stepped increments of the electric current. Said experimental
data sets permitted the fuzzy-based model to identify the various operational zones of the MR damper. Concern-
ing training patterns, no significant difference was observed for the phenomenological and semi-phenomenological
models.

The proposed non-linear fuzzy-based model was seen as the model with best compromise between modeling
precision and ease of implementation. Individual non-linear controllers may be developed according to the selected
output functions of the structure. Moreover, the proposed structure may be improved by employing more closely
spaced steps of the electric current. In this manner, more non-linear output functions would allow the model to
characterize the behavior of the MR damper on a greater number of operational zones. In general terms, the research
results are greatly applicable to the automotive industry, where better comfort and handling control systems can be
developed based on the analyzed models of MR dampers. In addition, based on the results, experimental patterns
may be designed according to a desired modeling technique.

6.2 Future Work

Along the same line of investigation, the following specific areas could be studied:

o Other modeling techniques, such as Linear Parameter-Varying (LPV) systems, may be explored for better
characterization of the behavior of an MR damper.

e Different methods of introducing the electric current dependency to phenomenological and semi-phenomenological
models may be explored. These methods may include complex mathematical representations or other fuzzy-
based techniques.

e Various output functions may be tested for the proposed non-linear fuzzy-based model. These functions may
include MR damper models that work correctly under constant electric current inputs.

¢ MR damper controllers may be developed based on the results obtained for the fuzzy-based and non-linear
fuzzy-based models. These controllers could be individually designed according to output functions and
combined by employing fuzzy sets.
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Appendix A

Experiments

A.1 Experimental Setup

A.l.1 Experimental System

The employed experimental system consisted of three main blocks: actuation, control, and data acquisition. An
HMI was created to interact with the control and acquisition systems. The acquisition system captured six signals
from the experiment: the displacement; the generated force; the commanded reference from the MR damper piston
position control system; a voltage, from the electric current driver, proportional to the electric current through the
coil of the MR damper; the temperature of the case of the damper; and the room temperature.

A.1.2 Actuation System

The actuation system installed on the laboratory was an MTSTM system that included: an actuator of 3000 psi with a
15 Hz bandwidth, the controller hardware unit Flextest GT, the software Station ManagerT™ and the MuitiPurpose
TestWareT™ . The controller hardware unit was operated through the MTSTM Station Manager™ which was
located on a control room. The computer and controller were communicated via a 100 Mb/sec ethernet connection.

The Station Manager™ and the MultiPurpose TestWareT™ softwares were utilized before the experimentation
in order to calibrate the signal levels. During the experimentation, the main tasks of the Station Manager™™
software were the MTSTM hardware startup and the monitoring of the generated force and displacement.

The hardware components of the position control system were: an actuator, a 3,000 psi hydraulic pump, a load
control unit, a servovalve, a hydraulic manifold, a work station, a load cell, a linear variable differential transformer
(LVDT), and various signal conditioners. The actuator was a hydraulic InstronT™ piston, double action, controlled
by the servovalve. The load capacity of the system was 5620 Ibf at 3000 psi, with a maximum stroke of 6 in.

A.1.3 Control System

The employed control system was based on two slave controllers: the position controller (M TSTM system) and the
electric current driver with a proportional integral control. Then, a supervisory system was in charge of commanding
the slave controllers.
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The supervisory system consisted of an HMI programmed in LabView™™ . The HMI would read the desired
displacement and electric current values from a file with the extension .txt. Then, the information was sent to a
National Instruments™ (NI) analog output card. The Flextest GTT™ and the electric current driver High Country
TekT™ were commanded via two analog outputs. The commanding signals were utilized in voltage units. The
number of replicates were specified on the #MI before each of the experimental tests. During each experiment, the
HMI displayed the displacement and electric current commanded to the controllers.

The displacement control was done by the MTSTM Flextest GTTM controller. The Flextest GTTM was set to
receive an external set point, which defined the position of the MR damper piston. The span of the position command
was set to £0.25 V, which was equivalent to £0.3 in. The electric current control adjusted the electric current in the
coil of the MR damper according to the received voltage signal. The span of the electric current was set from 0 to 9
V, which were linearly proportional to 0 and 2.5 A.

A.1.4 Data Acquisition System

The employed data acquisition system consisted of a HMI programmed in LabView ™, two signal conditioner
circuits, one analog input N/ card, and one thermocouple N/ card. The captured information was visualized in real
time on the HM]. The measured information was recorded in a file with a .zxt extension with a sampling frequency
of 512 Hz. The order of the columns in the files was: sampling time stamp, piston displacement, generated force,
electric current on the coil, environment laboratory temperature, damper case temperature, and the position set point
commanded to the Flextest GTTM

The displacement measurement was done via an LVDT. The LVDT was located over the actuator piston and
served as feedback to the position controller. An InstronT™ load cell delivered the generated force in voltage units.
A peak detector converted the LVDT signal into a corresponding voltage. The electric current measurement was
done via a 1 Q resistor in series with the coil of the MR damper. The voltage from the resistor was conditioned by
means of an industrial instrumentation amplifier. Finally, two type J thermocouples provided the damper case and
laboratory room temperatures.

A.2 Experimental Data Sets

Figures A.1 - A.6 show 20 and 100 second windows of the patterns employed for the experiments that complement
the ones described in the report. In addition, 30 and 60 second windows present the frequency content of the
experiments.
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A.3 Discrete Derivative

In order to compute de velocity of the MR damper, a discrete derivative was employed. Fig. A.7 presents the
calculation of the velocity of the MR damper using Simulink.
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Appendix B

Identified Coefficients

The coefficients for the passive and semi-active ARX, S-P, and P models were calculated using the Optimization
Toolbox from MATLAB™., The selected identification function was Isqcurvefir. The full identification process is
specified in the block diagram of Fig. B.1.

Initialize Randomly Fit
ESR and Initialize —» Coefficients
counterto 1 Coefficients to Model
Experimental | .mat file
Database
MATLAB Increment
Calculate
Interface counter FoR
Coefficients | Yes
Database .mat files
Is new ESR
No lower than

past ESR

Save
Coefficients

Figure. B.1. Identification of the coefficients for the models. The experimental data is loaded from a file into
MATLAB™ . Then, the identification algorithm begins. Once the identification has been done 25 times,
the coefficients with which the model obtained the lowest ESR are recorded. Finally, the coefficients
are saved to a .mat file.

B.1 ARX Model

For the ARX structure, the three regressors of the damping force required the experimental data to be utilized from
the fourth sampling interval. Table B.1 shows the identified coefficients for the passive ARX model.

* In order to include the semi-active action to the model, three regressors of the electric current were added to the
structure. Tables B.2 and B.2 show the identified coefficients for the semi-active ARX model.
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Table B.1. Identified coefficients for the passive ARX model.

Model | ap | as | as I ay as ag T ar l as | ag ]

RP-ICPS 1.308 | -0.543 | 0.198 | 38.484 -0.447 -49.072 8.956 -4.039 | -3.938
RP-APRBS | 1.335 | -0.625 | 0.253 | 34.932 4319 -52.095 7.987 -2.939 | -4.030
RP-PRBS 1.261 | -0.401 { 0.108 | 25.777 2.602 -35.203 7.811 -5430 | -1.788
RP-APRBS-L | 1.238 | -0.501 | 0.196 | 91.372 -4.248 -98.815 | 15.834 | -3.737 | -10.159
RP-ICPS-L 1.199 | -0.366 | 0.118 | 67.708 -3.602 -74.215 | 12371 | -3.587 | -7.504
RP1-CS 1.965 | -1.111 | 0.144 | 508.236 | -464.142 | -44.018 | -83.719 | 159.628 | -77.020
RP2-CS 2.182 | -1.466 | 0.283 | -58.581 42.815 14.460 | -0.142 1.271 -0.998
RP3-CS 2.160 | -1.461 | 0.299 | -306.676 | 851.727 | -545.478 | -13.986 | 26.319 | -12.804

Table B.2. Identified coefficients for the semi-active ARX model.

L Model [ ai I ag 1 as T a4 r as ag I ar I ag | dg |
RP-ICPS 1.308 | -0.542 | 0.197 | 38.632 0.784 -50.360 9.028 -3.971 -4.079
RP-APRBS 1.333 | -0.620 | 0.250 | 35.256 4.891 -52.948 7.995 -2.847 | -4.123

RP-PRBS 1.260 | -0.399 | 0.106 | 26.065 3.503 -36.247 7.962 -5.398 | -1.973
RP-APRBS-L | 1.236 | -0.497 | 0.194 | 90.876 -3.479 -99.061 | 15.764 | -3.650 [ -10.187
RP-ICPS-L | 1.198 | -0.365 | 0.117 | 67.767 -2.459 -75.441 | 12450 | -3.520 | -7.627
RP1-CS 1.978 | -1.129 | 0.148 | -154.514 | 936.415 | -781.942 | -86.508 | 164.171 | -78.931
RP2-CS 2.201 | -1.521 | 0.317 | -285.952 | 689.071 | -403.801 | -0.861 1.429 -0.771
RP3-CS 2.248 | -1.639 | 0.389 | 679.039 | -1037.871 | 358.646 | -18.202 | 31.743 | -14.151

Table B.3. Identified coefficients for the semi-active ARX model continued.
‘— Model ayg aiy I aiz }

RP-ICPS -7.187 17.996 -10.832
RP-APRBS | -13.694 26.577 -12.827
RP-PRBS -2.930 7.580 -4.665
RP-APRBS-L | -18.968 30.806 -11.821
RP-ICPS-L -6.254 14.783 -8.397
RP1-CS 241.241 | -497.047 | 255.806
RP2-CS 265.862 | -805.376 | 539.518
RP3-CS 533.283 | -1058.675 | 525.392
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B.2 S-P Model

Following the procedure described in Fig. B.1, the coefficients for the passive S-P model were obtained. Table B.4
shows the identified coefficients for the passive S-P model.

Table B.4. Identified coefficients for the passive S-P model.

Model A [ A ] A ] A As

RP-ICPS 88.202 | 11.979 | 0.536 | 3552.743 | -902.233
RP-APRBS | 120.052 | 9.870 | 0.355 { -2530.261 | 619.071
RP-PRBS 107.343 | -1.821 | 0.401 | -2883.556 | 695.050
RP-APRBS-L | 142.550 | 5.803 | 0.334 | -998.157 | 250.701
RP-ICPS-L | 132.229 | 5.491 | 0.343 | -317.049 | 81.463
RP1-CS 46.273 | 18.442 | 0.832 | -1921.658 | 507.945
RP2-CS 191.281 | -2.534 | 0.229 | 1226.437 | -344.231
RP3-CS 77.860 | 12.458 | 0.435 | 2591.915 | -657.758

In order to include the electric current into the model, each of the coefficients was made equal to a second order
polynomial dependent on the electric current. This resulted in 15 coeflicients for the semi-active S-P model. Tables
B.5 and B.6 show the identified coefficients for the semi-active S-P model.

Table B.5. Identified coefficients for the semi-active S-P model.
r Model | Ay | A Az | An | Az | Az J Az | As | Ass |

RP-ICPS 37.988 | 123.952 | -36.383 | 1.599 | -3.412 | 4.943 | 0.735 | -0.450 | 0.131
RP-APRBS | 42.478 | 120.899 | -17.201 | -4.189 | 3.088 | 0.532 | 0.631 | -0.347 | 0.084
RP-PRBS 17.290 | 98.788 | -34.664 | 3.206 | -2.856 | 6.968 | 1.564 | -1.529 | 0.501

RP-APRBS-L | 40.070 | 130.526 | -45.922 | -0.772 | -1.141 | 5.751 | 0.645 | -0.392 | 0.127
RP-ICPS-L | 35.103 | 118.359 | -37.528 | 0.456 | -1.703 | 5.400 | 0.634 | -0.330 | 0.091

RP1-CS 31.400 | 41.576 | -16.041 | 0.688 | 9.649 | 2.573 | 1.275 | -1.305 | 0.600

RP2-CS 38.620 | 106.225 | 78.733 | -0.132 | -8.257 | -1.976 | 0.384 | -0.187 | 0.032

RP3-CS 25.296 | 83.500 | -29.651 | 0.573 [ 4.796 | 4.021 | 0.788 | -0.542 | 0.209

B.3 P Model

The coefficients for the passive P model were obtained as described in Fig. B.1. Table B.7 shows the identified
coefficients for the passive P model.

In order to make the model dependent on the electric current, each coefficient was replaced by a second order
polynomial electric current equation. Tables B.8 and B.9 show the identified coefficients for the semi-active P
model.



Table B.6. Identified coefficients for the semi-active S-P model continued

| Model Xoo | Xoo | Xos Vo | Voo | Vs |
RP-ICPS 6768.989 | 10812.271 | 12336.201 | -2009.267 | -2418.549 | -3192.612
RP-APRBS | -19856.177 | -11012.135 | -22001.331 | 2616.040 | 11090.042 | 775.668
RP-PRBS -29880.883 | -22690.407 | 2330.089 | 7027.813 | 3583.264 | 472.563
RP-APRBS-L | 2162.089 1530.477 539.615 -425.214 | -593.572 -57.766
RP-ICPS-L -3331.536 | 3234.184 -861.446 823.845 | -800.106 | 214.594
RP1-CS -1566.455 | -5291.779 | -1747.241 | 485379 | 1075238 | 612.818
RP2-CS 64.254 1292.078 1515.348 -38.002 -242.847 | -428.805
RP3-CS 108.218 13577.953 201.927 -45.504 | -2983.101 | -207.646
Table B.7. Identified coefficients for the passive P model.
[ Moda | oo |G ] o | a0 | ¢ |
RP-ICPS 19.049 | 0.017 | -0.0003 | 2.53E-05 | -2.63E-10
RP-APRBS | 22.503 | 0.018 | -0.00024 | 2.31E-05 | -3.05E-10
RP-PRBS 13.089 | 0.014 | -0.00021 | 3.68E-05 | -4.22E-10
RP-APRBS-L | 25.043 | 0.017 | -0.00019 | 2.21E-05 | -3.38E-10
RP-ICPS-L | 21.261 | 0.017 | -0.00025 | 2.39E-05 | -2.65E-10
RP1-CS 16.395 | 0.018 | -0.00039 | 1.90E-05 | -1.48E-10
RP2-CS 14.236 | 0.020 | -0.0005 | 1.96E-05 | -1.44E-10
RP3-CS 14.903 | 0.019 | -0.0005 [ 2.00E-05 | -1.56E-10

Table B.8. Identified coefficients for the semi-active P model.

Mode | ci1 [ Cc12 | €13 [ €21 | c22 | C23 ct | e |

RP-1CPS 11.834 | 4.090 | 1.634 | 0.0120 | 0.0015 | 0.0007 | -0.0001 | -0.00016
RP-APRBS | 11.548 | 12.648 | -2.426 | 0.0161 | 0.0030 | -0.0011 | -0.00015 | -4.56E-05
RP-PRBS 8.282 | 1.055 } 3.021 | 0.0073 | 0.0094 | -0.0025 | -0.00015 } -1.88E-05
RP-APRBS-L | 9.505 | 3.519 | 1.806 | 0.0085 | 0.0056 | -0.0018 | -0.00016 | -0.00022
RP-ICPS-L 9.689 | 13.204 | -0.838 | 0.0140 | 0.0036 | -0.0011 | -0.00014 | -8.91E-05
RP1-CS 3.743 | 4212 | 8.070 | 0.0281 | -0.0127 | 0.0057 | -0.00054 | 0.000221
RP2-CS 4.687 | 3.416 | 5.055 | 0.0243 | -0.0091 | 0.0036 | -0.00041 | 2.99E-05
RP3-CS 6.604 | 15.716 | 0.148 | 0.0256 | -0.0035 | 0.0010 | -0.00031 | -4.24E-05




Identified Coefficients

Table B.9. Identified coefficients for the semi-active P model continued.

Model L c3 | cu Cc42 Cc43 Cs1 Cs2 C53 J
RP-ICPS 2.88E-05 | 7.32E-05 | -3.52E-05 | 4.75E-06 | -1.44E-09 | 7.75E-10 | -1.06E-10
RP-APRBS | -2.35E-06 | 5.76E-05 | -2.42E-05 | 3.11E-06 | -1.48E-09 | 7.17E-10 | -7.68E-11
RP-PRBS | 2.12E-05 | 0.000153 | -0.0001 | 2.05E-05 | -4.53E-09 | 3.34E-09 | -6.48E-10
RP-APRBS-L | 0.000109 | 8.61E-05 | -4.82E-05 | 9.18E-06 | -1.36E-09 | 7.00E-10 | -1.04E-10
RP-ICPS-L | 4.50E-05 | 9.48E-05 | -5.84E-05 | 1.03E-05 | -4.40E-09 | 3.55E-09 | -7.51E-10
RP1-CS -4.04E-05 | 0.000188 | -0.00014 | 2.28E-05 | -6.74E-09 | 5.53E-09 | -1.13E-09
RP2-CS 1.04E-05 | 0.000142 | -9.38E-05 | 1.51E-05 | -5.08E-09 | 4.12E-09 | -8.37E-10
RP3-CS 4.08E-05 | 2.81E-05 | -1.08E-05 | -3.26E-07 | -2.07E-09 | 1.62E-09 | -3.18E-10
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Appendix C

Fuzzy-Based Model

A fuzzy-based model was identified using the ANFIS toolbox in MATLAB™, For the eight experimental data sets,
one model was trained for 50 epochs or until de identification error decreased by less than 0.01. After the training,
a FIS file was obtained for each data set. The experimental data were first normalized by subtracting the mean and
dividing by the standard deviation. The normalizing constants were recorded for future use in the error calculations.

With each of the FIS files, the corresponding error was calculated using the Simulink diagram presented in Fig.

C.1.
[time x ] >
{ x x 5 Fest
Displacement D
f Estimated Force
E——— ANFIS MR Damper Error
Model

Velocity

L P
[timei ] [timeF ) P - Ert
Current Measured Force Add

Save Error

Figure. C.1. Fuzzy-based model validation. The displacement, velocity, and electric current are connected to
the fuzzy-based model. The model predicts the damping force, and this force is compared with the
experimental force. Finally, the estimated force and error calculations are saved.

In order to calculate the RSSE and ESR values, the resulting validation error values were denormalized using
the normalizing constants respective to each model. The following MATLAB™ code describes in detail the FIS
files obtained for the fuzzy-based models trained with the eight experimental data sets. The inputs were ordered as:
displacement, velocity, and electric current.

%MRDamperANFI1S _expRP.ICPS. F1S
[System]
Name="MRDamperANFIS_expRP--ICPS*
Type="sugeno '

Version =2.0

Numlnputs=3

NumOutputs=1

NumRules =27

AndMethod=’"prod *
OrMethod="probor *
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Fuzzy-Based Model

ImpMethod="prod *
AggMethod="sum"
DefuzzMethod=" wtaver®

{Inputl}

Name="displacement..(x)"’

Range=[ —3.07646220933282 3.42434553818148]

NumMFs=3

MF1="inlmf1 ": " gaussmf’,[1.36890460739573 —3.10651988064284]
MF2="inImf2 *: "’ gaussmf ' ,[1.39020527161337 0.129201710845673]
MF3="inImf3': " gaussmf',[1.34055648552855 3.44818226667927}

{Input2]

Name="velocity..(v)"’

Range=[ —3.80656224325263 3.32105057454475]

NumMFs=3

MF1="in2mf} *: "’ gaussmf’,[1.58499823382204 —3.73340989649714)
MF2="in2mf2°: "’ gaussmf’,[1.62165663339208 ~0.251911183353459]
MF3="in2mf3": "’ gaussmf’,[1.57163636811725 3.26353672277654]

{Input3)
Name='e¢lectric..current.. (i)’
Range=[ —1.52237296227663 1.9140554673793]

NumMFs=3
MF1="in3mf] *: "’ gaussmf’,[0.760280896727532 ~1.52187637402028]
MF2="in3mf2 *:* gaussmf’,[0.774521446528792 0.20151054545624]

MF3="in3mf3 ": ' gaussmf’,{0.546317498760088 2.04304075703716]

[Outputl}

Name="Force *

Range=[ ~3.47772985404031 3.21627620909248]

NumMFs=27

MF1="outlmfl ’: "’ linear *,{0.4640231 00928815 0.800584499096287
MF2="outlmf2':" linear *,[ - 2.0764761048272 0.921350431740111
MF3="outlmf3 ": " linear *,[2.14173055233575 —4.90224585264209 —6.55165019840417 — 5.69595446591223]
MF4="outlmf4": ’linear ',[ ~0.42536211391083]) 2.77533497507699 —0.225469799728866 0.73591597397361]
MF5="outlmf5": " linear ',[ —0.566896242439656 2.04968617779207 —0.514527774104327 0.083278957418992)
MF6="outImf6 ': " linear >, —0.000785706049594412 —3.97700403136401 1.1980576822134 —0.791744475212608]
MF7="outImf7 *: " linear ' ,[0.861288287978477 6.67448381125321 5.84062985260716 —4.04428646094623)
finear ',[2.71610605937332 —0.214636487994583 6.15636317371037 4.30600335642062]
outlmf9 ': " tinear *,[10.905500340232 —9.11165768055795 13.4315946076296 28.3201047242427]

—2.71471727958833 0.87078828133441)
—1.89132650018032 —3.54752537349722)

MFi0="outlmf}0": ' linecar
MF11="outlmfl1”: ' linear
MF12="outImf12": " linear
MF13="outImfi3":" linear
MFid4="gutImft4’: " linear
MF15="outImf15": " linear
MF16="outlmfi6":’ linear
MF17="outImf1?": ' linear
MF18="outlmfi8": ' linear
MF19="outlmf19 ": " lincar
MF20="outlmf20’: " linear
MF21="outImf21": " linear
MF22="outlmf22’: " linear
MF23="outlmf23": ' linear
MF24="outlmf24': ’ linear
MF25="outlmf25': * linear
MF26="outlmf{26"; ’ linear
MF27="out!mf27"’: ' linear

[Rules])
11,1 (1) ¢
)y
) :
)

y
)y
(1) :
iy :
oy :
oy
oy :
() :
1y :
=
) :
1) :
) :
) :
L 19D
L 20 (1) :
, 20 (1)t
, 22 (1)
, 23 (1)
.24 (1)
, 25 (1) @
,26 (1) ¢
, 27 (1) :

1
1
2
2
2
3
3
3
1
1
1
2
2
2
3
3
3
1
1
1
2
2
2
3
3
3

W W WL W WM NNRNRENNRN - = = = - oo —

*,[0.454954078373769 3.44149010304783 —1.72703236709368 9.53616528061549)
Sl —1.20816326219813 —0.412702896403016 - 0.00591047328108204 —1.13059442820757]
"J[1.13439191255124 5.69456784323474 4,29664760078491 7.25874600064211]
*,[—0.253925091306101 2,72650382246202 0.132342977099077 0.310907800554836)
*J[—0.484808059692907 1.50585503393663 0.166478400682325 0.0543734356922698]
*,[0.851917472878223 3.58050699016802 0.37433745523383 —1.24516830853921]
*,[0.43601283415099 1.84767196656029 1.13341925930485 —4.83916447723381)
".[1.20460413093026 0.666528613763943 0.144985154553262 —0.426363800597523)
*,[4.23227118582391 §.78831086448754 0.14553976246167 —~3.39358635199552]
'.[2.14782700597832 18.039932158262 —7.37051734566451 25.6316120795057)
*[—1.88861123957583 2.08057178020705 —9.40742153112397 18.6288987193072]
*16.1664792951251 —15.5660636015159 —40.1298621290279 — 1.42725605304748)
*.[—0.492228747283104 3.27138297940307 0.0579012712872881 —2.15028076534326]
[ —0.83106187015993 3.11296947523154 0.222326873050576 0.846458527687652]
7,03.38462109277454 —2.5618380070044 0.636621872417985 —11.3011294299312]
*,[0.176335555166733 0.144692429521922 —0.735536213985422 - 2.77139891873146]
°,[2.05014409362528 3.31541196912942 —0.0117238789587628 —12.834746057298]
*,[15.3333805255476 ~5.91016932697546 1.96697617106837 —21.7675229262666)
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YMRDamporANFIS.expRP.APRBS . FIS
{System]
Name="MRDamperANFIS.expRP_.APRBS *
Type="sugeno’

Version=2.0

NumlInputs=3

NumOutputs=}

NumRules=27

AndMethod="prod '
OrMethed="probor’
ImpMethod="prod "

AggMethod="sum "
DefuzzMethod="wiaver’

{laputi]

Name="inputl *

Range=[ — 3.11977176557615 3.5215050174981}

AN Y
MF1="inlmfl *: " gaussmf’,[1.43983971404427 —3.12932806301909)
MF2="inlmf2 ;" gaussmf’,[1.47820058141561 0.196627169824823]
MF3="inimf3 ': *gaussmf’,[1.56014888937955 3.43141921729424]

{input2]

Name="input2 ’

Range=[ —4.12599812765608 3.97906349835775)

NumMFs=3

MF1="in2mfl *: * gaussmf’,[1.8282117475869 -—4.06085276747947]
MF2='in2mf2 *: " gaussmf',[1.85214228419147 —0.0415869024152758)
MF3="in2mf3 *:’ gaussmf ' ,[1.78278034139502 3.98245841511505)

[Input3]

Name='input3 '

Range=[ — 2.13969686934153 2.84962693872519]

NumMFs=3

n3mfl *: " gaussmf’,[1.04422805803326 —2.1594695210299}}
n3mf2 ;" gaussmf’,[0.998784474616955 0.347339155099881)
MF3="in3mf3 ;" gaussmf',[0.974) 16886743692 2.90324498532764)

{Outputl}

Name="output ’

Range=[ —3.15048990465981 2.79948915309713]

NumMFs=27

MF1="outlmfl *: " lincar ' [ —3.14609080754551 —8.26663292865714 6.60341194767937 —23.1354080278521)
linear ' [ —0.123840893800529 1.52875388968008 4.11604522926384 1.75690176065151}
linear *,[3.29238953773353 1.9029349095295 $5.40986629224824 —1.33820287855715]
linear *,{ —0.5444621341379 — 1.30885798851467 —0.733744077403974 —0.219684525010343]
tinear ',[ —1.37074788859097 2.37393355414971 —1.65575877425715 --1.70109574296999]
linear *,[ —1.60072028014755 2.31358771690997 —4.4096183401404 7.56317503154458)
lincar ' —3.48064889693448 2.0415020442426 5.47596232607809 —2.33872198854525)
linear ' ,[1.24609366358969 3.03974593402286 4.99087754431372 —7.07971139795016)
MF9="out1mf9 near [ —13.2734219234199 4.93628344769851 9.28800076181109 —63.2467632373648)
MF10="out!mf10": " linear *,[ —4.62210226467023 2.62885140010742 —3.81841397244968 1.85494765412574)
MFll="outlmf11": " linear ’,[~0.102905187896383 0.0493283820630618 —3.38246972309652 0.0978063367081735]
MF12="outImf12": ' linear *,{}.65150701133439 0.198247244217839 —5.59290045522168 10.8036249469334)
MFi3="outlmf13": " linear *,[ —0.30244942111195 3.24922635874948 0.007373707639147 0.49638270605255}
MF14="outImf14": " [inear ",[ —0.890255165309091 1.70622217446658 §.74224662868899! 0.36433451974791)
MFi5="outimf15":" linear ' ,[ —2.61564773599254 2.52340896563666 2.85886787042512 —6.38960613274879]
MF16="outimf16": ' linear ’,[ —~4.11142915310134 2.13430267988121 4.06556173965928 —~6.88232978199353}
MF17="outlmf17": " linear *,[0.920704440311778 1.20300425685797 —0.348665887666673 —3.21094413070036)
MF18="outImf{8 ': *linear ',[ —3.398291023173) {.39188284173855 ~3.32463815117878 6.7514148089238]
MF19="outlmf19 *: " linear *,[ — 19.358034 7885022 37.2522033662086 11.1032173151037 159.482731479266]
MF20="outimf20°': *linear ',[ —0.404080240533533 2.80624525588877 3.99715061734 7.68596684686588]
MF21="outimf2] ;" lineas *,[ — 5.62085382512167 —1.96768924673728 12.925292057719 ~27.1442289649474)
MF22="outimf22": tinear *,[1.23401517708275 9.23778978346199 ~1.41502862900106 - 11.9149029776414)
MF23="out!mf23 ': " linear *,[ — 1.00724861009389 1.79329743018673 —1.37780369665483 0.975856108073192)
MF24="out1mf24°: " linear ",[ —4.41656211753792 0.912692264169717 —8.47303550350362 28.6527343773058]
MF25="outimf25": ' linecar ',[ — 9.44322019496194 5.17192937169913 —1.02696203820349 5.05865574376337}
MF26="out1mf26': ‘' linear ',[0.703656728116056 —0.373864341475067 1.099677583282 ~0.181534636232511]
MF27="outimf27": ' linear *,{0.117187057741692 2.25832016544275 10.003802958782) ~— 18.5672968177061)

{Rules]

111,01t
112,2(():1
113,3):1
121, 4) 1
V22,8 (1)
123,6 (1) :1
137, 7 (1) =1
132,88 (1) :1
133,9 (1))
211,10 (1) 2 1
202,00yt
213,12 (1) 1
221, 43 (1) &t
222,14 (1) ;1
223,15 (1)
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%MRDamperANFIS.expRP_PRBS . FIS
{System}
Name='MRDamperANFIS._expRP.PRBS *
Type="sugeno *

Version =2.0

Numlnputs=3

NumOutputs=|

NumRules =27

AndMethod="prod "’
OrMethod="probor *
ImpMethod="prod’
AggMethod="sum"
DefuzzMethod="wtaver’

(fnput)}

Name="input ’

Range=[ —3.08899881674069 4.27266398753162]

NumMFs=3

MF1="inlmf} ': " gausamf’,[1.57163487312992 —3.08622325968734]
MF2="inlmf2 ’: > gaussmf’,[1.56438802771854 0.581655449085396}
MF3="inlmf3": ' gaussm{ ',{1.58713383840115 4.25748392564793]

[Topur2)

Name='input2 ’

Range=[ —3.56221312793547 3.65135519869651]

NumMFs=3

MF1="in2mfl *:’ gaussmf’,[1.59480190420293 —3.47805496879854]
MF2="in2mf2 ': * gaussmf *,[1.65323061417955 0.0527288519016438)
MF3="in2mf} ': " gausam{ "’ ,[}.59912232362747 3.55798116275664}

[lnputd]

Name="input3 *

Range=[ - 0.842039836019602 1.88506482625885]

NumMFs=3

MFt="in3mft ": " gaussmf’ ,(0.517881147681429 —0.955684437621483)
MF2='in3mf2 ": * gaussmf " ,[0.656461203307079 0.431814237076301]
MF3="in3mf3 ": ' gaussmf’,[0.476832476358521 1.95161045404253]

[Outputl]

Name="output ’

Range=[ —4.08928856525157 3.57237566398979)

NumMFs=27

MFi="outimfl ': linear ',{ ~0.459149593222616 0.0103349587759533 —~3.6941339464557 —3.69003125562649]
MF2="outlmf2 ': " lincar ' ,{0.892463775171511 0.814123493057967 —1.6663757152562 6.06478968453631)
MF3="out!mf3": ’linear *,[4.464508)5789651 7.38857318649154 —2.24741214161923 39.900242883408]
MF4="gutlmf4 ": " linear ',( ~0.147084812432798 1.57325747656983 1.31189800017712 2.10103873088827)
MF5="outImf5 ": " linear *,[ —~ 1.6002636729019 4.34156311498157 0.612751158701448 —0.914725543348957]
MF6="outImf6": " linear .| ~ 0.895289776326591 7.66890195014895 —0.07526899483472 —0.14243838581119]
MF7="outlmf7": ' linear *,[0.23391 (538816112 4.23980253437635 8.69754682048171 —2.77777361351658]
MF8="outlmf8 *: " lincar *,[4.60429711592359 13.7790916778962 3.82141406628982 ~22.9583043725211}
MPI="gut!mf9 ": " lincar ’,[1.63843111500868 15.4057788073321 5.9083612548749 —45.8293387124856)
MF10="outlmf10’: ' linear ',[ —0.13434291837106 1.99440817888553 —5.76928333308192 1.69670428043627]
MFli="outImfl{ : linear *,[1.68432664810292 —1.01773526755709 —2.7827867964045]1 —2.5311324543842}
MF12="outimf12";: ' linear ',(11.016993840617 8.27287106377984 —4.67966781239967 33.7664790765351]
MF13="outlmfl3': " linear *,[ — 0.158727416315939 1,9851261284365] —0.204880450741457 —0.176415152326665]
MFi4="outlmfl4": " linear ' ,{ —2.35670376361328 1.1188776805)1863 0.0825334298299887 — 0.0230232820504858)
MF15="outImf15': ' linear *,( —1.4527262728624 6.77815139663204 1.48176809227898 —1.89750096123261)
MF16="outImf16': ' linear *,[ —0.0368623248816352 2.03093373473336 4.81611212352669 —2.93939069935904]
MF17="out)mf17': ' lincar ' ,[4.9476659733669 —1.657591784866 2.155)7969484213 2.84740363655221)
MFi8="outimf{I8': linear ',[ —0.25517306878742 11.9574640169524 0.919131560562099 —31.079297416671)
MF19="outlmFf19°: " linear ' ,[1.24341146368114 2.40602029884503 —8.93443841018205 —2.43704673855514]
MF20="outimf{20 ': " tinear ',[ — 16.9050612058123 22.0223561084158 —6.17322622245426 69.1252821036377)
MF21="outlmf21’:" linear *,[151.26245496037 61.1594977456149 4.92720140841521 - 160.880050104673]
MF22="outImf22': *linear ',[0.14336991839493 —0.861006539340023 - 0.0851492911619035 —2.77688275663818]
MF23="out1mf23": " linear ' ,{ —3.9732391192274 8.55206599382727 0.753172378806062 14.2665077716653]
MF24="out |24 ": " linear *,[—9.30494035998815 19.519411661535 —4.32981091554839 10.6630374346038)
MF2$="outimf25': ' linear ', —2.26367783666519 --4.6908237208472 —2.56638583994964 18.4404480458475)
MF26="out1mf26°’: ' linear *,[11.0890]175038562 12.0860020094769 —4.47648668190052 —76.0154217674246]
MF27="out!mf27': ' linear *,{6.61719165350706 2.4211938759423 0.229816605148412 —32.7849297904517)
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%MRDamperANFIS.expRP.APRBS.L . FIS
[System]
Name='MRDamperANFIS.expRP_APRBS.L”
Type="sugeno’

Version=2.0

Numinputs=3

NumOutputs=]

NumRules =27

AndMethod="prod *

OrMethod="probor *

impMethod="prod "

AggMethod =’sum’
DefuzzMethod="wtaver

[Inputl]

Name="input! *

Range=[ —2.65425169055877 3.1545115947056]

NumMFs=3

MF1="inlmfl *: " gaussmf " ,[1.24165315146706 —2.63942716569738]
MF2="inlmf2 ": " gaussmf’,[(.22327362112448 0.246473171221562]
MF3="inlmf3 ":’ gaussmf',[1.23801334273052 3.13705436064304)

[Input2]

Name="input2 ’

Range=[ —2.86296208086463 3.50373215375182}

NumMFs=3

MF1="in2mf} ": " gaussmf* ,[1.40012635228044 —2.79796532774504]
MF2="in2mf2 ': ' gaussmf ' ,[1.52952190086198 0.364525207694143]
MF3="in2mf3 ': ' gaussm{ ' [1.51406656246153 3.4236975164607)

[laput3}

Name="input3 *

Range=[ —2.53577487519009 2.77157538581688]

NumMFs=3

MFi="in3mf] *: " gaussmf',(1.20540786735098 —2.474063556331]
MF2="in3mf2": " gavssmf*,{1.11628267184873 0.129781832507806]
MF3="in3mf3 *: ' gaussm(’,[1.05687318987525 2.79954641243359]

{Outputl]

Name="output *

Range=[ —2.74459419317953 2.83015011897707}

NumMFs=27

MF1="outlmf! *: " linear *,[1.88023185150927 2.83353218226612 -2.43388960891542 5.27571258779132]
MF2="outlmf2 ': ' linear *,[0.0750668856464077 1.37900474298103 —1.86887489112555 2.78396452495606)
MF3="outlmf3 ': " linear [ ~2.20384745444829 0.162858372303207 —3.5857560117337] —0.162794938426955)
MF4="outImf4 *: *tinear ',[ —0.830588587769736 5.53661809758396 1.11196176598799 4.93530036286063]
MF5='outlmf5’: *linear ',[—1.02771115431278 2.50474039501814 1.27970651563466 —0.801501870479968]
MF6="outlmf6": " linear *,[ —0.585836196412626 —0.174910844045921 3.12300348100453 —7.21536138154119]
linear ' ,[4.32041419700886 13.8445823997959 0.529280377079838 —35.8713866214357]
linear *,[ ~0.540021536615091 5.3134190917018 —3.623R7661545074 — 12.4656578917068]
incar *,[9.24354571875253 —14.6197244913282 — [14.7551158049782 72.7207322964814]
MF10="outImfi0": tinear " [1.01651331793135 3.16967577083318 -—0.608357888292203 6.87806593252789)

MF9="outImf9 *:*

MF11="outlmf11 ": ' linear *,[ —0.0286417234842563 0.0788591108543387 —0.183581609666463 —1.37235837183178]

MF122 outImf12": *linear [ —2.69081731475296 2.99369390850922 0.365474050514646 4.28919375991759]
MFI3="outlmf13 ;' linear *,[ ~0.290854441903515 4.16408195607997 —0.561091151929515 - 1.21958760233728]
MF14="outImfl4": ' linear *,[ —0.751314886996793 1.34840936779356 —0.508334679140152 0.425810546554114]
MFi5="outImf15": " linear ' ,[0.940231045325705 2.79882047395778 —0.659611712363153 1.14484278877033]
MFi6="outtmfl6': " linear *,[0.00177788816602391 5.87268331817985 1.494(5324815094 — 14.3630817420456)]
MF{7="outimfl7": " linear ' ,[0.530460767727473 —0.155351001404136 1.11898230861697 0.639416888224718]
MF18="outlmf{8': " linear ' [ —0.884721570675963 2.6002817535069 0.0543600953661774 —6.10663279522891]
MFi9="outlmf19’: " lincar *,[2.25254003950579 4.42526909892315 6.01545275547224 16.6516825424732)
MF20="outlmf20°: " lincar *,[ — 1.64380967284586 0.385621324840957 2.82050345103488 0.546775696121565]



Fuzzy-Based Model

MF2l="outimf2! . " linear *,[ —3.17992101634451 —6.191179849839)

—2.87559153196718 —8.16137940943252)

MF22="outImf22": "linear *,[ — 1.15017672734899 3.17440692879354 —0.818597581067691 ~—0.625672033180652])
MF23="outimf23 *: " tinear ' [ —0.10402834286188 0.50567213129551 ~0.318029357887557 —0.831710473203268)
MF24="outlm(24": ' linear *,[0.555174002688335 —2.71710323197307 —0.379085882946192 — ).62062586969276}
MF25="outimf25": " tinear *,[0.38882378023508 2.49695365130154 —0.0928281241650904 ~8.58840778901096]
MF26="out1mf26": " linear *,[0.00119336098940395 —2.51039747772265 0.402150754051726 8.68297471391425]
MF27="outlmf27': " linear * ,[1.62184869066052 —1.89677774402824 4.29014592564396 0.968698615751689]

[Rules]
L))
2 (1) @
3 (1)
4 (1)
.5 (1)
6 (1) :
7¢1) :
8 (1) :

3
)
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3

1
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3,9 (1) ¢
1, 10 (1) :
2, 1 (1) :
3,12 (1) :
1, 13 (1) :
2, 14 (1) :
3,15 (1) :
1, 16 (1) :
2,17 (1) :
3,18 (1) :
1, 19 (1) ¢
2, 20 (1) :
3,20 (1) :
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2,23 (1) :
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2, 26 (1) :
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%MRDamperANFIS _expRP.ICPS_L . FIS
{System]
Name="MRDamperANFIS.expRP.ICPS.L "
Type="sugeno ’

Version=2.0

Numlaputs=3

NumOQutputs=1

NumRules =27

AadMethod="prod*
OrMethod="probor *
ImpMethod="prod "

AggMeihod="sum*
DefuzzMethod="wtaver’

Input))

Name="inputl *

Range=[ — 2.85364935661455 3.11213420022853)

NumMFs=3

MF1="inimfl ’: " gaussmf’,[1.19070241452016 —2.90325106575453)
MF2="inlmf2 ": ' gaussmf’,[1.26327129587382 0.0979932488126096]
MF3="inImf3 ": " gaussmf’,[1.38517632850882 3.00798454103428]

[lnput2}

Name="input2 *

Range=[ ~2.97291027771105 4.89826510788298]

NumMFs=3

MFI="in2mfl ’: " gavssmf",[1.634969142701)8 —2.95728259424643]

MF2="in2mf2 ": ' gaussmf ' ,[1.60764719207885 1.04178271397505]
='in2mf3 ': * gaussmf ' ,[1.64034253553537 4,95792755824252]

(laput3]

Name="input3 ’

Range=[ ~ 1.65891316527171 1.94813003677832]

NumMFs=3

MFi="in3mf1": "’ gaussmf’,[0.748572159826103 — {.68354209313507]

MF2="in3mf2 ': " gaussmf " ,{0.688346037868495 0.042163894364409))
='in3ml3 ;" gavssmi’ ,[0.631446021815979 2.00216646592816)

{ Outputti)

Name="output ’

Range=f ~3.32161549336933 3.84442316556507)
NumMFs=2

MFl="owtlmfl ;" lineas ',[ —0.302714631414606 —0.14611)078533192 —1.99128216493503 —4.51645636978976)
MF2="outimf2 ': " linear ',[ — 1.2365734375452 0.269231117072439 —1.72410950444132 —3.96922213768335]

MF3="outlmf3":

finear ',[ —0.140357582404287 2.77278223632195 —2.61325397393101 9.18128230681905]

MF4="outlmf4": "linear',[ —0.368358447507383 1,18181241101792 0.920738769629458 2.06366300237189)
MFS="outImf5’: ' linear ',[ —0.255898690742313 1.00552117217617 0.928084861555202 0.919160543002961]

MF6="out1mf6 "’

linear ',[ —1.87058892445021 5.31162772881458 1.95258100427507 —5.11227214924362]

MF7="oul!mf7 *: " linear ' ,[13.0508433594659 18.1458126954487 —4.16621886912418 —34.0481712956766)
MF8="outlmf8': ' linear ‘,[ —8.72049224252168 12.3032794819756 —5.67785167673918 —39.603681943878]
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MF9="outImf9": " linecer *,{117.388864257209 15.1075349131033 —30.0644033456656 149.593287171889]
MF10="outlmf10": " linear ' ,[0.0434871145528278 0.058210837369494} —1.04679657209577 ~ 1.59877185171209)
MFli="outimfl] : " linear ',[ - 1.09300313009335 0.342924453255439 —0.776452717537719 - 1.26263189827236)
MFi2="outlmft2": " linear *,[ —0.368651367191627 0.0416288010465347 —1.4050036763901 —1.1774132857246)
outImfi3”: " tinear *,[ ~0.310932847835641 1.18525049722989 0.430687081123609 1.17204900191858]
outimfld”: " linear ',[ —0.485170671741205 1.51741726064017 0.274637553003176 0.304220297473731)
outimfl$”: " linear *,[ —0.432991230981821 0.193820779823074 0.332053375488135 0.182467426317327)
outimfl6 : " linear *,[3.88490561283527 9.53320884307946 1.09606502692787 —26.7812793013309]
out!mfl7": " linear ",[2.9981719865101 2.72746993746066 0.142732299304472 —8.580914344{54435)
outlmfl8 :" linear *,{17.9110777229967 —5.99222704752003 0.541104272871395 18.6690480408163]
MF19="outimfl9 ": " linear *,[0.605246879664748 }.45329132715723 —0.69336580022614 1.1441965083522)
MF20="outImf20 ": " linear *,| —2.47646766311216 —0.173215091663222 —~0.470020875456371 4.13778158597918)
MF2)="outlmf2) *: " linear " ,[2.01478737496411 -3.46368698038775 3.4722567563915! —15.4791167392812)
MF22="outImf22": " Jinear *,| —0.268141841029581 2.52139484203645 —0.304521193445016 - 1.25792666100287)
MF23="outImf23': " linear °,[ —0.28685256040318 1.07483328276321 —0.841745776717022 0.0622554079074232]
MF24="outImf24°: " tinear ’,[ —0.905054138756031 0.85469051973790% — 1.84396826361204 5.3239196914891]
MF25="outImf25": " lincar *,[4.7429690251049 7.11536505906416 8.86033192248125 —24.2689722326039)
MF26="outimf26": " lincar *,[3.27391823514808 —3.36448260603902 13.3834894736389 —2.10469109705929]
MF27="outImf27 ;" linear °,[24.2975426021798 3.26452613789596 34.753349456847 — 127.46171806933]

fRutes)
P, ()
2. (1)
31) :
4 (1) :
50
6 (1) :
71
8 (1) :

2

3

)

2

3

1

2

3,9 (1) :
1,10 (1) :
2, 11 (1) :
3,12 (1)
1, 13 (1)
2, 14 (1) :
3,015 (1) :
1, 16 (1) :
2, 17 (4) ¢
3, 18 (1) ¢
1,19 (1) :
2, 20 (1) :
3,20 (1) :
1, 22 (1) :
2, 23 (1) :
3, 24 (1) :
1, 25 (1) :
2, 26 (1) :
3,27 (1) ¢
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Y%MRDamperANFIS expRC1.CS. FIS
[System]
Name="MRDamperANFISexpRC1CS*
Type="sugeno’

Version =2.0

Numlnputs=3

NumOQutputs=1]

NumRules =27

AndMethod="prod "’
OrMethod="probor *
ImpMethod="prod "’
AggMethod="sum*
DefuzzMethod="wtaver’

[fnputt]
Name="input] ~
Range=[ —3.42237630328106 3.29302845231913]

NumMFs=3

MFl="inlmf! ': " gaussmfl ' ,[1.43098041010664 —3.42006790324062}
MF2="in1mf2 gaussmfi’,[1.42752592504453 ~0.0694193043394365)
MF3="iniml3 ": " gaussml’,{1.42563340657259 3.28896509338191)
{Inpuot2]

Name="input2 ’

Range=[ —3.77188584123213 3.32767706994718)

NumMFs=3

MFi="in2mf! ’: ' gaussmf’,[1.56960210094698 - 3.72428308874678)

MF2="in2mf2 *: " gaussmf’,[1.55704933537479 —0.235136747602453]
MF3="in2mf3 ': ' gaussm( ',[1.4946923031365 3.3232000505409]

)
{Inputd]

Name="input3 ’

Range=[ — 1.48599517330948 1.52383301336969]

NumMFs=3

MF]="in3mfl ": " gaussmf',[0.630752417360684 —1.49739360082896)
MF2="in3mf2 ': ' gaussmf " ,[0.662987909248046 0.00556822009380193)
MF3="in3mf3 ': " gaussmf *,(0.63724068228087 1.52704203778426)



Fuzzy-Based Model

[Outputl]

Name="output *

Range=[ ~ 3.91896012793866 3.96632822939564)

NumMFs=27

MF1="outlmfl *: " linear *,[ —0.186579417882172 0.367909438418147 —0.94763776359529 —0.57763853704613)
MF2="outlmf2":’linear *,[0.0287861790954439 0.428225362571167 —1.17835391682051 0.563054769051825)
MF3="outlmf3’: " linear ’,[ —1.57456226369366 0.519480300857278 —0.831551707100836 —4.3559681675606)
MF4="outimfd ": " linear " [ —0.117073942693168 1.22895651689925 0.59381905340063 1.52444359969549)
MF5="outimf5": " linear’,[ —0.553622540925557 {.88513959262909 0.383304140113207 0.14264151850596]
MF6="outImf6": ’ linear ’,[ —0.48713164628898 1.68197559918357 0.211443773238603 —0.103852154212855]
MF7="outlmf7: "’ linear ' ,[0.491311305879797 3.75557224220391 0.294623399867962 —6.32496258788094)
MF8="outlmf8": " linear ',[1.42915186851999 2.41301046439345 (.52880979506194 — {.61250308748698)
MF9="outImf9 *: " linear *,[1,.76669684798766 0.622940985138066 1.18104067892594 4.3270468488567]
MF10="outimf10": * linear " ,[0.0954506523563329 1,49778828722862 — 1.43498595322659 3.00330208448305)
MFLI="out!mfl]":" linear *,[0.456751883395579 0.687013126716324 —1.73829833095625 1.45901177789304)
MF12="out!mf12": " linear *,[ —0.851339153583837 1.49475916224489 — 1.20538712499199 3.32734502470224]
MF13="outlmf13": ' linear ’,[ — 0.182877013372773 1.37018436913156 0.072387453551732]1 0.0110297489079504)
MF14="outlmf14": ' linear ’,[ —0.468774547490662 1.49165668047238 0.0103838537253853 —0.155757961749541)
MFIS="outImfl5": " linear ’,[ —0.472557958279048 1.92382735909387 —0.00i47615163915287 —0.176533798750336]
MF16="outimfl6 ;"' linear ’,[0.351394155978173 1.05277512173513 0.630802439327103 —2.08081577703127)]
MF17="outimf}7": ' linear *,{0.526068098604245 0.324192492274885 1.26070289368083 0.283205858006584)
MF18="outlmf18°: ' linear *,[0.577031573606015 1.15767665870399 0.905112739700874 — 1.48145372203829)
MF19="outImfi9°: " linear °,[ ~0.917085097828929 8.42180147871158 —0.899854973995931 22.0245390530826]
MF20="outImf20':'linear ' ,[2.14360280410234 3.37133282745394 —3.22332680719515 4.02030539058575]
MF21="outImf21 ": " linear *,[0.716080733684552 3.39065791707091 —1.85148070841108 10.4319648229879}
MF22="outlmf22': ' linear ',[ ~0.366076082644453 2.11405568680143 —0.373882246168311 —1.42)28303373222)
MF23="outImf23 ': *linear ’,[ —0.944248715576832 1.97439048182686 —0.275750973799191 0.590048899181359)
MF24="outimf24': ' linear *,[ — 1.32184179272466 3.49394036391433 —0.197204709978259 1.82274521818196]
MF25="outlmf25": ' linear *,[0.3486793 13808849 0.473815760175479 0.319300494819747 ~—2.04305536194827]
MF26="oullmf26 " ' linear *,[0.546338938093462 0.773296379144569 0.777719742511295 —2.65035690982666)
MF27="out!mf27 ": * linear " ,[1.16547413435979 2.91373903498176 0.643576755854014 —10.7395029488658]

[Rules]
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3,6 (1) ¢
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1
2
3
i
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1
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3
1
2
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%MRDamperANFIS expRC2.CS. FIS
[System]
Name="MRDamperANF1SexpRC2.CS"
Type="sugeno ’

Version=2.0

Numlnputs=3

NumOutputs=1

NumRules =27

AndMethod="prod *
OrMethod="probor *
ImpMethod="prod "
AggMethod="sum”
DefuzzMethod="wiaver*

[Inputl]

Name="inputl *

Range={ —3.78501984696143 3.51707372823506)

NumMFs=3

MFl="inlmf] ': " gaussmf’ [1.77049561379651 —3.69286420665269]
MF2="inimf2": ' gaussmf’ [}.61391677496437 —0.163980624459519]
MF3="in)mf3 : " gaussmf *,[1.5021577350033]1 3.56351575625551)

[Input2]

Name="input2 *

Range=[ —4.03792384181093 8.17518309181665]
NumMF#=3

71
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MF1="in2mfl ;" gaussmf’,[2.34651502081502 —4.0159237165299)
MF2="in2mf2': ' gaussmf’,[2.38595521629585 2.35709222180533]
MF3="in2mf3 ": * gausamf *,[2.76446400308016 8.10370129964483)

[Input3])

Name="input3 ’

Range={ ~ 1.48599517330948 1.52383301336969)

NumMFs=3

MFl="in3mfl *: " gaussmf’,[0.533870387633702 —1.59026043932265)
MF2="in3mf2’:" gavssmf',{0.731761837010892 —0.0738724854514102]
MF3="in3mf3 ’:* gaussmf’,[0.777215985175257 1.43024516304312]

[Outputl]

Name="output ’

Range=[ —4.03561773965864 4.21865734197246]

NumMFs=27

MFl="outlmf]’: *linear’,[ ~0.119735144031826 0.383106485936537 ~—1.16273022865113 —0.914237051711183]
MF2="outlmf2 ;" linear ',[0.258639915426856 1.85835889366686 —0.91472147938745 6.77493531661756]
MF3="outImf3 *: ' linear ,{ ~ 1.98880747439853 0.975119325767678 - 0.654473454169569 —4.72284441079215)
MF4="outimf4’: ' linear ' ,[0.138136317359431 2.4619015130642]1 1.99419857821335 6.85209108789825]
MF5="outimf5’: " lincar *,[ —4.01467774886967 13.0529727392936 0.886045556422097 13.4221657345197)
MF6="outlmf6’: ‘" linear ',[ —2.38050709366913 3.01749314631757 0.544943613372273 —1.32875335318484}
MF7="outimf7": ' linear ",[ —2.0442)1030252989 43.4852347711311 17.0561671331322 —150.475488232]
MF8="outimf8 ': " linear *,[49.2437571071434 287.758080578973 28.2887600868844 —997.431835963485]
MF9="outimf9": ' linear [ —62.1756480977556 60.3172729250696 19.9919239294315 —384.989278373912]
MF10="outlmf10": " linear *,[ —0.0636513202352946 0.111423906199018 — 1.63893300840553 —2.43441594245695}
MFii="outlmfil’: "linear *,{0.207912639330152 —0.647829614622377 —1.61132482083016 —3.88805332547265]
MF12="outlmf12’: " lincas °,[ —1.24739809403138 0.155129841877754 - 1.124866442423 —-1.21951481911021]
MF13="outImf13": ' linear ',[ —0.153802638512727 0.826075378490769 1.00079985530848 2.03181730991807]
MF14="outlmf14': "lincar ",[ —1.95622887578243 0.120789282005797 0.693675349664146 1.33006422180051]
MF15="outimfl5°: ' linear ',[ —1.37630348460951 0.816408627518816 0.50445473045055 0.349596986310587)
MF16="out!mf16": ' lincar *,[4.33496099964384 5.32982155753832 --5.43517607848781 —39.0138778857031]
MFI7="outimfl7": " linear *,[22.5985629065376 —16.3520554790002 —0.749395647190257 36.0829141100679]
MF18="out1mf18°: " linear ',[ — 11.0507241403943 —8.69228585228252 — 1.0740928702198 46.1463226883637]
MF19="outimf19": ' linear ",{ — 0.00642597948629535 —2.37463434751046 —2.16833820734759 —10.413294311732)
MF20="out{mf20': ' linear ',[ —0.165211026541312 1.71471632282884 —2.17752222741916 4.14732811953654)
MF2i="outImf2] ':* linear *,[ —2.34638783067784 1.23543337264077 — 1.54254471168516 8.67702817221895]
MF22="out1mf22": "’ linear ',[ — 0.0820232989920042 —3.25068760459041 0.35863472734984 —0.164813905838952)
MF23="outimf23": linear ",[ — 1.53809064970565 4.86163369664884 0.252763994084335 6.60882598992046]
MF24="out1mf24°: ' linear ’,[ — 1.22318567304467 2.73283400445242 0.200326766581652 2.85948590190795)
MF25="outlmf25°: " linear ',[0.453201960389842 —30.633180941915! 11.2881800481532 165.336024735383]
MF26="outlmf26’: ' linear ' ,[12.2137582823273 39.9143493295616 6.94032559234475 —239.358594245961]
MF27="outImf27’: ' linear ',[ —10.2019793741768 8.24105639195665 4.81865804632485 —19.6745448360813)

[Rules)
11, )
1y :
)y :
)
(1) :
) :
() -
) -
() :
(1) :
(1)
(SR
1) -
m :
() :
o) :
)y
1)
)y
) :
1)
)y :
)
o) :
) :
) :
ny :

[ R Y N

—_— -
=1

w

R R e
L g N T L

T T T N T N .
I -
> Y

BB WNRNN -~ LB LOOUNRNNS—-=LBWWRNNN——

~N
3

1
1
1
1
1
i
i
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
o

%MRDamperANFISexpRC3LCS. FIS
[System}
Name="MRDamperANFIS.expRC3.CS”
Type="sugeno *

Version=2.0

NumIfputs=3

NumOutputs=|

NumRules =27

AndMethod="prod’
OrMethod="probor’
ImpMethod="prod "
AggMethod="sum"
DefuzzMethod="wtaver’



Fuzzy-Based Model

[Inputl]

Name="iaput! *

Range=[ —3.04464377265303 4.63593933027745)

NumMFs=3

MFI="in{mfl ":’ gaussmf’',[1.65208604654202 —3.02250188879322]}
MF2="inlmf2": "’ gaussmf ' ,[1.64997458656274 0.81167241427774)
MF3="inlmf3 ": " gaussmf’,[1.68450110836318 4.61075299098043]

{1nput2]

Name="input2 '

Rang==[ —5.03739828228762 3.63758745739507)

NumMFs=3

MF1="in2mf} ': " gaussmf’,[1.96276258184005 —4.96454249943251]
MF2 2mf2’: " gaussmf’,[1.87464149617569 —0.756733966373629]
MF3="in2mf3": "’ gaussmf’,[1.76320905389868 3.65401618259546]

[Input3]

Name="input3 '

Range=[ — 1.48599517330948 1.52383301336969]

NumMFs=3

MF] 3mfl’: " gaussmf’,{0.572976626855999 —1.55220695273178]
MF2 3Imf2°: " gaussmf’,[0.697583917911525 —0.0347036834334241]
MF3="in3mf3 *: " gaussmf’,[0.675793490457244 1.50379816692398]

[Qutputt]

Name="output ’

Range=[ —3.58006417685791 3.87803992022025]

NumMFs=27

MFl="outImf! ": "linear *,[0.596619931809332 —4.28064598198994 —2.95080784645972 — 15.3950589810284]
MF2="outImf2": *lincas ',[0.250409922284571 3.32133294495946 —2.56031430472386 14.5961334371417]
MF3="outlmf3’: " linear ',[ —0.681520850965558 4.91374332838383 —1.7627339044224] 18.9770039684258)
MF4="outlmf4 : " linear *,[ —0.16001954201733 0.0426372500566457 0.2687740270950629 1.01021022864873)
MF5="outImf5 ": *linear *,[ —0.522888979901607 3.24873751394576 0.100910225734164 0.192925926924864)
MF6="outImf6 ': ' lincar’,[ ~0.543653833681936 4.17220396321092 0.076663095966418 0.525526105821637)
MF7="outlmf7": "linear ',[0.5379156742327 0.306346521570586 2.15502807296773 3.5287112163105)
MFg8="outImf8’: " linear °,[0.432654961162901 4.06228697990035 2.77437875694369 —8.63376956004433)
MF9="outlmf9": "linear ',[ —0.487759494213583 6.95773208985185 1.64443975718811 —17.1928895784703]
MF10="outImf10": " linear ',[0.939227885651517 3.22785320564162 0.0882151573031469 11.21559637395]
MFIt="outimft!": " linear ’,[0.560017662290975 3.44994597776871 —2.53776384964873 12.6950620482471}
MF12="outImf12°: " tinear ’,{ —0.92413255476826 1.983154623021 — 1.70602199810054 8.44492364367583]
MF13="outImf13":" linear ' ,{ —0.168296570366654 1.05392426958813 —0.795741526450922 — 1.38015749318591]
MF14="outIlmf14": " linear ’,[ —0.894441805242348 1.96496444781168 —0.324158029883774 —0.673000721280061]
MF15="outimfl5":" linear ',{ —1.05084713043718 2.21513078821604 —0.242286882627146 0.0829413747679325]
MF16="outImf16":" linear *,[0.212664004277602 0.482017129865981 2.13873170296643 1.47559536072342]
MF17="outimf17":" linear *,[0.483349102443477 0.249456183065072 1.6879185567417 —0.0122544578842006]
MF18="out!mf18":" linear *,{ —0.206985383808439 1.07913854439829 1.29793737666999 - 2.44808927577674]
MF19="outImf19’: " linear *,[0.692431827816262 7.49816923130044 —7.66723177186487 8.02157198432951)
MF20="outImf20": " linear ’,{ ~6.79908183301994 25.7606868772409 ~2.24656105414705 86.7184688452328]
MF21="outImf21":" linear ",{ ~ 10.5124933317734 16.8426954476949 —0.272847928339462 78.0116639395749]
MF22="out1mf22":’ linear *,[ —0.0189949879433825 1.07411992327657 —0.650486085695143 —2.10398683688076)
MF23="outImf23": " linear °,[ — 1.40932840845209 2.47658593568019 —0.945453783056805 1.29284535108196]
MF24="outlmf24°: " linear *,[ — 1.86215497690313 3.395504106105 —0.712105222515327 5.16000828123044)
MF25="outImf25": " Jinear *,[ —0.0741522813087878 0.140150879909878 0.507341053203205 0.606543804550321]
MF26="outImf26": * linear *,[0.55093417198326 0.410544384644308 1.15469301664704 - 2.21249446195775]
MF27="outImf27": " linear ,[ —0.459489140619349 1.82053459349413 0.896501322961647 —2.99968367513259]
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Appendix D

Non-Linear Fuzzy-Based Model

The proposed non-linear fuzzy model was trained using the three sets of experimental data for which the electric
current was held constant. Each data set was divided into seven equal parts, each corresponding to a constant step
of the electric current (0.0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A). For each value of the electric current, one non-linear
equation, as the one presented in equation 4.9, was identified using non-linear least squares in MATLAB™. Table
D.1 presents the identified coefficients for the each of output functions of the non-linear fuzzy based model.

Table D.1. Identified coeflicients for the non-linear fuzzy-based model.

Output
Model Function dy do ds dy ds

f1(0) 252265 | 3.0650 | 4.6028 | -3200.0681 | 2109.8135
fa(t) 52.1981 | 3.0503 | 0.6770 | 415.0016 | -183.1820
fa(®) 81.5221 | 3.2595 | 0.4783 | 629.8635 | -272.7241
RC1-SC fa(t) 171.6249 | 02753 | 0.2504 | 714.7907 | -317.1429
f5(t) 48.3849 | 24.2010 | 0.7565 | -148.0621 | 68.6384
fe(t) 34.6003 | 34.5981 | 4.0249 | -26.3173 13.9835
f(t) 38.5583 | 37.7723 | 4.2741 | -23.6473 13.2332

fit) | 17.0918 | 3.2781 | 2.7087 | -1.4775 1.8047
f2(t) | 54.4845 | 2.6434 | 0.6610 | -708.1935 | 301.5387
f3(t) | 87.0530 | 23311 | 0.4572 | -719.4389 | 303.4493
RC2-SC | fi(t) |197.3649 | -2.2904 | 02292 | 808.5372 | -353.0962
fs(t) | 64.9750 | 202574 | 0.5609 | 704272 | -31.7165
fot) | 39.5097 | 32.6552 | 3.2390 | 1054.1195 | -541.9325
F2(t) | 432435 | 357863 | 3.5948 | 11.8777 | -6.4219

f1t) | 17.0222 | 33977 | 2.6617 | -2929.4556 | 2468.9527
f2(t) | 53.8456 | 2.6965 | 0.6524 | -766.0747 | 300.3521
fa(t) | 83.8162 | 3.2644 | 0.4669 | 1423.8401 | -559.0957
RC3-SC | fut) | 99.6419 | 102792 | 03517 | -76.7070 | 31.5043
fs(t) | 359105 | 28.2310 | 1.2507 | -866.9619 | 378.8263
fot) | 31.8596 | 35.6241 | 3.5689 | -378.2586 | 178.2317
f2(t) | 36.6054 | 38.4434 | 3.6598 | -480.9478 | 238.9911
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Non-Linear Fuzzy-Based Model 75

Once the output functions had been obtained, Simulink was employed to create the non-linear fuzzy-based model
as shown in Fig. D.1. The input fuzzy sets were selected as seven Gaussian functions with variance equal to 0.2 and
means 0of 0, 0.4,0.8,1.2,1.6,2.1,and 2.5 A.
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Figure. D.1. Non-linear fuzzy-based model validation. The electric current pattern is connected to the seven mem-
bership functions. The fuzzy conclusions are then connected to the non-linear output functions, and
their output is summed in order to obtain the final estimated force. The model saves the error and
estimated force values.
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Comparison of MR Damper Models
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Av. Eugenio Garza Sada 2501

Abstract— A Magneto-Rheologial (MR) damper exhibits a
hysteretic and non-linear behavior. This behavior makes
it a challenge to develop a model for the system. The
present research is centered on analyzing and comparing
three state-of-the-art models for MR dampers. NARX, Semi-
Phenomenological, and Phenomenological models were selected.
Experimental data was obtained using different input patterns.
The models were identified for both constant and variant
electric current scenarios. The results showed that road profile
patterns allow a better identification of the models. The phe-
nomenological model was found to obtain the best compromise
between performance and simplicity.

I. MOTIVATION

Magneto-Rheological (MR) fluids are non-colloidal sus-
pensions of particles with a size on the order of a few microns
[1]. These fluids are unique due to their ability to change its
properties reversibly between fluid and solid-like states in
milliseconds upon the application of a magnetic field.

Among a broad spectrum of applications, MR fluids have
been widely utilized for vibration damping systems. MR
fluids can operate at temperatures ranging from 40 to 150
°C with only slight variations in the yield stress. They are
almost insensitive to impurities and can be controlled with
low voltages and a current driven power supply outputting
1-2 amperes [2].

An MR damper can be part of a semi-active suspension
system. These systems offer the reliability of passive devices,
but maintain the versatility and adaptability of active systems.
A semi-active MR damper is a non-linear dynamical system,
where the inputs can be selected to be the clongation speed
and the electric current. The current is the control input that
modulates damping characteristic of the MR fluid through
the variation of a magnetic field. The output is the force
delivered by the damper.

The major drawback of MR dampers lies on their non-
linear and hysteretic force-velocity response, Fig. 1. The
design of a controller generally demands a model of the
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actuator which becomes a non-trivial task when it comes
to MR dampers [3].

Electric Current(A)

Velocity(in/s)

Fig. 1. MR damper behavior at constant electric currents. The force
delivered by a MR damper is plotted for different electric current inputs.

Different modelling techniques have been studied for
MR dampers. In [3], [4], and [5] phenomenological
modelling techniques have been explored. In [6], semi-
phenomenological techniques were used to develop a math-
ematical model able to describe the hysteretic behavior of
the MR damper. In [2] and [7] black-box models based on
Non-linear Autoregressive with eXogenous terms (NARX)
structures have been studied.

This study is motivated on the aforementioned challenge
that involves the correct modelling of an MR damping
system. Among the state of the art, the selected models were
the ones presented in [S], [6] and a black-box model structure
used in [2] and [7]. Experimental data sets were obtained
at the mechanical testing laboratory of Metalsa!. Section 1I
presents a literature review of MR damper models. Section
III discusses the experimental setup. Section IV describes
the design of experiments. Section V presents the modelling
results. Section VI compares the models and the results
obtained. Finally, section VII concludes the research. Table
1 defines the variables that will be used through the paper.

twww.metalsa.com.mx
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TABLE 1
VARIABLES - ;
; ]
g=af+af+of+of +afl @
[ Variable Description ] The authors commented that all the coefficients should
[ Fumn. f ] MR damper force be functions of the applied magnetic field. This dependency
1 First derivative of MR damper force is to be approximated by a polynomial of order 2 and
f Second derivative of MR damper force N . .

Li Electric current must be identified from experimental data. The parameters
X, x Damper piston position for the model were identified using nonlinear least-squares
& Damper piston velocity approximation. The model captured the hysteretic behavior

fo Damper force offset s . . .
a Regressor cocfficients of the damper. In addition, hysteresis loops with various
i Model coefficients in {5] loading frequencies, applied field intensities, and excitation

Ay Dynamic yield force of the MR fluid amplitudes were all modeled successfully by this model.

Az Post-yield viscous damping coefficient . .

As Pre-yield viscous damping coefficient Among semi-phenomenological models, the one presented
Vo Hysteretic critical velocity in [6] has been greatly analyzed in the past years. The
Xo Hysteretic critical displacement proposed model shown in (3) is said to describe the bi-

II. LITERATURE REVIEW
A. Previous Work

The research done in [2] compared the semi-physical
modified Bouc-Wen model presented in [4] and a black-box
NARX model structure. The selected NARX model structure
consisted of two regressors for each input (displacement,
velocity) and two regressors for the output force. The per-
formance index utilized for comparing the results was the
Error to Signal Ratio (ESR), (1). The ESR is the ratio of the
error estimation (experimental force minus estimated force)
and the variance of the experimental force. The index value
is 1 if the model is trivial and O if the model is perfect.

50 (10 - ftiw)
2
P T (0 - (3L 1))

Three experiments were made at three different constant
input current values of 0.0A (no magnetic field), 0.6A (mid-
excitation of the magnetic field, corresponding to a high-
viscosity fluid), and 1.2A (high magnetic field, corresponding
to a semi-solid fluid). The authors first compared the models
using the three experimental data sets in which the electrical
current was held constant. Both models were reported to
obtain ESR values of less than 3%.

In addition, one experiment with varying current was
performed. For the semi-physical model, each coefficient was
made equal to a time varying linear function of the electric
current. For the NARX model, two regressors for the input
electric current were added. The reported results showed that
the semi-physical model was not able to predict the behavior

of the damper and obtained an ESR value of 22%. On the
other hand, the NARX model obtained an ESR of 4%.

ESR=

m

B. State-of-the-art

The model presented in [5] represents a phenomenological
model based on the phase shifting dynamics of MR dampers.
Equation 2 shows the non-linear differential equation, where
five parameters need to be determined under a given loading
velocity &.

viscous and hysteretic behaviors of the MR damper with high
precision. Nonetheless, the model was not tested for different
electric current patterns.

. W N Z
f = Astanh (Ag(x + 7‘; m)) + A, <z + }% :1:) 3)
In {2}, a NARX model for an MR damper is proposed as
shown in (4).

fe =

a1fk—1 +aafr—2+ 03Tp_1+ a42x_2
+astr—1 +a1Zk—2 @

The experimentation showed that the most important re-
gressors of the model were the ones for & and the old values
of f. Two extra regressors were used for electric current
consideration.

The results obtained showed that the proposed NARX
model was able to predict, with high precision, the behavior
of the MR damper. Furthermore, for the varying current
case the NARX model was said to outperform by far other
phenomenological models.

I11. EXPERIMENTAL SETUP

An MR damper from a Delphi MagneRide™suspension
system was used to perform a total of 28 tests. An MTSTMGT
controller testing system was used to control the position
of the damper, Fig. 2. A Flextest™data acquisition system
commanded the controller and recorded the position and
force from the MR damper. A sampling frequency of 512
Hz was utilized. The bandwidth of displacement was 0.5-
14.5 Hz, which lies within normal automotive applications.
The displacement and electric current ranges were: 0 - 0.04
m and O - 4 A, respectively.

IV. DESIGN OF EXPERIMENTS

A series of training patterns were proposed to be used
as position and current inputs for the MR damper [8]. As
position patterns, Amplitude-Modulated (AM), Frequency-
Modulated (FM), Triangular wave with Positive and Negative
Variable Slopes (TPNVS), Stepped Frequency Sinusoidal
(SFS), Sinusoidal Chirp (CHS), and Road Profile (RP) waves
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Fig. 2. Experimental system.

TABLE 11
DESCRIPTION OF EXPERIMENTAL TESTS

[ Experiment  Displacement Pattern  Current Pattern _ Replicates
1 AM SC 11
2 TPNVS SC 11
3 SFS SC 7
4 FM ICPS 10
3 RP APRBS 11
6 SFS constant 7
7 AM constant 7
8 TPNVS constant 7
9 M constant 7
10 RP constant 7

were used. As electric current patterns, Stepped Increments
(SC), Increased Clock Period Signal (ICPS), and Amplitude
Pseudo Random Binary Signal (APRBS) waves were used.
A total of twenty eight tests were performed. Also, various
replicates of each test were done.

Ten of these tests were chosen to analyze the performance
of a group of models and to make a comparison, Table II.

V. MODELLING RESULTS

Three models were tested to characterize the dynamical
behavior of the damper by the performance index ESR.
Additional modifications were incorporated to the models.

A. NARX Model

The NARX model in (4) was modified to consider three
regressors for each input variable instead of two. The nine
parameters of the model were identified using a recursive
least squares method. For each replicate of each experiment,
the best parameters for the model were obtained and the
ESR vindex was computed. The results are shown in Fig 3.
The figure presents a box and whisker plot with one box for
each experiment. The boxes have lines at the lower quartile,
median, and upper quartile values. The whiskers are lines
extending from each end of the boxes to show the extent of

the rest of the data. Outliers are data with values beyond the
ends of the whiskers.

-~ o

ESR(%)
w
3

“n
|
4
“j
i
I 5

5 <o} S

Expenment

Fig. 3. ESR results for the NARX model.

Notice that the average ESR is less than 5% for every
experiment. Experiment ten was observed to obtain the best
results.

The NARX model was modified by including the depen-
dency on the electric current by adding three regressor, eqn.

(5).

fk = a1fi—1tasfk—2t+azfi-3
tasZr 1+ asTk 2 + asT-3
+arZx—1 + agTr—2 + agTr-3
+ajoik—1 + anig—2 + aroik—3 5)
The obtained ESR values by each experiment are shown in

Fig 4.The current dependent model also generated excellent
results, with ESR averages of less than 3.5%.

25} e 1
2 CRREERRE
+
15¢ E —— "
H i . i e
1 2 3 4 5
Expenment

Fig. 4. ESR results for the current dependent NARX model.

B. Semi-Phenomenological (S-P) Model

The model shown in (3) was identified for the ten sets of
experiments abovementioned. The resulting ESR values for
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each experiment were observed to be about 50% for all the
experiments. Nonetheless the fifth and tenth ones obtained
values below 10%.

The semi-phenomenological model was not able to predict
the damping force in an accurate manner. Then, each of the
parameters of the model (A;, As, A3z, Vo, and Xo) was
made equal to an second order polynomial dependent on the
electric current. For example, Al = Ay + Ay T+ Ag31°
The ESR values for the current dependent experiments are
shown in Fig §.

Expenment

Fig. 5.
model.

ESR results for the current dependent semi-phenomenological

Adding the electric current dependency to the semi-
phenomenological model improved 1its performance.
Nonetheless, the improvements seen may not be worth the
inclusion of 10 additional parameters to the model.

C. Phenomenological (P) Model

The model shown in (2) was identified using an optimiza-
tion algorithm. The relationship shown in (6) was utilized as
the objective function in order to capture the dynamics of
the damper.

1, e, cay ca,3 €5
e T Y - Y AT
c3 c3 Cc3 c3 c3

f=Ciz+Cof + C3f + Cuf® +Csf* (6)

The ESR index was used to measure the performance of
the model.The results for the ten tests showed that most of
the ESR values obtained were near 8§%.

In order to make the model dependent on the electric
current, a modification as in section V-B was included.The
ESR results are shown in Fig 6.

It can be observed that the variation was increased. Ex-
periments 2 and 5 showed lower ESR values, and variance.

. VI. COMPARISON

Tables III and IV compare the average ESR values ob-
tained by the non-current dependent and current dependent
models, respecively. The NARX model can be observed to
outperform the other models by far. The fifth and tenth

Experiment:

Fig. 6. ESR results for the current dependent phenomenological model.

TABLE III
COMPARISON OF ESR(%) BY EXPERIMENT FOR NON-CURRENT
DEPENDENT MODELS

Experiment
Model 1 2 3 4 5 6 7 8 9 10
NARX 3 4 2 3 1 04 4 2 1 01
S-p 52 51 53 49 10 37 38 49 4 3
P 8§ 13 16 7 7 9 9 10 4 4

experiments were found to consistently obtain the lowest
ESR values for all models. For the NARX model, the addition
of the dependency on the electric current improved the
average of the ESR. Nonctheless, the improvements on the
indexes did not surpass 1%.

On the other hand, the semi-phenomenological model
obtained acceptable results only for the experiments where
an RP displacement pattern was used. The addition of the
electric current dependency to the model was seen to improve
its performance, but only slightly. It is to be remembered that
ten additional parameters were included to the model for this
purpuse.

The phenomenological model was seen to obtain low ESR
values for most of the experiments. Notable results were met
for the FM and RP profile displacement patterns. It was also
seen that the inclusion of the electric current dependency
improved the results obtained by the model, but increased
the variation on the index results.

Fig 7 shows experimental and estimated forces compared

TABLE IV
COMPARISON OF ESR (%) BY EXPERIMENT FOR CURRENT DEPENDENT
MODELS

Experiment
Model 1 2 3 4
NARX 3 3 1 3
S-P 49 48 43 46
P 6 10 13 4

N~ —||tn
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by each current dependent model. The data belongs to
experiment five and it is shown for a two second window.For
experiment five, the phenomenological model can be seen
to exceed the amplitude of the experimental data at the
positive and negative peaks, while the NARX and semi-
phenomenological models fall short most of the time.

Forceflb]

EDH M2 14 16 N8 12 122 124 126 128 13

t{sec)

Fig. 7. Comparison of experimental and estimated forces by model for
experiment five.

In Fig 8 and 9, the experimental and estimated force-
velocity dynamics are shown for the semi-phenomenological
and phenomenologicalv models, respectively. The data used
corresponds to experiment four and the models are dependent
on the electric current.

Notice that while the phenomenological model is able to
closely mimic the dynamics of the MR damper, the semi-
phenomenological model struggles to resemble the hysteretic
behavior at the cero velocity line.

5 10 15 2

Y

5 o
veljinvs)

Fig. 8. Comparison of experimental and estimated forces by the current
dependent semi-ph logical model for experiment four.

VII. CONCLUSIONS
It cm be concluded that the road profile displacement
signals allow a lower ESR index because the bandwidth of the
pattern is in the automotive operational zone of the damper.
For the constant current experiments, the phenomenological
model had the best compromise between performance and

8

i

5 5 10 15 v

&

0
velin/s]

Fig. 9. Comparison of experimental and estimated force by the current
d b P

dep P logical model for experiment four.

simplicity. The model had an average ESR 30% less than that
of the semi-phenomenological model and only 6% greater
than that of the NARX one. Also, using only five coefficients
the phenomenological model obtained results comparable to
those of the nine coefficient NARX model.

The addition of the dependancy on the current was seen to
improve the performance of the three models. Nonetheless,
the minimum improvement may not be worth the addition
of extra parameters to the models.

VIII. ACKNOWLEDGMENTS

Authors thank J. Lozoya-Santos for providing the exper-
imental data. Also thank the Autotronics and Supervision
and Advanced Control research chairs at Tecnolégico de
Monterrey for their partial support.

REFERENCES

[1]1 LA. Brigadnov and A. Dorfmann. Mathematical Modeling of Magne-
torheological Fluids. Continuum Mech. Thermodyn., 17:29-42, 2005.

[2] S. M. Savaresi, S. Bittanti, and M. Montiglio. Identification of Semi-
Physical and Black-Box Non-Linear Models: the Case of MR-Dampers
for Vehicles Control. Automatica,, 41(1):113-127, 1 2005.

[3] N. M. Kwok, Q. P. Ha, T. H. Nguyen, J. Li, and B. Samali. A
Novel Hysteretic Model for Magnetorheological Fluid Dampers and
Parameter Identification using Particle Swarm Optimization. Sensors
and Actuators A: Physical, 132(2):441-451, 11/20 2006.

[4] BF Spencer, SJ Dyke, MK Sain, and JD Carlson. Phenomenological
Model of a MR Damper. ASCE Journal of Engineering Mechanics,
1996.

[5] L. X Wang and H Kamath. Modelling Hysteretic Behaviour in MR
Fluids and Dampers using Phase-Transition theory. Smart Mater.
Struct., 15:1725-1733, 2006.

[6] Shuqi Guo, Shapou Yang, and Cunzhi Pan. Dynamical Modeling of
Magneto-Rheological Damper Behaviors. Intelligent Material Systems
and Structures, 17:3-14, 2006.

[7] E. Nifio-Juarez, R Morales-M d R Ramirez-Mendoza, and
L Dugard. Minimizing the Frecuency in a Black Box Model of a
Magneto-Rheological Damper. In //th Mini Conf on Vehicle Sys. Dyn.,
Ident. and Anomalies, 2008.

[8] J. Lozoya-Santos, R. Morales-M dez, and R. A. Ramirez-Mendoza.
Design of Experiments for MR Damper Modelling. In /7th Interna-
tional Joint Conference on Neural Networks, pages 1915-1922, 2009.

1513




Published Works

FUZZY-BASED MODELLING OF AN MR DAMPER

Javier A. Ruiz-Cabrera', Ruben Morales-Menendez?

Tecnologico de Monterrey, campus Monterrey
1MSc Student, 2Full Professor
64849 Monterrey, NI., Mexico
{a00804994, rmm} @itesm.mx (Javier A. Ruiz-Cabrera, Ruben Morales-Menendez)

Abstract

A Magneto-Rheologial (M R) damper exhibits a hysteretic and non-linear behav-
ior. This behavior makes it a challenge to develop a model for this system. The
present research is centered on proposing and analyzing two different fuzzy mod-
els of an M R damper based on experimental data. The first model uses an Adap-
tive Neuro-Fuzzy Inference System (AN F'15) and the second combines fuzzy
methods with semi-phenomenological models. The results showed that fuzzy
modelling can be a powerful framework to capture the behavior of highly non-
linear systems. Among the various input patterns analized, stepped electric current
signals allowed a better training of the AN F'1.S model. Both proposed structures
obtained Error to Signal Ratio (FS R) values of less than 0.1 for the majority of
the experiments. This intensive experimental study confirmed previous theoretic
work done for M R damper model fitting.
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1 Introduction

Magneto-Rheological (M R) fluids are non-colloidal
suspensions of particles with a size on the order of a few
microns [1]. These fluids are unique due to their ability
to change their properties reversibly between fluid and
solid-like states in milliseconds upon the application of
a magnetic field.

Among a broad spectrum of applications, M R fluids
have been widely utilized for vibration damping sys-
tems. In the past decade, there has been an increas-
ing interest of scientists and engineers on these M R
fluid dampers and their applications [2]. M R fluids are
appealing for damping systems since they can operate
at temperatures ranging from 40 to 150 °C with only
slight variations in the yield stress. Additionally, M R
fluids are almost insensitive to impurities and can be
controlled with low voltages (12-24 V) and an electric
current driven power supply outputting 1-2 A [3].

An M R damper can be regarded as a semi-active sus-
pension system. These systems offer the reliability of
passive devices, but maintain the versatility and adapt-
ability of active systems. A semi-active M R damper
is a non-linear dynamical system, where the inputs can
be the elongation speed and the electric current. The
current is the control input that modulates the damping
characteristic of the M R fluid through the variation of
a magnetic field. The output is the force delivered by
the damper. '

Although M R dampers are greatly promising for con-
trol scenarios, their major drawback lies on their non-
linear and hysteretic behavior, Fig. 1. Furthermore, the
design of a controller generally requires to model the
system, which becomes a non-trivial task when it comes
to M R dampers [4].

Force {Ibf)

Electric Current (A)

Velocity {in/s)

Fig. 1 M R damper behavior. Force is plotted against
velocity at five electric current inputs.

In [S), an Adaptive Neuro-Fuzzy Inference System
(ANF1S) was explored for fitting simulated data ob-
tained with the Spencer model, [2]. The ANF1S was
proven to fit the simulated data to an acceptable degree.
Similar results can be observed in [6] and [7].

The present study is motivated on the aforementioned
challenge that involves the correct modelling of an M R
damping system. Two fuzzy models are proposed and
analyzed. Experimental data sets were obtained at the
mechanical testing laboratory of Metalsa !. Section 2
presents a literature review. Section 3 discusses the
experimental setup and design of experiments (DoF).
Sections 4 and 5 describe the models proposed and the
results. Section 6 discusses the results. Finally, section
7 concludes the research.

Tab 1 defines the variables that will be used through the
paper.

Tab. 1 Variables.

Variable | Description

x(t) Linear displacement, in

v(t) Linear velocity, in/s

i(t) Electric current, A

F(v) M R Damper output force, Ibf
F@ Estimated M R damper force, Ibf
T Total number of discrete samples

2 Literature Review
2.1 MR Damper Modelling

Different modelling techniques have been studied for
MR dampers. In [2], [8], and [{4] phenomenolog-
ical modelling techniques have been explored in or-
der to obtain M R damper models. In [9], semi-
phenomenological techniques were used to develop a
mathematical model able to describe the hysteretic be-
havior of the MR damper. The research done in [3]
compared three different model structures for the M R
damper including a black-box one based on Non-linear
ARX (NARX) models. The performance index se-
lected by the author for comparing the results was the
Error to Signal Ratio (FSR). The index value is one
if the model is trivial and zero if the model is perfect.
The definition for the FSR is shown in Eq. 1 taken
from [3], where T indicates the total number of discrete
samples.

5L (PO - PO)
230 (FO - (3L FG))

ESR = 4]

2.2 Fuzzy Modelling

A Takagi-Sugeno-Kang (T'S K) fuzzy model can be se-
lected for modelling complex systems. The fuzzy rules
of the model can be determined by adaptively generat-
ing them based on input and output data or by select-
ing them by hand. The inputs of the model are fuzzy
and the outputs are crisp. The total output of the sys-
tem is calculated using the weighted average of the out-
put functions [6]. The system can use a hybrid learn-

www.metalsa.com.mx
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ing algorithm that combines the backpropagation gra-
dient descent and least squares methods. A TSK fuzzy
model trained in this manner is often named Adaptive
Neuro-Fuzzy Inference System (AN F'18S).

If a first-order ANF1S consists of three inputs and
one output (each input with three possible membership
functions), and only three fuzzy rules are selected as
shown in Egs. 2 - 4,

1f z(t) is Ay and v(t) is By and i(t) is C;

then f1(t) = prz(t) + qro(t) + rii(t) + 5 @
1f z(t) is Ay and v(t) is By and i(t) is Cy 3
then fo(t) = poa(t) + @o(t) + rat) + 37 ¢

1f z(t) is A3 and v(t) is B3 and i(t) is C3 @

then f3(t) = psx(t) + qav(t) + rai(t) + s3

where z(t), v(t), and i(t) are input language variables;
Aj, Bj, and C; are fuzzy sets; f,(t), f2(t) and f3(t) are
output language variables; p;, q;, 71, and s; are the out-
put parameters of the fuzzy system, then Fig. 2 would
represent the AN F'1S structure for the first-order fuzzy
system. The W; and Wn; represent the degree of fit-
ness and the normalized fitness of the fuzzy rules, re-
spectively.

Fig. 2 AN F18 structure of a first-order fuzzy model
with three inputs and one output. For simplicity, only
three fuzzy rules, out of the 27 possible combinations,
are considered.

3 Experimental System

A Delphi MagneRide™ M R damper was used to per-
form a total of 29 tests [10] . An MTS™GT con-
troller testing system was used to control the position of
the damper. A Flextest™data acquisition system com-
manded the controller and recorded the position and
force of the M R damper, as well as the electric current
on the coil. A sampling frequency of 512 hertz was

used. The bandwidth of displacement was 0.5 - 14.5
Hz, which lies within normal automotive applications.
The experimental setup is shown in Fig. 3.

Fig. 3 Experimental setup.

Eight of the 29 tests were chosen for this study. In
the experiments, the electric current, i(¢), patterns were
Stepped Increments (SC), Increased Clock Period Sig-
nal (1CPS), Pseudo Random Binary Signal (PRBS),
and Amplitude PRBS (APRBS). Road Profile (RP)
signals were used as the displacement, z(¢), input pat-
tern. The RP signals reach a maximum amplitude of
0.5 in and emulate the dynamics of a damper used in
automotive applications. Various replicates of the ex-
periments were performed and used as validation data.
The specific patterns of the eight experiments are shown
in Tab. 2. Fig. 4 shows the patters used for experiments
three and four. For experiments six to eight, stepped
increments of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A, each
with a duration of 30 seconds, were utilized. The seven
replicates for the last three experiments correspond to

F(t) the seven constant current stepped increments.

Displacement (in)
o
Displacement (in)
=]

Current (A)

6 - n w
Current (A)
- N

1 2 3 4 1 2 3 4
Time (sec) Time (sec)

(a) Exp. 3. (b) Exp. 4.

Fig. 4 Displacement and electric current patterns for ex-
periments 3 and 4. Both experiments were done using
an RP displacement pattern and PRBS and APRBS
electric current signals, respectively.

4 ANFIS Model

An AN F18 structure was proposed for modelling the
M R damper. Displacement, velocity, and electric cur-
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Tab. 2 Experiments

Displacement E. Current

Exp. | Pattern Pattern Replicates
1 Smooth Highway RP | ICPS 11

2 Smooth Highway RP [ APRBS 11

3 Smooth Highway RP | PRBS 11

4 Long Duration RP APRBS 3

5 Long Duration RP ICPS 4

6 RP SC 7

7 RP SC 7

8 RP scC 7

rent were used as inputs, and the damper force was the
output. The model resembles the one in Fig. 2, but
contains 27 fuzzy rules for all possible combinations of
inputs. Three Gaussian membership functions were uti-
lized to fuzzify each input. The outputs of the system
were selected as linear functions.

One ANF1S model was trained using the first repli-
cate of each set of experimental data after being normal-
ized. The training was done until the error decreased by
less than a threshold. Then, the eight trained ANF1S
models were validated using the experimental data. The
AN F1S models were named after the experiment with
which they were trained. Tab. 3 presents the average
ESR obtained by the models when validated with the
experimental data sets.

The box plots on Fig. 5 and 6 show the ESR ob-
tained by models 1 and 7. The figures present a box
and whisker plot with one box for each experiment. The
boxes have lines at the lower quartile, median, and up-
per quartile values. The whiskers are lines extending
from each end of the boxes to show the extent of the
rest of the data. Qutliers are data with values beyond
the ends of the whiskers.

Tab. 3 Average ESR by AN F'1S model and experi-
ment.

Model
Exp 1 2 3 4 5 6 7 ] 8
| 0.07 | 005 ] 0.12 7 022 | 0.21 | 0.10 | 0,10 | 0.10
2 009 | 006 | 0.11 | 0.10 } 0.10 | 0.08 | 0.08 { 0.08
3 033 | 036 | 0.08 | 035 [ 019 | 0.10 | 0.16 | 0.10
4 0.07 { 007 { 0.09 | 0.07 | 0.06 | 0.07 | 0.07 | 0.07
5 009 [ 012 | 0.10 | 0.12 | 0.08 | 0.08 | 0.08 | 0.08
6 022 { 090 ] 025 ] 0.78 | 045 | 0.06 [ 0.08 [ 0.09
7 053 ] 169 ] 0.68 1 204 | 199 | 0.09 [ 0.07 | 0.12
8 1.02 ] 896 | 1.07 | 1.47 | 062 [ 0.11 [ 007 [ 0.0§

5 Non-Linear Fuzzy Model

A TSK non-linear fuzzy model [11] was proposed for
the M R damper. Using the electric current as input for
the model, fuzzy rules were proposed as specified in Eq

»,

3.

1fi(t) is A; then f(t); = gj(z(t),»(t)) (5)

Notice that each output function f(t); depends on the
displacement and the velocity of the M R damper. A;

o
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Experiments

Fig. 5 ESR by experiment for AN F1S model 1. The
error of the model greatly increased when validated
with experiments 3 and 6 to 8.
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Fig. 6 ESR by experiment for AN F1S model 7. The
error of the model remained below 0.1 for all experi-
ments. The outliers on the validation with experiments
6 to 8 correspond to zero input electric current.

are fuzzy sets of 1. The output functions were selected
to be of the form of the semi-phenomenological model
for the M R damper in [9]. The model is shown in Eq.
6s

f(t); = c1j tanh (cg; (v(t) + c3; z(1)))

+cay (v(t) + c3; z(t)) ©)

where the coefficients ¢, ¢oj, ¢35, and cq; are to be
determined from experimental data.

The overall output force of the damper is computed as
specified by Eq. 7,

Y- WiG(E) £(8);

P -
O == w,aw)
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where W represents the membership degree of i(¢) on
each of the membership functions. As Eq. 6 only de-
pends on the displacement and velocity of the damper,
the coefficients were identified using experiments six
to eight. The fitting algorithm selected was non-linear
least squares and yielded one non-linear equation for
each of the seven electric current stepped increments
on the experiments. In this way, one non-linear fuzzy
model was obtained from experiment 6, one from ex-
periment 7, and one from experiment 8. The fuzzy
models were labeled according to the experiments with
which they were trained. Fig. 7 depicts the proposed
fuzzy structure.

As }‘—Mﬂﬂ(x,v)
A; ]L%fz(x,v)
ALI‘M’i?S(X,V)
As M(x,v)
As J—Vls—>{fs(x,v)
We fo(x,v)

6
Y3 LB

Fig. 7 Non-linear fuzzy model structure with one input
and one output. Seven possible input membership func-
tions are considered.

The input membership functions for each model were
defined as seven Gaussian functions with a variance
equal to 0.2 and means of 0, 04, 0.8, 1.2, 1.6, 2.1, and
2.5 A, respectively. Additionally, seven output func-
tions were selected in the form of Eq. 6 with coeffi-
cients previously identified.

The proposed models were validated using the eight
sets of experimental data. The box plots on Figs. § -
10 present the resulting £'S R by experiment.
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Fig. 8 ESR by experiment for fuzzy model 6. The er-
ror of the model remained below 0.12 for most of the
experiments. The variance greatly increased for exper-
iment 7.
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Fig. 9 ES R by experiment for fuzzy model 7. The er-
ror of the model constantly remained below 0.12. The
outliers on the validation with experiments 6 to § corre-
spond 1o zero input electric current.
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Fig. 10 ESR by experiment for fuzzy model 8. The er-
ror of the model constantly remained below 0.11. The
outliers on the validation with experiments 6 to 8 corre-
spond to zero input electric current.

6 Discussion

The ANF1S structure obtanined ESR values of
approximately 0.1 when trained using experimental
data with constant electric current stepped increments.
Nonetheless, the .S R variance increased considerably
when validated with constant electric current experi-
ments (Fig. 6). The outliers on the plot correspond
to experiments with zero electric current. On the other
hand, ANF1S structures trained using experimental
data with varying electric current could not predict the
output force of the damper when validated with con-
stant electric current inputs.

Surprisingly low ES R values were constantly obtained
by the proposed non-linear fuzzy structure. Excelent
results were seen with fuzzy model 6, except when val-
idated with experiment 7. With fuzzy models 7 and 8

87




88

the outliers observed on the resulting ESR validation
box plots correspond to experiments with zero electric
current. Additionally, for both proposed structures, the
ESR variance increased when validated with constant
electric current experiments.

Tab. 4 presents the average ESR obtained by both the
ANF1S and non-linear fuzzy structures. Notice that,
if classified by the average error, AN F1.5 models 6 to
8 and the three fuzzy models are the best options for
modelling the M R damper.

Tab. 4 Average 'S R by model.

[ Model Average ESR
ANFIS1 0.30
ANFIS?2 1.44
ANFIS3 0.30
ANFIS4 0.62
ANF1S5 0.45
ANFIS6 0.09
ANFIS7 0.08
ANF1S 8 0.09

Fuzzy 6 0.10
Fuzzy 7 0.09
Fuzzy 8 0.09

‘When comparing the complexity of the structures, the
proposed non-linear fuzzy model is crearly less com-
plex than the AN F'1S one. The first is composed of 27
rules, whereas the latter contains only seven. Nonethe-
less, the advantage of the AN F'18 structure lies in its
use of simple linear output functions instead of non-
linear ones.

The present study confirmed the work done in [5], [6],
and (7] for model fitting and extended it to experimen-
tal data. As mentioned in (6], it was proved that an
ANF18S structure can succesfully capture the dynam-
ics of an M R damper and can be a useful tool for con-
trol. In addition, the results obtained by the proposed
non-linear fuzzy structure extended the capabilities of
the model in [9] to varying electric current scenarios.

Further work may address the use of different phe-
nomenological models of the M R damper as output
functions for the non-linear fuzzy structure. Addition-
ally, the non-linear fuzzy model may benefit from the
inclusion of more input membership functions.

7 Conclusion

The results obtained showed that fuzzy-based mod-
elling can be a powerful method for describing the be-
havior of highly non-linear systems. As opposed to
rphenomenological techniques, fuzzy methods do not
requiere a profound knowledge of the dynamics of the
system. After validating the AN F'1S structures, exper-
iments with stepped increments of the electric current
allowed for a better training of the models and obtained
average E'SR values of less than 0.1. The proposed
non-linear fuzzy structure succesfully combined fuzzy
methods with semi-phenomenological modelling. The

three trained non-linear fuzzy models obtained average
ESR values of less than 0.1,
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