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gracias por regalarme su compañia y compartirme su mundo, sus buenos y sus malos ratos,

sus secretos y sus verdades, su hermosa persona tal cual es. No importa que la distancia sea

larga y que la vida sea dif́ıcil. Importa el hoy, que en el presente que vivimos nos queremos

sinceramente, que nos apoyamos d́ıa a d́ıa y que pronto nos habremos de ver. Te quiero mi

cielo.
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This work is devoted to optical spatial soliton propagation through optical lattices induced

by nondiffracting beams. The model employed for such was the nonlinear Schrödinger equa-

tion, found as a viable and reliable model in this field of study. This last particularity gives

the lattice a propagation invariant intensity profile, maximizing control of light and inducing

stability on soliton propagations, a major and important issue on this investigation. Propa-

gation on two different families of optical lattices were studied. The results and achievements

of this work start with solitons traveling on elliptical photonic lattices, which is a pattern

induced by Mathieu helical beams. It depicts an elliptical symmetry and has closed trajec-

tories in the form of elliptic light rings. The dynamics of transverse motion where studied

for such lattices when stable propagation was engaged for the soliton. The second family

studied was the modulated Bessel lattices, which is induced by a superposition of even and

odd type Bessel beams. The power ratio of both parts was fixed such as to ensure that there

was no azimuthal modulation induced in the lattice. The transverse motion dynamics where

heavily and deeply studied in this case, reaching interesting conclusions such as a model for

describing this transverse motion and an explanation for the existence of only two regimes of

transverse motion.
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Chapter 1

Introduction

Nonlinear phenomena appear in nature in a variety of ways. Due to computational

limitations and high complexity, it developed slowly before the second half of the last century.

And yet still it has grown into an important field of study, gathering the attention of a myriad

of investigators around the globe. Naturally, nonlinear optics has taken the same course of

action and development, nurturing the knowledge of fundamental processes such as second

harmonic generation, optical rectification, raman amplification, Pockels effect, etc. This work

is devoted to the study of spatial optical solitons, which together with temporal optical

solitons constitute the fundamental units of propagation in nonlinear optics. Interests in

such particle-wave duals has increased enormously in the last couple of decades due to its

fundamental feature: optical solitons, in principle, suffer from no diffraction. This peculiar

characteristic can be used in optical communications, as optical solitons could constitute

the fundamental unit of information in an all optical communication network. Furthermore,

transversal steering an manipulation can be accomplished if the soliton propagates through

an electric potential called an optical lattice. This media of propagation offers possibilities

that can be greatly taken advantage of if the right technologies are employed. In this chapter

we introduce the soliton phenomenon and a description of it, reaching the model we use

to describe optical solitons: the Nonlinear Schrödinger equation. Then we present optical

lattices and briefly discuss their fundamentals. Lastly, we talk about the phenomena of

optical solitons in photonic lattices in a introductory fashion.
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1.1 Solitons

There is no clear and universal definition to what a soliton is since the term corresponds

to formal mathematical entities and to physical systems obeying distinct differential equations

with alike yet slightly different characteristics. A soliton can be defined as a solitary wave

which self-reinforces itself and maintains its shape during propagation with constant speed.

Furthermore, solitons are fundamentally derived from nonlinear effects; this effects being

the cause of the shape invariance. Drazin and Johnson describe solitons to what can be

understood as its 3 main properties [1]:

-They are of permanent form.

-They are localized within a region of space.

-They can interact with other solitons, and emerge from the collision unchanged, except for a

phase shift. This later characteristic need not hold in the general case, and so can be omitted

in a general definition. For practical purposes, we define a soliton to be a nonlinear localized

wave that has a propagation invariant intensity pattern.

1.1.1 A historical perspective

The first reported sight and therefore discovery of a solitary wave dates back to 1834.

Sir John Scott Russell saw what he described as a smooth, rounded, well defined lump of

water traveling through the canal linking Edinburgh and Glasgow for several miles without

any important deformation on the shape of the lump. His report, published in 1844, includes

the following [2]:

”I was observing the motion of a boat which was rapidly drawn along a narrow channel

by a pair of horses, when the boat suddenly stopped not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the

form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or diminution of

speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or

nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot

and a half in height. Its height gradually diminished, and after a chase of one or two miles
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I lost it in the windings of the channel. Such, in the month of August 1834, was my first

chance interview with that singular and beautiful phenomenon which I have called the Wave

of Translation”.

Scott Russell’s report seemed contradictory to Newton’s and Bernoulli’s theories of hydrody-

namics, which could not account for such ”Wave of Translation”. In 1895 Diederik Korteweg

and Gustav de Vries provided what is now known as the Kortewegde Vries equation, which

includes solitary wave and periodic conoidal wave solutions [3]. In 1965 Norman Zabusky of

Bell Labs and Martin Kruskal of Princeton University demonstrated for the first time soli-

ton behavior in media subject to the Kortewegde Vries (KdV) equation in a computational

investigation using a finite difference approach [4]. In 1967 Gardner, Greene, Kruskal and

Miura discovered the inverse scattering transform enabling analytical solution of the KdV

equation [5]. The work of Peter Lax on Lax pairs and the Lax equation has since extended

this to solution of many related soliton-generating systems [6].

1.1.2 Solitons in different physical systems

Solitons are physical entities arising as normal modes to a variety of different physical

systems and solutions to a widespread class of weakly nonlinear dispersive partial differential

equations. A brief review of soliton and soliton like phenomena is presented.

Rogue waves (also known as freak waves, monster waves, killer waves, and extreme waves)

are relatively large and spontaneous ocean surface waves that acquire a considerable height.

More precisely, they are waves whose height is more than twice the significant wave height,

defined as the mean of the largest third of waves recorded [7]. Rogue waves seem to occur in

deep water or where a number of physical factors such as strong winds and fast currents con-

verge. This may have a focusing effect, which can cause a number of waves to join together.

Suggested physical mechanism for the formation of rogue waves include diffractive focusing

and nonlinear effects. Even though they are not considered formally as solitons, there are

common characteristics between both which makes rogue waves related phenomena to solitons.

An oscillon is a soliton like phenomenon that occurs in granular and other dissipative media.
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In the later, oscillons are the result from vertically vibrating a plate with a layer of uniform

particles placed freely on top. When the sinusoidal vibrations are of the correct amplitude

and frequency and the layer of sufficient thickness, a localized wave, referred to as an oscillon,

can be formed by locally disturbing the particles. This meta-stable state will remain for a

long time (many hundreds of thousands of oscillations) in the absence of further perturba-

tion. An oscillon changes form with each collision of the grain layer and the plate, switching

between a peak that projects above the grain layer to a crater like depression with a small

rim [8]. Whereas solitons are traveling waves, oscillons can be stationary. Oscillons have been

experimentally observed in thin vibrating layers of viscous fluid and colloidal suspensions.

Oscillons have been recently associated with Faraday waves because they require similar res-

onance conditions. Nonlinear electrostatic oscillations on a plasma boundary can also appear

in the form of oscillons.

In mathematics, the Kortewegde Vries equation (KdV) is a mathematical model of waves

on shallow water surfaces. It is particularly notable as the prototypical example of an exactly

solvable model, that is, a non-linear partial differential equation whose solutions can be ex-

actly and precisely specified. The solutions include solitons, which are found by means of the

inverse scattering transform. The equation is given by [9]:

∂Λ
∂t

+ kΛ
∂Λ
∂x

+
∂3Λ
∂x3

= 0, (1.1)

where k is a constant. The KdV also describes magnetohydrodynamic waves in plasma,

longitudinal dispersive waves in elastic rods and thermally excited phonon packets in low-

temperature nonlinear crystals.

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation. Originally

considered in the nineteenth century in the course of study of surfaces of constant negative

curvature, It has soliton type solutions and is given by [10]:

∂2Θ
∂x2

− ∂2Θ
∂t2

= sin(Θ). (1.2)
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This equation has been used to describe the Bloch wave motion in magnetic crystals, unitary

theory of elementary particles, propagation of light through a crystal dislocation and appears

in relativity theories.

Finally, the GrossPitaevskii equation ,named after Eugene P. Gross and Lev Petrovich Pitaevskii,

describes the ground state of a quantum system of identical bosons using the HartreeFock

approximation and the pseudo-potential interaction model and is given by [11]

i~
∂Ψ
∂t

= − ~
2

2m
∇2Ψ + V (r)Ψ + Uo|Ψ|2Ψ. (1.3)

This equation is a special case of the nonlinear Schrödinger equation, which is used in nonlinear

optics and constitutes the core of the model used for the entire work in this thesis.

1.1.3 Optical spatial solitons and the nonlinear Schrödinger equation

As it can be noticed in the past briefing, solitons arise in different physical systems, from

hydrodynamics to quantum mechanics. It is possible for a beam of light to suffer nonlinear

effects, either when it propagates though a highly nonlinear medium or when the power con-

tained by the beam is noticeable high, enough to shot nonlinear effects in intrinsically linear

materials. This gives rise to optical solitons, and optical field with soliton characteristics.

Now, optical solitons are divided in two types: spatial and temporal. The first are those

which propagate through a certain spatial coordinate, leaving its intensity pattern fixed in

time. They can be though as a laser beam supported by linear effects, in the sense that

the pattern left behind by the advancing wavefront of the laser remains as it is. It remains

confined and propagates without changing shape.

Optical solitons can be understood as nonlinear waves which vary according to a time depen-

dence while being spatially confined. Furthermore, if optical spatial and temporal solitons

are combined certain light pulses known as ”light bullets” can be created. They are beams of

light spatially confined in all three coordinates that do not irradiate power due to the stability

offered by nonlinear effects.
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The nonlinear Schrödinger equation is the model employed in spatial optical soliton character-

ization and propagation, thus providing the starting point and most important fundamental

for this whole investigation. As it name indicates it, its the nonlinear version of the quantum

Schrödinger equation, but lacking any term containing ~ or any other quantum fundamental

constant. Thus, this equation gives a classical treatment of waves.

In order to derive it, an exhausting yet reachable treatment of optics would have to be

carried out. It has provided an excellent frame in the study of optical spatial solitons and

has been revised in an extenuated fashion, so making or presenting a treatise on the equation

can be redundant or unnecessary, not to consider to that the origins and fundamentals of

the equation are out of the scope of this work. However it is important to mention that this

equation, carrying nonlinear terms, works well at relatively low amplitudes, while at high

powers employed adjustments need to be made. Such analysis are left and here we simply

discuss its main characteristics and present the model used in this work, were it is given by

i
∂Ψ
∂z

+∇ 2
t Ψ +

|Ψ|2
1 + s|Ψ|2 Ψ + pΓ(rt)Ψ = 0. (1.4)

Ψ stands for our wave function, where |Ψ|2 is the intensity pattern associated with it, the

measurable quantity in nature. By definition, Ψ solutions to the equation are normal modes

of it and represent soliton patterns.

The first term accounts for evolution in the propagation coordinate, being in this case the

spatial z coordinate. That is, our axis of propagation is the z-axis, as in many works involving

propagations of optical fields. This spatial first order partial derivative can be understood as

an advance operator in our propagation. i the square-root of one, a constant that changes

phase for the first term.

The second terms accounts for diffraction of the optical beam, a phenomenon that is in-

evitable to all light but that can be canceled by other effects, as in our case. Diffraction

causes a beam of light to disperse in space, either to focus, de-focus or in general only to

change shape in an unordered fashion. ∇ 2
t is the transverse laplacian operator, a second

6



order differential operator involving the transverse coordinates and dropping the longitudinal

z coordinate. In cartesian coordinates it is written as

∇ 2
t =

∂2

∂x2
+

∂2

∂y2
. (1.5)

The third term involving the intensity pattern of Ψ is called the saturation term. As it names

indicates it, it accounts for saturation effects. It is derived from the Kerr nonlinear potential

U(Ψ)K , which goes as

U(Ψ)K = |Ψ|2. (1.6)

The Kerr nonlinearity functions as a self-acting index refraction pattern. That is, when prop-

agating, Ψ experiences a refractive index proportional to |Ψ|2; or in other words, the soliton

is refracted by itself. The Kerr nonlinearity is the first step towards working with solitons,

since it is the simplest and most common nonlinear potential. Even thought it can have

more complex and elaborated effects, and it usually does, it can be though as a self-focusing

mechanism canceling diffraction effects. So, in the simple picture, nonlinear effects focus light

beams and cancel diffraction for solitons.

As said before, it starts acting noticeable at certain used powers. For common materials,

it needs extraordinary high powers to be ignited, and thus soliton phenomena is barely seen

in nature. But certain materials are more susceptible to linear effects, having a smaller and

shorter threshold for shooting nonlinear effects. This material are commonly referred to as

nonlinear materials.

Now, the Kerr potential is quite simple and has demonstrated to introduce instabilities in

soliton propagating for long distances. Many materials have demonstrated to follow the satu-

ration nonlinearity instead of the Kerr potential. This saturation potential acts as a limiting

barrier for the soliton focusing, since it keeps it from suddenly collapsing into one point. In

this model, s is known as the saturation parameters, limited to positive values and it has

typically values smaller than 1, where s = 0 acts as the null saturation Kerr potential limit.

The fourth and final term of our model represents the optical lattice potential contribution.

7



It holds the key to introducing interesting variations to our model, which can furthermore

produce worthy results. Γ(r) represents the potential induced by the optical lattice, which is

itself a function of space; and p is called the lattice depth, since it is customary to work nu-

merically with a normalized lattice whose peak value is worth p. The next section introduces

the concept of optical lattices and how they interact in our model.

This work is devoted to spatial optical solitons, and for convenience and saving notation,

in the remaining content of this work they will be referred simply as solitons.

1.2 Optical lattices

Even thought it may seem a bit abstract at a first glance, the concept of optical lattices

is quite simple. We go to the purest and most abstract definition of a lattice to understand

what it is, being ” A regular, periodic configuration of points, particles, or objects throughout

an area or a space, especially the arrangement of ions or molecules in a crystalline solid” [12].

So, as it can be seen, it can be understood that a lattice is a periodic arrangement of objects

in a region in space. Furthermore, the definition makes it noticeable how the term itself is

strongly attached to the nature of crystalline solids. So, we go over the definition of crystal

lattice from solid state theory, where they are renamed Bravais lattice [12]: ”An infinite set

of points generated by a set of discrete translation operations described by:

R = n1a1 + n2a2 + n3a3, (1.7)

where ni are any integers and ai are known as the primitive vectors which lie in different

planes and span the lattice. For any choice of position vector R, the lattice looks exactly

the same. A crystal is made up of one or more atoms (the basis) which is repeated at each

lattice point. The crystal then looks the same when viewed from any of the lattice points.”

For practical purposes, we consider a lattice to be a periodical pattern filling a region in space.

So, the term lattice is strictly associated with a certain high level periodicity. Now, and

optical or photonic lattice retains this symmetry nature, but now being with optical intended

purposes. It is a refractive index modulation imposed on a region in space. It can be thought

8



of as a function n(r) of space, the refractive index n associated with the point r. Now, the

lattice itself can be fabricated, constructing a material which posses a desirable pattern for

n. The advent and availability of suitable materials and fabrication techniques for the gener-

ation of optical lattices has been a key ingredient for the advancement of soliton propagation

through optical lattices. Some materials used for constructing and manufacturing optical

lattices are AlGaAs, fused silica, metal vapors, nematic liquid crystals, LiNbO crystals and

SBN crystals [13].

There is even a more extent variety of materials suitable for the exploration of nonlinear

wave propagation in periodic media. However, optical induction in suitable materials affords

control of the shape, strength and properties of the lattice with an unprecedented flexibil-

ity. It allows creation of reconfigurable refractive index landscapes that can be fine-tuned by

lattice-creating waves and easily erased, in contrast to permanent, technologically fabricated

waveguiding structures. The technique is complicated, but it basically consist in confining

a set of standing waves through a photorefractive material, then applying an external static

electric field across the crystal a periodic change of the refractive index is induced via the

electro-optic effect. As already said, this method opens up the possibilities in optical lattices,

since the only problem is reconstructing a desired refractive index modulation pattern with

plane waves to be able to imprint it over a nonlinear material.

1.2.1 Solitons in optical lattices

Photonic lattices with specific and useful characteristics can be engineered by applying

beam shaping techniques in order to be used in soliton propagation. In principle, the soliton

will copy to a certain degree the topology of the section of the lattice it is being propagated

on. That is, the soliton can resemble the topology and geometry of the lattice it propagates on.

In order to achieve a maximum control of light in media, the lattice itself must be prop-

agation invariant, and therefore the nondiffracting beams are appropriate to induce a pho-

tonic lattice [14]. This limits the photonic lattice Γ to be a function only of the transversal

coordinates. That is

Γ = Γ(rt), (1.8)
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and the pattern for Γ repeats itself for each different plane of z.

The simplest case of nondiffracting beams are the plane waves, which are the fundamen-

tal solutions to the Helmholtz equation in Cartesian coordinates. Durnin introduced Bessel

beams as an exact nondiffracting solution to the scalar wave equation in circular cylindrical

coordinates and presented a relatively simple experimental setup to produce them [15]. Over

the past few years, more complex nondiffracting beams solutions such as Mathieu beams [16]

in elliptic cylindrical coordinates and parabolical beams [17] in parabolic cylindrical coordi-

nates have been both discovered and analyzed.

A soliton in this type of lattices will propagate without suffering diffraction in a stable manner

indefinitely, since restricted as it is Γ offers the same refraction index distribution. Still, the

interest of this investigation relies on transverse moving solitons along the potential Γ.

When the input laser beams strikes normally into the incidence plane of the lattice, the

wave-vector of the soliton points out in the z direction, thus the soliton would respond to the

expression

Ψ(rt) = ψ(rt)eiβz, (1.9)

where the pattern Ψ is propagation invariant as allowed by the longitudinal symmetry of the

lattice, eliminating any dependence on z. But if the laser where to be tilted with respect

to the incidence plane of the photorefractive crystal, an initial tilt would be imposed on the

soliton, meaning the propagation vector of the soliton would initially point in the direction

of this tilt. Therefore, the soliton would respond to the expression

Ψ(r) = ψ(r)ei(kzz+kxx+kyy), (1.10)

where as usual,

β2 = k 2
z + k 2

x + k 2
y , (1.11)

and the decomposition of the free space propagation wave vector β follows the initial tilt

of the laser. Now, this induces a transverse motion on the soliton profile. As the soliton

moves transversally around the photonic lattice it suffers from a different potential at each
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different value of z, and thus naturally inducing a smooth auto-transformation on the pattern

Ψ in order to fulfil the nonlinear Schrödinger equation. In other words, the soliton continu-

ously transforms itself into other stationary eigenmode, another soliton profiles, as it moves

transversally along Γ(rt). This is way Ψ ends up being a function of z to, of the whole space,

and can be a function only of the transverse coordinates if there is no induced tilt on the

soliton.

1.2.2 Stationary solitons conversion and the stability criteria

Stationary solitons have their propagation eigenvector along the z axis and do not auto-

transform themselves. They have a propagation invariant profile and are the key to propa-

gating transverse moving solitons. This obeys the fact that numerical methods available in

literature solve the nonlinear schrodinger equation for a constant phase profile. That is, they

assume the solution is of the form

Ψ(r) = ψ(x, y)eiβz, (1.12)

insert the expression on the original equation, and obtain the profile ψ(x, y) for a given

value of β. Obtaining a transverse motion soliton is straight forward after this step, since

the symmetry of the nonlinear schrodinger equation allows the modulation of a linear x− y

phase. That is, if Ψ is a solution of the equation, the profile

Ψ′(r) = Ψ(r)ei(kxx+kyy), (1.13)

is an approximate solution to the nonlinear Schrödinger equation. In the case of an ho-

mogenous lattice potential it works as an exact solution, but as the potential surrounding

the soliton profile varies it works as a very close solution. As propagation is taken place

the soliton auto-transforms itself in order to fit the nonlinear Schrödinger model. This type

of solutions are introduced since they constitutes a soliton with a initial induced transverse

motion in the direction

û =
kxx̂ + kyŷ√

k 2
x + k 2

y

, (1.14)
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thus, producing a transverse moving profile out of a stationary soliton. Furthermore, station-

ary profiles hold the key to predicting whether the soliton is or not stable in propagation.

Being a soliton a beam of light, it transports power, and can be easily deduced from the profile

Ψ, this since the squared magnitude ΨΨ̃ represents the intensity profile. Thus, integrating

the last field in the plane x−y computes the power P carried by the soliton. Thus, we define

P =
∫ ∫

|Ψ(x, y)|2dxdy, (1.15)

where the integration is carried in the region enclosing the soliton. Now, in order to find

out regions of β inducing stable propagation, plots of P against β are required. The Vakhi-

tovKolokolov stability criterion [18] states that if

dP

dβ
> 0, (1.16)

then the propagation will be stable.

1.3 Description of the work

In order to study solitons propagation and undertake the research contained in this the-

sis, a systematic procedure was followed. Initially, the optical lattice to work with must be

defined, since it contains a number of variations and soliton propagations change dramatically

with different lattices. It can be said as if the lattice itself defines the outcomes of an inves-

tigation, being it the most important variable to define. In this work we present research on

two different lattices: the elliptical photonic lattice (EPL) and the modulated Bessel lattice

(MBL). As it can be inferred for the name, the EPL contains an elliptic symmetry and is

induced by a superposition of odd and even Mathieu beams, which are the normal modes

of the Helmholtz equation in elliptic cylindrical coordinates. The MBL result form the su-

perposition of cosine and sine Bessel beams, which contain circular symmetry and again are

solutions to the Helmholtz equation. Both lattices come from nondiffracting beams, making

the lattice propagation invariant.

After having set the lattice and other parameters, such as p and s, a soliton pattern must
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be obtained. This is done by solving our nonlinear equation via numerical methods, since

the complexity of our models excludes in a natural way analytical solutions. The resulting

pattern can be thought as the soliton Ψ at z = 0. When obtaining a initial soliton wave-

function, the next natural step to take is to propagate it through a certain z distance. Being

solitons propagation invariant, they ought to maintain its shape permanently regardless of

the propagation distance, making this process to seem unnecessary. But this argument results

not valid, because even though a soliton is propagation invariant, not all solitons are stable on

propagation. Meaning not that they are not solutions to our model, but that they numerical

error associated with our computations can affect seriously the outcome of a propagation.

So, even though solutions can be obtained, it does not necessary hold that one can propagate

these solitons indefinitely. In the physical world this can be interpreted as a soliton that can

propagate only if strictly and ideal conditions are to be preserved. So, a numerically unstable

soliton needs perfect and ideal conditions in the lab in order to be constructed and propagated.

As said in the last paragraphs, optical lattices offer interesting and numerous possibilities in

soliton control and routing. Even though investigation on the subject has increased greatly

in the last couple of years, there is no simple nor clear model that can predict the outcome

dynamic of motion when the input are the initial conditions and the lattice employed. This is

a major problem, almost limitless due to the numerous possibilities. Still, this work focuses

on certain lattices and tries to give a comprehensive explanation of the subject.

1.3.1 Thesis outline

In this first chapter of the thesis the fundamental concepts of the research are defined

and stated, giving an introductory explanation to the subject. Even though there are formal

and mathematical definitions of what a soliton is, a heuristic and more appropriated to optical

systems definition of soliton was given. The mathematical model used for optical solitons,

the nonlinear Schrödinger equation, was presented and described. Afterwards, the concept of

optical lattice was introduced, being the second fundamental to this work. A brief description

of how both a soliton and an optical lattice was given at the end of the chapter.

In the second chapter we focus on numerical methods employed in this investigation. Being
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our model nonlinear it admits no analytical solutions, and in order to advance it is necessary

to lean on numerical methods. It starts giving a description on the methods used for solving

the equation and obtaining initial patterns. Then an explanation is given on the methods

used to propagate solitons.

The third chapter deals with soliton propagation in the elliptical photonic lattice, which

is a refraction index modulation described by helical Mathieu nondiffracting beam. First the

lattice itself is defined from mathematical basis, giving a small description of the topology

offered by this lattice. Then, the different soliton topologies found are analyzed, as establish-

ing a region of stability. The chapter ends with transverse moving soliton propagations, and

its most important result is how the soliton can engage propagation even though the lattice

has an azimuthal modulation.

Soliton propagation in Bessel type lattices is explored in the fourth chapter. A new topology

of optical lattices is introduced, the modulated Bessel lattice or MBL. In this chapter the

dynamics of transverse motion of the soliton are explored, giving as its final main results that

the soliton has a varying rotation rate in non azimuthal modulated lattices and that certain

regimes of propagation are found, giving a mechanical explanation for each one.
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Chapter 2

Numerical methods and statistical background

Solitons are by nature nonlinear waves, being for our case described by the nonlinear

Schrödinger equation. In general, nonlinear partial differential equations have no general

method for obtaining exact solutions. Our model is not the exception, since a few analytic

solutions are available only in the 1 dimensional case for the Kerr nonlinear potential. And

as for numerical solutions, this can be found using either particular but complex numerical

methods, specialized in similar differential equations; or employing a more general class of

numerical methods which are standard in the field of numerical computations. Still, the first

are much better at solving our nonlinear model.

As said before, in order to produce results two individual and separable process must be

carried out before. First, the nonlinear Schrödinger equation must be found in order to

found what is called a stationary solution. This refers to a soliton profile that has not been

propagated in the z coordinate and can be thought of our wavefunction at z = 0. Then,

what naturally follows is to propagate the soliton and monitor any important observables

and quantifiers, such as the position of the centroid and the structure of the solitons, how

it is affected by the auto-transformations and if there is any considerable leak of power. We

present a brief review of the numerical methods employed and programmed for the research.

2.1 Numerical methods for finding soliton type solutions

Obtaining stationary soliton part gives information concerning the structure of the soli-

ton and the connection it keeps with the symmetry of the lattice, the relation between its

power and β and other aspects concerning stability during propagation. Furthermore, the
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process of finding stationary solitons is fundamental since the solution needs to be found in

order to be propagated. In this section we focus on the numerical methods used for finding

stationary solitons.

2.1.1 Petviashvili relaxation method

As said before, numerical computations involving nonlinear waves can be quite complex,

involving high level mathematical skills; not to mention that there is no general efficient and

robust method of finding answers for the nonlinear Schrödinger equation. Still, there is a

standard, well know method for solving this problem. It has different names on the litera-

ture, but is commonly known as the petviashvili relaxation method [19]. It involves advanced

level mathematics, and its derivation and justification is beyond the scope of this work. Still,

a heuristic derivation and its algorithm will be discussed in this section.

In order to start, one must go back to the nonlinear Schrödinger equation

i
∂Ψ
∂z

+∇ 2
t Ψ +

|Ψ|2
1 + s|Ψ|2 Ψ + pΓ(rt)Ψ = 0. (2.1)

As always, solitons must have propagation invariant intensity patterns, so the usual harmonic

dependence on the z coordinate is assumed

Ψ(r) = φ(rt)eiβz, (2.2)

where β is the longitudinal wave number. The last two terms of the equation represent the

nonlinear potential of the equation, so with the notation

N(|Ψ|2) =
|Ψ|2

1 + s|Ψ|2 + pΓ(rt), (2.3)

and inserting the longitudinal symmetry our model equation can be written as

∇ 2
t φ + N(|φ|2)φ = βφ. (2.4)

The petviashvili relaxation method makes use of the Fourier transform, which is maps the

original function f from the configuration space (x, y) to the frequency space (kx, ky). Letting
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F be the Fourier transform operator and F (kx) the Fourier transform of f(x)

F{f(x)} =
1√
2π

∫ ∞

−∞
f(x)eixkxdx = F (kx), (2.5)

then the following identity holds

F{ d

dx
f(x)} = ikxF (kx). (2.6)

Applying this identity twice over the entire plane, x and y coordinates, the following identity

is obtained

F{∇ 2
t f(x, y)} = F{ d2

dx2
f(x, y) +

d2

dy2
f(x, y)} = {−k 2

x − k 2
y }F (kx, ky) = −k 2

t F (kx, ky).

(2.7)

The relaxation method begins by applying the Fourier transform to the nonlinear Schrödinger

equation with its nonlinear potential representation:

F
{
∇ 2

t φ + N(|φ|2)φ
}

= F
{

βφ
}

, (2.8)

where applying the previous statements and identities reduces to

−k 2
t φ̃ + F

{
N(|φ|2)φ

}
= βφ̃, (2.9)

with φ̃ = F
{

φ
}

, the Fourier transform of our soliton profile. Rearranging terms one reaches

the identity

φ = F−
{

F
{

N(|φ|2)φ
}

k 2
t + β

}
. (2.10)

The petviashvili relaxation method relies on this identity, using it as an iterative formula for

calculating a relaxed solution to the equation. Thus,

φi+1 = F−
{

F
{

N(|φi|2)φi

}

k 2
t + β

}
, (2.11)

provides a method for relaxing solutions. Still, the formula as it is does not prove to give

expected results. After several iterations φi either converges to the trivial solution or diverges.
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In order to avoid this, a stabilizing factor is inserted as shown below

φi+1 = F−
{

a γ
i

F
{

N(|φi|2)φi

}

k 2
t + β

}
. (2.12)

Here ai is the stabilizing factor and is computed as

ai =

∫∫
V {k 2

t + β}|Ũi|2dA
∫∫

V F
{

N(|Ui|2)Ui

}
ŨidA

, (2.13)

where the integral is carried over the region V of the (x, y) plane containing the soliton and γ

is a parameter adjustable to the method. It value can vary from 1 to 2 in order for the method

to properly work, but in this investigation it was set to γ = 1.5. Since this is a relaxation

method, it needs an initial estimation of the solution, or ansatz, as an input in order to start

working. The final solution acquired can vary depending on the potential surrounding the

center of the ansatz, and what determines what possible solutions is computed is the ansatz

φo. A gaussian profile has proved useful in our investigation, being it the standard profile

used in the literature. Therefore, we use as a default the profile

φo(x, y) = exp

[
−

(x− xo

σx

)2
−

(y − yo

σy

)2
]
, (2.14)

where it corresponds to a gaussian bell centered in the coordinates (xo, yo) with variances σx

and σy for the x and y parts of the function, respectively.

The Petviashvili relaxation method is quite general since a number of different potentials

can be inserted in the form of an operator without changing the structure of the method.

Still, it has certain limitations. For an specified nearby potential, it converges only inside an

interval of the wave number β, and wether this is due to the limitations of the method or

the lack of solutions cannot be answered. Furthermore, this makes close monitoring of the

convergence method a need when using it. Stated as the method is and using the ansatz we

propose, only finds fundamental type solutions possessing a gaussian like intensity distribu-

tion and constant phase can be acquired. In order to obtain more complex solutions one must

divert to different methods or use a different ansatz, oriented and thought for the particular
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desired profile. Furthermore, this method converges in a few number of iterations when it

works properly. So, in conclusion, this method is quite general and robust when obtaining

beam like solitons.

2.1.2 Vortex type solution method

To obtain vortex type solitons an alternative approach must be used. Here, we present

a standard method for constructing solutions of this type.

To star the concept of optical vortex is limited. In the literature is is defined as a point

of null intensity in an optical field with a phase discontinuity. The phase in the field circu-

lates around these points of zero intensity, giving this the name of vortex. A number called

the topological charge is associated with each vortex, which indicates how many complete

cycles the phase completes around the discontinuity point.

This research is limited to ordinary vortices, excluding the fractional class of vortices. So

for this work the topological charge is limited to integer numbers, either positive, negative

or zero. The sign indicates the direction of the twist or circulation of the phase and. This

twisting behavior traduces physically into a spinning of light around its own axis of propaga-

tion. This spinning carries orbital angular momentum with the wave train, and will induce

torque on an electric dipole [20]. This orbital angular momentum of light can be observed in

the orbiting motion of trapped particles. Interfering an optical vortex with a plane wave of

light reveals the spiral phase as concentric spirals. The number of arms in the spiral equals

the topological charge.

Limiting ourselves to the simplest type of vortices, the phase varies harmonically around

the center of the vortex, where for convenience and without loss of generality we define to be

the z axis. Due to the symmetry of this type of vortices, the method for obtaining them starts

by constructing an ansatz assuming separation of variables in cylindrical circular coordinates.

Ψ = Ψ(r) = R(r)Θ(θ)Z(z). (2.15)
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The soliton must have a propagation invariant intensity profile, meaning that |Ψ|2 cannot be

a function of z. So, as usual, the dependence of Ψ over z is harmonic, as in all propagation

invariant cases, that is

Z(z) = eiβz, (2.16)

where β is the transverse propagation constant or wave number. Furthermore, as dealing with

vortices, the angular coordinate must account for a circling or twisting phase around a zero

or null intensity point. The method restrict solutions to intensity patterns dependent only of

r, the radial coordinate, limiting Θ to a variation only in phase. Taking this into account,

Θ(θ) = eimθ, (2.17)

where m is the topological charge, and integer number. So far, limitations and restrictions

have been imposed only on the soliton type solution. The last and strongest restriction,

the only real limitation of the method, is that the optical lattice Γ(rt) must be azimuthally

independent. That is,

Γ = Γ(r). (2.18)

This restricts the optical lattices that can be used with the method to central potentials.

Applying an argument of consistency, it can be found that the radial function R(r) must be

real valued. Having set this, the ansatz is

Ψ = Ψ(r) = R(r)Θ(θ)Z(z) = R(r)eimθeimθ, (2.19)

where β > 0 ,m must be an integer and R(r) is our function to find. As the method requires

working with the cylindrical circular coordinates (r, θ, z), the laplacian must be expressed in

this system,

∇ 2
t Ψ =

∂2Ψ
∂r2

+
1
r

∂Ψ
∂r

+
1
r2

∂2Ψ
∂θ2

. (2.20)

Inserting the ansatz into the partial derivatives and the saturation potential this terms are

reduced to
∂Ψ
∂z

=
∂

∂z
{R(r)Θ(θ)Z(z)} = RΘ

d

dz
{eiβz} = iβΨ, (2.21)

∂2Ψ
∂θ2

=
∂2

∂θ2
{R(r)Θ(θ)Z(z)} = RZ

d2Θ
dθ2

= RZ
d2

dθ2
{eimθ} = −m2RZeimθ = −m2Ψ, (2.22)
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∂Ψ
∂r

=
∂

∂r
{R(r)Θ(θ)Z(z)} = ΘZ

dR

dr
, (2.23)

∂2Ψ
∂r2

=
∂2

∂r2
{R(r)Θ(θ)Z(z)} = ΘZ

d2R

dr2
, (2.24)

|Ψ|2 = ΨΨ̃ = {Reimθeiβz}{Re−imθe−iβz} = R2. (2.25)

By applying this simplifications our model equation is reduced to

−βΨ + ΘZ
d2R

dr2
+

ΘR

r

dR

dr
− m2

r2
Ψ +

R2

1 + sR2
Ψ + pΓ(r)Ψ = 0. (2.26)

Dividing by the radial part of the solution Θ and the longitudinal harmonic function Z, the

equation is reduced solely to a function of the radial coordinate r. Solving for the second

order derivative of R ends like

d2R

dr2
= −1

r

dR

dr
+ βR +

m2

r2
R− R2

1 + sR2
R− pΓ(r)R. (2.27)

This equation must be solved numerically since its complexity allows no analytical nor closed

form solutions. In order to solve it must be transformed introducing a new parametrization

to reach what is called a state space representation. This consists in transforming a nth order

ordinary differential equation to n first order coupled differential equations. This technique

can be applied to various high order differential equations too via the same method. In the

present case, it is needed to introduce a support function, namely µ(r), which is equal to R’s

first derivative. This leads to
dR

dr
= µ, (2.28)

dµ

dr
= −1

r
µ + βR +

m2

r2
R− R2

1 + sR2
R− pΓ(r)R, (2.29)

which is a coupled system of two first order ordinary differential equation, thus reaching state

space. In order to solve numerically for R(r), s standard algorithm for integrating ordinary

differential equations must be employed providing the proper initial conditions. An adaptive

step size Runge-Kutta 4th order method has proven to work well with this equation.

The original problem has been reduced to solving two first order ordinary differential equa-

tion, which can be solved if either boundary conditions or initial conditions are provided. In
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this case, the only information available is that Ψ must have null intensity in the point rep-

resenting the vortex, which it has been established it is contained along the z axis. Meaning

that R(0) = 0. The other condition to be met is that as Ψ represents a localized optical field,

its intensity must vanish at infinity. Meaning that, as r → 0, R and all of its derivative should

be zero valued, the same behavior a gaussian bell has when x tends to infinity. Nevertheless,

this brings no information to whatsoever the derivative of R should be at at r = 0. Thus,

the information available corresponds to a boundary value problem, being that R(0) = 0 and

that the function R should vanish after a finite value of R.

In order to fill the last gap in this method an algorithm known as the shooting method

must be employed. As µ(0) is unknown, various values must be inserted for solving the sys-

tem of equations for R. The one’s who make R closer to the expected behavior define an

interval which contains the right initial condition for making R vanish after a certain r value.

This method can be understood as varying slowly the first derivative of R until the expected

conditions are reached. Being a nonlinear equation our model, sharp variations are expected,

and so a close monitoring is required when using the shooting method.

A final remark must be added, since the equation modeling R as a singularity present at

r = 0. For the method to properly work the solution R(r) must be calculated starting at a

small offset close to zero, that is ro > 0. The method is applied, thus providing a solution

R(r) for r ≥ ro. The function for r < ro is simply calculated as r|m|, where m is the vortex

topological charge. This completely construct the vortex radial profile.

It must be stressed that this method was programmed at the beginning of the research,

but was not used after running initial tests. This since the investigation work did not focus

on vortex type solitons. Still, it remains as an area of opportunity for the research. Thus,

this method is expected to be exhaustively used in the future.

2.2 Numerical methods for propagating solitons

Once a stationary soliton pattern has been obtained what naturally proceeds is to propa-

gate it through the z coordinate. Again, the complexity of the nonlinear schrodinger equation
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allows no exact analytical algorithm for doing so and numerical methods have to be necessarily

employed. Here are presented the standard methods used to propagate solitons.

2.2.1 Split-step Fourier method

The split step Fourier method [21] relies on the separability of operators assuming that

some terms in our nonlinear model can act independently from others. It provides an approx-

imate solution, valid for a small enough value ∆z. The natural deviation associated with the

numerical method is self-corrected for almost any nonlinear potential associated if the soliton

engages stable propagation. To start with, we return to our nonlinear model

i
∂Ψ
∂z

+∇ 2
t Ψ + N(|Ψ|2)Ψ = 0, (2.30)

where the nonlinear potential notation has been used. First, the diffraction term is discarded,

ignoring the transverse laplacian in the equation and leaving

i
∂Ψ
∂z

+ N(|Ψ|2)Ψ = 0. (2.31)

The next step is to use the essential characteristic of a soliton, its intensity propagation

invariance. Mathematically, its means that Ψ is not a function of z. This leaves N(|Ψ|2)
a constant for a fixed value of x and y. Now, in the case of tilted non stationary solitons,

the intensity profile |Ψ|2 does vary, but if ∆z is small enough, it can be considered again a

constant over the range z + ∆z for fixed (x, y) values. So, N(|Ψ|2) can be approximately

considered a constant for a certain point in the configuration space, leaving our last to solve

equation in the form of
df

dz
+ cf = 0, (2.32)

where the equation is valid for each individual point on our mesh. Assuming without loss of

generality that the soliton pattern has been previously calculated for zo, where zo = 0 in the

case of launching the propagation sequence, the last equation can be solved as

Ψ(rt, zo +
∆z

2
) = exp

{
iN(|Ψ(rt, zo)|2)

}
Ψ(rt, zo). (2.33)
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Now, it is turn for the nonlinear part to be ignored and for the diffraction operator to act on

the wave function. This reduces the nonlinear equation to

i
∂Ψ
∂z

+∇ 2
t Ψ = 0. (2.34)

Taking Ψ(rt, zo + ∆z
2 ) as an input to the last equation, it can be solved exactly via the Fourier

transform. Using an identity shown in the petviashvili section it delivers

Ψ(rt, zo + ∆z) = F−1
{

e−ik 2
t

∆t
2 F{Ψ(rt, zo +

∆z

2
)}

}
. (2.35)

Thus, fixing the parameter ∆z to a small value and having Ψ at a certain value of z, one

can propagate indefinitely with this method its solution to obtain the propagation evolution

of the soliton. In order to fix ∆z one must take in consideration that this method relies

on the separability of the diffraction and nonlinear operators, which is approximate only on

short intervals. As a check mark, one can propagate the same soliton under the same initial

conditions with distinct values of ∆z. This interval must be shortened until the outcome

results do not vary. Another consideration that must be taken is that ∆z should satiety

∆z ≤ ∆x∆y

c
, (2.36)

where ∆x and ∆y are the step size used in partitioning the (x, y) plane in order to make it

discrete it, and c is a parameters bigger than 1. Usually, c = 2 suffices for almost any grid

partitioned who faithfully represents an stationary soliton.

There are modifications of the split step Fourier method that improve the results, relying on

partitioning the interval in shorter subintervals and combining several nonlinear and diffrac-

tive propagation. Nevertheless, this variations produce more complex computations which

are not justified by the slight improvement in result. Thus, the original and more simpler

approach is used generally, making it simpler to use.
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2.2.2 Finite difference method

The finite difference method [22] is an integration technique which relies in the discrete

approximate transformation for derivatives. That is, it assumes that a derivative can be

represented as a difference among certain short interval, which is entirely true if the variation

in the interval is linear. This comes from the concept of derivative, which is defined as

df

dx
(x = xo) = limh→0

f(xo + h)− f(xo)
h

. (2.37)

A reasonable approximation for the derivative would be

df

dx
(x = xo) ≈ f(xo + ∆x)− f(xo)

∆x
, (2.38)

for a small value of ∆x. This approximation is valid as long as the variation of f(x) in

the interval (xo, xo + ∆x) is not sharp or oscillatory, being it linear the exact case where it

works. In order to prove how it works in a more formal fashion a derivation from Taylor’s

polynomial can be carried out. First, it must be assumed that the function to be expanded

is well behaved, something that generally holds with functions describing physical quantities.

This allows a power series expansion of the function as

f(x) = ao + a1(x− xo) + a2(x− xo)2 + a3(x− xo)3 + · · · =
∞∑

n=0

an(x− xo)n, (2.39)

where the expansion coefficients are defined as

an =
dn

dxn
{f}

∣∣∣
x=xo

. (2.40)

For x close to xo, the quantity x−xo is small, and each subsequent term of the series decreases

by this factor. So, the last expression can be written as

f(x) = f(xo) +
df

dx

∣∣∣
xo

(x− xo) + R(x− xo), (2.41)

where the term R(x− xo) is small and can be ignored is x is close to xo, leading to

f(x) ≈ f(xo) +
df

dx

∣∣∣
xo

(x− xo), (2.42)
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and solving for the derivative one gets

df

dx

∣∣∣
xo

=
f(x)− f(xo)

x− xo
, (2.43)

then writing x as x = xo + ∆x, where ∆x is small,

df

dx

∣∣∣
xo

=
f(xo + ∆x)− f(xo)

∆x
. (2.44)

This discrete definition of derivative is skewed, in the sense that it uses a forward deriva-

tive. In order to correct this arbitrariness, the backward derivative can be combined, to

cancel the forward effect,
df

dx

∣∣∣
xo

=
f(xo)− f(xo −∆x)

∆x
, (2.45)

then calculate the mean of both functions to get

df

dx

∣∣∣
xo

=
f(xo + ∆x)− f(xo −∆x)

2∆x
. (2.46)

This corrects the skewness and produces a centralized derivative. This procedure can be

applied to second derivatives in order to produce second order discrete derivatives, as

d2f

dx2

∣∣∣
xo

=
f(xo + ∆x)− 2f(xo) + f(xo −∆x)

2∆x2
. (2.47)

Now, in order to use finite differences in the nonlinear Schrödinger equation, the laplacian

must be reduced to a discrete second order derivative

∇ 2
t Ψ(xo, yo) =

∂2Ψ
∂x2

(xo, yo) +
∂2Ψ
∂y2

(xo, yo) = (2.48)

Ψ(xo + ∆x, yo)− 2Ψ(xo, yo) + Ψ(xo −∆x, yo)
∆x2

+
Ψ(xo, yo + ∆y)− 2Ψ(xo, yo) + Ψ(xo, yo −∆y)

∆y2
.

(2.49)
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It is common to divide the (x, y) plane equally, making ∆x equal to ∆y. In that case

∇ 2
t Ψ(xo, yo) =

Ψ(xo + ∆x, yo) + Ψ(xo, yo + ∆y)− 4Ψ(xo, yo) + Ψ(xo −∆x, yo) + Ψ(xo, yo −∆y)
h2

,

(2.50)

where

h = ∆x = ∆y. (2.51)

Applying discrete derivatives to a partial equation reduces the process of integrating the

equation to recursive calculations of matrix. Derivatives are replaced by differences, as shown

for the laplacian. In the case of the longitudinal z derivative, a forward derivative is used.

This because the initial conditions, the stationary soliton pattern, is given only for a initial

zo plane, not for two planes. So,

∂Ψ
∂z

(xo, yo)
∣∣∣
z=zo

=
Ψ(xo, yo)|z=zo+hz −Ψ(xo, yo)|z=zo

hz
, (2.52)

where hz is the longitudinal step size, the distance between calculated planes of the soliton.

The nonlinear schrodinger equation can be written as

∂Ψ
∂z

= i∇ 2
t Ψ + iN(|Ψ|2)Ψ. (2.53)

Combining this with the definitions just presented, the propagation equation is

Ψ(xo, yo)
∣∣∣
z=zo+hz

= Ψ(xo, yo)
∣∣∣
z=zo

+ ihz

{
∇ 2

t Ψ(xo, yo) + N(|Ψ(xo, yo)|2)Ψ(xo, yo)
}∣∣∣

z=zo

.

(2.54)

That is, all needed for this method is the initial pattern and defining hz to propagate the

soliton indefinitely. Again, hz should satisfy

hz ≤ h2

2
. (2.55)

2.2.3 Comparison of propagation methods

Two methods for numerical propagation of soliton profiles have been presented in this

section, while the question remaining is which method is better or must be used for numerical
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experiments. Finite differences is a relatively primitive method when compared to the split

step propagation method. Besides, the split step method makes uses of the optimized fast

fourier transform algorithm. For this and other reasons the split step Fourier method is

faster than finite differences. Still, finite differences can be used in order to compare the same

propagation, since this method introduces less numerical errors than the split step method,

since it makes use of more elaborate and complex calculus. Even though, the split step Fourier

method has proven to be accurate and provide good results fast.

2.3 Statistical analysis tools

Since the quantifiers obtained from a propagation consists of a set of ordered points,

they can be treated as statistical information. Thus, the need to apply statistical instruments

to this work arises naturally.

When obtaining ordered pairs of data a natural question would be whether there exist a

linear interdependence between both samples or not, namely X and Y . This falls on the field

of linear regression [23], which constructs linear models between two random variables. This

whole methodology relies on the curve fitting algorithm of least squares [24]. In short, this

method fits a curve to certain given points by minimizing the squares of the errors involved

in such approximation. It has proven to be a durable and reliable tool in the field of statistics.

Now, linear regression is used mainly with one of two goals: to forecast a value of the random

variable Y for a missing value of X in the original set of points, or two quantify the linear

dependence strength between two models, that is two quantify how close the relation to X

and Y is from a perfect linear relation Y ∝ X.

Linear regression gives a compact model for approximating the given data in the form

Y = β̂0 + Xβ̂1, (2.56)
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where β̂0 and β̂1 are constructed via least squares. The equations resulting from such method

are

β̂1 =
SXY

SXX
, (2.57)

β̂0 = Y − β̂1Y , (2.58)

where

Y =
∑n

i=1 yi

n
, (2.59)

X =
∑n

i=1 xi

n
, (2.60)

are the mean values of the random variables X and Y and both samples are of size n. The

statistics SXX is the variance of X, defined as

SXX =
∑

i=1 n(xi − x)(yi − Y )
n− 1

, (2.61)

and SXY is called the cross variance, a quantity involving the spread of both random variables.

It is defined as

SXY =
∑

i=1 n(xi − x)(yi − Y )
n− 1

. (2.62)

This gives a quick and easy way of calculating a linear approximation for two given set of

points X and Y .

2.3.1 Correlation coefficient

There are diverse methods and quantifiers for testing how valid a linear model is valid for

approximating the dependence between two given variables. One such is the linear correlation

coefficient, or just correlation coefficient [25]. It is a normalized measure, with values ranging

from −1 to 1, of how linear the relation is between two variables. It is defined as

r =
SXY

SXSY
, (2.63)

where

SX =
√

SX , SY =
√

SY . (2.64)
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A value of r = 1 implies a perfect linear relation between X and Y with a positive slope.

That is a dependence of the form

Y = q + mX, (2.65)

with arbitrary q and m > 0. If r = −1, the same model applies but with m < 0; s for in

the case of m = 0 the statistic r is undefined due to the null-zero variance of Y . When r

deviates slightly from 1 or −1, it can be said that the linear model is a good approximation

to the real functional dependence of X and Y . Furthermore, numerical issues such as round

off errors may introduce a small deviation from the unitary values, so in order to make use

of this statistic it should be supported on a clear consideration of the data points. That is,

r cannot help to determine by itself whether a dependence is linear or not, but it most be

supported on experience and practical considerations.

2.3.2 Statistical hypothesis testing for β̂1

Numerical errors can induce unwanted variations in all quantifiers involved, and strike

heavily when trying to apply a linear approximation. When a linear model has been con-

sidered to correctly describe its inputs, a natural question would be whether the variation

introduced by the slope m is considerable or can be ignored. That is, if for practical uses it

can be considered that β̂1 ≈ 0.

In order to answer so, a statistical inference technique must be applied, called hypothesis

testing [26]. This method assumes first and hypothesis to be true, and applies numerical

quantifiers to either approve it or reject it. There exist a particular hypothesis testing for

solving the particular question whether β̂1 can be approximated by zero or no. In case it can

be done, then the quantifier Y from the linear model can be considered to be a constant.

To start with the method both hypothesis must be established, the null hypothesis

H0 : β̂1 = 0, (2.66)

and the alternative hypothesis

H1 : β̂1 6= 0. (2.67)
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Afterwards, the evaluation statistic must be computed. This value is obtained from the

particular sample of points employed and the nature of such points, being it a number purely

drawn from the numerical sample. It is defined as

t =
β̂1√

σ̂2

SXX

, (2.68)

where

σ̂2 =
SY Y − β̂1SY Y

n− 2
. (2.69)

Then the significance level of the test α must be given a value, where for most cases can be

interpreted as the test’s probability of incorrectly rejecting the null hypothesis, therefore it

may seem convenient to fix α to the lowest value possible. Still, this has repercussions on the

test, giving the test a high probability of accepting wrongful results, that is, a false positive.

So, a balance must be kept between both factors, and ideally an investigator must be familiar

with the test in order to give α a desired, specific value. That is, to accept the null hypothesis

with a mild tolerance for false positives. Experience has proved the value of α = 0.95 to give

good results in a wide range of test and fields. But in the end, this test will be only a hint or

tool in taking a decision, based too on observance of the results.

Having discussed the former issue, it can be said that α fixes the critical value of the test to

the value tn−2,1−α, where

F (n− 2; tn−2,1−α) = 1− α, (2.70)

and the symbol F represents the t-student cumulative probability function,n − 2 represents

the degrees of freedom associated with the function, an input parameter, and 1 − α is the

argument of the test. Since F is itself a cumulative probability function, it means that the

value F (n− 2; tn−2,1−α) accumulates a probability of 1− α.

To conclude, the hypothesis test fails if t > tn−2,1−α. Thus, the null hypothesis is rejected and

it can be concluded that β̂1 6= 0 and that there is a considerable variation involved in the ob-

served process. If the opposite event takes place, t < tn−2,1−α, then there is strong statistical

evidence pointing that β̂1 = 0, concluding that Y can be considered to be a constant.
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Chapter 3

Soliton propagation in elliptic photonic lattices

The subject of solitons propagating through optical lattices is a recent and novel topic

research in optics. The steering and routing possibilities offered by this media is a theory yet

to be developed and under extensive study. As said before, nondiffracting beams are clever

options due to their propagation invariant profile, maximizing control of light. The first part

of the research corresponds to solitons propagating in the so called elliptical photonic lattice

(EPL). It presents a pattern induced by a superposition of Mathieu beams, which contains

non circular closed trajectories in the form of elliptic rings azimuthally modulated. This

last fact was appealing for the investigation, since closed trajectories allows periodic nonstop

motion and there was no precedent for such studies on elliptical trajectories. Since the EPL

presents a nonuniform potential over a closed trajectory stability cannot be achieved at all

times. This work presents how stable propagation is a possibility on the EPL for certain given

parameters.

3.1 The elliptical photonic lattice

As just said, the EPL is induced by a superposition of Mathieu beams. The last are by

itself nondiffracting beams, which lead and promote a whole field of study in optics. Here a

brief but explanatory description of the EPL and its fundamentals is presented. To start with,

must one begin with the model generating all nondiffracting beams, the Helmholtz equation

∇ 2Φ + k2Φ = 0, (3.1)

where Φ is the profile describing the nondiffracting beam, k is a constant known as the beam’s

wave number related to the field’s propagation in space and following propagation standards
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is taken along the z axis. Since Φ is propagation invariant its intensity cannot be a function

of z. Thus, the propagation coordinate amounts only to a phase factor, a common feature of

all nondiffracting beams. Therefore Φ is separated as

Φ(r) = φ(rt)eikzz, (3.2)

where Φ is a function of space (3 coordinates), φ is a function of the transversal coordinates (2

coordinates) and kz is the longitudinal wave number or propagation constant. This reduces

the Helmholtz equation to

∇ 2
t φ + k 2

t φ = 0, (3.3)

where kt is the transverse wave number defined as k 2
t = k 2 − k 2

z ; and ∇ 2
t is the transverse

laplacian, function only of the transverse coordinates. In cartesian coordinates it is written

as

∇ 2
t =

∂2

∂x2
+

∂2

∂y2
. (3.4)

Thus, obtaining the profile for nondiffracting beams is a problem to be solved in two-

dimensions, where φ(rt) is known as a normal or stationary mode of propagation. In order

to continue, the equation must be properly adjusted to elliptical cylindrical coordinates, the

natural coordinate system for Mathieu beams.

3.1.1 Elliptical cylindrical coordinates

This is one of the four orthogonal cylindrical systems in which the Helmholtz equation

is separable, thus defining a complete space for representing planar profiles and one of the

four unique families of perfectly nondiffracting beams. The transformation from cartesian

coordinates < x, y, z > to elliptic cylindrical coordinates < ξ, η, z >, where as both systems

are cylindrical leaves z unaffected, is given by

x + iy = f cosh(ξ + iη), (3.5)

where f is the semi-focal distance associated to the coordinate system and is related to the

ratio of the semi-axis of confocal ellipses. The last transformation can be separated and
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expressed for clarity as

x = f cosh(ξ) cos(η), (3.6)

y = f sinh(ξ) sin(η). (3.7)

Making an analogy to polar coordinates, ξ can be interpreted as a radial coordinates which

takes values inside the semi-open interval [0,∞), that is the nonnegative real numbers. Fur-

thermore, η makes the role of an angular coordinate covering the interval [0, 2π). As expected,

ellipses should be found in the set of coordinate curves for this system. Ellipses are generated

by fixing the elliptic radius ξ to a constant value ξo as properly shown in the expression

[
x

f cosh(ξo)

]2

+

[
y

f sinh(ξo)

]2

= cos2(η) + sin2(η) = 1, (3.8)

which is the equation for a ellipse with major semi-axis f cosh(ξo) and minor semi-axis

f sinh(ξo) having both its principal axes over the x and y axis, respectively. Furthermore,

the coordinate curves for ξ is a family of confocal ellipses which collapse in the limiting value

ξ = 0 to the straight line across the x axis that joins (x, y) = (±f, 0) the focal points of this

ellipses. The elliptic version of the angular coordinate curves, which are itself straight lines,

corresponds to hyperbolas. This can be appreciated by fixing η to ηo in the expression

[
x

f cos(ηo)

]2

−
[

y

f sin(ηo)

]2

= cosh2(ξ)− sinh2(ξ) = 1, (3.9)

which is an equation for generating a family of hyperbolas by varying the parameter ηo. This

conical curves cross the x axis at ±f cos(ηo) and have straight line asymptotes which cross

the origin and have slope ± tan(ηo). For the values η = 0 and η = π the hyperbolas collapse

to straight lines on the x axis going from x = ±f towards ±∞. As for η = π
2 and η = 3π

2 ,

the hyperbolas collapse to the positive y axis and negative y axis, respectively. Coordinate

curves for the elliptical cylindrical system are shown in figure 3.1.

As it can be calculated the scale factors of the ξ and η are equal, being them

h = hξ = hη =
√

cosh2(ξ)− cos2(η), (3.10)
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Figure 3.1: A qualitatively sample of coordinate curves in the plane are shown for the elliptic
cylindrical coordinates system with f = 1. Dark blue curves correspond to constant ξ =
ξo curves, confocal ellipses. with semi-major and semi-minor axes cosh(ξo) and sinh(ξo),
respectively. Light blue curves mark constant η = ηo curves, hyperbolas with asymptotes
y = ± tan(ηo)

and as expected, hz = 1.

3.1.2 Mathieu functions

In order to reach the EPL, the Helmholtz equation must be solved in elliptic cylindrical

coordinates. Inserting the proper scale factor in the transversal Helmholtz equation, it is

reduced to
1

f2
[
sinh2(ξ) + sin2(η)

]
[

∂2φ

∂ξ2
+

∂2φ

∂η2

]
+ k 2

t φ = 0. (3.11)

Applying separation of variables (SOV) technique the following expressions are reached

[ d2

dη2
− 2q cos(2η) + a

]
Θ(η) = 0, (3.12)

[ d2

dξ2
+ 2q cosh(2ξ)− a

]
R(ξ) = 0, (3.13)

where the first equation is know in literature as the Angular Mathieu Equation or Ordi-

nary Mathieu Equation, and the later is the Radial Mathieu Equation or Modified Mathieu
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Figure 3.2: Sample plots for the ordinary mathieu functions cem(η; q) and sem(η; q), their sym-
metry and periodicity conditions are reflected as being superpositions of cosine and sine func-
tions respectively. In (a) cem(η; q) is plotted against η for m = 1 and q = {0, 0.5, 1, 1.5, 2, 2.5}.
In (b) cem(η; q) is plotted against η for q = 0 and m = {1, 2, 3, 4, 5}. In (c) sem(η; q) is plotted
against η for m = 1 and q = {0, 2, 4, 6, 8, 10}. In (d) sem(η; q) is plotted against η for q = 0
and m = {1, 2, 3, 4, 5}. All x-axis are normalized to π units.

Equation. The parameter a corresponds to the constant of separation in the SOV method,

which furthermore corresponds to the eigenvalue of both equations, and q is a dimensionless

parameter which stands for

q =
f2

4
k 2

t . (3.14)

In the current notation, the transverse profile of the Mathieu beam would be written as

ψ(rt) = R(ξ)Θ(η), (3.15)
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where Θ(η) corresponds to the ordinary Mathieu function and R(ξ) to the modified Mathieu

function. Due to the symmetry existent in the Ordinary Mathieu equation, the set of functions

corresponding to Θ(η) can be broken in two parts, even type functions and odd type func-

tions, which are commonly labeled as cem(η; q) and sem(η; q), respectively. The nomenclature

comes from the terms elliptic cosine and sine, again making an strong analogy to the circular

case. Here m corresponds to the order of the function associated with the particular value of

the parameter q chosen, where the order follows and ordering of the eigenvalues a associated

with each function. Plots for representative cases of both functions are displayed in figure 3.2.

As for the radial case, the Modified Mathieu functions have been extensively studied as

well. The same symmetry in the equation applies for this case, thus allowing the existence

of purely even and purely odd functions, in this case labeled as Jem(ξ; q) and Jom(ξ; q),

respectively. This time the nomenclature follows the one used for ordinary first time Bessel

functions, where Jem(ξ; q) and Jom(ξ; q) resemble in a manner the well know and used Bessel

functions.

It must be mentioned that the for either equation more solutions exist in the rigorous math-

ematical sense, but they are discarded in this brief overview and are excluded as a possibility

for constructing the EPL due to their structure, being undefined in the origin as a main

problem. So, even though other solutions exists, the research has been taken with the set

presented. There exist plenty information concerning Mathieu functions in the literature [27].

3.1.3 Computation of the EPL

Solutions to the transverse Helmholtz equation, the profile φ(rt), correspond to combi-

nations of only even or odd functions, that is either Jem(ξ; q)cem(η; q) or Jom(ξ; q)com(η; q).

Due to the linearity of the equations used, a more completed solution possessing no preferable

symmetry around the origin would be

φ(rt) = C1 Jem(ξ; q)cem(η; q) + C2 Jom(ξ; q)com(η; q), (3.16)
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where this corresponds to one order only, a single value of m, and C1 and C2 are simply

scaling constant for not loosing generality. Again, considering superposition, multiple and

even infinite values of m can be considered to construct a single solution φ. For constructing

the EPL this was not considering, and restraining to a single value of m was a restriction

imposed. So, invoking the last equation, we define

τ(rt) = Ce Jem(ξ; q)cem(η; q) + Co Jom(ξ; q)com(η; q), (3.17)

where τ(rt) represents the wavefunction of the EPL, Jem(ξ; q)cem(η; q) corresponds to the

even part of the profile, Jom(ξ; q)com(η; q) represents the odd part of the profile, and Ce and

Co are constants for balancing the power contained by each part of the EPL. Moreover, the

EPL corresponds to an intensity profile, an observable quantity in nature that corresponds

to a index of refraction profile. Thus, the EPL Γ(rt) is defined as

Γ(rt) =
|τ(rt)|2

max(|τ(rt)|2) , (3.18)

where the division is carried out in order to assure that the EPL profile is normalized to unity.

Furthermore, there exist another method for computing the EPL via its angular spectrum,

which is defined by the angular mathieu functions. The Whittaker integral, presented as

follows, reproduces a beam pattern by using as an input the angular spectrum ”A(η)” of the

nondiffracting beam,

τ(rt) =
∫ 2π

0
A(η) exp{ikt

[
x cos(η) + y sin(η)

]
}dη, (3.19)

where in the case for an elliptic photonic lattice, the angular spectrum is

A(η) = De cem(η; q) + Do com(η; q). (3.20)

Here De and Do are the constants used for balancing the power contained by each part of

the beam since a different method is used and this constants ought to be different from Ce

and Co. It is customary to construct a balanced Mathieu beam, that is one which even part

and odd part half both 50% of the power of the entire profile. This helps closing the elliptic
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(a) (b) (c)

Figure 3.3: Pure even (a) and odd (b) Mathieu beams do not posses closed elliptic trajectories.
The helical Mathieu beam (c) is a superposition of both symmetries, thus closing intensity
ellipses and forming light rings azimuthally modulated. Patterns shown are for fixed m = 1
and q = 1.

trajectories, but still is not a strict rule and small deviations from this power distribution

does not alter greatly the continuity trajectories. An example depicting the importance of

combining both symmetries is shown in figure 3.3.

3.1.4 General Description of the EPL

The transverse index distribution on the EPL is characterized by a set of confocal elliptic

rings whose ellipticity is controlled by f . When f → 0 the EPL reduces to a Bessel lattice

characterized by a set circular concentric rings whose intensity is constant along the angular

coordinate, presenting only radial variations and a null azimuthal modulation. As f increases

, the rings become more and ore elliptical and, after a critical value, they are broken, splitting

into a discrete like intensity lattice. When f → ∞, the EPL tends smoothly to a discrete

rectangular lattice characterized by cosine functions. It is important to mention that certain

cases of the Cartesian and Bessel families of the nondiffracting beams are special cases of the

EPL beam, as mentioned above. Representative profiles of the EPL are displayed in figure 3.4.

Unlike balanced Bessel beams, those containing equal power in both its even and odd

parts, which have no constant azimuthal modulation, the EPL has a variation in the intensity

profile along any of the elliptic rings trajectories, that is varying the angular elliptic coordi-

nate η. Actually, the minimum and maximum intensity points correspond to the major and

minor semi-axis, where the correspondence is defined by the balancing constants Ce and Co.

40



(a) m = 1, q = 0.0001 (b) m = 1, q = 0.03 (c) m = 1, q = 1 (d) m = 1, q = 10

(e) m = 3, q = 0.0001 (f) m = 3, q = 0.40 (g) m = 3, q = 2 (h) m = 3, q = 10

(i) m = 5, q = 0.0001 (j) m = 5, q = 0.50 (k) m = 5, q = 2.65 (l) m = 5, q = 10

Figure 3.4: Helical Mathieu beam intensity profile for balanced power between even and odd
parts. Each rows fixes a different value of m, which among other aspects controls the number
of maxima and minima around an elliptic ring for the closed trajectories case. For low values
of q the profile seems to adjust to a discrete circular symmetric lattice (first column), were
critical q values can be found as to produce an approximate Bessel lattice (second column).
As q increases the elliptic symmetry arises (third column), which is broken after a critical
value and the lattice degenerates into a cartesian like discrete lattice (fourth column).
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Figure 3.5: (a) EPL used for the research of soliton propagation, with m = 3 and q = 1. (b)
shows a contourmap of the central region of interest, corresponding to the first and second
light rings.

The lattice used for the work in the rest of the section is displayed in figure 3.5.

Having defined the EPL, exposed its computation method and discussed its versatile pro-

file, this works continue with the results found concerning its main theme: propagation of

soliton through optical lattices, in this case the EPL.

3.2 Stationary solitons in the EPL

By solving the nonlinear Schrödinger equation stationary solitons are obtained, which

have a profile depending on the equation parameters, the ansatz and the precise spot it is

centered. By studying this stationary modes

Different profiles can be obtained in the center of the lattice. For small values of p, the

soliton retains the bell-shaped pattern from the ansatz and concentrates mostly within the

elliptic dark spot of the lattice, where increasing β makes the intensity pattern narrower. if

p is increased, the interaction with the EPL becomes stronger and therefore the shape of

the lattice is resembled on the obtained solitons. For low values of β, the field distribution

covers the central elliptic dark spot and the first bright ring, producing, producing an elliptic

ring-shaped stable soliton which is angularly modulated as the EPL, having its maximum

along the major semi-axis. As β increases, a symmetry breaking instability is developed,

and the soliton concentrates on only one of the maxima of the first elliptic ring. However, for
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higher values of β the soliton profiles returns to its bell shaped pattern centered on the lattice.

Stationary solitons can also be trapped in the outer rings of the EPL. If the ansatz is centered

at one of the semi-axis maxima, the patterns remains unchanged for small values of β and

evolves in the same fashion as if the ansatz centered at the dark elliptic spot, but as the

wavelength increases the profile remains at one of the maxima with a narrow bell-shaped.

Due to its symmetry, its compact distribution and the localization it holds on the EPL, this

type of soliton is the most important for the research. This type of soliton is computed and

propagated extensively, since it corresponds to the fundamental modes and is closer to the

gaussian distribution of any standard input laser beam. Several profile of stationary solitons

are shown in figures 3.6-3.8.

As mentioned in the first section, the power carried by the soliton is calculated as

P =
∫ ∫

O
|φ(rt)|2dA, (3.21)

where as usual, φ(rt) represents the soliton profile and the integral is carried out over the

region of the plane x − y that completely encloses the soliton profile. In fig 9. the relation

between the power P and the wavelength β is displayed for solitons in the intensity maximum

in the second light ring (4.05, 0) and the intensity minimum in the second light ring (0, 3.92).

It was found For both, cases that the Petviashvili relaxation method achieves convergence just

when restricted to a finite interval of values that reduces as the lattice depth p increases, as

shown in figure 3.9. Applying the Vakhitov-Kolokolov stability criterion described in chapter

1,
dP

dβ
> 0 −→ stable propagation for stationary solitons, (3.22)

it was predicted that the solitons contained in the β − p regions contained in figure 3.9

were stable. This was confirmed by propagating numerous soliton profiles along hundreds

diffraction lengths.
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(a) p = 1, β = 1.75 (b) p = 1, β = 2.00 (c) p = 1, β = 2.50 (d) p = 1, β = 3.25

(e) p = 4, β = 1.75 (f) p = 4, β = 2.00 (g) p = 4, β = 2.50 (h) p = 4, β = 3.25

Figure 3.6: Soliton profiles for the EPL. The ansatz is initially centered at the center of the
lattice, coordinates (0, 0) in the x − y plane. The first row of figures corresponds to a fixed
lattice depth value of p = 1, a relatively low value. With this numerical value the solitons
are poorly influenced by the lattice topology and retain the original position of the ansatz
and the bell-shaped profile of a fundamental type soliton, while varying the longitudinal wave
number β from lower to higher values focuses the soliton into a tighter distribution as can be
appreciated from figures (a) to (d). The second row fixes the lattice depth to p = 4, a value
where the soliton profile is considerably affected by the lattice potential. For low values of
β, the soliton profile copies the elliptic symmetry of the center of the lattice as show in (e)
and (f). As β increases a symmetry breaking instability is developed, tearing apart the initial
profile and concentrating the soliton on only one maxima of the first ring (g). Finally in (h) a
value of β is reached as to focus the soliton enough for it to ignore the outer lattice potential
and recover a bell shaped pattern.
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(a) p = 1, β = 1.75 (b) p = 1, β = 2.00 (c) p = 1, β = 2.50 (d) p = 1, β = 3.25

(e) p = 4, β = 1.75 (f) p = 4, β = 2.00 (g) p = 4, β = 2.50 (h) p = 4, β = 3.25

Figure 3.7: Soliton profiles for the EPL. The ansatz is initially centered at the intensity
maximum of the second light ring,coordinates (4.05, 0) in the x − y plane.The first row of
figures corresponds to a fixed lattice depth value of p = 1, a relatively low value. With
this numerical value the solitons are poorly influenced by the lattice topology and retain the
original position of the ansatz and the bell-shaped profile of a fundamental type soliton, while
varying the longitudinal wave number β from lower to higher values focuses the soliton into
a tighter distribution as can be appreciated from figures (a) to (d). The second row fixes the
lattice depth to p = 4, a value where the soliton profile is considerably affected by the lattice
potential. For small values of β the soliton profile converges to the center of the lattice as if
the ansatz was initially positioned at it, shown in (e), (f) and (g). In (h) the soliton retains
the position at the second light ring maximum and converges to a fundamental soliton profile.
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(a) p = 1, β = 1.75 (b) p = 1, β = 2.00 (c) p = 1, β = 2.50 (d) p = 1, β = 3.25

(e) p = 4, β = 1.75 (f) p = 4, β = 2.00 (g) p = 4, β = 2.50 (h) p = 4, β = 3.25

Figure 3.8: Soliton profiles for the EPL. The ansatz is initially centered at the intensity
minimum of the second light ring,coordinates (0, 3.92) in the x − y plane. The first row of
figures corresponds to a fixed lattice depth value of p = 1, a relatively low value. With
this numerical value the solitons are poorly influenced by the lattice topology and retain the
original position of the ansatz and the bell-shaped profile of a fundamental type soliton, while
varying the longitudinal wave number β from lower to higher values focuses the soliton into
a tighter distribution as can be appreciated from figures (a) to (d). The second row fixes the
lattice depth to p = 4, a value where the soliton profile is considerably affected by the lattice
potential. For small values of β the soliton profile converges to the center of the lattice as if
the ansatz was initially positioned at it, shown in (e), (f) and (g). In (h) the soliton retains
the position at the second light ring minimum and converges to a fundamental soliton profile.
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Figure 3.9: Power P plotted against β for a soliton centered at the second light ring intensity
maximum (a). Each curve corresponds to a different fixed value of the lattice depth, where
going from lighter to darker curves p={1,5,10,15,20,25}. The location of such solitons in the
lattice is depicted in (b).
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3.3 Transverse rotating solitons

We now refer to rotating solitons, which move in a transverse fashion while propagating

longitudinally. It was found that such can reach a stable condition if trapped in an elliptical

ring of the EPL. In order to generate them, the centroid of the gaussian ansatz must be

located either at a maximum or a minimum of a bright ring. The following discussion applies

to solitons originated from a maximum in the second bright ring, which is what our research

in stable rotating solitons covered. To induce rotational motion on the soliton an initial

transverse momentum gtrans directed along the tangent of the bright ring must be imprinted

on the stationary solution; this can be done by imposing a phase twist exp(igtransy) on the

soliton profile as discussed in chapter 1.

For small values of gtrans the soliton is still strongly attracted by the local maximum of

the elliptic ring and thus oscillates back and forth across this point following an oscillatory

trajectory on propagation a shown in Fig. 3.10(a). The rotational motion of the soliton is

soliton along the elliptic rings is induced by increasing gtrans until a critical value grot. In this

case, the soliton escapes from the intensity maximum vicinity and undergoes elliptic rotation

as shown in Figure 3.10(b), where gtrans = 0.628. The dynamics of the rotating soliton arise

from the delicate interplay between the attracting force of the light ring and the initial trans-

verse momentum imprinted to the solitons. An extensive set of simulations were performed

under different initial conditions and perturbations.

In order to quantify whether there was any fraction of power radiated from the soliton or

not, the power inside a fixed radius circular region centered at the soliton’s intensity centroid

was calculated along propagation. The radius of the region was set to initially enclose 99%

of the total power. Remarkably for stable solitons, the enclosed power oscillates but remains

conserved as show in Figure 3.10(d,e). This oscillations for the quantified enclosed power

follows the different potential observed by the soliton at each propagation step due to its

transverse motion and the elliptic ring azimuthal modulation. The soliton auto-transforms

itself continuously along propagation to fit itself to the surrounding potential, causing it to

be change its waist and width. Still this oscillations are rather small and way below 0.05%.

If the initial momentum gtrans exceeds a critical value, namely gout, the soliton leaves the
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Figure 3.10: Dynamics of motion in the EPL for m = 3 and f = 1. The propagation
parameters are set to p = 4, β = 10 and q = 0.05. Three cases were found and are reported:
(a) oscillatory motion around and intensity maxima, (b) rotatory stable motion and (c)
unbounded-escaping motion. The second row corresponds to a plot of power P enclosed by
the soliton against propagation distance, where values are calculated inside a waist centered
at the soliton centroid which initially enclosed 99% of the total power. Power is found to be
enclosed by the soliton for the first two cases, while in the last the soliton irradiates power
rapidly.

Figure 3.11: Three dimensional display of soliton propagation for both oscillatory (light blue)
and rotatory (dark blue) motion.
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Figure 3.12: Plot of rotation rate γ against propagation distance z for a soliton propagating
on an EPL and a Bessel lattice. The former is displayed as a darker line (blue online) and
the latter in a brighter color. For comparison purposes, we normalized both rotation rates to
its mean value.

ring with where it was initially launched as depicted in figure 3.10(c), and its power decays

rapidly as shown in figure 3.10(f).

Since the refraction index along the rings of the EPL is not azimuthally symmetric, solitons

trapped within the elliptic rings increase (decrease) their angular speed as they approach

intensity maxima (minima). In Fig. 3.12 the varying rotation rate of solitons trapped in the

EPL allows a varying rate of the solitons in the Bessel lattice, being the latter result of the

particular modulation of the EPL.The appearing constant rotation rate of the Bessel lattice

is one of the main themes from the next chapter. For this work purposes, the rotation rate

was defined as

γ =
|∆rt|
∆z

, (3.23)

where rt stands for the coordinate vector in the transverse (x, y) plane. Being defined as it is,

γ represents the displacement made by the soliton along the transverse plane per unit length

traveled in the z axis. It can be thought of as a generalized speed, where instead of taking

derivatives with respect to a time coordinate, differentiation is carried with respect to the

propagation coordinate z. The later is done since z accounts for the independent variable for
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all quantifiers involved with the propagation. In order to appropriately compare both motion

properly, both γ quantifiers were normalized to its mean value, and what is important from

both quantifiers is their degree of variation and spread, not its actual values.

3.4 Concluding remarks on soliton propagation through the

EPL

The main result of this chapter is the existence of stable soliton propagation through the

EPL. There was no previous report to this research of such phenomena, since the EPL contains

an azimuthal modulation which was thought to impede such stable propagation. Therefore,

this part of the thesis demonstrates how it is possible for solitons to propagate through elliptic

light rings azimuthally modulated through hundreds of diffraction lengths. Furthermore,

two cases of stable propagation were found, and a third one involving unbounded motion.

The existence of these three regimes of propagation are lead by this azimuthal modulation,

since an oscillatory like motion is created for particular initial conditions. Furthermore,

it was appreciated how the soliton changes its rotation rate along the elliptic light ring,

heavily influenced by the azimuthal modulation. Thus, this family of lattices offer generous

possibilities in nonlinear propagations, and further characterizations of such are yet to be

explored more deeply.
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Chapter 4

Soliton propagation and the modulated Bessel lattice

This chapter constitutes the core of this work, since more time employed in the research

presented here was dedicated to the solitons propagating through Bessel type lattices rather

than through the EPL. This obeys to the complexity of the azimuthal modulation imposed

naturally in elliptical symmetries, where in circular coordinates a simple sinusoidal pattern

arises. The modulated Bessel lattice (MBL) is introduced in this chapter, being it a natural

solution to the Helmholtz equation in circular cylindrical coordinates and introducing a control

parameter to the angular modulation. Preceding a brief and sufficient description of the MBL

comes the characterization of soliton propagation through this lattice. Not only does expected

dynamics of propagation appears, such as oscillatory motion around an intensity maxima or

escapin/unbounded motion. Interesting phenomena arose in the course of studying solitons

propagating through the MBL, such as unstable periodic motion. This dynamic of motion

appears when solitons initially engage periodic stable motion and experiment instabilities

after several complete cycles. These phenomena does not occur due to numerical errors

and is consequently a natural part of this research subject. Proper numerical experiments

were carried out in order to establish so. Furthermore, a model for correctly explaining this

phenomena is currently being developed, being this model tightly bound to the theory of

dynamical billiards.

4.1 The modulated Bessel lattice

The MBL is constructed via Bessel beams, which are by nature nondiffracting optical

fields and solutions to the Helmholtz equation

∇ 2
t φ + k 2

t φ = 0, (4.1)
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where kt is the transverse wave number, the nondiffracting beam transverse pattern φ is a

function of two transverse coordinates and the usual an required harmonic dependence eikzz

has been inserted. This time the symmetry of the beam indicates that calculations must be

carried out in circular cylindrical coordinates, or polar coordinates in short. This coordinate

system is well know in the literature, and the corresponding transformations are

x = r cos(θ), (4.2)

y = r sin(θ), (4.3)

where r is the radial coordinate, indicating the distance from a point to the origin, and θ is

the usual polar angle, measured counterclockwise in radians starting from the x axis. The

transverse laplacian operator transforms in this coordinate system to

∇ 2
t =

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
. (4.4)

In order to find such family of beams the last expression must be inserted in the reduced

transverse Helmholtz equation, and since this equation is separable in polar coordinates the

technique of separation of variables is applied. The trial solution

φ(r, θ) = R(r)Θ(θ), (4.5)

must be inserted in the equation, being R a function purely of r and Θ a function only of

θ. After carrying out algebraic manipulations two equations coupled by a single constant are

reached, where the equation corresponding to the angular coordinate is

1
Θ

d2Θ
dθ2

= −α, (4.6)

and the equation for the radial coordinate is

r2

R

d2R

dr2
+

r

R

dR

dr
+ r2k 2

t = α, (4.7)
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where α is the separation constant introduced in the method. What naturally proceeds is to

find families of solutions to this last equations, which can be narrowed by introducing physical

considerations into the assumptions made.

4.1.1 General solution to the Helmholtz equation in circular cylindrical

coordinates

It is preferable to start with the equation for θ, which can be rewritten as

d2Θ
dθ2

+ αΘ = 0. (4.8)

Periodic functions are required as solutions since polar transformations are multiple valued for

the coordinate θ. That is, < ro, θo > and < ro, θo + 2πn > make reference to the same point

in space for any integer value of n. Thus, functions having a period equal to 2π should be

natural solutions of the equation. This restriction is fulfilled since the equation has as general

solutions sines and cosines. Furthermore, to fully comply with the periodicity condition,
√

α

should be an integer number. This imposes an important and necessary restriction on the

general solution, and without loosing generality α can be defined by

α = m2, (4.9)

where m is a positive integer, commonly refereed to as the order of the solution. In the end,

the angular solution can be written in its most general form as

Θ(θ) = A cos(mθ) + B sin(mθ), (4.10)

where A and B are integration constants yet to be defined. The α restriction falls on the

equation for R as well, which after making certain arrangements can be written as

r2 d2R

dr2
+ r

dR

dr
+ (k 2

t r2 −m2)R = 0. (4.11)

In order to properly adjust this equation to well mathematical expressions a change of variable
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is required, corresponding to a simple scale of the form

s = ktr, (4.12)

leaving the radial equation as

s2 d2R

ds2
+ s

dR

ds
+ (s2 −m2)R = 0, (4.13)

which perfectly fits the form of the Bessel equation. Since m is restricted to positive integer

values,the solutions in turn avoid certain complexities and difficulties that would naturally

arise in the case of having m arbitrary values. Carrying on, the Bessel equations has general

solutions of the form

R(s) = CJm(s) + DYm(s), (4.14)

where Jm(s) corresponds to the mth-order Bessel function of the first kind and Ym(s) rep-

resents the mth-order Bessel function of the second kind. As our solution must in the end

represent a physical quantity, in this case the field of a nondiffracting beam, it should be rid

of singularities and any other badly behaved phenomena. Furthermore, the Bessel functions

of the second kind are singular at the origin, regardless of the order of the solution. Thus, our

physical solutions should not include this functions, naturally imposing that D = 0 narrowing

the possibilities but respecting physical principles. After regrouping constants and returning

to the original physical variables, the expression for the transverse profile of a Bessel beam

in its most general form is solved to

φ(r, θ) = Jm(ktr)
[
A cos(mθ) + B sin(mθ)

]
, (4.15)

where again, A and B are constants yet to be defined.

4.1.2 Construction and description of the MBL

The MBL is a novel topology of optical lattice offering interesting possibilities and op-

tions. It posses a well defined circular symmetry and is described by the transverse intensity

pattern of a subset of the family of Bessel beams, where a control parameter is introduced in

the form of an angle α in generalized space. The constants A and B form a set of parameters
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that over determines the shape of the Bessel beam. More precisely, by increasing or decreas-

ing both A and B in a fashion as to fix its ratio the spatial distribution of the beam remains

invariant. What actually changes is the total power contained by a single transverse cut and

can be simply understood as a uniform scaling of the complete profile. As a consequence and

without loss of generality, the power of the beam can be fixed to a certain value introducing a

shape-controlling parameter which is labeled as α; letting A = cos(α) and B = i sin(α). This

way the intensity integral is independent of the parameter α. This leads to the expression

φ(r, θ) = Jm(ktr)
[
cos(α) cos(mθ) + i sin(α) sin(mθ)

]
, (4.16)

where the constant i in the second term can be understood as a dephasing between optical

fields. The intensity pattern |φ(r, θ)|2 describes the profile of the MBL Γ(r, θ), which after

algebraic manipulations is reduced to

Γ(r, θ) = J 2
m(ktr)

[1
2

+
cos(2α) cos(2mθ)

2

]
. (4.17)

The term cos(2α) has a period over the parameter α of π. Furthermore, the function cos(x)

replicates all values twice while covering a complete period. Thus, in principle it suffices to

consider α values in the interval [0, π
2 ). Moreover, this interval can be reduced since both

π
4 − αo and π

4 + αo account for a rotation of π
2 radians around the origin for the same profile

whenever both values are in the reduced interval. So, without loss of generality, the value of

α is restricted o the interval [0, π
4 ], which will be enough to cover all the possible profiles of

the MBL.

Since the MBL was constructed via separation of variables, its profile can be analyzed sepa-

rately for each coordinate. As in the case of the radial coordinate r, the profile varies as

ρ(r)m,kt = J 2
m(ktr). (4.18)
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Figure 4.1: Radial modulation of the modulated Bessel lattice plotted against the radial
coordinate r. The profile corresponds to the function J 2

m(ktr), where kt accounts for an
expansion or shrinking of the modulation as has been set equal to 2 for this figure. The order
m is varied, and it can be appreciated how it changes dramatically the profile. Still, a damped
oscillatory behavior is depicted as r increases.

This radial modulation changes dramatically near the origin depending on the value of m,

where it changes dramatically near the origin depending on the value of m. For positive

integer values, ρ(0) =, and since the profile slope increases till reaching the global maximum

of the function, the origin accounts for a depression in the MBL. Now, for m = 0, the global

and first maximum is actually localized at the origin, thus creating a single centered lump

for the profile. Therefore, the origin can either project an intensity lump on the lattice or a

depression on the pattern depending on the order m employed.

In both cases, as r continues increasing more maxima appears, corresponding to lumps in

the radial pattern that flatten and decrease in its peak value. This can be understood as

an oscillatory behavior, periodically reaching a depression in the pattern followed by a peak.

This peaks form the so called light rings when the angular and radial variations are inserted

in the plane. It is worth mentioning that for m = 0 the first centered maxima is far superior

from its subsequent maxima by a factor of approximately 3; where in all other cases consec-

utive maxima differ by a more moderate factor. This behavior is depicted in fig. 4.1.

The angular variation of the MBL is what introduces the richness to the investigation of

this family of optical lattices, this since the research is devoted mainly to studying solitons

around closed trajectories, which in this case suffer from the azimuthal modulation intrinsic
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Figure 4.2: Profiles for the angular modulation ω for the modulated Bessel lattice. Figure (a)
contains profiles for different various of the order m while fixing the modulation parameter
α, while in figure b α varies for each curve and the order m is fixed.

to the MBL represented as

ω(θ)α,m =
1
2

[
1 + cos(2α) cos(2mθ)

]
, (4.19)

and as mentioned before, α is the lattice shape parameter and m the order of the MBL. This

angular modulation varies as a cosine with tunable period and an amplitude depending on

α, Furthermore, this sinusoidal variation is mounted over a constant value, admitting only

positive values as an outcome. The 1
2 factor can be understood as a normalization constant

ensuring ω peak value to 1.

The parameter for tuning the periodicity of the modulation is m. For the case of m = 0

there is no variation in the lattice introduced by the polar angle, and ω is simply a constant

equal to 1+cos(2α)
2 . For m a positive integer, the period of ω is defined as π

m . Incrementing

m makes the period shorter and introduces a steeper variation in the azimuthal modulation.

The number of maxima across the range of ω equals the number of minima, in this case being

equal to 2m. The variation of ω according to m is graphically displayed in fig 4.2a.

The shape parameter α defines the amplitude of the sinusoidal variation for ω. For the

case of α = π
4 , the amplitude cos(2α) is equal to 0 and the azimuthal modulation is null, thus

recovering a perfectly balanced Bessel lattice with no deformation along the angle coordinate.

As α decreases away from π
4 towards 0, the amplitude of the cosine modulation is incremented,
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thus introducing a wider variation in the azimuthal modulation ω. This makes the difference

between maxima and minima bigger, creating a steeper gradient in intensity along a circular

light ring path. Finally when α = 0 the amplitude cos(2α) reaches its maximum value and

the function ω(θ) reaches its extreme values of 0 and 1. This case accounts for the biggest

variation possible around a circular light ring path, having null intensity points in the MBL

profile. Thus, α = π
4 represents the null azimuthal modulation case and α = 0 introduces the

strongest modulation possible, while intermediate values account for a transition in a cosine

like fashion. Examples of ω for different α values are shown in fig 4.2b.

Combining both modulation the MBL pattern is recovered. The simplest patter available

corresponds to either m = 0 or α = π
4 . The resulting pattern results in a set of concentric

light rings, which have a radial distribution according to the order m of the lattice. Many

combinations are available by adjusting m and α to distinct values. Plenty of work has bee

done on the general family of modulated Bessel lattices, and there is still more work pro-

grammed. Still, due to time issues and consistency of presented results, the rest of the work

is devoted to balanced Bessel lattices, that is, fixing α to π
4 .

An extensive research has been undertaken for propagations in the general modulated Bessel

lattice. Interesting results have been produced, as the existence of periodically unstable

regimes of transverse motion. That is, solitons engage transverse periodic rotatory motion

for a number of cycles and end up escaping after so. This is due to the modulation of the

lattice and the non-periodic transverse motion of the lattice. Still, time is limited and those

studies are still under preliminary stages of research. This work presents results limiting our-

selves to the simples case, the non modulated Bessel latice. This since this results are simpler

and will represent the basis for constructing the general theory of transverse motion. Thus,

the general case for modulated Bessel lattices is a next step to take.
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(a) m = 1, α = 0 (b) m = 1, α = π
8

(c) m = 1, α = π
4

(d) m = 2, α = 0 (e) m = 2, α = π
8

(f) m = 2, α = π
4

(g) m = 3, α = 0 (h) m = 3, α = π
8

(i) m = 3, α = π
4

Figure 4.3: Representative profiles of the modulated Bessel lattice family for various values
of m and α. It can be seen how m controls the number of maxima and minima distributed
along a circular light ring, while xα controls how close these values for maxima and minima
are, modulating the intensity of the lattice.
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Figure 4.4: Balanced Bessel lattice used for the research in this section. lattice parameters
are set to α = π

4 ,m = 1 and kt = 2. Figure 1.a is an image-colored plot of the lattice, while
1.b is a contour plot of the lattice’s central region of interest. Bright blue lines mark the
division between adjacent light rings, and white lines represent constant intensity curves for
a value of 0.5.

4.2 The balanced Bessel lattice and induced dynamics of mo-

tion

Soliton propagation in optical lattices is a multiple variable problem, and dealing with

the general problem can become an overwhelming task. Specific cases must be solved sepa-

rately to reach knowledge in the area, thus solving a jigsaw piece by piece as an analogy. The

rest of this document deals with the simplest case in order to study soliton propagation on

the MBL: the balanced Bessel lattice. This fixes α to π
4 , directly balancing the power to both

even-cosine and odd-sine parts of the lattice, giving each one 50% of the total power. This

produces a lattice with null azimuthal modulation and constant intensity light rings regardless

of the lattice order m. Thus, the only variation in the intensity profile is radial dependent

via Bessel functions. If an analogy between soliton propagation on this lattice and classical

mechanics where to be made, it can be thought of as a central force problem of a semi-rigid

body. Now, even though m and kt do not change the azimuthal modulation, it does affect

the radial intensity profile. So, for this case m was fix to 1 and kt to 2, thus producing a first

order balanced Bessel lattice, shown in fig. 4.4.

In the beginning, certain parameters where fixed at a certain value, since α is one of many

variables in this problem. The lattice depth and the saturation parameter were fixed respec-

tively to p = 4 and q = 0.05. Furthermore, the initial launch angle of the soliton was φ = pi
2

60



for all simulations involved in the study of solitons in MBL lattices. This means that initially

solitons had a transverse rotation rate in an azimuthal direction with respect to the sym-

metry of the lattice. By doing so, two variables are left for experimenting: the longitudinal

wavelength pθ and the magnitude of the tilt initially imposed pθ. This will be the control

variables used for this whole section, and all results concern the variations of this parameters.

Having said so, the propagation parameters are left as follows

-lattice depth p = 4

-saturation parameter q = 0.05

-launch angle φ = π
2

-modulation parameter α = π
4

-lattice order m = 1

lattice transverse wavenumber kt = 2

-longitudinal wavenumber -β subject to change, control variable

-initial tilt imposed magnitude pθ subject to change, control variable

Furthermore, another issue to deal with is the initial position of the ansatz, where the solution

will converge to a soliton profile ready to be propagated. A rotatory motion around a light

ring was desired for studying soliton propagations, thus the second light ring was chosen for

propagation. This choice was made since the first ring is really close to the central maxima

peaks, which tend to focus the soliton around it, draining power attached original to the soli-

ton profile. Furthermore, outer rings posses relatively low intensity values, which can cause

the soliton to escape in most cases.

To start the research a sample set of propagations was carried out in order to identify param-

eters for stable propagations and limit this study to a certain subset of the control variables.

It can be understood as both control variables, β and pθ, group and classify the outcome of

all propagations done in what is called a parametric space, which is nothing but a coordinate

system whose axis correspond to this control variables. This allows another way of visualiz-

ing results and observing how increments or decrements in β, pθ or both affect directly the

quantifiers involved with the propagation. In this case, the x axis corresponds to pθ, and goes
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Figure 4.5: Parametric diagram for the propagation regimes in this research, where the para-
metric variables are β for the y axis and pθ for the x axis. Blue brighter dots represent
periodic rotatory motion, while red darker dots resemble escape-unbounded motion.

from pθ = 0.010 to pθ = 0.300, with increments between successive points of ∆pθ = 0.01. The

y axis corresponds to the longitudinal wave number, where it goes from β = 2.5 to pθ = 13,

with increments between successive points of ∆pθ = 0.5. This gives a total of 22× 30 = 660

points in the parametric βpθ space.

Initially, all points inside the parametric space compose the sample set of propagations to

work with. Still, all points can be divided in to one of two general categories, which are de-

fined by the outcome of the propagation dynamics of the soliton. First, they are those which

produce solitons that indefinitely propagate contained by the second light ring, which are la-

beled as periodic rotational dynamics, or just rotational motion. There are other in which the

soliton escapes initially from the lattice by fleing away. This are labeled as unbounded-escape

dynamics of motion, or simple escape motion. Such results are grouped and presented in fig.

4.5.

Representative examples of soliton propagation around the lattice are shown in figure 4.6.

where it can be noticed how the soliton motion tends to deviate from a perfect circular ring.

This can be pictured as the soliton bouncing inside the boundaries of the second light ring.
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Figure 4.6: Transverse motion dynamics for solitons propagating through a balanced Bessel
lattice. The first row fixes the value of β and varies pθ, and the second row fixes pθ to a
constant while varying β. Dynamics from (a) to (h) depict rotatory motion, while the rest
present escape-unbounded motion.

And as in the case of escape-unbounded motion, this can be produced in several ways. But

still, what is constant to all this unbounded motion is the fact that soliton do not recoil from

the inner light ring walls.

4.3 Stability and enclosed power

Stability is a major issue in this work since in principle a soliton should propagate indefi-

nitely when no initial tilt is imposed. Thus, wether a transverse moving soliton will propagate

in a stable manner is an open question, subject to physical mechanisms and the finite preci-
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sion managed by computers.

The power P carried by the soliton is the feature considered to evaluate stability. Power

is itself a conserved quantity and it must be quantified inside the vicinity of the soliton,

since the soliton may engage unstable propagation, lose its original shape and decay into a

diffuse pattern; but still the power will be conserved along propagation planes. Thus, power

should be monitored inside an effective area representing the region of space occupied by the

soliton. The strategy for doing so is as follows: first, a coordinate system centered at the

soliton’s centroid at z = 0 is created, where its radial coordinate is labeled as rc. Afterwards,

through bisections a numerical value ro is calculated that encloses a certain fraction of the

total power in the region rc ≤ ro. That is, on the plane z = 0 a circle centered on the

soliton’s centroid with radius ro should enclose a fixed amount of fractional power of the com-

plete soliton profile. High values of fractional power should be used in order to account for

a region covering the soliton almost completely. For this research, a fraction of 0.99 was used.

In order to continue, propagation must be carried out. At each desired step of monitor-

ing, the coordinates of the soliton centroid must be calculated, in order to locate its center.

Afterwards, the power contained in a circle with origin on the soliton centroid and radius ro is

quantified as a measure of the stability of the soliton. This enclosed fractional power is labeled

as Pw, and it can be thought as the power inside the region which initially comprehended

the soliton. Nevertheless, numerical errors may introduce slight variations to this quantifiers,

and so will the discreteness of the lattice.

This numerical issue introduces errors to all quantifiers extracted from a propagation. Still,

the split step Fourier method has proven to give good results, as solitons would not propagate

for thousands of propagation steps if accuracy in computation was poor or round off errors

were to change dramatically the propagation. And furthermore, the potential involved with

the nonlinear Schrödinger equation tends to self correct the wave function ψ associated to the

soliton. So, the method uses is self-correctable, even though it naturally introduces numerical

errors. Since Pw, the power enclosed inside the solitons waist, ought to remain constant as

the propagation takes place, the variation introduced by numerical computations ought to
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Figure 4.7: Plots of soliton’s enclosed fractional power Pw against propagation distance z
for a fixed value of β and a varying initial tilt pθ. For tilts higher than pθ = 0.200 the soliton
irradiates a small yet finite amount of radiation as shown in the plots. Still, for the maximum
propagation distance used, the radiation diminishes as less than 2%.
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Figure 4.8: Plots of soliton’s enclosed fractional power Pw against propagation distance z
for a fixed value of β and a varying initial tilt pθ. For tilts higher than pθ = 0.200 the soliton
irradiates a small yet finite amount of radiation as shown in the plots. Furthermore, there is
a small yet nonzero power irradiation at pθ = 0.160. The soliton radiates less power in nearby
values of the escaping tilt at β = 3.5 when compared to β = 2.5, as can be appreciated in the
plots.
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Figure 4.9: Plots of soliton’s enclosed fractional power Pw against propagation distance z
for a fixed value of β and a varying initial tilt pθ. The total percent of power radiated by
the soliton diminishes as β grows to 4.5 when compared to smaller values. Furthermore, a
certain periodic behavior starts to appear as the tilt takes high values.

strike harder than on any other quantifier that may vary along the propagation.

An important feature to consider is the soliton position in the light ring. While traveling

through the same potential the soliton suffers in theory from no diffraction whatsoever. But

as the refraction index in its vicinity changes, so does the soliton profile. It must reconfigure

itself and auto-transform in the corresponding eigenmode of the new potential. This alters the

width of the soliton mostly, since fundamental type solitons tend to retain their bell-shaped

configuration. So, as seen in the last section propagations, solitons can’t be restrained to

a particular value of the radius. Moreover, they tend to bounce inside the light ring, and

since the photonic lattice has a radial dependence, this bounces traduce in a variation of the

enclosed power Pw. As bounces are periodic phenomena in these soliton propagation, so does

Pw inherits this periodic behavior, which is better exhibited for values of β ≥ 6.00. Plots of
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Figure 4.10: Plots of soliton’s enclosed fractional power Pw against propagation distance z
for a fixed value of β and a varying initial tilt pθ. Finally the soliton’s radiated power becomes
null or undetectable to the statistical methods used. Furthermore, the periodic behavior of
the soliton power is fully displayed for tilts higher than pθ = 0.100. This behavior consists of
reaching maximums and minimums systematically with a sharp transition between. Where
again, this consist the power enclosed by a fixed size window over the soliton, not the complete
power of the soliton. This result can be interpreted as the soliton contracting and expanding
periodically over propagation.

Pw against z are exhibited for various combinations of β and θ are shown in figures 4.7-4.12.

In order to quantify true physical power radiation and filter out numerical error noise a hy-

pothesis test was applied in the following way. First, a linear regression was calculated for

Pw in function of z. AS it is, it gives a linear model in the form

Pw = β̃0 + β̃1z. (4.20)

Now, the round off errors inherent to numerical calculations do introduce a nonzero random

variation in quantifiers related to soliton propagation, so even though in a small degree, Pw

and other quantifiers can be though of having a random variable like variation. Thus, β̃1 can
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Figure 4.11: Plots of soliton’s enclosed fractional power Pw against propagation distance z
for a fixed value of β and a varying initial tilt pθ. Finally the soliton’s radiated power becomes
null or undetectable to the statistical methods used. Furthermore, the periodic behavior of
the soliton power is fully displayed for tilts higher than pθ = 0.080. This behavior consists of
reaching maximums and minimums systematically with a sharp transition between. Where
again, this consist the power enclosed by a fixed size window over the soliton, not the complete
power of the soliton. This result can be interpreted as the soliton contracting and expanding
periodically over propagation.

be in a way be analyzed as a random variable, letting statistical analysis and tools be valid

when applied to it. The linear regression model itself gives a small yet nonzero value for β̃1,

and a question that naturally arises is whether this variation is due to numerical errors, that

is, can be ignored and will sum up to 0 as the propagation tends to an infinite distance, or

whether this is actually a considerable value in the scale used for Pw, having an abstract

mathematical consideration which traduces in a physical variation of the enclosed power.

That is, if Pw remains constant or if there is any power radiated.

To quantify this, a hypothesis test is applied to the statistic β1, in order to find out if β1 = 0
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Figure 4.12: Plots of soliton power Pw against propagation distance z for a fixed value of β
and a varying initial tilt pθ. Finally the soliton’s radiated power becomes null or undetectable
to the statistical methods used. Furthermore, the periodic behavior of the soliton power is
fully displayed for tilts higher than pθ = 0.080. This behavior consists of reaching maximums
and minimums systematically with a sharp transition between. Where again, this consist
the power enclosed by a fixed size window over the soliton, not the complete power of the
soliton. This result can be interpreted as the soliton contracting and expanding periodically
over propagation.

or β1 6= 0. Results are shown in figure 4.13 for a wide variety of points in the parametric

β − pθ diagram.

As a conclusion, it was found that solitons engage unstable propagation at low values of

β for high values of pθ, loosing a small yet considerable proportion of their enclosed power

as shown in fig 5. This behavior disappears for high values of β inside the parametric (β, pθ)

space. As an hypothesis yet to be proven, it is proposed that this obeys the soliton’s width

dependence on β. That is, as β increases the pattern focuses and its width becomes smaller,

this for fundamental type solitons. Still, there is a wide region in the parametric space for
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which soliton do not radiate power.

4.4 Angular coordinate dynamics

Exploiting symmetries and invariance is the key to constructing models and obtaining

answers for any physical system. As in this case, the Bessel lattice presents null modulation

at α = π
4 , the problem presented in this section. Thus, the mathematical model, the nonlinear

Schrödinger equation, lacks any dependence to the angular coordinate θ, making it a cyclic

coordinate and suggesting it might be a good point to deal with.

To start with, it should be stressed that the soliton is itself a spatial distribution, a ex-

tended profile in space. It is not a point particle, and thus its analytical and mathematical

modeling requires the full scope of the original model. Furthermore, it is a nonlinear entity,

meaning that linear principles and laws need not hold with it. Nevertheless, it was found that

the θ polar coordinate of the soliton’s intensity centroid acts in quite a simple way. From

now on, when talking about to the θ coordinate, it will be refereed to as the coordinate of

the soliton’s intensity centroid. And since z is the propagation coordinate, the independent

coordinate, all quantifiers can be thought in a first instance as functions of z, such that θ

is itself a function of z. Plots spanning the region occupied by our parametric β, pθ of θ(z)

versus z are shown in figures 4.14-4.17.

At a first glance θ appears to be a linear function of z. Still, this suspicion needs to be

confirmed by mathematical analytical methods. The natural step is to evaluate the deriva-

tive of θ(z). Being it a constant function would be a clear and sufficient condition for θ(z) to

be a linear function. Nevertheless, this does not hold, as can be appreciated in the figures.

There are nonlinear variations in θ(z) reflecting as a nonconstant derivative. This variations

are introduced since the propagation is evaluated on a discrete, finite grid and the numerical

system involves a finite accuracy in calculations. Naturally, this numerical errors can’t be

eliminated.

Furthermore, as the soliton bounces back and forth radially inside the light ring the vari-

ation of the refraction index a variation is is naturally introduced in all quantifiers involving
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Figure 4.13: Hypothesis testing for evaluating the variation of the enclosed power Pw. Results
can be interpreted as followed: if a point of the parametric space (circular markers) falls
below the critical value (straight null slope line) the variation in Pw can be interpreted as
null, leaving a non-radiating power soliton. If the blue dot overcomes the critical value, a
closer look at the respective plot must be taken. Generally, it can be said that solitons with
high values of β do not radiate power for any value of the initial tilt, while as for solitons
with β values lower than 6, power is radiated at high values of pθ.
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Figure 4.14: The first plot exhibits curves of θ, the angular coordinate position of the intensity
centroid of the soliton, against the propagation distance z, where all curves share the same
value of β and have different initial tilts pθ. The set of last five figures plot the derivative of
θ against z, where as it can be seen, each curve has small oscillations which form around a
constant value.
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Figure 4.15: The first plot exhibits curves of θ, the angular coordinate position of the intensity
centroid of the soliton, against the propagation distance z, where all curves share the same
value of β and have different initial tilts pθ. The set of last five figures plot the derivative of
θ against z, where as it can be seen, each curve has small oscillations which form around a
constant value.
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Figure 4.16: The first plot exhibits curves of θ, the angular coordinate position of the intensity
centroid of the soliton, against the propagation distance z, where all curves share the same
value of β and have different initial tilts pθ. The set of last five figures plot the derivative of
θ against z, where as it can be seen, each curve has small oscillations which form around a
constant value.
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Figure 4.17: The first plot exhibits curves of θ, the angular coordinate position of the intensity
centroid of the soliton, against the propagation distance z, where all curves share the same
value of β and have different initial tilts pθ. The set of last five figures plot the derivative of
θ against z, where as it can be seen, each curve has small oscillations which form around a
constant value.
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Figure 4.18: Hypothesis testing for evaluating the variation of the function θ(z). Results can
be interpreted as followed: if a point of the parametric space (circular markers) falls below
the critical value (straight null slope line) the variation in θ(z) can be interpreted as null,
leaving a non-radiating power soliton. If the blue dot overcomes the critical value, a closer
look at the respective plot must be taken. It can be concluded that for all values inside the
parametric space θ(z) behaves as a linear function.
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the soliton. This occurs as the system is nonlinear and so the variation induced by the radial

variation can’t be quantified in an exact fashion this periodic behavior being present to in

the quantifier Pw of last section.

Nevertheless, both variations (radial and numerical) may represent a small percent of the

total derivative, since θ(z) appears to be a linear function. In order to find so, a linear inter-

polation was carried out for every simulation. After so, the same hypothesis test as the one

used in the last section was employed for determining whether this variation was relevant to

the function itself, or if rather it could be ignored. All test carried (fig. 4.18) seemed to point

to the second option, that is the variation is irrelevant.

So, for concluding this section, it was found that θ(z) is a linear function of z for all other

parameters fixed, that is

θ(z) = Qz, (4.21)

where Q is a constant of propagation yet to be related to other parameters.

4.5 Radial coordinate dynamics

Exploring the dynamics of the radial coordinate r is the next natural step after clarifying

and investigating the z depends of the polar angle coordinate θ. This time the model proposed

is not so simple, since the lattice itself has a radial dependence following a squared Bessel

function. Again, z is our independent variable, the propagation coordinate, so all functions

of the soliton profile can be thought as functions of z To start exploring this subproblem,

plots of r(z) versus z are presented in figure 4.19, where again, r(z) is a coordinate taken

with respect to the soliton’s intensity centroid.

The main feature of r(z) that strikes view at a first glance is that it is a semi-periodic

function, where the term semi enters as that the function itself approximately reproduces

itself after each complete period for low values of β, but for almost all the parametric space

βtθ it is a periodic functions. Furthermore, for a fixed value of β the minimum radius for each

propagation remains constant and the maximum radius increases as pθ does so. This issue is
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Figure 4.19: Plots of the r(z), the radial coordinate of the soliton intensity centroid, against
z, the propagation independent coordinate. All single figures fixes β to a value, where each
different curve corresponds to a value of pθ. Functions exhibit a periodic behavior, where
in some cases the amplitude is slightly modulated. A constant to all curves is the minimum
value acquired, which is a constant along propagation. Furthermore, for a fixed value of β,
the minimum radius is independent of the initial tilt pθ as shown. It can be shown how for
small values of z all plots seem to be in phase with respect to its period, but as z increases
distinct sections of the periodic function start overlapping, resulting in a dephasing.

79



dealt and exposed clearly in the following figure 4.20.

After qualitatively exploring the dynamics of r(z), it is time to propose an approximate

model for it. Following the strategy for angular dynamics the model starts from the idea that

the lattice itself acts as an external force on the soliton, where more precisely, the refraction

index of the lattice is a conservative potential for the dynamic function r(z). Newton’s second

law goes as

F = ma, (4.22)

where F is a force acting on an object with mass m and acceleration a. Now, following the

hypothesis that the motion dynamics can be separated when used the natural coordinates for

the symmetry, in this case r and θ, Newton’s second law can be rewritten as

Fr = mar, (4.23)

where Fr is the central force originated from the optical lattice and ar is the second derivative

of r with respect to z, the independent-propagation coordinate, that is

ar =
d2r

dz2
. (4.24)

Going back to the mathematical model it is found that the profile corresponding to the lattice

is

u(r) = J 2
m(ktr), (4.25)

where Jm(x) is a first kind Bessel function of order m and kt is the lattice longitudinal wave

number. As a model proposed, it is assumed that the profile u(r) acts as a conservative

potential that generates a force Fr in the fashion

Fr = −du

dr
. (4.26)

Equating derivatives and inserting terms in the original equation the model ends up with

d2r

dz2
∝ −2Jm(ktr)

(
ktJm+1(ktr) +

m

r
Jm(ktr)

)
, (4.27)
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Figure 4.20: Each window fixes the value of β for all scatter curves, where the x axis stands
for a initial tilt value pθ, and the y axis represents a certain value of the r coordinate. For
the case of blue points, it points the minimum value of r(z) for each propagation, and red
dot point maximum values of r(z). It can be seen how the minimum values are constant for
fixed z, while maxima values increase in an exponential fashion.
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where the term m was removed since it is not the intention for this work to define an equiva-

lence for mass m. Rather than that, it is sufficient to reach a proportionality relation. Thus,

a nonlinear second order differential equation has been reached for the function r(z). Rather

than solving it, the next step is testing its accuracy. Plots of Fr against ar are show in figures

4.21-4.23.

A linear behavior is found approximately for low values of β, where the expected straight

lines widens resulting in a multiple valued function. Still, linearity appears in a mild fashion

for central values of the initial tilt pθ. Still. as β increases, linearity appears in a more precise

way, and the model fits perfectly for a wide region in the parametric space. Nevertheless, for

high values of pθ the relations turns nonlinear for relatively high radius, but still maintaining

a one to one correspondence. Meaning that even though behavior lacks linearity in one end

of the curve, it can be somehow approximated by other functions, and showing two that both

quantities are still related.

It has been demonstrated how the relationships seems to work in a more quantitative way by

calculating the correlation coefficients for points in the parametric space and plotting the re-

sults in figure 4.24. Results seem to indicate the linear model fits well for lots of combinations.

4.6 Rotation rate variation

It is turn now to explore the dynamics of the soliton’s motion as one after treating

separately the functions r(z) and θ(z). It has been proven how θ(z) is a linear function of

propagation and how r(z) exhibits a more elaborate behavior inside a particular region of

the parametric β − pθ space. Furthermore, the variations of r(z) are not random nor follow

numerical round off errors, thus the complete dynamic for the soliton can be explained using

both models. This produces an explanation for bounces inside the light ring, and furthermore

and perhaps most important, gives support and an explanation to the varying rotation rate

around a light ring with null azimuthal modulation.
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Figure 4.21: Each window fixes β and pθ, where the x axis corresponds to the radial accel-
eration, the second derivative of r(z); and the y axis stands for the generalized radial force
originating from the Bessel lattice profile. The straight line stands for the linear regression
of the set of points originating from the quantifiers. The linear approximation is moderately
valid for mild values of pθ.
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Figure 4.22: Each window fixes β and pθ, where the x axis corresponds to the radial accel-
eration, the second derivative of r(z); and the y axis stands for the generalized radial force
originating from the Bessel lattice profile. The straight line stands for the linear regression
of the set of points originating from the quantifiers. The linear approximation fits perfectly
for a wide range of pθ.
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Figure 4.23: Each window fixes β and pθ, where the x axis corresponds to the radial accel-
eration, the second derivative of r(z); and the y axis stands for the generalized radial force
originating from the Bessel lattice profile. The straight line stands for the linear regression
of the set of points originating from the quantifiers. The linear approximation fits perfectly
for a wide range of pθ.
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Figure 4.24: The correlation coefficient is plotted for a wide range of β and pθ values. It
is practicably equal to unity, meaning a perfect linear relation, for a high percentage of the
plotted values. The values distort and turn nonlinear at low and high values of pθ.86



First, to give a clear insight of the problem, plots of the rotation rate γ are show for various

points in the parametric space in fig. 4.25, where as noted before, γ is defined as

γ =
|∆rt|
∆z

, (4.28)

where it describes how the position of the soliton chances with propagation steps, and again

as usual, γ is taken with respect to the soliton’s intensity centroid. In order to elucidate

variations of γ, several scatter plots are exhibited in fig. 4.26, where points correspond to

three different quantifiers of each curve: its maximum, minimum and mean value. The triad

of values exhibit an incremental behavior as pθ increases. This is due to the soliton’s pene-

tration on the light ring outer wall, which as seen before, increases as pθ increases to. Thus,

offering a bigger variation on the observed potential and a wider range for the values of γ. Fur-

thermore, to exhibit such increments, plots on the standard deviation σγ are shown in fig 4.27.

More over, both models

θ(z) = Qz, (4.29)

and
d2r

dz2
∝ −2Jm(ktr)

(
ktJm+1(ktr) +

m

r
Jm(ktr)

)
, (4.30)

seem to fit quite well inside a certain region in the parametric space. Therefore, it seams

plausible to explain out of this facts how γ has a non zero variation. That is, hot the rotation

rate is not constant along propagation in a lattice with no azimuthal modulation. So, for

the conclusion of this section, it can be pointed how the transverse rotation rate γ is not

constant along propagation, even though the soliton travels around circular light rings with

null azimuthal modulation.

4.7 Soliton transverse motion and classic dynamic billiards

This work has demonstrated how solitons exhibit a decomposition on its dynamics of mo-

tion even though they are intrinsic nonlinear phenomena. Furthermore, the motion trajectory

as a whole can be view as describing a billiards type dynamics in a moderate approximation.
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Figure 4.25: Plots of the normalized transverse rotation rate γ(z), against z. In order to
normalize γ(z), an integer number of periods was taken to avoid skewness to either low or
high values.All single figures fixes β to a value, where each different curve corresponds to a
value of pθ.
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Figure 4.26: Plots of quantifiers of the transverse rotation rate γ(z) against pθ. In order to
normalize γ(z), an integer number of periods was taken to avoid skewness to either low or
high values.All single figures fixes β to a value, where each different point corresponds to a
value of pθ. Upper, middle and lower (red, yellow and blue in color) points correspond to
maximum, mean and minimum values respectively. It is appreciated how as pθ increases, the
triad of quantifiers increase in their single values. More over, the difference between minimum
and maximum values increase to, elucidating the growing variation of γ(z) as pθ increases.
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Figure 4.27: Plots of the standard deviation of γ(z), against z. In order to normalize γ(z),
an integer number of periods was taken to avoid skewness to either low or high values.All
single figures fixes β to a value, where each different point corresponds to a value of pθ. As
pθ increases, so does the standard deviation σγ .
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This follows the bounces of the soliton inside the light ring, where the last can be viewed as

acting as a elastic wall for the particle like soliton, all this said inspired by a slight analogy.

This section is an attempt to establishing an analogy and confection between billiards sys-

tems an a soliton transverse motion inside the a light ring of the non modulated Bessel lattice.

It is said solitons bounce back and forth inside the inner and outer walls of the light ring

since the radial coordinate r starts from a minimum value, increases until it reaches a peak

maximum value and starts decreasing until going back to the original initial r value, the

minimum value for r. This is a process done repeatedly by the soliton, in such a continuous

and smooth way following the dynamics of the r coordinate. Furthermore, it has been exhib-

ited how this peak value for each cycle remains constant for a large region of the parametric

space. This behavior of the radial coordinate constitutes the fundamentals to attempt sta-

bilizing an analogy between the soliton motion studied in this section and dynamical billiards.

The first detail to exhibit is the orientation of the soliton, that is, its angle of transverse

propagation. In the classical dynamics ideal case, a point particle maintains a constant ori-

entation until it strikes with a wall, where it bounces by changing the orientation only of its

momentum in a direction perpendicular to the wall. This is done ideally instantly, so the plot

of its orientation angle can be viewed as a train of box car functions with different amplitudes,

like stairs.

Another important detail to consider is the linear momentum associated with each bounce.

A particle orientation is ruled by the ratio of its speed components, being in two dimension

related to the inverse tangent function. That is, if φ is the orientation angle, vx and vy the

speed components corresponding to the x and y directions respectively, then the orientation

angle can be defined as

φ = tan−1
(vy

vx

)
. (4.31)

The instant orientation of the particle is perfectly defined by this quantity φ, where if the

unit vector pointing in the direction of the particle is û it follows that

û = cos(φ)x̂ + sin(φ)ŷ. (4.32)
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Now, momentum is a vector quantity having the same direction of the instant direction of

the particle. So, if p is the particle momentum magnitude, then

−→p = p
[
cos(φ)x̂ + sin(φ)ŷ

]
. (4.33)

The momentum a body carries acts directly with the net force exerted on it via Newton’s

second law. In the case of a particle bouncing inside the walls of a confinement potential, as

in the case of dynamic billiards, what determines if the particle crosses the wall or bounces

back is the momentum directed in the force acting for it to recoil. In this case with circular

symmetry, when a particle recoils the force exerted on it is directed radially inwards into the

center of the potential, the origin r = 0. So, the momentum to be considered in each bounce

must be projected along this radial line. That is, the effective momentum involved in the

recoil process is

pch = −→p · r̂ = pû · r̂ = p
(

cos(φ)x̂ + sin(φ)ŷ
)
·
(x

r
x̂ +

y

r
ŷ
)
, (4.34)

pch =
p

r

(
x cos(φ) + y sin(φ)

)
. (4.35)

This is a quantifier that characterizes the outcome of the recoil. If it crosses a critical value

depending on the structure of the body subject to the recoil and the force exerted. As it

happens for the ideal particle case, this quantifier is a constant of motion for each recoil.

That is, has exactly the same value right before crashing into the billiard walls. Since this is

a function of the initial momentum magnitude p, it can be normalized, so just to kept track

of the position of the particle and account for variations on it. That defines

pu =
1
r

(
x cos(φ) + y sin(φ)

)
, (4.36)

which will be a quantifier to treat.

Furthermore, this momentum projection over the line of action can be seen as a function

of radius, since in the end both quantifiers are functions of propagation and can be put to-

gether in a phase diagram. Fig. 4.25 summarizes and exhibits this propagation quantifiers

for an ideal classical billiard.
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Figure 4.28: Dynamics of a point particle classical billiards assuming elastic collisions with
an infinite potential wall. Each row consists of a different case, where the initial radius is set
as the control variable. In all three cases the particle is launch azimuthally with respect to
the orientation of the lattice. The first column resembles the billiard where the particle is
confined, marked in red, and the particle it takes, colored in bright green. In all three cases,
and as a general case for this system, the minimum radius along the whole trajectory is fixed
for each bounce, and is equal to the initial radius. The second column corresponds to plots
of the soliton orientation with respect to the x axis, where it can be seen how it is constant
and changes abruptly at each recoil. The third column corresponds to the projection of the
momentum along the line of collision, being it the effective momentum in each recoil process.
Finally, the fourth column is a plot of the momentum projection against the radius.
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For the case of solitons, the ideal behavior of the orientation angle φ is lost since the re-

coil is not instantaneous. It is rather described as fuzzy, since the potential fills the light

ring containing the soliton, so the soliton is constantly being reoriented. Still, the soliton

orientation follows a similar behavior, but with smoother and continues jumps. This is shown

figures 4.29-4.32.

Nevertheless, nonlinear effects and diffraction conspire together to recreate an important

detail from classical dynamic billiards. In such case, if the initial launch angle is such that

the particle direction is initially azimuthal, for example π
2 when initially located at the x axis,

the initial radius is kept as the minimum radius for the dynamic. That is, the point particle

bounces of the wall and is reoriented in a way such as to respect the minimum radius limit

equal to the initial value. Surprisingly, this fact is also present in soliton transverse dynamics,

as shown in previous sections.

In the case of solitons pu resembles the behavior as seen in classical billiards for non low

values of β. That is, at β = 3 the function is periodic but with a modulated amplitude. Still,

it can be appreciated how it changes form minimum to maximum in the same interval of z.

But at higher values of β this anomalous behavior disappears and pu behaves as in classical

billiards, all this shown in figures 4.33-4.35.

When plotting the phase diagram of pu and r at low values of β an anomalous and fuzzy

behavior appears again, deviating completely from the classical one. Still, as β increases,

the curve forms what appears to be an ellipse, meaning there is a close and compact rela-

tion between both variables, as in the classical case, except for the fact that in the classical

case the particle recoils instantaneously, leaving half of the ellipse only. Since the soliton

crosses the wall and recoil smoothly, this transition is rather slow and continuous, causing

for the complete ellipse to take shape. This close relation is found in figures 4.36-4.38. A

proper technique to quantify this relation is to calculate the derivative of one quantifier and

plot it against the other. If there is a clear, constant dephasing between both quantities,

this operation would result in plotting a straight line, which again, does not hold for low
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Figure 4.29: Plots of the soliton angle orientation φ against propagation distance z. This
behavior resembles that of the ideal classical billiard, but with transitions between collisions
done in a rather smooth way. As the initial tilt tθ reaches higher values, collisions start
making more abrupt transitions.
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Figure 4.30: Plots of the soliton angle orientation φ against propagation distance z. This
behavior resembles that of the ideal classical billiard, but with transitions between collisions
done in a rather smooth way. As the initial tilt tθ reaches higher values, collisions start
making more abrupt transitions.
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Figure 4.31: Plots of the soliton angle orientation φ against propagation distance z. This
behavior resembles that of the ideal classical billiard, but with transitions between collisions
done in a rather smooth way. As the initial tilt tθ reaches higher values, collisions start
making more abrupt transitions.
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Figure 4.32: Plots of the soliton angle orientation φ against propagation distance z. This
behavior resembles that of the ideal classical billiard, but with transitions between collisions
done in a rather smooth way. As the initial tilt tθ reaches higher values, collisions start
making more abrupt transitions.
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Figure 4.33: Plots of the soliton normalized momentum projection pu over the radial wall
potential. Maxima corresponds to instants right before recoil completely takes place, that
is, changing direction. For β = 2.5, pr exhibits an anomalous yet periodic behavior, as it’s
amplitude is modulated.
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Figure 4.34: Plots of the soliton normalized momentum projection pu over the radial wall
potential. Maxima corresponds to instants right before recoil completely takes place, that is,
changing direction. For β = 6, the function is completely periodic.
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Figure 4.35: Plots of the soliton normalized momentum projection pu over the radial wall
potential. Maxima corresponds to instants right before recoil completely takes place, that is,
changing direction. For β = 9, the function is completely periodic.
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Figure 4.36: Phase diagrams of pr against r for several values of pθ. Anomalous behavior is
exhibited at β = 3, as it can be appreciated in this figure.
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Figure 4.37: Phase diagrams of pr against r for several values of pθ. The functions seem
closely related for non-high values of pθ, as for high values the mapping becomes fuzzy.
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Figure 4.38: Phase diagrams of pr against r for several values of pθ. The functions seem
closely related for all values of pθ.
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values of β, but after overcoming a certain threshold holds exactly. Still, there is a small

deviation from linearity at boundary values of the radius, as experimented in the relation-

ship between the radial acceleration and its generalized force. This shown in figures 4.39-4.41.

Finally, to quantify this relationship, the correlation coefficient was plotted for the para-

metric space, where a value equal to −1 represents an exact linear relationship, which holds

for a region in the parametric space. This shown in figure 4.42.

All this results help visualizing how periodic the motion is inside a light ring for a certain

region of the parametric space, this leading to the explanation of why rotatory motion takes

place. Since motion appears to be periodic, then if the soliton recoils in the first collision,

it will do so indefinitely. This helping constructing the idea there are only two regimes of

motion for the soliton. Furthermore, this helps strengthening the concept of soliton billiards,

which would be solitons transverse motion describing billiards like systems.

4.8 Concluding remarks for the balanced Bessel lattice case

This chapter leaves interesting results concerning soliton propagation through balanced

Bessel lattices. Still, more work is yet to be done, as there seems to be a strong connection

with classical dynamic billiards. Moreover, this analysis must be applied to the general mod-

ulated Bessel lattice, where an azimuthal modulation is present.

The following points summarize the results from this chapter:

-There are two regimes of motion for solitons rotating around a light ring: rotatory and es-

caping

-Low values of β tend to present irregularities in its propagation quantifiers and most of the

following results do not apply or apply approximately for this region.

-The width of the soliton is modulated via the radial potential function of the lattice

-The angular coordinate position is a linear function of z

-The radial coordinate motion can be derived from a second Newton law like approach.

-The minimum radius of propagation is maintained constant along propagation and equal to

the initial radius
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Figure 4.39: Phase diagrams of pr first derivative against r for several values of pθ. The
behavior exhibited can be approximated to be semi-linear.
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Figure 4.40: Phase diagrams of pr first derivative against r for several values of pθ. The
behavior exhibited can be approximated as linear, but breaks at high radius and values of pθ.
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Figure 4.41: Phase diagrams of pr first derivative against r for several values of pθ. The
behavior exhibited can be approximated as linear, but breaks at high radius and values of pθ.
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Figure 4.42: Correlation coefficient between the first derivative of pu and r. The relationship
holds linearly for a great amount of points in the parametric space.
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-The maximum radius augments as the initial tilt does so

-The rotation rate has a non zero variation even though there is no azimuthal modulation

-Transverse motion is closely related to dynamic billiards system, which help explains why

there are only two different regimes of motion
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Chapter 5

Concluding remarks

Nonlinear effects can trigger interesting phenomena in nature, which analysis is often

neglected due to numerical complications. Nonlinearity has been historically left behind sim-

pler models due to the lack of computational power in the midst and creation of physics. Still,

the advent of powerful systems for carrying highly complex operations has given nonlinearity

a second chance in the physical and scientific world.

This work is devoted to the study of optical spatial solitons, or solitons for short in this

thesis, which is a fundamental unit of propagation in nonlinear optics. Different possibilities

have been explored, and amongst those remarkable results have emerged. Nevertheless, this

research is just a small step in the understanding of nonlinear phenomena, and contributes

nothing but few and subject details to what the whole theory and fields entitles. The results

obtained from this research represent my small contribution to a continually growing field,

and my first steps in what I sincerely hope fruitful career will be.

5.1 Summary of results

This work contributions deal with optical spatial solitons propagating through optical

latices, a routing potential which can control the soliton motion. First, the effects of imposing

an elliptically symmetry on the lattice where studied. This optical latice was described by a

superposition of Mathieu nondiffracting beams, and the latice family itself was baptized as

elliptical photonic latices. Stable propagation was observed for the soliton in the regime of

longitudinal-transverse stationary propagation. Furthermore, transverse motion parallel to

the longitudinal propagation was imposed on the soliton by imprinting an initial tilt on the
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input beam in the form of a phase spatial dependent factor. Different regimes of transverse

motion where observed while longitudinal propagation was stable, which constitutes the fun-

damental result of such part of the thesis. This because the elliptic photonic latice posses an

nonzero azimuthal modulation which is not ignored by the soliton. Instead, the soliton slowly

and continually transform itself to the new surrounding potential. This was an interesting

fact, due to it had not been observed before. This part of the work has already been published

in the scientific journal Optics Letters, where the corresponding paper can be found as [28].

Results continue as the research posses on a different kind of optical latice, the modulated

Bessel latice. This family of latices consists of superpositions of even’ćosine and odd’́sine

Bessel beams. By an appropriate choice of coefficients this family of latice has been proved to

conserve the power contained in the beam, this being a subtle but convenient fact for practical

and experimental implementations. Still, this work is completely theoretical, as the results

offered for this section constitute an introductory step in creating a model for transverse mo-

tion of a soliton in a Bessel circular light ring. For this research the modulation parameter

introduced in the coefficients of the beam were chosen as to nullify modulation along circular

light rings, thus providing an azimuthally symmetric potential for propagation. Still, it was

proved how variations in dynamic quantifiers takes place and account for physical process.

Furthermore, it still lays as a task to complete, but an attempt was started to make an anal-

ogy between these transverse motion dynamics and classical particle billiards. This results

are currently being organized in order to publish them in an international optics journal.

5.2 Future work

Work and research on this subject is currently in progress, as the modulated light ring

cases for the Bessel beams lays a challenge still. Furthermore, it appears an attractive idea

to conceive this case as a more general theory correctly describing the null modulation light

ring case explored in this work.

There also exists interest in working and researching on vortex type solitons, since all this

work entitles to propagation of fundamental type solitons. The problem of vortex type soli-

tons is a much more difficult one, due to the numerical requirements imposed by this profiles
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and the instability they naturally posses.

Furthermore, a project on beam shaping for soliton propagation has been left on halt due to

time restrictions. It deals with a superpositions of different order Bessel beams aspiring to

form a controllable azimuthal modulation on a circular light ring. That is, not limiting work

on the simple harmonic modulation imposed naturally by Bessel beams.

As research lays now, interesting opportunities are yet to be taken. The problem is now

to conform a future agenda for working in the pending problems. Future will answer how

well time was employed.
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