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Abstract 

 

 

The work hereby presented deals with the partial automation of a 

utilitarian ground electric vehicle; in particular with the development and 

implementation of a Network Control System (NCS) using a Controller 

Area Network (CAN) based bus for speed control. This thesis highlights 

the use and development of standardized components and protocols in 

order to provide an easily upgradeable platform for future work, with 

enough robustness, reliability, and efficiency. 

A Programmable Automation Controller (PAC) is used to develop and 

execute the speed control algorithm, and eventually can act as a human-

machine interface via a personal computer. The kinematics involved are 

those of a rear-wheel differential driven conventional vehicle. An electric 

power controller is used to manage current and voltage flowing to/from the 

separately excited electric motor driving the vehicle. To develop the 

Network Control System based on the CAN protocol, CAN modules and 

additional specialized interfaces were manufactured, as well as CAN 

compliant cables and CAN hubs. A wheel speed sensor which functions as 

an incremental optical encoder was manually assembled in the Robotics 

Laboratory at the Tecnologico de Monterrey (ITESM). The CAN network 

is fully operational and has been tested proving to be a reliable channel for 

critical control information. The speed control algorithm is based on the 

proportional–integral–derivative (PID) controller model; tuning 

parameters were calculated and fine tuned via trial and error testing. Also, 

a fuzzy logic controller was developed to compare its performance against 

that of the PID. 

Three major distinctive phases involve this investigation; starting with 

the development and testing of the CAN network, followed by the 

programming of the speed controller algorithms and finally the integration 

of both into a complete Network Control System. 
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Chapter 1 

1 Introduction 

 

 

Demand for robotic applications has increased in areas that range from 

exploration to entertainment [Guo, 2008]. The development of mobile robots on the 

educational, private and military sectors has driven focus for research; modern 

trends indicate the use of robotic applications for working environments in which the 

tasks involved are dirty, dull or dangerous [Braybrook, 2004; Álvarez et al., 2006] for 

operators, making necessary the automation of functions previously done by humans. 

The development of autonomous mobile robots has demonstrated to be a challenging 

topic in the fields of computer science, electrical and mechanical engineering. 

Automation deals with the detachment of robots from their human operators. 

Decisional autonomy in robotics is intended to reduce the number of remote 

operators, change their roles and decrease their workload [Barbier et al., 2009]. 

During the automation process, an early and crucial stage is the selection and 

installation of communication channels, sensors and actuators (instrumentation
1

) 

which will later provide the means for the robot to interact with its surrounding 

environment. 

Autonomous vehicles (AXV
2

 or AV) are a type of autonomous mobile robots
3

 that 

have gathered significant attention due to characteristics such as precision, 

                                                           
1
 According to the International Society of Automation (ISA) the official definition for instrumentation 

(ISA standard S51.1) is: A collection of instruments or their application for the purpose of observation, 

measurement, control, or any combination of these [ISA, 1992]. 
2 X denotes medium for navigation, e.g. AGV: Autonomous Ground Vehicle; AAV: Autonomous Aerial 

Vehicle; AUV: Autonomous Underwater Vehicle; ASV Autonomous Surface Vehicle [Barbier et al., 

2009]. 
3
 A distinction is made between these concepts. The term autonomous vehicle usually means the 

conversion of an existing utilitarian vehicle into an AV; here all or some of the previous knowledge of 

the vehicles manufacturer is preserved. Whereas a mobile robot usually refers to a robot conceived 

from scratch, where the design includes the creation of the mobile platform as well as the components 

needed for automation; highly customized applications can be achieved in this manner [Albores, 2007; 

Gonzalez, 2004]. 
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repeatability, speed, and most of all, the ability to perform specialized tasks on 

hazardous environments, where human integrity might be at risk. 

A common practice to develop an AV is the instrumentation and automation of 

utilitarian vehicles, where special care should be taken during the design and 

implementation of the underlying core information systems of the AV. Reliable 

protocols and components should be applied to ensure proper and successful 

operation. Furthermore, as technological advance continues to grow exponentially, to 

extend the lifespan of applied solutions, widely accepted standardized elements 

should be employed.  

According to DARPA
4

 “An autonomous ground vehicle is a vehicle that navigates 

and drives entirely on its own with no human driver and no remote control. Through 

the use of various sensors and positioning systems, the vehicle determines all the 

characteristics of its environment required to enable it to carry out the task it has 

been assigned”. 

Over the last two decades one of the main topics of the scientific community, 

dealing with human-robot interaction environments, has been the relief of disaster 

scenarios. International associations such as the Institute of Electrical and 

Electronics Engineers (IEEE) have developed specific research divisions for this area. 

The term rescue robotics involves systems that are designed to support human first 

response units during dynamic disaster situations. Applications for rescue robotics 

include: information gathering of the disaster; hazardous material handling; search, 

diagnosis and rescue of survivors; quantitative investigation of the damage extent; 

support for recovery actions and help at evacuation centers [Tadokoro, 2009]; leaving 

people with the ability to concentrate on high priority actions. 

The rescue robotics area requires autonomous vehicles capable of withstanding 

harsh environmental conditions. High quality standardized components that are able 

to operate during vibrations, in hot or cold environments, with high 

electromagnetical noise, humidity, etc., along with complementary software, such as 

standard communication and navigation protocols, must be used to prototype the 

AVs acting on these environmental conditions.  

Controller Area Network (CAN) is a serial communication protocol that can be 

used for real-time distributed control. This bus architecture has proven to be a 

                                                           
4
 DARPA is the Defense Advanced Research Projects Agency created in 1958 by the United States of 

America; although mostly focused on military technological research, its projects have played a 

fundamental part on the development of new technologies widely implemented outside military 

applications [Darpa, 2008]. 
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confident medium for modular configurations. With CAN bus, it is possible to 

implement a Network Controlled System (NCS) or field bus [Davis, 2010] for closed-

loop control with relatively low cost and high efficiency. Advantages like less wiring, 

modularity and interoperability arise from the adoption of this technology.  

The automation process can yield as a result functional but complex control 

architectures. Attempts at the development of an AV, without the application of 

standardized components and protocols, often result in customized solutions, where 

only the developers are able to fully understand the know-how involved.  

The communication protocol used not only defines software constraints; hardware 

considerations, like cable types, cable length and network topology, are also 

dependable on protocol selection. Complex architectures usually require complex data 

pathways (physical connections), making wiring inside the vehicle a major concern. 

Maintenance and replacement of customized components, as well as inclusion of new 

elements may result in a challenging task. The lack of consideration for upgrading 

capabilities makes these solutions prone to obsolescence. 

Therefore, an issue arises during the early development of an AV. When selection 

of the components for the system’s architecture is not based on standards; 

compatibility, interoperability, robustness, reliability and quality can’t be assured; 

compromising future implementations. 

The use of standard certified elements guarantees a general understanding of the 

applied technology, providing a strong, reliable and common groundwork while 

maintaining important know-how information for further development and 

simplifying implementation, maintenance, upgrading times and costs of the system. 

The work presented here addresses to prove that a Network Control System based 

on the CAN standard specification is reliable and robust enough for the development 

of the control architecture of an autonomous ground vehicle. Using standardized 

components and protocols that provide minimum cost and a relatively easy 

implementation, a full control loop can be established. 

The objective of this thesis is to successfully develop an in-vehicle network based 

on the CAN protocol and use it to integrate a closed control system for the speed 

control module of the vehicles architecture. By developing only the speed control 

module and demonstrating characteristics such as modularity, interoperability and 

robustness; scalability can be achieved, thus the general principle behind the 

development of the complete control architecture can be proved. 
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In particular the objectives in this research are: 

1. Development and implementation of a CAN network for the vehicle. 

2. Development of modular CAN interfaces. 

3. Subdivision and organization of the system into a distributed network 

composed of different CAN nodes. 

4. Development of a closed-loop NCS with expanding capabilities. 

5. Development of a programming solution for the speed control module of the 

system architecture using a PAC. 

6. Establishment of a common ground for future development. 

The functions performed by the vehicle constitute different abstractions within the 

systems architecture; a basic structure contains methods for environmental 

perception, action planning and control. While these are all tasks performed by 

humans during a vehicles standard operation, other no so evident functions have to 

be performed as well. Figure 1-1 shows the basic elements in an AV architecture, 

where the speed control module is highlighted inside the red square. The complete 

architecture is composed of different modules, where their interactions are described 

by information sharing communication channels. 

Movement of the vehicle can be traced on a 2-D plane, where localization at any 

given time can be described by its       coordinates and its orientation    . Control is 

performed in the vehicles trajectory
5

 in function of its steering angle   and its 

velocity
6

  . 

The vehicle used during this research can be modeled beside its Ackerman steering 

mechanism. Velocity control is crucial for overall operation and efficiency as it plays a 

major role inside the kinematic model of the vehicle, typically used with dead 

reckoning techniques for pose estimation and steering control [Borenstein, 1994]. 

Being the base for speed estimation, the velocity control module constitutes a 

fundamental element inside the AVs architecture. 

                                                           
5
 A trajectory is defined as an ordered collection of points, composed by positions and orientations 

[Albores, 2007]. 
6
 Velocity is defined as the rate of change of displacement over time; it is a vector, which means that 

both magnitude and direction are needed to define it. Speed is the scalar absolute value of velocity 

which only deals with the magnitude of the vector. 
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Figure 1-1: Main elements of the control architecture for an AV as proposed by 

Albores in [Albores, 2007]. 

Although this thesis deals with speed, it is simple to measure velocity once its 

magnitude is known, since only direction of the moving vehicle is needed. 

The standardized CAN protocol makes possible the integration of information 

managed by the real-time network with the high computational power of a 

Programmable Automation Controller (PAC), which offers the industrial ruggedness 

of a specialized Programmable Logic Controller (PLC) combined with the versatility 

of a Personal Computer (PC). 

The development of a control network using the CAN protocol for the AV to 

effectively navigate with controlled speed required selection of standard components 

and design, fabrication and implementation of elements that range from interfaces, 

to cables and sensors, as well as programming and development of control algorithms 

within the PAC. The network is also intended to function as a communication 

channel for future control loops inside the vehicle. An example of a control 

architecture based on the CAN bus protocol is presented in figure 1-2. Comparing 

with figure 1-1, it is easy to observe the evident level of simplification achieved by 

using a bus topology. 
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Figure 1-2: CAN control architecture for an AUV presented by [Zhao et al., 2010]. 

The scope of this thesis covers the implementation of the CAN communication 

network inside the vehicle for integration of the modules composing the system’s 

architecture. While the complete architecture is integrated by different modules, in 

this research only the speed control module is developed.  

The main contribution achieved is the establishment of a complete closed control 

loop, composed by three different CAN nodes. 

This thesis is divided in 5 chapters and several appendices. Below is brief 

description of such chapters. 

Chapter 2 presents the methodology followed for the successful development and 

implementation of a Network Control System based on the CAN protocol for speed 

control of the utilitarian electric vehicle, used in this thesis. A description of the 

elements in such methodology is presented. 

Chapter 3 presents the implementation of the key elements developed for this 

project. This chapter extends the details of elements generally presented on chapter 

2. 

Chapter 4 demonstrates the experiments done during this research. Results on 

these experiments are shown to prove that the main objectives of this thesis were 

fulfilled. 
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Finally, Chapter 5 shows the conclusions of this work. Evaluation of the elements 

developed is presented as well as possible improvements and implementations for 

future work. 

A variety of appendices are also provided to describe auxiliary elements mentioned 

along this document. 
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Chapter 2 

2 Methodology 

 

 

The methodology followed is shown in figure 2-1, it is similar to the one presented 

by Gonzalez in [Gonzalez, 2004]. Some of the steps involved were done separately for 

the implementation of the CAN network and for the speed controller. This entire 

research was done with aid from members of the E-Robots research group from the 

Robotics Laboratory at Tecnologico de Monterrey. 

 

Figure 2-1: Research development methodology. 
 



10  Chapter 2: Methodology 

 

 

Analysis and Characterization:  

A breakdown of the mechanical and electric systems composing the vehicle is 

made. Documentation provided by different manufacturers is thoroughly examined to 

fully understand the elements involved and their limitations. Characterization of the 

vehicle is done; different models are constructed, for instance the electric model, 

consisting of the schematic diagram of the electric wiring configuration; and the 

mechanical model, including the kinematic model of the vehicle and the dynamical 

model of the motor driving the vehicle. 

In a similar manner, research is done concerning network controlled systems in 

order to understand their structure and characteristics. The CAN protocol is revised 

to understand its performance, restrictions and standard specifications. 

Design: 

Hardware and software solutions for new systems or modifications to existing ones 

are designed during this phase. At this point, selection of the necessary elements to 

implement a network based on the CAN protocol for closed loop speed control takes 

place.  

Simple experimental testing is done on these designs in order to avoid 

malfunctioning during the implementation phase. 

Implementation: 

During the implementation phase, all designs conceived and tested on the previous 

stage are developed. Manufacturing of the necessary components for automation, 

modifications required on existing elements, as well as software programming is 

done. The complete NCS is assembled. After this phase the first prototype emerges 

and is ready for testing. 

Testing: 

The goal of this stage is to measure the performance obtained by the designed 

implementation and improve it through several corrections on the system. 

Tests are performed in two manners; first, laboratory tests conducted in a 

controlled environment, where elements such as the CAN network and the speed 

control may be evaluated independently. Second, field testing, where the interaction 

of all the elements constituting the control system is evaluated as a whole, acting on 

the vehicle, providing it with certain degree of autonomy. 
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Corrections and Modifications: 

Corrections and modifications help with the improvement of the control system; 

depending on the magnitude of such actions, the methodology can be reset to the 

design, implementation or testing phases. Once all tests prove successful, a prototype 

vehicle with autonomous speed control emerges. 

2.1 Analysis and Characterization 

2.1.1 Utilitarian Electric Vehicle 

The vehicle used for this research is characterized with non-holonomic constraints 

due to its Ackerman steering mechanism; this means that rolling exists without 

lateral slipping between the wheels and the ground [Habumuremyi, 2005]. Non-

holonomic constraints restrain the vehicle from moving instantaneously in any 

direction; they involve a higher number of effective degrees of freedom (DOF) than 

controllable ones. In order to change orientation, the wheels need to change direction 

and the vehicle has to move either forward or backward. The maneuverability of the 

vehicle is described by the degree of mobility     , which deals with the degrees of 

freedom that can be manipulated for the vehicles motion; and the degree of 

steeribility     , which deals with the number of centered orientable wheels that can 

be steered independently to steer the vehicle. The degree of maneuverability     , is 

the overall degrees of freedom that the vehicle can effectively manipulate, which is 

simply the sum of the mobility and steeribility measures [Xiao, 2008; Campion et al., 

1996]. For the case of an Ackerman steered vehicle the degree of mobility is 1 and the 

degree of steeribility is also 1 (making the degree of maneuverability,          

 ), this is why car-like vehicles are said to have 2 effective DOF.  

The utilitarian vehicle employed is the Super Truck model from Johnson 

Industries, originally designed to work on mining environments. It is shown in figure 

2-2.  

 

Figure 2-2: The Johnson Industries Super Truck testing platform. 
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Some characteristics of the Super Truck include:  

• 1600 lb payload. 

• 17 mph maximum speed (14 mph loaded). 

• 5Hp motor. 

• 11 gauge steel body.  

• 600 ampere Solid State Controller. 

• Six deep cycle battery, 36-volt system. 

The vehicle follows a mid-engine rear-wheel drive layout; with a differential on the 

motors output shaft for torque transmission between the rear driving wheels, as 

shown in figure 2-3. 

 

Figure 2-3: General layout of the vehicles mechanical composition. [Habumuremyi, 

2005] 

2.1.2 Ackerman Steering Mechanism 

The absence of lateral slipping makes Ackerman steering suitable for low speed 

vehicles. Wheels on the inside and outside of a turn move at different angles, 

generating an instantaneous center of rotation (ICR) that travels according to the 

vehicles position and orientation. The projection of the steering arms for each 

orientable wheel creates a line that intersects at the middle of the back axis of the 

vehicle; a car-like vehicle with this geometry reduces its model complexity to that of a 

bicycle, simplifying the mathematical formulation. 
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Figure 2-4: The ICR created by the Ackerman mechanism. 

2.1.3 Kinematic Model 

For an       base frame, the mobile platform system can be defined as         

with its origin at the middle of the vehicle’s rear axis. The vehicles orientation     is 

measured with respect to    . Position and orientation may be described at any time 

by:       .  A simplified bicycle model assumes one mobile centered wheel with 

an angle     measured with respect to    , that is typically taken as the average 

between the orientation angles of each of the two steering wheels. 

 

Figure 2-5: Vehicles posture definition. 

The kinematic model uses the vehicle’s velocity for position estimation, as it can be 

seen from the model’s matrix form. The velocity control module is a critical aspect of 
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the control architecture, since velocity affects proportionally the kinematic model, 

thus affecting position estimation. Detail on the kinematic model is presented in 

Appendix A. 
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2.1.4 Motor Model 

The vehicle has a 5HP, 36 volt separately excited direct current electric motor as 

the main driving mechanism. An electric motor takes energy as an input and 

produces torque (or speed, depending on its operating curve) as an output. Speed and 

torque depend on the voltage applied on the motor and the current it draws. In a 

separately excited DC motor, the field current is supplied by a constant voltage 

supply; the field winding excites the field flux while the rotor’s brushes and 

commutator supply the armature current. When a separately excited motor is excited 

by a field current and an armature current is flowing in the circuit, a back 

electromagnetic field      and a torque      are developed at a particular speed 

[Salam, 2003]. Figure 2-6 shows the separately excited motor’s equivalent circuit. 

 

Figure 2-6: Equivalent circuit for the separately excited DC motor. [Salam, 2003] 

Detail on the dynamical model for obtaining the motor’s transfer function is 

presented in Appendix B. The transfer function for the electric motor is: 

      

    

     
  

 

     
    (2.2) 
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The motor model describes a first order system. A proportional-integral-derivative 

controller is suitable to control this type of systems without much complexity; hence 

the selection of such control algorithm for the physical system is theoretically 

validated by the model. 

2.1.5 Electric Model 

To understand how the electric vehicle works, the electric diagram representing its 

circuitry was constructed. This electrical model shows the connections between the 

different electric elements inside the vehicle.  

Special interest is taken on the power controller installed on the vehicle. The 

Millipak controller manufactured by Sevcon, functions as a power interface between 

the control lines and the motor. A general representation of the main elements in the 

circuit is shown in figure 2-7. 

 

Figure 2-7: General representation of the main electric circuits of the vehicle.  

The vehicle’s electric circuit can be classified in three distinctive parts; the main or 

control circuit, the auxiliaries’ circuit and the motor’s circuit.  
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The control circuit occupies the major part of the vehicle’s wiring. The accelerator 

signal, fail safe switch in the accelerator pedal and functions located on the manual 

control panel like the on/off key switching of the system, lights operation, 

displacement direction selection (forward/reverse) and emergency stop are part of the 

control circuit. 

The auxiliaries’ circuit connects secondary elements that are not necessary to 

drive the vehicle; these include the horn, the battery charge meter and the control 

mechanism in charge of lowering and raising the vehicle’s cargo bed. Devices on this 

circuit are not interrupted when the emergency stop is pressed. 

The connections between the 5HP driving motor and the Millipak power controller 

are fairly simple. The Millipak controller internally regulates the current and voltage 

applied to the motor’s terminals according to control signals sent through connector 

B (shown in figure 2-8). 

 

Figure 2-8: Control circuit. Elements contained in the front control panel and 

accelerator pedal are shown inside the dashed lines. The relay connects the positive 

terminal of the Millipak controller to the batteries once the key has been switched to 

the ON position. 



Chapter 2: Methodology   17 

 

 

 

Figure 2-9: Auxiliaries circuit. Elements in the auxiliaries’ circuit are not required to 

drive the vehicle. The horn, battery meter and the motor for the vehicle’s cargo bed 

are independent of the elements in the other circuits. 

 

 

Figure 2-10: Electric motor circuit. The batteries positive and negative terminals are 

connected to the respective B terminals of the Millipak controller. Within the figure 

are shown the connections between Millipak and motor terminals. 
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2.1.6 Millipak Controller 

The Millipak controller from Sevcon regulates the power administered to the 

separately exited electric motor (SEM) on board the Super Truck. All the information 

presented in this section was taken from [Sevcon, 2004] and through contact with 

technical assistants at Sevcon. Some of the characteristics of the controller are shown 

in table 2-1: 

Table 2-1: Standard specifications for the Millipak electric controller. 

Characteristic Rating 

  Battery voltage 24/48 VDC 

  Peak current 500 A / 600 A 

  Continuous current 180 A /200 A 

  Field current 40 A 

  Max. power 6.5 kW 

  Operating temperature -30 to + 40ºC 

  Storage temperature -40 to + 70ºC 

  Ingress of dust and water IP66 

  Humidity 95% (at 60ºC) 

  Vibration 6G 

  Switching frequency 16 kHz 

 

Two types of connectors are located on the Millipak. First, connector A, for 

diagnosis and programming via a proprietary tool from Sevcon, denominated 

“calibrator”. Second, connector B, where control signals are received in order to drive 

the electric motor. Refer to Appendix C for details. 

The digital inputs, analogue inputs and contactor drive outputs available on 

connector B can be configured in a number of ways to suit various applications. 

Different presets are preprogrammed by Sevcon. To operate the controller one of 

these presets has to be selected. Once a preset has been selected the pins on 

connector B are allocated according to the preset’s definition and a list of parameters 

or personalities defining certain characteristics on the controller become available for 

user modification.  

Preset number 7 was used to configure the controller during the development of 

this research, because its description fits the operating purpose of the vehicle. The 

value of this preset allocates the different pins on connector B as shown in table 2-3: 
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Table 2-2: Preset 7 description. 

Digital 

Function 
Description 

7 
Ride On vehicle with Speed Cutback 1 and 2 switches and external LED 

drive. 

 

Table 2-3: I/O configuration for the Millipak. 

Digital Function 7 

Forward B2 

Reverse B3 

FS1 B4 

Seat B5 

Speed Cutback 1 B6 

Speed Cutback 2 Bw 

Line Contactor B8 

External LED B9 

 

Bw  refers to pin B11, which can be used as a digital input if analog input 2 is 

configured as a digital input also. Analog functions are presented in table 2-4; analog 

input configuration 3 was used, leaving B10 as the accelerator input and B11 as a 

digital input. 

Table 2-4: Analog functions for the Millipak 

Analog Function 3 

Accelerator B10 

Digital B11 

Footbrake  

 

The calibrator tool was used for the system’s in-depth analysis and personal 

configuration. Refer to Appendix C for details on the Millipak configuration 

information. 

2.1.7 Network Controlled System 

Network Controlled Systems (NCS) are a type of distributed control system in 

which control loops are closed by means of an information network. The defining 

feature of an NCS is that information is exchanged among components using the 
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network. This type of setup offers several advantages over traditional point-to-point 

control solutions, some which are: modularity and flexibility for system design; 

simple and fast implementation; ease of system diagnosis and maintenance; 

decentralized control and increased system agility. These advantages are translated 

into characteristics such as distributed processing, interoperability, reduced wiring, 

small power requirements and complexity of the physical connections, as well as the 

possibility of information exchange between different control loops; all which 

ultimately represent a reduction in costs [Huo et al., 2004; Chow & Tipsuwan, 2001]. 

In a NCS, sensors and actuators are connected directly to the desired plant and also 

to the real-time network. The controller, while physically separated from the plant, is 

also connected to the real-time network, closing the control loop [Lihua et al., 2008]. 

Proper interconnection of every device on the network depends on the protocol being 

used. A general representation of the elements included in a NCS is shown in figure 

2-11. 

Systems controlled by an NCS can be modeled as “discrete-continuous” with time 

varying elements induced by the network. These induced delays depend on different 

factors, like network type, cable lengths, and baud rates used. The medium access 

method affects time variations since every device (referred as a node) competes for 

broadcasting time on the network, where collisions are meant to happen. Collision 

handling is an important aspect that depends on the protocol used. Thus there exists 

a trade-off between the finite bus capacity and the performance of the control loop. 

Induced time delays on an NCS can be summarized as the controller-actuator 

delay (   ) and the sensor-controller delay (   ), as well as the computational time 

required by each device performing control operations over the network [Lihua et al., 

2008]. The NCS designer should account for synchronization issues; different 

configurations usually vary depending on whether the nodes activity is event-driven 

or time-driven. 
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Figure 2-11:  General representation of a Network Control System with induced 

delays on the sensor and controller. While sensor and actuator are directly attached 

to the process plant the controller is physically separated but still connected to the 

other elements through the network. 

2.1.8 Controller Area Network 

Data management and communication systems play an important role within the 

vehicle’s architecture. A reliable communication system improves reaction times and 

minimizes uncertainty. Controller Area Network (CAN) is a vehicle bus standard for 

distributed environments originally designed by Robert Bosch [Bosch, 1991] to 

provide robust serial communication for a vehicle’s on board network. The CAN bus 

protocol offers standard network technology, with high error checking features. Some 

of the main features of CAN include the ability to use decentralized pre-processing by 

the inclusion of a microcontroller, which results in less computational work for 

higher level units. CAN is a broadcast serial bus, based on message exchange between 

different nodes. 

Because of its flexibility it is easy to add and remove CAN nodes from a bus or 

alter the way a CAN node behaves without disrupting communication on the entire 

network. The ability to develop and test a few CAN nodes and then scale up to dozens 

is pragmatically convenient [NI, 2009a]. 
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Figure 2-12: Devices, modules and electronic control units without a CAN bus 

implementation require considerably more wiring in a system (left) [NI, 2009a]. 

In modern day vehicles several different networks interact with CAN bus. Usually 

the CAN network controls all real-time critical functions, such as ABS and traction 

control. Local Interconnect Network (LIN) is used as a sub-bus of CAN, typically for 

non-safety related critical tasks. The Media Oriented System Transport (MOST), also 

acting as a sub-bus of CAN, is used to control automotive multimedia. All networks 

within the vehicle are controlled by a main control system, which also acts as a 

gateway for all networks to share data [Leen & Heffernan, 2002]. Figure 2-13 shows 

vehicle network integration, where CAN functions as the main or top network and 

two different sub-networks operate on less critical functions. 

 

Figure 2-13: Different networks inside a common vehicle [Leen & Heffernan, 2002]. 
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CAN bus technology has made its inclusion not only on automobiles but also in 

other means of transportation, like motorcycles. BMW uses CAN bus for 

communication between proprietary control modules on its R1200 and K1200 models. 

These control modules share a data network through the CAN bus. An example is the 

interconnection between the Engine management system, called BMS-K (BMW 

Motor-Steuerung mit Klopfregelung); the Central Chassis Electronics, called ZFE 

(Zentrale Fahrzeugelektronik) and the Instrument Panel (I-Cluster). Additional 

modules like the Anti-lock braking system called ABS, and the Alarm System called 

DWA (Diebstahl Warnanlage) also interact through the CAN bus. The ZFE controls 

the lights, heated accessories, horn, radio, accessory socket, and cruise control based 

on inputs from handlebar switches. Control inputs go directly to ZFE, and control 

outputs go from ZFE to individual components. The BMS-K inputs include the 

starter button, kill switch, sidestand switch, clutch switch, gear position indicator, 

and various engine sensors. Outputs control the starter, fuel pump, injectors, ignition 

coils, and warning lights. Finally, the I-Cluster displays information to the rider; it 

has only one physical input, the clock setting button, while the outputs are the 

various instruments and warning lights [Largiader, 2006]. Information is 

broadcasted to the network by each module, but only modules that require it will act 

upon it. The I-Cluster is a good example of a CAN control module, because it gets all 

of its information from other control modules through the CAN bus rather than 

receiving it directly as an input from sensors and switches. Because of this the I-

Cluster panel can be removed and replaced without interrupting any other control 

module on the network. Figure 2-14 shows a schematic of the CAN network shared 

by the control modules on a BMW motorcycle. 

 

Figure 2-14: CAN bus representation in BMWs R1200 and K1200 motorcycle models 

[Largiader, 2006]. 
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Besides its application on vehicles, the CAN protocol has lately penetrated the field 

of robotics. CAN bus is popular as a real-time communication network for devices 

within humanoids. For example, the Rh-1, a 1.3m height 21 degrees of freedom 

humanoid robot uses CAN bus for communication between some of its electronic 

components [UC3M]. Toni, another humanoid that was constructed by the 

University of Freiburg [Behnke, 2006] to participate in the robotic soccer challenge 

RoboCup; uses CAN bus to establish communication between all of its onboard 

microcontrollers. Domo, a humanoid intended for research in manipulation by 

incorporating force sensing modules in its joints, uses CAN bus as a communication 

channel between different digital signal processing microcontrollers located all over 

its body and the higher level computational system [Edsinger & Weber, 2004]. 

 

Figure 2-15: Domo’s CAN bus node architecture [Edsinger & Weber, 2004]. 

CAN Bus Protocol Overview 

CAN is able to provide real-time and fault tolerant features which make it suitable 

for control applications. Baud rate varies with bus length, where the highest baud 

rate can be achieved with a maximum length of 40 meters over a twisted pair wire, 

according to ISO standard specifications. The relationship between transfer rate and 

bus length is depicted in figure 2-16. 
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Figure 2-16: Transfer rate versus bus length for CAN bus over a twisted pair wire 

medium [Azzeh, 2005]. 

CAN bus is based on the Open System Interconnection (OSI) model created by the 

International Standards Organization (ISO), meaning it follows a layered approach, 

which enables interoperability with products from different manufacturers. The CAN 

protocol implements the two lower layers of the OSI model; data link and physical 

layers [Pazul, 1999] described next. 

Physical Layer 

The Physical Layer is responsible for interconnection between nodes in the 

network; it handles the transmission of electrical impulses across the communication 

medium and deals with timing, encoding and synchronization of the soon to be 

transferred bit stream. 

A bit signal on the bus line can take two possible representations: recessive, which 

only appears on the bus when the nodes send recessive bits; and dominant, sent only 

by one node to be heard on the bus. This means that a dominant bit sent by one node 

can overwrite recessive bits sent by other nodes. This feature is used for bus 

arbitration.  

A differentially driven pair of wires identified as CAN High and CAN Low provide 

reliable signal transmission despite low power levels; they are usually terminated 

with 120-ohm resistors to eliminate signal reflections at the end of the bus line and 

ensure correct voltage levels. 
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Figure 2-17: Transmission lines CAN High and CAN Low with bus termination 

resistors [Corrigan, 2008]. 

For the two-wire bus, the recessive bus state occurs when the CAN Low and CAN 

High lines are at the same potential (2.5V), and the dominant bus state occurs when 

there is a voltage difference of ± 1V (CAN L = 1.5V and CAN H = 3.5V). The CAN 

bus remains in the recessive state while it is idle [Richards, 2005]. Differentially 

driven signals provide an advantage when dealing with voltage spikes; if a spike is 

encountered both line conductors are equally affected, maintaining the voltage 

differential between both wires, providing a certain degree of noise immunity [Azzeh, 

2005]. 

 

Figure 2-18: Logical levels over CAN bus [Richards, 2005]. 

Data Link Layer 

The Data Link Layer is in charge of building frames that encapsulate the data to 

be transferred. Each data frame is assigned a unique identifier, which is used to 

determine bus access and detect errors. Since every frame is unique there is no need 

for addressing information. 
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This layer also performs Medium Access Control (MAC) to prevent conflicts when 

two different nodes try to access the network at the same time. It performs the data 

encapsulation/decapsulation, error detection and control, bit stuffing/destuffing and 

the serialization and serialization functions. The use of a MAC method is called bus 

arbitration. As a consequence of arbitration no bandwidth is wasted; there are 

methods that a designer can use to predict the longest possible delay before any 

message is delivered. 

The CAN communication protocol uses a Carrier Sense Multiple Access/Collision 

Detection (CSMA/CD) MAC method. CSMA means that every node on the network 

must monitor the bus, and only transmit messages when no activity is found. During 

periods of no activity, every node has an equal opportunity to transmit a message. 

The Collision Detection portion means that if two nodes start transmitting at the 

same time, a collision will be detected and the proper corrective action will be taken 

[Pazul, 1999]. 

A nondestructive bitwise arbitration method is utilized; with this, even if collisions 

are detected, messages remain intact after arbitration is completed. Higher priority 

messages suffer no corruption or delay during the arbitration process. Non-

destructive bitwise arbitration makes use of dominant and recessive logic states. The 

CAN protocol defines a logic bit 0 as dominant and a logic bit 1 as a recessive bit. As 

the name suggests, a dominant bit state will always win arbitration over a recessive 

bit state. Since the field used in the message arbitration process is the Message 

Identifier (ID), the lower its value the higher the priority of the message. A node also 

monitors the state of the bus while transmitting, to check if the logic state it is trying 

to send appears on the bus, if the node is transmitting a recessive bit and detects a 

dominant bit on the bus, it automatically stops transmission and receives the 

dominant message. After the dominant message has been received and the bus is 

once again idle, the node is able to try retransmission of its own message [Pazul, 

1999]. 

The CAN protocol is message based, not address based, meaning that messages are 

not transmitted from one address to another; instead, the message is broadcasted 

throughout the bus, making it accessible to all nodes. It is up to every node to decide 

if the message is useful or not. Nodes decide whether to process or discard the 

information received based on the message identifier (ID) [Pazul, 1999]. Nodes inside 

the CAN network also have the ability to request for information, by generating a 

Remote Transmit Request (RTR). 
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Two standards have been developed by ISO, specifying a 5V differential voltage 

over the physical layer interface. These are [Pazul, 1999]: 

• ISO-11898: CAN High Speed with bit rates between 125kbps and 1Mbps. 

• ISO-11519: CAN Low Speed with bit rates up to 125kbps. 

 
Figure 2-19: OSI reference model [Richards, 2005]. 

Bit Timing 

Bit rate is characterized as the number of bits transmitted over a certain period of 

time. The CAN protocol allows bit rate programming, as well as number and location 

of data samples in a bit period. Optimal selection of these parameters ensures 

message synchronization and proper error detection. To achieve synchronization all 

the nodes must have the same nominal bit time. Since no clock is encoded in the data 

stream, receiving nodes must recover the clock and synchronize it to the 

transmitter’s clock [Microchip, 2007; Jöhnk & Dietmayer, 1997]. 

The nominal bit rate is the number of bits per second an ideal transmitter will 

transmit without resynchronization. The CAN nominal bit time is made of non-

overlapping segments; each segment is made up of an integer number of the basic 

time units in a bit period, called time quantas (TQ), each time quanta is one period of 

the CAN system clock, as shown in figure 2-21. The desired baud rate is calculated by 

the arithmetical sum of the different segments. With the use of a baud rate prescaler 

(BRP) custom baud rates can be achieved. The special register called synchronization 

jump window (SWJ), defines the number of time quantas a segment can be 
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lengthened or shortened for resynchronization. The sampling point defines at which 

part of the nominal bit time, the signal will be sampled to determine the logical state 

of the current bit. 

 Depending on the manufacturer of the hardware used, the segments composing 

the nominal bit time can be named differently. For example, for Microchip the 

nominal bit time is composed of 4 segments, as shown in figure 2-20, while for Philips 

the nominal bit time is composed of 3 segments as depicted on figure 2-21. It is 

important to refer to the specific manual of the hardware involved for programming 

details when setting up the network. 

 

Figure 2-20: Nominal bit time segments as defined by Microchip [Microchip, 2007]. 

 

Figure 2-21: Nominal bit time segments defined by Philips [Jöhnk & Dietmayer, 

1997]. 

CAN Message Frame 

The CAN protocol defines four different types of frames: 1) Data frames, which 

carry information from one node to the other nodes; 2) Remote frames, which are 

data frames with the Remote Transmit Request (RTR) bit set, requesting 

information from other nodes; 3) Error frames, sent by nodes that detect any type of 
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error; and 4) Overload frames, generated by nodes that require more processing time 

for messages already received.  

The CAN protocol defines two data frame formats, the standard format, also 

known as CAN 2.0A appearing in figure 2-21; and the extended format shown in 

figure 2-22 known as CAN 2.0B. The difference between formats resides in the 

number of bits used for the identifier field. CAN 2.0A uses 11 bit identifiers, while 

CAN 2.0B uses 29 bit identifiers [Pazul, 1999; Azzeh, 2005]. 

 

Figure 2-22: Standard message frame format for the CAN protocol [Pazul, 1999]. 

 

Figure 2-23: Extended message frame format for the CAN protocol [Pazul, 1999]. 

The fields for the CAN frame format are all described in [Bosch, 1991; Pazul, 1999; 

Azzeh, 2005] and are as follow: 

• Start of Frame (SOF) Field: This is a dominant (logic 0) bit that indicates the 

beginning of a message frame. 
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• Arbitration Field: Containing an 11 bit message Identifier (ID) and the Remote 

Transmission Request (RTR) bit. A dominant RTR bit indicates that the 

message is a Data Frame. A recessive value indicates that the message is a 

Remote Transmission Request and therefore the frame is a Remote Frame. A 

Remote Frame is a request by one node for data from some other node on the 

bus. Remote Frames do not contain a Data Field. To accomplish an RTR, a 

Remote Frame is sent with the identifier of the required Data Frame. 

• Control Field: Containing six bits; the Identifier Extension (IDE) bit 

distinguishes between the CAN 2.0A standard frame and the CAN 2.0B 

extended frame. Followed by the Reserved Bit Zero (RB0) bit, which is a 

reserved bit and is defined to be a dominant bit by the CAN protocol. The four 

bit Data Length Code (DLC) indicates the number of bytes in the “Data Field” 

that follows. 

• Data Field: Containing from zero to eight bytes of data. 

• Cyclic Redundancy Check (CRC) Field: Guarantees the frame’s integrity; 

contains a 15 bit cyclic redundancy check code and a recessive delimiter bit. 

• Acknowledge (ACK) Field: Consisting of two bits; the first is the Slot bit which 

is transmitted as a recessive bit and is overwritten as a dominant bit by those 

receivers which have successfully received the message, regardless of whether 

the node processes or discards the data. The second bit is a recessive delimiter 

bit. 

• End of Frame (EOF) Field: Consisting of seven recessive bits. 

Following the end of a frame, the Intermission Frame Space (IFS) appears; 

consisting of three recessive bits. After the three bit intermission period the bus 

becomes available, and other nodes may begin transmission of their messages. 

A message transmitted with an extended frame format is almost the same as one 

with a standard frame format. By using the IDE bit in dominant form, frames are 

transmitted in standard format, if the IDE bit is recessive; the CAN extended frame 

format is used instead. Standard format frames have higher priority than extended 

frame formats, but by using an extended format higher number of different message 

identifiers are possible [Pazul, 1999]. 

CAN Error Handling 

CAN nodes have the ability to diagnose fault conditions and operate on different 

modes based on the severity of the problems encountered. Nodes can detect the 

difference between short disturbances and permanent failures, modifying their 

functionality accordingly. CAN nodes can go from normal operation, where they are 
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able to transmit and receive messages, to complete shutdown (or bus-off state) based 

on the severity of the errors detected. This is called Fault Confinement. No faulty 

CAN node will be able to monopolize the network’s bandwidth because faults will be 

confined and faulty nodes will shut off before bringing the network down. Correct 

bandwidth use for critical system information is guaranteed by Fault Confinement.  

Five conditions that yield an Error Frame exist; these are [Pazul, 1999]: 

• CRC Error: The Cyclic Redundancy Check failed (CRC) and an error occurs, an 

Error Frame is generated. Since at least one node did not properly receive the 

message, it is resent after a proper intermission time. 

• Acknowledge Error: The transmitting node checks if the Acknowledge Slot, 

sent as a recessive bit, contains a dominant bit, with this it would acknowledge 

that at least one node received the message correctly. If this bit is recessive, 

then no node received the message properly. An Error Frame is generated and 

the original message is resent after a proper intermission time. 

• Form Error: If any node detects a dominant bit in any of the following four 

segments of the message: End of Frame, Intermission Frame Space, 

Acknowledge Delimiter or CRC Delimiter; a Form Error is generated. The 

original message is resent after a proper intermission time. 

• Bit Error: If a transmitter node sends a dominant bit and detects a recessive 

bit, or vice versa, when monitoring the actual bus level and comparing it to the 

bit that it has just sent. In the case where the transmitter sends a recessive bit 

and a dominant bit is detected during the Arbitration Field or Acknowledge 

Slot, no Bit Error is generated because normal arbitration or acknowledgment 

is occurring. If a Bit Error is detected, an Error Frame is generated and the 

original message is resent after a proper intermission time. 

• Stuff Error: CAN protocol uses a Non-Return–to-Zero (NRZ) transmission 

method. This means that the bit level is placed on the bus for the entire bit 

time. CAN is also asynchronous, and bit stuffing is used to allow receiving 

nodes to synchronize by recovering clock information from the data stream. 

Receiving nodes synchronize on recessive to dominant transitions. If there are 

more than five bits of the same polarity in a row, the protocol dictates to stuff 

an opposite polarity bit in the data stream. The receiving node(s) will use it for 

synchronization, but will ignore the stuff bit for data purposes. If, between the 

Start of Frame and the CRC Delimiter, six consecutive bits with the same 

polarity are detected, then the bit stuffing rule has been violated. A Stuff Error 

occurs, an Error Frame is sent, and the message is retransmitted after the 

intermission time. 
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Once an error has been detected it is broadcasted via the Error Frame. The 

erroneous message is aborted and as soon as arbitration allows it, it is retransmitted. 

Each node is in one of the three possible error states generated by the above 

conditions, which are shown in figure 2-24 and described as [Pazul, 1999; Azzeh, 

2005]: 

• Error-Active: In this state, the CAN node can actively take part on the bus 

communication; it can send an Active Error Flag, which consists of six 

consecutive dominant bits. With this the bit stuffing rule is violated and causes 

all other nodes to send an Error Flag, called the Error Echo Flag. A node is 

Error-Active when both the Transmit Error Counter (TEC) and the Receive 

Error Counter (REC) are below 128. Error-Active is the normal operational 

mode, allowing the node to transmit and receive without restrictions. 

• Error-Passive: A node becomes Error-Passive when either the Transmit Error 

Counter or Receive Error Counter exceeds 127. Error-Passive nodes transmit 

Passive Error Flags, which consist of six recessive bits. If this node is the only 

transmitter on the bus, the passive error flag will violate the bit stuffing rule 

and the receiving node(s) will respond with Error Flags of their own depending 

on their own error state. If the Error-Passive node in question is not the only 

transmitter or is a receiver, then the Passive Error Flag will have no effect on 

the bus due to the recessive nature of the error flag. 

• Bus-off: A node goes into the Bus-Off state when the Transmit Error Counter 

is greater than 255. In this mode the node cannot send nor receive messages, 

achieving Fault Containment. 

 

Figure 2-24: State diagram for different error states a CAN node can have 

[Microchip, 2007]. 
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2.1.9 Programmable Automation Controller 

A Programmable Automation Controller (PAC) is a compact controller that 

combines the capabilities of a PC-based control system and a Programmable Logic 

Controller (PLC) into an open flexible architecture. 

PLC users that required highly advanced applications began evaluating PC based 

solutions. The PC offered a graphical rich programming and user environment, and 

utilized commercial components like floating point processors and high speed I/O 

busses, such as PCI and Ethernet. However PC based applications were not designed 

for rugged environments, system crashes and rebooting, non-industrially hardened 

components and unfamiliar programming environments for operators proved to be a 

major challenge [NI, 2007]. This forced the development of products that combined 

the software capabilities of the PC and the reliability of the PLC. The resulting new 

controllers combined the best PLC features with the best PC features [NI, 2007]. 

PACs have evolved incorporating open standard interfaces, multi-domain 

functionality, modular architectures and modern software integration. [Resnick, 

2003]. 

PACs employ a multi-domain property and are not limited to sequential logic 

solving. They rely on a single, multi-discipline, integrated development environment 

that uses common name and process tags as well as a common database for all 

functions. This integration opens up the possibility of using a single human-machine 

interface (HMI) for monitoring all functions. The multi-domain capability greatly 

diminishes total cost by reducing the time needed for design, programming and 

engineering, while also lowering installation, start-up, training, maintenance and 

spare parts costs [Iversen, 2008]. Key requirements for any PAC include: open, 

modular architectures and compliance with industrial standards that range from 

programming languages (such as the IEC 61131-3 standard) to communication, 

networking and interoperability, ranging from Ethernet and its variations, to XML 

(eXtensible Markup Language) and OPC, an open communication standard [Iversen, 

2008]. 

In summary, Programmable Automation Controllers provide in a single compact 

controller advanced control features, network connectivity, device interoperability, 

and enterprise data integration controllers [Iversen, 2008; Resnick, 2003; Opto22, 

2008a]. 
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The CompactRIO, an example of this type of technology is presented next. The 

CompactRIO Programmable Automation Controller, manufactured by National 

Instruments (NI), is described both in hardware and software structure. 

CompactRIO 

CompactRIO (cRIO) is a Programmable Automation Controller that combines an 

embedded real-time processor with a field-programmable gate array (FPGA) chip. 

The FPGA chip is integrated with a reconfigurable chassis that provides the user 

with the possibility of including swappable I/O modules with built-in signal 

conditioning for connection of sensors and actuators. A general representation of the 

cRIO platform is shown in figure 2-25. Modules are connected directly to the FPGA 

chip on the chassis, which in turn is connected to the real time processor via a high-

speed bus following the Peripheral Component Interconnect (PCI) standard. 

 

Figure 2-25: Structure of the cRIO embedded system [NI, 2009b]. 

Custom applications can be achieved using the graphical programming 

environment LabVIEW and software module add-ons LabVIEW FPGA and LabVIEW 

Real-Time for programming of the FPGA chip and real-time processor respectively. 

LabVIEW FPGA module uses a Xilinx compiler to translate graphical 

programming into very-high-speed-integrated-circuit hardware description language 

(VHDL), which is used to program the FPGA chip. The industrial real-time processor 

deterministically executes applications developed with the LabVIEW Real-Time 

module. Built-in functions within LabVIEW provide data transfer between the real-

time processor and the FPGA chip. 
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Typical CompactRIO architectures include the following components: 

• A reconfigurable input-output (RIO) FPGA core application for 

communication and control. 

• A time-critical loop for floating-point control, signal processing, analysis, and 

point-by-point decision making. 

• Normal-priority loop for embedded data logging, remote panel Web interface, 

and Ethernet/serial communication. 

• Networked host PC for remote graphical user interface, historical data logging, 

and postprocessing. 

 

Figure 2-26: Typical architecture for an embedded system using CompactRIO [NI, 

2009b]. 

2.2 Design 

Design of the CAN network required sub-division of the system and designation of 

the number of CAN nodes
7

; as well as establishing network attributes such as 

bandwidth and message properties like data length, type and identifiers. Physical 

characteristics such as node location, bus termination, cable type, connectors, pin-

out, and cable length also required definition.  

For devices that are not capable of CAN communication, modules and interfaces 

had to be designed to integrate them into a CAN node. A careful selection of the 

elements for each designed CAN node was done; these included microcontrollers 

                                                           
7
 For the purpose of this thesis a node consists of a device or group of devices capable of CAN bus 

communication. 
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(MCUs), CAN controllers, CAN transceivers, additional electronic components and 

plastic containers for each module.  

All nodes share the same basic structure, consisting of a microcontroller or central 

processing unit module, a CAN controller and a CAN transceiver module. Along with 

these is a custom interface, consisting of input/output channels, relays or signal 

conditioning elements. Basic structure of the implemented CAN nodes is depicted in 

figure 2-27. 

 

Figure 2-27: CAN Node basic structure. 

Because of the nature in which MCUs and CAN controllers can interact, two 

approaches were evaluated for the development of the modules. Depending on the 

type of microcontroller, it can either have a built-in CAN controller or the MCU can 

be interfaced with an external CAN controller via a serial protocol (e.g. Serial 

Peripheral Interface). Both schemes are shown in figure 2-28. 

 

Figure 2-28: Two different but equivalent implementations evaluated for the CAN 

modules (both PICs are example devices not used during this project). 
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CAN controllers handle all transmission and reception of CAN messages through 

the CAN bus, but aren’t able to handle the buses physical specifications: CAN High 

and CAN low voltages used for transmission over the medium. CAN controllers 

usually have the CAN Tx transmission output and the CAN Rx reception input 

[Microchip, 2010]; in order to meet the bus specifications, a CAN transceiver is 

needed. 

The advantage of using detached CAN controllers from MCUs is that interfacing 

with different types of microcontrollers can be done; therefore reusing of 

programming code from one MCU to another is possible. The downside is that 

configuration of the CAN controller must be done through the MCU, causing an 

impact on time efficiency. On the other hand, integrated CAN controllers are more 

time efficient because of the reduced processing load on the MCU, and physically they 

occupy less space. A disadvantage is that development done with an integrated 

architecture may not apply to a second MCU with an on board CAN controller, thus, 

modularity is sacrificed. 

Because of the modularity concerns, the detached communication scheme was 

preferred over the integrated one. Both CAN transceiver and CAN controller were 

integrated into a single module. The CAN controllers have a Serial Peripheral 

Interface (SPI) bus allowing it to communicate with any external device capable of 

understanding the SPI protocol. In this manner, CAN controller and transceiver are 

not restricted by design to interact with a certain type of microcontroller. The 

microcontrollers used in each node were confined to an individual module; this 

module is named the MCU module. Along with these modules, custom interfaces 

were designed to grant both the sensor and Millipak power controller, CAN 

communication. 

Throughout the rest of this document, the resulting CAN controller and 

transceiver module will be referred to as the SPI-CAN module, while the 

microcontroller module will be named the MCU module. 

Electronic design of the circuits required for each module and interface was 

modeled using the specialized layout editor Eagle, a software tool for designing 

printed circuit boards (PCBs). 

An economic wheel speed sensor was designed because of the short budget 

available and the deadline established for this project. A commercial solution was not 

accessible. The sensor functions as an incremental optical encoder. This type of 

sensor was chosen due to the simplicity with which it can be implemented and its low 

cost. 
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Design of the speed control algorithms was done on the graphical programming 

language LabVIEW. 

2.3 Implementation 

The CompactRIO controller functions as the main CAN node; it is in charge of 

monitoring the bus activity, receiving information regarding the vehicle’s speed and 

generating control commands to send through the network. It also acts as an 

interface for the user through a personal computer. 

The Millipak controller is in charge of regulating the current and voltage supply to 

the 5HP electric motor. A CAN node installed with the Millipak receives CAN frames 

and traduces the information into a speed command value for the controller to drive 

the motor. 

The wheel speed sensor is mounted on the drum brake. The sensor’s signal is 

received by an interface which is part of the sensor’s CAN node. The node calculates 

the speed at which the wheel is turning and sends it through the network. 

Location of the nodes is as described next and shown in figure 2-29: 

• N1: Interfaces with the Millipak power controller for control of the motor’s 

speed and moving direction. 

• N2: Interfaces with the wheel speed sensor for speed data transmission. 

• M: The main controller node is composed by the CompactRIO controller; 

which performs the control algorithm and transmits its output to the network. 

These three nodes are the essential minimum nodes required to effectively develop 

a Network Control System using the CAN protocol for speed control. 

Nodes N3 and N4 are under current development, but not included in this thesis. 

N3 is designed in order to reduce all the non-power wiring for the onboard control 

panel of the vehicle. N4 is for steering control, this node will be in charge of 

controlling the actuator that drives the automatic steering mechanism. 

Modules, interfaces and CAN hubs were manufactured in the Robotics Laboratory 

at Tecnologico de Monterrey. To control production, modify designs and generate 

routing data of the PCB prototypes editing software CircuitCAM from LPKF was 

employed. Control software BoardMaster was used to operate the c30 series circuit 

board plotter from LPKF. Soldering of the PCB components as well as assembly of 

the plastic housing for each of the modules was done manually. 
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Figure 2-29: CAN nodes physical distribution along the vehicle (bottom view). 

Programming of the MCUs on each of the modules was achieved using 

MikroElektronika’s MikroC compiler. Programming of the control algorithms was 

done on a personal computer using LabVIEW and deployed on the cRIO platform. 

Each CAN node, including the main node was mounted onto a DIN rail attached to 

the vehicle’s chassis. Mounting and calibration of the wheel speed sensor was done on 

one of the rear traction wheels. 

Because a trade-off between speed and length exists on the bus, growing capacity 

is limited by application performance; length and baud rate are parameters that 

should be carefully selected. Low speed transfer rates mean a greater delay, which 

can lead to performance bottlenecks; high speed rates increase demand on network 

interfaces and limit expansion. Real-time control over safety applications requires 

high speed data rates that range from 250kbps to 1Mbps, other non safety secondary 

applications can operate safely at 125kps or below (Low Speed CAN) [Leen & 

Heffernan, 2002; NI, 2009d].  

Since the utilitarian vehicle is roughly 2.5 meters long and 1.3 meters wide, taking 

as reference its perimeter, considerably less than 40 meters of cable is needed to run 

the wiring around the vehicle; so the maximum baud rate the CAN protocol permits 

in its specification was chosen, 1Mbit/s, classified as “High Speed CAN”. To achieve 

this transfer rate the physical medium or bus line must meet the requirements 

specified in ISO 11898. Table 2-5 shows these specifications. 

 



Chapter 2: Methodology   41 

 

 

Table 2-5: High Speed CAN cable requirements. [NI, 2008] 

Characteristic Value 

Impedance 

Minimum: 95Ω 

Nominal: 120Ω 

Maximum: 140Ω 

Length-related resistance Nominal: 70mΩ/m 

Specific line delay Nominal: 5ns/m 

 

According to the standard, to eliminate reflection effects, terminator resistors 

should be attached at both ends of the main line. Their value should match the 

nominal impedance of the cable used; which is typically 120Ω.  

CAN cables were manufactured with category 5 unshielded twisted pair (UTP) 

cable and 120Ω terminators were placed at the end of the main bus line. UTP 

category 5 cable meets the aforementioned requirements for lengths below 40 meters. 

Connection to the main CAN line, for each CAN node, is made through a stub. By 

specification, the main line should not exceed 40 meters and stubs shouldn’t surpass 

0.3 meters to satisfy the 1Mbit/s baud rate; although performance of the network can 

be evaluated to determine the maximum stub length allowed.  

Since the CAN protocol works with differential voltages, it is important that all the 

CAN nodes share a common electrical ground; otherwise, undesired communication 

errors may arise from voltages changing with respect to different references. 

A proportional-integral-derivative (PID) controller was proposed as the speed 

control algorithm. A fuzzy logic based controller was easily developed and 

implemented to compare its performance to that of the PID. Both control schemes 

were implemented within the CompactRIO controller. 

Figure 2-30 shows a general conceptualization of the CAN based NCS structure. 

Nodes M, N1 and N2 are represented with their corresponding modules and 

interfaces; interaction between elements is represented by the yellow arrows unless a 

twisted pair connection is depicted in which case it is done through the CAN bus. The 

control loop is closed with the Millipak controller node (N1) receiving information 

from the CompactRIO node (M) through the network and driving the motor, which 

moves the wheels and generates a signal on the sensor node (N2), which measures 

the wheels speed and sends the data back to the network for the CompactRIO to 

receive, effectively closing the control loop through the CAN bus. 
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Details on the implementation of the wheel speed sensor, CAN nodes and 

CompactRIO controller are presented on the Implementation chapter. 

 

Figure 2-30: Conceptualization for the CAN-based NCS implemented. 
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2.4 Testing 

All initial tests were performed indoors at the Robotics Laboratory. The vehicle 

was suspended from the ceiling and only one wheel was tested at a time. The non-

tested rear wheel’s drum brake was at its maximum, while the tested wheel was free 

of any braking, forcing the differential to transmit all torque to the wheel of interest; 

in this manner speed fluctuations due to the differential transmitting torque from 

one wheel to another were avoided. The vehicles bed was removed to provide an 

accessible work zone. 

 

Figure 2-31: Testing conditions for the vehicle. 

Performance of the vehicle degrades as battery charge depletes. Speed is not 

constant since it depends on the batteries current capacity. It is important to 

mention that batteries on the vehicle are not on the best condition; they are at least 3 

years old and were inactive for a long period of time. Reactivation of the chemical 

components inside the cells had to be done before all testing procedures. In spite of 

chemical reactivation good performance is still time limited because of these factors. 
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Tests between the CompactRIO controller and the manufactured CAN nodes were 

performed to ensure proper communication over the experimental CAN network. To 

guarantee functionality of the CAN bus, bus load percentage, error count and 

message frequency were monitored with the USB-MUX-4C2L module with USB 

connection, which is specialized diagnose equipment from ExxoTest, and a personal 

computer.  

Without a control algorithm, only tele-operation of the vehicle’s speed through the 

CAN bus was possible. With all devices on the network configured to work at a 

1Mbit/s baud rate, communication tests consisted in sending a message with the 

reserved ID for the Millipak node to move the vehicle with a percentage of its max 

speed. The data contained on byte [0] of the CAN frame sent to the Millipak node is a 

CAN speed control value (the desired speed information coded as a number on the 

CAN frame), it ranged from 0 for 0% to approximately 150 for 100% speed.  

These tests also involved the monitoring of the messages broadcasted by the 

sensor node and the transfer and receiving of information through both the cRIO and 

the diagnostic equipment used. The goal of the tests was achieved without many 

complications. Figure 2-32 presents the schematic of the setup used for network 

testing. 

Repeatability tests were performed for the Millipak node. Repeatability was 

monitored to observe the variations on the system’s response for the same operating 

points and determine the fidelity of the developed node. 
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Figure 2-32: Schematic of the developed CAN bus. 

2.4.1 Repeatability Test 

Repeatability of the Millipak CAN node was tested running the vehicle from 0% to 

100% and from 0% to 50% full speed without the rear tires. Measuring equipment 

used for this test included a photo-tachometer from Extech Instruments, model 

PocketTach 461700. The photo-tachometer was fixed on a stand to maintain a certain 

distance above the drum and restrict its movement. For the photo-tachometer to 

sense the revolutions per minute of the wheel, the drum was marked with a white 

reflecting tape. All runs of the test were performed in a minimum light controlled 
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environment with the vehicle’s batteries at full charge. The setup for this test is 

shown in figure 2-33. 

 

Figure 2-33: Repeatability test setup. 

For each of the rear wheels, the 100% and 50% speed tests consisted of 50 samples. 

First, the 100% test was done for the left
8

 wheel, followed by the 50% test. Then the 

right wheel was tested in the same manner. Time between each sample was random.  

The results for the 50% of max speed test are shown in figure 2-34. Both wheels 

are around the 229 RPM mark. Figure 2-35 shows the results for the 100% of max 

speed test. It is clear that the right wheel spins faster than the left wheel at 

maximum speed, but this situation is of no concern, since the differential will 

distribute the torque between both wheels when the vehicle is rolling on the ground. 

On both figures the x axis represents the sample number. 

                                                           
8
 Looking at the front of the vehicle the left wheel is the one on the passenger’s side. 
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Figure 2-34: RPMs versus sample number are shown as results of the 50% of max 

speed test. 

 

Figure 2-35: RPMs versus sample number are shown as results of the 100% of max 

speed test. 

Speed varies from sample to sample. A maximum difference of 6 RPMs was 

observed throughout the test. This is considered acceptable since this variations are 

unnoticeable while driving the vehicle. Tables 2-6 and 2-7 concentrate the results of 

each wheel (all values are in RPMs). 
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Table 2-6: Results for the left wheel 

Left Wheel 

Test Speed 50% 100% 

Average 229.6996 445.2814 

Maximum 231.18 448.09 

Minimum 227.75 442.59 

Std. Deviation 0.80465726 1.050471245 

 

Table 2-7: Results for the right wheel 

Right Wheel 

Test Speed 50% 100% 

Average 229.4794 448.026 

Maximum 230.78 450.7 

Minimum 227.94 445.63 

Std. Deviation 0.63737475 1.173529475 

 

The speed of the vehicle can be approximated by computing the average speed 

between both wheels, like assumed by the bicycle simplification of the kinematic 

model. The combined average from both right and left wheels is 446.6537 RPM for 

100% speed and 229.5895 RPM for 50% speed. 

Although these results were obtained with a suspended wheel, they proved to be 

significant while testing the control algorithms under the same laboratory conditions. 

In the case of the PID controller they provided an upper bound reference, required by 

the algorithm since it calculates the controller’s output based on a percentage rather 

than the whole. 

It is important to mention that during these first tests, cables used had no 

terminator resistors and the main bus line was directly over the batteries, next to the 

electric motor, extremely susceptible to electromagnetic noise; as the tests proved 

successful, the robustness of the CAN protocol was also demonstrated. 

For subsequent experiments the cables included termination and the main bus line 

was running through the side of the vehicle. 
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2.5 Corrections and Modifications 

During the repeatability test, a first group of 50 samples for the 100% speed 

measurements was done on each wheel; it was observed that the measured RPM 

values increased too much over time. For the same CAN control value different 

speeds were achieved. There was a difference of around 21 RPMs from the first 

sample to the fiftieth.  

After removing the drum, residues of the brake’s pressing pads and extreme 

surface heat were detected; this brought forth the conclusion that friction was 

slowing down the wheel. With time the pads wore out enough for the wheel to 

increase its speed, hence the variations. To deal with this issue, adjustment of the 

pressing pads was done and the insides of the drum cleaned. After these correcting 

actions, the tests were repeated completely, performing quite well; variance was 

reduced from nearly 20 to 1.1 and 1.3 for the 100% tests and from almost 10 to 0.64 

and 0.40 for the 50% tests on the left and right wheel respectively. Only the test 

results after these corrections were considered valid. 

Past the first testing period of the control network a modification was done to the 

Millipak interface on the Millipak CAN node. Initially, a 10kΩ digital potentiometer 

was used to replace the manual throttle of the vehicle, which consists of a 5kΩ analog 

potentiometer. Since the digital potentiometer has a range of 10kΩ, only half the 

resolution of the potentiometer was available for control of the throttling system. To 

double the resolution of the interface, a second digital potentiometer was connected 

in parallel; allowing more accurate control of the Millipak controller. The PCB of the 

interface suffered no redesign since it allowed for this type of connection. 

The wheel speed sensor developed suffered various modifications. Three different 

attempts of the sensor were fabricated, each an improvement over the previous 

version. The first two creations used a metal strip with circular perforations; the last 

and definitive attempt used a metal strip with rectangular perforations, minimizing a 

problem caused by asymmetrical periods on the sensors pulse signal. 

During the first tests of the sensor node, the cables used to transfer the pulses 

from the opto-interrupters to the sensor interface were unshielded. The quality of the 

TTL signal from the sensor was severely affected during operation of the vehicle. 

Noise levels on the signal varied, going from slightly affecting the pulses to 

introducing undesired impulses as shown in figure 2-36. To deal with this issue, 

cables were replaced with twisted pair wire; resulting on an improvement on signal 

quality as depicted on figure 2-37. 
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Figure 2-36: a) Slightly affected signal quality. b) Undesired impulses between pulse 

signals generated during the operation of the vehicle. 

 

Figure 2-37: Signal quality improvement from the usage of twisted pair wire. 

The CAN nodes were initially powered directly by three of the six deep cycle 

batteries that power up the vehicle; but due to internal circuitry on the Millipak 

controller, this resulted in unwanted behavior that required the replacing of some of 

the voltage regulators on the modules. All nodes including the CompactRIO were 

separated from the main 36 volt power supply and now run on an independent 12 

volt battery. 

Throughout the whole development of this thesis, different software modifications 

and improvements were done to the LabVIEW program on the CompactRIO 

controller.  
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This chapter presents the implementations developed for the creation of the 

network controlled system based on the CAN protocol for speed control of the electric 

utilitarian vehicle. Elements previously mentioned on the Methodology chapter, like 

the manufactured sensor, the modules and interfaces constituting each CAN node 

and software implementations are shown in detail. 

3.1 Wheel Speed Sensor 

Due to complications an adequate sensor was not accessible during the 

development of this project. A temporal low cost alternative had to be manufactured 

in order to perform all tests. A wheel speed sensor had to be improvised using an 

opto-interrupter; a perforated metal strip and the drum brakes located on the rear 

wheels.  

The sensor consists of an opto-interrupter aligned with a perforated metal strip; it 

works as a relative incremental encoder. The opto-interrupter has a diode constantly 

emitting infrared light over a phototransistor, when light emission is interrupted the 

voltage on the phototransistor’s line changes, dropping close to 0 volts and on the 

contrary, when the light beam passes through, the output signal is close to 5 volts. As 

the sensor is intermittently interrupted pulses appear; each with a period equal to 

the time from the start of one pulse to the start of the next; by knowing the number 

of pulses per revolution and the frequency (or period) of these, the speed at which the 

wheel is turning can be calculated. 

Details on the first two versions of the wheel speed sensor are presented on 

Appendix D. The third version of the sensor was implemented using a strip with 241 

rectangular perforations providing a high resolution for RPM calculations. Compared 

with the first two versions of the sensor, improvement was noticed on signal quality. 



52  Chapter 3 Implementation 

 

 

Although not very much industrial, the ITR8102 opto-interrupters were used because 

of their high sampling frequency. 

 

Figure 3-1: ITR8102 opto-interrupters used for the wheel speed sensor. 

 

Figure 3-2: Third version of the wheel speed sensor, using the rectangular perforated 

metal strip. 
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3.2 Modules and Interfaces 

All SPI-CAN modules were assembled in the same manner; they contain the same 

components and their operation is the same for every MCU module they are attached 

to. All MCU modules share the same PCB design and vary just in the programming of 

the microcontroller in it. Encoder and Millipak interfaces are unique.  

All PCBs were manufactured on single-sided copper clad boards and all 

components soldered to the boards are of the through-hole type. Every integrated 

circuit included in the designs has a socket for an easy replacement in case of 

malfunction. 

All modules and interfaces have a 5V voltage regulator for low power consumption 

and electronic protection for sensible components. Capacitors were included to 

compensate for any voltage drop and filter noise. Every module has a 20 MHz crystal 

as its main oscillator. Finally ever module and interface has its own custom plastic 

case for protection. 

3.2.1 SPI-CAN Module 

The SPI-CAN module is in charge of receiving messages from the bus and 

transferring them via SPI to an MCU module and vice versa. An MCP2551 CAN 

transceiver and an MCP2515 CAN controller are used for CAN communication. An 

MCU module must configure the SPI-CAN module with network parameters through 

the SPI channel during startup. 

SPI-CAN modules are not self-powered; they require a connection through pins on 

its DB15 HD (high density) connector to a module that can supply power.  

The MCP2515 is a CAN stand alone controller capable of implementing the CAN 

2.0B specification, which means it can handle standard and extended IDs. This 

integrated circuit has two acceptance masks and six acceptance filters used to reduce 

the overhead on the processing device by ignoring unwanted messages. It can 

interface with any processing device via an industrial Serial Peripheral Interface 

(SPI) [Microchip, 2007]. 

The MCP2551 is a high speed CAN transceiver, functioning as an interface 

between the physical bus and the CAN controller. This integrated circuit provides 

differential transmit and receive capability by performing conversion of the digital 

signals generated by the CAN controller to signals suitable for transmission over the 
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medium, also it includes a buffer to account for voltage spikes that may be induced on 

the bus line by external factors [Microchip, 2010]. 

 

Figure 3-3: SPI-CAN module electric schematic. 

 

Figure 3-4: SPI-CAN module PCB schematic. 
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Figure 3-5: SPI-CAN module. 

3.2.2 MCU Module 

The MCU module is programmed through an In-Circuit Serial Programming 

(ICSP) terminal. Programming of the microcontroller varies according to the 

function of the CAN node where the module will be located. The MCU module is in 

charge of processing and interpreting the data contained in a CAN message. 

The MCU module included with the Millipak node receives CAN messages through 

the SPI-CAN module, processes the information for speed control (direction and 

desired speed) and sends control signals to the Millipak interface. The MCU module 

on the wheel speed sensor node receives a pulse train signal from the sensor, 

calculates the corresponding revolutions per hour (RPH) and sends the information 

to the CAN bus through an SPI-CAN module. 

The MCU modules use a PIC16F873A microcontroller as their central processing 

unit. They have 2 DB15 HD connectors mounted on each side for its input/output 

channels. The modules also contain their own oscillator and voltage regulator. 

The PIC16F873A is an 8-bit microcontroller with 128 bytes of EEPROM and 

capacity for 3 wire SPI communication. This particular model was chosen because of 

its small size, speed (200 nanoseconds per instruction), number of inputs and 

outputs, and the Serial Peripheral Interface communication option [Microchip, 2003]. 
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Like the SPI-CAN modules, MCU modules are not self-powered; they need to be 

connected to an interface that provides power, although they can share their power 

connections on one of the DB15 connectors. 

 

Figure 3-6: MCU module electric schematic. 

  

Figure 3-7: MCU module PCB schematic. 
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Figure 3-8: MCU module. 

3.2.3 Millipak Interface 

The Millipak interface uses an array of three signal relays and two parallel digital 

potentiometers to control the speed and advancing direction of the vehicle. It has one 

DB15 HD connector for interfacing with an MCU module and connection terminals 

for output signals to the Millipak controller. 

The only integrated circuit used in this interface is the MCP41010, a digital 

potentiometer employed to translate the desired CAN speed value into a resistance 

equivalent. This potentiometer varies the voltage on the accelerator input of the 

Millipak controller, which varies the accelerator demand on the controller. 

The MCP41010 is a 10kΩ digital potentiometer with 256 positions. Its wiper 

position varies linearly and is controlled through an SPI interface; this made it 

suitable for interfacing with the PIC16F873A on the MCU module [Microchip, 2004]. 

This module transmits power to any device connected to the power pins on its 

DB15 HD connector. 
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Figure 3-9: Millipak interface electric schematic. 

 

Figure 3-10: Millipak interface PCB schematic. 

 

Figure 3-11: Millipak interface. 
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3.2.4 Wheel Speed Sensor Interface 

This interface is the simplest of all, it only has connection terminals, power 

connectors and a voltage regulator. It transmits power to the interfaces attached to 

it, powers up the wheel speed sensor and yields as an output signal the analog voltage 

coming from it. Again, on one side a DB15 HD connector connects this interface with 

the others, while on the other, input terminals for the sensor’s signal are available. 

 

Figure 3-12: Wheel speed sensor interface electric schematic. 

 

Figure 3-13: Wheel speed sensor interface PCB schematic. 
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Figure 3-14: Wheel speed sensor interface. 

3.3 CAN Nodes Description 

Software elements regarding the CAN nodes will be described in this subsection. 

3.3.1 Millipak CAN Node 

This node only accepts messages with ID 0x300, either extended or standard, and 

uses the first 3 bytes of data to read the desired speed value, direction, and electronic 

fail-safe (FS1) contact state respectively. Any other message received is discarded. 

Messages are accepted from any sender as long as they respect the structure shown 

in table 3-1. 

Table 3-1: Message structure accepted by the Millipak CAN node. 

ID Byte [n] Range (Dec) Description 

0x300 

Data [0] 0-255 Speed Control Value 

 

Data [1] 

 

0 

1 

2 

Moving Direction: 

Neutral 

Forward 

Reverse 

 

Data [2] 

 

0 

1 

Fail-safe contact: 

Fail-safe ON 

Fail-safe OFF 
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If the fail-safe contact is on, the node takes no action. The input sequence required 

for fault-free operation of the vehicle is: Moving Direction  FS1 OFF  Speed 

Value or within a 2 second time limit, FS1  Moving Direction Speed Value. Once 

a successful power-up of the Millipak controller is achieved, all data can be sent at 

the same time on one CAN frame. 

Fault-free power-up of the Millipak controller requires the FS1 to be on and the 

moving direction to be set on neutral. Faults will occur during power-up of the 

controller if the following events take place: 

• A change in the moving direction is selected while the vehicle is speeding in 

the opposite direction. To change direction an immediate FS1 recycle
9

 is 

necessary. 

• The fail-safe is set OFF and the moving direction is not different from neutral 

(within 2 seconds). 

• If the speed command is not zero, a moving direction is selected or the FS1 is 

OFF during power up. 

To clear the faults, FS1 recycle is usually required. 

3.3.2 Wheel Speed Sensor CAN Node 

As soon as the node is powered-up it starts transmitting messages with 

information regarding the vehicle’s wheel speed. CAN frames are broadcasted from 

this node with ID 0x321. The wheel’s speed is coded into the first two bytes of data, 

using byte [0] as the low part and byte [1] as the high part of the word
10

 containing 

the wheel’s revolutions per hour. The structure of the messages sent by the wheel 

speed sensor CAN node is summarized in table 3-2. 

Table 3-2: Message structure broadcasted by the sensor CAN node. 

ID Byte [n] Range (Dec) Description 

0x321 

Data [0] 0-255 Speed Value (Low Byte) 

Data [1] 0-255 Speed Value (High Byte) 

 

                                                           
9 FS1 recycle means switching the fail-safe to ON and back to OFF. 

10
 A word is a natural unit of data used by a particular computer design; in this case it represents a 

group of 16 bits. 



62  Chapter 3 Implementation 

 

 

3.3.3 CompactRIO CAN Node 

The CompactRIO controller performs the control algorithms for the network 

system based on the information it receives from the wheel speed sensor node. 

Outputs from the sensor node become CompactRIO node inputs; and outputs from 

the CompactRIO node become Millipak node inputs. Revolutions per hour sent by the 

sensor node are converted to revolutions per minute, then they are processed by the 

control algorithm and based on user specifications, a proper CAN speed control value 

is sent to the Millipak node. 

3.3.4 Node Mounting 

The CAN bus main line connects to a CAN hub on the back, passes through one 

side of the vehicle and connects to another hub on the front. Mounting of the nodes 

was done on a standardized DIN rail. To fix the DIN rail the 11 gauge metal sheet of 

the vehicle was drilled. Custom clamps are attached to each of the modules and 

interfaces to fix them to the DIN rail. 

Figure 3-15 shows the Millipak node (consisting of the SPI-CAN module, the MCU 

module and the Millipak interface) mounted on the back part of the vehicle, located 

under the vehicles bed. Figure 3-16 shows the wheel speed sensor node mounted next 

to the Millipak controller. Also, on both figures the CAN hub where the main line 

connects with the nodes stubs is depicted. Figure 3-17 shows a top view of the 

Millipak and sensor nodes assembly; it corresponds to the network shown on the 

bottom part of figure 2-30 (without the CompactRIO node). 
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Figure 3-15: Millipak node mounting and main CAN bus line. 

 

Figure 3-16: Wheel speed sensor node mounting showing Millipak controller. 
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Figure 3-17: Top view of both nodes on the vehicles back part. 

3.4 CompactRIO 

Software applications on the CompactRIO are programmed using LabVIEW and 

software module add-ons like LabVIEW Real-Time (RT) (for programming 

applications on the real-time level) and LabVIEW FPGA (for programming on the 

FPGA level). Programming and configuration of the CompactRIO platform is 

achieved via the 10/100BASE-T Ethernet port of its on board network interface card. 

3.4.1 LabVIEW Project Configuration 

A project must be created in order to develop an application for the cRIO 

embedded platform. The project within LabVIEW is structured as shown in figure 3-

18. 

Three distinct levels can be used for programming. I/O modules are manipulated 

on the FPGA level and typically high order processes are done on the real-time or PC 

levels. Communication between the FPGA and RT levels is achieved through direct 

memory access (DMA) first-in-first-out (FIFO) dedicated channels. Virtual 

Instruments (VIs) can be created on each of these levels. Depending on the level the 

VI is placed, it will be handled by LabVIEW, LabVIEW RT or LabVIEW FPGA. 
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Figure 3-18: Programming levels of a cRIO project. 

VIs created on the FPGA level are handled by the LabVIEW FPGA module, in 

which specialized FPGA blocks become available depending on the FPGA target. 

Applications created on this level run on the FPGA chip.  

VIs created on the RT level are handled by the LabVIEW Real-Time module, it 

provides communication with the information at the FPGA level, and has special 

function blocks for optimization of the graphical code for the selected real-time 

hardware. Applications on this level run directly on the real-time target. 

The LabVIEW graphical programming suite running on the host PC can 

communicate with both the Real-Time and the FPGA software modules. Applications 

developed on the real-time level can be used on the host PC level to take advantage of 

features not available on the real-time target. Although these features may prove 

useful in some cases, reliability and determinism now depend on the host PCs 

processor capabilities; timing and performance are now subjected to the CPU usage, 

network errors and operating system crashes on the host PC 

The NI 9853 High Speed CAN module of the CompactRIO uses a Philips SJA1000 

CAN controller and TJA1041 CAN transceiver on a 16MHz clock. This module 

provided an easy way to incorporate the capabilities of the embedded platform into 

the CAN protocol based bus, for fast and reliable communication with devices 

operating according to this standard. To develop the control model within the 
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CompactRIO, CAN channels are wired as inputs and outputs to the control model on 

the FPGA level. A LabVIEW FPGA VI reads and writes CAN frames, and transfers 

those CAN frames to/from LabVIEW RT as with any other I/O. A LabVIEW RT VI 

uses virtual interfaces to convert the CAN frames to/from CAN channels and perform 

the necessary operations on the data included with the frames. 

The CompactRIO is mounted on a DIN rail, close to the vehicles seats, for easy 

connection of a personal computer to act as interface between the controller and an 

operator. 

3.5 Timing 

Timing throughout this thesis was based on the constraints imposed by the time 

boundaries for CAN frame transmission. Assuming all nodes are error active and the 

bus is not idle, an extended frame with 8 bytes of data (the most time consuming data 

frame possible) takes at least 131 microseconds (with not a single bit stuffed) and at 

most 155 microseconds (with the maximum bit stuffing possible). For this reason, 

any process on the network that relies on information traveling through the CAN bus 

cannot take less than 155 microseconds or it may become compromised. 

The tools from ExxoTest were used to determine the network induced delays 

between CAN nodes. By transmitting messages on a fixed time rate; the period of 

each transmission can be monitored. The transmission rate was set to 50 

milliseconds on both the sensor node and the cRIO. The message period varied at 

most in 0.003 milliseconds from message to message. This was considered an 

acceptable delay, since it won’t interfere with control actions because of the natural 

response of the system. 

3.6 RPM Measurement 

The vehicle’s speed, measured in revolutions per minute (RPM), is approximated 

using the traction wheel’s rotating speed. Because of the nature of the sensor used, 

two different techniques for RPM measurements were applied, one resulting in better 

performance than the other. 

RPM measurements were first made using the period method [Opto22, 2008b]. 

The sensor’s signal period is defined as the time elapsed from the start of one pulse to 

the start of the next pulse. Perforations on the metal strip are neither exactly the 

same size, nor evenly separated; causing asymmetrical pulses. Under constant speed, 
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this situation provoked RPM measurements to vary from one sampling time to the 

next one, producing outliers on the signal. 

A second measurement method consisted on counting the positive or negative 

edges over a fixed period of time [NI, 2010]. Although pulse periods were still 

asymmetrical, by counting edges for a fixed time period, normalization of the pulse 

distribution over this time span was performed, yielding much better results. Both 

methods are shown in figure 3-19. The greater the time span defined for edge 

counting, the less outliers in the signal. But with long time spans uncertainty 

increases, because during the time defined to count edges, the last speed 

measurement is held constant; if speed changes too abruptly and the defined time 

span hasn’t elapsed, the sensor won’t be able to register such changes. For this 

reason an appropriate sampling time on the controller and edge counting time span 

must be defined. 

 

Figure 3-19: On top, RPMs are measured using the period method. Below, 

measurements are made using the pulse count method. 

The microcontroller inside the MCU module on the wheel speed sensor CAN node 

was programmed to use the edge count method. Revolutions per hour of the traction 

wheel are sent through the CAN bus every 50 milliseconds. 

On the CompactRIO controller, LabVIEW was used to develop a tachometer 

application to calculate the corresponding RPMs, according to the information 

provided by the wheel speed sensor node. 



68  Chapter 3 Implementation 

 

 

Two redundancy measurements were used to ensure the RPMs displayed by the 

cRIO application were accurate. First, with the setup used for the repeatability tests, 

the photo-tachometer readings were contrasted to the ones shown by LabVIEW. 

Then, frequency on the output signal of the sensor was measured using an 

oscilloscope connected directly to the opto-interrupters cables. Frequency on the 

output signal was manually converted to RPMs through simple mathematical 

operations and compared to the results shown by the cRIO. 

While holding the speed of the vehicle constant, the redundant measurements 

from the three sources were within 5 RPMs of each other most of the time, thus 

concluding that the tachometer implementation in LabVIEW was successful. 

Even though the measurements were made using the pulse count method, 

fluctuations on the signal were still present. To reduce outliers in the signal even 

further, a mode filter and a median filter were applied through software.  

The first filter applied computes the mode of a sample set of user defined size; the 

filter finds the mode of the set by calculating the histogram of the input data and 

selecting the center value of the bin with the largest count; these calculations 

introduce a time delay that depends on the length of the sample set. The filter proved 

to effectively reduce the number of oscillations present in the signal, but the trade-off 

between response time and oscillation frequency was increased. 

The second filter applied, computes the median of a user defined sample set (called 

rank on the VI) that is used to define an equal number of elements to the left and to 

the right of the point of interest, for selection of the median. The time delay of this 

filter is smaller than the one of the mode filter, presenting equal or better results on 

outlier removal. As a conclusion, the median was preferred over the mode filter. 

A Real-Time VI was used to send the desired speed (RPM setpoint) on a CAN 

frame to the Millipak CAN node. Also, this VI monitored and logged the RPM 

measurements obtained.  

To compare results for RPM calculation, the period method is plotted along with 

the pulse count method, and both the mode and median filters. The median filter was 

also applied to the period method to observe its behavior. Figure 3-20 shows the 

different methods and filters for the RPM measurements obtained. Outliers are 

clearly visible for the period method (top plot). Each unit on the time scale represents 

the Real-Time VI’s loop cycle or sampling time. Sampling time was set to 30 

milliseconds, which means that from one mark on the x axis to the next 30 

milliseconds have elapsed. 
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Figure 3-20: Plots from top to bottom; the period method, the pulse count method, 

mode filtered pulse count method, median filtered pulse count method and median 

filtered period method. 

Figure 3-21 shows a close-up on the “constant” section of figure 3-12. All methods 

present outliers, but the median filter reduces both frequency and amplitude of these, 

thus providing a better and more reliable approximation to the actual RPMs of the 

wheel. 

From figures 3-22 and 3-23 it can be observed that the use of a filter induces a 

delay of approximately 3 time units, which results in 90 milliseconds for a sampling 

time of 30 milliseconds, independently of the measuring method used. It should be 

noted that the pulse count method yields a step shaped (discrete) measurement 

compared to the period method which appears smoother. Also, the application of a 

filter produces a discrete signal regardless of the measuring method. 
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Figure 3-21: Close-up on the constant speed section of figure 3-20. Again, plots from 

top to bottom; the period method, the pulse count method, mode filtered pulse count 

method, median filtered pulse count method and median filtered period method. 

Figure 3-24 shows the systems response due to a setpoint change. The pulse count 

method without filtering (middle plot) proves to be an improvement over the period 

method (bottom plot), which clearly looks messy. The median filtered pulse count 

method (top plot) demonstrates to be the most stable of all methods. The figure 

shows that for the acceleration and deceleration portions of the graphics, the three 

plots share a similar behavior, only during the constant or cruise speed portion of the 

plot a big difference is remarkable between each method. An improvement in the 

quality of the graphic is evident from applying a filter to the best of both core 

methods. 
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Figure 3-22: Delayed signal induced by the application of the median filter on the 

pulse count method measurement. 

 

Figure 3-23: Delayed signal induced by the application of the median filter on the 

period method measurement. 
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Figure 3-24: Systems response to a 100% change in speed demand. From top to 

bottom, median filtered pulse count method, pulse count method and period method. 
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3.7 Process Characterization 

The parameters that describe a process are: steady state gain (K), which indicates 

how the process output changes with respect to an input change; the system’s time 

constant    , describing the rate of change of the process measurement; and the dead 

time      of the system, describing how much time is required for the system to start 

responding to an input change. 

Characterization of the process plant was performed with the controller on manual 

mode (the controller’s output didn’t depend on feedback from the sensor) resulting in 

an open loop system.  

The system was set to 50% of its maximum speed value; after stabilization, a step 

change from 50% to 100% was commanded. From this response curve, the process 

parameters were obtained. Calculations were done with numeric data logged by the 

cRIO rather than by a graphical method. Figure 3-25 shows the reaction curve. 

 

Figure 3-25: Response curve yielded by the system, used for characterization. Each 

sample marked on the horizontal axis corresponds to a 30 millisecond interval. 
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The steady state gain of the system is defined as: 

        
       

      
     (3.1) 

Using the two point method, the time constant and dead time parameters of the 

process are obtained. In this method, time at which the process reaches 28.3% and 

63.2% of its peak value is determined and used to establish the systems parameters. 

Equation (3.2) shows how the time constant is calculated while equation (3.3) shows 

the dead time approximation.
 

                       (3.2) 

                   (3.3) 

From the resulting figure, the system can be characterized as a first order system 

with a dead time function. Table 3-3 shows the obtained parameters for the process: 

dead time     , time constant     and process gain (K).  

Table 3-3: Process parameters: dead time     , time constant     and         . 

   (ms)   (ms) K 

450 720 2.553463 

minutes 

0.0075 0.012 

 

3.8 PID Control 

A proportional-integral-derivative (PID) controller is implemented to develop a 

closed loop control system. The PID controller reads data from the process and 

computes the desired output by calculating and adding proportional, integral, and 

derivative responses. 

A control action is defined based on tuning parameters and the error     measured 

between a setpoint      and the process variable      at a particular time step. 

                  (3.4) 

The controller’s action     , is described by: 

                 
 

  
       

 

 
   

     

  
     (3.5) 
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Where    is the proportional gain,    is the integral or reset time and    is the 

derivative or rate time. Each of these elements corresponds to a different response. 

                       (3.6) 

           
  

  
    

 

 
     (3.7) 

               
  

  
      (3.8) 

Where       is the proportional response,       is the integral response and       is 

the derivative response. 

To develop a Network Controlled System (NCS) the PID controller is integrated 

into the CAN network. The system loop is closed by joining the controller, sensor, 

process plant and actuator through the network. A block diagram representing the 

resulting NCS is shown in figure 3-26. 

 

Figure 3-26: Block diagram of a typical NCS with induced delays. 

The setpoint or reference        is received by an analog to digital converter       

where sampling occurs according to a time    , then the discrete error         is 

computed and taken as an input on the controller          , the controller’s output or 

manipulated variable         is sent through the network where an induced 

controller-actuator delay          occurs, a zero order holder         maintains the 

controller’s output while the next output value is generated, finally, the process plant 

        receives the controller’s output as an input. The plant’s output        is 

registered by a sensor that sends a feedback signal         through the network 

which is affected by an induced sensor-controller delay         . The error is 

computed again closing the control loop. 
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3.8.1 PID Tuning 

To adjust the PID for correct performance, the controller requires characteristic 

parameters from the process plant. The controller’s performance is directly affected 

by its tuning parameters. Different methods can be used to tune a controller. Three 

methods are presented for the PID controller: the Ziegler-Nichols method, the 

Integral of Time-weighted Absolute Error method, and the ultimate gain method. 

The reaction curve method for a step change response described by Ziegler-Nichols 

(Z-N) [Zhong, 2006; Åström, 2002] was used as a model for obtaining the PID’s 

tuning parameters [Apco]. Table 3-4 shows the controller parameters calculated 

using the Z-N method. 

Table 3-4: PID tuning parameters: Controller gain     , integral time      and 

derivative time    for the Ziegler-Nichols response curve method. For P, PI and PID 

control strategies. 

Z-N          

P 0.6266 
  

PI 0.56394 0.025 
 

PID 0.676728 0.015 0.00375 

 

Tuning was also done according to the Integral of Time-weighted Absolute Error 

(ITAE) criteria to compare its performance against the Z-N formulation. This 

criterion uses the integral of the error over time to penalize persistent errors 

according to equation (3.9): 

                
 

 
    (3.9) 

ITAE tuning produces more conservative parameters than Z-N. Tuning can be 

optimized for performance against setpoint changes or against disturbances. Table 3-

5 shows the ITAE criteria parameter results. 

Table 3-5: ITAE tuning parameters calculated. 

ITAE 

Reference Change Disturbances 

                  

P 
   

0.40680 
  

PI 0.43302 0.017942 
 

0.66217 0.01574304 
 

PID 0.68356 0.023529 0.002750 1.02453232 0.01210533 0.00324974 
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As a last implementation, the closed loop ultimate gain tuning method was also 

computed. This process determines the gain that will cause the system to oscillate at 

constant amplitude; the ultimate gain (where oscillations stop increasing in 

amplitude) and period are used to determine the tuning parameters.  Table 3-6 

presents the results. 

Table 3-6: Ultimate gain PID tuning parameters. 

¼ decay          

P 1.25000 
  

PI 1.12613 0.015493 
 

PID 1.49701 0.009333 0.00233 

 

Each of the previously discussed methods was used as a guideline. The Z-N 

response curve method proved to yield the best results, but either way further 

manual fine tuning was done on the PID controller for this criterion to improve its 

performance. 

3.9 Fuzzy Logic Control 

Fuzzy systems (FS) are precise, defined systems, even though the processes they 

model are fuzzy in nature. Fuzzy logic tries to approximate real, complex non-linear 

real-world processes to estimate reasonable results.  

Fuzzy logic is a knowledge-based or ruled-based decision making method. A fuzzy 

controller uses defined rules to control a process based on the values of its input 

variables. Linguistic variables (words) represent the input and output variables of the 

control system; these variables have a range of expected values. Linguistic terms are 

the different categories each linguistic variable can be classified into. A membership 

function relates linguistic terms with numerical values; these values represent the 

degree of membership each linguistic variable has with a linguistic term. Membership 

ranges from 0 for 0% to 1 for 100% membership. Each of these linguistic variables 

describes a fuzzy set. The relationship between input and output fuzzy sets can be 

described with fuzzy IF-THEN rules. A fuzzy system is constructed by a collection of 

fuzzy rules known as a rule base, which is equivalent to the control strategy of a 

controller. Basic connectives AND, OR, NOT are used to relate the rule’s antecedents 

and determine the truth value of the aggregated antecedent; the THEN part 

constitutes the rule’s consequent. For example a simple rule can be: IF speed slow 

AND accelerator not pressed THEN press accelerator. 
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When a process can be described qualitatively it is possible to use fuzzy logic to 

design a fuzzy controller. Fuzzification is the first stage of a fuzzy system, the crisp 

or numerical values of the variables involved are associated with its corresponding 

linguistic terms. After fuzzification is done the controller uses the input terms and a 

certain rule base to determine the proper value of the output linguistic variables. A 

defuzzification method is necessary to translate back the output’s membership value 

into crisp numerical values. 

3.9.1 Fuzzy Logic System 

A Fuzzy Logic controller was developed to compare its performance against the 

PID. The first step in the development of the Fuzzy System, consisted in choosing 

input linguistic variables and its corresponding terms. Initially, the system was 

classified as single-input-single-output (SISO), where the input variable was the 

process variable (RPMs), and the output was a step-up or step-down on the CAN 

speed control value depending of the current RPMs. This resulted in a poor 

implementation; control of the vehicle’s speed was easily lost.  

A second approach consisted of a multiple-input-single-output (MISO) system with 

two input variables: first the current error of the system (measured between setpoint 

and process variable), and second, the error change rate. A step-up or step-down on 

the CAN speed control value remained as the output.  

Initially, three linguistic terms, or classes were defined for each input variable: 

negative, zero and positive. Five and seven terms were also tested. After 

experimentation, better results were obtained with five terms. Seven terms didn’t 

improve performance over five, thus, the FS was designed with the following five 

terms for each input variable: Negative Large, Negative, Zero, Positive, Positive 

Large.  

The error is defined by equation (3.10), while the error change rate is defined as in 

equation (3.11). 

                  (3.10) 

                        (3.11) 

Table 3-7 shows the relationship between error, error change rate and process 

variable; these relationships were used to define the Fuzzy System’s rule base. 
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Table 3-7: Relationship between error, error change rate, and process variable. 

                                                       

Positive Positive Under the SP and moving away 

Positive Negative Under the SP and moving towards 

Negative Negative Over the SP and moving away 

Negative Positive Over the SP and moving towards 

Zero Positive Reached the SP from above 

Zero Negative Reached the SP from below 

Positive Zero Not moving and under the SP 

Negative Zero Not moving and over the SP 

Zero Zero Reached the SP and not moving 

 

The output linguistic variable, as already stated, represents increments on the 

CAN speed value sent to the Millipak node; seven linguistic terms were used to 

describe the output variable: Negative Large, Negative Medium, Negative Small, 

Zero, Positive Small, Positive Medium, Positive Large. 

Each term in the input’s membership function represents a possible current state 

of the process variable; for example, if both the error and error change rate are 

positive large, the process variable is very far below the desired speed and the vehicle 

is decelerating; the corresponding action by the controller would be to accelerate 

quickly, which translates to a positive large output, incrementing the CAN speed 

control value in more than one unit. 

 

Figure 3-27: Membership function for the input variable Error. Error units are in 

RPMs. The zero error range is defined in conjunction with the Positive and Negative 

error range, membership varies depending on the three different linguistic terms. 
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Figure 3-28: Membership function for the input variable Error Change Rate.  

 

Figure 3-29: Membership function for the output variable CAN Data Changes. 

All input antecedents for a given output are connected using the AND operator; 

the minimum of both membership degrees between the inputs is taken as the truth 

value for the aggregated rule antecedent.The rule base is composed of 25 different IF-

THEN rules and it is summarized on table 3-8. 

Table 3-8: Rule base used for the FS.
11

 

   

  
NL N Z P PL 

NL NL NL NM NM Z 

N NL NS NS NS Z 

Z NL Z Z Z PL 

P Z PS PS PS PL 

PL Z PM PM PL PL 

                                                           
11

 Negative Large: NL, Negative Medium: NM, Negative Small: NS, Negative: N, Zero: Z, Positive: P, 

Positive Small: PS, Positive Medium: PM, Positive Large: PL. 
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The resulting Fuzzy space is shown in figure 3-30. Input variables, Error and 

Error Change Rate are plotted versus the CAN speed control value increments which 

constitute the output variable. 

 

Figure 3-30: Fuzzy Space described by the rule base. 
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Chapter 4 

4 Experiments and Results 

 

 

This section presents the experiments done on the electric utilitarian vehicle to 

validate the development of the CAN control network. The tests depicted in this 

section were done with the complete network control system. This was done by 

integrating the control algorithms to the CAN network and monitoring the response 

of the system to different commands. 

4.1 CompactRIO PID Control 

The PID control algorithm implemented on the CompactRIO platform is located at 

the Real-Time programming level. An FPGA VI runs on the background to 

transmit/receive CAN messages. Information received through the CAN bus is shared 

with a Real-Time VI, which requests a subVI to calculate the RPMs of the wheel with 

the information provided through the network. On the RT VI the software filter is 

applied to the resulting RPM measurements to reduce outliers in the signal. The 

filtered signal serves as the PID controller’s input, which based on the corresponding 

tuning parameters generates an output signal. The controller’s output is sent 

through the CAN bus and received by the Millipak node. This node receives the CAN 

message and generates a control signal for the Millipak controller to drive the motor, 

trying to reach the desired speed value. The PID control algorithm employed works 

with percentage values for its input and output. Using the maximum RPMs (or a 

close approximation) of the system, the PID controller calculates the required output 

to maintain the speed of the vehicle close to the desired setpoint. A first attempt at 

controlling the system is shown in figure 4-1. It can be observed that tuning 

parameters must be adjusted to eliminate overshoot and oscillations in the 

controllers output. 
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Figure 4-1: Closed Control Loop response with PID controller. Showing sample time 

(each time sample is equal to 50 milliseconds) on the horizontal axis versus 

percentage of maximum on the vertical axis. 

 

Figure 4-2: Closed Control Loop response for setpoint change with PID controller 

after Z-N tuning. 
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Figure 4-3: Closed Control Loop response for setpoint change with PID controller 

after fine tuning the Z-N method. 

It can be observed that the PID controller indeed follows any setpoint change. Fine 

tuning helped speed up the response time for the controller to reach the setpoint. 

Further tuning can be done to shorten this response time span even more, watching 

carefully where the controller yields an overshoot.  

4.2 CompactRIO Fuzzy Logic Control 

Development of the FS in LabVIEW was done with the aid of the Fuzzy System 

Designer. The fuzzy system is saved as a *.fs file which is later transferred to the 

controller and loaded on the RT VI developed for fuzzy control. The *.fs file contains 

information about input/output variables membership functions and rules. The fuzzy 

logic controller VI constructed works at the RT level, like the PID controller receives 

information from the wheel’s speed through the CAN bus. 

It can be easily seen that the fuzzy controller takes more time to reach the setpoint 

than the PID, this generates less overshoot on the response as well as providing a 

smoother acceleration. 
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Figure 4-4: Closed-loop response with fuzzy logic controller. 

 

Figure 4-5: Closed-loop response with fuzzy logic for setpoint change. On the upper 

part of the graph a setpoint beyond the controllers output capacity was desired and 

thus not met. 
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Chapter 5 

5 Conclusions 

 

 

This thesis describes the automation of the speed control module for a real-life 

scale electric mining vehicle. The method for speed automation relies in the 

development of a Network Control System (NCS) based on the Controller Area 

Network (CAN) standard specification. This speed controller is proposed as part of a 

modular control architecture into which other modules can interact by means of the 

CAN bus.   

The vehicle is the Super Truck model from Johnson Industries, whose kinematics 

are those of a rear-wheel differentially driven conventional vehicle. The driving force 

is produced by a 5HP electric motor, which is regulated by a power controller from 

Sevcon, model Millipak. 

Since the utilitarian vehicle lacked appropriate preparations to develop an 

effectively closed control system, instrumentation and automation was required. A 

wheel speed sensor was developed to estimate the vehicles speed at all time. This 

information was then processed by the controller to generate an appropriate 

response, according to parameters defined by the user. The control algorithms reside 

on a Programmable Automation Controller (PAC); model CompactRIO, 

manufactured by National Instruments (NI). Both sensor and controller are 

connected through the CAN bus. On a personal computer, the user can modify 

controller parameters through a human-machine interface (HMI) developed on the 

graphical programming environment from NI: LabVIEW. Also, on the HMI, the 

controllers response and current speed of the vehicle can be monitored, as well as 

information travelling through the CAN bus. The purpose of the controller is to reach 

and keep the vehicle at a desired constant speed defined by the user. 

The manufactured sensor offers an experimental low-cost solution for the intended 

application. It acts as an optical encoder to measure the revolutions per minute at 

which the traction wheels are turning. The sensor’s number of pulses per revolution 
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provides a good resolution (1.5° degrees per pulse) for RPM measurement of the 

vehicle’s wheel.  

Nevertheless, data quality of the signal produced by the sensor is acceptable; but 

problems reside on the asymmetry between pulse periods. These readings may be 

interpreted as false RPM changes. The measuring technique used counts pulses over 

a defined time span, therefore normalizing the duration of each pulse for such time 

span. With this technique the resulting signal from the sensor presents fewer 

variations during constant speed. Besides this, software filtering was applied to 

reduce outliers in the form of spikes, thus rendering a much smoother signal 

representing the speed of the wheel. 

As a future direction, a commercially state of the art sensor can be used to replace 

the low-cost alternative used, improving setup times and properties such as 

robustness and response time frequency. Inclusion of the replacement sensor to the 

control network is easy, as long as the CAN frame sent by the sensor respects the 

convention established on this thesis for transmission of speed measurement data, no 

further modifications have to be made on any other CAN node. 

Complementary to this, the establishment of the NCS required the development 

and implementation of the CAN bus on the vehicle. Specifically, the electronic design 

and later manufacturing of the modules and interfaces of the CAN nodes used to 

communicate both the speed sensor and Millipak controller over the network. Since a 

commercial CAN module from NI was available for the CompactRIO controller, its 

inclusion to the network was also possible. Programming of the microcontrollers on 

the manufactured CAN nodes as well as on the CompactRIO was done next. Although 

complications arose from the lack of information on the documentation provided for 

the CompactRIO’s CAN module, they were ultimately resolved. This resulted in a 

complete and functional CAN bus.  

The manufactured CAN modules and interfaces functioned as intended. CAN 

communication is effectively established and characteristics such as robustness and 

reliability of the protocol were verified by operating the network at maximum speed 

with constant message transfer, in a high electromagnetical environment. Electronic 

design of the PCBs for the modules and interfaces is simple and reliable, but it can 

yet be improved, resulting in a smaller size, a better form factor, and an increase in 

computational capacity. Further electronic protection for the manufactured modules 

and interfaces can be included to preserve their components in case of an electric 

malfunction. 
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Apart from this situation, closed loop control is achieved by connecting sensor, 

actuator and controller through the network. The sensor is periodically sending the 

wheels speed through the CAN bus; the controller receives this information and 

produces a control signal, which is also sent out to the network. The Millipak CAN 

node receives the information sent by the controller and generates a response that 

drives the electric motor to the desired speed, which is then again sensed and sent 

through the bus, closing the control loop. Two different control algorithms were 

implemented on the CompactRIO; a proportional–integral–derivative (PID) controller 

and fuzzy logic controller, both developed under LabVIEW. As with most control 

systems, a trade-off between response time and stability was naturally present. 

The PID responded well with short sampling time spans (less than 100 

milliseconds) on the controller, but stress applied to the electric motor by the 

controller’s output response was far greater than with the fuzzy logic controller. 

Since the response time of the system is slow in nature, sampling time spans on the 

controller can be increased without compromising performance, thus the fuzzy logic 

controller proves to be in advantage over the PID. With a slower sampling time (130 

milliseconds), the fuzzy controller performs as well as the PID, but provides a better 

alternative in terms of setup time, design and implementation.  

Improvements to both control approaches can be made. In the case of the PID, 

advanced tuning techniques may be applied to provide more accurate control. For the 

case of the fuzzy logic controller, the number of rules as well as their operating range 

can be modified to yield better performance. A further approach can be the fusion of 

both techniques to develop a hybrid fuzzy-PID controller. 

During experimental validation, a variety of laboratory exercises with an 

experimental setup, where the vehicle was suspended on its traction wheels. 

Experiments were done to determine characteristics such as repeatability of the 

developed system. Also, several tests were successfully performed outside the 

laboratory, demonstrating a complete and functional speed control network based on 

the CAN protocol. With the vehicle rolling on the ground, the CAN network provided 

a communication channel between the Millipak controller, the wheel speed sensor 

and the PAC, where both control schemes implemented achieved the desired task of 

maintaining a constant cruise speed for the vehicle. With this, it was demonstrated 

that the CAN bus control network developed is suited for management of critical 

control information, not only limited to the one provided by the speed controller 

developed on this research. 
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Unfortunately, the vehicles batteries are not in perfect shape, and usually are 

drained quickly, affecting performance (e.g. the vehicles maximum speed may be 

achieved while the batteries are at full charge, but once they deplete below 50% max 

speed cannot be reached), forcing the controller to yield a response of 100% of its 

capacity constantly. Higher capacity batteries are required to improve the overall 

performance of the vehicle and extend testing periods. 

Finally, it can be concluded that the methodology applied effectively resulted in a 

prototype vehicle with autonomous speed control. The resulting Network Control 

System allows for further inclusion of other control modules. The robustness of the 

system permits the removal of current modules and insertion of new ones without 

sacrificing the existing functionality of the control architecture. The use of 

standardized components grants the system with an interoperability characteristic, 

thus the system is not brand-specific. In this manner, the proposed CAN network can 

be expanded to a complete control architecture to successfully build a completely 

autonomous vehicle. The speed algorithms employed can be modified or even 

replaced by others, any type of controller can be included without mayor 

modifications on the system, as long as the controller’s output travels through the 

network with the proper structure. A key advantage of adopting a CAN bus control 

network is the possible inclusion of nodes without disruption of the whole network; 

which means that development can grow in complexity without much redesign, thus 

the network proposed is not limited to the nodes presented. 

The vehicle has yet to be equipped with sensors that allow environmental 

perception, such as sonars, LIDARs (Light Detection and Ranging) or different types 

of cameras. An improvement to the current implementation would be the use of a 

quadrature signal, to receive feedback on the moving direction of the vehicle. An 

actuator mechanism for autonomous steering control is already developed but has 

not been fully implemented. This elements can be easily adapted to the work 

completed on this project by means of the CAN bus. 
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Appendix A 

 Kinematic Model 

 

 

A simplified bicycle model like the one shown in figure A-1 can be generated from the 

Ackerman Steering geometry and used to compute the vehicles kinematic model.  

Nomenclature is as follows: 

                                             

                                                 . 

                                             

                                          

                                              . 
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Figure A-1: Bicycle model. 

The wheels can be characterized by the constants         and the time-varying angles 

          [Habumuremyi, 2005]. The radius {r} of the wheel and its time varying angular 

position      are used to calculate the velocity            of the wheel. 

 

Figure A-2: a) Bicycle model for wheel description b) wheels lateral view. 
 



Appendix A  93 
 

 

Two constraints are deducted from these descriptions [Habumuremyi, 2005; Campion et 

al., 1996]: 

Pure rolling constraint: 

                                       (A.1) 

Non-slipping constraint: 

                                      (A.2) 

If the wheels are centered with the    axis, then     and     is measured with respect to 

    like stated earlier; so the term can be eliminated from the previous constraints. From the 

bicycle approach presented in figure A-1 the following equations governing the kinematic 

model are constructed: 

      
     

      
      (A.3) 

      
     

      
      (A.4) 

         
 

  
      (A.5) 

         
 

  
      (A.6) 

Finally the Ackerman condition [Habumuremyi, 2005; Xiao, 2008]: 

             
 

  
        

 

  
    (A.7) 

For a rear traction vehicle like the one on this project an exact relation for the angles and 

speeds of the real wheels can be obtained from equations (A.3) to (A.7). Based on figure A-1 

further constraints can be established from (1) and (2). 

Pure rolling constraint of the rear wheel              : 

                          (A.8) 

Non-slipping constraint of the rear wheel               : 

                        (A.9) 

Non-slipping constraint of the front wheel      : 

                                     (A.10) 

Solving (A.8) to (A.10) we get: 

                 (A.11) 
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                 (A.12) 

     
     

 
      (A.13) 

Written as a matrix: 
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Appendix B  

 Motor Model 

 

 

In reference to figure 3-6, the torque      produced by the motor is proportional to the 

product between the armature current      and the flux (which is proportional to the field 

current) [Zaccarian]. 

              (B.1) 

Where    is the torque constant of the motor; with constant velocity,    is dependent on 

the flux density of the fixed magnets in the motor, the reluctance of the iron core and 

number of turns in the armature winding. An induced voltage proportional to the product of 

the flux and the angular velocity is developed while the armature is rotating; this voltage, 

called the back emf      or the speed voltage [Salam, 2003; Zaccarian]: 

            (B.2) 

Where    is the motor voltage constant (in V/A – rad/s). Using Kirchoffs voltage law on the 

armature circuit we obtain: 

        
   

  
           (B.3) 

Performing an energy balance on the motor, the sum of the torques should also equal cero. 

That is, the electromagnetic torque of the motor due to the voltages applied on the rotor and 

stator should compensate the torque due to rotational acceleration of the rotor, characterized 

by its inertia   and the torque due to the velocity of the rotor characterized by the viscous 

friction coefficient   as well as the torque    developed by the load. 

             
  

  
        (B.4) 

With initial conditions equal to cero and taking the Laplace transforms of the previous 

equations [Gonzalez, 2004] 

                  (B.5) 

                               (B.6) 
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                   (B.7) 

                      (B.8) 

Substituting       of (B.6) with (B.8) we can obtain the transfer function between the 

angular speed     of the motor’s shaft and the input voltage      as shown next: 

 
              

  
               

    

     
 

 

 
              

  
    

 

    

     
 

  

                     
 

    

     
  

  

                          
   (B.9) 

Assuming the armature inductance is very small        and simplifying by dividing by 

   we finally obtain: 

    

     
  

  
  

      
    
  

 
       (B.10) 

We can model (B.10) as a first order system by taking [Palacios, 2000]: 

  
  

  
                            

   
   

         
                                    

The transfer function for the electric motor is: 

    

     
  

 

     
      (B.11) 

The differential placed at the end of the motor’s shaft alters equation (B.4). The inertia 

moment, viscous friction and torque provided by the differential should be included in the   , 

  and    terms that appear on this equation. But since all the missing elements involved are 

constants, the magnitude of the order of the system is preserved. 
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Appendix C  

 Millipak Controller 

 

 

The Millipak is the electric controller for the vehicle; it serves as a power interface to drive 

the electric motor. A schematic representation of the Millipak is shown below in figure C-1. 

 

Figure C-1: Millipak controller showing terminals and connectors A and B. 

The following figures show the wiring connections required to operate the Millipak 

controller. 
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Figure C-2: Pin out for connector B. 

 

 

Figure C-3: Millipak controller power wiring. 
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The calibrator uses a reference shown as xx.xx to display the value of important items. 

Table C-1 shows the values for every item programmed on the Millipak. For example, 

calibrator reference 0.01, which refers to the armature current limit, has a value of 600 A, 

the maximum supported by this model, calibrator reference 2.01 mandates an acceleration 

delay of 1.5 seconds for the controller to go from 0% to 100% speed. 

Table C-1: Calibrator personality list, showing the initial, maximum and minimum values 

for each property. 

  Personality 
Actual 
 Value 

Range 

  
Minimum Maximum 

Current 
Limits 

0 

0.01 
 Armature Current 
Limit 600 50A  ABR 

0.02  Field Current Limit  50 10A  FBR 

0.03 
 Drive Current Limit 
Start 50  50A  

Armature I 
Limit 

0.04 
 Drive Current Limit 
Ramp 0.25  0.00s  2.50s 

Braking 
Levels 

1 

1.01 
 Direction Change 
Braking 50 5% 100% 

1.02 
 Neutral Braking 
Level 10 0% 100% 

1.03 
 Foot-brake Braking 
Level 0 0% 100% 

1.04 
 Dir. Braking Exit 
Level 0 0% 100% 

Accelerator 2 

2.01 Acceleration Delay 1.5 0.1s  5.0s 

2.02 Deceleration Delay  0.1 0.1s  0.5s 

2.03 
Accelerator Zero 
Voltage  0.2 0.00V  4.50V 

2.04 
Accelerator Full 
Voltage  3.5 0.00V  4.50V 

Creep Speed 3 3.01 Creep Speed  0 0% 25% 

Max Speed 5 

5.01 Maximum Speed  100 0% 100% 

5.02 
Maximum Reverse 
Speed  100 0% 100% 

Cutback 1 
Speed 

6 
6.01 Cutback Speed 1  100 0% 100% 

Cutback 2 
Speed 

7 
7.01 Cutback Speed 2  100 0% 100% 

Motor Setup 8 

8.01 Field Current Low 7  2.00A 
 If Mid or 
19.75A 

8.02 Arm Current Low 120  10A 
 Arm I Mid – 

10A 

8.03 Field Current Mid 25  Field I Low  Field I High 

8.04 Arm Current Mid  200 
Arm I Low + 

10A 
 Arm I High – 

10A 
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8.05 Field Current High 50  Field I Mid  FBR 

8.06 Arm Current High  400 
Arm I Mid + 

10A  ABR 

Power Steer 
Timer 

9 
9.01 Power Steer Timer  2 0s  60s 

Seat Delay 10 10.01  Seat Delay  1.5 0.1s  5.0s 

Addiotional 
 

Personalities 
11 

11.01  Roll-Off Speed 73 0% 100% 

11.02  Walk Speed  0 0% 100% 

11.03  Belly Delay  1 0.1s  5.0s 

11.04  PSS Ramp Up Delay  1 0.1s  1.0s 

11.05  PSS Timer  2 0s  10s 

11.06 
 Line Cont. Dropout 
Timer 1  1s  60s 

11.07  SRO Delay  0 0s  5s 

11.08  Low Voltage Start  27 Low V Cutout 
 System 
Voltage 

11.09  Low Voltage Cutout 25  14.5V  Low V Start 

11.1  High Voltage Start 45 
 System 
Voltage  High V Cutout 

11.11  High Voltage Cutout 50  High V Start  50.0V or 58.0V 

11.12 
 Foot Brake Zero 
Volts 0  0.00V  4.50V 

11.13  Foot Brake Full Volts 4.5  0.00V  4.50V 

System 
Setup 

12 

12.01  Chop Select  OFF OFF/ON/24V   

12.02  SRO Enable  ON OFF/ON   

12.03  Control Mode  TORQUE TORQUE/SPEED   

12.04  Seat Cuts Pump  OFF OFF/ON   

12.05 
 Roll-Off Electro 
brake OFF  OFF/ON   

12.06  Reverse Speed Limit  OFF OFF/ON   

12.07 
 FS1 Recycle on Dir 
Change  ON OFF/ON   

12.08 
 Dir Switch Seq Fault 
Check  ON OFF/ON   

12.09 
 Line Contactor 
Dropout  OFF OFF/ON   

12.1 
 Accelerator 
Characteristics  LINEAR 

LINEAR  
CURVED  
2*SLOPE 
 CRAWL   

12.11  High Speed Mode  NORMAL 
NORMAL 
LATCHED   

12.12  Belly Style  NORMAL 
NORMAL 

CONTINUOUS   

12.13  Power Steer Trigger  0 FS1   
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SEAT  
DIRECTION 

12.14  Foot-brake Priority  DRIVE 
DRIVE 

FOOTBRAKE   

12.15 
 Buzzer 
Configuration  OFF 

OFF 
REV+ROLL 

ALL   

12.16  Digital I/O 7 1 17 

12.17  Analogue I/P  3 1 4 

12.18  System Voltage  36 24V  48V 

 

Acceleration and Braking 

The accelerator/analogue inputs are flexible in the range of the signal sources they can 

accommodate. Each analogue input has 2 adjustments associated with it to allow the input 

voltage range to be determined. The 2 adjustments are called the “Accelerator Zero Level” 

and the “Accelerator Full Level”. If these were set to 0.20V and 4.80V then 0% pulsing would 

start at 0.20V at the input, increasing to 100% pulsing at 4.80V; the inverse occurs with 

decreasing voltage outputs. As shown in table C-1, the accelerator zero voltage (reference 

2.03) is set to 0.2V this means the vehicle will start accelerating when 0.2V are present on 

the analog input, increasing in step sizes of 0.02V until it reaches its maximum acceleration 

rate at 4.5V. Also the reader may note that reference 2.01, acceleration delay is set to 1.5 

seconds, this is customized for a smooth acceleration in order to ramp the accelerating pulse 

from 0% to 100%. 

The acceleration characteristics personality defines a curve to be followed, either linear, 

curved, dual slope or crawl. Currently selection is to linear. This function is used to vary how 

much speed is demanded depending on the accelerator position. Depending on the setting, 

the controller gives a smaller change in speed for large changes in accelerator position which 

is useful for low speed maneuvering. The accelerator push refers to how much the operator 

has the accelerator depressed. The accelerator demand refers to how much accelerator 

demand is requested after the characteristic function is applied. This accelerator demand is 

then used along with the creep speed and maximum speed personalities to determine the 

speed demand for the vehicle. If a valid direction is selected and the accelerator demand is at 

0%, the speed demand will be set to the creep speed personality. As the accelerator demand is 

increased to 100%, the speed demand increases linearly to the maximum speed personality. 

Braking can be initiated in one of 3 ways: 

• Direction Braking: Initiated when the direction switch inputs are reversed during 

drive. 

• Footbrake Braking: Initiated when the operator depresses the footbrake pedal and a 

footbrake input is configured. 
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• Neutral braking: Initiated when the vehicle is put into neutral during drive and the 

neutral braking level is greater than 0%. 

Direction and neutral braking are currently applied; no footbrake preference has been 

established; although it offers a great possibility for automation because footbrake can be 

configured to follow one of the next options: 

• Via an analogue input configured as a Footbrake Pot. Using a potentiometer allows 

the operator to vary the amount of braking needed. 

• Via a digital input configured as a Footbrake switch. When the switch is active, the 

system will brake at the footbrake level established on the personality list. 
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Appendix D 

 Wheel Speed Sensor 

 

 

Two different models of opto-interrupters were used to construct the sensor; the ITR8102 

model from Everlight Electronics and the EE-SX670 model from Omron. 

The first version of the speed sensor was mounted on the rear left wheel; it was made 

using the ITR8102 opto-interrupters and a perforated metal strip with 48 circular holes as 

shown in figure D-1. Originally the opto-interrupters were detached from their plastic casing 

because the perforations on the metal strip wouldn’t reach the sensing area. The opto-

interrupters were mounted on an aluminum L-shaped base attached to a flat support on top 

of the leaf springs of the vehicle. 

 

Figure D-1: The first version assembled for the wheel speed sensor. 

Problems with the first attempt arose from the fact that the perforations on the metal 

strip were of different size and that the infrared beam not always crossed the circular hole 

through its center, instead of sensing along the diameter sometimes it sensed along a chord, 

taking different time from one pulse to the next one; this resulted in a pulse train with 
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asymmetrical pulse periods, greatly affecting the performance of the sensor. Also, ITR8102 

opto-interrupters had to be replaced due to malfunctioning of their phototransistors. 

An improvement over the ITR8102 opto-interrupter mounting resulted from using a 

different L-shaped aluminum base, as shown in figure 3-1. With this arrangement the 

sensors were kept in their original plastic casing, improving the sensing area, reducing the 

negative effect of external light and becoming more resistant to vibrations caused by the 

movement of the vehicle. 

The second version of the wheel speed sensor used the EE-SX670 opto-interrupters and 

attempted to solve previous issues by aligning every center of the perforations. Making them 

the same size while grinding one edge of the metal strip until it became tangent with the 

boundary was done to the metal strip. This new sensor had 50 holes opposed to the firsts 48. 

This second attempt was mounted on the right rear wheel. A slight improvement in 

performance was noticed but still RPM measurements presented oscillations because of the 

asymmetrical periods and were not within accepted parameters.  

 

Figure D-2: Second attempt at the wheel speed sensor. 

The third and final version of the sensor was implemented using a different perforated 

metal strip. This new strip had 241 rectangular perforations, solving the alignment of the 

holes and providing a higher resolution for RPM calculation. Great improvement was noticed 

on signal quality, but the EE-SX670 opto-interrupter lost track of the pulses when the wheels 

speed surpassed 400 RPM due to its limiting frequency of 1 KHz. Thus, although less 

industrial, the ITR8102 opto-interrupters were preferred. 
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