

Instituto Tecnológico y de Estudios Superiores de

Monterrey

Campus Monterrey

School of Engineering

Division of Mechatronics and Information Technologies

Graduate Programs

Master of Science

Major in Intelligent Systems

Thesis

CAN-based Network System for Speed Control of an

Autonomous Vehicle

by

Jesús Alfredo Del Bosque Garza

786850

Monterrey, N.L., December of 2010

©Jesús Alfredo Del Bosque Garza, 2010.

CAN-based Network System for Speed Control of an

Autonomous Vehicle

By

Jesús Alfredo Del Bosque Garza

Thesis

Presented to the Graduate Program in Information Technologies and Electronics

at the

Instituto Tecnológico y de Estudios Superiores de Monterrey

as partial fulfillment of the requirements for the degree of

Master of Science

major in

Intelligent Systems

Instituto Tecnológico y de Estudios Superiores de Monterrey

Monterrey, N.L., December 2010

Instituto Tecnológico y de Estudios Superiores de
Monterrey

Campus Monterrey

School of Engineering

Division of Mechatronics and Information Technologies
Graduate Programs

The committee members, hereby, recommend that the thesis presented by Jesús
Alfredo Del Bosque Garza be accepted as a partial fulfillment of the requirements to

be admitted to the degree of Master of Science, major in:

Dr. Ramon F. Brena Pinero
Director of Master of Science in Intelligent Systems

Division of Mechatronics and Information Technologies
December of 2010

VII

Table of Contents

1 Introduction .. 1

2 Methodology ... 9

2.1 Analysis and Characterization ... 11

2.1.1 Utilitarian Electric Vehicle .. 11

2.1.2 Ackerman Steering Mechanism ... 12

2.1.3 Kinematic Model ... 13

2.1.4 Motor Model .. 14

2.1.5 Electric Model ... 15

2.1.6 Millipak Controller ... 18

2.1.7 Network Controlled System ... 19

2.1.8 Controller Area Network ... 21

2.1.9 Programmable Automation Controller ... 34

2.2 Design ... 36

2.3 Implementation ... 39

2.4 Testing.. 43

2.4.1 Repeatability Test ... 45

2.5 Corrections and Modifications .. 49

3 Implementation .. 51

3.1 Wheel Speed Sensor .. 51

3.2 Modules and Interfaces ... 53

3.2.1 SPI-CAN Module .. 53

3.2.2 MCU Module ... 55

3.2.3 Millipak Interface ... 57

3.2.4 Wheel Speed Sensor Interface ... 59

VIII Table of Contents

3.3 CAN Nodes Description .. 60

3.3.1 Millipak CAN Node .. 60

3.3.2 Wheel Speed Sensor CAN Node .. 61

3.3.3 CompactRIO CAN Node ... 62

3.3.4 Node Mounting ... 62

3.4 CompactRIO .. 64

3.4.1 LabVIEW Project Configuration ... 64

3.5 Timing .. 66

3.6 RPM Measurement ... 66

3.7 Process Characterization .. 73

3.8 PID Control .. 74

3.8.1 PID Tuning ... 76

3.9 Fuzzy Logic Control .. 77

3.9.1 Fuzzy Logic System .. 78

4 Experiments and Results ... 83

4.1 CompactRIO PID Control ... 83

4.2 CompactRIO Fuzzy Logic Control ... 85

5 Conclusions ... 87

Appendix A Kinematic Model .. 91

Appendix B Motor Model ... 95

Appendix C Millipak Controller .. 97

Appendix D Wheel Speed Sensor... 103

References.. 105

IX

Figure List

Figure 1-1: Main elements of the control architecture for an AV as proposed by

Albores in [Albores, 2007]. ... 5

Figure 1-2: CAN control architecture for an AUV presented by [Zhao et al., 2010]. 6

Figure 2-1: Research development methodology. .. 9

Figure 2-2: The Johnson Industries Super Truck testing platform. 11

Figure 2-3: General layout of the vehicles mechanical composition. 12

Figure 2-4: The ICR created by the Ackerman mechanism. ... 13

Figure 2-5: Vehicles posture definition. .. 13

Figure 2-6: Equivalent circuit for the separately excited DC motor. 14

Figure 2-7: General representation of the main electric circuits of the vehicle. 15

Figure 2-8: Control circuit.. ... 16

Figure 2-9: Auxiliaries circuit.. .. 17

Figure 2-10: Electric motor circuit. ... 17

Figure 2-11: General representation of a Network Control System with induced

delays on the sensor and controller. .. 21

Figure 2-12: Devices, modules and electronic control units without a CAN bus

implementation require considerably more wiring in a system (left). 22

Figure 2-13: Different networks inside a common vehicle. ... 22

Figure 2-14: CAN bus representation in BMWs R1200 and K1200 motorcycles. 23

Figure 2-15: Domo’s CAN bus node architecture. ... 24

Figure 2-16: Transfer rate versus bus length for CAN bus over a twisted pair wire

medium. ... 25

Figure 2-17: Transmission lines CAN High and CAN Low with bus termination

resistors. .. 26

Figure 2-18: Logical levels over CAN bus. .. 26

Figure 2-19: OSI reference model. .. 28

Figure 2-20: Nominal bit time segments as defined by Microchip. 29

Figure 2-21: Nominal bit time segments defined by Philips. .. 29

Figure 2-22: Standard message frame format for the CAN protocol. 30

Figure 2-23: Extended message frame format for the CAN protocol. 30

Figure 2-24: State diagram for different error states a CAN node can have. 33

X Figure List

Figure 2-25: Structure of the cRIO embedded system. ... 35

Figure 2-26: Typical architecture for an embedded system using CompactRIO. 36

Figure 2-27: CAN Node basic structure. .. 37

Figure 2-28: Two different but equivalent implementations evaluated for the CAN

modules. ... 37

Figure 2-29: CAN nodes physical distribution along the vehicle. 40

Figure 2-30: Conceptualization for the CAN-based NCS implemented. 42

Figure 2-31: Testing conditions for the vehicle.. 43

Figure 2-32: Schematic of the developed CAN bus. ... 45

Figure 2-33: Repeatability test setup. ... 46

Figure 2-34: RPMs versus sample number are shown as results of the 50% of max

speed test. .. 47

Figure 2-35: RPMs versus sample number are shown as results of the 100% of max

speed test. .. 47

Figure 2-36: a) Slightly affected signal quality. b) Undesired impulses between pulse

signals generated during the operation of the vehicle. 50

Figure 2-37: Signal quality improvement from the usage of twisted pair wire. 50

Figure 3-1: ITR8102 opto-interrupters used for the wheel speed sensor. 52

Figure 3-2: Third version of the wheel speed sensor, using the rectangular perforated

metal strip. .. 52

Figure 3-3: SPI-CAN module electric schematic. ... 54

Figure 3-4: SPI-CAN module PCB schematic. ... 54

Figure 3-5: SPI-CAN module. .. 55

Figure 3-6: MCU module electric schematic. ... 56

Figure 3-7: MCU module PCB schematic. .. 56

Figure 3-8: MCU module. .. 57

Figure 3-9: Millipak interface electric schematic. .. 58

Figure 3-10: Millipak interface PCB schematic. .. 58

Figure 3-11: Millipak interface. ... 58

Figure 3-12: Wheel speed sensor interface electric schematic. 59

Figure 3-13: Wheel speed sensor interface PCB schematic... 59

Figure 3-14: Wheel speed sensor interface. .. 60

Figure 3-15: Millipak node mounting and main CAN bus line. 63

Figure 3-16: Wheel speed sensor node mounting showing Millipak controller. 63

Figure 3-17: Top view of both nodes on the vehicles back part. 64

Figure 3-18: Programming levels of a cRIO project. ... 65

Figure 3-19: On top, RPMs are measured using the period method. Below,

measurements are made using the pulse count method. 67

Figure List XI

Figure 3-20: Plots from top to bottom; the period method, the pulse count method,

mode filtered pulse count method, median filtered pulse count method

and median filtered period method. .. 69

Figure 3-21: Close-up on the constant speed section of figure 3-20. Again, plots from

top to bottom; the period method, the pulse count method, mode filtered

pulse count method, median filtered pulse count method and median

filtered period method. ... 70

Figure 3-22: Delayed signal induced by the application of the median filter on the

pulse count method measurement. ... 71

Figure 3-23: Delayed signal induced by the application of the median filter on the

period method measurement. .. 71

Figure 3-24: Systems response to a 100% change in speed demand. From top to

bottom, median filtered pulse count method, pulse count method and

period method. .. 72

Figure 3-25: The systems response curve used for characterization. Each sample

marked on the horizontal axis corresponds to a 30 millisecond interval. 73

Figure 3-26: Block diagram of a typical NCS with induced delays. 75

Figure 3-27: Membership function for the input variable Error. Error units are in

RPMs. An error bigger than 28 RPMs (either positive or negative)

represents a large error. The zero error range is defined in conjunction

with the Positive and Negative error range, membership varies depending

on the three different linguistic terms. ... 79

Figure 3-28: Membership function for the input variable Error Change Rate. Error

units are in RPMs. As with the other input variable, 5 terms are used to

describe the state of the error change rate variable. 80

Figure 3-29: Membership function for the output variable CAN Data Changes. 80

Figure 3-30: Fuzzy Space described by the rule base. ... 81

Figure 4-1: Closed Control Loop response with PID controller. Showing sample time

(each time sample is equal to 50 milliseconds) on the horizontal axis

versus percentage of maximum on the vertical axis. 84

Figure 4-2: Closed Control Loop response for setpoint change with PID controller

after Z-N tuning. ... 84

Figure 4-3: Closed Control Loop response for setpoint change with PID controller

after fine tuning the Z-N method. ... 85

Figure 4-4: Closed-loop response with fuzzy logic controller. 86

Figure 4-5: Closed-loop response with fuzzy logic for setpoint change. On the upper

part of the graph a setpoint beyond the controllers output capacity was

desired and thus not met. .. 86

XII Figure List

XIII

Table List

Table 2-1: Standard specifications for the Millipak electric controller. 18

Table 2-2: Preset 7 description. ... 19

Table 2-3: I/O configuration for the Millipak. .. 19

Table 2-4: Analog functions for the Millipak ... 19

Table 2-5: High Speed CAN cable requirements. .. 41

Table 2-6: Results for the left wheel ... 48

Table 2-7: Results for the right wheel .. 48

Table 3-1: Message structure accepted by the Millipak CAN node. 60

Table 3-2: Message structure broadcasted by the sensor CAN node. 61

Table 3-3: Process parameters: dead time , time constant and 74

Table 3-4: PID tuning parameters. ... 76

Table 3-5: ITAE tuning parameters calculated. ... 76

Table 3-6: Ultimate gain PID tuning parameters. ... 77

Table 3-7: Relationship between error, error change rate, and process variable. 79

Table 3-8: Rule base used for the FS. ... 80

XIV Table List

XV

Abstract

The work hereby presented deals with the partial automation of a

utilitarian ground electric vehicle; in particular with the development and

implementation of a Network Control System (NCS) using a Controller

Area Network (CAN) based bus for speed control. This thesis highlights

the use and development of standardized components and protocols in

order to provide an easily upgradeable platform for future work, with

enough robustness, reliability, and efficiency.

A Programmable Automation Controller (PAC) is used to develop and

execute the speed control algorithm, and eventually can act as a human-

machine interface via a personal computer. The kinematics involved are

those of a rear-wheel differential driven conventional vehicle. An electric

power controller is used to manage current and voltage flowing to/from the

separately excited electric motor driving the vehicle. To develop the

Network Control System based on the CAN protocol, CAN modules and

additional specialized interfaces were manufactured, as well as CAN

compliant cables and CAN hubs. A wheel speed sensor which functions as

an incremental optical encoder was manually assembled in the Robotics

Laboratory at the Tecnologico de Monterrey (ITESM). The CAN network

is fully operational and has been tested proving to be a reliable channel for

critical control information. The speed control algorithm is based on the

proportional–integral–derivative (PID) controller model; tuning

parameters were calculated and fine tuned via trial and error testing. Also,

a fuzzy logic controller was developed to compare its performance against

that of the PID.

Three major distinctive phases involve this investigation; starting with

the development and testing of the CAN network, followed by the

programming of the speed controller algorithms and finally the integration

of both into a complete Network Control System.

1

Chapter 1

1 Introduction

Demand for robotic applications has increased in areas that range from

exploration to entertainment [Guo, 2008]. The development of mobile robots on the

educational, private and military sectors has driven focus for research; modern

trends indicate the use of robotic applications for working environments in which the

tasks involved are dirty, dull or dangerous [Braybrook, 2004; Álvarez et al., 2006] for

operators, making necessary the automation of functions previously done by humans.

The development of autonomous mobile robots has demonstrated to be a challenging

topic in the fields of computer science, electrical and mechanical engineering.

Automation deals with the detachment of robots from their human operators.

Decisional autonomy in robotics is intended to reduce the number of remote

operators, change their roles and decrease their workload [Barbier et al., 2009].

During the automation process, an early and crucial stage is the selection and

installation of communication channels, sensors and actuators (instrumentation
1

)

which will later provide the means for the robot to interact with its surrounding

environment.

Autonomous vehicles (AXV
2

 or AV) are a type of autonomous mobile robots
3

 that

have gathered significant attention due to characteristics such as precision,

1
 According to the International Society of Automation (ISA) the official definition for instrumentation

(ISA standard S51.1) is: A collection of instruments or their application for the purpose of observation,

measurement, control, or any combination of these [ISA, 1992].
2 X denotes medium for navigation, e.g. AGV: Autonomous Ground Vehicle; AAV: Autonomous Aerial

Vehicle; AUV: Autonomous Underwater Vehicle; ASV Autonomous Surface Vehicle [Barbier et al.,

2009].
3
 A distinction is made between these concepts. The term autonomous vehicle usually means the

conversion of an existing utilitarian vehicle into an AV; here all or some of the previous knowledge of

the vehicles manufacturer is preserved. Whereas a mobile robot usually refers to a robot conceived

from scratch, where the design includes the creation of the mobile platform as well as the components

needed for automation; highly customized applications can be achieved in this manner [Albores, 2007;

Gonzalez, 2004].

2 Chapter 1: Introduction

repeatability, speed, and most of all, the ability to perform specialized tasks on

hazardous environments, where human integrity might be at risk.

A common practice to develop an AV is the instrumentation and automation of

utilitarian vehicles, where special care should be taken during the design and

implementation of the underlying core information systems of the AV. Reliable

protocols and components should be applied to ensure proper and successful

operation. Furthermore, as technological advance continues to grow exponentially, to

extend the lifespan of applied solutions, widely accepted standardized elements

should be employed.

According to DARPA
4

 “An autonomous ground vehicle is a vehicle that navigates

and drives entirely on its own with no human driver and no remote control. Through

the use of various sensors and positioning systems, the vehicle determines all the

characteristics of its environment required to enable it to carry out the task it has

been assigned”.

Over the last two decades one of the main topics of the scientific community,

dealing with human-robot interaction environments, has been the relief of disaster

scenarios. International associations such as the Institute of Electrical and

Electronics Engineers (IEEE) have developed specific research divisions for this area.

The term rescue robotics involves systems that are designed to support human first

response units during dynamic disaster situations. Applications for rescue robotics

include: information gathering of the disaster; hazardous material handling; search,

diagnosis and rescue of survivors; quantitative investigation of the damage extent;

support for recovery actions and help at evacuation centers [Tadokoro, 2009]; leaving

people with the ability to concentrate on high priority actions.

The rescue robotics area requires autonomous vehicles capable of withstanding

harsh environmental conditions. High quality standardized components that are able

to operate during vibrations, in hot or cold environments, with high

electromagnetical noise, humidity, etc., along with complementary software, such as

standard communication and navigation protocols, must be used to prototype the

AVs acting on these environmental conditions.

Controller Area Network (CAN) is a serial communication protocol that can be

used for real-time distributed control. This bus architecture has proven to be a

4
 DARPA is the Defense Advanced Research Projects Agency created in 1958 by the United States of

America; although mostly focused on military technological research, its projects have played a

fundamental part on the development of new technologies widely implemented outside military

applications [Darpa, 2008].

Chapter 1: Introduction 3

confident medium for modular configurations. With CAN bus, it is possible to

implement a Network Controlled System (NCS) or field bus [Davis, 2010] for closed-

loop control with relatively low cost and high efficiency. Advantages like less wiring,

modularity and interoperability arise from the adoption of this technology.

The automation process can yield as a result functional but complex control

architectures. Attempts at the development of an AV, without the application of

standardized components and protocols, often result in customized solutions, where

only the developers are able to fully understand the know-how involved.

The communication protocol used not only defines software constraints; hardware

considerations, like cable types, cable length and network topology, are also

dependable on protocol selection. Complex architectures usually require complex data

pathways (physical connections), making wiring inside the vehicle a major concern.

Maintenance and replacement of customized components, as well as inclusion of new

elements may result in a challenging task. The lack of consideration for upgrading

capabilities makes these solutions prone to obsolescence.

Therefore, an issue arises during the early development of an AV. When selection

of the components for the system’s architecture is not based on standards;

compatibility, interoperability, robustness, reliability and quality can’t be assured;

compromising future implementations.

The use of standard certified elements guarantees a general understanding of the

applied technology, providing a strong, reliable and common groundwork while

maintaining important know-how information for further development and

simplifying implementation, maintenance, upgrading times and costs of the system.

The work presented here addresses to prove that a Network Control System based

on the CAN standard specification is reliable and robust enough for the development

of the control architecture of an autonomous ground vehicle. Using standardized

components and protocols that provide minimum cost and a relatively easy

implementation, a full control loop can be established.

The objective of this thesis is to successfully develop an in-vehicle network based

on the CAN protocol and use it to integrate a closed control system for the speed

control module of the vehicles architecture. By developing only the speed control

module and demonstrating characteristics such as modularity, interoperability and

robustness; scalability can be achieved, thus the general principle behind the

development of the complete control architecture can be proved.

4 Chapter 1: Introduction

In particular the objectives in this research are:

1. Development and implementation of a CAN network for the vehicle.

2. Development of modular CAN interfaces.

3. Subdivision and organization of the system into a distributed network

composed of different CAN nodes.

4. Development of a closed-loop NCS with expanding capabilities.

5. Development of a programming solution for the speed control module of the

system architecture using a PAC.

6. Establishment of a common ground for future development.

The functions performed by the vehicle constitute different abstractions within the

systems architecture; a basic structure contains methods for environmental

perception, action planning and control. While these are all tasks performed by

humans during a vehicles standard operation, other no so evident functions have to

be performed as well. Figure 1-1 shows the basic elements in an AV architecture,

where the speed control module is highlighted inside the red square. The complete

architecture is composed of different modules, where their interactions are described

by information sharing communication channels.

Movement of the vehicle can be traced on a 2-D plane, where localization at any

given time can be described by its coordinates and its orientation . Control is

performed in the vehicles trajectory
5

 in function of its steering angle and its

velocity
6

 .

The vehicle used during this research can be modeled beside its Ackerman steering

mechanism. Velocity control is crucial for overall operation and efficiency as it plays a

major role inside the kinematic model of the vehicle, typically used with dead

reckoning techniques for pose estimation and steering control [Borenstein, 1994].

Being the base for speed estimation, the velocity control module constitutes a

fundamental element inside the AVs architecture.

5
 A trajectory is defined as an ordered collection of points, composed by positions and orientations

[Albores, 2007].
6
 Velocity is defined as the rate of change of displacement over time; it is a vector, which means that

both magnitude and direction are needed to define it. Speed is the scalar absolute value of velocity

which only deals with the magnitude of the vector.

Chapter 1: Introduction 5

Figure 1-1: Main elements of the control architecture for an AV as proposed by

Albores in [Albores, 2007].

Although this thesis deals with speed, it is simple to measure velocity once its

magnitude is known, since only direction of the moving vehicle is needed.

The standardized CAN protocol makes possible the integration of information

managed by the real-time network with the high computational power of a

Programmable Automation Controller (PAC), which offers the industrial ruggedness

of a specialized Programmable Logic Controller (PLC) combined with the versatility

of a Personal Computer (PC).

The development of a control network using the CAN protocol for the AV to

effectively navigate with controlled speed required selection of standard components

and design, fabrication and implementation of elements that range from interfaces,

to cables and sensors, as well as programming and development of control algorithms

within the PAC. The network is also intended to function as a communication

channel for future control loops inside the vehicle. An example of a control

architecture based on the CAN bus protocol is presented in figure 1-2. Comparing

with figure 1-1, it is easy to observe the evident level of simplification achieved by

using a bus topology.

6 Chapter 1: Introduction

Figure 1-2: CAN control architecture for an AUV presented by [Zhao et al., 2010].

The scope of this thesis covers the implementation of the CAN communication

network inside the vehicle for integration of the modules composing the system’s

architecture. While the complete architecture is integrated by different modules, in

this research only the speed control module is developed.

The main contribution achieved is the establishment of a complete closed control

loop, composed by three different CAN nodes.

This thesis is divided in 5 chapters and several appendices. Below is brief

description of such chapters.

Chapter 2 presents the methodology followed for the successful development and

implementation of a Network Control System based on the CAN protocol for speed

control of the utilitarian electric vehicle, used in this thesis. A description of the

elements in such methodology is presented.

Chapter 3 presents the implementation of the key elements developed for this

project. This chapter extends the details of elements generally presented on chapter

2.

Chapter 4 demonstrates the experiments done during this research. Results on

these experiments are shown to prove that the main objectives of this thesis were

fulfilled.

Chapter 1: Introduction 7

Finally, Chapter 5 shows the conclusions of this work. Evaluation of the elements

developed is presented as well as possible improvements and implementations for

future work.

A variety of appendices are also provided to describe auxiliary elements mentioned

along this document.

8 Chapter 1: Introduction

9

Chapter 2

2 Methodology

The methodology followed is shown in figure 2-1, it is similar to the one presented

by Gonzalez in [Gonzalez, 2004]. Some of the steps involved were done separately for

the implementation of the CAN network and for the speed controller. This entire

research was done with aid from members of the E-Robots research group from the

Robotics Laboratory at Tecnologico de Monterrey.

Figure 2-1: Research development methodology.

10 Chapter 2: Methodology

Analysis and Characterization:

A breakdown of the mechanical and electric systems composing the vehicle is

made. Documentation provided by different manufacturers is thoroughly examined to

fully understand the elements involved and their limitations. Characterization of the

vehicle is done; different models are constructed, for instance the electric model,

consisting of the schematic diagram of the electric wiring configuration; and the

mechanical model, including the kinematic model of the vehicle and the dynamical

model of the motor driving the vehicle.

In a similar manner, research is done concerning network controlled systems in

order to understand their structure and characteristics. The CAN protocol is revised

to understand its performance, restrictions and standard specifications.

Design:

Hardware and software solutions for new systems or modifications to existing ones

are designed during this phase. At this point, selection of the necessary elements to

implement a network based on the CAN protocol for closed loop speed control takes

place.

Simple experimental testing is done on these designs in order to avoid

malfunctioning during the implementation phase.

Implementation:

During the implementation phase, all designs conceived and tested on the previous

stage are developed. Manufacturing of the necessary components for automation,

modifications required on existing elements, as well as software programming is

done. The complete NCS is assembled. After this phase the first prototype emerges

and is ready for testing.

Testing:

The goal of this stage is to measure the performance obtained by the designed

implementation and improve it through several corrections on the system.

Tests are performed in two manners; first, laboratory tests conducted in a

controlled environment, where elements such as the CAN network and the speed

control may be evaluated independently. Second, field testing, where the interaction

of all the elements constituting the control system is evaluated as a whole, acting on

the vehicle, providing it with certain degree of autonomy.

Chapter 2: Methodology 11

Corrections and Modifications:

Corrections and modifications help with the improvement of the control system;

depending on the magnitude of such actions, the methodology can be reset to the

design, implementation or testing phases. Once all tests prove successful, a prototype

vehicle with autonomous speed control emerges.

2.1 Analysis and Characterization

2.1.1 Utilitarian Electric Vehicle

The vehicle used for this research is characterized with non-holonomic constraints

due to its Ackerman steering mechanism; this means that rolling exists without

lateral slipping between the wheels and the ground [Habumuremyi, 2005]. Non-

holonomic constraints restrain the vehicle from moving instantaneously in any

direction; they involve a higher number of effective degrees of freedom (DOF) than

controllable ones. In order to change orientation, the wheels need to change direction

and the vehicle has to move either forward or backward. The maneuverability of the

vehicle is described by the degree of mobility , which deals with the degrees of

freedom that can be manipulated for the vehicles motion; and the degree of

steeribility , which deals with the number of centered orientable wheels that can

be steered independently to steer the vehicle. The degree of maneuverability , is

the overall degrees of freedom that the vehicle can effectively manipulate, which is

simply the sum of the mobility and steeribility measures [Xiao, 2008; Campion et al.,

1996]. For the case of an Ackerman steered vehicle the degree of mobility is 1 and the

degree of steeribility is also 1 (making the degree of maneuverability,

), this is why car-like vehicles are said to have 2 effective DOF.

The utilitarian vehicle employed is the Super Truck model from Johnson

Industries, originally designed to work on mining environments. It is shown in figure

2-2.

Figure 2-2: The Johnson Industries Super Truck testing platform.

12 Chapter 2: Methodology

Some characteristics of the Super Truck include:

• 1600 lb payload.

• 17 mph maximum speed (14 mph loaded).

• 5Hp motor.

• 11 gauge steel body.

• 600 ampere Solid State Controller.

• Six deep cycle battery, 36-volt system.

The vehicle follows a mid-engine rear-wheel drive layout; with a differential on the

motors output shaft for torque transmission between the rear driving wheels, as

shown in figure 2-3.

Figure 2-3: General layout of the vehicles mechanical composition. [Habumuremyi,

2005]

2.1.2 Ackerman Steering Mechanism

The absence of lateral slipping makes Ackerman steering suitable for low speed

vehicles. Wheels on the inside and outside of a turn move at different angles,

generating an instantaneous center of rotation (ICR) that travels according to the

vehicles position and orientation. The projection of the steering arms for each

orientable wheel creates a line that intersects at the middle of the back axis of the

vehicle; a car-like vehicle with this geometry reduces its model complexity to that of a

bicycle, simplifying the mathematical formulation.

Chapter 2: Methodology 13

Figure 2-4: The ICR created by the Ackerman mechanism.

2.1.3 Kinematic Model

For an base frame, the mobile platform system can be defined as

with its origin at the middle of the vehicle’s rear axis. The vehicles orientation is

measured with respect to . Position and orientation may be described at any time

by: . A simplified bicycle model assumes one mobile centered wheel with

an angle measured with respect to , that is typically taken as the average

between the orientation angles of each of the two steering wheels.

Figure 2-5: Vehicles posture definition.

The kinematic model uses the vehicle’s velocity for position estimation, as it can be

seen from the model’s matrix form. The velocity control module is a critical aspect of

14 Chapter 2: Methodology

the control architecture, since velocity affects proportionally the kinematic model,

thus affecting position estimation. Detail on the kinematic model is presented in

Appendix A.

 (2.1)

2.1.4 Motor Model

The vehicle has a 5HP, 36 volt separately excited direct current electric motor as

the main driving mechanism. An electric motor takes energy as an input and

produces torque (or speed, depending on its operating curve) as an output. Speed and

torque depend on the voltage applied on the motor and the current it draws. In a

separately excited DC motor, the field current is supplied by a constant voltage

supply; the field winding excites the field flux while the rotor’s brushes and

commutator supply the armature current. When a separately excited motor is excited

by a field current and an armature current is flowing in the circuit, a back

electromagnetic field and a torque are developed at a particular speed

[Salam, 2003]. Figure 2-6 shows the separately excited motor’s equivalent circuit.

Figure 2-6: Equivalent circuit for the separately excited DC motor. [Salam, 2003]

Detail on the dynamical model for obtaining the motor’s transfer function is

presented in Appendix B. The transfer function for the electric motor is:

 (2.2)

Chapter 2: Methodology 15

The motor model describes a first order system. A proportional-integral-derivative

controller is suitable to control this type of systems without much complexity; hence

the selection of such control algorithm for the physical system is theoretically

validated by the model.

2.1.5 Electric Model

To understand how the electric vehicle works, the electric diagram representing its

circuitry was constructed. This electrical model shows the connections between the

different electric elements inside the vehicle.

Special interest is taken on the power controller installed on the vehicle. The

Millipak controller manufactured by Sevcon, functions as a power interface between

the control lines and the motor. A general representation of the main elements in the

circuit is shown in figure 2-7.

Figure 2-7: General representation of the main electric circuits of the vehicle.

The vehicle’s electric circuit can be classified in three distinctive parts; the main or

control circuit, the auxiliaries’ circuit and the motor’s circuit.

16 Chapter 2: Methodology

The control circuit occupies the major part of the vehicle’s wiring. The accelerator

signal, fail safe switch in the accelerator pedal and functions located on the manual

control panel like the on/off key switching of the system, lights operation,

displacement direction selection (forward/reverse) and emergency stop are part of the

control circuit.

The auxiliaries’ circuit connects secondary elements that are not necessary to

drive the vehicle; these include the horn, the battery charge meter and the control

mechanism in charge of lowering and raising the vehicle’s cargo bed. Devices on this

circuit are not interrupted when the emergency stop is pressed.

The connections between the 5HP driving motor and the Millipak power controller

are fairly simple. The Millipak controller internally regulates the current and voltage

applied to the motor’s terminals according to control signals sent through connector

B (shown in figure 2-8).

Figure 2-8: Control circuit. Elements contained in the front control panel and

accelerator pedal are shown inside the dashed lines. The relay connects the positive

terminal of the Millipak controller to the batteries once the key has been switched to

the ON position.

Chapter 2: Methodology 17

Figure 2-9: Auxiliaries circuit. Elements in the auxiliaries’ circuit are not required to

drive the vehicle. The horn, battery meter and the motor for the vehicle’s cargo bed

are independent of the elements in the other circuits.

Figure 2-10: Electric motor circuit. The batteries positive and negative terminals are

connected to the respective B terminals of the Millipak controller. Within the figure

are shown the connections between Millipak and motor terminals.

18 Chapter 2: Methodology

2.1.6 Millipak Controller

The Millipak controller from Sevcon regulates the power administered to the

separately exited electric motor (SEM) on board the Super Truck. All the information

presented in this section was taken from [Sevcon, 2004] and through contact with

technical assistants at Sevcon. Some of the characteristics of the controller are shown

in table 2-1:

Table 2-1: Standard specifications for the Millipak electric controller.

Characteristic Rating

 Battery voltage 24/48 VDC

 Peak current 500 A / 600 A

 Continuous current 180 A /200 A

 Field current 40 A

 Max. power 6.5 kW

 Operating temperature -30 to + 40ºC

 Storage temperature -40 to + 70ºC

 Ingress of dust and water IP66

 Humidity 95% (at 60ºC)

 Vibration 6G

 Switching frequency 16 kHz

Two types of connectors are located on the Millipak. First, connector A, for

diagnosis and programming via a proprietary tool from Sevcon, denominated

“calibrator”. Second, connector B, where control signals are received in order to drive

the electric motor. Refer to Appendix C for details.

The digital inputs, analogue inputs and contactor drive outputs available on

connector B can be configured in a number of ways to suit various applications.

Different presets are preprogrammed by Sevcon. To operate the controller one of

these presets has to be selected. Once a preset has been selected the pins on

connector B are allocated according to the preset’s definition and a list of parameters

or personalities defining certain characteristics on the controller become available for

user modification.

Preset number 7 was used to configure the controller during the development of

this research, because its description fits the operating purpose of the vehicle. The

value of this preset allocates the different pins on connector B as shown in table 2-3:

Chapter 2: Methodology 19

Table 2-2: Preset 7 description.

Digital

Function
Description

7
Ride On vehicle with Speed Cutback 1 and 2 switches and external LED

drive.

Table 2-3: I/O configuration for the Millipak.

Digital Function 7

Forward B2

Reverse B3

FS1 B4

Seat B5

Speed Cutback 1 B6

Speed Cutback 2 Bw

Line Contactor B8

External LED B9

Bw refers to pin B11, which can be used as a digital input if analog input 2 is

configured as a digital input also. Analog functions are presented in table 2-4; analog

input configuration 3 was used, leaving B10 as the accelerator input and B11 as a

digital input.

Table 2-4: Analog functions for the Millipak

Analog Function 3

Accelerator B10

Digital B11

Footbrake

The calibrator tool was used for the system’s in-depth analysis and personal

configuration. Refer to Appendix C for details on the Millipak configuration

information.

2.1.7 Network Controlled System

Network Controlled Systems (NCS) are a type of distributed control system in

which control loops are closed by means of an information network. The defining

feature of an NCS is that information is exchanged among components using the

20 Chapter 2: Methodology

network. This type of setup offers several advantages over traditional point-to-point

control solutions, some which are: modularity and flexibility for system design;

simple and fast implementation; ease of system diagnosis and maintenance;

decentralized control and increased system agility. These advantages are translated

into characteristics such as distributed processing, interoperability, reduced wiring,

small power requirements and complexity of the physical connections, as well as the

possibility of information exchange between different control loops; all which

ultimately represent a reduction in costs [Huo et al., 2004; Chow & Tipsuwan, 2001].

In a NCS, sensors and actuators are connected directly to the desired plant and also

to the real-time network. The controller, while physically separated from the plant, is

also connected to the real-time network, closing the control loop [Lihua et al., 2008].

Proper interconnection of every device on the network depends on the protocol being

used. A general representation of the elements included in a NCS is shown in figure

2-11.

Systems controlled by an NCS can be modeled as “discrete-continuous” with time

varying elements induced by the network. These induced delays depend on different

factors, like network type, cable lengths, and baud rates used. The medium access

method affects time variations since every device (referred as a node) competes for

broadcasting time on the network, where collisions are meant to happen. Collision

handling is an important aspect that depends on the protocol used. Thus there exists

a trade-off between the finite bus capacity and the performance of the control loop.

Induced time delays on an NCS can be summarized as the controller-actuator

delay () and the sensor-controller delay (), as well as the computational time

required by each device performing control operations over the network [Lihua et al.,

2008]. The NCS designer should account for synchronization issues; different

configurations usually vary depending on whether the nodes activity is event-driven

or time-driven.

Chapter 2: Methodology 21

Figure 2-11: General representation of a Network Control System with induced

delays on the sensor and controller. While sensor and actuator are directly attached

to the process plant the controller is physically separated but still connected to the

other elements through the network.

2.1.8 Controller Area Network

Data management and communication systems play an important role within the

vehicle’s architecture. A reliable communication system improves reaction times and

minimizes uncertainty. Controller Area Network (CAN) is a vehicle bus standard for

distributed environments originally designed by Robert Bosch [Bosch, 1991] to

provide robust serial communication for a vehicle’s on board network. The CAN bus

protocol offers standard network technology, with high error checking features. Some

of the main features of CAN include the ability to use decentralized pre-processing by

the inclusion of a microcontroller, which results in less computational work for

higher level units. CAN is a broadcast serial bus, based on message exchange between

different nodes.

Because of its flexibility it is easy to add and remove CAN nodes from a bus or

alter the way a CAN node behaves without disrupting communication on the entire

network. The ability to develop and test a few CAN nodes and then scale up to dozens

is pragmatically convenient [NI, 2009a].

22 Chapter 2: Methodology

Figure 2-12: Devices, modules and electronic control units without a CAN bus

implementation require considerably more wiring in a system (left) [NI, 2009a].

In modern day vehicles several different networks interact with CAN bus. Usually

the CAN network controls all real-time critical functions, such as ABS and traction

control. Local Interconnect Network (LIN) is used as a sub-bus of CAN, typically for

non-safety related critical tasks. The Media Oriented System Transport (MOST), also

acting as a sub-bus of CAN, is used to control automotive multimedia. All networks

within the vehicle are controlled by a main control system, which also acts as a

gateway for all networks to share data [Leen & Heffernan, 2002]. Figure 2-13 shows

vehicle network integration, where CAN functions as the main or top network and

two different sub-networks operate on less critical functions.

Figure 2-13: Different networks inside a common vehicle [Leen & Heffernan, 2002].

Chapter 2: Methodology 23

CAN bus technology has made its inclusion not only on automobiles but also in

other means of transportation, like motorcycles. BMW uses CAN bus for

communication between proprietary control modules on its R1200 and K1200 models.

These control modules share a data network through the CAN bus. An example is the

interconnection between the Engine management system, called BMS-K (BMW

Motor-Steuerung mit Klopfregelung); the Central Chassis Electronics, called ZFE

(Zentrale Fahrzeugelektronik) and the Instrument Panel (I-Cluster). Additional

modules like the Anti-lock braking system called ABS, and the Alarm System called

DWA (Diebstahl Warnanlage) also interact through the CAN bus. The ZFE controls

the lights, heated accessories, horn, radio, accessory socket, and cruise control based

on inputs from handlebar switches. Control inputs go directly to ZFE, and control

outputs go from ZFE to individual components. The BMS-K inputs include the

starter button, kill switch, sidestand switch, clutch switch, gear position indicator,

and various engine sensors. Outputs control the starter, fuel pump, injectors, ignition

coils, and warning lights. Finally, the I-Cluster displays information to the rider; it

has only one physical input, the clock setting button, while the outputs are the

various instruments and warning lights [Largiader, 2006]. Information is

broadcasted to the network by each module, but only modules that require it will act

upon it. The I-Cluster is a good example of a CAN control module, because it gets all

of its information from other control modules through the CAN bus rather than

receiving it directly as an input from sensors and switches. Because of this the I-

Cluster panel can be removed and replaced without interrupting any other control

module on the network. Figure 2-14 shows a schematic of the CAN network shared

by the control modules on a BMW motorcycle.

Figure 2-14: CAN bus representation in BMWs R1200 and K1200 motorcycle models

[Largiader, 2006].

24 Chapter 2: Methodology

Besides its application on vehicles, the CAN protocol has lately penetrated the field

of robotics. CAN bus is popular as a real-time communication network for devices

within humanoids. For example, the Rh-1, a 1.3m height 21 degrees of freedom

humanoid robot uses CAN bus for communication between some of its electronic

components [UC3M]. Toni, another humanoid that was constructed by the

University of Freiburg [Behnke, 2006] to participate in the robotic soccer challenge

RoboCup; uses CAN bus to establish communication between all of its onboard

microcontrollers. Domo, a humanoid intended for research in manipulation by

incorporating force sensing modules in its joints, uses CAN bus as a communication

channel between different digital signal processing microcontrollers located all over

its body and the higher level computational system [Edsinger & Weber, 2004].

Figure 2-15: Domo’s CAN bus node architecture [Edsinger & Weber, 2004].

CAN Bus Protocol Overview

CAN is able to provide real-time and fault tolerant features which make it suitable

for control applications. Baud rate varies with bus length, where the highest baud

rate can be achieved with a maximum length of 40 meters over a twisted pair wire,

according to ISO standard specifications. The relationship between transfer rate and

bus length is depicted in figure 2-16.

Chapter 2: Methodology 25

Figure 2-16: Transfer rate versus bus length for CAN bus over a twisted pair wire

medium [Azzeh, 2005].

CAN bus is based on the Open System Interconnection (OSI) model created by the

International Standards Organization (ISO), meaning it follows a layered approach,

which enables interoperability with products from different manufacturers. The CAN

protocol implements the two lower layers of the OSI model; data link and physical

layers [Pazul, 1999] described next.

Physical Layer

The Physical Layer is responsible for interconnection between nodes in the

network; it handles the transmission of electrical impulses across the communication

medium and deals with timing, encoding and synchronization of the soon to be

transferred bit stream.

A bit signal on the bus line can take two possible representations: recessive, which

only appears on the bus when the nodes send recessive bits; and dominant, sent only

by one node to be heard on the bus. This means that a dominant bit sent by one node

can overwrite recessive bits sent by other nodes. This feature is used for bus

arbitration.

A differentially driven pair of wires identified as CAN High and CAN Low provide

reliable signal transmission despite low power levels; they are usually terminated

with 120-ohm resistors to eliminate signal reflections at the end of the bus line and

ensure correct voltage levels.

26 Chapter 2: Methodology

Figure 2-17: Transmission lines CAN High and CAN Low with bus termination

resistors [Corrigan, 2008].

For the two-wire bus, the recessive bus state occurs when the CAN Low and CAN

High lines are at the same potential (2.5V), and the dominant bus state occurs when

there is a voltage difference of ± 1V (CAN L = 1.5V and CAN H = 3.5V). The CAN

bus remains in the recessive state while it is idle [Richards, 2005]. Differentially

driven signals provide an advantage when dealing with voltage spikes; if a spike is

encountered both line conductors are equally affected, maintaining the voltage

differential between both wires, providing a certain degree of noise immunity [Azzeh,

2005].

Figure 2-18: Logical levels over CAN bus [Richards, 2005].

Data Link Layer

The Data Link Layer is in charge of building frames that encapsulate the data to

be transferred. Each data frame is assigned a unique identifier, which is used to

determine bus access and detect errors. Since every frame is unique there is no need

for addressing information.

Chapter 2: Methodology 27

This layer also performs Medium Access Control (MAC) to prevent conflicts when

two different nodes try to access the network at the same time. It performs the data

encapsulation/decapsulation, error detection and control, bit stuffing/destuffing and

the serialization and serialization functions. The use of a MAC method is called bus

arbitration. As a consequence of arbitration no bandwidth is wasted; there are

methods that a designer can use to predict the longest possible delay before any

message is delivered.

The CAN communication protocol uses a Carrier Sense Multiple Access/Collision

Detection (CSMA/CD) MAC method. CSMA means that every node on the network

must monitor the bus, and only transmit messages when no activity is found. During

periods of no activity, every node has an equal opportunity to transmit a message.

The Collision Detection portion means that if two nodes start transmitting at the

same time, a collision will be detected and the proper corrective action will be taken

[Pazul, 1999].

A nondestructive bitwise arbitration method is utilized; with this, even if collisions

are detected, messages remain intact after arbitration is completed. Higher priority

messages suffer no corruption or delay during the arbitration process. Non-

destructive bitwise arbitration makes use of dominant and recessive logic states. The

CAN protocol defines a logic bit 0 as dominant and a logic bit 1 as a recessive bit. As

the name suggests, a dominant bit state will always win arbitration over a recessive

bit state. Since the field used in the message arbitration process is the Message

Identifier (ID), the lower its value the higher the priority of the message. A node also

monitors the state of the bus while transmitting, to check if the logic state it is trying

to send appears on the bus, if the node is transmitting a recessive bit and detects a

dominant bit on the bus, it automatically stops transmission and receives the

dominant message. After the dominant message has been received and the bus is

once again idle, the node is able to try retransmission of its own message [Pazul,

1999].

The CAN protocol is message based, not address based, meaning that messages are

not transmitted from one address to another; instead, the message is broadcasted

throughout the bus, making it accessible to all nodes. It is up to every node to decide

if the message is useful or not. Nodes decide whether to process or discard the

information received based on the message identifier (ID) [Pazul, 1999]. Nodes inside

the CAN network also have the ability to request for information, by generating a

Remote Transmit Request (RTR).

28 Chapter 2: Methodology

Two standards have been developed by ISO, specifying a 5V differential voltage

over the physical layer interface. These are [Pazul, 1999]:

• ISO-11898: CAN High Speed with bit rates between 125kbps and 1Mbps.

• ISO-11519: CAN Low Speed with bit rates up to 125kbps.

Figure 2-19: OSI reference model [Richards, 2005].

Bit Timing

Bit rate is characterized as the number of bits transmitted over a certain period of

time. The CAN protocol allows bit rate programming, as well as number and location

of data samples in a bit period. Optimal selection of these parameters ensures

message synchronization and proper error detection. To achieve synchronization all

the nodes must have the same nominal bit time. Since no clock is encoded in the data

stream, receiving nodes must recover the clock and synchronize it to the

transmitter’s clock [Microchip, 2007; Jöhnk & Dietmayer, 1997].

The nominal bit rate is the number of bits per second an ideal transmitter will

transmit without resynchronization. The CAN nominal bit time is made of non-

overlapping segments; each segment is made up of an integer number of the basic

time units in a bit period, called time quantas (TQ), each time quanta is one period of

the CAN system clock, as shown in figure 2-21. The desired baud rate is calculated by

the arithmetical sum of the different segments. With the use of a baud rate prescaler

(BRP) custom baud rates can be achieved. The special register called synchronization

jump window (SWJ), defines the number of time quantas a segment can be

Chapter 2: Methodology 29

lengthened or shortened for resynchronization. The sampling point defines at which

part of the nominal bit time, the signal will be sampled to determine the logical state

of the current bit.

 Depending on the manufacturer of the hardware used, the segments composing

the nominal bit time can be named differently. For example, for Microchip the

nominal bit time is composed of 4 segments, as shown in figure 2-20, while for Philips

the nominal bit time is composed of 3 segments as depicted on figure 2-21. It is

important to refer to the specific manual of the hardware involved for programming

details when setting up the network.

Figure 2-20: Nominal bit time segments as defined by Microchip [Microchip, 2007].

Figure 2-21: Nominal bit time segments defined by Philips [Jöhnk & Dietmayer,

1997].

CAN Message Frame

The CAN protocol defines four different types of frames: 1) Data frames, which

carry information from one node to the other nodes; 2) Remote frames, which are

data frames with the Remote Transmit Request (RTR) bit set, requesting

information from other nodes; 3) Error frames, sent by nodes that detect any type of

30 Chapter 2: Methodology

error; and 4) Overload frames, generated by nodes that require more processing time

for messages already received.

The CAN protocol defines two data frame formats, the standard format, also

known as CAN 2.0A appearing in figure 2-21; and the extended format shown in

figure 2-22 known as CAN 2.0B. The difference between formats resides in the

number of bits used for the identifier field. CAN 2.0A uses 11 bit identifiers, while

CAN 2.0B uses 29 bit identifiers [Pazul, 1999; Azzeh, 2005].

Figure 2-22: Standard message frame format for the CAN protocol [Pazul, 1999].

Figure 2-23: Extended message frame format for the CAN protocol [Pazul, 1999].

The fields for the CAN frame format are all described in [Bosch, 1991; Pazul, 1999;

Azzeh, 2005] and are as follow:

• Start of Frame (SOF) Field: This is a dominant (logic 0) bit that indicates the

beginning of a message frame.

Chapter 2: Methodology 31

• Arbitration Field: Containing an 11 bit message Identifier (ID) and the Remote

Transmission Request (RTR) bit. A dominant RTR bit indicates that the

message is a Data Frame. A recessive value indicates that the message is a

Remote Transmission Request and therefore the frame is a Remote Frame. A

Remote Frame is a request by one node for data from some other node on the

bus. Remote Frames do not contain a Data Field. To accomplish an RTR, a

Remote Frame is sent with the identifier of the required Data Frame.

• Control Field: Containing six bits; the Identifier Extension (IDE) bit

distinguishes between the CAN 2.0A standard frame and the CAN 2.0B

extended frame. Followed by the Reserved Bit Zero (RB0) bit, which is a

reserved bit and is defined to be a dominant bit by the CAN protocol. The four

bit Data Length Code (DLC) indicates the number of bytes in the “Data Field”

that follows.

• Data Field: Containing from zero to eight bytes of data.

• Cyclic Redundancy Check (CRC) Field: Guarantees the frame’s integrity;

contains a 15 bit cyclic redundancy check code and a recessive delimiter bit.

• Acknowledge (ACK) Field: Consisting of two bits; the first is the Slot bit which

is transmitted as a recessive bit and is overwritten as a dominant bit by those

receivers which have successfully received the message, regardless of whether

the node processes or discards the data. The second bit is a recessive delimiter

bit.

• End of Frame (EOF) Field: Consisting of seven recessive bits.

Following the end of a frame, the Intermission Frame Space (IFS) appears;

consisting of three recessive bits. After the three bit intermission period the bus

becomes available, and other nodes may begin transmission of their messages.

A message transmitted with an extended frame format is almost the same as one

with a standard frame format. By using the IDE bit in dominant form, frames are

transmitted in standard format, if the IDE bit is recessive; the CAN extended frame

format is used instead. Standard format frames have higher priority than extended

frame formats, but by using an extended format higher number of different message

identifiers are possible [Pazul, 1999].

CAN Error Handling

CAN nodes have the ability to diagnose fault conditions and operate on different

modes based on the severity of the problems encountered. Nodes can detect the

difference between short disturbances and permanent failures, modifying their

functionality accordingly. CAN nodes can go from normal operation, where they are

32 Chapter 2: Methodology

able to transmit and receive messages, to complete shutdown (or bus-off state) based

on the severity of the errors detected. This is called Fault Confinement. No faulty

CAN node will be able to monopolize the network’s bandwidth because faults will be

confined and faulty nodes will shut off before bringing the network down. Correct

bandwidth use for critical system information is guaranteed by Fault Confinement.

Five conditions that yield an Error Frame exist; these are [Pazul, 1999]:

• CRC Error: The Cyclic Redundancy Check failed (CRC) and an error occurs, an

Error Frame is generated. Since at least one node did not properly receive the

message, it is resent after a proper intermission time.

• Acknowledge Error: The transmitting node checks if the Acknowledge Slot,

sent as a recessive bit, contains a dominant bit, with this it would acknowledge

that at least one node received the message correctly. If this bit is recessive,

then no node received the message properly. An Error Frame is generated and

the original message is resent after a proper intermission time.

• Form Error: If any node detects a dominant bit in any of the following four

segments of the message: End of Frame, Intermission Frame Space,

Acknowledge Delimiter or CRC Delimiter; a Form Error is generated. The

original message is resent after a proper intermission time.

• Bit Error: If a transmitter node sends a dominant bit and detects a recessive

bit, or vice versa, when monitoring the actual bus level and comparing it to the

bit that it has just sent. In the case where the transmitter sends a recessive bit

and a dominant bit is detected during the Arbitration Field or Acknowledge

Slot, no Bit Error is generated because normal arbitration or acknowledgment

is occurring. If a Bit Error is detected, an Error Frame is generated and the

original message is resent after a proper intermission time.

• Stuff Error: CAN protocol uses a Non-Return–to-Zero (NRZ) transmission

method. This means that the bit level is placed on the bus for the entire bit

time. CAN is also asynchronous, and bit stuffing is used to allow receiving

nodes to synchronize by recovering clock information from the data stream.

Receiving nodes synchronize on recessive to dominant transitions. If there are

more than five bits of the same polarity in a row, the protocol dictates to stuff

an opposite polarity bit in the data stream. The receiving node(s) will use it for

synchronization, but will ignore the stuff bit for data purposes. If, between the

Start of Frame and the CRC Delimiter, six consecutive bits with the same

polarity are detected, then the bit stuffing rule has been violated. A Stuff Error

occurs, an Error Frame is sent, and the message is retransmitted after the

intermission time.

Chapter 2: Methodology 33

Once an error has been detected it is broadcasted via the Error Frame. The

erroneous message is aborted and as soon as arbitration allows it, it is retransmitted.

Each node is in one of the three possible error states generated by the above

conditions, which are shown in figure 2-24 and described as [Pazul, 1999; Azzeh,

2005]:

• Error-Active: In this state, the CAN node can actively take part on the bus

communication; it can send an Active Error Flag, which consists of six

consecutive dominant bits. With this the bit stuffing rule is violated and causes

all other nodes to send an Error Flag, called the Error Echo Flag. A node is

Error-Active when both the Transmit Error Counter (TEC) and the Receive

Error Counter (REC) are below 128. Error-Active is the normal operational

mode, allowing the node to transmit and receive without restrictions.

• Error-Passive: A node becomes Error-Passive when either the Transmit Error

Counter or Receive Error Counter exceeds 127. Error-Passive nodes transmit

Passive Error Flags, which consist of six recessive bits. If this node is the only

transmitter on the bus, the passive error flag will violate the bit stuffing rule

and the receiving node(s) will respond with Error Flags of their own depending

on their own error state. If the Error-Passive node in question is not the only

transmitter or is a receiver, then the Passive Error Flag will have no effect on

the bus due to the recessive nature of the error flag.

• Bus-off: A node goes into the Bus-Off state when the Transmit Error Counter

is greater than 255. In this mode the node cannot send nor receive messages,

achieving Fault Containment.

Figure 2-24: State diagram for different error states a CAN node can have

[Microchip, 2007].

34 Chapter 2: Methodology

2.1.9 Programmable Automation Controller

A Programmable Automation Controller (PAC) is a compact controller that

combines the capabilities of a PC-based control system and a Programmable Logic

Controller (PLC) into an open flexible architecture.

PLC users that required highly advanced applications began evaluating PC based

solutions. The PC offered a graphical rich programming and user environment, and

utilized commercial components like floating point processors and high speed I/O

busses, such as PCI and Ethernet. However PC based applications were not designed

for rugged environments, system crashes and rebooting, non-industrially hardened

components and unfamiliar programming environments for operators proved to be a

major challenge [NI, 2007]. This forced the development of products that combined

the software capabilities of the PC and the reliability of the PLC. The resulting new

controllers combined the best PLC features with the best PC features [NI, 2007].

PACs have evolved incorporating open standard interfaces, multi-domain

functionality, modular architectures and modern software integration. [Resnick,

2003].

PACs employ a multi-domain property and are not limited to sequential logic

solving. They rely on a single, multi-discipline, integrated development environment

that uses common name and process tags as well as a common database for all

functions. This integration opens up the possibility of using a single human-machine

interface (HMI) for monitoring all functions. The multi-domain capability greatly

diminishes total cost by reducing the time needed for design, programming and

engineering, while also lowering installation, start-up, training, maintenance and

spare parts costs [Iversen, 2008]. Key requirements for any PAC include: open,

modular architectures and compliance with industrial standards that range from

programming languages (such as the IEC 61131-3 standard) to communication,

networking and interoperability, ranging from Ethernet and its variations, to XML

(eXtensible Markup Language) and OPC, an open communication standard [Iversen,

2008].

In summary, Programmable Automation Controllers provide in a single compact

controller advanced control features, network connectivity, device interoperability,

and enterprise data integration controllers [Iversen, 2008; Resnick, 2003; Opto22,

2008a].

Chapter 2: Methodology 35

The CompactRIO, an example of this type of technology is presented next. The

CompactRIO Programmable Automation Controller, manufactured by National

Instruments (NI), is described both in hardware and software structure.

CompactRIO

CompactRIO (cRIO) is a Programmable Automation Controller that combines an

embedded real-time processor with a field-programmable gate array (FPGA) chip.

The FPGA chip is integrated with a reconfigurable chassis that provides the user

with the possibility of including swappable I/O modules with built-in signal

conditioning for connection of sensors and actuators. A general representation of the

cRIO platform is shown in figure 2-25. Modules are connected directly to the FPGA

chip on the chassis, which in turn is connected to the real time processor via a high-

speed bus following the Peripheral Component Interconnect (PCI) standard.

Figure 2-25: Structure of the cRIO embedded system [NI, 2009b].

Custom applications can be achieved using the graphical programming

environment LabVIEW and software module add-ons LabVIEW FPGA and LabVIEW

Real-Time for programming of the FPGA chip and real-time processor respectively.

LabVIEW FPGA module uses a Xilinx compiler to translate graphical

programming into very-high-speed-integrated-circuit hardware description language

(VHDL), which is used to program the FPGA chip. The industrial real-time processor

deterministically executes applications developed with the LabVIEW Real-Time

module. Built-in functions within LabVIEW provide data transfer between the real-

time processor and the FPGA chip.

36 Chapter 2: Methodology

Typical CompactRIO architectures include the following components:

• A reconfigurable input-output (RIO) FPGA core application for

communication and control.

• A time-critical loop for floating-point control, signal processing, analysis, and

point-by-point decision making.

• Normal-priority loop for embedded data logging, remote panel Web interface,

and Ethernet/serial communication.

• Networked host PC for remote graphical user interface, historical data logging,

and postprocessing.

Figure 2-26: Typical architecture for an embedded system using CompactRIO [NI,

2009b].

2.2 Design

Design of the CAN network required sub-division of the system and designation of

the number of CAN nodes
7

; as well as establishing network attributes such as

bandwidth and message properties like data length, type and identifiers. Physical

characteristics such as node location, bus termination, cable type, connectors, pin-

out, and cable length also required definition.

For devices that are not capable of CAN communication, modules and interfaces

had to be designed to integrate them into a CAN node. A careful selection of the

elements for each designed CAN node was done; these included microcontrollers

7
 For the purpose of this thesis a node consists of a device or group of devices capable of CAN bus

communication.

Chapter 2: Methodology 37

(MCUs), CAN controllers, CAN transceivers, additional electronic components and

plastic containers for each module.

All nodes share the same basic structure, consisting of a microcontroller or central

processing unit module, a CAN controller and a CAN transceiver module. Along with

these is a custom interface, consisting of input/output channels, relays or signal

conditioning elements. Basic structure of the implemented CAN nodes is depicted in

figure 2-27.

Figure 2-27: CAN Node basic structure.

Because of the nature in which MCUs and CAN controllers can interact, two

approaches were evaluated for the development of the modules. Depending on the

type of microcontroller, it can either have a built-in CAN controller or the MCU can

be interfaced with an external CAN controller via a serial protocol (e.g. Serial

Peripheral Interface). Both schemes are shown in figure 2-28.

Figure 2-28: Two different but equivalent implementations evaluated for the CAN

modules (both PICs are example devices not used during this project).

38 Chapter 2: Methodology

CAN controllers handle all transmission and reception of CAN messages through

the CAN bus, but aren’t able to handle the buses physical specifications: CAN High

and CAN low voltages used for transmission over the medium. CAN controllers

usually have the CAN Tx transmission output and the CAN Rx reception input

[Microchip, 2010]; in order to meet the bus specifications, a CAN transceiver is

needed.

The advantage of using detached CAN controllers from MCUs is that interfacing

with different types of microcontrollers can be done; therefore reusing of

programming code from one MCU to another is possible. The downside is that

configuration of the CAN controller must be done through the MCU, causing an

impact on time efficiency. On the other hand, integrated CAN controllers are more

time efficient because of the reduced processing load on the MCU, and physically they

occupy less space. A disadvantage is that development done with an integrated

architecture may not apply to a second MCU with an on board CAN controller, thus,

modularity is sacrificed.

Because of the modularity concerns, the detached communication scheme was

preferred over the integrated one. Both CAN transceiver and CAN controller were

integrated into a single module. The CAN controllers have a Serial Peripheral

Interface (SPI) bus allowing it to communicate with any external device capable of

understanding the SPI protocol. In this manner, CAN controller and transceiver are

not restricted by design to interact with a certain type of microcontroller. The

microcontrollers used in each node were confined to an individual module; this

module is named the MCU module. Along with these modules, custom interfaces

were designed to grant both the sensor and Millipak power controller, CAN

communication.

Throughout the rest of this document, the resulting CAN controller and

transceiver module will be referred to as the SPI-CAN module, while the

microcontroller module will be named the MCU module.

Electronic design of the circuits required for each module and interface was

modeled using the specialized layout editor Eagle, a software tool for designing

printed circuit boards (PCBs).

An economic wheel speed sensor was designed because of the short budget

available and the deadline established for this project. A commercial solution was not

accessible. The sensor functions as an incremental optical encoder. This type of

sensor was chosen due to the simplicity with which it can be implemented and its low

cost.

Chapter 2: Methodology 39

Design of the speed control algorithms was done on the graphical programming

language LabVIEW.

2.3 Implementation

The CompactRIO controller functions as the main CAN node; it is in charge of

monitoring the bus activity, receiving information regarding the vehicle’s speed and

generating control commands to send through the network. It also acts as an

interface for the user through a personal computer.

The Millipak controller is in charge of regulating the current and voltage supply to

the 5HP electric motor. A CAN node installed with the Millipak receives CAN frames

and traduces the information into a speed command value for the controller to drive

the motor.

The wheel speed sensor is mounted on the drum brake. The sensor’s signal is

received by an interface which is part of the sensor’s CAN node. The node calculates

the speed at which the wheel is turning and sends it through the network.

Location of the nodes is as described next and shown in figure 2-29:

• N1: Interfaces with the Millipak power controller for control of the motor’s

speed and moving direction.

• N2: Interfaces with the wheel speed sensor for speed data transmission.

• M: The main controller node is composed by the CompactRIO controller;

which performs the control algorithm and transmits its output to the network.

These three nodes are the essential minimum nodes required to effectively develop

a Network Control System using the CAN protocol for speed control.

Nodes N3 and N4 are under current development, but not included in this thesis.

N3 is designed in order to reduce all the non-power wiring for the onboard control

panel of the vehicle. N4 is for steering control, this node will be in charge of

controlling the actuator that drives the automatic steering mechanism.

Modules, interfaces and CAN hubs were manufactured in the Robotics Laboratory

at Tecnologico de Monterrey. To control production, modify designs and generate

routing data of the PCB prototypes editing software CircuitCAM from LPKF was

employed. Control software BoardMaster was used to operate the c30 series circuit

board plotter from LPKF. Soldering of the PCB components as well as assembly of

the plastic housing for each of the modules was done manually.

40 Chapter 2: Methodology

Figure 2-29: CAN nodes physical distribution along the vehicle (bottom view).

Programming of the MCUs on each of the modules was achieved using

MikroElektronika’s MikroC compiler. Programming of the control algorithms was

done on a personal computer using LabVIEW and deployed on the cRIO platform.

Each CAN node, including the main node was mounted onto a DIN rail attached to

the vehicle’s chassis. Mounting and calibration of the wheel speed sensor was done on

one of the rear traction wheels.

Because a trade-off between speed and length exists on the bus, growing capacity

is limited by application performance; length and baud rate are parameters that

should be carefully selected. Low speed transfer rates mean a greater delay, which

can lead to performance bottlenecks; high speed rates increase demand on network

interfaces and limit expansion. Real-time control over safety applications requires

high speed data rates that range from 250kbps to 1Mbps, other non safety secondary

applications can operate safely at 125kps or below (Low Speed CAN) [Leen &

Heffernan, 2002; NI, 2009d].

Since the utilitarian vehicle is roughly 2.5 meters long and 1.3 meters wide, taking

as reference its perimeter, considerably less than 40 meters of cable is needed to run

the wiring around the vehicle; so the maximum baud rate the CAN protocol permits

in its specification was chosen, 1Mbit/s, classified as “High Speed CAN”. To achieve

this transfer rate the physical medium or bus line must meet the requirements

specified in ISO 11898. Table 2-5 shows these specifications.

Chapter 2: Methodology 41

Table 2-5: High Speed CAN cable requirements. [NI, 2008]

Characteristic Value

Impedance

Minimum: 95Ω

Nominal: 120Ω

Maximum: 140Ω

Length-related resistance Nominal: 70mΩ/m

Specific line delay Nominal: 5ns/m

According to the standard, to eliminate reflection effects, terminator resistors

should be attached at both ends of the main line. Their value should match the

nominal impedance of the cable used; which is typically 120Ω.

CAN cables were manufactured with category 5 unshielded twisted pair (UTP)

cable and 120Ω terminators were placed at the end of the main bus line. UTP

category 5 cable meets the aforementioned requirements for lengths below 40 meters.

Connection to the main CAN line, for each CAN node, is made through a stub. By

specification, the main line should not exceed 40 meters and stubs shouldn’t surpass

0.3 meters to satisfy the 1Mbit/s baud rate; although performance of the network can

be evaluated to determine the maximum stub length allowed.

Since the CAN protocol works with differential voltages, it is important that all the

CAN nodes share a common electrical ground; otherwise, undesired communication

errors may arise from voltages changing with respect to different references.

A proportional-integral-derivative (PID) controller was proposed as the speed

control algorithm. A fuzzy logic based controller was easily developed and

implemented to compare its performance to that of the PID. Both control schemes

were implemented within the CompactRIO controller.

Figure 2-30 shows a general conceptualization of the CAN based NCS structure.

Nodes M, N1 and N2 are represented with their corresponding modules and

interfaces; interaction between elements is represented by the yellow arrows unless a

twisted pair connection is depicted in which case it is done through the CAN bus. The

control loop is closed with the Millipak controller node (N1) receiving information

from the CompactRIO node (M) through the network and driving the motor, which

moves the wheels and generates a signal on the sensor node (N2), which measures

the wheels speed and sends the data back to the network for the CompactRIO to

receive, effectively closing the control loop through the CAN bus.

42 Chapter 2: Methodology

Details on the implementation of the wheel speed sensor, CAN nodes and

CompactRIO controller are presented on the Implementation chapter.

Figure 2-30: Conceptualization for the CAN-based NCS implemented.

Chapter 2: Methodology 43

2.4 Testing

All initial tests were performed indoors at the Robotics Laboratory. The vehicle

was suspended from the ceiling and only one wheel was tested at a time. The non-

tested rear wheel’s drum brake was at its maximum, while the tested wheel was free

of any braking, forcing the differential to transmit all torque to the wheel of interest;

in this manner speed fluctuations due to the differential transmitting torque from

one wheel to another were avoided. The vehicles bed was removed to provide an

accessible work zone.

Figure 2-31: Testing conditions for the vehicle.

Performance of the vehicle degrades as battery charge depletes. Speed is not

constant since it depends on the batteries current capacity. It is important to

mention that batteries on the vehicle are not on the best condition; they are at least 3

years old and were inactive for a long period of time. Reactivation of the chemical

components inside the cells had to be done before all testing procedures. In spite of

chemical reactivation good performance is still time limited because of these factors.

44 Chapter 2: Methodology

Tests between the CompactRIO controller and the manufactured CAN nodes were

performed to ensure proper communication over the experimental CAN network. To

guarantee functionality of the CAN bus, bus load percentage, error count and

message frequency were monitored with the USB-MUX-4C2L module with USB

connection, which is specialized diagnose equipment from ExxoTest, and a personal

computer.

Without a control algorithm, only tele-operation of the vehicle’s speed through the

CAN bus was possible. With all devices on the network configured to work at a

1Mbit/s baud rate, communication tests consisted in sending a message with the

reserved ID for the Millipak node to move the vehicle with a percentage of its max

speed. The data contained on byte [0] of the CAN frame sent to the Millipak node is a

CAN speed control value (the desired speed information coded as a number on the

CAN frame), it ranged from 0 for 0% to approximately 150 for 100% speed.

These tests also involved the monitoring of the messages broadcasted by the

sensor node and the transfer and receiving of information through both the cRIO and

the diagnostic equipment used. The goal of the tests was achieved without many

complications. Figure 2-32 presents the schematic of the setup used for network

testing.

Repeatability tests were performed for the Millipak node. Repeatability was

monitored to observe the variations on the system’s response for the same operating

points and determine the fidelity of the developed node.

Chapter 2: Methodology 45

Figure 2-32: Schematic of the developed CAN bus.

2.4.1 Repeatability Test

Repeatability of the Millipak CAN node was tested running the vehicle from 0% to

100% and from 0% to 50% full speed without the rear tires. Measuring equipment

used for this test included a photo-tachometer from Extech Instruments, model

PocketTach 461700. The photo-tachometer was fixed on a stand to maintain a certain

distance above the drum and restrict its movement. For the photo-tachometer to

sense the revolutions per minute of the wheel, the drum was marked with a white

reflecting tape. All runs of the test were performed in a minimum light controlled

46 Chapter 2: Methodology

environment with the vehicle’s batteries at full charge. The setup for this test is

shown in figure 2-33.

Figure 2-33: Repeatability test setup.

For each of the rear wheels, the 100% and 50% speed tests consisted of 50 samples.

First, the 100% test was done for the left
8

 wheel, followed by the 50% test. Then the

right wheel was tested in the same manner. Time between each sample was random.

The results for the 50% of max speed test are shown in figure 2-34. Both wheels

are around the 229 RPM mark. Figure 2-35 shows the results for the 100% of max

speed test. It is clear that the right wheel spins faster than the left wheel at

maximum speed, but this situation is of no concern, since the differential will

distribute the torque between both wheels when the vehicle is rolling on the ground.

On both figures the x axis represents the sample number.

8
 Looking at the front of the vehicle the left wheel is the one on the passenger’s side.

Chapter 2: Methodology 47

Figure 2-34: RPMs versus sample number are shown as results of the 50% of max

speed test.

Figure 2-35: RPMs versus sample number are shown as results of the 100% of max

speed test.

Speed varies from sample to sample. A maximum difference of 6 RPMs was

observed throughout the test. This is considered acceptable since this variations are

unnoticeable while driving the vehicle. Tables 2-6 and 2-7 concentrate the results of

each wheel (all values are in RPMs).

200

205

210

215

220

225

230

235

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

R
P

M

50% Left Wheel

50% Right Wheel

420

425

430

435

440

445

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

R
P

M

100% Left Wheel

100% Right Wheel

48 Chapter 2: Methodology

Table 2-6: Results for the left wheel

Left Wheel

Test Speed 50% 100%

Average 229.6996 445.2814

Maximum 231.18 448.09

Minimum 227.75 442.59

Std. Deviation 0.80465726 1.050471245

Table 2-7: Results for the right wheel

Right Wheel

Test Speed 50% 100%

Average 229.4794 448.026

Maximum 230.78 450.7

Minimum 227.94 445.63

Std. Deviation 0.63737475 1.173529475

The speed of the vehicle can be approximated by computing the average speed

between both wheels, like assumed by the bicycle simplification of the kinematic

model. The combined average from both right and left wheels is 446.6537 RPM for

100% speed and 229.5895 RPM for 50% speed.

Although these results were obtained with a suspended wheel, they proved to be

significant while testing the control algorithms under the same laboratory conditions.

In the case of the PID controller they provided an upper bound reference, required by

the algorithm since it calculates the controller’s output based on a percentage rather

than the whole.

It is important to mention that during these first tests, cables used had no

terminator resistors and the main bus line was directly over the batteries, next to the

electric motor, extremely susceptible to electromagnetic noise; as the tests proved

successful, the robustness of the CAN protocol was also demonstrated.

For subsequent experiments the cables included termination and the main bus line

was running through the side of the vehicle.

Chapter 2: Methodology 49

2.5 Corrections and Modifications

During the repeatability test, a first group of 50 samples for the 100% speed

measurements was done on each wheel; it was observed that the measured RPM

values increased too much over time. For the same CAN control value different

speeds were achieved. There was a difference of around 21 RPMs from the first

sample to the fiftieth.

After removing the drum, residues of the brake’s pressing pads and extreme

surface heat were detected; this brought forth the conclusion that friction was

slowing down the wheel. With time the pads wore out enough for the wheel to

increase its speed, hence the variations. To deal with this issue, adjustment of the

pressing pads was done and the insides of the drum cleaned. After these correcting

actions, the tests were repeated completely, performing quite well; variance was

reduced from nearly 20 to 1.1 and 1.3 for the 100% tests and from almost 10 to 0.64

and 0.40 for the 50% tests on the left and right wheel respectively. Only the test

results after these corrections were considered valid.

Past the first testing period of the control network a modification was done to the

Millipak interface on the Millipak CAN node. Initially, a 10kΩ digital potentiometer

was used to replace the manual throttle of the vehicle, which consists of a 5kΩ analog

potentiometer. Since the digital potentiometer has a range of 10kΩ, only half the

resolution of the potentiometer was available for control of the throttling system. To

double the resolution of the interface, a second digital potentiometer was connected

in parallel; allowing more accurate control of the Millipak controller. The PCB of the

interface suffered no redesign since it allowed for this type of connection.

The wheel speed sensor developed suffered various modifications. Three different

attempts of the sensor were fabricated, each an improvement over the previous

version. The first two creations used a metal strip with circular perforations; the last

and definitive attempt used a metal strip with rectangular perforations, minimizing a

problem caused by asymmetrical periods on the sensors pulse signal.

During the first tests of the sensor node, the cables used to transfer the pulses

from the opto-interrupters to the sensor interface were unshielded. The quality of the

TTL signal from the sensor was severely affected during operation of the vehicle.

Noise levels on the signal varied, going from slightly affecting the pulses to

introducing undesired impulses as shown in figure 2-36. To deal with this issue,

cables were replaced with twisted pair wire; resulting on an improvement on signal

quality as depicted on figure 2-37.

50 Chapter 2: Methodology

Figure 2-36: a) Slightly affected signal quality. b) Undesired impulses between pulse

signals generated during the operation of the vehicle.

Figure 2-37: Signal quality improvement from the usage of twisted pair wire.

The CAN nodes were initially powered directly by three of the six deep cycle

batteries that power up the vehicle; but due to internal circuitry on the Millipak

controller, this resulted in unwanted behavior that required the replacing of some of

the voltage regulators on the modules. All nodes including the CompactRIO were

separated from the main 36 volt power supply and now run on an independent 12

volt battery.

Throughout the whole development of this thesis, different software modifications

and improvements were done to the LabVIEW program on the CompactRIO

controller.

51

Chapter 3

3 Implementation

This chapter presents the implementations developed for the creation of the

network controlled system based on the CAN protocol for speed control of the electric

utilitarian vehicle. Elements previously mentioned on the Methodology chapter, like

the manufactured sensor, the modules and interfaces constituting each CAN node

and software implementations are shown in detail.

3.1 Wheel Speed Sensor

Due to complications an adequate sensor was not accessible during the

development of this project. A temporal low cost alternative had to be manufactured

in order to perform all tests. A wheel speed sensor had to be improvised using an

opto-interrupter; a perforated metal strip and the drum brakes located on the rear

wheels.

The sensor consists of an opto-interrupter aligned with a perforated metal strip; it

works as a relative incremental encoder. The opto-interrupter has a diode constantly

emitting infrared light over a phototransistor, when light emission is interrupted the

voltage on the phototransistor’s line changes, dropping close to 0 volts and on the

contrary, when the light beam passes through, the output signal is close to 5 volts. As

the sensor is intermittently interrupted pulses appear; each with a period equal to

the time from the start of one pulse to the start of the next; by knowing the number

of pulses per revolution and the frequency (or period) of these, the speed at which the

wheel is turning can be calculated.

Details on the first two versions of the wheel speed sensor are presented on

Appendix D. The third version of the sensor was implemented using a strip with 241

rectangular perforations providing a high resolution for RPM calculations. Compared

with the first two versions of the sensor, improvement was noticed on signal quality.

52 Chapter 3 Implementation

Although not very much industrial, the ITR8102 opto-interrupters were used because

of their high sampling frequency.

Figure 3-1: ITR8102 opto-interrupters used for the wheel speed sensor.

Figure 3-2: Third version of the wheel speed sensor, using the rectangular perforated

metal strip.

Chapter 3 Implementation 53

3.2 Modules and Interfaces

All SPI-CAN modules were assembled in the same manner; they contain the same

components and their operation is the same for every MCU module they are attached

to. All MCU modules share the same PCB design and vary just in the programming of

the microcontroller in it. Encoder and Millipak interfaces are unique.

All PCBs were manufactured on single-sided copper clad boards and all

components soldered to the boards are of the through-hole type. Every integrated

circuit included in the designs has a socket for an easy replacement in case of

malfunction.

All modules and interfaces have a 5V voltage regulator for low power consumption

and electronic protection for sensible components. Capacitors were included to

compensate for any voltage drop and filter noise. Every module has a 20 MHz crystal

as its main oscillator. Finally ever module and interface has its own custom plastic

case for protection.

3.2.1 SPI-CAN Module

The SPI-CAN module is in charge of receiving messages from the bus and

transferring them via SPI to an MCU module and vice versa. An MCP2551 CAN

transceiver and an MCP2515 CAN controller are used for CAN communication. An

MCU module must configure the SPI-CAN module with network parameters through

the SPI channel during startup.

SPI-CAN modules are not self-powered; they require a connection through pins on

its DB15 HD (high density) connector to a module that can supply power.

The MCP2515 is a CAN stand alone controller capable of implementing the CAN

2.0B specification, which means it can handle standard and extended IDs. This

integrated circuit has two acceptance masks and six acceptance filters used to reduce

the overhead on the processing device by ignoring unwanted messages. It can

interface with any processing device via an industrial Serial Peripheral Interface

(SPI) [Microchip, 2007].

The MCP2551 is a high speed CAN transceiver, functioning as an interface

between the physical bus and the CAN controller. This integrated circuit provides

differential transmit and receive capability by performing conversion of the digital

signals generated by the CAN controller to signals suitable for transmission over the

54 Chapter 3 Implementation

medium, also it includes a buffer to account for voltage spikes that may be induced on

the bus line by external factors [Microchip, 2010].

Figure 3-3: SPI-CAN module electric schematic.

Figure 3-4: SPI-CAN module PCB schematic.

Chapter 3 Implementation 55

Figure 3-5: SPI-CAN module.

3.2.2 MCU Module

The MCU module is programmed through an In-Circuit Serial Programming

(ICSP) terminal. Programming of the microcontroller varies according to the

function of the CAN node where the module will be located. The MCU module is in

charge of processing and interpreting the data contained in a CAN message.

The MCU module included with the Millipak node receives CAN messages through

the SPI-CAN module, processes the information for speed control (direction and

desired speed) and sends control signals to the Millipak interface. The MCU module

on the wheel speed sensor node receives a pulse train signal from the sensor,

calculates the corresponding revolutions per hour (RPH) and sends the information

to the CAN bus through an SPI-CAN module.

The MCU modules use a PIC16F873A microcontroller as their central processing

unit. They have 2 DB15 HD connectors mounted on each side for its input/output

channels. The modules also contain their own oscillator and voltage regulator.

The PIC16F873A is an 8-bit microcontroller with 128 bytes of EEPROM and

capacity for 3 wire SPI communication. This particular model was chosen because of

its small size, speed (200 nanoseconds per instruction), number of inputs and

outputs, and the Serial Peripheral Interface communication option [Microchip, 2003].

56 Chapter 3 Implementation

Like the SPI-CAN modules, MCU modules are not self-powered; they need to be

connected to an interface that provides power, although they can share their power

connections on one of the DB15 connectors.

Figure 3-6: MCU module electric schematic.

Figure 3-7: MCU module PCB schematic.

Chapter 3 Implementation 57

Figure 3-8: MCU module.

3.2.3 Millipak Interface

The Millipak interface uses an array of three signal relays and two parallel digital

potentiometers to control the speed and advancing direction of the vehicle. It has one

DB15 HD connector for interfacing with an MCU module and connection terminals

for output signals to the Millipak controller.

The only integrated circuit used in this interface is the MCP41010, a digital

potentiometer employed to translate the desired CAN speed value into a resistance

equivalent. This potentiometer varies the voltage on the accelerator input of the

Millipak controller, which varies the accelerator demand on the controller.

The MCP41010 is a 10kΩ digital potentiometer with 256 positions. Its wiper

position varies linearly and is controlled through an SPI interface; this made it

suitable for interfacing with the PIC16F873A on the MCU module [Microchip, 2004].

This module transmits power to any device connected to the power pins on its

DB15 HD connector.

58 Chapter 3 Implementation

Figure 3-9: Millipak interface electric schematic.

Figure 3-10: Millipak interface PCB schematic.

Figure 3-11: Millipak interface.

Chapter 3 Implementation 59

3.2.4 Wheel Speed Sensor Interface

This interface is the simplest of all, it only has connection terminals, power

connectors and a voltage regulator. It transmits power to the interfaces attached to

it, powers up the wheel speed sensor and yields as an output signal the analog voltage

coming from it. Again, on one side a DB15 HD connector connects this interface with

the others, while on the other, input terminals for the sensor’s signal are available.

Figure 3-12: Wheel speed sensor interface electric schematic.

Figure 3-13: Wheel speed sensor interface PCB schematic.

60 Chapter 3 Implementation

Figure 3-14: Wheel speed sensor interface.

3.3 CAN Nodes Description

Software elements regarding the CAN nodes will be described in this subsection.

3.3.1 Millipak CAN Node

This node only accepts messages with ID 0x300, either extended or standard, and

uses the first 3 bytes of data to read the desired speed value, direction, and electronic

fail-safe (FS1) contact state respectively. Any other message received is discarded.

Messages are accepted from any sender as long as they respect the structure shown

in table 3-1.

Table 3-1: Message structure accepted by the Millipak CAN node.

ID Byte [n] Range (Dec) Description

0x300

Data [0] 0-255 Speed Control Value

Data [1]

0

1

2

Moving Direction:

Neutral

Forward

Reverse

Data [2]

0

1

Fail-safe contact:

Fail-safe ON

Fail-safe OFF

Chapter 3 Implementation 61

If the fail-safe contact is on, the node takes no action. The input sequence required

for fault-free operation of the vehicle is: Moving Direction  FS1 OFF  Speed

Value or within a 2 second time limit, FS1  Moving Direction Speed Value. Once

a successful power-up of the Millipak controller is achieved, all data can be sent at

the same time on one CAN frame.

Fault-free power-up of the Millipak controller requires the FS1 to be on and the

moving direction to be set on neutral. Faults will occur during power-up of the

controller if the following events take place:

• A change in the moving direction is selected while the vehicle is speeding in

the opposite direction. To change direction an immediate FS1 recycle
9

 is

necessary.

• The fail-safe is set OFF and the moving direction is not different from neutral

(within 2 seconds).

• If the speed command is not zero, a moving direction is selected or the FS1 is

OFF during power up.

To clear the faults, FS1 recycle is usually required.

3.3.2 Wheel Speed Sensor CAN Node

As soon as the node is powered-up it starts transmitting messages with

information regarding the vehicle’s wheel speed. CAN frames are broadcasted from

this node with ID 0x321. The wheel’s speed is coded into the first two bytes of data,

using byte [0] as the low part and byte [1] as the high part of the word
10

 containing

the wheel’s revolutions per hour. The structure of the messages sent by the wheel

speed sensor CAN node is summarized in table 3-2.

Table 3-2: Message structure broadcasted by the sensor CAN node.

ID Byte [n] Range (Dec) Description

0x321

Data [0] 0-255 Speed Value (Low Byte)

Data [1] 0-255 Speed Value (High Byte)

9 FS1 recycle means switching the fail-safe to ON and back to OFF.

10
 A word is a natural unit of data used by a particular computer design; in this case it represents a

group of 16 bits.

62 Chapter 3 Implementation

3.3.3 CompactRIO CAN Node

The CompactRIO controller performs the control algorithms for the network

system based on the information it receives from the wheel speed sensor node.

Outputs from the sensor node become CompactRIO node inputs; and outputs from

the CompactRIO node become Millipak node inputs. Revolutions per hour sent by the

sensor node are converted to revolutions per minute, then they are processed by the

control algorithm and based on user specifications, a proper CAN speed control value

is sent to the Millipak node.

3.3.4 Node Mounting

The CAN bus main line connects to a CAN hub on the back, passes through one

side of the vehicle and connects to another hub on the front. Mounting of the nodes

was done on a standardized DIN rail. To fix the DIN rail the 11 gauge metal sheet of

the vehicle was drilled. Custom clamps are attached to each of the modules and

interfaces to fix them to the DIN rail.

Figure 3-15 shows the Millipak node (consisting of the SPI-CAN module, the MCU

module and the Millipak interface) mounted on the back part of the vehicle, located

under the vehicles bed. Figure 3-16 shows the wheel speed sensor node mounted next

to the Millipak controller. Also, on both figures the CAN hub where the main line

connects with the nodes stubs is depicted. Figure 3-17 shows a top view of the

Millipak and sensor nodes assembly; it corresponds to the network shown on the

bottom part of figure 2-30 (without the CompactRIO node).

Chapter 3 Implementation 63

Figure 3-15: Millipak node mounting and main CAN bus line.

Figure 3-16: Wheel speed sensor node mounting showing Millipak controller.

64 Chapter 3 Implementation

Figure 3-17: Top view of both nodes on the vehicles back part.

3.4 CompactRIO

Software applications on the CompactRIO are programmed using LabVIEW and

software module add-ons like LabVIEW Real-Time (RT) (for programming

applications on the real-time level) and LabVIEW FPGA (for programming on the

FPGA level). Programming and configuration of the CompactRIO platform is

achieved via the 10/100BASE-T Ethernet port of its on board network interface card.

3.4.1 LabVIEW Project Configuration

A project must be created in order to develop an application for the cRIO

embedded platform. The project within LabVIEW is structured as shown in figure 3-

18.

Three distinct levels can be used for programming. I/O modules are manipulated

on the FPGA level and typically high order processes are done on the real-time or PC

levels. Communication between the FPGA and RT levels is achieved through direct

memory access (DMA) first-in-first-out (FIFO) dedicated channels. Virtual

Instruments (VIs) can be created on each of these levels. Depending on the level the

VI is placed, it will be handled by LabVIEW, LabVIEW RT or LabVIEW FPGA.

Chapter 3 Implementation 65

Figure 3-18: Programming levels of a cRIO project.

VIs created on the FPGA level are handled by the LabVIEW FPGA module, in

which specialized FPGA blocks become available depending on the FPGA target.

Applications created on this level run on the FPGA chip.

VIs created on the RT level are handled by the LabVIEW Real-Time module, it

provides communication with the information at the FPGA level, and has special

function blocks for optimization of the graphical code for the selected real-time

hardware. Applications on this level run directly on the real-time target.

The LabVIEW graphical programming suite running on the host PC can

communicate with both the Real-Time and the FPGA software modules. Applications

developed on the real-time level can be used on the host PC level to take advantage of

features not available on the real-time target. Although these features may prove

useful in some cases, reliability and determinism now depend on the host PCs

processor capabilities; timing and performance are now subjected to the CPU usage,

network errors and operating system crashes on the host PC

The NI 9853 High Speed CAN module of the CompactRIO uses a Philips SJA1000

CAN controller and TJA1041 CAN transceiver on a 16MHz clock. This module

provided an easy way to incorporate the capabilities of the embedded platform into

the CAN protocol based bus, for fast and reliable communication with devices

operating according to this standard. To develop the control model within the

66 Chapter 3 Implementation

CompactRIO, CAN channels are wired as inputs and outputs to the control model on

the FPGA level. A LabVIEW FPGA VI reads and writes CAN frames, and transfers

those CAN frames to/from LabVIEW RT as with any other I/O. A LabVIEW RT VI

uses virtual interfaces to convert the CAN frames to/from CAN channels and perform

the necessary operations on the data included with the frames.

The CompactRIO is mounted on a DIN rail, close to the vehicles seats, for easy

connection of a personal computer to act as interface between the controller and an

operator.

3.5 Timing

Timing throughout this thesis was based on the constraints imposed by the time

boundaries for CAN frame transmission. Assuming all nodes are error active and the

bus is not idle, an extended frame with 8 bytes of data (the most time consuming data

frame possible) takes at least 131 microseconds (with not a single bit stuffed) and at

most 155 microseconds (with the maximum bit stuffing possible). For this reason,

any process on the network that relies on information traveling through the CAN bus

cannot take less than 155 microseconds or it may become compromised.

The tools from ExxoTest were used to determine the network induced delays

between CAN nodes. By transmitting messages on a fixed time rate; the period of

each transmission can be monitored. The transmission rate was set to 50

milliseconds on both the sensor node and the cRIO. The message period varied at

most in 0.003 milliseconds from message to message. This was considered an

acceptable delay, since it won’t interfere with control actions because of the natural

response of the system.

3.6 RPM Measurement

The vehicle’s speed, measured in revolutions per minute (RPM), is approximated

using the traction wheel’s rotating speed. Because of the nature of the sensor used,

two different techniques for RPM measurements were applied, one resulting in better

performance than the other.

RPM measurements were first made using the period method [Opto22, 2008b].

The sensor’s signal period is defined as the time elapsed from the start of one pulse to

the start of the next pulse. Perforations on the metal strip are neither exactly the

same size, nor evenly separated; causing asymmetrical pulses. Under constant speed,

Chapter 3 Implementation 67

this situation provoked RPM measurements to vary from one sampling time to the

next one, producing outliers on the signal.

A second measurement method consisted on counting the positive or negative

edges over a fixed period of time [NI, 2010]. Although pulse periods were still

asymmetrical, by counting edges for a fixed time period, normalization of the pulse

distribution over this time span was performed, yielding much better results. Both

methods are shown in figure 3-19. The greater the time span defined for edge

counting, the less outliers in the signal. But with long time spans uncertainty

increases, because during the time defined to count edges, the last speed

measurement is held constant; if speed changes too abruptly and the defined time

span hasn’t elapsed, the sensor won’t be able to register such changes. For this

reason an appropriate sampling time on the controller and edge counting time span

must be defined.

Figure 3-19: On top, RPMs are measured using the period method. Below,

measurements are made using the pulse count method.

The microcontroller inside the MCU module on the wheel speed sensor CAN node

was programmed to use the edge count method. Revolutions per hour of the traction

wheel are sent through the CAN bus every 50 milliseconds.

On the CompactRIO controller, LabVIEW was used to develop a tachometer

application to calculate the corresponding RPMs, according to the information

provided by the wheel speed sensor node.

68 Chapter 3 Implementation

Two redundancy measurements were used to ensure the RPMs displayed by the

cRIO application were accurate. First, with the setup used for the repeatability tests,

the photo-tachometer readings were contrasted to the ones shown by LabVIEW.

Then, frequency on the output signal of the sensor was measured using an

oscilloscope connected directly to the opto-interrupters cables. Frequency on the

output signal was manually converted to RPMs through simple mathematical

operations and compared to the results shown by the cRIO.

While holding the speed of the vehicle constant, the redundant measurements

from the three sources were within 5 RPMs of each other most of the time, thus

concluding that the tachometer implementation in LabVIEW was successful.

Even though the measurements were made using the pulse count method,

fluctuations on the signal were still present. To reduce outliers in the signal even

further, a mode filter and a median filter were applied through software.

The first filter applied computes the mode of a sample set of user defined size; the

filter finds the mode of the set by calculating the histogram of the input data and

selecting the center value of the bin with the largest count; these calculations

introduce a time delay that depends on the length of the sample set. The filter proved

to effectively reduce the number of oscillations present in the signal, but the trade-off

between response time and oscillation frequency was increased.

The second filter applied, computes the median of a user defined sample set (called

rank on the VI) that is used to define an equal number of elements to the left and to

the right of the point of interest, for selection of the median. The time delay of this

filter is smaller than the one of the mode filter, presenting equal or better results on

outlier removal. As a conclusion, the median was preferred over the mode filter.

A Real-Time VI was used to send the desired speed (RPM setpoint) on a CAN

frame to the Millipak CAN node. Also, this VI monitored and logged the RPM

measurements obtained.

To compare results for RPM calculation, the period method is plotted along with

the pulse count method, and both the mode and median filters. The median filter was

also applied to the period method to observe its behavior. Figure 3-20 shows the

different methods and filters for the RPM measurements obtained. Outliers are

clearly visible for the period method (top plot). Each unit on the time scale represents

the Real-Time VI’s loop cycle or sampling time. Sampling time was set to 30

milliseconds, which means that from one mark on the x axis to the next 30

milliseconds have elapsed.

Chapter 3 Implementation 69

Figure 3-20: Plots from top to bottom; the period method, the pulse count method,

mode filtered pulse count method, median filtered pulse count method and median

filtered period method.

Figure 3-21 shows a close-up on the “constant” section of figure 3-12. All methods

present outliers, but the median filter reduces both frequency and amplitude of these,

thus providing a better and more reliable approximation to the actual RPMs of the

wheel.

From figures 3-22 and 3-23 it can be observed that the use of a filter induces a

delay of approximately 3 time units, which results in 90 milliseconds for a sampling

time of 30 milliseconds, independently of the measuring method used. It should be

noted that the pulse count method yields a step shaped (discrete) measurement

compared to the period method which appears smoother. Also, the application of a

filter produces a discrete signal regardless of the measuring method.

70 Chapter 3 Implementation

Figure 3-21: Close-up on the constant speed section of figure 3-20. Again, plots from

top to bottom; the period method, the pulse count method, mode filtered pulse count

method, median filtered pulse count method and median filtered period method.

Figure 3-24 shows the systems response due to a setpoint change. The pulse count

method without filtering (middle plot) proves to be an improvement over the period

method (bottom plot), which clearly looks messy. The median filtered pulse count

method (top plot) demonstrates to be the most stable of all methods. The figure

shows that for the acceleration and deceleration portions of the graphics, the three

plots share a similar behavior, only during the constant or cruise speed portion of the

plot a big difference is remarkable between each method. An improvement in the

quality of the graphic is evident from applying a filter to the best of both core

methods.

Chapter 3 Implementation 71

Figure 3-22: Delayed signal induced by the application of the median filter on the

pulse count method measurement.

Figure 3-23: Delayed signal induced by the application of the median filter on the

period method measurement.

72 Chapter 3 Implementation

Figure 3-24: Systems response to a 100% change in speed demand. From top to

bottom, median filtered pulse count method, pulse count method and period method.

Chapter 3 Implementation 73

3.7 Process Characterization

The parameters that describe a process are: steady state gain (K), which indicates

how the process output changes with respect to an input change; the system’s time

constant , describing the rate of change of the process measurement; and the dead

time of the system, describing how much time is required for the system to start

responding to an input change.

Characterization of the process plant was performed with the controller on manual

mode (the controller’s output didn’t depend on feedback from the sensor) resulting in

an open loop system.

The system was set to 50% of its maximum speed value; after stabilization, a step

change from 50% to 100% was commanded. From this response curve, the process

parameters were obtained. Calculations were done with numeric data logged by the

cRIO rather than by a graphical method. Figure 3-25 shows the reaction curve.

Figure 3-25: Response curve yielded by the system, used for characterization. Each

sample marked on the horizontal axis corresponds to a 30 millisecond interval.

74 Chapter 3 Implementation

The steady state gain of the system is defined as:

 (3.1)

Using the two point method, the time constant and dead time parameters of the

process are obtained. In this method, time at which the process reaches 28.3% and

63.2% of its peak value is determined and used to establish the systems parameters.

Equation (3.2) shows how the time constant is calculated while equation (3.3) shows

the dead time approximation.

 (3.2)

 (3.3)

From the resulting figure, the system can be characterized as a first order system

with a dead time function. Table 3-3 shows the obtained parameters for the process:

dead time , time constant and process gain (K).

Table 3-3: Process parameters: dead time , time constant and .

 (ms) (ms) K

450 720 2.553463

minutes

0.0075 0.012

3.8 PID Control

A proportional-integral-derivative (PID) controller is implemented to develop a

closed loop control system. The PID controller reads data from the process and

computes the desired output by calculating and adding proportional, integral, and

derivative responses.

A control action is defined based on tuning parameters and the error measured

between a setpoint and the process variable at a particular time step.

 (3.4)

The controller’s action , is described by:

 (3.5)

Chapter 3 Implementation 75

Where is the proportional gain, is the integral or reset time and is the

derivative or rate time. Each of these elements corresponds to a different response.

 (3.6)

 (3.7)

 (3.8)

Where is the proportional response, is the integral response and is

the derivative response.

To develop a Network Controlled System (NCS) the PID controller is integrated

into the CAN network. The system loop is closed by joining the controller, sensor,

process plant and actuator through the network. A block diagram representing the

resulting NCS is shown in figure 3-26.

Figure 3-26: Block diagram of a typical NCS with induced delays.

The setpoint or reference is received by an analog to digital converter

where sampling occurs according to a time , then the discrete error is

computed and taken as an input on the controller , the controller’s output or

manipulated variable is sent through the network where an induced

controller-actuator delay occurs, a zero order holder maintains the

controller’s output while the next output value is generated, finally, the process plant

 receives the controller’s output as an input. The plant’s output is

registered by a sensor that sends a feedback signal through the network

which is affected by an induced sensor-controller delay . The error is

computed again closing the control loop.

76 Chapter 3 Implementation

3.8.1 PID Tuning

To adjust the PID for correct performance, the controller requires characteristic

parameters from the process plant. The controller’s performance is directly affected

by its tuning parameters. Different methods can be used to tune a controller. Three

methods are presented for the PID controller: the Ziegler-Nichols method, the

Integral of Time-weighted Absolute Error method, and the ultimate gain method.

The reaction curve method for a step change response described by Ziegler-Nichols

(Z-N) [Zhong, 2006; Åström, 2002] was used as a model for obtaining the PID’s

tuning parameters [Apco]. Table 3-4 shows the controller parameters calculated

using the Z-N method.

Table 3-4: PID tuning parameters: Controller gain , integral time and

derivative time for the Ziegler-Nichols response curve method. For P, PI and PID

control strategies.

Z-N

P 0.6266

PI 0.56394 0.025

PID 0.676728 0.015 0.00375

Tuning was also done according to the Integral of Time-weighted Absolute Error

(ITAE) criteria to compare its performance against the Z-N formulation. This

criterion uses the integral of the error over time to penalize persistent errors

according to equation (3.9):

 (3.9)

ITAE tuning produces more conservative parameters than Z-N. Tuning can be

optimized for performance against setpoint changes or against disturbances. Table 3-

5 shows the ITAE criteria parameter results.

Table 3-5: ITAE tuning parameters calculated.

ITAE

Reference Change Disturbances

P

0.40680

PI 0.43302 0.017942

0.66217 0.01574304

PID 0.68356 0.023529 0.002750 1.02453232 0.01210533 0.00324974

Chapter 3 Implementation 77

As a last implementation, the closed loop ultimate gain tuning method was also

computed. This process determines the gain that will cause the system to oscillate at

constant amplitude; the ultimate gain (where oscillations stop increasing in

amplitude) and period are used to determine the tuning parameters. Table 3-6

presents the results.

Table 3-6: Ultimate gain PID tuning parameters.

¼ decay

P 1.25000

PI 1.12613 0.015493

PID 1.49701 0.009333 0.00233

Each of the previously discussed methods was used as a guideline. The Z-N

response curve method proved to yield the best results, but either way further

manual fine tuning was done on the PID controller for this criterion to improve its

performance.

3.9 Fuzzy Logic Control

Fuzzy systems (FS) are precise, defined systems, even though the processes they

model are fuzzy in nature. Fuzzy logic tries to approximate real, complex non-linear

real-world processes to estimate reasonable results.

Fuzzy logic is a knowledge-based or ruled-based decision making method. A fuzzy

controller uses defined rules to control a process based on the values of its input

variables. Linguistic variables (words) represent the input and output variables of the

control system; these variables have a range of expected values. Linguistic terms are

the different categories each linguistic variable can be classified into. A membership

function relates linguistic terms with numerical values; these values represent the

degree of membership each linguistic variable has with a linguistic term. Membership

ranges from 0 for 0% to 1 for 100% membership. Each of these linguistic variables

describes a fuzzy set. The relationship between input and output fuzzy sets can be

described with fuzzy IF-THEN rules. A fuzzy system is constructed by a collection of

fuzzy rules known as a rule base, which is equivalent to the control strategy of a

controller. Basic connectives AND, OR, NOT are used to relate the rule’s antecedents

and determine the truth value of the aggregated antecedent; the THEN part

constitutes the rule’s consequent. For example a simple rule can be: IF speed slow

AND accelerator not pressed THEN press accelerator.

78 Chapter 3 Implementation

When a process can be described qualitatively it is possible to use fuzzy logic to

design a fuzzy controller. Fuzzification is the first stage of a fuzzy system, the crisp

or numerical values of the variables involved are associated with its corresponding

linguistic terms. After fuzzification is done the controller uses the input terms and a

certain rule base to determine the proper value of the output linguistic variables. A

defuzzification method is necessary to translate back the output’s membership value

into crisp numerical values.

3.9.1 Fuzzy Logic System

A Fuzzy Logic controller was developed to compare its performance against the

PID. The first step in the development of the Fuzzy System, consisted in choosing

input linguistic variables and its corresponding terms. Initially, the system was

classified as single-input-single-output (SISO), where the input variable was the

process variable (RPMs), and the output was a step-up or step-down on the CAN

speed control value depending of the current RPMs. This resulted in a poor

implementation; control of the vehicle’s speed was easily lost.

A second approach consisted of a multiple-input-single-output (MISO) system with

two input variables: first the current error of the system (measured between setpoint

and process variable), and second, the error change rate. A step-up or step-down on

the CAN speed control value remained as the output.

Initially, three linguistic terms, or classes were defined for each input variable:

negative, zero and positive. Five and seven terms were also tested. After

experimentation, better results were obtained with five terms. Seven terms didn’t

improve performance over five, thus, the FS was designed with the following five

terms for each input variable: Negative Large, Negative, Zero, Positive, Positive

Large.

The error is defined by equation (3.10), while the error change rate is defined as in

equation (3.11).

 (3.10)

 (3.11)

Table 3-7 shows the relationship between error, error change rate and process

variable; these relationships were used to define the Fuzzy System’s rule base.

Chapter 3 Implementation 79

Table 3-7: Relationship between error, error change rate, and process variable.

Positive Positive Under the SP and moving away

Positive Negative Under the SP and moving towards

Negative Negative Over the SP and moving away

Negative Positive Over the SP and moving towards

Zero Positive Reached the SP from above

Zero Negative Reached the SP from below

Positive Zero Not moving and under the SP

Negative Zero Not moving and over the SP

Zero Zero Reached the SP and not moving

The output linguistic variable, as already stated, represents increments on the

CAN speed value sent to the Millipak node; seven linguistic terms were used to

describe the output variable: Negative Large, Negative Medium, Negative Small,

Zero, Positive Small, Positive Medium, Positive Large.

Each term in the input’s membership function represents a possible current state

of the process variable; for example, if both the error and error change rate are

positive large, the process variable is very far below the desired speed and the vehicle

is decelerating; the corresponding action by the controller would be to accelerate

quickly, which translates to a positive large output, incrementing the CAN speed

control value in more than one unit.

Figure 3-27: Membership function for the input variable Error. Error units are in

RPMs. The zero error range is defined in conjunction with the Positive and Negative

error range, membership varies depending on the three different linguistic terms.

80 Chapter 3 Implementation

Figure 3-28: Membership function for the input variable Error Change Rate.

Figure 3-29: Membership function for the output variable CAN Data Changes.

All input antecedents for a given output are connected using the AND operator;

the minimum of both membership degrees between the inputs is taken as the truth

value for the aggregated rule antecedent.The rule base is composed of 25 different IF-

THEN rules and it is summarized on table 3-8.

Table 3-8: Rule base used for the FS.
11

NL N Z P PL

NL NL NL NM NM Z

N NL NS NS NS Z

Z NL Z Z Z PL

P Z PS PS PS PL

PL Z PM PM PL PL

11

 Negative Large: NL, Negative Medium: NM, Negative Small: NS, Negative: N, Zero: Z, Positive: P,

Positive Small: PS, Positive Medium: PM, Positive Large: PL.

Chapter 3 Implementation 81

The resulting Fuzzy space is shown in figure 3-30. Input variables, Error and

Error Change Rate are plotted versus the CAN speed control value increments which

constitute the output variable.

Figure 3-30: Fuzzy Space described by the rule base.

82 Chapter 3 Implementation

83

Chapter 4

4 Experiments and Results

This section presents the experiments done on the electric utilitarian vehicle to

validate the development of the CAN control network. The tests depicted in this

section were done with the complete network control system. This was done by

integrating the control algorithms to the CAN network and monitoring the response

of the system to different commands.

4.1 CompactRIO PID Control

The PID control algorithm implemented on the CompactRIO platform is located at

the Real-Time programming level. An FPGA VI runs on the background to

transmit/receive CAN messages. Information received through the CAN bus is shared

with a Real-Time VI, which requests a subVI to calculate the RPMs of the wheel with

the information provided through the network. On the RT VI the software filter is

applied to the resulting RPM measurements to reduce outliers in the signal. The

filtered signal serves as the PID controller’s input, which based on the corresponding

tuning parameters generates an output signal. The controller’s output is sent

through the CAN bus and received by the Millipak node. This node receives the CAN

message and generates a control signal for the Millipak controller to drive the motor,

trying to reach the desired speed value. The PID control algorithm employed works

with percentage values for its input and output. Using the maximum RPMs (or a

close approximation) of the system, the PID controller calculates the required output

to maintain the speed of the vehicle close to the desired setpoint. A first attempt at

controlling the system is shown in figure 4-1. It can be observed that tuning

parameters must be adjusted to eliminate overshoot and oscillations in the

controllers output.

84 Chapter 4 Experiments and Results

Figure 4-1: Closed Control Loop response with PID controller. Showing sample time

(each time sample is equal to 50 milliseconds) on the horizontal axis versus

percentage of maximum on the vertical axis.

Figure 4-2: Closed Control Loop response for setpoint change with PID controller

after Z-N tuning.

Chapter 4 Experiments and Results 85

Figure 4-3: Closed Control Loop response for setpoint change with PID controller

after fine tuning the Z-N method.

It can be observed that the PID controller indeed follows any setpoint change. Fine

tuning helped speed up the response time for the controller to reach the setpoint.

Further tuning can be done to shorten this response time span even more, watching

carefully where the controller yields an overshoot.

4.2 CompactRIO Fuzzy Logic Control

Development of the FS in LabVIEW was done with the aid of the Fuzzy System

Designer. The fuzzy system is saved as a *.fs file which is later transferred to the

controller and loaded on the RT VI developed for fuzzy control. The *.fs file contains

information about input/output variables membership functions and rules. The fuzzy

logic controller VI constructed works at the RT level, like the PID controller receives

information from the wheel’s speed through the CAN bus.

It can be easily seen that the fuzzy controller takes more time to reach the setpoint

than the PID, this generates less overshoot on the response as well as providing a

smoother acceleration.

86 Chapter 4 Experiments and Results

Figure 4-4: Closed-loop response with fuzzy logic controller.

Figure 4-5: Closed-loop response with fuzzy logic for setpoint change. On the upper

part of the graph a setpoint beyond the controllers output capacity was desired and

thus not met.

87

Chapter 5

5 Conclusions

This thesis describes the automation of the speed control module for a real-life

scale electric mining vehicle. The method for speed automation relies in the

development of a Network Control System (NCS) based on the Controller Area

Network (CAN) standard specification. This speed controller is proposed as part of a

modular control architecture into which other modules can interact by means of the

CAN bus.

The vehicle is the Super Truck model from Johnson Industries, whose kinematics

are those of a rear-wheel differentially driven conventional vehicle. The driving force

is produced by a 5HP electric motor, which is regulated by a power controller from

Sevcon, model Millipak.

Since the utilitarian vehicle lacked appropriate preparations to develop an

effectively closed control system, instrumentation and automation was required. A

wheel speed sensor was developed to estimate the vehicles speed at all time. This

information was then processed by the controller to generate an appropriate

response, according to parameters defined by the user. The control algorithms reside

on a Programmable Automation Controller (PAC); model CompactRIO,

manufactured by National Instruments (NI). Both sensor and controller are

connected through the CAN bus. On a personal computer, the user can modify

controller parameters through a human-machine interface (HMI) developed on the

graphical programming environment from NI: LabVIEW. Also, on the HMI, the

controllers response and current speed of the vehicle can be monitored, as well as

information travelling through the CAN bus. The purpose of the controller is to reach

and keep the vehicle at a desired constant speed defined by the user.

The manufactured sensor offers an experimental low-cost solution for the intended

application. It acts as an optical encoder to measure the revolutions per minute at

which the traction wheels are turning. The sensor’s number of pulses per revolution

88 Chapter 5 Conclusions

provides a good resolution (1.5° degrees per pulse) for RPM measurement of the

vehicle’s wheel.

Nevertheless, data quality of the signal produced by the sensor is acceptable; but

problems reside on the asymmetry between pulse periods. These readings may be

interpreted as false RPM changes. The measuring technique used counts pulses over

a defined time span, therefore normalizing the duration of each pulse for such time

span. With this technique the resulting signal from the sensor presents fewer

variations during constant speed. Besides this, software filtering was applied to

reduce outliers in the form of spikes, thus rendering a much smoother signal

representing the speed of the wheel.

As a future direction, a commercially state of the art sensor can be used to replace

the low-cost alternative used, improving setup times and properties such as

robustness and response time frequency. Inclusion of the replacement sensor to the

control network is easy, as long as the CAN frame sent by the sensor respects the

convention established on this thesis for transmission of speed measurement data, no

further modifications have to be made on any other CAN node.

Complementary to this, the establishment of the NCS required the development

and implementation of the CAN bus on the vehicle. Specifically, the electronic design

and later manufacturing of the modules and interfaces of the CAN nodes used to

communicate both the speed sensor and Millipak controller over the network. Since a

commercial CAN module from NI was available for the CompactRIO controller, its

inclusion to the network was also possible. Programming of the microcontrollers on

the manufactured CAN nodes as well as on the CompactRIO was done next. Although

complications arose from the lack of information on the documentation provided for

the CompactRIO’s CAN module, they were ultimately resolved. This resulted in a

complete and functional CAN bus.

The manufactured CAN modules and interfaces functioned as intended. CAN

communication is effectively established and characteristics such as robustness and

reliability of the protocol were verified by operating the network at maximum speed

with constant message transfer, in a high electromagnetical environment. Electronic

design of the PCBs for the modules and interfaces is simple and reliable, but it can

yet be improved, resulting in a smaller size, a better form factor, and an increase in

computational capacity. Further electronic protection for the manufactured modules

and interfaces can be included to preserve their components in case of an electric

malfunction.

Chapter 5 Conclusions 89

Apart from this situation, closed loop control is achieved by connecting sensor,

actuator and controller through the network. The sensor is periodically sending the

wheels speed through the CAN bus; the controller receives this information and

produces a control signal, which is also sent out to the network. The Millipak CAN

node receives the information sent by the controller and generates a response that

drives the electric motor to the desired speed, which is then again sensed and sent

through the bus, closing the control loop. Two different control algorithms were

implemented on the CompactRIO; a proportional–integral–derivative (PID) controller

and fuzzy logic controller, both developed under LabVIEW. As with most control

systems, a trade-off between response time and stability was naturally present.

The PID responded well with short sampling time spans (less than 100

milliseconds) on the controller, but stress applied to the electric motor by the

controller’s output response was far greater than with the fuzzy logic controller.

Since the response time of the system is slow in nature, sampling time spans on the

controller can be increased without compromising performance, thus the fuzzy logic

controller proves to be in advantage over the PID. With a slower sampling time (130

milliseconds), the fuzzy controller performs as well as the PID, but provides a better

alternative in terms of setup time, design and implementation.

Improvements to both control approaches can be made. In the case of the PID,

advanced tuning techniques may be applied to provide more accurate control. For the

case of the fuzzy logic controller, the number of rules as well as their operating range

can be modified to yield better performance. A further approach can be the fusion of

both techniques to develop a hybrid fuzzy-PID controller.

During experimental validation, a variety of laboratory exercises with an

experimental setup, where the vehicle was suspended on its traction wheels.

Experiments were done to determine characteristics such as repeatability of the

developed system. Also, several tests were successfully performed outside the

laboratory, demonstrating a complete and functional speed control network based on

the CAN protocol. With the vehicle rolling on the ground, the CAN network provided

a communication channel between the Millipak controller, the wheel speed sensor

and the PAC, where both control schemes implemented achieved the desired task of

maintaining a constant cruise speed for the vehicle. With this, it was demonstrated

that the CAN bus control network developed is suited for management of critical

control information, not only limited to the one provided by the speed controller

developed on this research.

90 Chapter 5 Conclusions

Unfortunately, the vehicles batteries are not in perfect shape, and usually are

drained quickly, affecting performance (e.g. the vehicles maximum speed may be

achieved while the batteries are at full charge, but once they deplete below 50% max

speed cannot be reached), forcing the controller to yield a response of 100% of its

capacity constantly. Higher capacity batteries are required to improve the overall

performance of the vehicle and extend testing periods.

Finally, it can be concluded that the methodology applied effectively resulted in a

prototype vehicle with autonomous speed control. The resulting Network Control

System allows for further inclusion of other control modules. The robustness of the

system permits the removal of current modules and insertion of new ones without

sacrificing the existing functionality of the control architecture. The use of

standardized components grants the system with an interoperability characteristic,

thus the system is not brand-specific. In this manner, the proposed CAN network can

be expanded to a complete control architecture to successfully build a completely

autonomous vehicle. The speed algorithms employed can be modified or even

replaced by others, any type of controller can be included without mayor

modifications on the system, as long as the controller’s output travels through the

network with the proper structure. A key advantage of adopting a CAN bus control

network is the possible inclusion of nodes without disruption of the whole network;

which means that development can grow in complexity without much redesign, thus

the network proposed is not limited to the nodes presented.

The vehicle has yet to be equipped with sensors that allow environmental

perception, such as sonars, LIDARs (Light Detection and Ranging) or different types

of cameras. An improvement to the current implementation would be the use of a

quadrature signal, to receive feedback on the moving direction of the vehicle. An

actuator mechanism for autonomous steering control is already developed but has

not been fully implemented. This elements can be easily adapted to the work

completed on this project by means of the CAN bus.

91

Appendix A

 Kinematic Model

A simplified bicycle model like the one shown in figure A-1 can be generated from the

Ackerman Steering geometry and used to compute the vehicles kinematic model.

Nomenclature is as follows:

 .

 .

92 Appendix A

Figure A-1: Bicycle model.

The wheels can be characterized by the constants and the time-varying angles

 [Habumuremyi, 2005]. The radius {r} of the wheel and its time varying angular

position are used to calculate the velocity of the wheel.

Figure A-2: a) Bicycle model for wheel description b) wheels lateral view.

Appendix A 93

Two constraints are deducted from these descriptions [Habumuremyi, 2005; Campion et

al., 1996]:

Pure rolling constraint:

 (A.1)

Non-slipping constraint:

 (A.2)

If the wheels are centered with the axis, then and is measured with respect to

 like stated earlier; so the term can be eliminated from the previous constraints. From the

bicycle approach presented in figure A-1 the following equations governing the kinematic

model are constructed:

 (A.3)

 (A.4)

 (A.5)

 (A.6)

Finally the Ackerman condition [Habumuremyi, 2005; Xiao, 2008]:

 (A.7)

For a rear traction vehicle like the one on this project an exact relation for the angles and

speeds of the real wheels can be obtained from equations (A.3) to (A.7). Based on figure A-1

further constraints can be established from (1) and (2).

Pure rolling constraint of the rear wheel :

 (A.8)

Non-slipping constraint of the rear wheel :

 (A.9)

Non-slipping constraint of the front wheel :

 (A.10)

Solving (A.8) to (A.10) we get:

 (A.11)

94 Appendix A

 (A.12)

 (A.13)

Written as a matrix:

 (A.13)

95

Appendix B

 Motor Model

In reference to figure 3-6, the torque produced by the motor is proportional to the

product between the armature current and the flux (which is proportional to the field

current) [Zaccarian].

 (B.1)

Where is the torque constant of the motor; with constant velocity, is dependent on

the flux density of the fixed magnets in the motor, the reluctance of the iron core and

number of turns in the armature winding. An induced voltage proportional to the product of

the flux and the angular velocity is developed while the armature is rotating; this voltage,

called the back emf or the speed voltage [Salam, 2003; Zaccarian]:

 (B.2)

Where is the motor voltage constant (in V/A – rad/s). Using Kirchoffs voltage law on the

armature circuit we obtain:

 (B.3)

Performing an energy balance on the motor, the sum of the torques should also equal cero.

That is, the electromagnetic torque of the motor due to the voltages applied on the rotor and

stator should compensate the torque due to rotational acceleration of the rotor, characterized

by its inertia and the torque due to the velocity of the rotor characterized by the viscous

friction coefficient as well as the torque developed by the load.

 (B.4)

With initial conditions equal to cero and taking the Laplace transforms of the previous

equations [Gonzalez, 2004]

 (B.5)

 (B.6)

96 Appendix B

 (B.7)

 (B.8)

Substituting of (B.6) with (B.8) we can obtain the transfer function between the

angular speed of the motor’s shaft and the input voltage as shown next:

 (B.9)

Assuming the armature inductance is very small and simplifying by dividing by

 we finally obtain:

 (B.10)

We can model (B.10) as a first order system by taking [Palacios, 2000]:

The transfer function for the electric motor is:

 (B.11)

The differential placed at the end of the motor’s shaft alters equation (B.4). The inertia

moment, viscous friction and torque provided by the differential should be included in the ,

 and terms that appear on this equation. But since all the missing elements involved are

constants, the magnitude of the order of the system is preserved.

97

Appendix C

 Millipak Controller

The Millipak is the electric controller for the vehicle; it serves as a power interface to drive

the electric motor. A schematic representation of the Millipak is shown below in figure C-1.

Figure C-1: Millipak controller showing terminals and connectors A and B.

The following figures show the wiring connections required to operate the Millipak

controller.

98 Appendix C

Figure C-2: Pin out for connector B.

Figure C-3: Millipak controller power wiring.

Appendix C 99

The calibrator uses a reference shown as xx.xx to display the value of important items.

Table C-1 shows the values for every item programmed on the Millipak. For example,

calibrator reference 0.01, which refers to the armature current limit, has a value of 600 A,

the maximum supported by this model, calibrator reference 2.01 mandates an acceleration

delay of 1.5 seconds for the controller to go from 0% to 100% speed.

Table C-1: Calibrator personality list, showing the initial, maximum and minimum values

for each property.

 Personality
Actual
 Value

Range

Minimum Maximum

Current
Limits

0

0.01
 Armature Current
Limit 600 50A ABR

0.02 Field Current Limit 50 10A FBR

0.03
 Drive Current Limit
Start 50 50A

Armature I
Limit

0.04
 Drive Current Limit
Ramp 0.25 0.00s 2.50s

Braking
Levels

1

1.01
 Direction Change
Braking 50 5% 100%

1.02
 Neutral Braking
Level 10 0% 100%

1.03
 Foot-brake Braking
Level 0 0% 100%

1.04
 Dir. Braking Exit
Level 0 0% 100%

Accelerator 2

2.01 Acceleration Delay 1.5 0.1s 5.0s

2.02 Deceleration Delay 0.1 0.1s 0.5s

2.03
Accelerator Zero
Voltage 0.2 0.00V 4.50V

2.04
Accelerator Full
Voltage 3.5 0.00V 4.50V

Creep Speed 3 3.01 Creep Speed 0 0% 25%

Max Speed 5

5.01 Maximum Speed 100 0% 100%

5.02
Maximum Reverse
Speed 100 0% 100%

Cutback 1
Speed

6
6.01 Cutback Speed 1 100 0% 100%

Cutback 2
Speed

7
7.01 Cutback Speed 2 100 0% 100%

Motor Setup 8

8.01 Field Current Low 7 2.00A
 If Mid or
19.75A

8.02 Arm Current Low 120 10A
 Arm I Mid –

10A

8.03 Field Current Mid 25 Field I Low Field I High

8.04 Arm Current Mid 200
Arm I Low +

10A
 Arm I High –

10A

100 Appendix C

8.05 Field Current High 50 Field I Mid FBR

8.06 Arm Current High 400
Arm I Mid +

10A ABR

Power Steer
Timer

9
9.01 Power Steer Timer 2 0s 60s

Seat Delay 10 10.01 Seat Delay 1.5 0.1s 5.0s

Addiotional

Personalities
11

11.01 Roll-Off Speed 73 0% 100%

11.02 Walk Speed 0 0% 100%

11.03 Belly Delay 1 0.1s 5.0s

11.04 PSS Ramp Up Delay 1 0.1s 1.0s

11.05 PSS Timer 2 0s 10s

11.06
 Line Cont. Dropout
Timer 1 1s 60s

11.07 SRO Delay 0 0s 5s

11.08 Low Voltage Start 27 Low V Cutout
 System
Voltage

11.09 Low Voltage Cutout 25 14.5V Low V Start

11.1 High Voltage Start 45
 System
Voltage High V Cutout

11.11 High Voltage Cutout 50 High V Start 50.0V or 58.0V

11.12
 Foot Brake Zero
Volts 0 0.00V 4.50V

11.13 Foot Brake Full Volts 4.5 0.00V 4.50V

System
Setup

12

12.01 Chop Select OFF OFF/ON/24V

12.02 SRO Enable ON OFF/ON

12.03 Control Mode TORQUE TORQUE/SPEED

12.04 Seat Cuts Pump OFF OFF/ON

12.05
 Roll-Off Electro
brake OFF OFF/ON

12.06 Reverse Speed Limit OFF OFF/ON

12.07
 FS1 Recycle on Dir
Change ON OFF/ON

12.08
 Dir Switch Seq Fault
Check ON OFF/ON

12.09
 Line Contactor
Dropout OFF OFF/ON

12.1
 Accelerator
Characteristics LINEAR

LINEAR
CURVED
2*SLOPE
 CRAWL

12.11 High Speed Mode NORMAL
NORMAL
LATCHED

12.12 Belly Style NORMAL
NORMAL

CONTINUOUS

12.13 Power Steer Trigger 0 FS1

Appendix C 101

SEAT
DIRECTION

12.14 Foot-brake Priority DRIVE
DRIVE

FOOTBRAKE

12.15
 Buzzer
Configuration OFF

OFF
REV+ROLL

ALL

12.16 Digital I/O 7 1 17

12.17 Analogue I/P 3 1 4

12.18 System Voltage 36 24V 48V

Acceleration and Braking

The accelerator/analogue inputs are flexible in the range of the signal sources they can

accommodate. Each analogue input has 2 adjustments associated with it to allow the input

voltage range to be determined. The 2 adjustments are called the “Accelerator Zero Level”

and the “Accelerator Full Level”. If these were set to 0.20V and 4.80V then 0% pulsing would

start at 0.20V at the input, increasing to 100% pulsing at 4.80V; the inverse occurs with

decreasing voltage outputs. As shown in table C-1, the accelerator zero voltage (reference

2.03) is set to 0.2V this means the vehicle will start accelerating when 0.2V are present on

the analog input, increasing in step sizes of 0.02V until it reaches its maximum acceleration

rate at 4.5V. Also the reader may note that reference 2.01, acceleration delay is set to 1.5

seconds, this is customized for a smooth acceleration in order to ramp the accelerating pulse

from 0% to 100%.

The acceleration characteristics personality defines a curve to be followed, either linear,

curved, dual slope or crawl. Currently selection is to linear. This function is used to vary how

much speed is demanded depending on the accelerator position. Depending on the setting,

the controller gives a smaller change in speed for large changes in accelerator position which

is useful for low speed maneuvering. The accelerator push refers to how much the operator

has the accelerator depressed. The accelerator demand refers to how much accelerator

demand is requested after the characteristic function is applied. This accelerator demand is

then used along with the creep speed and maximum speed personalities to determine the

speed demand for the vehicle. If a valid direction is selected and the accelerator demand is at

0%, the speed demand will be set to the creep speed personality. As the accelerator demand is

increased to 100%, the speed demand increases linearly to the maximum speed personality.

Braking can be initiated in one of 3 ways:

• Direction Braking: Initiated when the direction switch inputs are reversed during

drive.

• Footbrake Braking: Initiated when the operator depresses the footbrake pedal and a

footbrake input is configured.

102 Appendix C

• Neutral braking: Initiated when the vehicle is put into neutral during drive and the

neutral braking level is greater than 0%.

Direction and neutral braking are currently applied; no footbrake preference has been

established; although it offers a great possibility for automation because footbrake can be

configured to follow one of the next options:

• Via an analogue input configured as a Footbrake Pot. Using a potentiometer allows

the operator to vary the amount of braking needed.

• Via a digital input configured as a Footbrake switch. When the switch is active, the

system will brake at the footbrake level established on the personality list.

103

Appendix D

 Wheel Speed Sensor

Two different models of opto-interrupters were used to construct the sensor; the ITR8102

model from Everlight Electronics and the EE-SX670 model from Omron.

The first version of the speed sensor was mounted on the rear left wheel; it was made

using the ITR8102 opto-interrupters and a perforated metal strip with 48 circular holes as

shown in figure D-1. Originally the opto-interrupters were detached from their plastic casing

because the perforations on the metal strip wouldn’t reach the sensing area. The opto-

interrupters were mounted on an aluminum L-shaped base attached to a flat support on top

of the leaf springs of the vehicle.

Figure D-1: The first version assembled for the wheel speed sensor.

Problems with the first attempt arose from the fact that the perforations on the metal

strip were of different size and that the infrared beam not always crossed the circular hole

through its center, instead of sensing along the diameter sometimes it sensed along a chord,

taking different time from one pulse to the next one; this resulted in a pulse train with

104 Appendix D

asymmetrical pulse periods, greatly affecting the performance of the sensor. Also, ITR8102

opto-interrupters had to be replaced due to malfunctioning of their phototransistors.

An improvement over the ITR8102 opto-interrupter mounting resulted from using a

different L-shaped aluminum base, as shown in figure 3-1. With this arrangement the

sensors were kept in their original plastic casing, improving the sensing area, reducing the

negative effect of external light and becoming more resistant to vibrations caused by the

movement of the vehicle.

The second version of the wheel speed sensor used the EE-SX670 opto-interrupters and

attempted to solve previous issues by aligning every center of the perforations. Making them

the same size while grinding one edge of the metal strip until it became tangent with the

boundary was done to the metal strip. This new sensor had 50 holes opposed to the firsts 48.

This second attempt was mounted on the right rear wheel. A slight improvement in

performance was noticed but still RPM measurements presented oscillations because of the

asymmetrical periods and were not within accepted parameters.

Figure D-2: Second attempt at the wheel speed sensor.

The third and final version of the sensor was implemented using a different perforated

metal strip. This new strip had 241 rectangular perforations, solving the alignment of the

holes and providing a higher resolution for RPM calculation. Great improvement was noticed

on signal quality, but the EE-SX670 opto-interrupter lost track of the pulses when the wheels

speed surpassed 400 RPM due to its limiting frequency of 1 KHz. Thus, although less

industrial, the ITR8102 opto-interrupters were preferred.

105

References

[Albores, 2007] Carlos Albores. Analysis, Architecture, and Fusion

Methods for Vehicle Automation. ITESM Campus

Monterrey, 2007

[Álvarez et al., 2006] Bárbara Álvarez, Pedro Sánchez, Juan A. Pastor,

Francisco Ortiz. An Architectural Framework for

Modeling Teleoperated Service Robots. División de

Sistemas e Ingeniería Electrónica (DSIE); Universidad

Politécnica de Cartagena (Spain), 2006

[Apco] Apco Inc. Open Loop Tuning Rules. Advanced Process

Control & Optimization Inc. Apco Website

<http://www.apco-inc.com/articles/pidtune2.pdf>

[Åström, 2002] Karl Johan Åström. Control System Design. Department

of Mechanical and Environmental Engineering;

University of California Santa Barbara, 2002

[Azzeh, 2005] Abdel Azzeh. CAN Control System for an Electric

Vehicle. University of Canterbury, 2005

[Barbier et al., 2009] M. Barbier, H. Cao, S. Lacroix, C. Lesire, F. Teichteil-

Königsbuch and C. Tessier. Decision issues for multiple

heterogeneous vehicles in uncertain environments.

Onera Toulouse4th National Conference on “Control

Architectures of Robots” Toulouse, April 23-24, 2009

[Behnke, 2006] Sven Behnke, Jürgen Müller, and Michael Schreiber.

Toni: A Soccer Playing Humanoid Robot. Albert-

Ludwigs-University of Freiburg, Computer Science

Institute

106 References

[Borenstein, 1994] J. Borenstein. Internal correction of dead-reckoning

errors with the smart encoder trailer. Intelligent Robots

and Systems '94. 'Advanced Robotic Systems and the Real

World', IROS '94. Proceedings of the IEEE/RSJ/GI

International Conference on , vol.1, no., pp.127-134 vol.1,

12-16 Sep 1994

[Bosch, 1991] Robert Bosch GMBH. CAN Specification Version 2.0.

1991

[Braybrook, 2004] Ray Braybrook. Three D missions - - dull, dirty and

dangerous. Armada International, 2004

[Brooks, 1985] R. A. Brooks. A robust layered control system for a

mobile robot. Cambridge, MA, USA, Tech. Rep., 1985

[Campion et al., 1996] G. Campion, G. Bastin and B. d’Andréa Novel. Structural

Properties and classification of kinematic and dynamic

models of wheeled mobile robots. IEEE Trans. On

Robotics and Automation, vol. 12, pp. 47-62, 1996.

[Chow & Tipsuwan, 2001] Mo-Yuen Chow, Yodyium Tipsuwan. Network-based

control systems: a tutorial. Industrial Electronics

Society, 2001. IECON '01. The 27th Annual Conference

of the IEEE , vol.3, no., pp.1593-1602 vol.3, 2001.

[Corrigan, 2008] Steve Corrigan. Introduction to the Controller Area

Network. Texas Instruments, 2008.

[Coste-Manière & Simmons, 2000] E. Coste-Manière & R. Simmons. Architecture: the

backbone of robotics systems. International Conference

of Robotics and Automation, ICRA’00, San Francisco,

2000

[Darpa, 2008] DARPA. Urban Challenge. DARPA Urban Challenge

Website, 2008

<http://www.darpa.mil/grandchallenge/index.asp>

[Davis, 2010] Leroy Davis. Field Buses. 2010.

<http://www.interfacebus.com/Design_Connector_Field_

Buses.html>

[Dowling, 1995] Kevin Dowling. Robotics: comp.robotics Frequently

Asked Questions. 1995

References 107

<http://www.frc.ri.cmu.edu/robotics-faq>

[Edsinger & Weber, 2004] A. Edsinger-Gonzales, J. Weber. Domo: a force sensing

humanoid robot for manipulation research. Humanoid

Robots, 2004 4th IEEE/RAS International Conference

on, vol.1, no., pp. 273- 291 Vol. 1, 10-12 Nov. 2004

[Gonzalez, 2004] Gerardo Gonzalez. Automatización de la Dirección de un

Vehículo Autónomo. ITESM Campus Monterrey, 2004

[Guo, 2008] Yi Guo. EE631 Cooperating Autonomous Mobile Robots,

Lecture 1: Introduction. Department of Electrical and

Computer Engineering; Stevens Institute of Technology,

2008.

<http://personal.stevens.edu/~yguo1/EE631Fall08/Intro

duction.pdf>

[Habumuremyi, 2005] Jean-Claude Habumuremyi. Models of a wheeled robot

named Robudem and design of a state feedback

controller for its posture tracking. Department of

Mechanical Engineering (MSTA), Royal Military

Academy; Brussels, Belgium, 2005

[Huo et al., 2004] Zhihong Huo, Huajing Fang, Changlin Ma. Networked

control system: state of the art. Intelligent Control and

Automation, 2004. WCICA 2004. Fifth World Congress

on vol.2, no., pp. 1319- 1322 Vol.2, 15-19 June 2004.

[ISA, 1992] International Society of Automation. ISA-5.1-1984

(R1992) Instrumentation Symbols and Identification.

[Iversen, 2008] Wes Iversen. PACs Gain Momentum. Automation World

Website, February 2008 (p. 30)

[Jöhnk & Dietmayer, 1997] Egon Jöhnk & Klaus Dietmayer. Determination of Bit

Timing Parameters for the CAN Controller SJA1000.

Application note 97046. Philips Semiconductors.

[Kaur, 2009] Navneet Kaur. Development of CompactRIO based PID

Temperature Controller. Thapar University, Patiala,

2009.

[Kelly & Moreno, 2001] R. Kelly & J. Moreno. Learning PID structures in an

introductory course of automatic control. Education,

108 References

IEEE Transactions on , vol.44, no.4, pp.373-376, Nov

2001

[Kopp, 2009] Emilie Kopp. Defining a Common Architecture for

Robotic Systems. National Instruments, Webcasts on

demand, 2009

[Largiader, 2006] Anton Largiader. Single-WHAT-System? BMW Riders

Association International. OTL January 2006.

<http://www.bmwra.org/otl/canbus/>

[Leen & Heffernan, 2002] G. Leen and D. Heffernan. Expanding Automotive

Electronic Systems. IEEE, pp. 88-93, 2002.

[Lihua et al., 2008] Zhang Lihua, Wu Yuqiang, Gong Lei, Chen Haojie. A

Novel Research Approach on Network Control Systems.

Internet Computing in Science and Engineering, 2008.

ICICSE '08. International Conference on , vol., no.,

pp.262-265, 28-29 Jan. 2008.

[Mahyuddin & Arshad, 2008] M. N. Mahyuddin and M. R. Arshad. Classes of Control

Architectures for AUV: A brief survey. USM Robotics

Research Group (URRG), School of Electrical and

Electronic Engineering; Universiti Sains Malaysia, 2008

[Mataric, 1997] M. J. Mataric. Behavior-Based Control: Examples from

Navigation, Learning, and Group Behavior. Journal of

Experimental and Theoretical Artificial Intelligence, vol.

9, nos. 2-3, 1997

[Microchip, 2003] Microchip. PIC16F87XA, 28/40/44-Pin Enhanced Flash

Microcontrollers. Microchip, 2003

[Microchip, 2004] Microchip. MCP41010, Single/Dual Digital

Potentiometer with SPI Interface. Microchip.

[Microchip, 2007] Microchip. MCP2515, Stand-alone CAN Controller with

SPI Interface. Microchip, 2007

[Microchip, 2010] Microchip. MCP2551, High-Speed CAN Transceiver.

Microchip, 2010

[Murphy, 2000] R. R. Murphy. An Introduction to AI Robotics

(Intelligent Robotics and Autonomous Agents). The MIT

Press, November 2000

References 109

[NI, 2007] National Instruments. PACs for Industrial Control, the

Future of Control. National Instruments White Paper

July 30, 2007

[NI, 2008] National Instruments. NI9853 High Speed CAN Module

Operating Instructrions. National Instruments, 2008

[NI, 2009a] National Instruments. Controller Area Network (CAN)

Overview. November 7, 2009

[NI, 2009b] National Instruments. NI CompactRIO – Reconfigurable

Control and Acquisition System. National Instruments

White Paper November, 2009

[NI, 2009c] National Instruments. CompactRIO Developers Guide.

National Instruments, December 2009.

[NI, 2009d] National Instruments. CAN Physical Layer Standards:

High-Speed vs. Low-Speed/Fault-Tolerant CAN.

Knowledge Base. National Instruments, 2009

[NI, 2009e] National Instruments. PID and Fuzzy Logic Toolkit User

Manual. National Instruments, 2009

[NI, 2010] National Instruments. Quadrature Encoder Velocity and

Acceleration Estimation with CompactRIO and

LabVIEW FPGA. Tutorial. National Instruments, 2010.

[Opto22, 2008a] Opto 22. Understanding Programmable Automation

Controllers (PACs) in Industrial Automation. Opto 22,

PACs in Industrial Automation White Paper

[Opto22, 2008b] Opto 22. RPM Measurement Techniques. Technical

Note. Opto 22, 2008.

[Palacios, 2000] Gerardo Palacios. Control De Dirección De Un Vehículo

Autónomo. ITESM Campus Monterrey, 2000

[Pazul, 1999] K. Pazul. Controller Area Network (CAN) Basics.

Microchip Technology Inc., AN713, May 1999.

[Pohjola et al., 2006] M. Pohjola, L. Eriksson, H. Koivo. Tuning of PID

Controllers for Networked Control Systems. IEEE

Industrial Electronics, IECON 2006 - 32nd Annual

Conference on , vol., no., pp.4650-4655, 6-10 Nov. 2006

110 References

[Resnick, 2003] Craig Resnick. Plus-size platform gives controller bigger

name. Automation World Website, June 2003 (p. 68)

[Richards, 2005] Pat Richards. A CAN Physical Layer Discussion.

Application Note 228. Microchip, 2005

[Rowe & Wagner] Steve Rowe and Christopher R. Wagner. An Introduction

to the Joint Architecture for Unmanned Systems

(JAUS). Cybernet Systems Corporation.

[Salam, 2003] Zainal Salam. DC motor drives. Power electronics and

drives, 2003

<http://encon.fke.utm.my/courses/see_5433/>

[Sevcon, 2004] Sevcon. MillipaK SEM Controller Manual For System

Version 1.54.01. 2004

[Tadokoro, 2009] Satoshi Tadokoro. Rescue Robotics. Springer, 2009

[Touchton et al., 2006] Bob Touchton, Tom Galluzzo, Danny Kent, and Carl

Crane. Perception and Planning Architecture for

Autonomous Ground Vehicles. University of Florida.

2006

[UC3M, 2009] UC3M Humanoid. P3 and ASIMO – The Honda

Humanoid Robots

<http://honda-p3.com/robot_worldwide/uc3m-humanoid-

2.html>

[Valavanis et al., 1997] K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru

and G.A. Demetriou. Control architectures for

autonomous underwater vehicles. Control Systems

Magazine, IEEE; Volume 17, Issue 6, Dec. 1997;

Page(s):48 – 6

[Viswanathan, 2005] V. Sornam Viswanathan. Embedded Control Using

FPGA. Indian Institute of Technology, Bombay, Mumbai,

2005

[Xiao, 2008] John Xiao. Mobot: Mobile Robot. Department of

Electrical Engineering; City College of New York. 2008

[Zaccarian] Luca Zaccarian. DC motors: dynamic model and control

techniques.

References 111

[Zhao et al., 2010] Ningning Zhao, Demin Xu, Jian Gao, Weisheng Yan.

Application of CAN-bus to the control system of the

TESTBED AUV. Computer Engineering and Technology

(ICCET), 2010 2nd International Conference on , vol.2,

no., pp.V2-645-V2-648, 16-18 April 2010

[Zhong, 2006] Jinghua Zhong. PID Controller Tuning: A Short

Tutorial. Mechanical Engineering, Purdue University,

2006

