

CONFIGURATION WIZARDS AND SOFTWARE

PRODUCT LINES

Ph.D. Dissertation by

Guillermo Jiménez Pérez

Instituto Tecnológico y de Estudios Superiores de Monterrey

June, 2003

Acknowledgments

Conducting the research work of a doctoral dissertation takes long time. Particu-

larly, this work required longer time than a "normal" dissertation may involve,

because it was necessary to synchronize and coordinate work with members work-

ing in different áreas and in remote locations.

First of all, I would like to thank my family Saúl, Diego, and my wife

Norma, whose love provided the support I needed to remain working in such long

endeavor.
I am deeply indebted to my advisor, Don Batory who dedicated extra time

to conduct my research. This dissertation would not be possible without all your

support.

My local advisor, José Icaza, provided me with confidence to pursue this

work and remained so confident of its successful end that motivated me to keep

working besides all those additional responsibilities in my work. Thank you for

your encouragement.

Special thanks to my other committee members, professors Raúl Pérez,
Arturo Molina, and Ramón Breña. Thank you for your insightful feedback and

your interest in my work.

Finally, I would like to thank Apolinar and Geraldine Luera, whose support

and help were fundamental in the year we spent living in Austin, and in my count-

less travels to meet my foreign advisor. I appreciate your friendship and interest in

the progress of my research.

Table of Contents

Chapter 1 Introduction 1
2.1 Overview and Contribution 1
2.2 Outline 5

Chapter 2 Engineering Configuration Wizards 9
3.1 Background 10
3.2 Domain Engineering 11

3.2.1 Domain Analysis 11
3.2.2 Domain Design 13
3.2.3 Domain Implementation 14
3.2.4 Application Engineering 15

3.3 Proposed Method for Domain Engineering 15
3.3.1 Domain Modeling: Feature Models 16
3.3.2 Domain Design: GenVoca 19
3.3.3 Translating Feature Models to GenVoca Models 22
3.3.4 Domain Implementation: Wizlets as Components 24
3.3.5 Composition Validation 29

3.4 Configuration Wizards 34
3.5 Recap 39

Chapter 3 Vehicle Simulators Product-Line 41
4.1 Autonomous vehicle simulation 41
4.2 Static Parameterization in Java 43
4.3 Domain Model for Autonomous Vehicles 48

4.3.1 Kinematic Model of a Car 48
4.3.2 Kinematic Model of a Tank 50
4.3.3 Canonical forms of vehicle control 51
4.3.4 Feature Model 52

4.4 Domain design 54
4.5 Domain implementation 56

4.5.1 Wizlet implementation 56
4.5.2 Implementing Composition Verification 58
4.5.3 Configuration Wizard Implementation and Examples 61

4.6 Discussion 67

Chapter 4 Computer Numerical Control Systems 69
5.1 Motivation 70
5.2 Numerical Control 71

5.2.1 NC Machine Tool Elements 72
5.2.2 NC Programming 75
5.2.3 Program codes (letter address) 76
5.2.4 NC programming procedures 78

5.3 Project's Goals 83
5.4 A FODA Model for CNC Systems 86
5.5 Hierarchical Models for CNC Systems 87

5.5.1 MotionGenerator subsystem 89
5.5.2 MotionControl Subsystem 94

5.6 GenVoca Models 102
5.7 Compositional Implementation 106
5.8 Design Wizard for CNC Systems 107
5.9 Discussion 109

Chapter 5 Credit Unions Product-Line 110
6.1 Credit Union Management 110
6.2 Static parameterization in Object Pascal 113
6.3 Domain Model of Accounting Systems 118
6.4 Domain design 121
6.5 Domain implementation 124
6.6 Discussion 129

Chapter 6 Product-Line Evolution 131
7.1 Evolution in product-lines 131
7.2 Specifying product-line evolution 133
7.3 Evolving product-lines with meta-generators 138
7.4 Evolving configuration wizards 140
7.5 Evolving a product-line of vehicle simulators 151
7.6 Evolving a CNC product-line 155
7.7 Limitations and advantages 158

7.7.1 Limitations 159
7.7.2 Advantages 161

7.8 Discussion 162

Chapter 7 Related work 163
8.1 Product-Line Engineering Methods 163

8.1.1 FODA 163
8.1.2 FeatuRSEB 164
8.1.3 Feature Abstract Specification and Translation 164
8.1.4 Organization Domain Modeling 165
8.1.5 FODAcom 165
8.1.6 PuLSE 165
8.1.7 FORM 166
8.1.8 GenVoca 166
8.1.9 Discussion 167

8.2 Implementing Product-Lines 168
8.2.1 Aspects 168
8.2.2 Frameworks 168
8.2.3 Mixins 169
8.2.4 Components 169
8.2.5 Generators 170
8.2.6 Software Kits 170
8.2.7 Design wizards 170
8.2.8 Configuration environments 171
8.2.9 Discussion 171

8.3 Product-line evolution 172
8.3.1 Discussion 173

8.4 Recap 173

Chapter 8 Conclusions 175
9.1 Proposed Methodology 175
9.2 Results and Contributions 179
9.3 Done Right 182
9.4 Done Wrong 184
9.5 Future Research 185
9.6 Recap 186

List of Figures

Figure 2.1 Software product-line engineering 12
Figure 2.2 Feature diagram and elements 17
Figure 2.3 GenVoca components in UML 20
Figure 2.4 Types of components and implementations 21
Figure 2.5 From feature models to GenVoca model 23
Figure 2.6 Component compositions and inheritance 26
Figure 2.7 Composition verification 32
Figure 2.8 Configuration wizard process model 36
Figure 2.9 Configuration wizard's architecture 37
Figure 2.10 Specification interface for vehicle simulators 38
Figure 3.1 Type declarations and equations 44
Figure 3.2 Kinematic model for a car 49
Figure 3.3 Kinematic model for a tank 50
Figure 3.4 Trajectory control 51
Figure 3.5 Feature diagram of a vehicle simulator domain 53
Figure 3.6 Hierarchical model of a vehicle simulators family 54
Figure 3.7 Specification interface for vehicle simulators family 61
Figure 3.8 Simple car 62
Figure 3.9 Specification interface car towing a trailer 63
Figure 3.10 Car with trailer 64
Figure 3.11 Specification of a tank simulator 65
Figure 3.12 Simulator of a tank 65
Figure 3.13 Specification of a motorcycle simulator 66
Figure 3.14 Two-wheel motorcycle with trailer 66
Figure 3.15 Tank towing a trailer is illegal 67
Figure 4.1 Canonical form of a NC system 75
Figure 4.2 . Machine tool motion path 81
Figure 4.3 Facing cycle (G72) 82
Figure 4.4 Contour parallel (G73) 83
Figure 4.5 Feature model of CNC domain 86
Figure 4.6 Sub-feature model of MotionControl 87
Figure 4.7 CNC's high-level architecture 87
Figure 4.8 MotionGenerator subsystem 90

Figure 4.9 MotionControl subsystem 95
Figure 4.10 MotionGenerator's types and implementations 103
Figure 4.11 MotionControl's types and implementations 103
Figure 4.12 Component instances for MotionGenerator 104
Figure 4.13 Component instances for MotionControl 105
Figure 4.14 CNCgen's user interface 107
Figure 5.1 The accounting process 112
Figure 5.2 Type declarations and composition equations 116
Figure 5.3 Feature diagram for general ledgers 120
Figure 5.4 Feature diagram for reports 121
Figure 5.5 Accounting systems architecture 122
Figure 5.6 Hierarchical model for general ledgers 122
Figure 5.7 Class hierarchy of accounting systems 125
Figure 5.8 Specification interface for accounting systems 128
Figure 6.1 Product-lines can evolve into new product-lines 132
Figure 6.2 Initial feature diagram 135
Figure 6.3 Simple feature diagram 136
Figure 6.4 Complex feature diagram 137
Figure 6.5 Meta-product-lines can produce application families 139
Figure 6.6 Specification and developer interface 141
Figure 6.7 Configuration wizards derivation from product line specifications . 146
Figure 6.8 Original interface of configuration wizard for vehicle simulators . . 153
Figure 6.9 Evolved interface of configuration wizard for vehicle simulators . . 154
Figure 6.10 Original interface of CNC configuration wizard 156
Figure 6.11 Evolved interface of CNC configuration wizard 157

Abstract
The idea of software product lines is suggested to reduce both development

time and cost. In search of scalable approaches for deploying large-scale software

product lines, researchers and practitioners have been conducting work in several

largely intertwined fields. Two áreas are component-based development and prod-

uct-line architectures whose goal is that application families can be produced by

integrating components as prescribed by the architecture. A third field is generator

technology, whose aim is the automatic production of software from a (preferably)

formal specification. A fourth technology is expert systems, developed in the arti-

ficial intelligence field, which demonstrated that when knowledge in restricted
domains is well-understood, it can be conveniently structured, stored, and manipu-

lated thus problems can be solved by following different reasoning chains appro-

priate to each particular problem, and explanations displayed to justify the

resulting solution.

This dissertation shows that it is possible to define an approach that com-

bines component-based development, product-line architectures, and generativo

technologies to construct expert tools for automatic software production called

configuration wizards. A configuration wizard is a software assistant incorporating

domain-specific topological knowledge (i.e. a product-line architecture) and a
library of parameterized components which can be adapted to fit in different com-

positions, realizing members of a system family.

Configuration wizards have the additional advantage that with appropriate

modularization, their evolution can be automatized by describing them as meta-

models. These meta-models are processed by a meta-generator which produces

specific configuration wizards.

Our work has several contributions in the área of product lines, as is show-

ing that relatively simple generator-based tools are enough to produce application

families, the identification of a general approach and minimal extensions to pro-

gramming languages necessary to implement configuration wizards. Additionally,

we show how the approach can be extended to produce configuration wizards from

meta-specifications. This last idea is used to gracefully evolve configuration wiz-

ards to incorpórate new features or exclude desired features.

Chapter 1

Introduction

1.1 Overview and Contribution
It is well-known that constructing software from available software modules can

lead to higher productivity and quality than developing software from scratch

[Par79]. It has been also observed that, software modules are better reused in dif-

ferent applications if they represent domain concepts [GriOOa] (i.e., features

[KCH+90]). A domain is an área of knowledge or activity characterized by a set of

concepts and terminology understood by practitioners in that área [BRJ98].

Domain features are useful in describing application families, which are groups of

applications sharing characteristics but also exhibiting variability in their charac-

teristics. In constructing application families, a set of existing and future software

products can be analyzed to determine common and variable features, and a soft-

ware architecture for the family can be derived, and an implementation strategy

that represents this commonality in terms of a set of reusable software modules can

be created [BCSOO]. An application family designed and implemented to take

advantage of a common structure, common features, and prescribed variabilities is

known as a software product-line [WL99].
The idea of software product-lines is conceptually simple; however, its

realization may not be. One reason is that applications from different domains may

have fundamental differences that cannot be dealt with in the same way (e.g., real-

1

time versus Information systems). However, the perspective that product lines can

facilitate high-quality and economic application development, has started many

research efforts to identify methods, tools, and models for software product-line

development, both in industry and academia [DonOO, Cha02]. As a result, different

methods have been proposed to conduct product-line engineering. A common

characteristic in these methods is that they are too general in the sense that almost

any approach fits them (e.g. FAST [WL99]) yet others are tailored to be used in

specific domains (e.g. FODAcom [VAM+98] inthe telecommunications industry).

Other research in the área of software product-lines focuses in determining

what a reusable module should be and how to implement reusable modules

[Par72b, ASCOO]. Two fundamental questions are how modules represent domain

features, and what parameterization is necessary to allow modules to be used in

different members of a product family. Answers to these questions provide guide-

lines on how to represent and implement modules from which product lines can be

constructed.

Two complementary concepts associated to application construction in a

product-line are configuration and composition. A configuration consists in the set

of features and their arrangement in defining an application [SMBOO, StaOO]; the

set of modules implementing a specific configuration is a composition [Bat98].

How modules can be composed to construct applications from configuration spec-

ifications is determined at module design and implementation time.

In this dissertation we present a product-line development approach that

combines best-of-breed approaches to analysis, design, and implementation of

product-line infrastructures. Our approach introduces the concept of configuration

wizards, which are tools to automatically synthesize software product lines in
well-understood domains. A configuration wizard is a tool for application specifi-

cation and generation from prebuilt parameterized software modules called wiz-

lets. A wizlet is a software module specifícally designed and implemented to be

composed with other wizlets using a configuration wizard as a tool to produce

applications in a product line.

The specification interface of a configuration wizard displays a collection

of domain features available to the application developer. A wizlet implements a
feature and encapsulates semantic information describing its environmental

requirements and constraints, and information describing the wizlet to the environ-

ment. When executed at application composition time, a wizlet analyzes its envi-

ronment to determine any inconsistencies with respect to prescribed constraints for

its proper fimctioning. If constraints are satisfied, the wizlet sends the configura-

tion wizard a message describing itself.

The configuration wizard collects this information to produce a description

(documentation) of the application, produces the application, and compiles it into

executable code. If a necessary condition for a wizlet is not satisfied, the wizlet

sends the configuration wizard a message so it can reject the specification.

This dissertation presents an approach to product-line engineering based on

the implementation of configuration wizards, and describes its use in constructing

three different configuration wizards in three disparate domains, using different

programming languages. Our approach is unique in its proposed models and tech-

niques for domain analysis, domain design, and infrastructure implementation.

An additional aspect considered in this dissertation is how the approach of

configuration wizards supports product line evolution. Configuration wizards like

the software they genérate nave to evolve to support changing requirements of a

product-line. We propose a syntax for metaspecifying configuration wizards thus

they can be adapted by metagenerators. We present two examples describing how
confíguration wizards can be evolved thus changes in requirements of the product

line can be introduced.

Concretely, the main contributions of this dissertation are:

A product-line engineering approach detailing the necessary steps to develop

configuration wizards for product-lines, prescribing the work products along

the process. The approach is generic thus configuration wizards can be

designed and implemented to support product-line construction in different

domains. Although our approach is not entirely unique in that it doesn't pro-

pose a completely new model, we intégrate appropriate models for analysis

(FODA's feature diagram [KCH+90]), design (GenVoca [BO92]), and

implementation (configuration wizards and wizlets) for product lines.

The notion of wizlets as parameterized reusable modules. Wizlets embody
functionality and semantic information of how that functionality can be

reused in different applications. A wizlet implements a domain feature

[Esh98] and is parameterized by another wizlet (thus wizlets participate in

collaborations or use case chains [JCJO93]). We show that requirements for

wizlet parameterization are simple when wizlets are used as units of compo-

sition, so programming languages providing basic object-oriented capabili-

ties (e.g., inheritance) and encapsulation facilities (e.g., classes, units,

modules, etc.) could be extended to support wizlet parameterization using

preprocessor tools. Further, we show how programming languages can be
extended to support wizlet parameterization. In contrast, other approaches

for component parameterization require complex extensions to existing pro-

gramming languages and complex tools for application integration (e.g., sub-

jects need a subject compositor [HO93], aspects need an aspect weaver

[KLM+97, GriOOa], etc.).

An approach to interface specification from variability and commonality
described by feature diagrams. The identification of commonality and vari-

ability in the construction of product lines is essential for their automatiza-

tion. In a configuration wizard, commonality is encoded as topological

(architectural) knowledge, variability is used to define simple specification

interfaces. Using commonality and variability in this way simplifies the

implementation of configuration wizards for automatic application produc-

tion. Other approaches require more complex specifications (e.g., aspects

require "aspectual" decompositions and relations [KLM+97], subjects

require subject descriptions and composition rules [HO93]) or don't provide

hints on how to build specification interfaces for different product families.

• A notation and approach to metaspecify configuration wizards, thus they can

be evolved and adapted to produce applications from different sets of
requirements. How to represent, manage, and deal with variability in product

Unes is an área of current research [Cha02]. Our approach is based on

extending configuration wizards to implement metaconfigurators whose

producís are specific configuration wizards. Instead of using a single meta-

configurator to produce configuration wizards in múltiple domains and soft-

ware platforms, we show how different technologies can be used to

implement metaconfigurators, and present two examples of metaconfigura-
tors.

1.2 Outline
Subsequent chapters in this dissertation explore problems associated to producing

configuration wizards for software product lines, explain our proposed approach,

and contrast it to other work in the research literature. Our approach is character-

ized by four steps: domain analysis, product-line architecture definition, wizlet and

configuration wizard implementation, and finally, application generation. These
development steps are described and their work producís presented for moving

from domain modeling to architectural modeling to wizlet implementation, and

finally to confíguration wizards. The approach, its simplicity, and scalability are

shown by presenting three configuration wizards for different domains which were

implemented using different programming languages. To show how our approach

to product-line engineering support evolution, we introduce the notion of metacon-

figuration wizards, and present examples of how these can be useful to evolve a

product-line. We present results and conclusions of our work, and fiíture research

that remains to be done in the fíeld of software product Unes in general and config-

uration wizards in particular. The dissertation concludes with a presentation of

technologies and techniques related to software product Unes implemented as con-
figuration wizards. The presentation of our work is organized as follows:

Chapter 2 sets out the foundation of our approach. It describes the steps

associated with the implementation of software configuration wizards to assist in

the construction of software product Unes. We show that the result of applying

product-line engineering is a set of domain models and architectural models

describing the commonality and variability of applications in a family, representa-

tions of applications as wizlet compositions, and topological information describ-

ing valid and invalid compositions. Product-line engineering is extremely helpful

in constructing the necessary infrastructures for implementing configuration wiz-

ards. Our approach for product-line engineering is based in the use of feature mod-

els and the GenVoca model of hierarchical systems. Chapter 2 describes both

models for product-lines analysis and design. Additionally, Chapter 2 presents our

implementation approach of parameterized components (wizlets) and their integra-

tion in applications by configuration wizards. Wizlets are similar to mixin layers

[Sma99]. Mixin layers are large-scale components that can be used to directly

implement collaboration-based designs using parameterized inheritance1. We

describe how to implement wizlets as C++ témplales. Finally, Chapter 2 concludes

with a discussion on configuration wizards as tools for product family production

and their advantage over development environments lacking semantic verification

capabilities.

To demónstrate the scalability of our approach of configuration wizards, in

Chapters 3-5 we describe the development of three different configuration wizards

in disparate domains, implemented using different development environments and

programming languages. Every chapter discusses how the implementation tech-

nology used is appropriate to fulfill the requirements in each product line. First we
describe each domain in detail and justify how that domain benefits from a prod-

uct-line approach. We then show domain models and a brief discussion of wizlet

implementation and composition for each domain. Finally, we discuss a configura-

tion wizard and its capabilities in producing members of the family. These chap-

ters are organized as follows.

Chapter 3 presents our first example, a configuration wizard for producing

a family of autonomous vehicle simulators implemented in Java. This example is

interesting in that it is simple and illustrative. It shows why Java extensions are

necessary and how to proceed for implementing product lines supported by config-

uration wizards. Proposed Java extensions are a simple way to extend other pro-

gramming languages not supporting template-like parameterization capabilities.

Our second example, presented in Chapter 4, defines a product line of com-

puter numerical control systems. This product line is characterized by real-time

constraints; corresponding wizlets and configuration wizard are implemented in

C++.

Wizlets' syntax is equivalen! to (Smaragdakis's) mixin layers. However at least two differences
can be identifíed. First is that wizlets are meant to be instantiated by configuration wizards, not
compilers. Second is the additional verification possibility that wizlets provide by using compo-
sition predícales (which are evaluated by the configuration wizard).

A third example is described in Chapter 5, which consists in a configura-

tion wizard for a product line of general ledger systems implemented in Object-

Oriented Pascal. Object Pascal does not support template-like parameterization,

thus a language extensión mechanism, similar to that presented in Chapter 3 is

implemented.

In Chapter 6 we describe how software product lines infrastructures imple-

mented as configuration wizards can be evolved by constructing metaconfigura-

tion wizards, whose generated applications are configuration wizards. A notation

is introduced to metaspecify configuration wizards and examples are presented

describing how requirements are removed or introduced to the product line.

There are broad literature in the área of software product lines, both in

methods and software technology [DonOO, Cha02]. In Chapter 7 we discuss how

our work is related to that of others.

Finally, in Chapter 8 we discuss our results, draw our conclusions, and pro-

vide insights on future work that remains to be done in the área of configurations
wizards in particular and software product lines in general.

Chapter 2

Engineering Configuration Wizards

This dissertation proposes that software product lines can be constructed from pre-

fabricated software modules called wizlets which are assembled by a tool called a

configuration wizard. The input to a configuration wizard is a specification and the

output is an application which is synthesized from wizlets that implement the spec-

ification.

The general approach involves a set of activities necessary to engineer a

software product-line and is commonly known as software product-line engineer-

ing [WL99,CEOO]. In general, the engineering of product lines encompasses two

steps: domain engineering and application engineering. Domain engineering activ-

ities produce models and infrastructures (i.e., tools) by analyzing commonality in

an application family and prognosticating its variability; our approach for domain

engineering is concemed with implementing configuration wizards and their

accompanying wizlets. Application engineering uses domain models and infra-

structures to construct different product family members [SEI01]; in our approach,

application families are generated from input specifications by combining and

adapting wizlets implementing the specifications.
This chapter describes detailed activities, modeling notations, and work

producís in our proposed method for conducting product-line engineering based on

configuration wizards and wizlets as components. Section 2.1 defines important

concepts used in this dissertation. Section 2.2 presents generic steps for engineer-

ing product Unes without specifically committing to any particular notation, the

idea is to set out the elements necessary to implement product-lines. Section 2.3

explains our proposed modeling notations and implementation techniques for

product-line infrastructures. Section 2.4 describes configuration wizards, proposes

an architecture and process for configuration wizards, and discuses its possibilities

for constructing application families.

2.1 Background
A software architecture is the description of an application in terms of software

modules and relations among those modules [GS93,SG96,BCK98]. An architec-

ture defines the structure of an application, and provides some rationale for design

decisions [PW92]. The structure helps to understand how modules are intercon-

nected and how every module depends on others to fulfill application require-

ments.

Essential for the realization of product-lines is designing applications as

sets of interacting modules [Par72b], that is, obtaining their software architectures.

By inspecting application commonalities in a domain, a common architecture can

be defined for an application family. This architecture is called a domain-specific

software architecture (or simply domain architecture) [Tek94]. Every member in

the family defined by the domain architecture will contain a subset of the modules

in the domain architecture PCGS95]. Domain architectures are blue-prints for

constructing application families, they act as témplales that can be adapted for

implementing members in an application family. Different family members could

differ in the modules they use (and may be in configuration parameters, such as

memory size, performance, etc. associated to particular versions of modules).

10

Ideally, we would like to have a library of modules that can be used in con-

structing new family members. The domain architecture is helpful in constructing

new applications by assisting developers in selecting the appropriate module

implementations. However, it would be impractical to have different module

implementations for every domain characteristic. More convenient would be to

define parameters thus a single module can be instantiated in different applications

by providing these parameters.

The following sections describe a generic method for domain-specific

architecture definition and application construction for software product-lines.

2.2 Domain Engineering
Domain engineering involves the set of activities for modeling, architecting, and

implementing infrastructures necessary to produce application families. As Figure

2.1 shows, domain engineering is the first step in producing application families,

and involves three activities: domain analysis, domain design, and domain irnple-

mentation. These activities are described in the following sections.

2.2.1 Domain Analysis

The goal of domain analysis is to scope and define a set of reusable requirements

for applications in a domain. A domain is a set of concepts and terminology in an

área that are understood by practitioners in it, and includes the knowledge of how

to build software systems (or subsystems) to satisfy user requirements. Users are

individuáis, departments or organizations with a particular interest in an applica-

tion family. Examples of users include end-users whose interest will be on usabil-

11

Figure 2.1: Software product-line engineering

ity and performance, those who perform maintenance that needs an evolvable
implementation, those who are in marketing needing a timely product, etc.

The first step in domain engineering consists in analyzing the similarities

and differences of several applications in a domain, and talking with domain

experts to gather domain commonality and variability [CSPK91]. The domain def-

inition determines the scope of a domain and characterizes its contents by giving

examples of existing systems in the domain, counter-examples (i.e., systems out-

side the domain), and generic rules and rationale of inclusión and exclusión of a

given system or capability [GFD97], Once the domain has been selected, it is nec-

essary to decide what belongs to it and what doesn't.

Once the scope of a domain has been demarcated, it is necessary to

describe the domain concepts and their properties. A domain model helps to do
this. A domain model explicitly represents common and variable properties of sys-

12

tems in a domain, semantics of the properties and domain concepts, and the depen-

dencies among variable properties [JGJ97]. Domain models describe domain

concepts using modeling formalisms. One particular representation of a domain

model is a tree of domain features, called afeature diagram, which defines a set of

reusable requirements for specifying systems in a domain by prescribing which

feature combinations are meaningful, and which of them are preferred under which

conditions and why [CSPK91]. Feature models represent the configuration aspect

of the domain models and thus the configuration aspects of the whole reusable

software. Section 2.3.1 describes feature diagrams in detail.

2.2.2 Domain Design

The second activity in domain engineering is domain design. During domain

design we develop a domain-specific software architecture (i.e., a generic architec-

ture) for the application family and devise a production plan for it. The architecture

is defined in terms of a collection of software modules, interactions among these

modules, and constraints on their interaction patterns [Tek94, GW94].

During domain design we also develop a production plan, which describes

how concrete systems will be produced form the common architecture and the
software modules. The production plan describes interfaces to the customers

ordering concrete systems and the process of assembling the modules (i.e., manual

or automatic assembly). A notation for representing product-line architectures are

GenVoca models [BO92] which consist of hierarchical module compositions.

GenVoca is described in Section 2.3.2. In our case, production plans are tightly

coupled to configuration wizards, described in Section 2.4.

13

2.2.3 Domain Implementation

Domain implementation involves domain architecture, software modules, and a

production plan implementation using appropriate technologies. Domain imple-

mentation may involve writing developer's guides, implementing domain-specific

languages and graphical user interfaces (GUI's), generators, and establishing the

software production process [GK96, WL99]. Software tools are selected and the

way applications will be produced is chosen and implemented. Implementation

approaches have to be carefully selected by observing domain commonality and

variability for different members in the application family and the available infra-

structure (e.g., compilers, frameworks, etc.).

Three possibilities arise when modules are integrated to construct applica-

tions. First is the case of simple domains in which modules can be (re-)used as is.

For slightly complex domains, modules may require simple changes. In complex

domains modules may require sophisticated adaptations to fit in particular compo-

sitions [GriOOb].
When modules are used as is or when simple modifications are enough,

modules can be integrated by hand (i.e., the developer writes the specification and

performs necessary adaptations). However, when modules have complex interde-

pendencies or necessary adaptations are complex, it may be impractical to write

specifications and perform module adaptations by hand. In such cases, it would be

convenient to automate application production by implementing infrastructures to

intégrate modules into applications [GW94, GK96]. Several alternatives have been

proposed to simplify module implementation and automatic adaptation at integra-

tion time (e.g., aspect-oriented programming [KLM+97], subjectivity PH92,

HO93, BG97], intentional programing [Sim95a], and software generators

[BST+94]).

14

Technology is not the only factor involved, domain engineers are still

responsible of effective domain implementation. Elegant representations can pro-

duce flexible and scalable module implementations yielding optimized compo-

nents that can be combined in different ways (e.g., STL classes [MS96r], P2

components [Tho98], etc.) [BSST93, Big94, BR87]. Other approaches use more

granular modules and there may be necessary to specify more complex composi-

tions to construct application systems (e.g., role-based design [VN96a, VN96b,

RG98]).

2.2.4 Application Engineering

The second step in a general product-line engineering approach is application

engineering. Application engineering is the process of building concrete applica-

tions that implement customer needs based on the domain model (see Figure 2.1).

This process is supported by the infrastructures developed in domain engineering

[JGJ97].

As Figure 2.1 shows, for producing new applications in the product line,

requirements of the new applications have to be determined and compared to those

already implemented. The result of this comparison is a set of features already

present in the modules plus, possibly new requirements not yet implemented

[CSPK91]. Customer requirements not found in the domain model will require

custom development, new modules may need to be implemented, and even part of

the design may need to be customized.

2.3 Proposed Method for Domain Engineering
Section 2.2 described the general steps and activities involved in conduct-

ing domain engineering. The following sections describe the models we use in

15

conducting domain engineering that are used to develop configuration wizards.

Previously we observed that our approach does not propose any new modeling
notation, rather it uses models that have demonstrated their capability to represent

domains.

2.3.1 Domain Modeling: Feature Models

Several different domain engineering methods have been proposed [Ara94]. They

vary in how domains are represented, and how they make use of available domain

architecture and application expertise. Feature-Oriented Domain Analysis

(FODA) is a popular domain analysis method [KCH+90, CSPK91, GFD98,

KKL+98, LKCCOO]. Its success is due to the fact that different domains can be

represented and understood by a set of fearures [GriOOb]. In FODA, a feature is

any distinguishable characteristic of a concept (or element) in the domain of inter-

est, usually fearures are end-user visible aspects of a software system [GFD97,

GriOOa]. The FODA method represents fearures using a hierarchical model called a

feature diagram, indicating whether fearures are mandatory, alternative, or

optional [LKK+00]. A feature diagram includes informadon of which feature com-

binations are valid and which are not, and rationale for choosing or not a given fea-

ture in a particular instance of the diagram. The feature diagram specifies the

common and variable properties of concept instances and their interdependencies

and organizes them into a coherent representation.

Feature models consist of a domain description, a feature diagram and a

domain dictionary [KCH+90]. The domain description provides a description of

the problem space in the domain. The problem space defines what belongs to the

problem at what lies outside it. A feature diagram captures a customer's or end-

user's understanding of the general capabilities of applications inthe domain1. The

domain dictionary contains terms and/or abbreviations that are used in describing

16

the features and entities in the model and a textual description of the features and

entities.

Figure 2.2 shows the notation of a feature diagram and its elements. A fea-

ture diagram consists of a set of nodes, a set of directed edges, and a set of edge

decorations. The nodes and the edges form a tree. The root of a feature diagram

denotes an application (or part of an application). The nodes in a feature diagram

represent features and are referred to as feature nodes [KCH+90,Wit96,CEOO].

The edge decorations characterize features and relationships as being of different

types (see Figure 2.2):

Figure 2.2 Feature diagram and elements

Optional features represent features that may be disregarded from a feature

model for particular configurations. An optional feature is represented with a

circle at the end of the edge linking it to another feature.

1. A user may be a human user or another system with which applications in a domain typically
interact.

17

• Mandatory features must be selected in all the configurations of the feature

model. They represent the commonality among different model instances. A

mandatory feature composed exclusively of optional features means that at

least one of them has to be selected in all configurations (i.e., applications).

No special edge decoration characterizes this type of feature.

• Composed-of relationships express features that are composed of several
sub-features, following a decomposition/aggregation abstraction mecha-

nism. This relationship is represented by drawing a line from the super-fea-

tures to each of its sub-features. No edge decoration is required for this

representation.

• Generalization/specialization relationships represent abstract concepts that

can be concretized (i.e., specialized) in several ways. A generalization rela-

tionships is represented by a diamond at the generic's feature end. A line is

drawn to each available specialization feature from the diamond. Generali-

zations are substitutable by one or more of their specialization features.
• Constraint relationships represent requires or mutual exclusión constraints.

These semantic constraints are defined on operational features and variants,

to give the model consistency. A dashed line may interconnect two features

indicating that one requires the presence of the other in the model. Mutual

exclusión is specified by an are joining mutually exclusive features. Addi-

tionally, incompatibility in the choice of two features can be expressed as

sepárate relationships with respect to the diagram, or using requires features

or excludes features attributes (i.e., labels) in the relationships.

The notation used to specify feature models is exemplified by Figure 2.2

which shows thst:f0 is the higher level domain feature (which can be an applica-

tion or subsystem). An application should always contain feature f¡ and one of f2

orf3 (but not both). Feature/; can have as sub-features zero, one, two, or three of

18

the featuresy};,/^, andfJ3. Feature/2 is specialized by features/^;,^ <

is a generic feature. Feature/j has a meaning similar to that of/}. Finally, the pres-

ence off2j in a feature model, requires the presence of/}j in the model (however,

the presence of 136 doesn't require thaty^ be present).

2.3.2 Domain Design: GenVoca

GenVoca [BO92] is a domain-independent model for designing application fami-

lies. Applications are modeled as hierarchical compositions of layers. GenVoca

layers can be considered functionally as representing either refinements or exten-

sions. A refinement or extensión adds data and operations to the input to produce

the output; each layer contains a number of object classes and the layer below

extends the layer above it by adding new classes, or adding new methods and

attributes to existing classes [Sin96, Sma99].

Each GenVoca layer implements a type, represented by its interface (that is,

the set of services it offers to its higher-level layer). Additionally, every layer

(except the layer at the bottom) is dependent upon a lower level layer implement-

ing a type. Each layer declares the type it implements (the implemented type or

simply its type) and the type it requires (the required type) its lower-level layer to

implement. Layers are implemented as software modules (generically known as

components in GenVoca). A GenVoca component encapsulates a suite of interre-

lated fimctions, variables, and classes that work together as a unit to implement a

particular feature [Tho98] (i.e., in GenVoca features are types, thus there may be

several implementations of a feature). Different components can implement the

same type (i.e., layer defínition), thus becoming interchangeable.

GenVoca components can be represented using an UML component icón

[BRJ98] with its type represented by an UML interface icón, as shown on Figure

19

_;•„ i i component
r—O (j

—o interface/type

dependency

Figure 2.3 GenVoca components in UML

2.3. This representation shows that a GenVoca component is a particular imple-
mentation of a type. In Figure 2.3 upper-case letters represent types, and lower-
case letters represent components (type implementations). The dotted lines in Fig-
ure 2.3 represent the dependency of a layer/component from the lower-level layer /
component (type) that is required by a component. Note that dependency is on the
type, which means that any component implementing that type can be used as an
actual parameter.

The similarities and differences among members of a family are exposed
by comparing the component compositions that define them. A number of genera-
tors for product lines have been based on the GenVoca model (Génesis [Bat88] a
compositional generator for a datábase product line, P2 [Tho98] C-based transfor-
mational generator for a data structures product line, P++ [Sin96] a C++-based
compositional generator for a data structures product line, and DiSTiL [SB97] a
Java-based transformational generator of a data structures product line). An impor-
tant result from GenVoca product line implementations was the realization that the
number of fundamental domain abstractions is typically rather small, but many dif-
ferent implementations are possible for every abstraction [BSST93].

The concepts described can also be represented as shown on Figure 2.4.
The type R has three implementations (components a, b, ó), type S has three

20

R = {a, b, c}

S = {d(x:R), e(x:R), f(x:R) }

T = {n(x:T),m(x:T),p,q(S)}

Figure 2.4 Types of components and implementations

(components d, e, f), and type T has four implementations (components n, m, p,

Q).
Each component of type R is distinct (i.e., it encapsulates its own algo-

rithms, has its own unique performance characteristics, has its own unique mem-

ory footprint, etc.). All components of R implement the same type and thus are

plug-compatible. The same holds for S and T. Note on Figure 2.4 that a parameter

denotes the type of a required component.

An application is a named composition of components called a composi-

tion equation. Component composition is accomplished by instantiating compo-

nent parameters. For example, consider the following three composition equations

(components corresponding to Figure 2.4):

appl =d(b);
app2 = d(a);
app3 = f(a);
Application appl composes components d with b, app2 composes d with

a, app3 composes f with a. All three applications are composition equations of

type S (because their outermost components implement type S). This means that

appl, app2, and app3 are interchangeable implementations of S.

Components whose required type is the same as its implemented type are
symmetric. Symmetric components can be composed in arbitrary ways. In type T

of Figure 2.4, components n and m are symmetric whereas p and q are not. This

21

means that compositions n(m(p)) and m(n(p)) are possible. In general, the order in

which symmetric components are composed matters.

Syntactic compatibility between components is easily checked by verifying

that for each component the type implemented by its actual parameter corresponds

with its required parameter type. Thus app7 is syntactically valid, because b's

implemented type and cfs required type are both of type R.

Component semantic compatibility is more complicated. Note that some

combinations of components may be syntactically but not semantically correct.

That is, each pair of components in the application requires and implements com-

patible types, but the resulting algorithms may be invalid for some reason. To ver-

ify the semantic correctness of an application, each component must supply

domain-specific information that describes the assumptions and constraints for

using that component [BG97]. Such information can be handled by a generator to

verify semantic correctness. Later in this chapter we describe how semantic verifi-

cation is dealt with.

2.3.3 Translating Feature Models to GenVoca Models

Up to this point we have presented two modeling notations. Feature diagrams to

describe domain entities of interest, and GenVoca for designing product Unes.
However, we haven't explained how GenVoca designs can be obtained from a fea-

ture diagram. In this section we describe the process to map feature diagrams to

GenVoca designs.

Figure 2.5 shows the translation from a feature model to a GenVoca

design. Figure 2.5(a) is a feature diagram in which feature f2 is mandatory, feature

y? is a generalization of features J31 and J32, and feature f4 is optional. Figure

2.5(b) is a hierarchical representation of a GenVoca design —Figure 2.5(c) and

Figure 2.5(d) are instances of hierarchical systems obtained from the GenVoca

22

(a) (b) (c) (d)
Figure 2.5 From feature models to GenVoca model

design described by Figure 2.5(b). Note that an annotation symbol in Figure 2.5(b)

describe optional and generic components2.

In transforming feature diagrams to design diagrams, one should acknowl-

edge that a feature diagram shows how features are related in a structural way, the

hierarchical diagram will show how features are related at execution time. Features

can be abstracted into individual design entities. These design entities consist of

groups of interacting classes (thus they can be interpreted as patterns in a design

pattern approach [GHJV94], collaborations in a collaboration-oriented approach

[VN96, SB98], role-models in role-based design [RG98], subjects in a subject-ori-

ented approach [OH92], etc.). Each design entity is a GenVoca component (or

more appropriately, a layer, because a single feature can have múltiple implemen-
tations).

The root feature in a feature diagram will be the layer at the top in the hier-

archy. How the other features map to the hierarchical model requires analyzing

how features relate to one another at application execution time. For instance, let's

say that for the feature model in Figure 2.5(a), feature y? may use the functionality

(i.e., classes, methods, and attributes) from feature/?, and/2 may use the function-

2. Hierarchical diagrams can be represented are a direct graphical representation of GenVoca com-
positions equations. For instance, the diagram in Figure 2.5(c) represents the composition
fl(f2(f4(f31)))).

23

ality provided by f4 (when present, since f4 is optional), and finally that f3 pro-

vides the lower-level functionality for the application. This analysis produces

Figure 2.5(b). Note that different feature interactions produce different hierarchical

models. However, application families are characterized by their features and their

interactions, thus application families are in fact described by hierarchical models

obtained from feature models.

Note that Figure 2.5(b) doesn't include features f31 and/32. The reason is

that both are specializations of feature/?, and they will be used when the specific

characteristics they define are needed. Note also in Figure 2.5(b) that f3 is never

used, but instead one of its specializations, f31 or f32. Figure 2.5(c) shows an

instance of the composition for an application implementing features//,/2,/¥, and

f31; another application which implements features//,/?, and/32 is depicted by

Figure 2.5(d).

The annotations used in Figure 2.5(b) use symbols similar to that used in a

feature diagram to emphasize optionality (a circle) and selection (a diamond).

These conventions help to keep consistency in the interpretation of diagrams used

to construct product line infrastructures.

Feature diagrams have been broadly used in domain modeling and differ-

ent mappings to design entities are suggested. For instance, feature diagrams can

be translated to reference architectures [KKL+98] and object diagrams [LKCCOO,

GFD98, GFD97]. Our selection of translating feature diagrams to GenVoca is

based on the fact that GenVoca diagrams represent product-line architectures and

thus can be used to implement product lines[Bat98].

2.3.4 Domain Implementation: Wizlets as Components

An implementation approach for product Unes should meet several goals. Firstly, it

must clearly reflect a product line architecture. Secondly, the implementation

24

approach must express domain commonality and variability, thus commonality

can be exploited in different applications and components can be adapted to meet

domain variability.

Another aspect of architecture implementation is domain evolution

[Bos99]. The implementation approach should provide support to evolve as

domains evolve [ML98, RJ97], because by clearly reflecting the product Une

architecture, the implementation simplify evolution [Par79, VN96b, Sma99].

In particular, an approach for implementing GenVoca models should reflect

hierarchical component stacking. It should allow module composition in a linear

stacking, and should support component swapping inherent in GenVoca models.

An implementation approach that has shown to be adequate for implementing

GenVoca models is that proposed by Smaragdakis and Batory [SB98], which has

its roots on the work by VanHilst [VN96a,VN96b], and Bracha and Cook [BC90].

The basic technique implements every component as a mixin class. Mixins (also

commonly known as abstract subclasses [BC90]) represent a mechanism for spec-

ifying classes that will eventually inherit from a superclass. This superclass, how-

ever, is not specified at the site of the mixin's definition. Thus a single mixin can

be instantiated with different superclasses yielding widely varying classes. This

property of mixins makes them appropriate for defining uniform incremental

extensions for a multitude of superclasses. When a mixin is instantiated with one

of these superclass, it produces a class extended with the additional behavior.

A wizlet is a mixin encapsulating a group of related classes, instead of a

single class3. Wizlets may use programming language extensions in their imple-

mentation, requiring it to be preprocessed before compiled into applications. A

wizlet extends several classes in its super-wizlet. These ideas can be depicted
graphically as in Figure2.6 (a conceptual way of representing static component

25

]-oP

(a) (c)

Figure 2.6: Component compositions and inheritance.

compositions [Bat98]). First, Figure 2.6a is a reproduction of the component com-

position presented on Figure 2.3. Figure 2.6b shows an inheritance hierarchy

equivalent to composition on Figure 2.6a. Note that class x is the top class in the

hierarchy, which corresponds to the lower-level component in Figure 2.6a. The

following class in the hierarchy (in Figure 2.6c) is h, which corresponds to the

layer on top of layer x (in Figure 2.6a). Proceeding in that way we reach the top

level of the layer hierarchy and the bottom level of the inheritance hierarchy.

While this notation and correspondence seems strange, it is due to historical rea-

sons. That is, in general the ordering of a class hierarchy is the inverse of the order

of a layer hierarchy.

Note in Figure 2.6b how every class/wizlet extends its super class by add-

ing ftmctionality to an inner class in its superclass, or adding several new inner

classes. Inner classes that are not extended by a lower level class are final classes.

3. For those familiar with mixin layers as proposed by Smaragdakis and Batory [SB98], the differ-
ence between mixin layers and wizlets may not be apparent. The main difference is that mixin
layers are limited to be implemented using existing programming language mechanisms for
class parameterization. Wizlets may use extensions to programming languages, thus require pre-
processing before compiled (C++ already supports class parameterization). Wizlets are designed
and implemented to be integrated by a generator tool in constructing applications.

26

Thus, when wizlets are composed, a forest of inheritance hierarchies is created.
Adding a new wizlet (stacking a new layer) causes the forest to get progressively
broader and deeper. It is through the use of inheritance that new operations/meth-
ods can be added to múltiple application classes merely by plugging in a compo-
nent [Edw95].

Figure 2.6c unirles the representation for components as types and classes,
that is, every wizlet implements a type and is meant to inherit a super-wizlet imple-
menting a type. The actual super-wizlet is not known at wizlet implementation
time, so its specified as a type.

Wizlets can be easily implemented in C++ using parameterized inherit-
ance. In this case, a wizlet is a parameterized class with the parameter becoming its

superclass4. Using C++ syntax we can write a wizlet as:

témplate class <class WizletSuper>
class Wizlet : public WizletSuper
{

public:
class InnerClassl:

public WizletSuper::InnerClassl
{ ... };

class InnerClass2:
public WizletSuper::InnerClass2

Here Wizlet is the abstract subclass being defined, and WizletSuper
is a parameter defming Wizlet's superclass.

4. C++ was chosen here to explain wizlet implementation because its direct support for class
parameterization. Wizlet implementation in programming languages not supporting class
parameterization is described in Chapter 3 - Chapter 5.

27

Wizlets are composed by instantiating one wizlet with another as its param-

eter. The wizlets are then linked as a parent-child pair in the inheritance hierarchy.

C++ provides a direct mechanism for expressing wizlet compositions, for instance:

typedef wl< w2< . . . < w n > . . . > > C (2.1)

is a témplate composition where wl, w2, ..., wf are wizlets, "<...>" is the C++

operator for témplate instantiation, and C is the ñame given to the class that is pro-

duced by this composition5 .

Composition (2.1) has a direct counterpart in GenVoca, (2.1) has the exact

form used in GenVoca for composition equations, except for syntax ("(..)"

replaces "<...>"). Thus, (2.1) corresponds to equation (2.2):

C = wl (w2 (... (wn) ...) (2 . 2)

where wl,... are wizlets representing GenVoca components.

This section described how wizlets (GenVoca components) are imple-

mented by parameterized classes, showing implementation code in C++, because

C++ directly supports class parameterization. We demónstrate in following chap-

ters how other object-oriented programming languages supporting inner class

encapsulation, but not necessarily class parameterization can be extended to sup-

port class-like parameterization. As examples, subsequent chapters describe how

Object-Oriented Pascal and Java can be extended to implement GenVoca compo-

nents.

5. Note that other programming languages not supporting template-like parameterization do not
provide a témplate instantiation operator similar to that of C++. Besides designing a mechanism
for wizlet parameterization, it may be necessary to analyze how to implement wizlets in other
programming languages.

28

2.3.5 Composition Validation

Having components correctly implemented doesn't imply that all their combina-

tions define valid applications. A fundamental problem for all component-based

software development technologies is whether component compositions are con-

sistent/valid [BG97, DP98, Szy98].

The implementation of automatic composition validation of hierarchical

component compositions requires representing the properties that components add

and need from their environment using configuration predicates. Configuration

predícales describe a component to its environment and prescribe properties that

should be met for that component to participate in a composition.

Configuration predicates can be of three types: assertions, boolean or

numeric.

• Numeric: this type of predícate can provide information concerning the com-

ponent algorithmic implementation such as its algorithmic complexity or

memory requirements. Other predicates may define actual parameters declar-

ing component properties such as máximum number of elements allowed in a

data structure; valúes distinguishing the component, such as the numbers of

wheels in a vehicle being simulated by the resulting application, number of

axes along which a cutting tool can move in the machine tool that will be con-

trolled by the resulting application, etc.

• Boolean: boolean expressions are represented by logic predicates and opera-

tors. Predicates in a boolean expression represent constraints that need to be

valid for using components in a composition.

29

• Assertions: assert an important property of the component, such as declaring

the presence of the component in a composition. Assertions are similar to

numeric predicates but the assessed values are boolean in nature. Note that

assertions are a special kind of boolean expression whose value is set to true

when a component is found in a composition.

Configuration predicates can be additionally characterized as being of four

types: pre-conditions, post-conditions, post-restrictions and pre-restrictions; such

classification depends on where properties defined by predicates are used to verify

composition validity. To discuss configuration predicate types, suppose the gen-

eral case in which k is a component:

• Post-conditions: Post-conditions are properties of k that are exported to layers

beneath k in a component composition.
• Pre-condition: Pre-conditions define properties that must hold for components

to work properly; they test the cumulative post-conditions of layers that lie

above k in a composition. It is common to have components whose pre-condi-

tions and obligations are not satisfied locally (i.e., by components that are not

adjacent in a composition equation).

• Post-restrictions: are properties of k that are exported to layers above k in a

composition.

• Pre-restrictions: (also known as obligations) are pre-conditions for instantiat-

ing layer parameters; they test the cumulative post-restrictions of layers that lie

beneath k in a composition.

It is important to remark that pre-conditions and obligations of a compo-

nent k can be satisfied "at a distance", that is, by components that either lie (far)

beneath k or (far) above k in a composition equation. Moreover, the properties
exported by k to "higher" layers are generally not the same properties that are

exported to "lower" layers.

30

Two commonly used boolean predícate types are (note that these can be

further characterized as being of one of the four types described):

• Requires: specifies that a component of particular type and/or supporting cer-

tain specifíc characteristics is required below or on top of the current compo-

nent being verified.

• Prohibits: the presence of a particular component type or properties defined

by other components are not allowed in the composition.

Given configuraron equations representing component compositions, con-

figuration validation involves:

A top-down propagation of post-conditions, and the testing of component pre-

conditions, and

• A bottom-up propagation of post-restrictions and the testing of parameter pre-

restrictions.

To implement configuration validation, configuration equations can be

encoded in different ways in programming languages. To propágate configuration

state up and down the component hierarchy, configuration state can be maintained

in a sepárate state component. Every time the validity of a component in a compo-

sition needs to be verified, the environment information discovered up to the

moment can be extracted from that state component. For instance, in an object-ori-

ented programming language, an object may store environmental information as

attribute valúes of a composition. Every object implementing the validation can

receive such state object as a parameter, and retrieve and store state attributes

which can be of interest to other components.

Figure 2.7 shows a partial implementation of composition validation. Vali-

dation proceeds in both directions (top to bottom and bottom to top), storing and

retrieving configuration information in the State object.

31

A
I
B
i
C
i
D

<. •>

f- «i

f- *»

í ^

S
t
a
t
e

Figure 2.7 Composition verification

Inside every component, the validation code is the code that asserts the

Information of the component, or the code that verifies or prevenís the presence of

other components. The following code fragments exemplify each of these types, in

the example prefix state represents an instance of the State component, and

component would be represented by the component ñame whose predícales are

being defined:

Assertion: For components that need to assert its presence or properties to

other components (for instance, the following code, component can be substi-

tuted by stepMotor if a stepper motor is being used in a composition):

state.componentSet = true;
state.someProperty = 2;

Requires: in the code that follows, the word reguiredComponent would

be replaced by a corresponding component ñame6:

if(! state.requiredComponentSet)
error("Component needs a reguiredComponent in the composition")

if(state.numAxis != this->numAxis)
error("Number of axis in Component doesn't match the defined

number of axis")

6. Note that requires can be implemented as a pre-condition or a pre-restriction, according to the
layered representation of a feature diagram.

32

Prohibits: In the following code, the identifier prohibítedComponent

would be replaced by a component ñame:

if(state.prohibítedComponentSet)
error("prohibítedComponent can't be used in combination with

Component")

The previous code fragments show how explanation code is included

together with verifícation code. Such information can be extremely useful at appli-

cation configuraron time, for producing well defmed applications.

Depending on how components are planned to be composed to build appli-

cations, and facilities in the development environment, validation expressions (i.e.,

configuration predicates) can be implemented together with application code

inside a single component, or the implementation be split in one application com-

ponent (containing the code a component adds to the application) and a counter-

part verifícation component (containing the code implementing the configuration

predicates for that component). We can justify the separation of code based on

how both parts are used. Verification code is executed only once in the life span of

an application (to verify the validity of a component composition specifying the

application), however the application code will be executed (potentially) many

times. Note that such separation of implementation is suggested for cases in which

components are to be integrated in a compositional way, instead of in a transfor-

mational way. Generative components may contain both the generative code and

the validation code inside a single component, because both parts are executed at

generation time.

Our implementation approach of wizlets as parameterized components is

compositional in nature, parameters have to be concretized at application composi-

tion. This observation, and our stated purpose that wizlets can be implemented

using different programming languages, guided us to chose a sepárate implementa-

33

tion for wizlets: a ftmctional (application) part, and a validation part. (or stated

another way, the verification code is evaluated statically at configuration time,

while application code is evaluated dynamically at application runtime).

2.4 Configuration Wizards
The synergistic combination of feature models with GenVoca hierarchical

product-line architectures and parametrized wizlets sets the foundation for imple-

menting product Unes. However, there are limitations for the broad applicability of

the implementation approach described earlier. The module/class parameterization

mechanism is fundamental for implementing components as parameterized

classes. However, mainstream object-oriented programming languages in use

today do not provide support for class parameterization7.

In general, compilers offer limited support needed at product-line applica-

tion-engineering time (i.e., composition time). In the presence of a syntax error, it

would be convenient that compilers provide developers with hints on what is caus-

ing errors. A similar situation occurs for the more sophisticated need of composi-

tion verification (i.e. valídate that components in the composition precisely define
an application). Although it is possible to implement limited composition consis-

tency validation by type declarations in the class hierarchies [Sma98], industrial

level application systems require more complex configuration predicates than can

be implemented in one direction (top to bottom).

Unfortunately, even programming languages supporting parameterization

capabilities offer limited support for composition verification (syntactic and

semantic). For instance, C++ compilers produce large and intimidating messages

7. One exception is of course C++, and that is why we frequently cite it as example for explaining
most of our ideas.

34

for syntactic errors in the presence of erroneous témplate compositions . Compo-

nent compositions producing syntax error messages are difficult to debug. If a

developer is unfamiliar with the nuts and bolts of component implementation for

the domain at hand, it is a monumental work to find error sources. Although con-

figuration predicates provide the developer with support for dealing with semanti-

cally incorrect compositions, it is a difficult endeavor to manually verify that

compositions don't viólate any predícate.

Syntax errors are unavoidable, but they occur at component development

time (i.e., component developers will solve them when implementing compo-

nents). It is at application engineering time (i.e., when constructing members of the

application family) that semantic verifícation will be of great help for the applica-

tion developer.

We argüe that application engineering in a product-line environment can be

simplified by the use of configuration wizards. Configuration wizards are software

tools containing wizlets as components, predicates prescribing valid compositions,

a specification interface, and a generator.

Figure 2.9 depicts our proposed generic architecture for a configuration

wizard. Figure shows how the two parts in which we divided wizlets, are stored in

two different containers: a wizlet repository storing the application code part, and

the domain knowledge repository containing the verifícation part of wizlets (i.e.,

the topological information of the product-line architecture and configuration

information prescribing valid wizlet compositions). A specification interface

offers the application developer editing facilities to specify the application at

hand9. The generatorreceives application specifications from the developer, trans-

One example is the following message indicating a missing variable declaration in a component:
<«include example>»

35

component
syntax tree

Generator ^ Verífier

Figure 2.8: Configuration wizard process model

lates them to concise representations (i.e., layer stacking), verifies their semantic
correctness and generales the application by adapting wizlets implementing speci-

fied requirements.

Process models helps to describe how a sequence of steps (i.e., transforma-

tions) produce a final result. A process model describing involved steps and inter-

medíate results between steps in a configuration wizard, is shown in Figure 2.8.

The process model Figure 2.8 shows that a configuration interface is used for

requirement specification, the result is an application specification, consisting in

the required features specified by a developer. Speclnterface allows specifying

only non-mandatory features. The requirements set is the input to the eqBuilder

module, which transíales specifications lo equivalenl composition equations. The

composilion equalion produced by eqBuilder includes elemenls representing man-

datory domain features inserted al appropriale posilions (as defined by the prod-

ucl-line architecture).

9. Most of the details the developer has to provide consist in domain features the intended applica-
tion should incorpórate, and parameters to concretize these features to particular requirements
(e.g., memory sizes, storage requirements, special date formáis, etc.)

36

The next module in the process is Parser, whose task is to build a syntax

tree from the composition equation10. After that, a Verifier module checks (by

evaluating configuration predicates) that the syntax tree corresponds to a valid

wizlet composition. Finally, the Generator module parses the syntax tree to instan-

tiate wizlet parameters and produce any extra information necessary thus the gen-

erated application can be compiled.

Along the configuration and generation process, modules are informing the

user/developer of the progression by sending messages to a message handler.

Specification interfaces could be designed very differently for different

domains and product lines. What we affirm is that specification interfaces can
facilitate requirement specification by explicitly presenting domain features

(types) and their specializations (different implementations). For instance, Figure

2.10 shows a possible specification interface for a product-line of vehicle simula-

tors11. In the example, specializations are grouped using different grouping facili-

wizlet
repository

specification
interface

^
^

generator ww

i 1

application JJ

domain
knowlede

Figure 2.9: Configuration wizard's architecture.

lO.Complex domains may have layer representations consisting in branches thus needing parse
trees for their analysis [BCGS95].

11 .The example is described in detail in Chapter 3, here we include it to help us explain the general
ideas on implementing product-lines as configuration wizards.

37

ties (as available in the development environment). For instance, movement types

are in a group called "Movement type" whose cholees are "Normal" and "Differ-

ential"; "Controller type" grouping include specializations "Intuitive" and

"Fuzzy"; "Model" defines a list of vehicle types the developer can choose from;

finally, there is a single "Option" to speciíy if the vehicle is towing a "Trailer" or
not.

The specification interface includes a visualization área which displays all

messages informing the user/developer about the process progression. Several but-

tons in the interface allow the user to initiate different actions. For instance, a

"Genérate" button can be pressed after a set of requirements has been specified;

"Genérate" button starts the process shown in Figure 2.10. A button labeled "Com-

pile" allows compiling the application just generated. After the application is com-

re Generator
Select the simulatorto genérate:
Movement Type:

& Normal C Differential
Controller Type:

<? Intuitive (~ Fuzzy
Model:

13
Optlons:

l~ Traller
vehicle[notrailer[car[path[intuitive[normal[params]]]]]]....
Performing configuration verification....

The generated simulator is for & Car with Intuitive Controller and
íormal Movement Principie
^onfiguration verification done....
Fixing wizlets to f it composición....
Hizlets have been fixed....
fhe application has been compiled succesfully.

(I I .„„ ... „_.,_...! I
Genérate [|| ..Cpjñpllê J| Execute

Figure 2.10: Specification interface for vehicle simulators.

38

piled, it can be executed directly from the configuration wizard using the

"Execute" button.

By integrating a suite of validation and generator tools inside configuration

wizards, we substantially enhance the individual capabilities and effectiveness of

these tools. Incorporating domain knowledge in the way of configuration predi-

cates may offer expert guidance to application developers so that design blunders

can be avoided. With the assistance of configuration wizards, non-domain experts

would consistently produce high-quality designs (i.e., configuration wizards can

critique specifications so designs can be improved).

2.5 Recap
This chapter presented the general concepts related to software product-line engi-

neering and proposed a method based on the consistent use of feature modeling for

domain modeling, GenVoca as the architectural framework to describe product-

lines as hierarchical organizations of plug compatible components called wizlets, a

systematic approach for wizlet implementation using module parameterization

(classes for C++ in particular), and finally, explained our thesis that a configura-

tion wizard can be used to genérate applications in product families.

We proposed that software product lines can be implemented as configura-

tion wizards which:

• Free application engineers from manually building composition equations

(i.e., component compositions). Wizards help to construct composition

equations from input specifications using a product-line architecture.

• Assist application engineers in specifying corred applications (composi-

tions) by displaying inconsistencies in a friendly manner.

39

• Free application engineers from knowing programming language composi-

tion syntax to construct compositions.

The next chapters demónstrate how configuration wizards can help to con-

struct software product-lines in different domains using different implementation

technologies. Three different product lines will be shown: a simulator for autono-

mous vehicles, a computer numerical control system, and a general ledger for

credit unions. Each product line will be implemented using a different program-

ming language, thus helping us to identify programming language extensions nec-

essary for implementing configuration wizards for product lines in different

environments.

Our goal is to demónstrate that confíguration tools with limited generative

capabilities, supported by programming languages providing encapsulation and

inheritance mechanisms, are enough to implement product lines.

The following chapter describes the use of our approach to construct a

product line using Java as programming language, and our proposed extensions for

implementing class parameterization in Java.

40

Chapter 3

Vehicle Simulators Product-Line

We present our first example of a configuration wizard implementing a software

product-line in this chapter. The example consists of a family of software simula-

tors for autonomous vehicles having two, three, and four wheels. The example is

interesting in that it shows in detail the application of our proposed method for

product-line engineering. The configuration wizard and parameterized compo-

nents are implemented using Java as programming language. As Java does not

directly supports class parameterization, we extend it to allow wizlets (necessary

for a configuration wizard) to be defined as parameterized classes.

3.1 Autonomous vehicle simulation
Software simulators are important when, for any reason, it is diffícult to have real

prototypes for experimentation (e.g., physically constructing simulated devices).

There may be various reasons why constructing devices is impractical. One reason

is economy; constructing physical prototypes is very expensive. Other reason is

time; building hardware prototypes can take too long. Another reason is danger;

when dangerous materials have to be handled injuries may result, etc. Simulators
offer the advantage of being able to run different experiments by adjusting param-

eters and executing the software prototype, without the hassles involved in build-

ing real prototypes. The vehicle simulators family we describe in this chapter was

41

constructed due to a combination of the aforementioned reasons. Having compo-

nents of the family implemented in software would simplify the construction of

different simulators by composing components that implement the required fea-

tures.

The Research Laboratory of the Artificial Intelligence Center at ITESM

was interested in analyzing different algorithms for autonomous vehicle control, to

experiment how vehicles move to reach a predefined target point from an arbitrary

initial position and direction. It was expensive and time consuming to perform all

modifications and implement the corresponding algorithms in real vehicles to ana-

lyze their behavior. One problem is that vehicles with different shapes and sizes

behave differently for similar control algorithms. For instance, two-wheels vehi-

cles behave very differently from four-wheels vehicles, thus the necessity of hav-

ing different movement algorithms for different types of vehicles.

The goal of our simulators product-line is to allow researchers to specify

simulators incorporating a desired set of fearures for a vehicle and to build the cor-

responding simulator from that specification. Once constructed, the simulator can

be used in analyzing the path followed by the corresponding vehicle for a particu-

lar algorithm. Among the features a researcher may want to specify are: the vehicle

type (e.g., motorcycle or car), the vehicle tows a trailer, use a specific movement

algorithm, etc. Simulators should provide researchers with user-friendly interfaces

to allow them perform different specifications within a given simulator (e.g., initial

orientation, path to be followed, speed, etc.).

The main requirements of the simulator family were that the product-line

infrastrucrure should simplify the construction of vehicle simulators for different

platforms (i.e., the programming language needed to be platform independent). As
performance was not a critical factor, the main interest was in analyzing movement

42

traces, not the time vehicles take to traverse predefined paths. Given these require-

ments, Java was selected as programming language.

3.2 Static Parameterization in Java
The analysis presented in the previous section justifies the selection of the Java

programming language as a good candidate to satisfy simulator family require-

ments. However, our approach for wizlet implementation presented in Section

2.3.4 is restricted to programming languages supporting class-like parameteriza-

tion mechanisms (e.g., C++ témplales), and Java doesn't directly supports class

parameterization. Still, a cióse analysis to wizlet parameterization and Java capa-

bilities reveáis that the only extra support necessitated in Java is to allow classes as

parameters1. In the following paragraphs we show how Java can be extended to

support parameterization for class composition by inheritance, when super classes

are unknown at class implementation time.

There are several proposals for extending the Java programming language

with template-like parameterization [BOSW98, AFM97, MBL97]. However, to

keep consistency in the way we express component compositions across program-

ming languages, we preferred an ad-hoc and simple extensión to Java, instead of

using one of these extensión proposals. Our proposed extensión has similar syntax

to that of GJ [BOSW98], however, the similarity ends there, since we don't offer

full support for generic types, as GJ does.

We extend Java syntax to implement wizlets as parameterized classes, thus

the syntax in Java is similar to that explained in the previous chapter for C++. In

1. Java interfaces can be extended to implement parameterization [BOSW98]; however, we extend
Java to support class parameterization, to be consisten! with how C++ implements class parame-
terization.

43

the extended syntax, Java classes can be parameterized by declaring its super wiz-

let as a parameter, as foliows2:

class Wizlet extends «WizletSuper» {
public class Innerl extends «WizletSuper». Innerl
(...)
public class Inner2 extends «WizletSuper». Inner2
(...)

Similarly to what we did in C++3, class Wizlet is an abstract subclass,

and WizletSuper is a parameter defining Wizlet's superclass. Java's class
encapsulation is similar to C++'s, thus the similarities between C++ templates and

our proposed Java extensión. In Java, wizlets encapsulate several inner classes,

and Java's inner classes are inherited, just like they are in C++. Thus Java's wizlet

implementation is performed using parameterized inheritance and nested classes,

just like we can do in C++. Let's see how this mechanism works in a simple wizlet

implementation example.

Suppose type declarations in Figure 3.1 (a) describing type Device whose

specialization components are Window and Printer, and type R whose only compo-

Window

Device={ Window, Printer} Report

R = {Reportf X:Device) } a1=R9port(W,ndow) a2=Report(Printer)

(a) (b) (c)

Figure 3.1: Type declarations and equations.

2. Note our use of «..»to represent class parameters, which is not native Java syntax.
3. We strongly suggest reading Section 2.3.4 to compare C++ syntax with our proposed Java

extensión.

44

nent is Report. From declarations in Figure 3.1 (a), one can construct two composi-

tions. One is shown in Figure 3.1(b) describing an application where Report senas

its output to Window. The other component composition is shown in Figure 3.1(c)

which describes an application where Report component sends its output to a

Printer component. In all cases that follows, we assume that wizlet components

contain two inner classes Innerl and Inner2, which they extend. The following is a

partial Java implementation of the Report component using our proposed exten-

sión to Java:

class Report extends «WizletSuper» {
public class Innerl extends «WizletSuper». Innerl
{ ... }
public class Inner2 extends «WizletSuper». Inner2

For simplicity, we maintained the internal definition of Report similar to

our implementation code shown earlier for a parameterized Java class, changing

the wizlet ñame only (i.e., from Wizlet to Report).

To show how proposed Java's extensión mechanism works, lets implement

Window and Printer components. The code for Window is:

class Window {
public class Innerl { ... }

public class Inner2 { ... }

where Innerl and Inner2 represent classes internal to Window.

Note that Window implementation is raw Java code. This is because Win-

dow is a base class, thus no parameterization is needed. Similarly, we can imple-
ment Printer as follows:

45

cíaos Printer {
public class Innerl { . . . }
public class Inner2 { . . . }

From these implementations, we can speciíy composition equations defin-

ing systems that display a report inside a window (see Figure 3.1(b)) on the moni-

tor screen, or that print the report on paper (see Figure 3.1(c)). Note, however, that

the implementation of Report cannot be directly compiled in Java (i.e. the wizlet

from which Report inherits has to be concrete in the code implementing Report).

We can adapt parameterized wizlets using composition equations. From Figure

3.1(b) we substitute4 the parameter WizIetSuper with Window (as declared by

composition equation in Figure 3.1(b)) in the extended Java code. The resulting

code for Report is:

class Report extends Window {
public class Innerl extends Window.Innerl
{ ...)
public class Inner2 extends Window.Inner2
(...)

}

Similarly, the concrete code obtained from Figure 3.1(c) using correspond-

ing wizlets (i.e., Report and Printer) is:

class Report extends Printer {
public class Innerl extends Printer. Innerl
{ ... }
public class Inner2 extends Printer.Inner2

4. Bracha et al. cali wizlet's parent class anerasure. The erasure of a parametric type is obtained by
deleting the parameter (WizIetSuper erases to Window or Printer), the erasure of a non-para-
metric type is the type itself (so Window erases to Window, and Printer erases to Printer)
[BOSW98]. Composition equations help to obtain the erasures of every wizlet in a composition,
thus wizlets can be translated to Java classes.

46

These examples show how, even though Java doesn't offer compiler sup-

port to construct component compositions (similar to C++'s témplate expressions),

we still are able to manually adapt components to fit particular compositions.

Using this approach, a simple text editor can be used to adapt wizlets, thus they

can be compiled into applications. Obviously such manual approach is undesirable

and error prone (there is always the risk that incorrect substitutions are made, such

as characters deleted by mistake, thus semantically or syntactically incorrect com-

positions are created).

A better approach is to make use of information about how components

need to be adapted (such information is obtained from a wizlet composition

expression specifying an application) so a preprocessor can parse equations and

perform necessary adaptations to each wizlet. The resulting pre-processed compo-

nents can now be compiled into an application by the standard Java compiler.

Because pre-processing only makes sense after we can guarantee a semantically

correct composition expression, configuration predicate checking and wizlet pre-

processing should be integrated into a single tool. To opérate, such tool needs as

input the composition specification (i.e., a composition equation) for an applica-

tion, and produce the Java source code for that application.

As discussed in section 2.4, integrating pre-processors and configuration-

predicate checking as generators produces tools for building product Unes. In the

following sections, we use the proposed Java extensión mechanism to implement a

configuration wizard for autonomous vehicle simulators.

47

3.3 Domain Model for Autonomous Vehicles
As described earlier in this chapter, the domain includes applications to

simúlate the operation of vehicles. Vehicles can be of different types5 (e.g., Car,

Two-wheels motorcycle, Three-wheels motorcycle, Tank, etc.), implement differ-

ent movement principie (normal or differential, which are explained later), and dif-

ferent control algorithms (intuitive and fuzzy, explained later). For performing a

simulation, users provide initial valúes for parameters describing initial conditions

for a given vehicle (e.g., direction the vehicle is facing, constant speed, initial posi-

tion, etc.), and define a path the vehicle should follow (such path may consist in a

single target position or a sequence of points).

The common operations that vehicle simulators need to implement are:

• Put vehicle. A given coordinate point defines vehicle's initial position. An

angle states the direction a vehicle is facing.

• Move to point. Move towards a predefined point (performing the necessary

direction adjustments if destination point is not in front of vehicle),

• Follow a path. A path is defined by a set of points. The vehicle must follow

the trajectory defined by the path.

The way vehicles opérate is determined by their kinematic models. The fol-

lowing are canonical kinematic models for different types of vehicles we are inter-

ested in simulating.

3.3.1 Kinematic Model of a Car

The kinematic model typical of a car (Figure 3.2) is one in which back wheels are

fixed to an axis and front wheels can be turned right or left [Lat93, DJOO].

Nomenclature used in Figure 3.2 is as follows:

5. Italic words represent features in vehicles' domain.

48

9 = Car's angle from the horizontal axis in the plañe.

(j) = Tires's angle with respect to car axis (car inclination).

L = Distance between front and rear wheels (length).

A = Distance separating wheels in a given car's axis (width).

R = Current turning radius.

A car's referencepoint is the center of rear axis, it represents the car's posi-

tion. A car's movement principie depends on where locomotion power is applied.

If locomotion power is applied at the rear wheels (called differentialprincipié), the

velocity of the wheels need to be controlled. If locomotion power is applied at the

front wheels (called normal principié), rear wheels' velocity is irrelevant.

A car's kinematic model can be translated to an equivalent model for a

two-wheel motorcycle. For a motorcycle, we can imagine both wheels in a given

axis (frontal or rear) collapsing into a single wheel at the middle point in that axis.

In a two-wheel motorcycle, drive control is in the front wheel, while rear wheel

cannot turn. Thus we don't need any special consideration of how a two-wheel

motorcycle should be controlled, the only difference is that A (distance between

wheels in the same axis) is equal to zero.

Figure 3.2: Kinematic model for a car.

49

3.3.2 Kinematic Model of a Tank

The other vehicle type is a tank, in which wheels in an axis are controlled individ-

ually. For a tank, wheels in the same axis can be applied different speeds (thus

tanks implement a differential movement), but both wheels in the same side (front

and rear) have the same speed. Figure 3.3 shows graphically a tank's kinematic

model.

Nomenclature used in Figure 3.3 is [Lat93]:

6 = Vehicle's angle with respect to horizontal axis.

v1 = Velocity of wheels in the left side.

v2 = Velocity of wheels in the right side.

L = Length of a wheel.

A = Separation between wheels in the same axis.

R = Radius of the current turn.

Note that there is a difference on how cars and tanks move. Tank's refer-

ence point is the middle point between front and rear wheels (which is L/2 in Fig-

ure 3.3), while a car's reference point is the center of rear axis. For simulation

Figure 3.3: Kinematic model for a tank.

50

purposes, it is important to consider that both cars and tanks support differential

movement principie.

3.3.3 Canonical forras of vehicle control

As explained before, we're interested in controlling vehicles to move from
their current position and direction to a given target position or follow a path

defined by a set of points. Canonical forms of vehicle control to behave in the

desired way can be generalized. Consider the model in Figure 3.4; to guide a vehi-

cle to move following a particular trajectory, the movement direction can be

adjusted by determining the difference between vehicle's inclination angle 6, and

target position's angle, relative to 9. This difference is known as the error from the

target direction. At each step the control algorithm's goal is to reduce the error by

adjusting turning angle 4>. It should be noted that each vehicle type may have a dif-

ferent máximum turning angle. It is also worth noting that in a differential princi-

pie, the angle is produced by adjusting the wheels' speed; in a normal movement

principie, the turning angle is adjusted (incremented or decremented) by a fixed

valué without changing wheels' speed.

target point

Figure 3.4: Trajectory control.

51

Such type of control algorithm is callea intuitive (i.e., the error is reduced

by adjusting tuming thus final direction is eventually reached, from there, vehicles

can move straight to their target point). Different controlling algorithms exit

[Lat93], which proceed differently to guide vehicles. For instance, a ftizzy control

algorithm use more complex techniques for vehicle guidance. For fast turning, a

ftizzy algorithm can simultaneously change the speed of both wheels (increasing

one and decreasing the speed in the other wheel). This produces a faster turning

thus the vehicle will face in the direction of the target point sooner.

3.3.4 Feature Model

The information collected up to this point for vehicle simulation is summa-

rized in a domain dictionary, shown in TABLE 1.

Cartesian coordínales representing vehicle position (middle point of rear axis
x,y in a car, middle point in a tank, etc., also known as the reference point)
íheta(Q)
p h i f t)
radius
trajectory
kinematic
model
normal dríve
differential
drive
vehicle type
controller

Vehicle orientation with respect to horizontal axis
Vehicle tuming angle with respect to X axis.
Vehicle's turing radius
Set of points defining a path
Model describing the movement of a vehicle type. Each vehicle type has its
own kinematic model.
The locomotive power is applied at the front wheels.
The locomotive power is applied at the rear wheels.

Vehicles we are interested in simulating (examples are car, tank, etc.)
Algorithm to guide vehicles to a specified target point.

TABLE 1. Dictionary for vehicle simulator family

Different vehicle types can be guided according to a similar movement

principie (normal or differential). For instance, both Car and Tank can use differ-

ential movement principies; however, Tank cannot be guided by normal move-

ment. Control algorithms behave differently to drive vehicles toward specified

target points (i.e. vehicle's behavior depends on kinematic vehicle properties).

52

Note that kinematic models presentad thus far are limited in several ways.

Real-world vehicles are subject to physical forces and constraints (i.e. inertial

forces impede vehicles instantaneously reaching máximum speeds, in the real

world vehicles accelerate slowly from stand-still to máximum speed). Other fac-

tors are the use of breaks, and environmental factors like wind, different surface
types, and obstacles. We don't include mese other factors here, which can be con-

sidered as opportunities for the simulator's family evolution.

A feature diagram for the vehicle family is shown in Figure 3.5. The dia-

gram shows several types of features:

• Mandatory features: Type, Controller, Principie

• Optional features: Trailer

• Generalization features: Type (2-3wheelMotorcycle, Car, Tank), Controller

(Intuitive, Fuzzy), Principie (Normal, Differential).

Several constraints restricting feature combinations are: a Vehicle with a

Trailer cannot be a Tank, a Vehicle with Differential drive cannot be a

2WheelMotorcycle.

53

3.4 Domain design
As was described in Chapter 2, design modeling consists on devising a

hierarchical product-line architecture (i.e. a GenVoca model). Our architectural

representations are hierarchical representations of parameterized components.

From the domain diagram, we construct a GenVoca model [BO92] which consists

in a hierarchical diagram and declaration of layers (types) and their implementa-

tions Figure 3.6(a) and Figure 3.6(b), respectively. First of all, note that the simula-

tors' hierarchical model has two layers (i.e., Path and Params) whose

corresponding features are missing in the feature model. Path stores information

about the trajectory being followed by a vehicle (this is important thus a graphic

representation can be produced). Params define general parameters for a vehicle

(i.e., coordinate position, facing angle, speed, etc.). Note in Figure 3.6(b) that a
component notrailer has been included. This component exports a Trailer interface

Vehicle

Trailer o

Type

1
Path

1
Controller

1
Principie

O

O

1
Params

(a)

Vehicle = {vehicle(x:Trailer)}

Trailer = {trailer(x:Type),notrailer(x:Type)};

Type = {2WheelMotorcycle(x:Path),

3WheelMotorcycle(x:Path),

car(x:Path), tank(x:Path)}

Path = { path(x:Controller)}

Controller = {intuitive(x:Principle),

fuzzy(x:Principle)}

Principie = { normal(x:Params), differential(x:Params)}

Params = { params};

(b)

Figure 3.6: Hierarchical model of a vehicle simulators family

54

but its ftmctionality is empty. Its purpose is to keep consistency in the composi-

tion.
Design model in Figure 3.6 can be analyzed compositionally (i.e., by

detailing ftmctionality each layer adds to the composition). This extensional per-

spective is important because it serves as a guideline of how to proceed in translat-

ing feature diagrams to hierarchical domain-specific architectures. First, in Figure

3.6 Vehicle stands as an interface to the application. When used, Trailer adds trailer

properties to a vehicle (an empty implementation of trailer is used when no trailer

is specified by the developer). Layer Type adds the behavior of a particular vehicle

type (e.g., Car, Tank, etc.). Controller is the general algorithm for guiding the vehi-

cle towards a point in a plañe (e.g., Intuitiva, Fuzzy6, etc.). Finally, Principie

defines how vehicle's wheels move (e.g., same or different speed).

Layers Vehicle, Path, and Params should always be part of a composition.

This is due to the fact that every vehicle and its trajectory must be displayed in the

screen (Path's job); similarly, every vehicle needs to be defined by a parameter set

(contained in Params); and every vehicle has to define a user interface (Vehicle

does this).

It is straightforward to derive different composition equations from the

design model. For instance, two valid equations are:

Sl=vehicle (trailer (car (path { intuitive (normal { params))))))

S2=vehicle(notrailerf tank(path(intuitive(differential(params))))))

Composition si defines a vehicle simulator for an autonomous car having

a trailer and moving according to an intuitive algorithm and whose wheels move in

a normal (i.e., constant) speed. Composition S2 defines a simulator for a tank

6. Fuzzy control consists in that before performing every step, a rule-base is evaluated to find the
bestchoice[PY98].

55

moving according to an intuitive algorithm and using differential speed;

notrailer is an empty implementation of a trailer component.

3.5 Domain implementation
Our approach for domain implementation consists of implementing design

models as wizlets and a configuration wizard as a specification tool for application

construction and verification. This section describes these two steps for the vehicle

simulators product-line.

3.5.1 Wizlet implementation

As mentioned in the introduction to this chapter, requirements can be satis-

fied by implementing the simulators family using the Java programming language.

As mentioned, currently Java doesn't provide a standard mechanism for compo-

nent parameterization. We discussed in Section 3.2 how parameterized Java com-

ponents can be created by extending Java with a construct to express class

parameterization similar to C++'s templates.

The following is the implementation of the simulator's family using our

wizlet approach. The functionality required by vehicle simulators is rather simple,

thus class nesting is not actually necessary. Instead, every layer consists of a single

parameterized Java class. In Figure 3.6, wizlet Vehicle defines a wrapper for simu-

lators and makes one cali to its super wizlet, its implementation is:

public class Vehicle extends «WizletSuper» {
public Vehicle(float x, float y,double theta, double phi,

double speedl,double speed2, double width, double length)
{
super(x,y,theta,phi,speedl,speed2,width,length);

56

public void performStep() {
super.performStep();

public GeneralPath createVehicle(){
super.createVehicle();

A pardal implementation of wizlet Trailer is:

public class Trailer extends «WizletSuper» {
double theta2=0;
GeneralPath bodyPath;
Frame bodyShape, leftTireShape, rightTireShape;

public Trailer(float x, float y, double teta, double phi,
double speedl, double speed2, double width, double length) {

super(x,y,theta,phi,sppedl,speed2,width,length);

public void performStep() {
super.performStep();

public GeneralPath createVehicle(){
super.createVehicle();

}

Wizlet Trailer defines variables and fimctions for a trailer's shape and path.

For a trailer, fiínction performStep () re-calculates next position and re-draws

tailer's shape. Function createVehicleQ defines trailer's shape.

Most of the wizlets are similar to Trailer, thus we don't show them here.

The top-most wizlet in the hierarchy is Params, which declares variables defining
a vehicle's body and its orientation (direction). Auxiliary fimctions can be used by

several layers in the hierarchy:

57

public class Params {
float x,y,xf,yf;
double theta,phi,speedl,speed2,radius,length,width;
double maxPhi;

public Params(float x, float y,double theta, double phi, double
speedl,double speed2, double width, double length) {
this.x = x;
this.y = y;

this.maxPhi=Math.toRadians(40) ; //max turning angle

// "set" functions for speeds, phi and final point

double angleLessThanlSO(double angle){
while (!((angle > -Math.PI)&&(angle <= Math.PI))) {

if (angle > Math.PI)
angle=angle-(2*Math.PI);

else
if (angle < -Math.PI)
angle=angle+(2 *Math. PI) ;

}
return angule;

3.5.2 Implementing Composition Verification

Limited composition consistency verification can be implemented by type declara-

tions in the class hierarchy [Sma99]. However, industrial level application systems

require more complex configuration rules than can be implemented in one direc-

tion (top to bottom). For instance, in an inheritance hierarchy, we cannot verify at

the Principie level that there is a Vehicle component of the correct type, although

we can veriíy the presence of the correct Principie (i.e., Principie is always a super
wizlet of Vehicle).

To solve these problems, configuration predicate validation should be per-

formed by an automatic tool implementing configuration predicates equivalent to

constraints included on feature and GenVoca diagrams, and in GenVoca type dec-
larations and instances. The tool can receive one string representing the composi-

58

tion equation, parse the equation and construct a parse tree, which can be traversed

up and down to valídate componen! consistency.

We implement a validation component for each component in the domain

(wizlet repository); each component implements configuration predicates and

explanation capabilities. Validation components are implemented as classes that

implement two methods: valídate () which performs configuration predícate

evaluation for that component, and an explain () method, which defines a

string explaining the role of the component in a composition. We implemented an

abstract base class for components that are members of the parse tree7. The decla-

ration for that abstract base class is:

abstract class Component {
public Component next;
public abstract void validate(State state);
public abstract void explain(State state);

For instance, the declaration of a validation component for Car component

class Car extends Component {
Car(); //details of constructor not shown here

public void valídate(State state) {
if (!state.carSet){

state.carSet=true;
} else {
state.addMessagef"Error: Only one instance of Car is allowed\n"
state.incErrors();

if (!state.pointSet){
state.addMessage("Error: Car requires Point on top of it.\n");
state.incErrors();

7. Note that equivalen! results can be obtained if we declare a Java interface instead of an abstract
base class. The selection of an abstract base class facilitates implementation consistency in pro-
gramming languages not supporting class interfaces (both C++ and OO Pascal lack the support
of class interfaces).

59

if (next!=null)
next.valídate(state);

void explain(State state){
state.addMessage("The simulator contains an Car component.")
next.explain(state);

Each component asserts its presence by setting a boolean flag. A precondi-

tion for most of the components is that no duplicates are allowed. By checking the

flag, we might know if a component of the same type appears before (is on top of)

in the composition equation. A pre-restriction may be the existence of a particular

component beneath. Again, we can check the flag to test if the property was

asserted (as a post-restriction). The previous code segment shows the implementa-

tion of the valídate () method for Car.

The previous code segment also shows the implementation of an

explain () method, which is called if no configuration errors are found. Each

explain () method appends one string to construct a full description of the com-

position.

Configuration predicate validation is an ad hoc process. The implementa-

tion of configuration predicates may vary widely from component to component.

The explanation capability provides convenient support for application construc-

tion, both when compositions are valid or invalid. Messages for inconsistent com-

position equations help to construct correct compositions. On the other hand,

explanations of correct composition equations helps to understand if semantics of

the system defined by the composition are the same that we had in mind at specifi-
cation time.

60

Figure 3.7: Specification interface for vehicle simulators family

3.5.3 Confíguration Wizard Implementation and Examples

Figure 3.7 shows a possible specification interface for the vehicle simula-

tors product-line. In the example, variants (i.e., different implementations) are

grouped using different grouping facilities in the graphical user interface. For

instance, the types of movements are in a group called "Movement type" where

choices are "Normal" and "Differential"; "Controller type" grouping includes vari-

ants "Intuitive" and "Fuzzy"; "Model" define a list of the vehicle types the devel-

oper can choose from; finally, there is a single "Option" to specify if the vehicle is

towing a "Trailer" or not.

The specification interface includes a visualization área which displays all

messages informing the application developer about the process' status. Several

61

buttons allow the user to initiate different actions. A "Genérate" button is used

after a set of requirements has been specified. After generating, the button labeled

"Compile" compiles the application. After compilation, the resulting simulator can

be executed directly from the configuration wizard when the user presses the

"Execute" button.
In Figure 3.7, several options are selected (a normal movement type, an

intuitive controller, and a car vehicle type). From these selections, pressing the

"Genérate" button produces a component composition expression, performs com-

position validation, and generales the application by adapting wizlets using the

composition expression. Pressing the "Compile" button, the application is com-

piled. Finally, pressing the "Execute" button, the generated application is started.

The application produced is shown in Figure 3.8, which corresponds to a vehicle

simulator for a car. Vehicles being simulated need a pre-defined initial position,
direction, velocities, and a target point. The autonomous control guides the vehicle

to the specified point, showing the path followed by displaying a point trace. Fig-

ure 3.8 shows the car and a trace after the car has moved several steps towards its
specified target point.

. Pamniotet«

X 307.7673
Yh Sfi:.357.??

t nrlfMitattcjii ..._J..-J.£3.1j.fl.?..?.Z.JI,°?j.I?....
r»U anula £Tg.S44a47£9gO363£2 g

SDRUd 1 (lg:.°.,~
Sl»>«tl X ¡1J¿0_

Puf vehlcla Rerform «tep

Final I

Kf [431

vr[ipi"
it st«q>« \'é

Figure 3.8: Simple car.

62

ration expression is that a trailer componen! was added to the composition of a car

without a trailer. The description of the composition also includes an explanation

for the trailer as part of the generated simulator.

To execute the generated simulator, initial position and velocities should be

provided. The results after these parameters are provided are shown in Figure 3.10.
As can be seen in Figure 3.10, a car and its trailer follow slightly different paths.

Figure 3.10 Car with trailer.

As explained in analysis and design, other simulator that can be generated

is a simulator for a tank. The options selected to genérate a tank are shown in Fig-

ure 3.11. Again, differences to previous examples can be seen in the composition

expression and in the description of the application.

Tanks have different inherent behavior as that of a car. Tires in a tank allow

to change direction in smaller spaces thus they can perform maneuvers using less

space and face the target direction faster. Given this characteristic operation, tanks

can not tow trailers, as trailers need more space to change direction, thus the flexi-
bility of a tank could be limited if it has to tow a trailer. Figure 3.12 shows the tank
simulator after several trajectories have been foliowed by the tank. Comparing the

64

HEDE
Selectthe simulator to genérate:
Movemant Type:

<~ Normal
Controller Type:

í* Intuitiva
Model:

ff Dlfferentlal

C Fuzzy

|Tank
Optlons:

Traller
vehicle[:nocrailer[cank[:pach[incuieive[diferencial[params]]]]]] •*!
PerCorming; configuración verificación....
The generated simulacor is f or a Tank. with Incuitive Controller and
Differential Hovemenc Principie
Configuración verificación done....
Fixing wizlecs to fie composición....
[ilizleCs have been f ixed. . . . i
The applicacion has been compiled succesfully.

Cancel Genérate i Compile Execute

Figure 3.11: Specification of a tank simulator.

paths shown on Figure 3.10 and Figure 3.12 we can observe that in effect, a tank

changes direction in a smaller space than is necessary by a car.

xl-nsiüiBa
,.=.: v.,r.,:. .._ „ -. ; f Urtfiy|ut.aiaaj ¡ |
¡u sjujianí-Tiaas ü

«tltwO 1 |BJ 27133 7(1) 2 3".6T |1

5{IC«I ? |? BT2CU7 J3 i rojñzT^]1

PU«EMdé~] j PTTftuniMm J

«¡US

| Mouetotwl"]

Figure 3.12: Simulator of a tank.

65

JfcGeneíaloi HHE3
Selectthe simulatorto genérate:
MovementType:

(* Normal
Controller Type:

<? Intuitive
Modal:

r Differenflai

C Fuzzy

|2WMotor-cycle ~\
Options:

vehicl e [crailerCZUheelMo cor cycle[path[incuitive [normal [par aius]]]]]]. . . . "*1
Performing configuración verification....
The generated simulator contains a Trailer cowed by a ZUheelHocorcycle ;

ch Incuicive Controller and Normal Hovement Principie
Configuración verificación done....
Fixing uizlets to fit composición....
Jizlecs have been fixed....
The application has been compiled succesfully.

Cancel I Genérate I Compile Execute

Figure 3.13: Specification of a motorcycle simulator.

The last example we show of a simulator produced by the configuration

wizard is a simulator of a two-wheel motorcycle towing a trailer. The configura-

KSVchicle

i-Paca
X [382.70825

1
¡ Final P*w ameters

I Vellicle's orientation P27.87927726588335e~|i
Rutatino anule |-5.596143976696415

Speed 1 [20.0
SpeedZ 10.0 MovetopoM

Perfortn step

Figure 3.14: Two-wheel motorcycle with trailer.

66

HIsJE
Select the sirnulator to genérate:
MovementType:

<? Normal
Controller Type:

fT

odel:

C Dlfferentlal

<~ Fuzzy

ptlons:
frank

R Traller

Performing configuración verificación....
Srror: Trailer can not be toved by a Tank.

onfiguration verificación done....

Cancel Genérate Compile Execute

Figure 3.15: Tank towing a trailer is illegal.

tion is shown in Figure 3.13, and the simulator is shown in Figure 3.14, after posi-

tion and speed have been specified and a target point marked in the simulation

área.
Finally, Figure 3.15 shows that towing a trailer with a tank is illegal.

3.6 Discussion
Examples in Figure 3.8-Figure 3.14 show members of a simulators family

that is possible to produce from the product-line infrastructure represented by wiz-

lets and their accompanying configuraron wizard. The autonomous vehicle simu-

lators product-line is illustrative to show the concept of configuraron wizards.

To make possible the implementation of wizlets in Java, the language was

extended to support class parameterization. Although type parameterization capa-

bilities in C++ are much more sophisticated than those we needed to add to Java,
the combined approach of wizlets and configuraron wizards does not required

such sophistication. As can be seen in the example described in this chapter, con-

67

figuration wizards can implement simple specification interfaces allowing non-

expert developers to specify and produce applications by selecting features from

the specification interface, which are used to genérate the application implement-

ing specified features.

To analyze the scalability of our approach, following chapters show the

approach applied in other more complex domains, and using other programming

languages.

68

Chapter 4

Computer Numerical Control Systems

A machine tool is any machine that uses a tool to cut material to produce ítems

with predefined geometric shapes. Machine tools are essential elements of modern

manufacturing and a starting point of every operation intended to precisely cut

material (metal mainly), to transform work pieces into useful products. A com-

puter numérica! control system (CNC) is an application that coordínales the

motions in a machine tool. Geometric shapes are communicated to a CNC using a

numeric program. A machine tool can be considered the processor for a numeric

program and the numerical controller as the numeric program interpreten

Our second example of a configuration wizard for software product lines is

in the numerical control domain. In order to better understand the requirements of

numerical controllers, the first section includes a general description of tool

machines and their programming, and numerical control characteristics and

requirements. This establishes a framework for defining a domain model for a

computer numerical control system, which we present in the second part.

Even though the model presented in this chapter is applicable to a broad

class of two- and three-axes tool machines, our discussion centers more on an
engine lathe (a.k.a. turning machine). This selection is based on two facts: turning

machines are the most common type of metalworking lathe used in industry, it is

the most versatile machine tool (with proper setups and accessories it can perform

69

such machining operations as facing, straight and taper turning, drilling, threading,

milling, grinding, boring, forming, and polishing). Other machine types are pre-

sented with fewer details, in order to keep description short.

4.1 Motivation
The implementation of computer numerical control systems is a diffícult endeavor

[GH91, MBY+00, OSA, OSE97]. Real-time characteristics and communication

coordination are complex to implement. Developers must be familiar with three

áreas: knowledge of real-time characteristics in operating systems, knowledge of

how servomechanisms opérate, and the fiínctionality that a particular type of

machine tool can perform [E1194]. Activity synchronization is essential to get the

most out of control elements in a machine tool. The precisión required by manu-

factured Ítems and performance have to be carefully balanced to achieve the better

results at the higher production ratios.

To meet performance and precisión requirements simultaneously once,

controlling software has to be carefully tuned for each intended task to be per-

formed. Machine tools cost is high [GH91]. In order to lower the cost, the machine

must opérate with the cheaper servomechanisms available for the intended opera-

tions. Control software must adequately exploit servomechanisms to perform com-

plex machining tasks with the cheaper components.

Trouble increases when several similar CNC systems have to be con-

structed [Ram98]. Cost-effective solutions may díctate that a reuse approach

should be applied, but constraints seem to require the application of ad-hoc tech-

niques to meet performance requirements. To meet these requirements, there is the
need of a product-line which should flexibly support necessary characteristics. A

domain architecture for CNC systems must emphasize modularity so main parts

70

can be easily identifiable, helping to evolve the product line to adapt it to future

requirements. It should be adaptable to control different types of tool machines. It

ought to be scalable, thus the addition of new modules (components) should facil-

ítate múltiple new valid compositions.

The goal of the CNC project at Monterrey Tech was to build the infrastruc-

ture (mechanical, electronic, and computational) to facilitate machine tool retrofit-

ting. This project was aimed at underdeveloped countries which have thousands of

oíd manual machines, and cannot afford the cost of acquiring new automated

machines. Oíd manual machine tool automatization is an option to compete in the

global economies, if such a solution can be implemented at relatively low cost

[Ram98].

The machine tool domain is complex. The following section is a lengthy

introduction to machine tools, their controllers and programming.

4.2 Numerical Control
Numérica! control (NC) of machine tools is simply the control of machine tool

functions by means of coded instructions. Examples of machine tool functions are:

moving the table, turning the spindle on or off, changing the cutting tool, indexing

a part, or turning the cutting fluid on or off [GH91].

Almost all industries utilize or are affected by NC, and there appears to be

no end to its application. Industrial users of NC equipment are: aerospace, elec-

tronics, automotive, etc. [BK94]. Lames are machine tools useful in many cutting

operations. There are two major types of NC lathes: the engine and the turret. A

lathe engine is a two-axis machine having longitudinal and traverse motions. Most

NC engine lathes have the ability to turn, face, bore, machine external or internal
tapers, and machine threads.

71

4.2.1 NC Machine Tool Elements

NC machine tool elements consist of axis nomenclature, dimensioning systems,

control systems, servomechanisms, and open- or closed-loop systems. It is impor-

tant to understand each element prior to actual programming of a numerically con-

trolled part.

a. Axis Nomenclature

NC machine tools base their motions on the standard Cartesian coordinate system.

Standard definitions for X, Y, and Z axes relating to most machines are as follows:

X axis:

1. Must be horizontal.

2. Must be perpendicular to the Z axis.

3. Is generally the longest axis of movement.

Y axis:

1. Perpendicular to X and Z.

Z axis:

1. Is always parallel to the spindle and perpendicular to a plañe established by

X and Y.

In addition to the X, Y, and Z axes, several rotation movements can be

accomplished on NC machine tools around the axes. We will not describe these

axes here, because they are related to machine tools more complex than those we

are interested in (i.e., machines having four or more axes).

b. NC Measuring System

The term measuring system in NC refers to the method a machine tool uses to

move a part from a reference point to a target point. A target point may be a certain

72

location for drilling a hole, milling a slot, or other machining operation. The two

measuring systems used on NC machines are absolute and incremental.

• Absolute system. The absolute measuring system uses a fixed reference point

(origin). It is on mis point that all positional information is based. In other

words, all the locations to which a part will be moved will be given dimen-

sions relating to that original fixed reference point.

• Incremental system. The incremental measuring system has a floating coor-

dinate system. With the incremental system, the machine establishes a new

origin or reference point each time the part is moved. That is, each new loca-

tion bases its valúes relative to the preceding location. One disadvantage of

mis system is that any error made will be repeated throughout the entire pro-

gram, if not detected and corrected.

c. NC Control Systems

There are two types of control systems commonly used on NC equipment: point-

to-point and continuous path.

• Point-to-point Systems. A point-to-point controlled NC machine tool, some-

times referred to as a positioning control type, has the capability of moving

only along a straight Une. Point-to-point systems are generally found on drill-

ing and simple milling machines where hole location and straight milling

jobs are performed. Point-to-point systems can be utilized to genérate ares

and angles by programming the machine to move in a series of small steps.

Using this technique, however, the actual path machined is slightly different

from the cutting path specified.

73

• Continuous-Path Systems. Machine tools that have the capability of moving

simultaneously in two or more axes are classified as continuous-path or con-

touring. These machines are used for machining ares, radii, circles, and

angles of any size in two or three dimensions.

d. NC Servomechanisms

NC servomechanisms are devices used for producing accurate movement of a

table or slide along an axis. One common type of servo is an electric stepping

motor. Stepping motor servos are frequently used on less expensive NC equip-

ment. These motors are generally high-torque power servos and mounted directly

to a lead screw of a table or tool slide. Stepping motors are actuated by magnetic

pulses from the stator and rotor assemblies.

e. Open- and CIosed-Loop Systems

Closed-Loop. A closed-loop system compares the actual output with the input sig-

nal and compénsales for any errors. Afeedback unit actually compares the amount

the table has been moved with the input signal. Some units used on closed-loop

systems are transducers, electrical or magnetic scales, and synchros (e.g., motors).

Closed-loop systems greatly increase the reliability of NC machines.

Open-Loop. NC machines that use an open-loop system contain nofeedback sig-

nal to ensure that a machine axis has traveled the required distance. That is, if the

input received was to move a table axis 1.000 in., the servo unit generally moves

the table 1.000 in. There is no means for comparing the actual table movement

with the input signal, however. The only confidence one can have that the table

actually moved 1.000 in. is the reliability of the servo system used. Open-loop sys-

tems are, of course, less expensive than closed-loop system.

Control of a machine tool can be conceptualized as a canonical form of
feedback system (see Figure 4.1) [Ram98]. Five components are present:

74

Input program. Is the NC program describing movements to be performed

by the machine.

Control unit. Interprets program operations and converts them to control sig-

náis for machine actuators. It is the checkpoint where program's reference

position and real-position are compared.

Actuators. Devices that execute control signáis and convert them to mechan-

ical actions to move machine's mechanisms.

Feedback devices. Measurement instruments that supply the control unit

with the real position of the machine. Feedback devices can sense actuators

or sense axis linear movement.

Machine tool. Is the final element to be controlled.

NC
Program

— ̂ ~
/ /I /

Contrc
unit

^

)l 4-> A .\ Acluators

/
Feedback
devices

rl7
7 tool

Figure 4.1 Canonical form of aNC system.

4.2.2 NC Programming

Numerical control instructions (also known as blocks) in a program appear as

words made of individual codes. A common format is the word address format

(also known as EIA-274), standardized by EIA (Electronic Industries Association).

EIA-274 assigns an alphabetical code (in upper case) to each fünction word. The

purpose of a letter address is for word identification. Words do not have to appear
in a rigid format. Different machines may have different sets of words that are rec-

75

ognizable (e.g., a lathe may not recognize instructions aimed to a milling
machine). Functions may consist of:

• sequence numbers: give an ordering to instructions

• preparatory and miscellaneous functions: define units (inches or millime-

ters), measuring system (absolute or incremental), etc.

• X-, Y-, andZ-coordinate Information: with valúes expressed as absolute or
incremental valúes

• spindle speeds: adjust speed to accommodate different materials

• feed rate: is defined as the linear displacement of the tool relative to the

workpiece, in the direction of the feed motion, per stroke or per revolution of

the workpiece or tool.

4.2.3 Program codes (letter address)

Letter addresses are single letter identifiers used as prefixes to both instructions

and valúes. Sets of instructions or function words use the same letter address, and a

different number (e.g., M and G). Other letter address identify parameters (e.g., X,

Y, I, K, etc.).

N Block sequence number address. Followed by a number (e.g., N010, N020).

The program will be executed from the lowest block number to the highest.

X,Y,ZThese addresses signify axis motion in accordance with the designated axis

motions of the machine tool. The dimensión address will be followed by a

signed number.

I,K,R These addresses are used when employing circular interpolation to specify

the center of the programmed are. The commands for X, Y, and Z coordi-
nate addresses equally apply.

T Tool function code identifying the tool to be used, or loaded if at a tool

change. Normally followed by 2 digits. Accompanying each tool will be a

76

M

corresponding tool length offset (representad by two extra digits) which is

accessed, during machining, by the tool code.

Spindle speed letter address. The digits following the address represent the

desired speed.

Peed rate letter address. The digits following the address represent the

desired feed rate.

Miscellaneous function letter address. M-fimctions are a family of instruc-

tions that cause the starting, stopping or setting of a variety of machine

fimctions. The address letter is followed by 2-digits. Following is a table of

common standardized M-fimctions (EIA-274):

MOO
M01
M02
M03
M04
M05
M06
M08
M09
M30

Program stop (AC)
Optional stop (AC)
End of program (AC)
Spindle on (clockwise) (W)*
Spindle on (counterclock) (W)*
Spindle off(AC)
Tool change
Coolant on (W)*
Coolantoff(AC)*
Program end (AC)

TABLE 2. EIA-274 standard M-functions.

In the table, letters inside parentheses denote the timing of the particular

function within the block in which they appear. (AC) indicates that the M-

function will be executed after completion of any commanded axis motion,

and (W) indicates that the function will be executed with any commanded

motion. An asterisk denotes that the function is retained until it is cancelled

or superseded; such functions are known as modalfunctions.
Preparatory function letter address. G-functions are a family of instructions

that change the control 's mode of operation. For example, changing from

77

metric to inch units or from absolute to incremental coordinates. Following

is a table of common standardized G-functions (EIA-274). In the table,
GOO
G01
G02
G03
G04*
G20
G21
G28*
G29*
G40
G41
G42
G70
G71
G72
G73
G74
G75
G76
G90
G91
G94
G95

Rapid movement
Linear interpolaron
Circular interpolaron (clockwise)
Circular interpolation (counter clock)
Pause
Inch units
Metric units
Go to tool home (use an intermedíate position)
Return from tool home
Cancel cutter compensation
Cutter compensation left
Cutter compensation right
Finishing cycle
Longitudinal roughing cycle (turning cycle)
Face contour roughing cycle
Contour paral leí roughing cycle
Peck drilling
Grooving
Multi-pass threading
Absolute coordinates
Incremental coordinates
Facing cycle
Cylindrical roughing cycle

TABLE 3. EIA-274 standard G-functions.

4.2.4 NC programming procedures

This section presents examples of NC program instructions portions. In these

examples, all axes are assumed to be under single or contouring control. Machine

datums will be specified assuming a zero offset facility. Only one preparatory (G)

fimction and one Miscellaneous (M) function per block of information. All dimen-

78

sional Information is given in millimeters. Speed codes are rev/min valúes and

feed codes are mm/min valúes.

NC programs contain several identifiable parts: setup, move to commanded

position, perform interpolation moves, resume commanded position, and end.

a) Starting a NC program

The starting point in a NC program informs the control system of the various setup

conditions for the machine task that follows:

• Coordinate valúes (either absolute or incremental).

• Dimensional units (either metric or inch).

• Tool number.

• Spindle speed.

• Start spindle rotation.

The start of a NC program may thus take the following form:

N010 G90 ..Absolute coordínate

N015 G21 ..Metric units

N020 M06 T01 ..Tool change

N025 M03 S2000 ..Spindle on at specified spindle speed

b) Programming positional moves

A positional move causes the tool to move to a commanded position without any

cutting taking place. Such moves are normally performed at rapid traverse. Rapid

positioning mode is activated by issuing GOO within the NC program. A positional

move may take the following form:

N035 GOO ZO ..Set rapid traverse, retract tool
N040 X159.75 Z250 .25 ..Move in X-Z
N045 G01 X160 ..Set linear interpolation mode

c) Machining using interpolation

79

Machining using interpolation simply means machining in straight lines or

describing circular ares.

• Linear interpolation. Linear moves may be horizontal, vertical, or at an
angle, in any direction. All machining is done under control of feed. A pro-

gram segment to make a 200 mm horizontal cut, followed by a 300 rnm ver-

tical cut, 5 mm into the surface in the work piece may take the form:

N050 G01 Z-55 ..Set interpolation, feed down
N055 M08 ..coolant on
N060 G01 X200 ..Horizontal cut
N065 G01 Y300 ..Vertical cut
NOVO GOO Z-5 ..Retract spindle -rapid
N075 M09 ..coolant off

• Circular interpolation. A single circular interpolation command block is

capable of producing a circular are spanning up to 90°. Circular interpolation

is limited to contouring in a single plañe (i.e., in two dimensions only). When

milling, this plañe should be selectable (X-Y, Y-Z, and X-Z). When machin-

ing an are, four pieces of information need to be specified:

1) The start position is assumed to be the current tool, or cutter, coordínate

position.

2) The end position of the are is specified by X, Y, and/or Z coordínales

measured from the start position.

3) The radius is dealt with by specifying the coordínate position of the center

of the required are. Letter addresses I, J, and K are used for this purpose. I

is used to specify the center of the are in the X-direction; K is used to

specify the center of the are in the Z-direction.

4) The direction of cut is specified by a unique G-code. G02 is used to spec-
ify clockwise circular interpolation and G03 is used to specify counter-

clockwise circular interpolation.

80

A program segment for illustrating circular interpolation programming for

a turning machine follows (absolute coordinates):

N030 GOO XO Z86 ..Rapid to tool start point 1
N035 M03 ..Spindle ON
N035 G01 Z85 M08 ..Feed to start of rad, point 2, Coolant ON.
N040 G02 X15 270 K-15 . .CW circular are to point 3..
N045 G03 X23 Z62 K8 ..C/CW circular are to point 4..
N050 GOO X24 M02 ..Retract tool, rapid, spindle OFF..
N055 X100 Z150 ..Rapid back to initial point X100, Z150

Figure 4.2 shows the programmed move for the previous program segment.

d) Machining using canned cycles

A canned cycle is a (user defined) fixed sequence of operations, that can be

brought into action by a single command. Such cycles considerably reduce pro-

gramming time and effort, on repetitive and commonly used machine operations.

Canned cycles form part of the family of preparatory G-functions. G70 to G76 and

G92-G95 are reserved for the various cycles.

Fixed cycles automatically perform a number of discrete operations as des-

ignated by the appropriate G-code. Common fixed cycles for turning operations

are: straight turning, taper turning, face turning, and taper face turning cycles; área

clearance (stock removal), grooving and peck drilling cycles; thread turning, taped

tread turning, and multi-start thread turning. Most cycles must be accompanied by

additional information in the command block. Thread turning, for example, may

\
X=100
Z=150

Figure 4.2. Machine tool motion path.

81

require the lead, depth of thread, and number of passes to be specified. The cycle

contour-parallel is used for work pieces with a shape that is equivalent to the con-

tour of the finished part.

A stock removal, or área clearance cycle, is simply a roughing cycle

whereby a number of passes are made to clear large amounts of material. The tool

will traverse a similar tool path, automatically increasing its depth of cut at each

pass.

An example of a canned cycle is shown in Figure4.3. The resulting profile

is manufacturad by the code segment:

N025 M03 S800
N030 GOO X2 ZO
N035 G72 P40 Q60 F0.25
N040 G01 XO ZO
N045 G01 XI
N050 G01 Z-0.5
N055 G01 XI.5 Z-1.5
N060 G02 X2 Z-2 RO.5
N065 G70 P40 Q60 FO.12

..Spindle ON at 800 rpm

..Rapid to tool start (1)

..Perform facing cycle

..Take workpiece as home point (2)

..First position of profile (3)

..Cut horizontal part (4)

..Cut diagonally (5)

..Cut circular segment (6)

..Finishing cycle

Figure 4.4 is a sketch for the profile produced by a G73 canned cycle. G73

is used when the work piece almost has the final profile and a repetitive parallel

-* - - - K

Figure 4.3 Facing cycle (G72).

82

cutting is enough to produce the final profile. The instruction segment following

obtain the work piece shown on Figure4.4:

N040 M03 S800
N045 GOO X2.5 ZO
N050 G73 P55 Q85 DO.02
N055 G01 XO ZO
N060 G01 X0.5
N065 G01 Z-0.75
NOVO G01 XI Z-1.25
N075 G01 Z-1.5
N080 G01 XI.25 Z-1.75
N085 G01 X2
N090 G70 P55 Q85 FO.12

..Spindle ON at 800 rpm

..Rapid to tool start (1)
..Contour parallel
..Move to home point (2)
..First position of profile
..Cut horizontal part (4)
..Cut diagonally (5)
..Cut diagonally (6)
..Cut horizontal part (7)
..Cut diagonally (8)
..Finishing cycle

(3)

Note that blocks (lines) 55-85 define the final desired work piece profile.
Instruction in line 50 cut the material at a fast rate. The instruction in line 90 com-

mands the cutting tool to perform a final pass along the profile thus a finer and pol-

ished surface is obtained in the work piece.

4.3 Project's Goals
Previous description of NC programming yields the foundation to better under-

stand our second proof-of-concept product line. As explained, a project underway

Figure 4.4 Contour parallel (G73)

83

at Monterrey Tech is aimed at constructing CNC systems for retrofitted two- and

three-axes machine tools, with the ability to perform EIA programming codes,

handle either incremental or absolute positioning systems, work with either inch or

metric units, continuous-path, opérate on closed-loop, and incorpórate several

canned cycles. The project is aimed at implementing a product-line of CNC sys-

tems for controlling retrofitted two- and three-axes tool machines [Ram98].

A goal in the project is to provide for máximum flexibility in the construc-

tion of different CNC systems thus a developer can select among different motor

types, data acquisition cards, drivers, interpolation algorithms, canned cycles, etc.

Several of the more important characteristics in which projected tool machines can

differ are:

• Motor type. There are at least four different motor types: stepper, AC, DC,

and linear. From these, stepper motors are the most easily to opérate; to per-

form a "step" the motor has to be sent an electrical pulse (a different wire

determines if the step has to be performed forward or backwards). AC, DC,

and linear motors are more difficult to control, and will not be discussed

here.

• Motor precisión. Movement instructions in NC programs are expressed in

linear valúes; these valúes have to be translated to angular valúes and then to

steps. For each step, the motor has to receive a pulse. Thus, motors with dif-

ferent precisión require different pulse amounts to move cutting tools equiv-

alent distances. Thus algorithms translating linear motion valúes specified in

NC programs have to be adjusted to perform correct translations from linear

valúes to pulses (steps). Each motor has to have at least a valué of its preci-

sión to transíate linear to angular valúes.
• Spindle's controller. Instructions for spindle are expressed in RPM (revolu-

tions per minute). A spindle is controlled by a hardware driver, and drivers

84

are controlled by voltages typically in the range between O and 10 volts.

From these voltage valúes, drivers genérate high-voltage output at variable

frequencies. Using different spindle motors requires changing the driver con-

figuration (i.e., there is no need to change software in any way for different

motors). However, changing the driver requires an equivalent change in the

algorithm performing the translation from RPM to voltage valúes.

Data acquisition card. Data cards perform rwo tasks: send pulses and volt-

age valúes to tool machine elements, and detect responses from tool machine

elements. These responses are used to feedback control software so informed

actions can be performed according to received valúes. Different data acqui-

sition cards have different configurations; usually configurations depend on

pins in card's connectors, which are mapped to registers inside the acquisi-

tion card. In different cards, valúes are sent through different wires and

received in different wires. Although cards from different manufacturers or

different cards from the same manufacturer may have similar functionality,

the hardware interface is different. In such cases the controlling software has

to be configured according to a card's configuration to which the machine

tool being controlled is attached. Also, different cards can control two, three
or more motors of one or more types. The correct control algorithm should

correspond to the capabilities and characteristics of the acquisition card.

Machine type. Machine tools may differ in axis number, instructions they

can perform, dimensión of the working space, and on all other factors men-

tioned above (i.e., have different data acquisition cards, motors of different

precisión, etc.). Most of these differences can be understood as using differ-

ent acquisition cards (to control different axis numbers), motors having dif-
ferent precisión, etc. Dimensión of the working space is the parameter that is

not determined by other elements in the machine tool. What this means is

85

that characteristics of a particular machine tool can be attributed to each of

its constituting elements, but that is not the case with working space dimen-

sions.

These differences help to understand the variability that the product-line

infrastructure should support, and give hints on how variations can be imple-

mented to support di verse configurations.

4.4 A FODA Model for CNC Systems
From the previous lengthy introduction to the CNC systems domain, we can derive

the feature diagrams on Figure4.5 and Figure4.6.

Feature diagram in Figure 4.5 shows that there are four subsystems (fea-

tures at level 1): Userlnterface, Transistor, MotionGenerator, and MotionControl.

Userlnterface handles windowing and related events. Translator produces an inter-

medíate representation of NC programs. MotionGenerator produces detailed traces

for tool motion. MotionControl controls the tool machine to perform commanded

instructions. Figure 4.5 shows that the only optional features in MotionGenerator

subsystem are canned cycles. Figure 4.6 shows that only one motor type can be

used in a single machine tool (spindle's motor is the exception, because it is con-

trolled independently of the other motors).

CNC

^==^
Userlnterface Translator MotionGenerator

Expander Interpreten Interoolator

MotionControl
(See Figure 4.6)

EIA274 Linear Circular Turning / Faclng \ Finlshing 2Axes 3Axes
Threading Roughing

Figure 4.5 Feature model of CNC domain

86

Note also that all features in MotionControl are mandatory, and "third

level" sub-features are exclusive (e.g., only one AxesController, Motor, or Card

can be used at a time). It is also worth noting that at this moment there is no infor-

mation about how features will be organized as components in an architecture for

CNC systems.

MotionControl

A
Card DriverDispatcKér AxesController Inverter Motor Timer

2Axes 3Axes Step AC DC pcirjO Sensor Simulator

Figure 4.6 Sub-feature model of MotionControl

4.5 Hierarchical Models for CNC Systems
This section includes a more detailed explanation of subsystems and hierarchical

models for the feature model described in previous section.

Figure 4.7 shows a high-level architecture of a CNC system (at subsystem

level). For performance reasons, we chose not to use a GenVoca layered architec-

ture for the full CNC system. Most of the subsystems run in sepárate threads and

different tools besides component composition are used, as we describe latter in

following sections. The system is organized as follows. User interaction is man-

aged by the Userlnterface subsystem. Here users issue commands for editing,

compiling, and running NC programs. Users can edit configuration parameters for

Userlnterface

Translator MotionGenerator MotionControl

[~ Machine ~j

Figure 4.7 CNC's high-level architecture

87

a particular machine tool (i.e., máximum instruction feed-rate, working-area

dimensions, etc.). A special kind of interaction is available to users: there are con-

trols to allow the user define/set preferred reference position from which machin-

ing tasks should start (called the user home).
After editing a NC program, aTranslator performs parsing and syntax anal-

ysis. If correct, symbolic representations (in G-and-M codes) are translated to an

intermedíate notation. Transistor removes modal instructions by inserting appro-

priate instruction codes to all its output. We use lexical and parser generators (Lex

and Yace) to implement Translator subsystem.

Once a NC program has been "translated", motion instructions it defines

can be prepared to be feed to a tool machine. The MotionGenerator subsystem

shown in Figure 4.7 performs such preparatory actions, as follows. Users can write

NC programs using different measurement units (inches or millimeters) and coor-

dinate systems (absolute or incremental). Machining operations on work pieces

typically consist on cutting-tool motions in different directions. Axis motors can

perform discrete and small steps. Moving from the current position to a target posi-

tion commonly requires that axis motors perform a number of steps. Each cutting

tool motion instruction is then translated to the number of steps necessary depend-

ing on motor precisión (i.e., steps needed to move a given linear distance). Diago-

nal and circular movements are more complex; in this case instructions are

translated to step sequences that activate successively the appropriate axis for the

cutting tool to move following the required path. MotionGenerator produces

motion paths and keeps consistent measurement units (inches) and measurement

system (relative coordinates) for all tasks it performs.

Another subsystem in Figure 4.7 is MotionControl, which controls the
machine tool. Machine tool elements are governed by inertial laws (i.e., motions

cannot be constantly performed at high speed, machine elements has to accelerate/

88

decelérate from current speed up/down until desired speed is reached). In general,

physical components in machine tools respond to instructions at lower speeds than

the electronic controlling equipment that feeds them. There may be times when

commands are sent to a higher speed than that a machine tool can respond; in such

cases these commands will be ignored (missed). The control must correct such

events and re-send missed commands whenever necessary. Feedback mechanisms

keep track of such events. The machine tool operator must be informed at real-time

of the machine status (i.e., coolant on/off, spindle's speed, cutting tool position,

etc.). MotionControl controls all these tasks.

The following sections preset detailed descriptions of both MotionGenera-
tor and MotionControl.

4.5.1 MotionGenerator subsystem

The MotionGenerator subsystem is an intermediate module in a CNC system. Its
input is a file (the output produced by the Translator subsystem) containing sym-

bolic equivalents of the original NC program entered by the user. In general, the

task performed by MotionGenerator is similar to that of a code generator in a pro-

gramming language compiler. In a traditional compiler, high-level instructions are

translated to assembly or machine language instruction sequences (i.e., high-level

instructions are abstractions of lower level tasks performed by the computer's pro-

cessor). In a machine tool, high-level instructions represent commands for moving

from an initial position to a target position. However, at low level, machine ele-

ments can perform more simple tasks (i.e., move a fraction of an inch for each

instruction). Thus, high-level instructions have to be translated to several more

detailed instructions, according to machine-tool's specific characteristics and par-

ticular instruction (i.e., depending on the movement instruction different algo-

rithms are used to produce the detailed output).

89

Other high-level tasks performed by MotionGenerator are intended to

increase CNC system's performance. For instance, a consistent measurement unit

is kept (i.e., the output from MotionGenerator is always expressed in inches,

regardless of the measurement units set by the user); thus, no time is spent on mea-

surement unit translation when instructions are fed to machine tool elements.

Figure 4.8 shows an expanded layered architecture of the MotionGenerator

subsystem, which consists of a stacking of six components. The component at the

top is Expander, who controls the translation (or expansión) process performed by

MotionGenerator. For reasons that will be evident later (when we discuss Canned-

Cycle component), Expander stores the input program in a local data structure;

then the input program is sent as a stream to the next lower-level layer. Note that

Expander is independen! of instruction format or machine tool's specifics, it just

"blindly" reads the input program and streams it down. Expander handles all inter-

actions with Userlnterface subsystem, which consists of starting the translation

process for a given input file, and sending back the translation results.

The next component in the hierarchy is Interpreten Interpreter distin-

guishes among instruction codes, and keeps the translation process' status. Process

status is determined by current measurement unit mode (inches or millimeters) and

reference position (absolute or incremental). Interpreter knows instruction formáis,

that is, it knows what parameters are needed for each instruction type, and the

Expander

Interpreter

[CannedCycle O o]

[CoordAdapter O
i ~

Interpolator O

Writer

Figure 4.8 MotionGenerator subsystem

90

order in which these parameters are expected. According to instruction codes, the

appropriate transformation is requested to a lower level layer, sending the neces-

sary parameters. In this way, Interpreten receives an instruction stream, decodes

every instruction and complements them with information of which transformation

funclion should be applied. When necessary, Interpreten transíales measurement

units from millimeters to inches so that lower level layers opérate consistently on a

uniform unit mode (inches) basis. Machining precisión is in thousandths of an

inch; thus Interpreten also transíales distance valúes to thousandths. In summary,

Interpreter's task is to transform instructions by converting measurement parame-

ters to thousands of an inch, regardless of the current measurement unit defined by
the user; then requests particular additional transformations from lower level lay-

ers, according to each instruction lype.

CannedCycle layer is below Interpreter. CannedCycle receives a profíle

that should be the result of a machining task; such profile must be obtained by

repetitively executing patterns of movement. Pro files are defined by groups of lin-

ear and circular instructions (i.e., G01, G02, and G03). Canned cycle instructions

include parameters declaring how the particular profile is to be obtained; these

parameters define cutting depth and cutting-tool retraction distance for each cycle.

Each particular canned cycle operation is performed very differently from the oth-

ers, thus components implementing canned cycles must determine operations

sequences that need to be performed to obtain the specified profiles. A CannedCy-

cle component transíales work piece profiles defined by lines and ares to patterns

of linear movemenls whose resull will be to produce the specified profile in Ihe

work piece.

Al Ihis poinl, inslruclions are expressed in Ihousandlhs and all conslitule

simple preparalory (Gxx) or miscellaneous (Mxx) inslruclions (Ihal is, canned

cycles have been expanded lo linear movemenls. Whal remains lo be done is lo fix

91

the measuring system. The CoordAdapter layer translates absolute valúes to incre-

mental representations, thus lower level layers consistently deal with incrementa!

measurements. CoordAdapter supports both absolute and incrementa! systems;

thus swapping between them would be relatively easy. For instructions requiring

additional transformation (i.e., linear and circular movement), CoordAdapter

requests additional transformations from its lower level layer, all other instructions

are directly send to output.

Interpolator is the last layer performing instruction transformations. As

already mentioned in this and previous sections, initial and target positions are part

of movement instructions. However, target positions typically are farther than it is

possible to advance in a single motor step. Additionally, it is rarely the case that

movements will be along a single coordínate axis (i.e., horizontal or vertical).

Thus, for most of the cases, the cutting tool will need to move diagonally to reach

target positions. In such cases, both motors controlling positioning in the plañe of

movement should be activated simultaneously for moving the cutting tool along

the trajectory defined by the movement instruction (linear or circular). As was pre-

viously mentioned, at this point all measurements are expressed in thousandths of

an inch and valúes are incremental. In order to move the cutting tool along the

appropriate trajectory, we need to know the direction at each intermediate position.

Depending on the trajectory (linear or circular), we can select an appropriate algo-

rithm to produce all intermediate movements that motors should perform. Note

that, at this point, movement precisión does not depend on motor precisión, but

only on the minimum precisión we are interested to obtain on the finished work

piece. Thus the same output can be useful to command motors of different preci-

sión and type. Finally, Interpolator doesn't know how to communicate its results;

all intermediate positions are sent to the next lower layer.

92

Subsequent stages on the CNC system need to know how many expanded

instructions are produced for every input instruction, before performing the opera-

tions. Thus the protocol implemented in Writer is to store all expanded instructions

it receives and counting them until a flush method cali is received. Writer sends

first the counter valué and then the expanded instructions.

It is now time to see how different MotionGenerator subsystems can be

constructed for machines incorporating different elements. In the previous section

we described possible changes in a machine tool, which require equivalent

changes in the controlling software. Here is how MotionGenerator can be adapted

for every change:

• Motor type. Instructions that have to do with motors controlling cutting tool

positioning are translated to traces whose units are always expressed as thou-

sandths of an inch. That precisión is independent of a particular motor type

and precisión. Thus a different motor type does not require any change in

MotionGenerator.

• Motor precisión. See discussion for motor type in previous paragraph.

• Spindle's controller. In what concerns MotionGenerator, spindle's motor is

just turned on/off. No change is necessary to control a machine tool having

different spindle controller (driver).

• Data acquisition card. The output produced by MotionGenerator does not

depend on the data acquisition card configuration to which the machine tool

is connected. Again, no changes are needed in the subsystem when different

cards are used.

• Machine type. Machines can be different in a number of characteristics. For

instance, different machine types may have different axis amount, may be

able to perform different canned cycles (if any), and interpret different

instruction sets. Cutting tools can move only on perpendicular planes, as our

93

algorithms are two-dimensional, it is only necessary to inform an algorithm

(via a parameter) about the axis that will intervene on the motion instruction.

We need to have a different implementation of CannedCycle for each

canned cycle type. It seems that we will need to have a different interpreter

for each machine type. We circumvent this need by implementing an Inter-

preten that has the capability of handling instructions for most of the

machines we have identified as amenable to be automated. Thus, what will

really need to be changed is theTranslator subsystem.

Our previous discussion shows how the architecture we suggest for Motion-

Generator supports CNC systems1 evolution. All needed changes can be localized

inside one or more components, thus instantiating the proper subsystem will

require to use the appropriate component implementation. In Figure 4.8, numbers

on components' upper-right corners represent the amount of potentially different

implementations that will be needed. For instance, we may need two different

interpreters (one for EIA and other for ISO standards), six canned cycles, etc.

Note that a single MotionGenerator can have more than one implementa-

tion of some components. For instance, one machine can require performing both

linear and circular trajectoríes, thus a corresponding interpolator for each type of

interpolator need to be present in the CNC system.

4.5.2 MotionControl Subsystem

The MotionControl subsystem feeds instructions to machine elements and receives
feedback from actuators to monitor machine operation. The input to MotionControl

is the output produced by MotionGenerator (i.e., instructions to turn on/off spindle,

coolant, etc.; instructions to change cutting tool; sequences of instructions defining

a trace the cutting tool should follow, etc.). MotionControl uses these instructions

to guide the tool machine to perform a specifíc machining operation.

94

Most of the complexity in MotionControl is that it must opérate at real-

time. There are inertial forces preset in the machining process. As a result, physical

machine elements cannot respond to instructions at the speed the controlling com-

puter can send the movement instructions. Once in motion, physical elements can

respond to instructions in shorter time (i.e., response time is related to motion

speed), thus the controlling software must consider such behavior.

This basic operation is complicated by the need to deal with user interac-

tion and process monitoring. Feedback received from machine tool devices is sent

to the user interface to keep users informed of the process' status. Besides the

described operation, MotionControl should respond to user events such as pausing

the process, canceling the process, and resuming the process.

Figure 4.9 shows MotionControl subsystem's internal hierarchical structure.

The first layer is InstructionDispatcher, which handles user interaction and NC

program execution and controls instruction dispatching to lower level layers. For

instruction dispatching, the (expanded) input program is read one record (instruc-

tion) at a time; instructions are pre-processed and lower-level operations are

requested, according to instruction's type. When the input file is exhausted,

| Dispatcher
_L

AxesController

"Mot:or

Inverter

Driver

Timer

I üommunications

Cara

Figure 4.9 MotionControl subsystem

95

InstructionDispatcher moves the cutting tool back to its original position and then

the system is ready to process a new NC program.

The next layer is AxesController; it has information of machine tool's con-

figuration, which is determined by how many axis the machine tool contains.

Upon request, it is able to move cutting tool to a pre-specified position (called the
"tool home"). Movement instructions are routed to the corresponding motor, so the

correct motor performs the needed steps in the expected direction.

Motor is the most complex layer. There exists a Motor component for each

machine tool axis. Motor issues movement actions to the electric motor attached to

the machine axis it controls, according to motor type (DC, AC, step, etc.). Move-

ment distances come expressed in thousandths of an inch, thus Motor adjusts them

according to motor type characteristics (e.g., for a stepper motor, distances are

translated to steps, according to motor precisión). Motor also endoses axis-posi-

tioning control; it keeps information of each movement instruction sent to a motor.

Feedback on the physical motor's response to a movement request is received by

Motor. If a motor was unable to perform the requested action, its controlling Motor

component detects such fault and the movement instruction is re-sent to motor

(two tries are attempted only). Additionally, each Motor component keeps track of

cutting tool positioning along the axis it controls. Using this information and infor-

mation on the working space dimensions, a Motor can know when a movement

instruction will move the cutting tool away of the working área, and thus can

refuse issuing the instruction and inform the user of the situation. To keep perfor-

mance high, positioning information is displayed proportional to motor precisión

and instruction feed rate. When moving (i.e., feeding instructions) at high speed,

rate of positioning display is slowed down, thus control can be devoted more to

coordinate machine tool operations. When moving at slow speed, position is dis-

played for every instruction. Such behavior takes into account that low-speed oper-

96

ations are executed when complex movements or finishing operations are being

performed, and the user needs to be informed of operation's progress. On the con-

trary, high-speed movements occur at the middle of a "long distance" movement

instruction, thus intermedíate positioning is not so important for the user. When-

ever instruction-feed rate is changed, the display rate is adjusted accordingly.

Finally, we remark the fact that Motor requests from a lower layer that the corre-
sponding motor perform a step, but does not care about how long motor will take

to execute the commanded action.

Inverter performs a simple task; it just computes equivalent voltage valué

(in the range between O and 10 volts) for the incoming rpm valué. Voltage valué

calculation depends on the characteristics of the driver attached to the machine's

spindle (i.e., the same driver can be used in different motors or the same motor

with different drivers, but Inverter's calculations depends only on the driver).

Up to this point, no layer has taken care of the fact that signáis (requests)

are being sent to machine tool's physical components whose response time is much

slower than the controlling-computer processor's speed. In practice, we need to

implement a waiting mechanism to block execution while motors perform

requested operations. This blocking mechanism should be flexible enough so the

waiting time can be adjusted according to machining conditions. That is, when a

motor is asked to move from a stationary position, it takes more time to react than

when it is already in movement. Timer layer implements the waiting mechanism.

When movement instructions are sent to a motor, Timer retains control (i.e.,

blocks) until the appropriate time elapses. The waiting mechanism has to be syn-

chronized to motor reaction time. To work under such strict timing requirements,

Timer synchronizes with motors using hardware interrupts. Typically hardware
interrupts occur within tiny error limits (enough for the precisión required by a

97

motor). Note that changos in instruction feed rate to motors work by changing the

waiting time (i.e., the frequency at which interruptions are being generated).

Users are interested in monitoring the machining process; thus valúes

showing machine tool status have to be dynamically displayed. These valúes have

to be updated at each status' change (i.e., a motor is moved, the spindle is turned
on/off, coolant is turned on/of, etc.). The user interface and controlling subsystems

run on different processes, thus all data interchange uses an interprocess communi-

cation mechanism. The Communications layer performs all Communications with

the user interface. It decides when data has to be sent to the user interface process

(according to motor speed, or when actuators are turned on/off). Note that commu-

nications are in two directions, from the user interface to the motion control sub-

system to issue commands, and from motion control to the user interface to inform

of executed tasks (users request the execution of a program, pause, resume, or can-

cel the execution of the current program; the motion control informs of actions

started or new position of the cutting tool. At the user interface, users edit machine

configuration (i.e., working área dimensión, motor precisión, etc.); such informa-

tion has to be supplied to components in MotionControl. The Communications

layer handles all Communications associated with user interaction and machine

configuration. The protocol used here is that before executing any operation,

upper-level components check if Communications component has an incoming

message from the user interface and process them.

The bottom layer is Card. By providing a standardized interface to higher

level layers, Card hides hardware data acquisition card details. Each hardware

engineer can decide at which pins control wires are attached, and then Card has to

be programmed accordingly. Card is an abstraction of a hardware data acquisition
card to which machine tool's elements are attached to the controlling computer.

98

Again, we need to analyze how the model can be adapted to implement

domain variations. Here we consider the same variations that previously identified

for CNC systems:
• Motor type. Previously we identified that there are at least four different

motor types we would need to control: stepper, AC, DC, and linear. Each
motor operates very differently, and our previous descriptions have been lim-

ited to stepper motors. For instance, stepper motors opérate at discrete steps

for each electrical pulse they receive. DC motors opérate on voltage levéis;

according to the distance the motor has to advance, thus for DC motors it is

necessary a translation to volts. AC motors opérate on voltage valúes too, but

the behavior (i.e., the computing algorithm) is different from that of DC

motors. As a consequence, we will need a different Motor component when-

ever we use a different motor type.

• Motor precisión. There is a direct relationship between the linear distance

instructions in the NC program, and the angular distance the motor in the

corresponding axis has to rotate. Then it is only necessary to know motor's

precisión (i.e., distance a motor moves at each step) to compute the total dis-

tance in terms of motion units. The precisión valué is normally fixed for long

time periods (probably the whole life span of a machine tool), thus we

decided to store it in a confíguration file. If motors in a machine are substi-
ruted by others of different precisión, it is only necessary to edit the configu-

ration file to put the appropriate precisión valué.

• Spindle's controller. Spindle motors are AC motors, which can rotate at dif-

ferent speeds and support different workloads. Inverters change motor speed

according to their input voltage valúes. Input voltages to inverters are typi-

cally in the range from O to 10, but there is not a constant linear among dif-

ferent inverters. So it will be necessary to use different algorithms to convert

99

from rpm to volts for different inverters. As a consequence, whenever we

change one inverter by another, it will be necessary to use a different

Inverter.

• Data acquisition card. All layers in MotionControl are independent of one

another. It is clear that a mapping from domain components to model
abstractions (components) exists for most of the cases (exceptions are Timer

and Communications layers). The idea is that each software component

implements the abstraction that its type defines. This way, when a different

data acquisition card is to be used in a machine tool, we only need to use the

Card component implementing that card's functionality. It should be noted

that wiring in a particular data acquisition card is not fixed. Data acquisition

cards are flexible and similar functionality can be implemented using very
different wiring configurations. However, the implementation of a Card

component is restricted to a particular card's wiring. This way, if different

wiring configurations are desired for a single card type, it will be necessary

to have a different implementation of Card component for each wiring con-

figuration.

• Machine type. Main variabilities that machine tools can have are: axes'

number, instructions they can perform, dimensions of the working space, and

on all other factors mentioned above (i.e., have different data acquisition

cards, motors of different precisión, etc.). Note that most of these changes

are similar to above-mentioned changes; distinct, however, is the use of a

different number of axes. A change in the number of axes can be imple-

mented easily by substituting AxesControllerand/or Card. We use an Axes-

Controller appropriate to the number of axes in the machine tool. It may be
necessary to use aCard component that can control the number of axes in the

new machine tool.

100

Again, changes in machine tools can be implemented by substituting a

component by another implementing appropriate algorithms. Note that changes in

machine tools impact more to MotionControl than they do to MotionGenerator.

Certain changes don't have any influence on MotionGenerator (i.e., spindle's con-

trol and data acquisition card). However, all identified domain changes may influ-

ence at least one component in MotionControl. That is a consequence of how

MotionControl is modeled; almost all MotionControl components / features have a

direct counterpart in the machine tool domain. Trien, it is natural that changing an

element in the domain makes it necessary to perform the corresponding change in

the composition.

We now turn to analyze constraints governing how components can be

used in the domain model. First of all, layers have to keep the ordering shown in

Figure 4.8.a and Figure 4.8.b. However, not all layers are mandatory for all

machine tool configurations. Which compositions are mandatory and which aren't,

is determined by configuration predicates. Table 4 and Table 5 show constraints

Component
Expander
Interpretar

CannedCycle

CoordAdapter
Interpolator

Writer

Constraints
Interpreten defined below
Axis number consisten! with machine type
Canned cycle (if any) defined below
Allow duplicates
Not mandatory
CoordAdapter defined below
Interpolator (if any) defined below
Allow duplicates
Not mandatory
Axis number consisten! with machine type
Axis number consistent with machine type

TABLE 4. Constraints for components in MotionGenerator subsystem

for models in Figure 4.8 and Figure 4.9, respectively in a descriptive manner
(rather than using logic predicates). Note the presence of constraints enforcing

101

component ordering: AxesController must be on top of Motor, Motor on top of

Timer, etc.; other enforce implementation consistency: AxesController has to be

consistent with machine's axis number (2 or 3); Motor should be consistent with

motor type (AC, DC, step, etc.); Card should be able to support the number of axes

in the tool machine.

Component
Dispatcher
AxesController

Motor

Inverter
Driver
Timer
Communications
Card

Constraints
AxesController defined below
Axes number consistent with MotionGenerator
Motor component defined below
Driver component defined below
Timer component defined below
Card component defined below
Motor component consistent with driver
Communications component defined below
Card component defined below
Supports motor type and axis number

TABLE 5. Constraints for components in MotionControl subsystem

4.6 GenVoca Models
In Section 4.5 we identifíed hierarchical models for CNC's systems. We presented

descriptions of each layer in the models and how domain features are mapped to

components. We described how the models can be adapted to different changes

that are required to implement variations in CNC systems controlling machine

tools with different characteristics. In this section, we show hierarchical models

for the corresponding models presented in Section 4.5. We present type instances

and show different CNC systems instances/compositions.

Straight from Figure 4.5 and Figure 4.6, we can derive corresponding hier-

archical models shown in Figure 4.10 and Figure 4.11, respectively. Capitalized

ñames represent types; lower case ñames are components. Note in Figure 4.10 that

102

Expander = expander(x:lnterpreter)}

Interpretar = {interpreter(x:CannedCycle)}

CannedCycle = {cannedCycle(xiCannedCycle),

finalCycle(X:CoordAdapter)}

CoordAdapter = {coordAdapter(x:lnterpolator)}

Interpolator = {interpolator(x:lnterpolator), finallnt(x:Wr¡ter)}

Writer = {writer}

Figure 4.10 MotionGenerator's types and implementations.

the only types describing syrntnetric components are CannedCycle and Interpola-

tor.

Figure 4.12 shows concrete instances for type declarations from Figure

4.10. Note in Figure 4.12 that we do not specify concrete parameter types, they are

subject to compositions described in the corresponding model (see Figure 4.10).

We can now have instances of concrete MotionGenerator subsystems by

composing components from Figure 4.13. For example, in the following equa-

tions, xngl and mg2 are valid equations.

mgl = expander(interpreterEIA274(roughCut(
codeExpansion(linearInt{ writer)))))

mg2 = expander(interpreterEIA274(roughCut(finishingf
codeExpansion(linearInt(circularInt(finallntt writer)))))}))

InstructionDispatcher = {instrDisp(x:AxesController)}

AxesController = { axesController(x:Motor)}

Motor = { motor(x:lnverter)}

Inverter = {¡nverter(x:Timer)}

Timer = {timer(x:Card)}

Card = { card }

Figure 4.11 MotionControl's types and implementations.

103

Expander = {expander (x:Interpreten)}

Interpretar = {interpreterEIA274 (x:CannedCycle)}

CannedCycle = {roughCut(x:CannedCycle), finishing(x:CannedCycle),

peckDrilling(x:CannedCycle), finalCycle (x:CodeExpans¡on)}

CodeExpansion = {codeExpansion (x:lnterpolator)}

Interpolator = {linearlnt(x:lnterpolator), c¡rcularlnt(x:lnterpolator),

finallnt(x:Writer)}

Writer = {writer}

Figure 4.12 Component instances for MotionGenerator.

In the fírst example, mgl is a MotionGenerator containing an Expander

component that sends instruction streams to an Interpreten implementing the NC

programming language EIA274; there is a component implementing a rough-cut

canned cycle; then a component to perform CodeExpansion; a component to per-

form linear interpolation, linearlnt; finally comes a component implementing

input/output operations to a file. In the second example, mg2 implements a func-

tionality similar to mgl. However, mg2 implements a finishing canned cycle, and

adds circular interpolation capabilities.

The following is an example of an invalid MotionGenerator subsystem:

= expander(roughCut(interpreterEIA274(
linearlnt(circularInt(finallnt(writer)))))))

Note that an Interpreter component cannot be below a CannedCycle com-

ponent (roughCut in the example), and that a CoordAdapter component (which is
missing in the example) is mandatory.

104

InstructionDispatcher = {dispatcher (x:AxesController)}

AxesController = (2AxesController(x:Motor), 3AxesController(x:Motor)}

Motor = {stepMotor(x:lnverter), DCMotor(x:lnverter), ACMotor(x:lnverter)}

Inverter = {inverter(x:Timer)}

Timer = {timer(x:Card)}

Card = {pcCard, dcCard, simCard}

Figure 4.13 Component instances for MotionControl.

Figure 4.13 shows concrete instances of realm declarations for MotionCon-

trol model from Figure 4.11. Instances of MotionControl subsystems can be con-

structed composing components from Figure 4.13. In the foliowing composition

equation, md defines a valid composition:

mcl = dispatcher(2AxesController(stepMotor(
inverter(timer(pcCard)))))

Composition equation mcl defines a MotionControl subsystem for a
machine having two axes and whose axes are controlled by stepper motors, and

uses a National Instruments' PC 100 data acquisition card. Conversely, the compo-

sition mc2 defined by the composition equation:

mc2 = dispatcher(stepMotor(inverter(timer(pcCard)))))

is invalid, since an AxesController instance needs to be present on top of a Motor
instance.

105

4.7 Compositional Implementation
In Chapter 2 we presented in detail our approach of component implementation in

C++, it consists in defining a C++ parameterized class for each component, then

compositions are expressed as témplate instantiation expressions.

Even thought every layer can contain many classes in its implementation, a

model for CNC systems is better implemented by defining each layer as a single

parameterized class. The GenVoca model presented in this chapter is similar to a

model for avionics systems (see [BGCS95]) in that software components represent

physical entities. Models for systems implementing physical entities seem to be

better expressed by mapping domain entities in me model to features and directly

to components in the implementation. This is an advantage, since it makes easy to

swap physical components and perform the corresponding swapping on the soft-

ware components.

In the previous section we described how each subsystem can be produced

from a component composition. Still, these subsystems should be put together as

described by Figure 4.7. A system that run on a single thread of control would

include the two corresponding component compositions (an perhaps the systems

itself would consists in a composition of the subsystems). However, a CNC system

has to run in several threads in order to function properly (machining has real time

characteristics). Given such restriction, the compositions defininig every sub-

system are defined in a sepárate run time unit and executed in a sepárate thread.

The main thread is the user interface, which is used to interact back and forth

among the subsystems.

106

4.8 Desígn Wízard for CNC Systems
Previous section describes a model for CNC systems and its implementa-

tion. As noted, CNC systems developers have to write two different but highly

related component compositions (i.e., composition equations), for each CNC sys-

tem they want to construct (one composition for MotionGenerator and other for
MotionControl subsystems).

Our prototype implementation of a design wizard for CNC systems is

called CNCgen. Figure 4.14 shows CNCgen's graphical specifícation interface. In

CNCgen, each domain feature consists in a developer selectable option in the

graphical interface. Developers specify features by selecting from features sup-

ported (i.e., components already implemented), those he/she wants the target CNC

system to implement. Once a feature set has been chosen (the confíguration of an

application specifíed), pressing a button generates composition equations for both

raCNCGENERATOH
Ejjit

mmm

Motor Jstep

Interpólalos

Card (Simulator

CannedCycles
Linear
Circular

Finishing
RoughCut
PeckDtilling
Facing

Messages
File: LatheExp.cpp generated

File; LatheCoord.cpp generated

Figure 4.14 CNCgen's user interface

107

subsystems (MotionGenerator and MotionControl), and then performs composition

equation validation; results are shown in a Messages window. If everything was

correct, the developer may press a button to genérate the CNC system implement-

ing specified features1. It is only necessary to compile the application for having a

CNC system.
CNCgen uses the approaches for component implementation and configu-

ration verification already described in Chapter 2. The only new elements are the

user interface and the generative engine. It is worth noting that such simplicity is

the result of our model's carefully planned design and implementation. Arriving at

a so clean design requires several iterations and the instantiation of a number of the

potential application systems. Our prototype has been tested in two ways. First, we

have retrofitted a turning machine. Second, we implemented a simulator for differ-

ent machine types.

It was fairly easy to implement a machine tool simulator. The only element

in direct contact with the machine tool, sending signáis and receiving feedback

from it, is the Card component (see Figure 4.9). Thus we could emulate a machine

tool by implementing a simulator Card, which was able to control two- and three-

axes machine tools. Our simulated machines may have different Motor type com-

ponents, Inverters, Timers, etc. The user interface for CNC systems is reconfig-
urable at run-time. At the initialization step (when the system is loaded and

executed), the user interface exchanges configuration information with the Motion-

Generator and MotionControl subsystems to reconfigure itself to display data rele-

vant to the machine tool (e.g., positioning in two or three axis depending on the

machine tool axis number, etc.).

1. In C++, the weaving code consists in specifying includes for files implementing components,
and writing the necessary témplate compositions.

108

4.9 Discussion
A CNC system is a hard real-time application (i.e., clock's frequency has to be

constant so no jamming is produced in the tool machine thus the working piece has

a terse finishing [KS97]). That aspect didn't represent a problem, mainly because

motion speed of physical components is rather slow as compared to current PC

clock speeds. Implementing efficient code was enough to meet timing require-

ments.

For this example, it is remarkable to note that simplicity of the configura-

tion wizard in Figure 4.14 is apparent, the code of a CNC application is about ten

thousand source code lines. Because of its complexity and size, we consider this

our most complex example of a confíguration wizard. From a single specification,

two subsystems (equations) are produced. These subsystems run on sepárate pro-

cesses and communicate using operating system communication primitives (pipes

and triggers2).

The implementation language already supports the parameterization mech-

anisms our approach uses, thus no extensions were necessary.

2. A pipe contains messages of varying sizes. A trigger is a signal sent to a process to inform it of a
certain event.

109

Chapter 5

Credit Unions Product-Líne

This chapter describes the third example of applying our proposed approach to

implement a software product line. The programming language used in this exam-

ple is Object Pascal, which does not directly provides a template-like parameter-

ization mechanism, thus as we did for Java, here we propose Pascal extensions to

support wizlet implementation.

5.1 Credit Union Management
A credit unión is a cooperativo, non-for-profit fmancial institution organized to

promote thrift and provide credit to its members. Credit unión members are pro-

vided with a safe, convenient place to save and borrow at reasonable rates.

A credit unión is member-owned and controlled through the election of a

board of directors drawn from membership. Membership is not open to the general

public. Instead, it is limited to persons sharing a common bond of occupation,

community, or association. To join a credit unión, potential members must be first

eligible under the common bond provisions, and submit a membership application

[UmhOl].

Credit unions are not typical financial institutions and thus are managed

differently and are subject of special control by the federal government1. In this

110

Chapter we present a product-line approach for administrative financial reports

that credit unions require.
Credit unions are similar to banks (i.e., both offer financial producís and

services to consumers). As cooperative organizations, credit unions exist solely to

meet their members' financial needs, not to make a profit off of them. Credit

unions were created to enable small business to pool their financial resources to

help themselves and each other. As a consequence of its success in low cost loans,

membership continúes to increase2.

Credit unions are non-for-profit, member-owned, democratically con-

trolled financial cooperatives. In particular, in this Chapter we concéntrate on

credit unions whose members are small-business owners.

Accounting information in credit unions can be used for two purposes:

managerial or financial. Management accounting is concerned primarily with

financial reporting for internal users, in particular for managers. Financial

accounting usually is addressed to external users, mainly for funding purposes or

government information. Accounting application systems usually are designed to

produce information for both internal and external reporting.

The accounting process consists of two phases (see Figure 5.1): me record-

ing phase and the reporting phase. The recording phase is concerned with collect-

ing information about economic transactions and events and distilling that

information into a useful form. In the reporting phase, the recorded information is

organized and summarized, using various formats for a variety of decision-making

purposes [SSSOO].

1. Rules describing how credit unions are managed are limited to Mexican credit unions.
2. Just to have an idea of the number of credit unions after 67 years after the first was established,

in the United Sales of America -as of January 31, 2002- there are more than 10,850 serving more
than 76.7 million members [CUO02].

111

Step 1
Business
documents
analyzed

>„
Step 2
Transactions
recorded in
journals

>„
Step 3
Transactions
posted to
ledgers

r̂

Recording and posting
phase

Reporting
phase

Step 4
Trial balance

f
Step 5
Adjustments

f
Step 6
Financial
statements

f
Step 7
Closing entries

Step 8
Post-closing

^ Uidl bdldlICtí
(optional)

Figure 5.1: The accounting process.

Several terms commonly used in the accounting domain are [WKK93]:

Account, individual accounting record representing an increase or decrease

in a specific asset, liability, and equity item.

Ledger. keeps the entire group of accounts that a financial entity maintains.

If the financial entity has more than one ledger, a general ledger concentrates

all the assets, liabilities, and owner's equity accounts appearing in the finan-

cial statement.

Journal: records transactions in chronological order before being translated

to accounts. For each event accounts involved are identified and affected

accordingly (with an increase or decrease).

Posting: is the operation of transferring (summarizing) information in jour-

nals to appropriate accounts in the ledger.
Transaction: events involving the transfer of goods or services between two

or more entities3. A transaction produces several records in a Journal.

112

• Accounting rules: specify how accounts are integrated to build the general

ledger.

5.2 Static parameterization in Object Pascal
As can be observed in the previous section, major requirements in a credit union's

accounting product line are information recording and reporting. Borland's Delphi

was chosen as development environment because it provides facilities for graphi-

cal user interaction, fast report preparation, and a set of datábase drivers.

Delphi's underlying programming language is Object Pascal which fully
supports object orientation, thus our component-based product line approach is

applicable. As is the case with Java, Pascal4 does not support a template-like

parameterization mechanism, similar to that of C++. This section shows our pro-

posal for extending Pascal to support parameterization required by wizlets. A few

concepts on Pascal programming are presented to better explain our extensión

mechanism for wizlet parameterization in Pascal.

The equivalent to a software module in Pascal is a unit. A unit can imple-

ment (and export) several classes and other programmer defined types. A unit is

divided in two parís: an interface section and an implementation section. The

unit's interface section contains declarations that the unit can export to (be

accessed from) other units. The implementation section contains a unit's internal

details (local or prívate class declarations and method implementation). A uses

3. Note that here transaction is a business transaction, not a datábase transaction.
4. We limit our discussion to the Pascal implementation provided by the Delphi environment from

Borland International. However, at the time of this writing there is not an ANSÍ standard for
template-like extensions to Pascal.

5. In this chapter we will refer to Object Pascal simply as Pascal, as we are not interested in
describing similarities or differences between Object Pascal and other Pascal dialects.

113

statement followed by a list of unit ñames, allows accessing the elements exported

by other units. To inherit from a class defined in a different unit, the ñame of the

super class is specified inside parenthesis in the line declaring a subclass, with the

scope operator (a point) indicating the unit where that class is defined. The follow-

ing code segment declares Thisllnit as a new unit, which imports the elements

exported by an already existing unit OtherUnit:

unit ThisUnit;
interface
uses OtherUnit;
type
Innerl = class(OtherUnit.Innerl)

end;
Inner2 = class(OtherUnit.Inner2)

end;
Inner3 = class(OtherUnit.Inner3)

end;
inplementation

// component's local class declarations and
// method implementation

end.

The code shows the declaration of three inner classes (lnner1-3), as exten-

sions of classes that already exist in the OtherUnit unit).

As was pointed out earlier, Object Pascal does not provide direct support

for template-like class parameterization. However, a similar approach to that we

used to extend Java in Chapter 3 can be implemented to extend Pascal, and thus

parameterized wizlets can be implemented. As was explained and shown in the

previous code segment, the encapsulation entity in Pascal is the unit, thus we

simply need to parameterize units. Using similar tags to those we used in Java, a

generic wizlet declaring an unknown (super) wizlet from which a specific wizlet

inherits can be implemented using Pascal units, as the following code shows:

114

unit UWizlet;
interface
uses U«WizletSuper»;
type
Innerl = clase (U«WizletSuper>> . Innerl)

end;
Inner2 = class (U«WizletSuper>>. Inner2)

end;
Inner3 = class (U«WizletSuper>> . Inner3)

end;
implementation
// component's local class declarations and
// method implementation
end.

To emphasize the parts in which an identifier refers to a unit ñame, in the

code we have used a U prefíx6. The code can be easily translated to our previous

example of a Pascal unit. To describe how this extensión mechanism works, we

turn to implement the same code we implemented to show how Java extensions

work. If necessary, refer to Section 3.2 for a more detailed discussion of the exam-

ple and to compare the similarities between Java and Pascal extensions.

In the example, we want to be able to show information (a report) in both

the screen and in print. Figure 5.2 shows how software modules used in the exam-

ple are related in a module hierarchy.

With the proposed Pascal extensión, a Report component that will inherit

from a device component containing three inner classes, can be implemented as:

unit UReport;
interface
uses U«WizletSuper»;
type

6. In Pascal's programming realm it is common to prefíx a unit's ñame with a U, to characterize
the ñame as a unit's identifier. The code we implement here follows such approach, just to keep
consistency with what is considered the "norm" in Pascal programming.

115

Innerl = class (U«WizletSuper>> . Innerl)

.... //class declarations

end;

Inner2 = class (U«WizletSuper>> . Inner2)

.... //class declarations

end;

Inner3 = class (U«WizletSuper>> . Inner3)
.... //class declarations

end;

implementation

// Report's local class declarations and
// method implementation

end.

Window
2£

Device={ Window, Printer}
[Report [

R = { Report(X:Device)} a1=Report(Window) a2=Report(Printer)

O) (b) (C)

Figure 5.2: Type declarations and composition equations.

The implementation of Window as a final (top-most) component in a com-

ponent inheritance hierarchy is:

unit UWindow;
interface
type
Innerl = class

end;
Inner2 = class

end;
Inner3 = class

end;
Implementation

116

// Window's local class declarations and
// method implementation.

end.

Suppose we have an implementation of a Printer component, which is sim-

ilar to Window but sends report's results to a printer. From these implementations,

we can build composition equations for systems that display reports in a window

in the screen or print them on paper, as follows:
Sys1 = Report (UWindow)

Sys2 = Report (UPrinter)

Note that Report cannot be directly compiled; first it should be adapted to

every composition in which it is used, by instantiating its super wizlet. For this we

use the corresponding composition equation. For example, a Report's versión that

can be compiled to obtain Sys1 is shown in the following code, in which the

parameter has being substituted (by UWindow component):

unit UReport;

interface
uses UWindow;

type

Innerl = class(UWindow.Innerl)

end;

Inner2 = class(UWindow.Inner2)

end;

Inner3 = class(UWindow.InnerB)

end;

Implementation

// Report's local class declarations and
// method implementation

end.

117

As we did in Java, we can use a composition equation to find the necessary

substitutions. In the previous example, the only necessary substitution was to

change every instance of «WizIetSuper» by the corresponding parameter ñame

from the composition equation; the places where substitutions are to be made are

marked with «WizIetSuper» tags. To emphasize the use of Pascal's units, we
decided to put a U prefix before a unit ñame, we think in this manner it is easier to

see where we are referring to a unit instead of a class. However, such naming

scheme is not a Pascal's characteristic that needs to be followed.

Such substitutions can be performed manually using a simple text editor,

and resulting Pascal units can be compiled into an application. As discussed, we

don't want to perform component adaptation by hand, using text editors. We sug-

gested the use of preprocessors7 that parse the composition equation and perform

necessary adaptations to each wizlet. To opérate, such tool will need as input the

application specification from which a composition equation is generated, and the

corresponding Pascal source code for the application produced. In the following

sections we describe accounting systems for the credit unión domain, domain

models, and implement the infrastructure for a corresponding product line.

5.3 Domain Model of Accounting Systems
Previously we explained that financial statements are reports that need to be pro-

duced by an accounting system. The three major financial statements that account-

ing systems produce, are [LC96]:

7. In fact, we implemented the same preprocessor for Pascal that we used for Java.

118

• The balance sheet: reports, as of a certain point in time, the resources of a

company (the assets), the company's obligations (the liabilities), and the net

difference between assets and liabilities, which represents the owners'

equity. Other ñame given to this statement is general balance, which is the

ñame we use in the following discussions.

• The income statement: reports, for a certain time interval, the net assets gen-

erated through business operations (revenues), the net assets consumed

(expenses), and the difference, which is called net income. The income state-

ment is the accountant's best effort at measuring the economic performance

of a company.

• The statement ofcashflows: reports, for a certain time interval, the amount

of cash generated and consumed by a company. Credit unions don't use this

type of statement.

Other statements and operations particular to credit unions are:

• Federal reports: reports required by federal government.

• Optional reports: responsibilities, financial information, etc.

• Posting: particularly for credit unions is a monthly and yearly operation

which leaves accounts prepared for the next accounting period.

As previously stated, to describe how financial statements and reports are

built from journal entries, accounting rules are used. These rules specify if a

recorded amount in a transaction is to be added to or subtracted from a group

account. Other accounting rules specify which grouping accounts appear in every

financial statement.

In general, requirements in the accounting domain for credit unions can be

grouped into mandatory and optional operations. Mandatory operations are those
related to information recording, all accounting systems have similar recording

necessities. Optional operations mainly consist in reporting operations, different

119

Accounting
System

Recording Posting Reports
(See Fig. 5.4)

Income Accounts Invoices Balance Yearly Monthly
Rules Rules
Groups Groups

Figure 5.3 : Feature diagram for general ledgers

unions may need different reports, and a particular unión may be interested in a

special report that is not used by others.

Operations that fall inside each classification of accounting operations are:

• Mandatory operations'. Journal recording, accounting rules and groups

recording, invoice recording, monthly and yearly posting.

• Optional operations: official reports, auxiliary reports, special reports, and

optional reports.

A feature diagram for accounting systems in the credit unions domain is

depicted in Figure 5.3 and Figure 5.4. Figure 5.3 shows features associated to

recording and posting, Figure 5.4 shows features involved in reporting operations.

Figure 5.3 shows operations associated to recording and posting activities.

Groups of accounts are defmed to intégrate financial statements, with rules speci-

fying how transactions in accounts will be posted (summarized) to accounts.

Invoices contain information about one or more accounts. Posting is performed in

a monthly or yearly basis, thus (monthly and yearly) statements can be prepared

and reported.

Figure 5.4 shows reports the six possible classifications of accounting

reports: analytic, auxiliary, cross reference, special, optional, and official. Analytic

120

Air Non- Se\íeral
Accounts movs Periods

An

PreviousCR DailyCR

Auxlfiay

General meóme
SIP Resbonsibilities Balance Stmt

ily Accounts
Figure 5.4 : Feature diagram for reports

reports show the how business operations relate to specific accounts. Cross-refer-

ence reports show the balance previous to posting or how daily transactions for

every account were recorded. Special reports can include all the accounts,

accounts for which transactions weren't recorded, or balance for several periods

(months). Optional reports include reports that are required by the federal govern-

ment. Offícial reports include a general ledger and an income statement.

The feature diagram makes evident the constraints. All constraínts refer to

the possible presence or absence of a component in an accounting system.

• All recording features should be in an accounting system.

• All posting methods are necessary in an accounting system.

• All official reports are required in an accounting system.

5.4 Domain design
It is impractical to describe the diversity of operations in an accounting

system for credit unions in a single hierarchical structure. As we did for the exam-

ple of CNC systems presented in Chapter 4, sepárate subsystems are constructed

for every major subsystem in an accounting system using different wizlet compo-

sitions. Figure 5.5 shows the general architecrure of an accounting system. An

121

accounting system is constructed from a user interface and a subsystem for every

major set of operations. Each subsystem is constructed by a different wizlet com-

position, and interconnected to a user interface for the accounting system: a

recording subsystem, which endoses recording activities, a posting subsystem for

operations associated to posting, and a reporting subsystem which contains all

reporting operations.

Each one of the three subsystems is defined by a sepárate hierarchy, the

corresponding hierarchies are shown in Figure 5.6.

Recording

Invoices

[JncomeRulesGroups] | Posting

[BalanceRulesGroups |
J.

Accounts

(a)

Monthly |
i ,

Yearly |

(b)

Reports

Special OJ
_L

Optional
_L

Auxilian/

Analytic

CrossRef

Official

Base layer

(c)
Figure 5.6 : Hierarchical model for general ledgers

The recording hierarchy in Figure 5.6 includes layers implementing the

recording operations for the different accounting concepts. The Recording layer

offers a general interface for recording operations, depending on accounting trans-

actions being recorded, it communicates directly with the corresponding layer at a

lower level, a user may want to add a record for a single account, or a group of

AccountingSystem

| Recording 11 Posting | [Reports |

Figure 5.5 : Accounting systems architecture.

122

accounts, or define rules which involve several accounts, or recording an invoice,

which includes at least two accounts (e.g., the account from which money was bor-

rowed, and the client's account to who the money was lend). When an invoice

needs to be recorded, the is used Involees to record the associated data. When rules

or groups are to be defined, Recording communicates with IncomeRulesGroups or

BalanceRulesGroups component, depending on if rules or groups for the income

statement or the general balance are to be defined, respectively. A group of

accounts define accounts that are associated, thus related accounts can be summa-

rized together (for instance, all accounts related with expenses can be grouped

even thought they can refer to different types of expenses).

Another component hierarchy shown in Figure 5.6(b) is Posting. Posting is

performed by adding or subtracting the amounts in an accounting transaction to

accounts involved in the transaction. Posting can be performed in a monthly or

yearly basis, and the appropriate posting component used in every case.

A third component hierarchy shown in Figure 5.6(c) include all reporting

components. The layer at the bottom implements the interaction with a datábase to

extract accounting information necessary to produce the different reports. Most of

the reports correspond to presenting the recorded information in different ways, by

using different account groups, and totalizing accounts involved in every report. A

report is defined by the set of accounts involved.

Following is the type and instance declaration of accounting systems for

credit unions. This information was produced using both the feature and hierarchi-

cal diagrams from Figure 5.3 and Figure 5.4.
Recording = {accounts(x:Recording),invoices(x:Recording),

balanceRulesGroups(x:Recording),

statusRulesGroups(x:Recording), finalRecording}

Posting = { monthlyPost(x:Posting), yearlyPosting(x:Posting), finalPosting }

Reports = {reports(x:Special)}

123

Special = { allAccounts(x:Special), nonMovements(x:Special),

severalPeriods(x:Special), finalSpecial(x:Opt¡onal)}

Optional = { sif(x:Optional), responsib¡l¡ties(x:Optional), finalOpt(x:Aux¡lary)}

Auxiliary = { major(x:Auxiliary), journal(x:Auxiliary), finalAux(x:Analytic)}

Analytic = { accountsA(x:Analytic), dailyA(x:Analytic), fina!A(x:CrossRef)}

CrossRef = { previousCR(x:CrossRef), dailyCR(x:CrossRef),

finalCR(x:GeneralBalance)}

Official = { generalBalance(x:Official), incomeStatement(x:Offic¡al),

finalO(x:BaseLayer)}

BaseLayer = {baseLayer}

The following section describes in more detail the internal structure of each
component and how the hierarchical dependencies are translated to class inherit-
ance dependencies.

5.5 Domain implementation
In Section 5.2 we presented the extensión notation to describe component

parameterization using Pascal's units. The implementation is tightly related to an

internal view of the component, Figure 5.7 shows an inheritance hierarchy describ-

ing the inner classes from every components and how they extend other classes in

the hierarchy. Class Report in every layer handles the interactions necessary to

produce every particular report. Classes Accounts, Groups, Rules and Invoices

implement the operations necessary to extract the information every report should

produce. The base layer implements the interaction to the datábase storing

accounting information.

Contrary to the examples presented in previous chapters of this disserta-

tion, most of the components in Reporting have several (inner) classes. One of the

more simple layers is Journal, which is of type auxiliary and produces a report

containing all accounts with valúes posted for the time period being reported. Jour-

124

Base layer

Offic

Report Accounts Groups Rules Invoices$: r. t t i
Report Accounts Groups Rules Invoices

Crosj**L íReport Accounts Invoices O

Report Accounts

~±
' Invoices

Analjtíc T
Report Accounts

£
Invoices

ti£ñOptitnal
Report Áccoünts;

I
Invoices

Spedal T
rRepbrt] ¡Accounts

í
Tnvoices"

Figure 5.7 : Class hierarchy of accounting systems

nal has the structure described in the code that follows. Note that a U (which stands

for 'unit' is added as a prefix to the unit's ñame) and an internal class has the wiz-

let's ñame (e.g., UJournal is a unit containing Journal 's implementation); in this

way, all references to a unit (such as in the uses clause) is prefixed by ' U'.

unit UJournal;//Auxiliary report
interface
uses U«WizletSuper»; //bring inner classes into context
type //new declarations go from here until 'implementation' section
Report = class (U «WizletSuper». Report)

procedure init; override; //init() is being overloaded
procedure journalReport(Date datel, Date date2);
procedure finish; override;

end;
Accounts = class(U«WizletSuper>>.Accounts) //Extend supper class

procedure init; override;
Account function retrievetstring accountID); override;

125

Invo.l.ce = class (U«WizletSuper>>. Invoice) //Extend supper class
procedure init; override;
procedure first; override;
procedure next; override;

end;
inplementation

//Implementation uses syntax: class.function_name
procedure Report.init
begin

inherited init

end;
procedure Report.journalReport(Date datel, Date date2)
begin
.... //here goes report's implementation

end;
procedure Report.finish

inherited finish; //cióse all upper wizlets

end;
procedure Accounts.init
begin

inherited init

end;
Account function Accounts.retrieve(String accountID)
begin
.... //here goes retrieve's implementation

end;
end.

In the previous code, we can see that there are several references to a upper

wizlet (enclosed inside «...» pairs), all these references will be substituted by

the corresponding wizlet ñame at composition / generation time. Also note the use

of declarations override and inherited. An override declaration informs the com-

piler that the subclass is substituting a method of the same ñame that exists in its

superclass (sometimes called function overloading). To invoke the overloaded

method, the inherited declaration is used.

Following is a partial implementation of the wizlet for Daily, a report of

type CrossRef-erence.

126

unit UDailyCR; // CrossReferece report
interface
uses U«WizletSuper»; //bring unit's classes into context
type //new declarations go from here until 'implementation' section
Repo.rt= class (U«WizletSuper>>. Report) //Declare class

procedure init; override;
procedure dailyReport(Date datel, Date date2);
procedure finish; override;

end;
Accounts = class(U«WizletSuper>>.Accounts) //Extend supper class

procedure init; override;
Account function retrieve(string accountID); override;

end;
Invoice = class (U«WizletSuper>>. Invoice) //Extend supper class

procedure init; override;
procedure first; override;
procedure next; override;

end;
implementation

//Implementation uses syntax: class.function_name
procedure Report.init
begin

inherited init //execute init in parent class

end;
procedure Report.dailyReport(Date datel, Date date2)
begin
.... //here goes report's implementation

end;
procedure Report.finish

inherited finish ; //finish all upper wizlets and...
...//perform other local finishing tasks

end;
procedure Invoice.init
begin

inherited init

end;
procedure Invoice.first
begin
.... //retrieve first invoice

end;
procedure Invoice.next
begin
.... //retrieve next invoice

end;
procedure Accounts.init
begin

inherited init

end;

127

Account function Accounts.retrieve(String accountID)

begin
.... //here goes retrieve's implementation

end;
end.

The similarity of implementation in these two examples helps to clarify

how our extensions to support unit parameterization work. As was the case with

Java, the only substitution required is the ñame of the component that is being

imported. These substitution can be performed using the composition equation as a
guide. Again, such substitutions can be performed by hand, but to simplify this

task and ensure that semantic consistency is preserved in the composition, we pre-

fer to use a configuration wizard. A graphical user interface for a configuration
wizard of accounting systems for credit unions is shown in Figure 5.8. An account-

/* Credit Unions Accounting Generator
Recoiding —

|~ Accounts

[~ BalanceRulesGroups

f~ Invoices

f" IncomeRulesGroups

T Yearlj.

SpecialReport*

Auxiliaiy R eports

CrossReference

Verify

AIIAccounts
NonMovements
SeveralPeiiods

Major
Journal

PreviousCR
DailyCR

AnalyticRepoiti

OfíicialRepoilj

OplíonalRepoilt

AccountsA
DályA

I ncomeS tatemen!
Generáis alance

Responsibilities
SIF

Genérate

Figure 5.8: Specification interface for accounting systems

128

ing system consists of several windows (i.e. for data input and reporting), as our

purpose is to describe how systems are generated, we do not show the windows

that define the different accounting systems that can be generated.

As described at the end of section 5.3, the only composition constraints we

need to specify are the necessity of particular components in a composition. For

instance, all components in the Recording category are mandatory; however, most

of the reports are optional. We described in previous chapters how these kind of

constraints can be implemented and verified. Pascal does not impose any limita-

tion on verification, thus we do not consider necessary to show specific implemen-

tations of the verification code in Pascal.

5.6 Discussion
In this chapter we presented an example of a product line of accounting

systems for credit unions implemented as a configuration wizard. Comparing

extensibility approach for Object Pascal as explained in this chapter with that pre-

sented for Java in Chapter 3, we see little differences. As discussed in Chapter 2

and Chapter 3, the similarities between the extensibility approach used in Java and

Object Pascal is not accidental, but instead we planned the mechanism to be useful

across programming languages.

The example presented in this chapter is important in two ways: first it

helps to analyze the applicability of our approach in the informations systems área,

second it allows to analyze how our extensibility approach works for different pro-

gramming languages which include additional encapsulation mechanisms besides

classes. We show how units encapsulating several classes and providing facilities

for interface declaration are well suited to be extended for supporting wizlet imple-

129

mentation. Such finding is important because units are similar to modules in

another programming languages (e.g., Modula, Ada, and VisualBasic).

130

Chapter 6

Product-Line Evolution

Applications evolve to adapt to changes in their requirements, incorpórate new

requirements, or eliminate unnecessary requirements1. A similar case occurs for

product lines, changing requirements for a product Une makes necessary that

equivalent changes be made to infrastructures used to produce mese product lines.
In this chapter we discuss product line evolution in general, and infrastructures to

gracefully evolve configuration wizards implementing product lines in particular.

6.1 Evolution in product-lines
The relationship between product line evolution and their product line

infrastructures is depicted in Figure 6.1, which shows how as product line infra-

structures evolve, they are capable of producing different product lines. Applica-

tions incorporating the new requirements that can be satisfied by a product line,

can be synthesized from the product line infrastructure. For instance, Figure 6.1

shows that product line 1 can be produced from the product line infrastructure 1.

To implement the evolution required by product line 1, thus product line 2 can be

1. To differentiate software evolution from software maintenance, we consider that software main-
tenance includes activities for fixing errors. In contrast, software evolution consists in improving
the existing algorithms (e.g., for performance), adding new features, or removal of existing fea-
ture implementations.

131

product
vjine infrastructure 1 A prod(jct

une 1
product1! - infrastructure 2

product
Iine2

roduct
ine infrastructure 3

product
une 3

Figure 6.1 Product-lines can evolve into new product-lines

produced, the product line infrastructure 1 is evolved to product line infrastructure

2. Subsequent evolution in the product line will require corresponding evolution in

the product line infrastructure.

Product line evolution has been investigated and different categories iden-

tified [SGB2001]. These categories can be characterized using features as follows:

1. New implementations of existing features: new feature implementations (i.e.,

specializations or sub-features) are added to a feature.

2. New features: completely new categories (e.g., non-root feature nodes in a

feature diagram) are added.

3. Delete existing features: one or more sub-features are removed.

4. Feature diagram restrucruring: relationships among components change.

This type of evolution can be the most complex to implement, as it may

require many changes in the feature diagram.

The way in which these variations are incorporated into product line infra-

structures depends on how domain analysis and their corresponding designs are

represented. In previous chapters we explained how our approach for configura-

tion wizards use feature diagrams and hierarchical architectures to represent a

domain analysis and its design, respectively. The discussion presented in the fol-

132

lowing sections is limited to show how product Une evolution can be represented

in the diagrams on which our approach is based2.

Note that for an analysis model (i.e., a feature diagram), evolution category

1 (with respect to the previous list of evolution categories) can be represented by

adding the corresponding (specialization or sub-) feature to the generic feature. An

evolution category of type 2 can be represented by adding a new non-root node to

the feature diagram. An evolution category 3 requires eliminating the correspond-

ing feature from the feature diagram. Finally, an evolution category 4 would need

to reorganize the feature diagram. How the corresponding architecture (i.e., the

hierarchical) diagram has to be modified for every case depends on the semantics

of affected features. The following sections describe how evolution can be imple-

mented in configuration wizards, which are tools resulting from feature and hierar-

chical diagrams.

6.2 Specifying product-line evolution
To automate the implementation of the evolution categories described in

the previous section, it is necessary to design a way to easily describe the changes

we want to perform in the product Unes, thus their product line infrastructures can

be adapted. Along this dissertation our unifying concept had been that of "feature".

We use feature diagrams as the result of domain analysis, and GenVoca hierarchi-

cal diagrams to represent domain designs. In or use of GenVoca, every component

has a one-to-one correspondence to a feature, thus using features as units of speci-

fication would simplify the description of composition equations. In order to pro-

pose a specification notation, we need to consider how features are used in our

2. Part of the contributions of this work is to show how variability can be dealt with when software
product lines are implemented by the combination of feature diagrams, GenVoca diagrams, and
configuration wizards.

133

approach of configuration wizards. For every feature, we want to be able to display

(or hide) the feature ñame in the developer GUI so it can be included in applica-

tions. For complex applications, we also may need to be able to genérate more than

one composition equation (sub-system) from a single feature diagram. Thus a

specification needs to emphasize the selectability property of a feature: if it should

be displayed in the developer's GUI, if one or several sub-features from one fea-

ture could be selected, etc., and it also needs to specify the composition equation in

which the corresponding component can be included. Concretely, & feature specifi-

cation expression consists of three elements describing a feature: a composition

equation ñame, a property indicating the selectability characteristics, and a list of

the possible sub-features for the feature. The general form of a feature specifica-

tion expression is as follows:

feature = (composition, selectability, {sub-feature1, sub-feature2,...})

In mis feature specification expression, feature is the ñame of the feature

being described, composition specifies the ñame of the composition equation (e.g.,

system or sub-system) in which the sub-features of feature can be used, selectabil-

ity is an attribute describing how the feature or its specializations (or sub-features)

will be presented in a GUI to the application developer, and sub-feature(i)repre-

sents every sub-feature for the feature being described.

For example, the specification expression

f1 =(cO, s1,{f11,f12,f13})
specifies that feature f1 can be used to construct composition equations named cO,

will be presented as described by selectability property s 1, and has sub-features

f11,f12,andf13.

As a simple example, consider the case of the feature diagram in Figure

6.2. Applying the defined syntax for feature specification to the feature diagram in

Figure 6.2, produces the following specification:

134

fO = (cO,sO,{fO}) (3)

f1 =(cO, s1, {f11,f12,f13})

f2 = (cO, s2, {f21,f22, f23})
f3 = (cO, s3, {f31, f32})

(6 . 1)

f22 f23 f31 f32

Figure 6.2 Initial feature diagram.

According to this specification, all components implementing features

from Figure 6.2 will particípate in compositions whose ñame is always cO.

Although a different selectability property is specified for every feature, more con-

crete examples described lately in this chapter will show that the possibilities are

limited.

Using specification (6.1), evolution categories discussed above can be rep-

resented by adding or removing sub-features from the corresponding specification

expressions, adding a completely new specification expression for a new feature,

etc. For example, the inclusión of a new specialization to feature f1 (lets say f14)

can be done by adding its ñame to f 1, thus the specification expression for f 1 is

now:
f1 =(cO, s1,{f11,f12, f13, f14})

3. Note that the specifícation does not correspond to the structure of the feature diagram. Instead,
what we are implicitly describing in the specification is the layered architecture of the applica-
tion family, not the feature tree. For every layer in the architecture, we are specifying the possi-
ble implementation components we can choose from at application generation time. However,
the feature diagram is helpful because it clearly shows the sub-features of every feature and the
selectability property of every non-root feature (i.e., if it is mandatory, single selection, etc.)

135

f11 Í12 Í13 Í14 «1 f23 f31 «2 f41 «2

Figure 6.3 Simple feature diagram.

Similarly, the deletion of a specialization, lets say f22 from feature f2,
would give a specification forf2 as

f2 = (cO, s2, {f21,f23})

The addition of a completely new feature, lets say f4 whose sub-features

are f41 and f42, is represented by creating a new feature specification expression

describing the new feature and its sub-features as follows:
f4 = (cO, S4,{f41,f42})

Which describes a new feature f4 with selectability property s4 and having sub-

features f41 and f42.

Figure 6.3 shows the feature diagram after these changes have been done to

f 1, and f2, and the new feature f4 added. The following is the complete resulting

specification after these changes:
fO = (cO, sO, {fO})

f1 =(cO, s1,{f11,f12, f13, f14})

f2 = (cO, s2, {f21, f23, f24}) (6.2)

f3 = (cO, s3, {f31, f32})

f4 = (cO, S4,{f41,f42})

Specification 6.2 shows how to represent a relatively simple feature dia-

gram. A more complex feature diagram is shown in Figure 6.4. For product lines

whose feature diagrams contain many features, it would be impractical to imple-
ment applications using a single component composition. One reason may be that

136

A /^\ A "A"" /K"" A"'
f61 f71 f72 f81 f82 f83 f84 f85 M f92 fi21 H22 Í141 f142 Í143 H61 Í162 H63

Figure 6.4 Complex feature diagram.

resulting hierarchical compositions would have many layers. Other reason may be

that there is necessary to distribute part of the functionality in several sub-systems.

For instance, the feature diagram in Figure 6.4 has 34 features and compositions

constructed using the components implementing these features may have up to 30

components / layers.

Different reasons to divide complex compositions into several more simple

composition equations (each one representing a subsystem) may exist (e.g., dis-

tributed subsystems should run on different threads or processors). The following

specification describes how the feature diagram from Figure 6.4 can be used to

construct two composition equations, called mg and me:
fO = (ene, sO, {0})

f1 =(mg, s1,{f1})

f5 = (mg, s5, {f5})

f6 = (mg, s6, {Í61})

f7 = (mg, s7, {f71,f72})

f8 = (mg, s8, {f81,f82,f83,f84,f85})

f9 = (mg, s9, {f91,f92})

f2 = (me, s2, {f2})

f10 = (me, s10,

f11 =(mc, s11,

137

f12 = (me, s12, {f121,f122})
f13 = (mc, s13, {f13})

f14 = (me, s14, {f141, Í142, H43})

f15 = (mc,s15,f{15})
f16 = (me, s16, {f161, Í162, f163})

f17 = (mc, s17,{f17})

Note that the feature diagram in Figure 6.4 is not an arbitrary diagram, in

fact, its structure corresponds to the feature diagram of the CNC systems domain

described in Chapter 4. In the previous specification, mg and me stand for Motion-

Generator and MotionController, respectively, as was discussed for a CNC system

in Chapter 4. The discussion of why several features (i.e., fO, f3, and f4) are not

included in the specification was presented in Chapter 4.

Expressions used to specify feature diagrams make evident the difficulty of

implementing variability among design elements when relationships change (e.g.,

evolution category 4). These variations would need to completely redefine the

specifications expressions describing the feature diagram.

Note from the previous discussions that we still are not able to produce

component compositions, for that we need the rules describing and limiting valid

component stackings described by a hierarchical GenVoca component diagram.

Later in this chapter we describe how the GenVoca model is used to help evolve
product lines.

6.3 Evolving product-lines with meta-generators
It is more difficult to implement product line infrastructures than it is implement-

ing single applications. Similarly, evolving product line infrastructures is more dif-
ficult than evolving single applications. However, the approach of implementing

product lines by product line infrastructures (e.g., configuration wizards), can be

138

product
line 1

line infrastrucíure 1

product
Fproducl "f line 2

specification meta- \^ line infrastrucfure 2
noneratnr -^ / \

product
Iine3

product ^
line infrastructure 3

Figure 6.5 Meta-product-lines can produce application families

extended to implement meta-infrastructures to produce the product lines infra-

structures. In our approach, this consists of implementing a generator of configura-

tion wizards. Because product line infrastructures can be produced by software

generators, a product line infrastructure generator can be itself a meta-generator.

Such meta generator can obtain a specification of a product line infrastructure as

input and produce the corresponding product line infrastructure.

Such meta-generator does not need to be completely produced by a genera-

tive approach, thus some software components may need to be provided besides

the product line infrastructure specification. This approach is depicted in Figure

6.5; the similarities in symbols used to represent specific product line infrastruc-

tures and meta-generators is due to the fact that a meta-generator itself represents a

product line infrastructure that produces a family of product line infrastructures.

To evolve a product line, the specification is rewritten accordingly and the

meta-generator produces the particular product line infrastructure. In our notation

to represent feature diagrams as sets of feature specification expressions, a specifi-

cation defines a product line that the product line infrastructure should be able to

produce. The complete specification of a feature diagram is processed by a meta-

generator, from which a particular product line infrastructure is produced.

139

Discussion on how a product line infrastructure can be produced by meta-

generator tools have been kept at an abstract level in order to describe the

approach. Still something that has not been reviewed in detail is what exactly

"components" (see Figure 6.5) represent. Information in a "component" could

include descriptions or templates of how component compositions can be pro-

duced and verified, etc. The specific models could be specific to a meta-generation

approach, the following section describes how such descriptive and partially

implemented components are used to genérate configuration wizards.

6.4 Evolving configuration wizards
Up to mis point in this dissertation, product-line evolution has been dealt

with in a general, abstract manner. Our approach of configuration wizards has not

been related to our discussion. This section puts configuration wizards in context

with our previous discussion of product line evolution, to show how configuration

wizards can evolve to meet evolving domain requirements.

We defined configuration wizards as tools that present developers a visual

specification interface for application specification. To limit or extend the possibil-

ities of specifying different applications, the specification interface has to present

application developers with the options available to specify applications. How

underlying wizlets and configuration rules change for different sets of applications

has to be un-noticed by developers. Application developers just have to be pro-

vided with the necessary facilities to specify applications, thus application devel-

opers are constrained to the specification facilities presented by the configuration

wizard. Developers do not have to be concerned with how configuration rules and

wizlets are added or removed from their development environment.

140

According to our proposed architecture for configuration wizards (see Fig-

ure 2.9 and Figure 2.8), the following events are necessary when a new feature is

added to a configuration wizard:

• The corresponding wizlet is implemented and added to the wizlet repository.

• Domain knowledge (configuration rules) for the wizlet are implemented and

added to the knowledge repository. Note that this may require changes to

configuration rules in several wizlets.

• User interface is modified to display the specification for the new wizlet.

• Parser is modified to recognize the new wizlet.

• eqBuilder is modified to be able to add the new wizlet specification to a com-

position equation.

The first two events consist in implementing the new wizlet and its compo-

sition rules; these events have to be performed by hand. The remainmg three

events consist in modifying already existing code to handle specification and

instantiation of the new wizlet. These three last events can be performed by a

meta-generator as was described in Figure 6.5.

Before we discuss the architecture of a meta-generator, let us first analyze

in an abstract manner the process involved in generating a specification interface

fO= (sys, n_sel, {fO})
f1 = (sys, s_sel, {f11, f12, f13, f14})
f2 = (sys, m_sel, {f21, f23, f24})
f3 = (sys, s_sel, {f31,f32})
f4 = (sys, m_sel, {f41,f42})

(a)

f1: Of11 O f12 Of13 OfM

12: D f21 D f22 D f23 u f24

f3: Of31 O f32

f4: D f41 O f42

(b)

Figure 6.6 Specification and developer interface

141

(developer GUI) and the rules constraining component compositions, using a spec-

ification. Figure 6.6(a) shows the specification we previously developed for the

feature diagram in Figure 6.3. Note that specific feature selectability properties are

specified, thus the GUI can be generated. The selectability properties specified are

interpreted as follows: s_sel specifies single selection from the sub-feature list,

m_sel specifies that múltiple sub-features from the list can be selected, n_sel spec-

ifies that features will not be presented in the GUI, but are still necessary for other

activities. Figure 6.6(b) shows the GUI produced from the specification in Figure

6.6(a). In the GUI, we can observe how features are grouped in containers (rectan-

gular áreas) that allow single selection (circles called radio buttons), and múltiple

selection (small squares called choice buttons), according to constraints defined in

the feature diagram (and in the specification).

Some properties from the feature diagram are not declared in the specifica-

tion. These properties and constraints are implemented inside verification compo-

nents, as was described in Chapter 2. Our approach to verification validation uses a

Status class which contains attributes/variables whose valúes are used in the veri-

fication of a component composition. In the following paragraphs we show how

the Status class is generated.

We start with the verification code for the component implementing fea-

ture fO from the diagram in Figure 6.3.

class fO {
/*<

boolean fl_set;
boolean f2_set;
boolean f3_set;
boolean f4_set;

>*/

void verify(Status status) {
lower->verify(status);
if (¡status.fl_set)

status.addMessage("at least one fl feature must be specified");

142

else if (!status.f2_set)
status.addMessage("at least one f2 feature must be specified");

else if (¡status.f3_set)
status.addMessage("at least one f3 feature must be specified");

else if (¡status.f4_set)
status.addMessage("at least one f4 feature must be specified");

Note how attributes/variables to register the presence of each component

(i.e., feature) in a composition are declared as comments (i.e., inside /*...*/ pairs).

In the verification function, we assume that the Status component will have the

necessary variables and that every verification component receives Status as a

parameter. In the previous code, Status is used to check if at least one component

implementing every mandatory feature was found. If not, an error message is

reported.

The following code shows a partial implementation of the verification code

for other components / features from Figure 6.3.

class fll {
/*<
boolean fll_set;

>*/
void verify(Status status) {

if (status.fl_set)
status.addMessage("only one instance of fl can be specified");

status.fll_set = true;
status.fl_set = true; //assert an instance of generic feature fl
lower->verify(status);

class £21 {
/*<
boolean f21_set;

>*/
void verifyfStatus status) {
status.f21_set = true;
status.f2_set = true; //assert an instance of generic feature f2
lower->verify(status);

143

Note the similarity in the implementation code segments for features f 11

and f21. First every component declares its presence in the composition, and may

be check that no other component implementing an alternativo feature is present.

Then the presence of a component implementing their generic feature is declared

(i.e., sets the flag indicating this).

Other constraints not shown in a feature diagram may exist, and they

should be implemented in the verification code. However, to keep discussion sim-

ple, we do not describe other constraints.

The previous code segments declared in a comment (/*...*/ declarations)

the variable(s) they use internally to assert its presence to other components. To

share the variable(s) with other components below or above it, a copy of the vari-

able is put in a Status class, and one instance of the class is made available to
every verification component.

Other code that can be derived from the product line specification is the

code that generales a composition equation. Composition equations are con-

structed using the specification from the developer GUI, and for every selected

feature its corresponding component is added to the composition. The following

code sketches the code of a composition equation generator.

//Equation generator
equation.addComponent(" flO ("); //mandatory component

if (fll.selectedO)
equation.addComponent(" fll ") ;

if (f12.selected())

equation.addComponent(" f!2 ");
if (f13.selected())

equation.addComponent(" f13 ");

if (f21.selected())
equation.addComponent(" f21 ");

if (f22.selected())

equation.addComponent(" f22 ");
if (f23.selected())

144

equation.addComponent(" £23 ");
if (fSl.selectedO)

equation.addComponent(" f31 ");

else If (f32.selected())
equation.addComponent(" f32 ") ;

else If (f33.selected{))

equation.addComponent(" f33 ");

Other code that can be generated from the product line specification and

the specification from a developer GUI, is the code to instantiate verifícation com-

ponents. Assuming that the composition equation has been tokenized and a token

representing a component's ñame is received as parameter, the following code

shows how verification components are instantiated.

Component createlnstance(String token) {
//Parser -instantiate verification components
if (token.equalsC£11"))

return new f11(); //créate instance
if (token.equals("f12"))

return new f12(); //créate instance
if (token.equals("f!3"))

return new f13(); //créate instance
if (token.equals("f21"))

return new fll(); //créate instance
if (token.equals(nf22"))

return new f22(); //créate instance
if (token.equals("f23"))

return new f23(); //créate instance
if (token.equals("£24"))

return new f24(); //créate instance

Finally, the code of the Status class will be something like the following
code segment:

Class Status {
String messages;
boolean fl_set;
boolean f2_set;
boolean f3_set;
boolean f4_set;

145

boolean fll_set;

boolean f21_set;

Status)){
Messages=" '; //clear messages

public void addMessage(String msg) {
message= message + msg;

Our previous discussion described how different parts from a configuration

wizard can be derived from a product line specification. Figure 6.7 shows an archi-

tecture describing how specific configuration wizards can be produced by a meta-

generator, proceeding in a similar way to that described abo ve. Figure 6.7 summa-

rizes our previous discussion on how feature diagrams can be represented by spec-

ification expressions and the use of a product line meta-generator, combined with

our notion of configuration wizards. The central role in Figure 6.7 is played by the

meta-generator (MGenerator)4. A product line specification (PLSpec) is provided

PLSpec),
* ""'-^ -^

N
N

X
1*

J
i7 — TH — T^N 1

Domain
knowledge 1 Parse tree

^;
. i *•'_..-——

VenfierT J H ivivjcncraior f-*-. _ .
~ ~ ~ ~~

_ - * Parser

- Jspeclnterface

~ ~ -V Verifíer

Status

(a) (b)

Figure 6.7 Configuration wizards derivation from product line specifications

4. Note in the figure that rounded rectangles represen! source files (text files) while squared rect-
angles represent compilable code.

146

to the meta-generator from which it produces an internal representation, called a

parse tree (data structure) in Figure 6.7, which will be used in most of the tasks

performed by the meta-generator. Other input provided to the meta-generator con-

sists in several témplate files (i.e., files containing markups specifying places

where code should be inserted), that will be used to genérate some of the compo-

nents used by the configuration wizard. In Figure 6.7 all témplate source files are

at the left, and the generated files are at the right. One témplate file is ParserT

(parser témplate), which is used to genérate the Parser component, that will parse

composition equations and instantiate validation components in the configuration

wizard (remember that we decided to split wizlets in two parts: validation code and

application code). Another témplate file is speclnterfacel, a témplate used to gen-

érate the specification interface (speclnterface component) for the configuration

wizard. A third témplate file is VerifierT, which is used to genérate the Verifier

component that will be responsible for conducting the validation process in a com-

position equation. Finally, another component generated by the meta-generator,

and which does not have a témplate counterpart is Status; Status is directly gener-

ated from the provided product line specification (PLSpec).

To understand how Status is generated, remember that the validation pro-

cess in a composition equation is performed in two directions (top to bottom and

bottom to top in the hierarchy), thus we need to keep information of the presence

of each component participating in an application composition. For that, a boolean

valué is enough (true if the component is in the composition, false if it is not).

Other validations require more complex variable types: we may need to check the

number of axes (an integer valué), a motor type (a string valué), etc. Because these

valúes need to be propagated and made available to all components, our solution

was to put all validation valúes associated to every component in the Status com-

ponent. However, when new components are added or deleted, their corresponding

147

validation variables need to be added or deleted correspondingly in the Status

component, and this should be performed by hand (not a recommended task). One

way in which we can put all necessary validation variables insideStatus, is to copy

them from each validating component to Status, using the product line specifica-

tion as a guideline. At validation time, all components update and use information

directly from Status. Because at application generation time the application devel-

oper will be limited to specify only those components available in the GUI, we can

never face the case of an unknown verification variable.

To describe how Status is generated, here we use the feature diagram from
Figure 6.3 and its specification presented in (6.2). To simplify the description, lets

assume the only constraints are the presence or not of components in a composi-

tion equation. According to Figure 6.3, Status has the following implementation,

written in Java:

class Status {
String message;

public:
boolean fl_set; // flag to mark component's presence
boolean f2_set; // flag to mark component's presence
boolean f3_set; // flag to mark component's presence
boolean f4_set; // flag to mark component's presence
boolean fll_set; // flag to mark component's presence
boolean f!2_set; // flag to mark component's presence
boolean f!3_set; // flag to mark component's presence
boolean f21_set; // flag to mark component's presence

Status)) { //constructor
message = ""; //string initialization

}
void addMessage(String msg) {

message = message + msg;

Note that verification variables for features in the diagram are included

inside Status, these variables were copied from the verification components. A

148

partial implementation of the verification equation for some of the components in

Figure 6.3, is as follows:

class fO extends Verifierí
/*< //start markup
boolean fl_set // flag to mark component's presence
boolean f2_set
boolean f3_set
boolean f4_set

>*/

// flag to mark component's presence
// flag to mark component's presence
// flag to mark component's presence

void verify(Status status) {
lower.verify(status);//verify lower components first
if(! status.fl_set)
status.addMessage("At last one fl fsature must be specified")

if(! status.f2_set)
status.addMessage("At last one f2 feature must be specified")

if(! status.f3_set)
status.addMessage("At last one f3 feature must be specified"),

if(! status.f4_set)
status.addMessage("At last one f4 feature must be specified");

Note in this code segment that verification variables are inside a pair of

tags /*< ... >*/ (by using Java standard comments, we can leave the code

untouched inside the component, so it still is helpfiíl for latter reference and does

not interfere with compilation). However, in the verification equation, variables

are assumed to be declared inside Status. Note also that verification variables are

verified after the verification process has been performed. The following code seg-

ment describes a partial implementation of the verification component for a spe-
cialization of feature f2, namely f21:

class f21 extends Verifierf

/*< //start markup
boolean f21_set; // flag to mark component's presence
>*/

void verify(Status status) {
state.f2_set=true; // a specialiaztion of f2 has been found

149

state.f21_set=true;
lower.verify(status) ;
if(status.f3_set)
status.addMessage("f3 features can't be used with f2 features:

£21") ;

Note in the code the assumption that a sub-feature of f3 is assumed to be in

a "lower layer".

The following code shows the implementation of a sub-feature for feature
f3, namely f31:

class £31 extends Verifier{

/*< //start markup
boolean f31_set; // flag to mark component's presence
>*/

void verify(Status status) {
state.f3_set=true; // a specialiaztion of f3 has been found
state.f31_set=true;
if(status.f2_set)
status.addMessage("f2 features can't be used with f3 features:

The meta-generator also produces a Parser component, Parser is produced

from a témplate file. The partial final appearance of the code for the generated
Parser component is:

class Parser {
// code coiranon to all parsers

Component newComponent(String token) {
if((token. equalsCf 21"))

return new f21();
if(token.equals("f31"))

return new f31();
// code common to all parsers

150

The code shows that it is necessary to cali a constructor for every compo-

nent we found when a composition equation is being parsed by the configuration

wizard. The code that needs to be inserted inside every new component specified

in the product line specification is similar, and can be generated using the specified

components. To define where the code needs to be inserted, a tag is used. For

instance, the témplate for ParserT is defined as follows.

class Parser {
// code common to all parsers

/*< specific code for parser goes here >*/
// code common to all parsers

};

Note again that the pair /*< ...>*/ is used as markup of the place where the

code to cali appropriate constructors should be inserted. That markup is used by

the meta-generator to insert the code for instantiating verification components.

The other components (speclnterface and Verifier) are generated in a simi-

lar way to how Parser is produced, thus we do not describe them here. The only

thing that can be worth mentioning is that implementing speclnterface would be

simple or complex, depending on the programming language constructs available

to dynamically produce graphical user interfaces. Programming languages and

their graphical environments provide different facilities to modify the graphical

specification of compositions. The following sections show how two of the prod-

uct Unes that were described in previous chapters of this dissertation can be gener-

ated using the approach described in this chapter.

6.5 Evolving a product-line of vehicle simulators
The previous section described how a meta-generator uses a product line

specification to determine which features are to be presented to the application

developer in the GUI specification interface by the generated configuration wiz-

151

ard. That information is used also to specify which components can be included in

the equation builder module of a configuration wizard. Our proposed approach of

generating configuration wizards from product line specifications and meta-gener-

ators is applied here to show how a specific product line can be evolved.

In Chapter 3 we described a configuration wizard for vehicle simulators.

The configuration wizard for vehicle simulators can be described using the product

line specification notation we introduced in this chapter, as follows:
vehicle = (vehicle, n_selectable, {vehicle})
Options = (vehicle, m_selection,{ Trailer})
Type = (vehicle, s_selection, {Car, TwoWheelMotorcycle,

ThreeWheelMotorcycle, Tank})

Controller = (vehicle, s_selection, {Intuitive, Fuzzy})

Movement = (vehicle, s_selection, {Normal, Differential})

Path = (vehicle, n_selectable, {Path})

Parameters = (vehicle, n_selectable, {Parameters})

The specifícation GUI interface generated from this product line specifica-

tion is shown in Figure 6.8. There are several things worth noting in the specifica-

tion. First is that a single composition equation will be produced by the

configuration wizard (vehicle)5. The selectability properties specify the functional-

ity necessary in the user interface without committing to a particular programming

language: s_selection stands for a single selection component, m_selection speci-

fies a múltiple selection component, n_selectable specifies features that will not

be presented in the GUI interface, but necessary to produce the composition equa-

5. The necessity of specifying more than a single composition for one application was explained
before in this chapter. Complex applications would consist of several modules that should be
executed as sepárate intercommunicating processes. Each module is a subsystem that needs to
be compiled and executed separately from the others, and thus needs to be generated as an inde-
pendent composition.

152

mmmi
Options

Type (* Car C TwoWheelMotorcycle C TfireeWheelMoíorcycIe C Tanh

Controller C intuiílve C Fuzzy

Movcmerrt C Differential C Normal

JÜ

Cancel j Genérate | Compile j Execute

Figure 6.8 Original interface of configuration wizard for vehicle simulators

tion. Adding or removing groups of elements from the GUI interface is simplified
by the selectability properties. For instance, s_select¡on property can be imple-

mented using radio buttons or drop-down single-selection lists; m_selection prop-

erties can be implemented by múltiple selection combo boxes.

To describe how this particular configuration wizard evolves, we can try

several changes. The first change consists in adding a new controller type; this

change requires editing the product line specification thus the corresponding fea-

ture specifícation description for controller is
Controller = (vehicle, s_selectlon, {Intuitive, Fuzzy, Lazy})

153

showing a Lazy sub-feature added to the Controller feature. Other change that we

can make is to remove a feature. For instance, we can remove the Options feature

from the product line specification6. Figure6.9 shows the specification GUI inter-

face produced after these two changes have been done to the product line specifí-

cation (i.e., Lazy instance added to Controller feature, and removing Options

feature).

Type <~ jgaj C TVvoWheelMotorcycle <"" ThreeWheelMotorcycle f Tank

Controller C Intultive C Fuzzt C

Movemenf C Differential C Normal

Cancel Genérate j Compile

Figure 6.9 Evolved interface of configuration wizard for vehicle simulators

6. Note that completely removing a feature has to be consisten! with the feature diagram. Only
optional features can be removed from a configuration wizard's specification user interface.

154

6.6 Evolving a CNC product-line
In Chapter 4 we described the analysis and design domain models of a configura-

tion wizard for CNC applications. As was described in Chapter 4, a CNC system

has two subsystems: MotionGenerator and MotionCoordinator. MotionGenerator

transíales machine instructions to an internal, more detailed representation;

MotionCoordinator synchronizes the feeding of these instructions to machine tool's

mechanical parts (or more appropriately, to servos attached to mechanical parts).

Following is the product line specification for a CNC configuration wizard:
Expanden = (mg, n_selectable, { Expanden})

Interpreten = (mg, n_selectable, {lnterpreterEIA274 })

CoordAdapter = (mg, n_selectable, {CoordAdapter})

Canned cycles= (mg, m_selection, {Finishing, RoughCut,

PeckDrilling, Facing})

Interpolators = (mg, m_selection, {Linear, Circular})

Dispatcher = (me, n_selectable,{Dispatcher})

AxesControl = (me, n_selectable,{AxesController})

Axes = (me, s_selection, {2, 3})

Motor = (me, s_selection, {StepMotor, DCMotor})

Driver = (me, n_selectable,{Dr¡ver})

Inverter = (me, n_selectable,{lnverter})

Card = (me, s_selection, {PCIOOCard, SimulationCard})

In the product line specification, mg and me stand for MotionGenerator and

MotionControler, respectively. As the product line specification shows, there are

many non-selectable (and thus mandatory) features. Non-selectable features repre-

sent components that are mandatory for different compositions. Figureó.10 shows

the specification GUI interface of the configuration wizard for CNC systems, pro-

duced by a generator from the previous product line specification. Elements avail-

155

ITjiCNCgen

Exit

Ñame I

Axes ±1 Moto lstePM°<°' -ll

Iníetpolators

)PC100Card jj

CannedCycles

Genérate |

Compile |

Linear
Circular

RoughCulling
Firiishmg
Grooving
Facing
Threading

Messages

Figure 6.10 Original interface of CNC configuration wizard

able in the programming language, and constraints in the CNC evolution

possibilities, allow us to define a constant specification GUI interface. As

described below, the evolution possibilities for this domain consists in adding or
removing features from already existing generic features, but not adding or remov-

ing generic features.
In Chapter 4 we discussed possible variations in a CNC product line. These

variations can be made to applications if the configuration wizard is evolved to

include/exclude corresponding features. Following are the identified variations

and a brief discussion on how each variation can be approached:

156

• Card type: a new type of card, or a different configuration of a card will be

supported. The required component needs to be implemented and its specifi-

cation (ñame) added to the Card feature specification expression.

• Interpolators: a new type of interpolator needs to be incorporated. The com-

ponent implementing the interpolator is added and its ñame included in the
Interpolators feature specifícation expression.

• Canned cycles: a new type of canned cycle will be used. The new canned

cycle is implemented in a component and its ñame is added to the Canned

cycles feature specifícation expression.

• Motor type: use a new motor type. The corresponding component is imple-

mented and its ñame added to Motor feature specification expression.

Figure 6.11 Evolved interface of CNC configuration wizard

157

• Machine type: this is a complex requirement which can influence several

features. The number of axis can be different, the machine may require a new

type of card (or a new configuration of an existing card), etc. In every case,

the appropriate components are added/removed and the corresponding meta-

specifications are written.

An example of the user interface for a CNC configuration wizard including

a new interpolaron algorithm (Parabolic interpolation) and a new canned cycle

(Turning), is shown in Figure 6.11.

As was emphasized in our first example, how changes are introduced in a

product line specification has to be consistent with the feature diagram.

6.7 Limitations and advantages
In this chapter we discussed why product line evolution is necessary and

described how meta-generators can automatically perform required changes. We

explained how product line evolution can be implemented by a meta-generator

whose producís are configuration wizards. In the approach described, configura-

tion wizards can be adapted to support new requirements, represented as features,

by modifying their product line specifications and generating configuration wiz-

ards.

In the simplicity of the idea is its contribution. Evolving single applications

is a paramount problem; evolving product line infrastructures capable of generat-

ing sets of similar applications is indeed a more complex task. We demonstrated in

this chapter how the use of features along the development cycle of configuration

wizard implementation simplifies the addition and removal of features. The com-

bination of feature diagrams with GenVoca hierarchical diagrams helps to simplify

the task. The addition of graphical specification interfaces for application configu-

158

ration simplifies the incorporation of new features to applications (i.e., if a feature

is available for its use in applications, it will be part of the graphical interface, if it

is not, then it will be absent from the interface). Implementing components as wiz-

lets that are adapted by configuraron wizards using application developer specifi-

cations simplifies the task of evolving product lines.

The approach used has its limitations and advantages. The following two

sections discuss them.

6.7.1 Limitations

Our approach for product line evolution is strictly limited to our implemen-

tation of product line infrastrucrures as configuraron wizards. Our interpretation

of components as implementing features simplifies both the initial implementation

of configuration wizards and their evolution by meta-generators. One limitation is

that we did not explore how different ways of modularization and parameterization

would give different results.

The implementation of the meta-generator is strictly guided by the archi-

tecture of a configuration wizard. Evolution consisting in feature addition or

removal to the product line is easy, as shown in the examples we implemented.
However, the implementation of meta-generators is highly dependent in the fea-

ture diagram and the GenVoca model(s). A big limitation is that in general, it is

difficult to implement structural (i.e., architectural) changes after the meta-genera-

tor has been implemented. Given the tight dependency of the meta-generator to the

models, changing the models can require a lot of hacking in the meta-generator.

Each feature is implemented by a component. It is difficult to construct

configuration wizards if features cross-cut components. Such features as transac-

tions and distribution, which cross-cut to several components cannot be dealt with

in a simple manner, if possible, using our approach.

159

Domains different to those we implemented may impose performance

requirements. Although performance estimation can be calculated, resulting com-

positions may not be enhanced to improve performance; that is, components are

composed as is.

Compositions are limited to their specification in the GenVoca model, thus

even if their semantic properties allow different component orderings in composi-

tions, our approach limits compositions to a single option. More flexibility can be

achieved if components can be used in different positions in a composition. Such

flexibility would result in applications with a better performance. Configuration

wizards and their meta-generators would need a certain level of intelligence to

allow such possibilities. We did not explore such possibilities.

We acknowledge that may be the simplicity to evolve our configuration

wizards can be attributed to the care taken in their initial development. An original

requirement on the examples was that they should make simple feature addition

and remo val. If configuration wizards and their wizlets are not designed for evolu-

tion from the beginning, surely they will be more complex to evolve using a meta-

generator (or even by hand).

It may be impractical to use an incremental approach to implement config-

uration wizards and their meta-generators. This is a restriction for domains in

which there are not available applications to analyze, previous to the implementa-

tion of a configuration wizard. Incremental development is one of the current

approaches of software engineering, but we can not take advantage of it in our

approach.

A compositional implementation does not allow the use of more than a sin-

gle instance of the same component in a composition. This makes difficult to apply

the approach in domains such as data structures that would require such possibil-

ity. However, such impossibility can be attributed in part to programming lan-

160

guage mechanisms, not completely to our approach. For instance, programming

languages such as Eiffel support a mechanism for property (e.g., method and

attribute) cancellation from super classes to subclasses. Such mechanisms can

make possible to use several instances of the same component in a composition.

We did not explore such possibilities.
It was not our intent to propose a generic approach to parameterization. We

did not conduct any analysis of the parameterization extensions, thus other possi-

bilities that are enabled by the implemented extensions were not explored.

6.7.2 Advantages

As was described in the previous section, a number of limitations exist in

our approach of configuration wizards and their meta-generators. However, as

examples shown demónstrate, their possibilities are still important. The product

line specification developed to specify configuration wizards is simple enough to

facilitate the evolution of different configuration wizards.

We did not consider ourselves expert programmers in the programming

languages used to implement configuration wizards and their meta-generators.

However, carefully applying our proposed approach made simple such implemen-

tation in different programming languages. We consider the approach is strong

enough to be applied in other domains using other programming languages with

similar characteristics to the languages we used in our examples.

The configuration wizards that are meta-generated are similar to those we

initially implemented by hand. Once constructed, meta-generators highly simplify

the evolution of configuration wizards.

We consider a main advantage of our approach that it can be consistently

applied across programming languages and domains, as demonstrated by the

161

examples we described. The parameterization limitations from different program-

ming languages were consistently solved by using a similar extensión approach.

6.8 Discussion
The approach to product une implementation based on configuration wizards was

extended in this chapter to implement product line evolution by meta-generators.

A notation to specify configuration wizards is introduced. The notation is used to

specify two of the example configuration wizards described in previous chapters,

and describe how these configuration wizards can be evolved by a meta-generator

specific to a product line.

Advantages and limitations of the approach to evolve configuration wiz-

ards were discussed. These limitations and advantages are in part a consequence of

the domain analysis and design representations used. Several of the limitations

were attributed to the weak support from programming language mechanisms,

mainly related to their limitations in module or class parameterization.

162

Chapter 7

Related work

Previous chapters sparingly described the work of others related to our

work. In this chapter we discuss research being conducted in the área of software

product lines, and how we consider our work on configuration wizards extends or

concretizes the work of others.

7.1 Product-Line Engineering Methods
Numerous approaches to product-line engineering exist as can be observed

from the success of product-line workshops and conferences [DonOO, Cha02], and

product-line engineering books [BosOO, JRVOO, WL99]. In this section we present

descriptions of related approaches and what we consider are their most relevant

contributions to product-line engineering. For every approach, we discuss why we

consider it is limited in scope to be considered a complete and detailed product-

line engineering method.

7.1.1 FODA

The Feature-Oriented Domain Analysis Method (FODA) [KCH+90], has been

successfully used in different domains. Its distinctive characteristic is that domain

concepts, called features, are represented as tree-like relationships describing com-

163

positions, and-or associations, and generalization/specialization relationships. A

FODA model is used as a communication tool between users and developers

because concepts are derived from the terminology ordinarily used by domain
experts to describe the domain. FODA is limited to domain analysis, no

approaches are suggested to how features can be implemented so they can be

reused to construct the product Une described by a feature model.

Our method considers FODA the most relevant method for domain analy-

sis, and extends its usefiílness to design product-line architectures based on param-

eterized components which implement features, that can be reused to construct

application families.

7.1.2 FeatuRSEB

The Reuse-Driven Software Engineering Business method (RSEB) [JGJ97,

GFD98] is a domain modeling method aimed at software development enterprises,

and is distinctive it that it emphasizes reusability. The unifying concept along the

RSEB method is use cases. In FeatuRSEB, FODA's features are integrated with

use cases by deriving feature models from use case diagrams.

In the description of FeatuRSEB and its models, no suggestion is presented

on how features are individually implemented and later composed into applica-

tions. In contrast, our method considers configuration wizards an their wizlets as

inseparable elements to implement and produce application families.

7.1.3 Feature Abstract Specification and Translation

The Feature Abstract Specification and Translation (FAST) approach [WL99] pro-

poses general recommendations of a process for product-line engineering. FAST
suggests a generator-based approach for product-lines, but does not propose spe-

164

cific ways that can be used for domain analysis, component implementation, and

generator development.

7.1.4 Organization Domain Modeling

The Organization Domain Modeling (ODM) [Sim95] is a systematic domain anal-

ysis and design approach. Similarly to FAST, ODM is a general approach thus

there is no commitment to any particular methods and technologies. An importan!

aspect in ODM is its emphasis in recommending that features should be used along

the process (i.e., from analysis to design to implementation).

The recommendations of ODM are extensively applied in our work to pro-

pose a method whose elements are features. Our method show how features can be

implemented as components that are concretized into applications by a configura-

tion wizard.

7.1.5 FODAcom

FODAcom [VAM+98] is an extensión to FODA for the telecommunications

domain. Several FeatuRSEB's elements are also present in FODAcom. For

instance, both make use of use-cases at their initial phase, thus feature identifica-

tion is performed at the use-case level. However, FODAcom employs a UML-like

[BRC98] notation for representing feature models. Functional and behavioral

FODA models are used to derive domain architectures. No clues are provided over

how to implement components and tools necessary for product-lines based on

FODAcom.

7.1.6 PuLSE

The Product Line Software Engineering (PuLSE) [DFK98] process is a collection

of methods covering the development life cycle, consisting of PuLSE-Eco (eco-

165

nomic feasibility study), PuLSE-CDA (concept identification, structuring, and

documentation), and PuLSE-DSSA (definition of a domain specific software

architecture). The PuLSE process has been used in a number of small and médium

enterprises [KMS+00]. PuLSE does not define any particular implementation

approach, ñor specific engineering methods. In contrast, our method consistently

uses parameterized components (features) for feature implementation.

7.1.7 FORM

The Feature-Oriented Reuse Method (FORM) [KKL+98] extends FODA to cover

the whole engineering process. FORM has been implemented in functional and

object-oriented environments. Reported benefits are attributed to the easy transla-

tion of feature models to object models because of similarities in concepts used in

both modeling approaches (i.e., objects can represent real world entities). Variabil-

ity is implemented using inheritance and templates, macros are used for selecting

among alternatives [LKCCOO].

Our work extends FORM by adding configuration predicates to compo-

nents prescribing constraints that should be met for them to be reused in composi-

tions describing applications.

7.1.8 GenVoca

GenVoca [BST+94] is a design approach that represents an application as a com-

ponent stacking (hierarchy). Every component modify in some way its immediate

top level component. Such modifications, called refinements, can consist in add-

ing, removing or changing in any other way the output of the previous component.

GenVoca has been implemented in a number of generators for different domains.

GenVoca is distinctive in that components are parameterized with respect to their

low level component, thus a GenVoca model is a reference architecture which can

166

be instantiated differently. To guarantee that a component stacking defines a valid

application, GenVoca proposes describing component inter-dependencies as pred-

icates, which are to be true for valid compositions and false for invalid composi-

tions.

Our contribution to GenVoca is the addition of feature models (diagrams)

to identify component types and represent constraints as relationships in feature

diagrams, that will be translated to constraints in GenVoca. By doing so, features

are a unifying concept along a product-line method (components implement fea-

tures that are parameterized by other features that can be instantiated in composi-

tions implementing applications.

In recent implementations of GenVoca models, components represent col-

laborations, thus responsibility-driven or use-case driven approaches could be used

for analysis [Sma99].

7.1.9 Discussion

The methods described in previous section can be categorized in two

groups: methods emphasizing a single aspect or part of a product-line method, and

generic methods presented at a very general level thus any particular approach fits

them.

In previous chapters we presented a method for product-line engineering

applicable across múltiple domains. Such method does not proposes completely

new activities and work products for each life-cycle development phase. Instead,

the method uses the most successful approaches currently in use. By combining

successful approaches to define the activities and their products, the experience in

their use is retained.

167

7.2 Implementing Product-Lines
Infrastructures being used for implementing product-lines are diverse. Sev-

eral of the implementation technologies are presented in this section.

7.2.1 Aspects

For some problems, design decisions cannot be captured in a single unit. For

instance, in an object-oriented approach some design decisión cross-cut several

classes. Aspects are programming constructs that work by cross-cutting the modu-

larity of classes [KLM+97]. So, for example, a single aspect can affect the imple-

mentation of a number of methods in a number of classes. Certain domain

independent issues in applications typically cross-cut several classes (e.g., persis-

tence, transactions, distribution).

Aspects can consist in attributes or methods inserted to selected classes in

an application. An aspect weaver is a tool that processes aspect declarations and

performs insertions declared by the aspect declarations. Programming languages

can be extended to support aspects, thus no completely new languages need to be

designed for aspect-oriented programming [KicOO]. An example of an aspect

weaver is AspectJ, which extends Java syntax to declare aspects, as extensions to

attributes and methods of classes.

7.2.2 Frameworks

A framework implements the common characteristics of a product-line, and

defines a mechanism to add the variable characteristics thus applications can be

constructed [Bas97]. Object-oriented programming-language mechanisms, mainly
inheritance and polymorphism, are used to construct framework infrastructures

[FJ99, DW98, Lew95]. Frameworks have been broadly used to implement soft-

168

ware product-lines [FJ99]. An interesting approach for implementing frameworks

using parameterized components is presented by [BCSOO].

7.2.3 Mixins

A mixin is an abstract sub-class whose super-class is unknown at implementation

time [Bra92, VN96]. At application construction time, mixins are instantiated by

specifying their super classes in a composition expression. In programming lan-

guage implementations that support the definition of classes inside other classes, a

mixin can consist of several inner classes inside a container (component) class

[FF98, Sma99].

Bracha [Bra92] discusses how a modular programming language can be

extended to support mixin implementation and how parameterized modules are

used to build applications. An approach for implementing mixins describing roles

in a collaboration is proposed by VanHilst [Bra96a, BR96b]. Smaragdakis

[Sma99] shows how such approach requires complex compositions even for sim-

ple application systems, and proposes that a single mixin can implement a com-

plete collaboration, these are called mixin layers. Mixin layers require simpler

composition expressions to specify whole applications.

7.2.4 Components

What is considered a software component varíes considerably according to the

implementation approach. A component is a unit of encapsulation and can be

implemented as functions, classes, modules, units, packages, and the like [FF98,

BBC+00]. The important characteristic is that a component can be handled as a

unit at application construction time and tools can help at component integration
time [KC99, RFS+00, SMBOO].

169

7.2.5 Generators

A software generator receives as input an application specification expressed in a

domain-specific language and produces the corresponding application in a pro-

gramming language such as C, Pascal, Java, etc.[BO92, Haz96]. There are two

types of generators, compositional and transformational [Tho98]. Compositional

generators map specifications to parameterized components that are adapted to fit

the specification. Transformational generators refine the specification in several

steps, applying one algorithm at every step until a fiílly refined application is pro-

duced. Transformational generators can proceed independently at each step or be

guided by the developer thus correct transformations (e.g., reduction, optimization,

etc.) are applied [CE99, CEOO].

7.2.6 Software Kits

A software kit consists in a set of components and tools for application construc-

tion as component compositions [GW94]. Tools for component integration can

perform verification of the compositions [StaOO, RFS+00]. There is no restriction

to what a component can be and to how better represent and implement compo-

nents and their kits.

7.2.7 Design wizards

Wizards (also known as "experts" and "advisors") are visual tools to walk the user

along the steps of a complex process for application specification. An example of a

design wizard for construction and critique of data structures was presented by

Batory et al. [BCR+00]. Wizards extend software kits by providing expert assis-

tance, such as helping to improve application performance and textually describing

component compositions. Design wizards have been suggested as front-ends for

170

many technologies [BCR+00], such as software generators [BST+94, Kie96,

Tho98], frameworks [Joh88], and libraries [Big94].

7.2.8 Configuration environments

Confíguration environments [BABR97, KC99, Kot99, RPS+00, SMBOO, StaOO]

assist users in specifying applications. The developer is provided with specifica-

tion facilities (e.g., languages, tools, etc.) for application description. The environ-

ment verifies consistency and reports any errors, thus development proceeds in a

conversational manner. Composition can be performed statically (before the appli-

cation is compiled) or dynamically (as the application is running). Consistency

verification can employ reflection capabilities, be based on interfaces (typing), or

use more detailed (semantic) component descriptions.

7.2.9 Discussion

Technologies presented in this section have been used to implement soft-

ware product-lines. However, significant cost is associated to most of them. For

instance, aspect-oriented programming requires extensions to programming lan-

guages and sophisticated weavers to be developed; generators are complex tools

which are expensive to implement. A low cost alternativo is the mixin-layers

approach, which requires that class parameterization be supported by the program-

ming language. Class parameterization is supported by a limited number of pro-

gramming languages (e.g., Ada, C++, Modula-3); other broadly used

programming languages do not support class parameterization (e.g., Pascal, Visual

Basic, Java). Besides being limited to programming languages supporting class

parameterization, mixins lack support for complex composition verification.

In previous chapters dissertation we showed how application engineering

in a product-line environment can be simplified by the use of configuration wiz-

171

ards. A configuration wizard is a software tool containing wizlets as components,

predicates expressing knowledge of valid compositions, a specification interface,

and a generator to produce software product-lines.

7.3 Product-line evolution
In Chapter 6 we presented and discussed an approach to evolving product-lines

implemented by configuration wizards. In that chapter we described how two of

our example product-lines are evolved by meta-generator tools, which take prod-

uct-line meta-specifications expressed as feature sets and produce the configura-

tion wizard implementing a product-line.

Evolution of individual applications has been broadly researched. How-

ever, an issue that has not been extensively discussed is how product-lines can

evolve to support new requirements, or eliminate requirements that, for any rea-

son, will not be available in a product-line infrastructure. Most of the literature in

product-lines refer to methods and tools to construct product Unes. How these

methods and tools address product-line evolution is not clear.

Riebisch [RP01] describes a process for assisting in product-line evolution

by maintaining links among life cycle work producís. The links relating require-

ments to design decisions and implementation is suggested as a means to help

evolve product lines. A tool to record and use documented decisions is proposed

for changing, refactoring, and reconfiguring product-line architectures.

Katayama [KT01] proposes a formalization of collaboration-based prod-

uct-lines. Operators for representing specifications, evolution, and differences help

trace the validity of changes made to a product line. No tools implementing pro-
posed operators are suggested for evolving a product-line.

172

Although not presented as means to help evolve product-lines, composi-

tional frameworks pCSOO] can help to implement evolution in a product-line.

Adding parameterized components to a framework exponentially increases their

ability to construct different members in an application family.

Metaprogramming mechanisms can help to evolve product-lines [CEOO].

Implementing features as parameterized components simpliíy the addition of new

requirements to meta-generators based on metaprogramming facilities.

A broad analysis on product-line evolution is presented in [BosOO] and

[SGB01]. Similar to our approach, features are identified as a unifying concept to

model, implement, and evolve product-lines. Variability is identified as present at
different levéis of abstraction in product-line work producís, from architecture to

code. Categories of evolution in a product-line are described in [SGB01]. How the

mapping of category changes to implementation can be performed is not dis-

cussed.

7.3.1 Discussion

We do not present a formalization of product-line evolution implemented

as configuration wizards. However, we consider our approach partially includes

concerns and results from work related to product-line evolution. Contrary to oth-

ers, our work shows how evolution can be performed by adapting the product line

infrastructures from meta-specifications describing them.

7.4 Recap
Our approach for software product lines is based on several product-line

engineering methods. The implementation we use is similar to mixin layers with

the addition that programming languages with encapsulation facilities can be

173

extended to support component parameterization. As described, configuration wiz-

ards are derived from a combination of design wizards, software kits, and configu-

ration wizards. Results in product line evolution are considered to propose an

approach that simplifies evolution of software product lines by meta-generators.

174

Chapter 8

Conclusions

The work described in this dissertation was guided by two goals. The first was to

propose a methodology for software product line engineering and demónstrate its

general applicability across domains and programming languages. The second was

to fmd out if a methodology for product Unes can be extended to include the com-

plexity of automatically evolving the product line infrastructure. The previous

chapters show that, to a certain extent, both goals were achieved. In this chapter we

recap the results and contributions, discuss lessons learned both in developing and

evolving software product lines, and propose research that remains to be con-

ducted in the field of configuration wizards

8.1 Proposed Methodology
The methodology we proposed was based in the abstract reference process

for product line engineering in existance since 1996, as reported by F. van der Lin-

den [Van02]. In this dissertation, we propose the use of specific methods to per-

form the activities from that reference process, as follows:

175

• Domain analysis. We proposed the use of feature diagrams with extensions

that we introduced to represent feature variations and constraints. We found

feature diagrams to be of great use to communicate with the clients, so they

can validate if all important domain aspects have been registered and are

related in a correct way.

• Domain design. Hierarchical component diagrams are used to represent the

design of software product lines. We added adornments to components so

that their characteristics could be emphasized —important when modules are

to be implemented and composed with others using a visual specification.

• Domain implementation. We use modular implementations similar to mixin-

layers (i.e., parameterized classes) to implement components. However, to

be able to provide more complex verification capabilities than mixin layers

do, the composition constraints are coded separated from the application

code. Our approach also assumes that components will be composed by a

composition tool, according to an application specification. This last

assumption provides enough flexibility to include mandatory components in

an application without the need to be specified by an application developer,

and if necessary, to perform complex adaptations to components in a compo-

sition.

• Application engineering. Once the infrastructure for a software product line

has been created, particular applications can be generated. The specification

and generator front-end provides the application developer with facilities to

specify and analyze different specifications, validate their conformance, and

genérate the final application.

The proposed methodology for software product line engineering was validated by

applying it to three cases. Even tough the general applicability of a methodology

hardly can be conclusively demonstrated by its use in a small number of specific

176

examples, we have the confídence that the domains and technologies used to dem-

ónstrate it are different enough to increase the degree of confídence in the sound-
ness of the methodology. However, as is the case with most of the methodologies,

we can not provide a list of the characteristics a domain should posses in order for

the methodology to be useful.

Our contribution to existing methods and technologies was limited. For

instance, the combination of feature diagrams and hierarchical models to engineer

product lines had been suggested before in combination with a technique called

generic programming [CE99]. The use of graphical environments to construct

applications from components that were designed to participate in hierarchical
compositions has been also used before [BCRW99]. Our main contribution in this

part is the extensions of feature diagrams to represent constraints, and to hierarchi-

cal diagrams to emphasize how components are to be displayed in a graphical user

interface to be manipulated by application developers. We also introduced a nota-

tion to emphasize that a component implements a type, characterized by an inter-

face the component exports. These extensions simplify the process of product line

engineering by making more visible the way every model contributes to the final

implementation.

As demonstrated by our examples, the combination of these extensions

with the approach of implementing product line infrastructures as configuration

wizards, consistently produce successful results. These extensions and implemen-

tation approach were demonstrated to be useful in implementing three completely

different product lines using different programming languages.

A more important contribution of our research is in software product line

evolution. Experience in software development has shown that changes in require-

ments to applications are always necessary, and costly to implement. One difficult

177

problem is how to evolve a product line infrastructure to adapt it to new require-

ments.
Our proposed approach to product line evolution arises from the idea that

even though every particular domain has its own characteristics, and its require-

ments change in different aspects, categories of changes at the product line archi-

tecture level can be identified [BosOO]. The particular changes can be associated to

one category, thus similar architectural changes can be approached in a similar

way, independent of the domain and implementation technology. Because our
approach is consistently used along different domains and technologies, we are

able to use a similar approach to evolve different product Unes. This simple con-

cept was demonstrated applying our approach to evolve two of the product lines

we implemented.

To be able to describe different product lines in a similar way, we devel-

oped a specification notation that is based on feature diagrams and hierarchical

models. Every product line is specified by describing components that can be

instantiated, how these components are grouped in types, and if it is possible to

select more than one component from a single type (if any). In that way, if a new

component needs to be added to a product line that requirement is specified in the

valid selections of a component type. If a component implementing a particular

requirement needs to be removed, it is deleted from the specification to the product

line. The specification of the product line is parsed to instantiate the infrastructure

that is able to genérate members of the product line. The two examples presented

describe how such an approach is applied to evolve two of the product lines. Other

changes in requirements that are not architectural can be approached in a different

way; these changes are implemented in the algorithms, but the architecture does

not change, and thus the product line does not change either.

178

As mentioned before, we can not affirm that just by presenting a finite

number of experiments, can be one hundred percent secure of the validity of a

methodology for product line engineering across different domains and program-

ming languages. Besides, our research was affected from the fact that in two of the

applications we were not able to demónstrate the product line in more than one

instance. Due to these reasons, we still consider the methodology, and the way in

which it was tested, have limitations. In the foliowing sections we discuss contri-

butions in more detail, and aspects that we consider are important and that can be

classified as positive and negative, or as tasks that we did right or wrong for the

research described in this dissertation.

8.2 Results and Contributions
Along this dissertation, software components were implemented to be reused in

different compositions as units of reuse. To be handled as units, components

encapsulate the set of properties (i.e., data and operations) characterizing every

component. We showed that software product lines can be constructed from soft-

ware components called wizlets, using a specification and composition tool called

a confíguration wizard. Both, wizlets and their configuration wizards have to be

implemented for every product line, thus a programming language aimed at imple-

menting configuration wizards needs to provide support for encapsulation and

property (functionality) publishing.

One objective in our work was to demónstrate that software product lines

could be implemented as configuration wizards, which provide enough support to

gracefully evolve product lines by adding or removing requirements described as

features. We provided a characterization of configuration wizards, proposed what

a wizard can be, and introduced a methodology and technologies for implementing

179

and evolving software product Unes as configuration wizards. Contributions in this

dissertation can be summarized as follows:

• Approachfor software product Unes as configuration wizards. We proposed

and demonstrated an approach for conducting product-line engineering

based on configuration wizards. The approach consists in using feature dia-

grams for domain analysis, GenVoca for domain design, and wizlets and

configuration wizards for implementation. The approach was tested in three

different application domains to implement software product-lines.

• Wizlets are parameterized components. Modular and object-oriented pro-

gramming languages not supporting component/class parameterization can

be extended thus actual parameters can be specified at composition time. A

configuration wizard implements a preprocessor for component adaptation.

Semantic information prescribing environmental constraints can be imple-

mented inside or outside a component. As our compositions are performed

statically, we suggested that predicates constraining wizlet composition be

implemented separately from wizlets and defined inside a knowledge reposi-

tory. Predicates are evaluated at composition time for composition consis-

tency. If everything is correct, wizlet's parameters are instantiated and the

necessary code is generated, and then compiled into an application.

• Specification interfaces include variant non-mandatory features. Variants

are special valúes or implementations of a type. As a result of our approach,

the application developer needs to specify only those variants characterizing

the application. The configuration wizard can insert mandatory features to

the specification and propágate valúes that are used by several components.

• Product-line evolution by meta-generator tools. We propose a notation and

approach to meta-specify a product line, and how that meta-specification can

be used to produce a corresponding configuration wizard. The flexibility of

180

our approach is due mainly to how features are consistently used along the

process, from domain models to design models, and finally to implementa-

tion.
To demónstrate that our approach can scale to different domains, we

applied it to implement three different product Unes in disparate domains, in the

áreas of simulators, real-time systems, and information management systems,

respectively. Many application domains can be characterized as having similar

requirements. Even though a formal theory of configuration wizards was not pre-

sented, we believe that our approach can be useful for developing product-line

infrastructures for other domains.

Our experience gained in the process of implementing three configuration

wizards using different programming languages in different domains, can be sum-

marized as foliows:

• The participation of a domain expert is necessary. Technical skills are not

enough to implement product lines, a profound domain knowledge is manda-

tory to implement infrastructures for software product lines. A technical

expert may lack the necessary domain knowledge. Models used in product

Une engineering should be useful to capture the domain knowledge and use

resulting models to communicate with domain experts.

• It may be difficult to find domain experts. It is difficult to find all necessary

domain knowledge in a single expert, several experts may be necessary. Par-

ticipation of several domain experts is a plus for obtaining required informa-

tion.

181

• Difficulty in understanding components asparameterized units ofreuse. The

necessity of different components implementing features seems natural, but

how these features are translated to components, and how parameterize these

components to be composed with others to construct applications is not

straightforward.

• Lack ofprogramming languages implementing componentparameterization.

Our work required extending programming languages supporting encapsula-

tion but not component parameterization. A uniform extensión approach we

developed was fundamental to our work, thus hacking is reduced when dif-
ferent programming languages are used.

• Necessity of tuning components. Using a single approach for component

composition sometimes requires that components have to be carefully

plarmed. Component tuning is necessary to meet both performance and com-

ponent substitution requirements.

8.3 DoneRight
We demonstrated that our methodology can at least be successfully used to engi-

neer three completely different domains using different implementation technolo-

gies. It can be argued that we were successful in the selection of domains and

implementation technologies. However, it was the case they were the only choices

we had at hand at the moment. The idea of product Unes is attractive because its

perceived benefits and its potentially broad applicability. But unfortunately we did

not have at hand the level of domain knowledge on different domains or the possi-

bility to be able to conduct a domain selection. Thus, we were not able to make a

domain selection and choose domains we anticipated the approach could be useful.

182

Given that, we can consider the domains we implemented correspond to a random

selection.
Other aspect of the methodology we propose is their architectural and thus

component oriented nature. Our initial notion was that the approach should be

amenable to be successftilly implemented in any programming language that sup-

ports modularization and encapsulation facilities similar to those provided by

classes of objects, at least. Parameterization capabilities, were absent, could be

performed by a preprocessor previous to compilation. In two of the examples we

implemented our product Unes using programming languages that lack class or

module parameterization (e.g., Java and object-oriented Pascal). Our proposed

extensión to programming languages was consistently used to represent compo-

nent, class, and module parameterization; parameter instantiation was preformed

by a preprocessor using a composition expression. The environment we obtained

in this way, was able to completely genérate the specified applications.

Our more complex endeavor was to demónstrate that the proposed method-

ology could be extended to be able to support product line evolution in a seamless

manner. That goal was achieved by extrapolating the idea of using a specifícation

to define the components that should be included in a specific application, to repre-

sent a product line infrastructure by a product line specifícation. We devised a

notation to write a product line specifícation, and implemented a meta-generator to

adapt components of a product line infrastructure to meet that product line specifi-

cation. The result was that just by changing a product line specification, we can be

able to produce the infrastructure that is able to genérate applications that comply

with the product line specification. This approach was demonstrated by imple-

menting two meta-generators that were able to evolve two of the example product
line infrastructures presented in this dissertation.

183

8.4 Done Wrong
There are several aspects limiting our proposed approach, in this section we discus

how our methodology can not guarantee to be useful for every domain. The main

limitations are the pragmatic nature of the approach against a more formal

approach, the fact that we did not show any numbers describing how our approach

can be compared to others, and lack of support in the study cases to demónstrate

that our approach indeed is able to produce infrastructures that can genérate mem-

bers from a product line.

First is the fact that, besides the diagrammatic representations and specifi-

cation notation, no formal notation was introduced to specify a product line. Our

approach is pragmatic in nature; however, a formal notation could have been used

to specify how the consistency in a product line is preserved by the introduction or

removal of components. In principie, the constraints could be extended thus such

validation can be performed.

Another limitation is that we were unable to show numbers to compare our

approach to other approaches. Although presenting numbers could be a more con-

clusive demonstration of a quality, our approach was demonstrated by feasibility.

Particularly, the domain of computer numerical control systems required that prod-

ucts comply with strict finishing standards. The manufactured producís the gener-

ated system produced met these standards, thus demonstrating that generated

systems could be able to satisfy the standards. In that domain, only carefully tuned

applications had been able to meet such standards.

As a final remark, we observe that our methodology can not be demon-

strated to be conclusive (i.e., applicable to every case). However, we wonder if any

pragmatic approach can demónstrate that. The lack of a formal method always

lacks of some kind of certainty. However, the case studies we conducted demon-

184

strate that, at least for domains with similar characteristics, and for programming

languages with equivalent mechanisms to those we applied our methodology, the

application of our approach could produce results similar to those we obtained.

8.5 Future Research
In this dissertation we proposed and explored confíguration wizards as tools to

implement and evolve product lines and an approach to conduct product-line engi-

neering based on configuration wizards. There are different aspects that could be

researched prior to an industrial use of our approach.

• Further valídate the approach for confíguration wizards. Although we pre-

sented three configuration wizards in three disparate domains, this by no

means is a conclusive demonstration of their possibilities. Other domains

may require more complex component interactions than parameterized

inheritance allows.

• Explore other modularization mechanisms. The main mechanism used for

wizlet implementation was encapsulation and inheritance. However, there

seems to be no reason why association (e.g., class aggregation and composi-

tion) is not equally good for implementing wizlets. Instead of being mixed,

components are instantiated independently and communicate using program-

ming language function calis or operating system remote procedure cali

mechanisms. If appropriate, such possibiliry will extend the use to other pro-

gramming languages not supporting inheritance.

• Bundling code and predícales inside generative components. Components

and configuration predicates suggested in this dissertation were implemented

separately; predicates are executed at composition time and are stored in a

knowledge base, while application code is maintained as source code in a

185

component repository. It can be interesting to construct and analyze compo-

nents including both predicates and a generator that produces the application

code; among the benefíts that compiled wizlets may offer are application

code optimization. Static components contain the code that is used every

time, compiled components can produce different code, when the component

participates in different compositions. Such variations may be due to perfor-

mance reasons, thus the resulting applications can perform better.

• Other domains. Distributed applications frequently require a variable num-

ber of components (i.e., components are added and deleted at run-time).

Confíguration wizards verify compositions statically, thus other mechanisms

for validation may be necessary.

• Organizational issues. All projects presented in this dissertation were devel-

oped by a single person. For an industrial implementation of the approach,

where a team or group of collaborating teams work on a single project, orga-

nizational aspects have to be researched. It is also necessary to define roles

and responsibilities of team members, thus the different aspects involved in

our approach can be assigned to people with the appropriate knowledge.

8.6 Recap
The increased demand for new applications can not be solved in traditional

ways. Instead, we believe that automated application generation and evolution is

necessary in well known domains. Once the requirements in a domain are well

understood and applications in that domain characterized, automated facilities can

be implemented. In this dissertation we proposed a methodology for software

product line implementation. We presented three study cases we conducted to val-

idate our methodology. As our intention was to demónstrate the feasibility of the

186

methodology to meet ftinctional requirements, we concentrated on meeting func-

tional requirements, without analyzing other aspects (e.g., high performance, secu-

rity, etc.). Thus functional requirement satisfaction was our goal, and do not
demónstrate that the approach was able to surpass what an expert programmer can

be able to implement in a domain. As we were able to satisfy all requirements, then

we consider our goal was achieved.

We realize that certainly there may be domains whose requirements could

not be met by our approach. We did not conduct any research to find requirements

that could not be met using the proposed approach. At least, we can be sure that

software product lines can be implemented in domains with requirements similar

to those we presented.

187

Bibliography

[AAG93] G. Abowd, R. Alien, D. Garlan, "Using Style to Understand

Descriptions of Software Architectures", Proceedings of SIGSOFT

'93, 1993, 9-20.

[ABMOO] C. Atkinson, J. Bayer, and D. Muthig. "Component-Based Product

Line Development: The KobrA Approach", in Software Product

Lines: Experience and Research Directions, P. Donohoe, Kluwer

Academic Press, 2000, 289-309.

[AFM97] O. Agesen, S. Freund, and J. Mitchell, "Adding Type

Parameterization to the Java Language", OOPSLA 1997, 49-65.

[AG96] K. Arnold and J. Gosling, The Java Programming Language,

Addison-Wesley, 1996.

[Ara94] G. Arango, "Domain analysis method". In Software Reusability, Ellis

Horwood, 1994.

[ASCOO] Advanced Separation of Concerns, Workshop, OOPSLS'2000. http://

trese.cs.utwente.nlAVorkshops/OOPSLA2000/

[Bas97] P.G. Basset, Framing Software for Reuse: Lessons from the Real

World, Yourdon Press, 1997.

[Bat88] D. Batory. "Concepts for a DBMS synthesizer". In Proceedings of

ACM Principies of Datábase Systems Conference, Also in R. Prieto-

Díaz and G. Arango, editors, Domain Analysis and Software Systems

Modeling. IEEE Computer Society Press, 1991.

188

[Bat97] D. Batory, "Intelligent Components and Software Generators",

Invited presentation to the Software Quality Institute Symposium on

Software Reliability, Austin, Texas, April 1997. Technical Report 97-

06, Department of Computer Sciences, University of Texas at Austin,

February 1997.

[Bat98] D. Batory, "Product-Line Architectures". Invited presentation,

Smalltalk un Java in Industrie und Ausbuildung, Erfurt Germany,

October 1998.

[BatOO] D. Batory, "Refinements and Separation of Concerns." 2nd Workshop

on Multi-Dimensional Separation of Concerns, International

Conference on Software Engineering, Limerick, Ireland, 2000.

[Bax92] I. Baxter, Design Maintenance Systems. In Communications of the

ACM, April 1992, pages 73-89.

[BB99] R.J.A. Buhr and D.L. Bailey, An introduction to real-time systems :

from design to multitasking with C/C++, Prentice Hall, 1999

[BBB+00] F. Bachman, L. Bass, C.Buhman, S. Comella-Dorda, F. Long, J.

Robert, R. Seacord, and K. Wallnau, "Volume II: Technical Concepts

of Component-Based Software Engineering", Technical Report

CMU/SEI-2000-TR-008, Software Engineering Institure, Carnegie

Mellon, University, May 2000.

[BC90] G. Bracha and W. Cook, "Mixin-Based Inheritance", ECOOP/

OOPSLA 90, 303-311.

[BCGS95] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, "Creating

Reference Architectures: An Example from Avionics", In [Sam95],

pages 27-37.

189

[BCK98] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, Addison-Wesley, 1998.

[BCRW99] D. Batory, G. Chen, E. Robertson, and T. Wang, "Design Wizards

and Visual Programming Environments for GenVoca Generators",

IEEE Transactions on Software Engineering, 1999.

[BCSOO] D. Batory, R. Cardone, and J. Smaragdakis, "Object-Oriented

Frameworks and Product Lines". In Software Product Lines:

Experience and Research Directions, P. Donohoe (editor), Kluwer

Academic Press, 2000, 271-288.

[BFK+99] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T.

Widen, J.M. DeBaud, "PuLSE: A Methodology to Develop Software

Product Lines", SSR '99, Los Angeles, California, USA, 1999.

[BG97] D. Batory and B. Geraci, "Composition Validation and Subjectivity in

GenVoca Generators". In IEEE Transactions on Software
Engineering (Special Issue on Software Reuse), February 1997, pages

67-82.

[Big92] T. Biggerstaff, "An Assessment and Analysis of Software Reuse",

Advances in Computers, 1992.

[Big94] T. Biggerstaff, "The Library Scaling Problem and the Limits of

Concrete Component Reuse", International Conference on Software

Reuse, November 1994.

[BK94] G. Boothroyd and W. Knight, Fundamentáis of Machining and

Machine Tools, Marcel Dekker, Inc., 1989.

[BO92] D. Batory and S. O'Malley. "The Design and Implementation of

Hierarchical Software Systems with Reusable Components". InACM

190

Transactions on Software Engineering and Methodology, 1(4): 355-

398, October 1992.

[Bos99] J. Bosch, "Evolution and Composition of Reusable Assets in Product-

Line Architectures: A Case Study", Software Architecture, Kluwer

Academic Publishers, 1999.

[BosOO] J. Bosch, Design and Use of Software Architectures : Adopting and

EvolvingA Product-Line Approach, Addison Wesley, May 2000.

[BOSW98] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler, "Making the

fiíture safe for the past: Adding Genericity to the Java Programming

Language", OOPSLA 98, Vancouver, October 1998.

[BR87] T. Biggerstaff and C. Ritcher, "Reusability framework, assessment

and directions."IEEE Software, pages 41-49, March 1987.

[Bra92] G. Bracha, The Programming Language JIGZAW: Mixins,

Modulatiry and Múltiple Inheritance, PhD Dissertation, Department

of Computer Science, The University of Utah, March 1992.

[BRJ98] G. Booch, J. Rumbaugh, and J. Jacobson. The Unified Modeling

Language User Guide. Addison Wesley, 1998.

[BSST93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. "Scalable Software

Libraries". InACMSIGSOFT, December 1993.

[BST+94] D. Batory, V. Singhal, J. Thomas, S. Dasarí, B. Geraci, and M. Sirkin.

"The GenVoca Model of Software-System Generators". In IEEE

Software, September 1994.

191

[CE99] K. Czarnecki and U.W. Eisenecker, "Components and Generative

Programming", SIGSOFT 1999, LNCS 1687, Springer-Verlang,

1999.

[CEOO] K. Czarnecki and U.W. Eisenecker, Generative Programming:

Methods, Tools, and Applications, Addison-Wesley, 2000.

[Cha02] Gary J. Chastek (editor), Software Product Lines, Proceedings of the

Second Software Product Lines Conference (SPLC2), Aug. 19-22,
San Diego,USA, Springer Verlang, 2002.

[Cox85] B. Cox, "Component-IC's", BYTE Magazine, May, 1985.

[CN98] S. Cohén and L. M. Northrop, "Object-Oriented Technology and

Domain Analysis", Proc. Fifth International Conference on Software

Reuse, June 2-5, 1998. Victoria, Canadá.

[CSPK91] S. Cohén, J. Stanley, A. S. Peterson, and R. Krut, "Application of

Feature-Oriented Domain Analysis to the Army Movement Control

Domain", Technical Report CMU/SEI-91-TR-28, Software

Engineering Institute, Carnegie-Mellon University.

[CUO02] Credit Union Online Library, www. cybercu. org.

[DFK98] J.M. DeBaud, O. Flege, and P. Knauber, "PuLSE-DSSA - A Method

for the Development of Software Reference Architecrures", SSR '98,

Orlando, Florida, USA. 1998.

[DJOO] G. Dudek and M. Jenkin, Computational Principies of Movile

Robotics, Cambridge University Press, 2000.

[DonOO] P. Donohoe (editor), Software Product Lines: Experience and

Research Directions, Proceedings of the First Software Product Lines

192

Conference (SPLC1), Aug. 28-31, Denver,USA, Kluwer Academic

Pub., 2000.

[DP98] D. D'Souza and J. Perlis "Frameworks",Addison Wesley,1998.

[DW98] D.F. D'Souza and A.C. Willis, Objects, Components, and

Frameworks with UML: The Cathalysis Approach, Addison Wsleyy,

1998.

[E1194] J.R. Ellis, Objectifying real-time systems, SIGS Books, 1994

[Edw95] S. Edwards. "Representation Inheritance: A Safe Form of White Box

Code Inheritance". Technical Repon OSU-CISRC-9/95-TR3S, Dept.

of Computer and Information Science, The Ohio State University,

Columbus, OH, Sep 1995.

[Esh98] R. Eshuis. Refinement in object-oriented analysis and design.

Master's thesis, University of Twente. August 1998.

[FJ99] M.E. Fayad and R.E. Johnson, Domain-Specific Application

Frameworks: Frameworks Experience by Industry, John Wiley and

Sons Inc., 1999.

[GFD97] M.L. Griss, J. Favaro, and M. d'Alessandro, "Featuring the Reuse-

Driven Software Engineering Business", Object Magazine,

September, 1997.

[GFD98] M.L. Griss, J. Favaro, and M. d'Alessandro, "Integrating Feature

Modeling with the RSEB", Proc. Fifth International Conference on

Software Reuse, June 2-5, 1998. Victoria, Canadá. IEEE Computer

Press pp. 354-355.

193

[GH91] G. Genebro and S. Heineman, Machine Tools: Processes and

Applications, Prentice Hall, 1991.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns -

Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[GK96] M. Griss and R. Kessler, "Building Object-Oriented Instrument Kits",

Object Magazine, April 1996.

[Gog86] J. Gogen, "Reusing and Interconnecting Software Components",

Computer, February 1986, 16-28.

[GriOOa] M.L. Griss, "Implementing Product-Line Features by Composing

Aspects", in Software Product Lines: Experience and Research

Directions, P. Donohoe (editor), Kluwer Academic Press, 2000, 271-

288.

[GriOOb] M.L. Griss, "Implementing Product-Line Features by Component

Reuse", Proc. of 6th International Conference on Software Reuse,

Springer-Verlang, Vienna, Austria, June 2000.

[GS93] D. Garlan, M. Shaw, "An Introduction to Software Architecture",

Advances in Software Engineering and Knowledge Engineering,

Volume I, World Scientific, 1993.

[GW94] M. Griss and K. Wentzel, "Hybrid Domain-Specific Kits for a

Flexible Software Factory", In Proceedings of SAC'94, Reuse and

Reengineering Track, Phoenix Arizona, March 1994.

[HO93] W. Harrison and H. Ossher. "Subject-Oriented Programming (A

Critique of Puré objects)". In OOPSLA '93 Conference Proceedings:

194

Object-Oriented Programming Systems, Languages and Applications,

Washington, DC, September 26 - October 1, 1993, pages 411-428.

[HOSM95] W. Harrison, H. Ossher, R. Smith, and H. Mili. "Subjectivity in

Oriented-Oriented Systems: Workshop Summary." In Addendum to

OOPSLA'95 Conference Proceedings: Object-Oriented Programming

Systems, Languages and Applications, Austin, Texas, October 1995..

[JB97] G. Jiménez-Pérez and D. Batory, "Memory Simulators and Software

Generators", In Proceedings of the Symposium on Software

Reusability, Boston, Mass., May 1997.

[JF88] R. Johnson and B. Foote. "Designing Reusable Classes". In Journal

of Object-Oriented Programming, June/July 1988, Volume 1,

Number 2, pages 22-35.

[JGJ97] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture

Process and Organization for Business Success, Addison-Wesley,

1997.

[JCJO93] I. Jacobson, M. Christerson, P. Jonsson, and G. Óvargaard. Object-

Oriented Software Engineering: A Use Case Driven Approach,

Addison-Wesley. (Revised 4th printing, 1993).

[Joh97] R. Johnson, "Frameworks = (Components + Patterns)",

Communications of the ACM, 40(10): 39-42, October 1997.

[JRVOO] M. Jazayeri, A., and F. Van Der Linden, Software Architecture for

Product Families: Principies and Practice, Addison Wesley, May

2000.

[KCH+90] K.C. Kang, S.G. Cohén, J.A. Hess, W.E. Novak, and A.S. Peterson,

"Feature-Oriented Domain Analysis (FODA) Feasibility Study",

195

Technical Report CMU/SEI-90-TR-21, Software Engineering

Instituto, Carnegie Mellon University, 1990.

[Kie96] R. Kieburtz, L. McKinney, J. Bell, J. Hook, A. Kotov, J. Lewis, D.

Oliva, T. Sheard, I. Smith, and L. Walton , "A Software Engineering

Experiment in Software Component Generation", International

Conference on Software Engineering, 1996.

[KicOO] G. Kiczales, "AspectJ™: Aspect Oriented Programming Using

Java™ Technology". JavaOne, June 2000.

[KKL+98] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, andM. Huh, "FORM: A

Feature-Oriented Reuse Method with Domain-Specific Reference
Architectures", Annals of Software Engineering, V5, pp. 143-168,

1998.

[KLM + 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

JLoingtier, and J. Irwin, "Aspect-Oriented Programming", ECOOP

1997, 220-242.

[KMS+00] P. Knauber, D. Muthig, K. Schmid, and T. Widen, "Applying Product

Line Concepts in Small and Medium-Sized Companies", IEEE

Software, Sep/Oct 2000, pp. 88-95.

[KS97] C.M. Krishna, K.G. Shin, Real-time systems, McGraw-Hill, 1997.

[KT01] T. Katayama and N.T. Thang, "Evolution in Collaboration-based

Methodology, Workshop on Engineering Complex Object-Oriented

Systems for Evolution", OOPSLA 2001.

[Lak96] J. Lakos,Large-Scale C++ Software Design, Addison-Wesley, 1996.

196

[Lat93] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers;

1993.

[LC96] K.D. Larson & B. Chiappetta, Fundamental Accounting Principies,

McGrawHill, 1996.

[Lew95] T. Lewis, et. al., Object-Oriented Application Frameworks, Manning,

1995.

[LKCCOO] K. Lee, K.C. Kang, W. Chae, and B.W. Choi, "Feature-Based

Approach to Object-Oriented Engineering of Applications for

Reuse", Software Practice and Experience, Vol. 30, Issue 9, pp.

1025-1046,2000.

[LKK+00] K. Lee, K.C. Kang, E. Koh, W. Chae, B. Kim, and B.W. Choi,

"Domain-Oriented Engineering of Elevator Control Software", in

Software Product Lines: Experience and Research Directions, P.

Donohoe, Kluwer Academic Press, 2000, 3-22.

[MBL97] A.C. Myers, J.A. Bank, and B. Liskov. "Parameterized Types for

Java". Proceedings of the 24th ACM Symposium on Principies of

Programming Languages, París, France, January 1997.

[MBY+00] J. Michaloski, S. Birla, C.J. Yen, R. Igou, and G. Weinert, "An Open

System Framework for Component-Based CNC Machines", ACM

Computing Surveys, Vol.32, No.les, March 2000.

[McI68] M. Mcllroy. "Mass-produced software components". In [Nau68].

[ML98] M. Mezini and K. Lieberherr, "Adaptive Plug-and-Play Components

for Evolutionary Software Developement", OOPSLA'98, 97-116.

197

[MS96] D. Musser and A. Saini, STL Tutorial and Reference Guide: C+ +

Programming with the Standard Témplate Library, Addison-Wesley,

1996.

[NM95] O. Nierstrasz and T. Meijler, "Research Directions in Software

Composiúon",ACMComputingSurveys, 27(2):262-264, June 1995.

[OH92] H. Ossher and W. Harrison, "Combination of Inheritance

Hierarchies", In Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications - OOPSLA '92.

[OKK+95] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal,

"Subject-Oriented Composition Rules", In Proceedings of the

Conference on Object-Oriented Programming Systems, Languages,

and Applications - OOPSLA'95.

OSACA Consortium - Open System Architecture for Controls within

Automation Systems, Internet: http://www.isw/uni.

[OSA]

[OSE97]

[Par72a]

[Par72b]

[Par79]

OSEC-II Project Technical Report, "Development of OSEC(Open

System Environment for Controller" OSE Consortium, March 1997.

D.L. Pamas. "A Technique for Software Module Specification with

Examples", Communications of the ACM, Vol 15, No. 5, May. 1972.

D.L. Pamas. "On the Gritería To Be Used in Decomposing Systems

into Modules", Communications of the ACM, Vol 15, No. 12., Dec.

1972.

D.L. Pamas. "Designing Software for Ease of Extensión and

Contraction". In IEEE Transactions on Software Engineering, March

1979,pages 128-138.

198

[PW92] D. Perry, A. Wolf, "Foundations for the Study of Software

Architecture", Proceedings ofACMSIGSOFT, October 1992, 40-52.

[PY98] K.M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley

Longman, 1998.

[Ram98] M. Ramirez-Cadena, "Open Low-Cost Universal Numeric

Controller", Master Thesis, ITESM, México 1998.

[RG98] D. Riehle and T. Gross, "Role Model Based Framework Design and

Integration", In Proceedings of the 1998 Conference on Object-

Oriented Programming Systems, Languages, and Applications -

OOPSLA'98.

[RJ97] D. Roberts and R. Johnson, "Evolving Frameworks: A Pattern

Language for Developing Frameworks", in D. Riehle, F. Buschmann,

and R. Martin, Eds., Pattern Languages of Program Design 3,

Addison-Wesley, 1997.

[RP01] M. Riebisch and I. Philippow, Evolution of Product Lines Using

Traceability, Workshop on Engineering Complex Object-Oriented

Systems for Evolution, OOPSLA 2001.

[SB97] Y. Smaragdakis and D. Batory, "DiSTiL: a Transformation Library

for Data Structures". USENIX Conference on Domain-Specific

Languages (DSL97)

[SB98] Y. Smaragdakis and D. Batory, "Implementing Layered Designs with

Mixin Layers", ECOOP 1998.

[SEI01] "Framework for Software Product Line Practice - Versión 3.0",

Software Engineering Institute, Carnegie Mellon University, http://

www.sei.cmu.edu/plp/framework.html

199

[SG96] M. Shaw and D. Garlan, Software Architecture: Perspectives on an

Emerging Discipline, Prentice-Hall, 1996.

[SGB01] M. Svahnberg, J. van Gurp and J. Bosch, On the Notion of Variability

in Software Product Lines, Proceedings of The Working IEEE/IFIO

Conference on Software Architecture (WICSA 2001), The

Netherlads.

[Sim95b] M. A. Simos, "Organization Domain Modeling (ODM): Formalizing

the Core Domain Modeling Life Cycle", Simposium on Software

Resusability, Seattle, Washington, USA, 1995.

[Sin96] V. Singhal, A Programming Language for Writting Domain-Specific

Software Systems, PhD dissertation, Department of Computer

Sciences, The University of Texas at Austin, August 1996.

[Sma99] Y. Smaragdakis, Phd Dissertation, Department of Computer Sciences,

The University of Texas at Austin, September 1999.

[SMBOO] R.C. Seacord, D. Mundie, and S. Boonsiri, "K-BACEE: A

Knowledge-Based Automated Component Enseñable Evaluation

Tool", Technical Note, CMU/SEI-2000-TN-015. Software

Engineering Institute, Carnegie Mellon University.

[SSSOO] K.F. Skousen, E.K. Stice, and J.D. Stice, Intermedíate Accounting,

South-Western College Publishing, 2000.

[StaOO] J.A. Stankovic, "VEST: A Toolset For Constructing and Analyzing

Component Based Operating Systems For Embedded and Real-Time

Systems", Technical Report TR CS-2000-19, University of Virginia,

July 2000.

200

[Szy98] C. Szyperski, Component Software: Beyond Object-Oriented

Programming, Addison-Wesley, 1998.

[Tek94] Architecture-Based Acquisition and Development of Software

Guidelines and Recommendations from the ARPA Domain-Specific

(DSSA) Program. Technical report, Teknowledge Federal Systems,

October 1994.

[Tho98] J. Thomas, P2: A lightweight DBMS Generator, Ph. D. Dissertation,

Department of Computer Sciences, The University of Texas at

Austin, December 1998.

[UmhOl] M. Umholtz, Six CU sucess characteristics for 2002, Credit Union

Executive Journal, Vol. 11, No. 6, pp. 26-29, Sep/Oct 2001.

[Van02] F. van der Linden, "Software Product Families in Europe: The Esaps

and Café Projects", IEEE Software, Vol. 10, No. 4, pp. 41-49, Jul/

Aug 2002.

[VAM+98] A. D. Vici, N. Argentieri, A. Mansour, M. d'Alessandro, and J.

Favaro, "FODAcom: An Experience with Domain Analysis in the

Italian Telecom Industry", Proc. Fifth International Conference on

Software Reuse, June 2-5, 1998. Victoria, Canadá.

[VN96a] M. VanHilst and D. Notkin. "Using C++ Templates to Implement

Role-Based Designs". JSSST International Symposium, ISOTAS '96:

Proceedings, Japan, Springer-Verlag,1996.

[VN96b] M. VanHilst and D. Notkin. "Using Role Components to Implement

Collaboration-Based Designs", OOPSLA 1996.

201

[Wit96] J. Withey, "Investment Analysis of Software Assets for Product

Lines". Technical Report, CMU/SEI-96-TR-010, Software

Engineering Institute, Carnegie Mellon University.

[WJB95] P. Wilson, M. Johnstone, ad D. Boles, "Dynamic Storage Allocation:

A Survey and Critical Review", In International Workshop on

Memory Management, September 1995.

[WKK93] J.J. Weygandt, D.E. Kieso, and W.G. Kell, Accounting Principies,

John Whiley & Sons, Inc., 1993.

[WL99] D. M. Weiss and C. T. R. Lai, Software Product-Line Engineering,

Addison-Wesley, 1999.

202

