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Urban traffic management is a recurrent problem in big cities nowadays, due to

different issues like the increasing number of cars that enter the city roads, making the

demand greater than the roadway’s capacity. Therefore, the need to control urban traf-

fic arises with high priority, in order to decrease side effects like high fuel consumption

resulting in high vehicle emissions.

Currently, traffic is mainly controlled by traffic lights, static signs and electronic

boards, which provide important information about traffic flow, accidents or other

related data. Besides, in some places, there have been introduced more advanced

schemes like intelligent traffic signal coordination programs; however, this approach

brings only 1% of delay reduction [25], which does not represent an efficient solution.

Additionally, there are several treatments that are aimed to gain more benefits from

the infrastructure and often lead to very high delay reductions, but some of them (the

overpass, for instance) are very expensive.

In recent years, some other high-level approaches have been proposed, making use

of Multiagent Systems (MAS) techniques, which have proven to be very efficient and

promissing regarding their evaluation results. One of such innovative mechanisms is

the “Flock Traffic Navigation based on Negotiation” method (FTN) [4]. Inspired by

nature, this method proposes a mechanism for vehicles to gather up into groups, in

order to get a speed bonus that enables them to travel faster, thus reducing congestion

levels.

The present research work explores a reactive approach to the FTN model, which

aimes to overcome specific issues detected on this mechanism, as well as to serve as

an alternative solution which will enable an interesting comparative analysis between a



deliberative solution against a reactive one. Furthermore, this might lead to the design

and development of a hybrid urban traffic management method.

The proposed solution, called Reactive Flock Traffic Navigation (rFTN, for short),

describes an emergent behavior, which is embedded in vehicles and designed to make

them navigate under the FTN paradigm. In order to achieve this, several mechanisms

have to be performed by each car, within the rFTN calculations. Each one of this

workings are explained.

This document also presents experimental data, which is aimed to both explore

and validate the performance of the proposed solution model. In this phase, the rFTN

was compared against traditional and advanced methods for the traffic management

problem.

viii



Contents

Acknowledgments vi

Abstract vii

List of Tables xi

List of Figures xiii

List of Algorithms xiv

Chapter 1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Theoretical framework 10
2.1 Traffic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Traditional Solution Methods for Traffic Congestion . . . . . . . . . . . . . . 11
2.3 Path Planning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Roadmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Probabilistic Roadmaps . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Exact Cell Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Artificial Potential Fields Theory . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Potential-Guided Path Planning . . . . . . . . . . . . . . . . . . . . . 19

2.5 Group Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Social Potential Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 Multiagent Traffic Management: A Reservation- Based Intersection

Control Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Flock Traffic Navigation Based on Negotiation . . . . . . . . . . . . . 24

ix



2.7 Simulation Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3 Solution Model 29
3.1 Overall Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Required behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Intra-group Social Force Laws . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Inter-group Social Force Laws . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Acceleration and Velocity Modulation . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4 Traffic Simulator 44
4.1 The Simulation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5 Preliminary Experimentation 47
5.1 Description of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Experimentation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 6 Final Experimentation and Results 55
6.1 Description of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Experimentation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Results Anlysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1 Comparing Traffic-Lights against Chaotic navigation . . . . . . . . . . 60
6.3.2 Comparing rFTN against Traffic-Light based navigation . . . . . . . . 61
6.3.3 Comparing rFTN against Chaotic navigation . . . . . . . . . . . . . . 63
6.3.4 Comparing rFTN against FTN . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 7 Conclusions 73
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 78

Vita 81

x



List of Tables

2.1 Average and Maximum delays for the simulation of Reservation and

Traffic Light systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 FTN total time savings . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Cohesion Index and Average Completion Time results for different kt

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Number of collisions for different kint and m values. . . . . . . . . . . . 51

5.3 Number of collisions for different kr, d and s values. . . . . . . . . . . . 52

5.4 Selected values to tune the rFTN model. . . . . . . . . . . . . . . . . . 54

6.1 Selected values to tune the rFTN’s force laws for final experimentation. 59

6.2 Selected values to tune the rFTN’s safety zones. . . . . . . . . . . . . . 59

6.3 Final Results for the Average Speed (AS) parameter, concerning the

Traffic-lights and Chaotic navigation. . . . . . . . . . . . . . . . . . . . 60

6.4 Final Results for the Average Completion Time (ACT) parameter, con-

cerning the Traffic-lights and Chaotic navigation. . . . . . . . . . . . . 61

6.5 Final Results for the Average Wait Time (AWT) parameter, concerning

the Traffic-lights and Chaotic navigation. . . . . . . . . . . . . . . . . . 61

6.6 Final Results for the Average Speed (AS) parameter, concerning the

Traffic-light-based navigation and the rFTN. . . . . . . . . . . . . . . . 62

6.7 Final Results for the Average Completion Time (ACT) parameter, con-

cerning the Traffic-light-based navigation and the rFTN. . . . . . . . . 62

6.8 Final Results for the Saved Trip-Time (STT) parameter, concerning the

Traffic-light-based navigation and the rFTN. . . . . . . . . . . . . . . . 63

6.9 Final Results for the Average Wait Time (AWT) parameter, concerning

the Traffic-light-based navigation and the rFTN. . . . . . . . . . . . . . 63

6.10 Final Results for the Average Speed (AS) parameter, concerning the

Chaotic navigation and the rFTN. . . . . . . . . . . . . . . . . . . . . . 64

6.11 Final Results for the Average Completion Time (ACT) parameter, con-

cerning the Chaotic navigation and the rFTN. . . . . . . . . . . . . . . 64

6.12 Final Results for the Saved Trip-Time (STT) parameter, concerning the

Chaotic navigation and the rFTN. . . . . . . . . . . . . . . . . . . . . . 65

xi



6.13 Final Results for the Average Wait Time (AWT) parameter, concerning

the Chaotic navigation and the rFTN. . . . . . . . . . . . . . . . . . . 65

6.14 FTN and rFTN’s saving times. . . . . . . . . . . . . . . . . . . . . . . 67

6.15 FTN and rFTN’s CPU Time. . . . . . . . . . . . . . . . . . . . . . . . 69

6.16 Summary of the rFTN final results. . . . . . . . . . . . . . . . . . . . . 70

6.17 Summary of the Traffic-light model final results. . . . . . . . . . . . . . 71

6.18 Summary of the Chaotic navigation final results. . . . . . . . . . . . . . 71

6.19 Summary of the comparison between FTN and rFTN. . . . . . . . . . . 72

xii



List of Figures

2.1 Bone Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Single-agent scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Single-agent scenario with blocks. . . . . . . . . . . . . . . . . . . . . . 31

3.3 Multiagent scenario showing a group of vehicles and their targets. . . . 31

3.4 Attachment points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Upper-view of a vehicle showing the repulsion and safety zones. . . . . 33

3.6 Redirecting traffic to alternative paths, when there are congested streets. 34

3.7 Reactive Creation of the Bone Structure. . . . . . . . . . . . . . . . . . 36

3.8 Intersection Safety Zone . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Example of colliding and non-colliding paths at intersections. . . . . . . 40

3.10 Factor kca. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Acceleration Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Velocity Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Sample Plots for different parameters of the model. . . . . . . . . . . . 46

4.2 Traffic Simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Plot for the Saving Trip-Times results. . . . . . . . . . . . . . . . . . . 68

6.2 Average Computational Time. . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



List of Algorithms

2.1 Proabilistic Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Exact Cell Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xiv



Chapter 1

Introduction

Traffic is defined as the movement of people, goods or vehicles from one location

to another. This movement takes place along a specific facility or pathway that can

be called a guideway. As people’s transportation requirements change, traffic flow is

affected and, typically, increased. Thus, one of the main challenges in traffic control is

to accommodate the traffic in a safe and efficient way. Efficiency can be thought of as

a measure of movement levels relative to the objective for a particular transportation

system and the finances required for its operation, while safety is concerned with the

management of traffic to reduce or eliminate accidents, which is an important issue, as

human lives are closely related to the different types of transportation [5].

Nowadays, people always face traffic congestions in big urban areas. Currently,

traffic is controlled through traffic-lights, static signs and, in some places, electronic

boards that inform drivers about relevant information like traffic flow, accidents or

weather-related situations. Traffic congestion describes a condition in which vehicle

speeds are reduced below normal, increasing drive times, and causing vehicle queuing.

It occurs only when the demand is greater than the roadway’s capacity [12, 29]. The US

Federal Highway Administration (FHWA) defines traffic congestion as the level at which

transportation system performance is no longer acceptable due to traffic interference.

Congestion levels have risen in cities of all sizes since 1982, indicating that even

the smaller areas are not able to keep pace with the rising demand. Furthermore,

there are several statistics that point to worsening congestion levels, as it extends to

more time of the day, more roads, affects more of the travel and creates more extra

travel time than in the past [9]. According to the US Federal Highway Administration

[1], congestion levels have risen to levels experienced by the next largest population

group every 10 years in 2001; that is, cities between 500,000 and one million people

experienced the congestion of cities between one and three million in 1992.

Congestion occurs during longer portions of the day and delay more travelers and

goods than ever before: today, the average weekday trip takes almost 40 percent longer

in the peak-period, than the same trip in the middle of the day; on the other hand, in

1982, it was only 13 percent longer. The 2007 Urban Mobility Report [25] estimates

congestion costs in about $78 billions, if current fuel prices are used, and states that
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the average annual delay for every person using motorized travel in the peak periods in

the 437 U.S. urban areas studied climbed from 14 hours in 1982 to 38 hours in 2005”.

On the other hand, it has been shown that reducing total congestion saves time

and fuel, and leads to decreased vehicle emissions [1]; thus, it can be inferred that

the benefits of solving this problem are related to financial, social and environmental

dimensions, which is why it is an important issue to deal with.

Recently, some novel agent-based methods, focused on alleviating traffic conges-

tions, have been proposed, taking advantage of emerging technologies like the Global

Positioning System (GPS). One of such methods is the “Flock Traffic Navigation Based

on Negotiation” [4], developed by Carlos Astengo Noguez and Ramón Brena Pinero, in

which they propose that vehicles could navigate automatically in groups called “flocks”,

inspired in the way birds, animals and fish organize themselves effortlessly traveling in

flocks or heards that move in a very coordinated way. This method makes use of coor-

dination mechanisms between vehicles for them to group into flocks, in order to handle

traffic navigation along intersections, in a safer way than other related methods.

In this research work it is being proposed to gather vehicles into flocks, based

on the Artificial Potential Fields (APF) principle [14], in which they will sense attrac-

tion/repulsion forces, that are going to be induced by other vehicles as will be described

later, along the paths they take during their trip, with the assumption that cars are

controlled by agents. An emergent behavior, which enables vehicles to gather up into

flocks, have been designed and developed upon this APF approach and is embedded in

each vehicle agent. This model is called Reactive Flock Traffic Navigation (rFTN, for

short).

It is important to outline that, in this flock navigation model, the greater the flock

size is, the greater the chances it has to go through an intersection without decelerating

or stopping. Hence, traffic congestion levels and waiting times at intersections are

expected to decrease.

Regarding the city in which this model is going to be implemented, the following

assumptions are taken into account [4]:

• Cars are controlled by intelligent autonomous agents.

• Every car is able to know the position of other vehicles at any given time.

• Vehicles are able to know the destination of other vehicles by sharing this infor-

mation with them.

• Vehicles know the speed limit within the city.

• Vehicles have a way to measure the distance between them.

• Vehicles have a way to compute the distance to the intersections.

2



• The city blocks are always of a squared shape.

• Time and space are discretes.

A simulation environment can be a useful tool when it comes to the analysis

of the performance of a given method, or algorithm, like the one proposed in this

research work. Besides, it enables us to explore different variations of the algorithm’s

settings, which leads us to conduct a rich experimentation to analyze their effects in

the variables that are going to be measured. In recent years, urban traffic simulators

have been developed, in order to show the way we can obtain better results regarding

different traffic variables [28, 3]. Therefore, this thesis proposes and experiments with

a traffic navigation approach that produces a reduction in vehicles’ waiting time and

overall trip time, with the aid of a simulation.

1.1 Problem Statement

Traffic congestion has been a recurrent issue throughout the history, ever since

ancient civilizations. It has been handled in a broad variety of ways, according to the

specific needs of the particular scenario in which it appears. In the first century B.C.

Julius Caesar, current emperor of Rome, banned all wheeled traffic during daylight;

later on, Emperor Hadrian limited the number of vehicles entering Rome, by the first

century A.C. [5].

The first traffic lights were implanted in London, just outside the British Houses

of Parliament, on december 10th, 1868. However, it has not been reported any other

innovation on this matter ever since, aside from the very expensive multilevel intersec-

tions, which not always can be afforded, or the installation of such traffic lights, which

is inefficient in the sense that it requires cars to stop even when there is no traffic at

all and they could go through the intersection.

In recent dates, emerging location-based technologies have taken advantage of the

Global Positioning System (GPS), and the mobile communications; this motivates the

efforts of developing futuristic traffic handling, that could be feasible using these new

technologies as a tool to support and ease their implementation.

One of the models already proposed is related to agent-based automated vehicle

coordination mechanisms [9]; however, each vehicle in this model negotiates individu-

ally with the intersection which it is about to go through, in order to make a reservation

of the time slots of the intersection during which they may pass. This leads to traffic

merging and may result in dangerous situations, as individual vehicles are being al-

ternated. Moreover, external factors like mechanical failures or blown tires might be

a cause of accidents, which is a major issue if we realize that human lives are being

exposed to a certain risk.

3



Thus, another approach on this matter is dealing with vehicles as groups, called

“flocks” [4]; this model is far safer, because it abandons the idea of merging and al-

ternating individual vehicles at intersections. In order to create the vehicle flocks,

coordination mechanisms from Multiagent systems are used; agents are considered au-

tonomous computer systems located in a given environment and capable of interacting

with other agents by way of cooperation or negotiation, among others.

However, this model presents an issue in scenarios of a high volume of traffic;

as negotiations between a great amount of cars have to be done, the processing time

for them is delayed in approximately 1 second, for an environment of 100 agents. This

might not sound that critical, but if we suppose a given vehicle travels at 100 kilometers

per hour in the scenario, this processing delay will result in agents receiving negotiation

messages 27.7 meters later, which might be too late to resume negotiations, and even

coordination activities, accurately.

My research work deals with a novel way of creating these vehicle flocks, inspired in

the Artificial Potential Fields (APF) principle, in which vehicles will sense an attraction

force induced by their destination, as well as attraction/repulsion forces induced by

other vehicles complying with some requirements specified in this navigation model; it

is important to outline that the main attraction force that any vehicle senses is the one

towards its destination, and that not every vehicle in the scenario induces an attraction

force to another one, as they have to comply with some features that will be specified

later on this document. This behavior will enable the vehicles to gather up into flocks

as they move towards their destination.

Potential function approaches to navigation enables us to express multiple con-

straints and objectives in an elegant way within navigation problems. Besides, they

can be easily extended to fit a Multi-agent scenario, in order to develop a so-called

emergent behavior [23], like the flocking traffic model proposed in the FTN. So, with

the potential function approach we can develop a simple reactive model that makes

the vehicles navigate in a very similar way as the FTN, letting aside its negotiation

mechanism, but making use of less resources and computational time to be processed.

1.2 Motivation

Urban traffic congestions is a problem that people face everyday in big cities.

According to The 2007 Urban Mobility Report [25], in 2005 traffic congestions caused

4.2 billion hours of travel delay and 2.9 billion gallons of wasted fuel, which represents

an increase of 2 million hours and also 2 million gallons from 2004, to a total cost of

more than $78 billion USD, which is a problem regarding with the fact that “urban

areas are not adding enough capacity, improving operations or managing demand well

enough to keep congestions from growing larger”.
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Furthermore, if we take into account that according to the Federal Highway Ad-

ministration [1] reducing total congestion saves time and fuel, and leads to decreased

vehicle emissions, we can realize that the urban traffic problem affects three different

areas: financial, social and environmental. Thus, efforts aiming to solve this issue can

lead to benefits on three major dimensions of a population.

Developing solution models for alleviating traffic congestions is not an easy task,

as it is a very fast growing problem and the best options on this matter are quite

expensive. For instance, overpasses represent the most optimal alternative to enable

fluid traffic at intersections, because it never requires cars to slow down or stop when

they are passing through, just like if there wasn’t an intersection at all; however, it is

only worth the cost when built in highly congested intersections.

Therefore, some other treatments were designed to take advantage of existing in-

frastructure, such as the traffic signal coordination programs that try to reduce waiting

times at intesections. These kind of techniques barely decrease the overall trip delays,

but they provide a more regular traffic flow nonetheless. Moreover, with the aid of

Artificial Intelligence and emerging technologies, some other traffic handling schemes

have arisen recently, and have prooved to outperform the current strategies.

Previous research work has been conducted on this matter, like the Stone and

Dresner’s model [9], which provides a novel way to manage traffic at intersections, or

the Flock Traffic Navigation model [4], which organizes traffic in a rational way via

negotiations and coordination mechanisms from the Multiagent Systems theory. Since

these and other models have proven to be able to decrease congestion levels, they have

opened a new research area that is broadening the solutions portfolio for this problem,

taking advantage of the emergent technologies.

Hence, the main motivation of this research work is to decrease urban traffic

variables, such as average waiting times, by developing a navigation model capable

of organizing vehicles in an efficient way, while demanding a low computational effort

to be processed. Besides, the analysis of the results drawn from this model and its

comparison against other traffic methods will make this research area richer in concepts

and techniques, which might open new research lines.

1.3 Objectives

The general objective of the present Master Thesis is to design and develop a model

capable of gathering up vehicles into flocks by making use of the Social Potential Fields

paradigm, which is based on the Artificial Potential Field (APF) technique.

Since my research work is related to the development of a new approach of flock

creation in the Flock Traffic Navigation model, the objectives include:

• To determine if it is possible to flock cars using an APF approach.
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• To find out how this approach could change (or modify) the Flock Navigation

algorithm.

• To measure performance parameters and urban traffic variables, in order to be

compared against other related methods.

• The developed model should have the following features:

– To have a simplified implementation.

– To require a low computational effort to be processed.

– To decrease overall trip-times, and other urban traffic variables which will

be later discussed.

– To maintain a safe scenario for vehicle-navigation, by avoiding collisions

between them.

Furthermore, the following issues regarding the Social Potential Fields and APF’s

have to be solved:

• To research about APF techniques, in order to determine which definition of

potential field is the most suitable for the solution model.

• To determine the way vehicles are going to be attracted by other cars, at the

beginning of their trajectory.

• To state the way vehicles are going to split up from their flocks, at the end of

their trajectory, in order to accurrately reach their desination.

• To ensure that vehicles do not collide during their trip, by determining the apro-

priate restrictions within the APF model.

• To modulate the maximum acceleration and speed of the vehicles, in order to

keep a realistic and safe environment.

• To design an APF-based intersection management mechanism.

• To design an APF-based mechanism to make vehicles mantain a flocking forma-

tion, based on the available lanes.

• To make vehicles look for alternative paths when congested streets have been

detected, based on an APF-based repulsion force.
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1.4 Hypothesis

There are several methods for path planning, but, according to Lee and Kar-

daras [18], the most practical of them are achieved by using potential field approaches,

because the path is determined locally by some forces that are defined so that the

agent moves towards an objective position; the other relative approaches need a global

analysis of the scenario and in some of them a preprocessing phase is also needed.

The hypothesis of this research is that the Social Potential Fields paradigm (SPF)

can lead to a proper vehicle flock creation in the Flock Traffic Navigation algorithm,

resulting in a less congested and hence more fluid traffic in cities. Therefeore, this

Thesis is guided by the following research questions:

• Is there an efficient way of creating vehicle flocks through SPF methods?

• What is the best flock members selection criteria?

• How can we make vehicles mantain a flock formation?

• How can the concepts of maximum acceleration and speed be accurately im-

planted in the SPF model?

• Do congestion levels, and related traffic parameters, decrease by implementing

this model?

• What is this model’s performance, compared to the negotiation-based method

proposed?

• Is this model suitable to create a hybrid model along with the FTN?

1.4.1 Justification

In previous research projects [15, 26, 6, 20] the APF method has been applied suc-

cessfully in solving a broad variety of path planning problems, making this approach

one of the most popular and effective reactive methods. The excellent results and the

low computational effort needed to compute APF-based algorithms is the underlying

feature of the research work done on this matter; besides, the APF model enables the

development of a scalable algorithm, since navigation or path planning restrictions can

be added, removed or modified easily at any time. Taking these facts into considera-

tion, the research conducted in this Master Thesis can be justified, as the underlying

technique which will be used is aligned with the Thesis objectives, hence, strengthening

the idea of the proposed hypothesis to be correct.
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1.5 Contribution

This research work provides major information about the way in which it is pos-

sible to develop a flocking emergent behavior, in order to organize urban traffic and,

thus, alleviate congestion levels and decrease vehicles’ waiting times and navigation

times. Based on the research questions, this work contributes particularly on the bet-

ter understanding of:

• The way in which an SPF model can be used to direct traffic in an efficient way,

which will enable us to organize vehicles’ navigation in an ordered manner. And,

if we take into consideration specific features, we can take advantage of this ability

to direct traffic, in order to create groups or flocks of vehicles.

• The low computational effort needed to process the rFTN model, since the SPF

approach is known to be a simplistic, though highly effective, path planning

model. Since the proposed model will be compared against other traffic ap-

proaches, this research work also provides an analysis of different traffic variables

measured on different traffic navigation models.

• The way in which a given vehicle decides which other cars to gather up with. This

is a major feature of both the FTN and the rFTN models, due to the flocking

nature of those navigation paradigms.

• The innovative way in which the rFTN uses the results of the SPF model, in

order to establish a maximum acceleration and speed for vehicles. This is done

to keep a realistic and safe urban navigation environment.

• The way in which vehicles mantain a flock formation.

• The way vehicles avoid congested streets, if any, based on the SPF paradigm.

• The way vehicles avoid collisions, to keep a safe navigation.

• The measures of traffic variables, which are computed to show that the rFTN is

able to decrease congestion levels and other related urban traffic parameters.

• The advantages that can be considered to be implanted into the FTN model, in

order to enhance its performance. This can lead to the development of a robust

hybrid algorithm, combining the strenghts of both flocking models.
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1.6 Document structure

The general organization of this Master Thesis document is presented in the fol-

lowing:

Chapter 2 presents a collection of interrelated concepts, relevant to my thesis,

involving general Path Planning concepts and methods, the Artificial Potential Field

approach, which is the foundation of the urban traffic navigation method proposed in

this research work, and simulation concepts that will be useful in the description of

the experimentation platform. The proposed solution model is presented in Chapter 3,

which provides the reader with an in-depth description of the Reactive Flock Traf-

fic Navigation model and its workings, which are aligned to this research objectives,

along with the methodology under which the experimentation was conducted. Then,

Chapter 4 introduces the experimental platform, which was developed to support the

conduction of experiments and their analysis. Later, Chapter 5 describes the prelimi-

nar experiments performed over specific features of the solution model, in order to tune

them; besides, it explains the experimental setup, test cases and the results. After-

wards, Chapter 6 presents the final experimentation over the complete solution model,

and the results obtained during this phase. Finally, Chapter 7 states the conclusions

drawn form this work and, also, it describes the suggested future work.
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Chapter 2

Theoretical framework

In this Chapter it is presented the theoretical background underlying this Mas-

ter Thesis. Topics included in this Chapter are necesary in order to understand the

whole developed model, its implications and workings. First, it is provided a brief

review of relevant Traffic Theory concepts, traditional solution methods for alleviating

traffic congestions and general path planning methods. Later, it is introduced the Ar-

tificial Potential Field approach and related concepts that will contribute to the full

comprehension of this paradigm. Then, this Chapter provides a description of Group

Behaviors, in order to undestand the concept of emergent behaviors created in multi-

agent environments with the aid of the so-called Social Potential Fields. Besides, a

brief description of research works related to this Thesis is presented. Finally, general

simulation concepts are included, along with a brief introduction to the experimental

platform which was used.

2.1 Traffic Theory

Traffic streams can be cathegorized based on their operational perfomance. Traffic

streams that operate free of traffic control policies or devices (i.e. traffic-lights, traffic

signals, etc.) are known as uninterrupted flow and it is only influenced by the char-

acteristics of the pathway and the interactions of the vehicles in the stream. On the

other hand, traffic streams which operation is influenced by signals or any other traffic

control devices are classified as interrupted flow [12].

Moreover, traffic flow theory involves the development of mathematical relation-

ships among the principal elements of the streams. These traffic streams can be char-

acterized by a number of operational perfomance measures, typically divided in macro-

scopic and microscopic measures.

Macroscopic measures. These measures describe the traffic stream as a whole. The

macroscopic measures relevant to the aim of this research work are presented

next.
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1. Traffic flow q is the number of vehicles passing some designated spatial

point during a time interval. The equation is as follows:

q =
n

t
(2.1)

Where q is the traffic flow of vehicles per unit time, n is the number of

vehicles passing at a given point and t is the duration of the time interval.

2. Density p is the number of vehicles traveling over a unit length of highway

at a given instant in time. Its equation is the following:

p =
n

l
(2.2)

Where p is the traffic density in vehicles per unit distance, n is the number

of vehicles occupying some length of the roadway at some specified time and

l is the length of the roadway.

3. Speed u is distance that a given vehicle travels during a unit of time, as

depicted in the following equation:

u =
d

t
(2.3)

Where u is the speed in distance per unit of time, d is the traveled distance

and t is the time period.

Microscopic measures. They describe characteristics regarding individual pairs of

vehicles, within traffic streams. A microscopic concept of traffic streams, which

is relevant to this research work is described below.

1. Average traffic speed: time-mean speed ut the arithmetic mean of the

vehicles speed as observed at a given point along the roadway. Its equation

is the following:

ut =

∑n
i=1 ui

n
(2.4)

Where ut is the mean spead in unit distance per unit time, ui is the speed

of the i-th vehicle at a designated point and n is the number of measured

vehicles spot speeds.

2.2 Traditional Solution Methods for Traffic Con-

gestion

The US Federal Highway Administration (FHWA) [1] defines traffic congestion

as the level at which transportation system performance is no longer acceptable due
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to traffic interference. Congestions are determined by geographic features, weather,

collisions, vehicles breakdowns and traffic flow policies (i.e. traffic lights, traffic signs,

etc); in a congested system the following four components interact [19]:

• Duration: amount of time that the congestion affects the travel system.

• Extent: number of people or vehicles affected by congestion, and geographic

distribution of congestion.

• Intensity: severity of congestion.

• Reliability: variation of the other three elements.

The search for a solution regarding this issue is not easy, since “this problem has

grown too rapidly and is too complex for only one technology or service to be the solu-

tion”, according to the 2005 Urban Mobility Report, in which it is also stated that major

improvements in this matter can take 10 to 15 years and that any smaller efforts may

not meet all the needs. So, they recommend a balanced approach: “begin to plan and

design major capacity increasing projects, plans or policy changes while immediately

relieving critical bottlenecks or chokepoints, and aggressively pursuing operations im-

provements and demand management options that are available”. Important elements

of this approach are listed below [25]:

• More capacity: In order to serve new developments, new streets and urban

freeways will be needed.

• Greater efficiency: The more efficiently roads and public transportation are

operated, the more productivity we will get from the existing system at a relatively

low cost. This can be the result of educating travelers about their options or

providing a more diverse set of travel and development options.

• Manage the demand: Modifying the way travelers use the transportation net-

work, in order to accommodate more demand: public transportation, carpools,

and traveling in off-peak hours.

• Development patterns: This is concerned with techniques which aim to change

the way that commercial, office and residential developments occur, in a way that

they can sustain the urban quality of life and gaining an increment of economic

development without the typical increment of mobility decline.

• Realistic expectations: Large urban areas will be congested, and so will be

locations near key activity centers even in smaller areas.
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Additionally, the 2005 Urban Mobility Report includes the effect of four treatments

designed to gain more benefits from the existing infrastructure, in order to alleviate

traffic congestion. Those techniques are: freeway entrance ramp metering, freeway

incident management programs, arterial street access management programs and traffic

signal coordination programs. All of them provide a more regular traffic flow, and are

described below [25]:

Freeway entrance ramp metering. Entrance ramp meters regulate the flow of traf-

fic on freeway entrance ramps by the use of traffic signals. This means thah they

are designed to create more space between entering vehicles so those vehicles do

not collide or disrupt the mainlane traffic flow: signals allow one vehicle to enter

the freeway at some interval, which can be set to two to five seconds, for instance.

Effect: 5% of delay reduction.

Freeway incident management programs. Set of operations that aim to remove

crashed and disabled vehicles from the lanes and, hence, reduce secondary crashes.

They work in conjunction with surveillance cameras, cell phone incident call-in

programs and other elements to remove these disruptions, decrease delay and

fuel consumption and improve the reliability of the system. Effect: 7% of delay

reduction.

Arterial street access management programs. Efforts which are directed to re-

duce the potential collision and conflict points, typically by turn restrictions,

acceleration and deceleration lanes, among others. Such programs are a combina-

tion of design standards, public sector regulations and private sector development

actions. Effect: 3.5% of delay reduction.

Traffic signal coordination programs. Traffic signaling is coordinated in a way

that reduces the waiting times of travelers and trip delays. Traffic signal tim-

ing can be a significant source of delay on the major street system. Much of this

delay is the result of managing the flow of intersecting traffic, but some of the

delay can be reduced if the traffic arrives at the intersection when the signal is

green instead of red. Effect: 1% of delay reduction.

As we can see, all the previous solutions actually contribute in congestion reduc-

tion, but in a very small percentage, being the smallest one the Traffic signal coordina-

tion programs; however, the largest amount of delay reduction, provided by the Freeway

incident management programs, is still not that much greater (only 7%). This is a great

motivation for the research and development of new traffic handling approaches, such

as the novel algorithms described in Section 2.6.
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2.3 Path Planning Methods

Path Planning is a major undertaking in robotics; it is the ability of a robot, or

agent, to plan its own motions, in order to perform a trajectory from one initial point

to a goal point, through a specific environment in which obstacles might exist. Some

examples of path planning applications in real life are [11]:

1. Planetary Exploration: Autonomous robots, such as the Mars rover and the

Sojourner, are used to explore other planets.

2. Personal Transport Vehicles: They provide pedestrians with a means of trans-

portation in places where the pollution and noise of automobiles is undesirable.

One example is the CyCab 355.

3. Museum Tour Guides: A robot named RHINO served as a fully autonomous

tour-guide at the Deutsches Museum Bonn. It was capable to lead visitors frome

one exhibit to the next by computing a paath using a stored map of the museum.

There exists several methods for solving a path planning problem, and their appli-

cation depends on the task that the agent is to perform. The remainder of this section

provides a brief description of some frequently used path-planning methods, namely:

Roadmaps, Cell Descomposition and Probabilistic Roadmaps.

It should be remarked that only the basic version of these methods is taken into

account in this document, in order to provide a general description of them. All of

these methods, in their simplest approach, need a preprocessing phase, which makes

them unfit for real-time path planning applications, such as the problem this research

work is trying to solve.

Nevertheless, high-level versions of these methods have been developed, as the

one conducted in [27], describing a new approach on Probabilistic Road Maps which

uses “the two input query configurations as seeds to explore as little space as possible”;

this, among other important features, results in a drastic reduction of planning times,

making this model a far better undertaking capable of handling real-time problems.

However, it should be made clear that this research work is aimed to the design of

an emergent behavior for groups of reactive agents; within the design of such behavior,

it is used a path-planning paradigm based on artificial potential fields (described later

on this Chapter), in order to provide agents with motion capabilities, but it is not

focused in serving as a path-planner in a broad sense.

2.3.1 Roadmaps

The roadmap paradigm in path planning consists of capturing the connectivity of

the agent’s environment in a network of one-dimensional curves, called the roadmap.
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Once a roadmap has been computed, it is used as a set of standardized paths. Then,

path planning within this approach consists on connecting the initial and goal positions

to points in the roadmap, and searching for a path between those points [16].

Several methods based on this general idea of path planning have been proposed;

some of them are listed in the following:

1. Visibility Graph: the standard visibility graph is defined in a two-dimensional

polygonal configuration space. The nodes vi of the visibility graph include the

start location, goal location and all the vertices of the obstacles in the workspace.

The graph edges eij are straight-line segments that connect two line-of-sight nodes

vi and vj.

2. Voronoi Diagram: the generalized Voronoi Diagram (GVD) is the set of points

where the distance to the two closest obstacles is the same. Path planning is

achieved by moving away from the start point until reaching the GVD, then

along the double equidistant GVD to the vicinity of the goal and, finally, from

the GVD to the goal. The advantage of this diagram is that it yields free paths

which tend to maximize the clearance between the mobile object and the obstacles

in the scenario.

2.3.2 Probabilistic Roadmaps

The Probabilistic Roadmap (PRM) approach divides planning into two phases:

the learning phase, during which a roadmap in the workspace is built; and the query

phase, during which user-defined query positions are connected with the precomputed

roadmap. This roadmap is composed of a set of nodes located within the environment,

which form a graph; the nodes of that graph are free positions in the workspace, while

the edges correspond to free paths computed by a local planner. In order to find a

path between a given start point and a goal point, the path planning process is reduced

to connecting those points to nodes in the roadmap graph, and searching for a path

between those points. This process is formally stated in Algorithm 2.1.

2.3.3 Exact Cell Decomposition

These structures represent the scneario by the union of simple regions called cells.

The shared boundaries of cells often have a physical meaning such as a change i nthe

closes obstacle or a change in line of sight to surrounding obstacles; two cells are

adjacent if they share a common boundary. An adjacency graph, as its name suggests,

encodes the adjacency relationships of the cells, where a node corresponds to a specific

cell and an edge connects nodes of adjacent cells [11]. The process of computing exact

cell decomposition is provided by Algorithm 2.2.
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Algorithm 2.1 Proabilistic Roadmap

Step 1. Throw N independent random points in the free space of the scenario and
connect any two of them that can be connected by a free straight line. The result is
a roadmap G, which might have more than one connected components.
Step 2. Specify a and b, the start and the goal points, respectively.
Step 3. Connect a to one of the closest roadmap nodes in G. Once a connection
is obtained, b is tried for connection to the same component of G to which point a
is connected.
Step 4. If A and B are the nodes with which a and b are connected, respectively,
a search on G can construct a path between A and B.
Step 5. If a or b could not be connected to two nodes of G, report failure.

Algorithm 2.2 Exact Cell Decomposition

Step 1. Partition the scenario into disjoint cells.
Step 2. Obtain a non-directed adjacency graph G: two nodes in G are connected
if and only if the corresponding cells are adjacent.
Step 3. Specify a and b, the start and the goal points, respectively.
Step 4. Determine A and B, the cells that contain the start and goal, respectively.
Step 5. Search for a path from node A to node B within G.

2.4 Artificial Potential Fields Theory

The Artificial Potential Fields (APF) technique was first introduced by Khatib in

[14], with the objective of achieving real-time obstacle avoidance for manipulators and

mobile robots. A manipulator is a stationary robot, capable of affecting its environment

by making use of its end-effector, which acts as the hand of a robotic arm, for instance.

The whole philosophy of the APF method describes that the manipulator moves within

a field of forces and that “the position to be reached is an attractive pole for the end-

effector, and obstacles are repulsive surfaces for the manipulator parts”.

The APF theory states that for any goal-directed robot in a scenario that con-

tains stationary or dynamically moving obstacles, an APF map can be formulated and

computed, taking into account an attractive force located at the robot’s goal position

and repulsive forces induced by the obstacles in the environment. This potential field

can be expressed as follows:

Uart(x) = Ugoal(x) + Uobs(x) (2.5)

Where Uart(x), Ugoal(X), and Uobs(X) represent the resulting APF, the attractive

potential from the goal, and the repulsive potential from the obstacles, respectively.

Furthermore, x denotes a set of independent parameters, called operational coordi-

nates, that describe the position and orientation of the robot. A possible expression of
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attractive potential would be:

Ugoal(x) = −1

2
kp(x− xgoal)

2 (2.6)

Where kp is a positive gain.

An example of repulsive potential is given as follows:

Uobs(x) =

{
1
2
η( 1

D(x)
− 1

l0
)2 if D(x) ≤ l0

0 if D(x) > l0
(2.7)

Where η is a constant and l0 is a distance threshold, beyond which no repulsive

force will be received by the robot. D(x) is the distance to the closest obstacle.

Generally speaking, Uobs is chosen such that Uart is a non-negative continuous

and differentiable function that tends to infinity when x approaches the surface of an

obstacle and tends to zero when x approaches the goal position, xgoal. Given equation

(2.5), the force resulting from the APF at x, can therefore be derived:

−→
F art = −5 [Uart(x)] (2.8)

The above expression tells us that applying artificial potential field Uart(x) to a

robot can be realized by using
−→
F art as a command vector to control the robot in its

operation space. In doing so, the joint forces corresponding to
−→
F art must be obtained

using the Jacobian matrix. Under such a control, the robot will be able to avoid

obstacles as the repulsive force in the potential field pushes it away into the valleys of

the field. At the same time, it can move toward a goal location as the attractive force

in the potential field pulls it in the direction of a global zero-potential pole.

According to equation (2.8), equation (2.6) gives us:

5Ugoal(x) = kp(x− xgoal) (2.9)

Which is a vector based at x, points away from xgoal, and has a magnitude propor-

tional to the distance from x to xgoal. So, the farther away x is from xgoal, the bigger

the magnitude of the vector. In other words, when the robot is far away from the

goal, the robot quickly approaches it, and when the robot is close to the goal, it slowly

approaches it. This feature is useful for mobile robots because it reduces “overshoot”

of the goal.

In the same way, equation (2.8) leads equation (2.7) to:

5Uobs(x) =

{
η( 1

l0
− 1

D2(x)
)5D(x) if D(x) ≤ l0

0 if D(x) > l0
(2.10)
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Where l0 allows the robot to ignore obstacles sufficiently far away from it and the η

can be viewed as a gain on the repulsive gradient. These scalars are usually determined

by trial and error.

It is important to remark that the definition of the APF that one might use for a

given scenario is not necessarily attached to the shape of the potential function given

in equation (2.6), as we can define our own APF, having the shape which best fits the

path-planning behavior we want the mobile objects to have.

2.4.1 Gradient Descent

As we saw in the previous section, an APT function defines a gradient of forces

through which the agent is attracted by is destination and pushecd away from obstacles.

In order for the agent to reach its destination, it must follow a gradient-descent path

towards the position of its goal; so, we present in this section the Gradient Descent

algorithm which is a very well-known approach to optimization problems. The rest of

the information presented on this section is based on [11].

The idea is simple: starting at the initial position, take a small step in the direction

opposite the gradient. This gives a new position, and the process is repeated until the

gradient is zero. More formally, we can define a gradient descent algorithm like:

Algorithm 2.3 Gradient Descent

Input: A means to compute the gradient 5U(p(i)) at a point p
Output: A sequence of points {p(0), p(1), ..., p(i)}

1: p(0) = pstart

2: i = 0
3: while 5U(p(i)) 6= 0 do
4: p(i+ 1) = p(i) + α(i)5 U(p(i))
5: i = i+ 1
6: end while

In algorithm 2.3, the notation p(i) is used to denote the value of a position p at the

ith iteration and the final path consists of the sequence of iterates {p(0), p(1), ..., p(i)}.
The value of the scalar α(i) determines the step size at the i iteration. It is important

that α(i) be small enough that the robot is not allowed to “jump into” obstacles, while

being large enough that the algorithm does not require excessive computation time. In

motion planning problems, the choice for α(i) is often made on an ad hoc or empirical

basis, perhaps based on the distance to the nearest obstacle or to the goal. Finally, it is

unlikely that we will ever exactly satisfy the condition 5U(p(i)) = 0. For this reason,

this condition is often replaced with the more forgiving condition ‖ 5U(p(i)) < ε ‖, in

which ε is chosen to be sufficiently small, based on the task requirements.
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This Gradient Descent algorithm will make the mobile agent navigate towards a

direction in which the potential field attraction force is maximally increased, and, since

the source of this attraction force is represented by the desination of the mobile agent,

it will reach that position at the end of the path.

2.4.2 Potential-Guided Path Planning

The APF technique enables us to develop path planners for both single and multi-

agent scenarios; by taking advantage of its attraction/repulsion paradigm, we can en-

sure that a given mobile agent reaches its destination, without colliding against any

obstacles in its path. In this section we present a path planning approach based on

APFs, which can be consulted further in [16].

There are some simple potential-guided path planning techniques. In principle,

these techniques do not assume any specific potential function. Hence, they are ap-

plicable with the potential function defined in the previous sections, and with other

potential functions as well.

In its original conception, the potential field approach to motion generation con-

sists of regarding the agent or robot in the scenario as a unit mass particle moving

under the influence of the force field
−→
F = −

−→
5 U .

This way of using the potential function is applicable for generating paths on-line.

It is well-suited when the obstacles are not know in advance, but sensed during motion

execution. If a prior model of the obstacles is available, the same method can be used

to plan a path by simulating the motion of the particle. However, in this case, there

exist simpler and more efficient path planning techniques using potential field.

One of these techniques generates a path in a “depth-first” fashion, without back-

tracking. Like on-line generation, it may be very fast in favorable cases, but it may

also get stuck at local minima of the potential function. Another technique operates

in a “best-first” mode. It deals with local minima by “filling” them up. The third

technique consists of optimizing a functional constructed by integrating the potential

along a complete path between the initial and the goal configurations.

2.5 Group Behaviors

The simulation of emergent group behaviors, such as flocking, has been widely

used in creating realistic animations for groups of virtual agents such as birds, or boids,

as they were named by Craig W. Reynolds in [23]. These animations are done by

designing and implementing simple motion rules on each element of the group, which

are later translated into a so-called emergent behavior of the whole group of agents.

This is an early application of artificial formation behavior, which proposes a
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simple egocentric behavioral model for flocking which is embedded in each member of

the group; the contribution of Reynolds’ research work is the generation of successful

overall group behavior, by means of every individual agent sensing and reacting to

their local environment and close neighbors. In spite of the fact that this idea was first

conceived for computer animation, it has been extended and used to control flocks of

robots, which usually show homogeneous behavior.

Reynolds’s research work showed that flocking is a dramatic example of emergent

behavior, in which global behavior arises from the interaction of simple local rules,

which tell the agent it should move with its neighbors. In order of decreasing prece-

dence, such rules are:

1. Collision Avoidance: avoid collisions with nearby flockmates.

2. Velocity Matching: attempt to match velocity with nearby flockmates.

3. Flock Centering: attempt to stay close to nearby flockmates.

Collision avoidance and velocity matching are complementary. They ensure that

the members of the flock are free to fly to the interior of the group without running into

one another. Collision avoidance directs the boid away from an imminent impact, while

velocity matching ensures that the separations between boids remain approximately the

same at every moment, with respect to ongoing geometric flight. This is, with these

rules a flock of birds can fly establishing a minimum required separation between them,

and being able to maintain it.

Furthermore, flock centering makes a boid want to be near the center of the flock.

Because each boid has a localized perception of the world, “center of the flock” actually

means the center of the nearby flockmates. Flock centering causes the boid to fly in

a direction that moves it closer to the centroid of the nearby boids. If a boid is deep

inside a flock, the population density in its neighborhood is roughly homogeneous; the

boid density is approximately the same in all directions. In this case, the centroid of

the neighborhood boids is approximately at the center of the neighborhood, so the flock

centering urge is small. But if a boid is on the boundary of the flock, its neighboring

boids are on one side. The centroid of the neighborhood boids is displaced from the

center of the neighborhood toward the body of the flock. Here the flock centering urge

is stronger and the flight path will be deflected somewhat toward the local flock center.

These simplistic rules have proved efficient in building realistic simulations of

flocks, which behavior is very similar to that present in real flocks of birds.

2.5.1 Social Potential Fields

Potential Fields methods have been shown to be powerful in solving difficult path

planning problems; within a multi-agent scenario, it is frequently needed that the agents
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develop some sorth of coordination and communication mechanisms, which are usually

achieved by exchanging messages between them, through a communication protocol.

However, when this scenario deals with hundreds or thousands of agents, to exchange

messages and to process all of them is very time-demanding and results in communi-

cation delays and coordination inaccuracies.

So, the Social Potential Fields approach [22, 2] aims to determine control laws

within a distributed-control framework. In this approach, each agent in the scenario

senses the resultant potential field from all other components (i.e. agents, obstacles, or

objectives), or at least the neighboring components, and acts under the resultant force.

Once these force laws are defined, force calculations can be carried out by individual

agents in a distributed manner and, thus, the control is completely distributed.

Using these force laws, the resulting system displays “social” behaviors such as

clustering, guarding, escorting, patrolling and so on; this is where the term social

potential fields comes from. Furthermore, interaction of forces between groups of robots

can be achieved by extending this approach and thus processing a resultant potential

field from all other groups of agents.

This resultant potential field is called a global control force, because it coordinates

the agents and determines the distribution and direction of them within a system.

Besides, in this model are also taken into account the local control forces, which are

those enabling the agents to avoid collision with obstacles or to approach a given object

or goal position. Finally, when the combined force is computed by a given agent, there

are several ways that its motion can be controlled by that force; for example, it can gain

an acceleration proportional to that force, or it can move in the direction of it, either

for a length proportional to the magnitude or for a fixed length, as in Algorithm 2.3

for Gradient Descent.

Additionally, in order to design these potential force laws to achieve given behav-

iors, it has been proposed the following hierarchical methodology:

1. Required Behavior: specify the various groups of agents and their interactions.

2. Desing the Potential Laws: applying this hierarchical methodology for de-

signing potential force laws, taking into account:

(a) Intra-group social force laws among individuals of each given agent

group.

(b) Inter-group social force laws between individuals of distinct groups.

2.6 Related Work

Recently, new location-based technologies have taken advantage of the Global

Positioning System (GPS) and mobile or wireless communications; this has motivated
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new research efforts with the underlying objective of developing novel ways of handling

traffic, that can be implemented in real scenarios with the support of these emerging

technologies, as well as Artificial Intelligence techiniques.

For instance, Kurt Dresner and Peter Stone [9], at the University of Texas at

Austin, made use of wireless communications, in order to develop an intersection control

mechanism based in a reservation protocol; in this model, a given vehicle negotiates

individually with an intersection, for it to make a reservation of the time slots that it

will need to pass through.

In a similar way, the use of the GPS and cellular communications technologies

allowed Carlos Astengo and Ramón Brena [4] to envision and develop the Flock Traffic

Navigation Based on Negotiation model, in which vehicles navigate in groups called

“flocks”, for which the use of coordination mechanisms between them is necessary.

Both models apply Multiagent Systems (MAS) theory as their underlying develop-

ment schema. MAS are systems composed of multiple intelligent agents, characterized

by being autonomous within the environment they are in, and able to interact with

other agents via negotiation, coordination, cooperation, etc. The two of them are going

to be described further on this section.

2.6.1 Multiagent Traffic Management: A Reservation- Based

Intersection Control Mechanism

The information of this section is based on the research work of Kurt Dresner and

Peter Stone [9], which is aimed to increase the efficiency related to moving cars through

an intersection with minimal infrastructure, noting that vehicles are driven by a central

computer.

In this model, it is assumed that intersections have a wireless communication

system, through which they can send messages to the vehicles and receive messages from

them as well; for this communication to happen, the authors of this model developed a

specific protocol, which tells the cars whether or not they are allowed to pass through it,

just the way it happens nowadays with red and green lights. However, agents preserve

their autonomy, since they are allowed to drive the way they decide.

The intersections are divided into a n× n grid of reservation slots, where n is the

granularity of the reservation system. As it is expected, each one of the slots can be

reserved only by one car at any time step. Cars travel at the speed limit, and reserve

these slots by sending messages containing several parameters, such as: the time they

will arrive to the intersection, their velocity, the direction they will face when reaching

the intersection, among others.

This research work models a single intersection, and using the parameters de-

scribed above, it simulates the trip of the vehicle across it, taking into account which

slots will be occupied by it at each time step, considering a few time steps before and
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Reservation Light
Lanes Gran. Avg Max Avg Max

1 1 0.016 0.912 5.847 15.526
2 2 0.017 0.925 5.488 15.536
3 3 0.023 1.435 5.482 15.506
4 4 0.019 1.590 5.351 15.536
5 5 0.031 1.902 5.439 15.506
6 6 0.025 1.926 5.378 15.517

Table 2.1: Average and Maximum delays for the simulation of Reservation and Traffic
Light systems

after for sefety reasons. When any of these slots is reserved, the system rejects the

vehicle’s reservation request and so, it has to decelerate and try again in the next time

step. On the other hand, if the vehicle realizes that it can’t attend the reservation, it

gets it cancelled and the process begins again.

In order to test the model, a simulator was developed, presenting an area with

dimension 400m× 400m, in which lanes are 3.5 m wide and each car dimension is 2 m

wide by 4 m long. This simulator runs having the following two main parameters:

• Number of lanes in each of the four directions of the intersection.

• The probability or likelihood to generate a new vehicle in each of the directions

at every time step.

Within this simulator, the reservation-based model performance was compared

against both the overpass and the traffic light intersection control policies. At this

point, it is important to mention that, in the reservation-based model, the ability to

turn is not required, and so the overpass is an optimal solution, since cars never have

to decelarate at the intersection; the only delays in the overpass are produced by cars

traveling in the same direction, but, since in this model vehicles travel at the speed

limit, they are never required to slow down due to this matter and results in a delay of

0. Thus, the overpass is taken as the lower bound for the simulation perfomance.

In order to compare the reservation-based model against the traffic light policy,

both approaches were tested in different scenarios, varying the number of lanes up

through a 6 × 6 intersection, as well as the granularities of the reservation system;

results from those experiments are presented in Table 2.1, which presents the Average

and Maximum delays for a simulation of 1,000,000 steps for both models, having a

traffic light system with period of 20 seconds and a car-generating probability of 0.001.

We can see that the reservation model clearly outperformed the traffic light system in

all cases.

Furthermore, Dresner and Stone have proposed four main improvements for this

initial approach in [8]. Such improvements are listed in the following:
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1. It augments the proposed intersection control mechanism to allow for more flexible

vehicle control, including turning from any lane and accelerating while in the

intersection.

2. It introduces a detailed protocol by which vehicles and intersection managers can

communicate and coordinate their actions.

3. It describes a driver agent that makes good use of this protocol.

4. It demonstrates how this augmented system, by using the proposed protocol, can

still outperform traffic control mechanisms such as traffic light and stop signs.

The objective of these enhancements is to transform the initial reservation-based

model into a more realistic and implementable system.

2.6.2 Flock Traffic Navigation Based on Negotiation

All information presented on this topic is based on the research work of Astengo

and Brena [4], called “Flock Traffic Navigation Based on Negotiation” (FTN, for short),

which proposes a new way of handling traffic through groups of vehicles called flocks,

inspired by the way birds, animals and fish coordinate themeselves to gather up and

travel with less effort within flocks, herds or schools.

The reservation-based model explained previously results in traffic merging at in-

tersections; in high density traffic, this represents a dangerous scenario, since individual

cars are being alternated at intersections and external factors such as mechanical fail-

ures might lead to accidents, even if the model performs as accurate as possible. On

the other hand, FTN is a traffic handling model in which intersections deal, not with

individual vehicles, but with groups of them, making the process far safer than the

reservation-based model. The advantage of traveling together is that, the greater the

group is, the greater the chances it has to pass through an intersection; besides, they

get a “social bonus” which allows the group to increase their speed.

In order to enable the creation of flocks, a coordination mechanism is performed

between navigating vehicles. At the very beginning, flocks have just two members and

then additional ones join them; any “two partner candidates search for a meeting point

to travel together until they reach a certain point from which they no longer bennefit

from doing it”, and so they split to continue traveling on their own. Figure 2.1 presents

the so-called “bone structure”, which depicts the appearance of this kind of trip.

In order for the vehicles to evaluate the convenience of traveling together, they

compute the time it will take to get to its destination if they travel individually, consid-

ering their own initial and ending points. Afterwards, they search for partners within
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Figure 2.1: Bone Structure.

a specific region, and all agents in it respond by sharing their information; this infor-

mation is used to build a bone structure for each pair of vehicles, from which they can

compute the new trip time, considering the social bonus.

Then, each agent compares its individual time against the time for traveling with

a given partner; in the case that the individual time is less than the joint time, there

is not going to be any relation between those agents. Otherwise, the complete travel

time is going to be computed, consisting on the individual time to get to the meeting

point, the joint travel time considering the bonus, and the individual time to get to the

destinatioin, after the splitting point.

When several candidates are found, the vehicle now has to find out which one

provides the minimum travel time. If two given vehicles Ai and Aj represent the

best option for one another, then we found a Nash equilibrium strategy (there is no

better option for neither of the two vehicles) and they must travel together; if only

Ai represents the best option for Aj, and the converse is not true, Ai is placed in a

“Pareto set” and waits for Aj to find a partner with Nash equilibrium, in which case

Ai will have to recalculate its travel time considering the bone structure of those two

vehicles. Finally, if it finds the new bone structure of those vehicles not better than the

individual time, it searches for the second best partner; if it doesn’t find any partners

it must travel alone without the social bonus.

The overall experimental results of this model are presented in Table 2.2; each

experiment was replicated one hundred times, and vehicles were generated uniformly

in a 5 × 5 block area, and targets in a 20 × 20 city sector. We can see that the

computational time to process this model with 100 agents (i.e. vehicles) is nearly one

second, and increases with a greater amount of them. If we suppose vehicles travel at

100 kilometers per hour, the previous processing delay will result in agents receiving

negotiation messages aproximately 27.7 meters later, if the amount of traffic is equal to

100 agents, and much more if this amount is greater. This might be too late to resume

negotiations and coordination activities in an accurrate way.
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Number of Saved Time Variance of Computational Variance of Maximum Minimum
Agents (ST) ST Time (CT) the CT ST ST

2 3.17 34.7688 0.0149 0.0004 20 0
5 12.29 44.1423 0.0146 0.0003 30 0
10 24.175 78.3251 0.0222 0.0004 51 6
25 42.15 141.1389 0.0769 0.0003 80 19
50 64.705 252.1217 0.2489 0.0005 119 37
75 85.41 319.613 0.5258 0.0006 138 48.5
100 100.915 398.374 0.9116 0.0005 144.5 44.5
250 204.13 1320.3 5.4622 0.00001 308.5 130.5
500 366.575 2172.4 21.7039 0.00001 468.5 264

Table 2.2: FTN total time savings

2.7 Simulation Concepts

Simulation is defined as “the discipline of designing a model of an actual or theo-

retical physical system, executing the model on a digital computer, and analyzing the

execution output” [17].

As for traffic simulations, there are two types of models [7]: continuous space mod-

els and discrete time approximations based on differential equations (macrosimulation)

or discrete space and time representations based on decentralized autonomous systems

(microsimulation).

Traffic macrosimulation involves the simulation of general aspects of the system,

like average car velocities, car density, car flow, etcetera. In order to accomplish this,

mathematical models that describe each one of those variables are used ([10] and [21]).

The disadvantage of macrosimulation is that it assumes that cars are similar (i.e. ho-

mogeneous), ignoring fine details like modeling of individual features of them.

Microsimulation, as mentioned in [10] and [21], models every element in a sepa-

rated way, allowing individual elements to interact with others. For instance, elements

in urban traffic simulation could be vehicles themselves. Every car has a number of spe-

cific parameters like length, width or maximum allowed velocity. In this way, the urban

traffic can be seen as a collective behaviour generated by cars. Agent-based simulation

is a type of microsimulation, because an agent can be seen as the so-called “element”

mentioned in [10] and [21] or the decentralized autonomous system mentioned in [7].

Agent-based simulation is defined as a simulation made up of agents, objects,

or entities that behave autonomously. These agents are aware of (and interact with)

their local environment through simple internal rules for decision-making, movement

and, action. Agent-based simulation has been proposed for many situations involving

a large number of heterogeneous individuals, such as vehicles and pedestrians in traffic,

people in crowds, artificial characters in computer games, agents in financial markets,

and human and machines on battlefields. The aggregate behaviour of the simulated

system is the result of the dense interaction of the relatively simple behaviours of the

individual simulated agents [24].

Now, in order to develop a multi-agent simulation like the one that this research
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works needs as an experimental framework, we can use one of the several multi-agent

platforms that are available. The reason is that a multi-agent platform has already

implemented many of the core functionalities needed by agents, instead of building

the entire system from scratch. Furtermoe, most multi-agent plaforms can be easily

integrated with other libraries, thus speeding up the implementation phase.

For this reaserch work, we have selected NetLogo, which is a cross-platform

multi-agent programmable modeling environment for simulating both natural and social

phenomena. It was authored by Uri Wilensky in 1999 and is in continuous development

at the Center for Connected Learning and Computer-Based Modeling. It is particularly

well suited for modeling complex systems developing over time, making possible to

explore the connection between the micro-level behavior of individuals and the macro-

level patterns that emerge from the interaction of many of them.

A list of its most important features is provided in the following [30]:

• System: NetLogo is cross-platform, as it runs in Windows, Mac or Linux. Runs

are exactly reproducible cross-platform.

• Language: It is fully programable and provides a simple language structure,

which is a Logo dialect extended to support agents; it offers a large vocabulary

of built-in language primitives.

• Environment: The created model can be viewed in either 2D and 3D. It pro-

vides a command center for on-the-fly interaction, as well as an interface builder

with buttons, sliders, switches, choosers, etcetera. Furthermore, NetLogo offers

a powerful and flexible plotting system to analyze the desired data, and agent

monitors for inspecting and controlling agents. Besides, the BehaviorSpace tool

can be used to collect data from multiple runs of a model and the developer is

able to export and import functions (export data, save and restore state of model,

make a movie, etcetera).

• Web: Models can be saved as applets to be embedded in web pages.

2.8 Summary

This Chapter presents the main theoretical concepts, which are closely related to

this research work. The first section describes some Traffic Theory information, along

with specific parameters that are of interest for the proposed solution model; then,

the most common traditional solutions for traffic congestions are presented. Later,

related path planning approaches were introduces, along with the actual technique

that was used. It was important to complete this theoretical explanation with the

description of the group behaviors concept, derived from the SPF approach, which
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this research work uses as the underlying design method. Besides, the description of

related work was also important to present previous efforts undertaken in this area.

Finally, relvant simulation concepts are provided, along with a general description of

the selected simulation platform.

Next Chapter provides an in-depth description of the Traffic Simulator, which was

developed to sever as an experimental platform for this research work.
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Chapter 3

Solution Model

The scenario being modeled in this research work deals with the traffic problem

within large cities, and the congestions that often follows as a result. So, this can be

described as a multiagent scenario, in which vehicles are considered intelligent agents

that will act as stated by the group behavior that has been designed, for them to

organize themselves as flocks of vehicles that travel to close destinations, taking the

FTN as the underlying paradigm of urgan navigation.

The design of this group behavior is based on attracting and repulsion points

that a given agent will sense along his path to its destination, and that eventually will

affect such a path. The most important of these attracting points is the destination of

a given vehicle; this is, during his trip, no matter what other attracting or repulsion

points can be present at a given time in the path of a vehicle, the destination remains

as the strongest attraction that the vehicle senses, and so it will try to reach it at every

time. This prevents vehicles from traveling from one site to another just following their

flockmates; rather, it lets vehicles gather up into groups while navigating towards their

destination.

The other attracting points that a given agent senses are other vehicles that are

heading towards a place near its destination. This will make agents move into flocks or

groups of vehicles, which is consistent with the general objective of my thesis work, and

eventually will help them get to its destination with the lowest trip delay, as they do

not stop at the intersections, if the size of the flock they are travelling in is sufficiently

large, as it will be described further in this document.

Furthermore, each vehicle induces a repulsion force to other vehicles when they

get closer to them than a certain distance; the objective here is to prevent vehicle

collisions within the proposed navigation model. Besides, this repulsion forces will be

useful when redirecting traffic around congested streets, in which case, vehicles within

a given congested street will induce a repulsion to other approaching vehicles, thus,

congestion-worsening is prevented.

Acceleration and velocity modulation is taken into account, enabling vehicles to

speed-up to meet their flockmates or to slow-down to avoid collisions, based upon the

attraction/repulsion paradigm of the rFTN. To achieve this, the rFTN proposes a novel
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approach which is more convenient than other APF-based models.

3.1 Overall Description

The rFTN is a traffic management approach, in which vehicles will be attracted or

repulsed by other elements in their environment, as it will be explained further, with the

objective of gathering vehicles into flocks and, hence, exploiting the advantages of the

FTN model, such as decreasing waiting times and preventing congestions. However, the

rFTN is meant to take less computational time to be processed, than the FTN, given

its reactive nature. In this section, it is provided an overall description of the rFTN

model, while discussion of its technical details is delayed for the following sections.

First, let us analyze a single-agent scenario of this model. Figure 3.1, presents

a diagram of such a scenario, in which one given agent is heading towards his desti-

nation, labeled T1, by way of an attractive force which is called by the literature an

Artificial Potential Field (APF, for short), as I described previously in section 2.4 of

this document. Waves in that figure represent the equipotential contours of the APF,

along which the attraction force is the same.

Figure 3.1: Single-agent scenario. Waves represent equipotential contours of the Po-
tential Field.

This model is very straightforward, but if we introduce to the scenario the streets

and blocks, it becomes more challenging. In Figure 3.2, we can see that, as for the

rFTN, the potential-field-based path planning process will have to take into account

that the city blocks act like restrictions of the environment (i.e. vehicles cannot go

through them). So, every time a vehicle reaches an intersection, it will compute the

resulting attraction force and then it will update its heading towards the neighbor

intersection located in the direction stated by resulting force vector. That is, a given

vehicle computes the attaction/repulsion forces at any time, which determine if the
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vehicle should speed-up or slow-down, but it will change its heading only when arriving

to an intersection; this will prevent vehicles from taking U-turns at the middle of the

streets, which is not a proper way of driving. Furthermore, for this entire research work

the city is composed of two-way streets, of only one lane per way.

Figure 3.2: Single-agent scenario with blocks.

Now, let us analyze a multiagent scenario of this model, like the one which is

depicted in Figure 3.3. Every agent in the rFTN will be attracted by other vehicles, only

if they are heading towards a destination which is vectorially near to the destination

of the given agent. According to the FTN terminology, vehicles that comply with the

previous description will be called flockmates within the rFTN.

Figure 3.3: Multiagent scenario showing a group of vehicles and their targets.

The direction that vehicles will follow in the presence of flockmates is going to

be determined by the resulting sum of the attraction forces induced both by their

individual destination and the rest of the group. If no proper flockmates are detected,

they will follow their path towards their destination by their own, which means that it is

not convenient to gather up with other vehicles, as flocking will not bring an advantage
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(i.e. there is no reason to choose a vehicle heading North as a flockmate, when I am

heading South); rather, it will only make vehicles move away from their destinations.

Once vehicles are gathered up, we have to make them maintain their flocking

formation along the streets; the design of this formation in the rFTN meets the following

two requirements:

1. To make vehicles stay with their group, hence, serving as an adherence rule to

the flock.

2. To make vehicles navigate on the street lanes in an ordered way, avoiding inapro-

priate formations: a vehicle located at the middle of two lanes would be chaotic,

for instance.

Without this flocking formation paradigm, the rFTN’s attraction/repulsion nature

could make the gathering of flockmates result in a bunch of vehicles crowding the streets

without any order. On the other hand, the so-called Bone Structure proposed in the

FTN model (see Figure 2.1) is robustly maintained.

The way the rFTN approaches this matter is by way of establishing specific virtual

attachment points, to which flockmates will sense an attraction that will make them

stay near that position. This attachment points are located at the front and at the

rear of vehicles when they are navigating within a one-lane street, and an additional

pair of them can be added at both sides of vehicles for this formation paradigm to be

extended to two or more lanes. The distance a from the vehicle to this points can be

conveniently set, so that vehicles do not get too close to each other. These one-lane

and multiple-lane attachment points are depicted in Figure 3.4(a) and Figure 3.4(b),

respectively. This paradigm is similar to that proposed in [2].

(a) Attachment points for one lane. (b) Attachment points for multiple lanes.

Figure 3.4: Attachment points.

Furthermore, in order to avoid collisions, the rFTN model establishes a repulsion

zone that surrounds each vehicle. The repulsion capability of this zone starts at the

32



boundaries of the vehicle and ends at a given distance d; within this repulsion zone,

it is defined a safety zone, which acts from the boundaries of the vehicle to a certain

distance s, as depicted in Figure 3.5. Beyond d no repulsion is induced, while vehicles

entering this zone will sense an increasing repulsion until they get to the safety zone,

within which its magnitude will be ∞. A given vehicle computes this repulsion force

taking into account only other vehicles driving on lanes with the same way, and do not

take into consideration those navigating the other way.

Figure 3.5: Upper-view of a vehicle. The dashed contour delimits the repulsion zone of
vehicles, while the solid contour delimits the safety zone.

Now, another important feature of this model is that it measures the density of

vehicles within each of the streets, so that the path planning mechanism of the vehicles

can be aware of that and be redirected to an alternative (and less congested) street, as

we can see in Figure 3.6. This is, the congested streets will produce a repulsion force to

the given agent or agents that are planning a path to their destinations. This issue is

not taken into account within the FTN model, and it is important to deal with, since,

otherwise, the mechanism of flocking vehicles could itself lead to congested streets or

worsening already-congested streets.

Finally, rFTN intruduces an efficient management approach at intersections. The

objective here is to let larger flocks go through the intersections with almost no need

to stop, just as if there was an overpass located at the intersection; the motivation of

doing this is that it will decrease the trip delays.

3.2 Model Design

Having the description presented in section 3.1 as a background, now this section

provides the technical details by which the rFTN features are achieved. The hierarchical

methodology stated in [22] is followed, in order to provide a detailed and systematic
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Figure 3.6: Redirecting traffic to alternative paths, when there are congested streets.

description of the potential force laws within the rFTN model. For more information

about this methodology please refer to section 2.5.1.

First, it is stated in a formal way the required behavior of this model, which

has been commented several times throughout this document. Then, introduce both

the intra-group and the inter-group social force laws are introduced, upon which the

navigation mechanisms are based.

Intra-group forces within the rFTN are those which let vehicles perform the fol-

lowing features:

1. Flockmates selection.

2. Reactive creation of the Bone Structure.

3. Navigate towards destination.

4. Flocking formation.

5. Collision avoidance.

As for the inter-group forces, the rFTN features that they enable are:

1. Intersection management.

2. Congestion avoidance.

3.2.1 Required behavior

Agents in the scenario will follow a path towards their individual destination,

which will be directed by a potential force located in that position; besides, vehicles

will gather up into flocks with other agents heading towards a place vectorially near
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their individual destination, by way of another potential force induced by such vehicles;

their navigation within a flock will comply with specific formation restrictions, as well

as collision avoidance.

Furthermore, flocks will be able to detect congestions and to avoid them by sensing

a repulsion force. Finally, flocks will have to reactively coordinate their pass through

intersections, taking into account the size of each flock, in order to compute a repulsion

force.

3.2.2 Intra-group Social Force Laws

This section presents an in-depth description regarding the rFTN features that

are computed among flockmates, called intra-group social force laws.

First, vehicles will perform flockmates selection by computing an attraction

force induced by those vehicles within a defined vision range, which is actually like a

radar of neighbor cars; all vehicles inside this vision range are then flockmate candidates

which are tested to know the magnitude of attraction that they are going to induce.

Candidates that do not induce any attraction are not members of the flock, while

candiates with a high attraction magnitude are the best flockmates and, consequently,

are the ones to which the potential force will direct vehicles computing this test. The

previous process is a reactive analogy of the negotiation mechanism performed in the

pure FTN to create flocks of vehicles. This attraction force is given the following

potential field:

Uflockmates(x) =
∑

i

1

2
kp(x− xi)

2 (3.1)

If we compute the proper derivatives, equation (3.1) results in the following force

law:

Fflockmates(x) = −
∑

i

kp(x− xi) (3.2)

Where kp is a positive position gain, x is the current vehicle’s position and xi is

the position of flockmate i. The summation is over the force induced by all flockmates

located within the vision range. The scalar kp is determined by the following test :

assume agent a is computing the force induced by its flockmate candidate b and let xa

be the position of agent a, tb be the position of the destination of agent b and let ta be

the position of the target of agent a; then kp is determined by the cosinus of the angle

between the vectors tb − xa and ta − xa, as it is shown in Figure 3.7(a).

It should be remarked that the cosinus function varies from −1 to 1, but this test

only takes into account agents whose destinations are 0 to 90 degrees away,

and so we can see that the position gain assigned to each candidate’s force varies from
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0 to 1, if the given candidate is heading 90 or 0 degrees away from my destination

heading, respectively. Notice that the latter case represents an agent heading the

same direction, and so it has to be assigned a grater gain (i.e. it represents the best

flockmate), in which case the attraction force will direct the agents towards each other

until they reach a reactively created Meeting Point. On the other hand, the former case

represents an agent which is heading to a place far away from my destination, and so,

it is not capable of affecting my path. Vehicles heading more than 90 degrees away are

not considered elegible as flockmates, since their desination is located completely

in the opposite direction, and so they will not be taken into account for this process.

Besides, it should be noticed that the kp factor makes the force induced by flock-

mates fade away in a convenient way, as it will get weakened as the vehicles approaches

their destination, since the angle between those vectors is increased, which is graphically

shown in Figure 3.7.

(a) Testing candidates. This results in the
Meeting Point.

(b) Splitting Point.

Figure 3.7: Reactive Creation of the Bone Structure.

On the other hand, vehicles should be able to navigate towards their desti-

nation, either with their flockmates (if any), or on their own, when no flockmates were

found. This, obviously, is a very important feature within the rFTN or other related

navigation models. The potential equation that enables this feature is defined as:

Udestination = kt
1

rt

(3.3)

Once again, the scalar kt represents the strength of the field and rt is the euclidean

distance between the agent and its destination or target. Let x denote the position of

the agent and let xt denote the position of its target t. The distance rt is then given

by rt = |xt − x| (the norm of the vector xt − x).

Since Udestination is defined in terms of rt, and rt is defined in terms of the vector

x, we can use the chain rule in order to compute the resulting force, as follows:

Fdestination = −dUdestination

dx
= −dUdestination

drt

· drt

dx
(3.4)
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We insert the appropriate derivates to obtain:

Fdestination = −kt
1

r2
t

· rt

rt

(3.5)

Where rt is the vector rt = xt − x, between the positions x (of the agent) and xt

(of the target).

As we can see, equation (3.3) describes a pontential which gets stronger as the

vehicle approaches its destination (i.e. the Euclidean distance is reduced). When the

vehicle is far away from its target the force induced by it is weak and the vehicle is

more likely to deviate its path towards a greater gradient like the one induced by other

vehicles, stated in equation (3.1). Later, when the vehicle gets closer to its destination,

the potential induced by equation (3.3) gets stronger and, since the attraction force

induced by equation (3.1) fades away, the vehicle updates its heading towards the

destination, which represents the strongest attraction force at that point.

In this way, the potential forces that are sensed by a given vehicle are “deformed”,

thus enabling to reactively build the so-called “Bone Structure” within the FTN model,

depicted in Figure 2.1, without the need of exchanging messages between agents, and

thus, describing a model lighter to process.

Now, the rFTN proposes that vehicles within a group should maintain a specific

formation, so that they can keep an ordered navigation on the streets. Hence, it is

introduced the attachment points paradigm, which are specific attraction sites conve-

niently located around the vehicles (see Figure 3.4), for flockmates to get attached to

them. Additionally, this flocking formation paradigm contributes to the adherence

of flockmates to their group, thus, maintaining the Bone Structure all the way from

the Meeting Point to the Splitting Point.

The attraction force that these attachment points induce is given by the potential

field definition given in equation (3.6), which derives in the force law stated in equation

(3.7).

Uap(x) =
1

2
kap(x− xap)2 (3.6)

Fap(x) = −kap(x− xap) (3.7)

Where kap is a fixed positive position gain, x is the vehicle’s position and xi is the

position of the nearest attachment point of all flockmates.

To keep a realistic and safe navigation model, collision avoidance is taken

into account by inducing a repulsion force within a repulsion zone and also a safety

zone, that surround each vehicle as explained in the previous section and depicted in

Figure 3.5. If the Euclidean distance between two given vehicles is r, the repulsion

potential that enables this features is given by:
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Ur(x) =


0 if r > d

−1
2
kr(x− xv)2 if s < r ≤ d

∞ if r ≤ s

(3.8)

Where x is the current position of the vehicle computing this feature, xv is the

position of the approaching vehicle and d and s are the distance limits of the repulsion

and safety zones, respectively. Equation (3.8) derives in the following force law:

Fr(x) =


0 if r > d

kr(x− xv) if s < r ≤ d

∞ if r ≤ s

(3.9)

It can be seen that the repulsion force increases linearly from the boundaries of

the respulsion zone all the way to the boundaries of the safety zone, inside which the

force is ∞.

Now, in order to avoid problems regarding purely reactive navigational models,

such as local minima or cyclic behavior, the rFTN makes use of a noise force law as

stated in [2]. This is a unitary force, as stated in equation (3.11), derived from the

potential equation (3.10):

Un(x) = −knx (3.10)

Fn(x) = kn (3.11)

The direction of this force vector is given randomly betwen 0 and 2π and is com-

puted every specific amount of time. For the rFTN it is calculated only at intersections,

when vehicles are allowed to change its heading.

3.2.3 Inter-group Social Force Laws

The inter-group force laws are those which are computed between different group

of vehicles. These forces enable flocks to coordinate themselves during their navigation.

One of such forces is computed when flocks arrive at intersections, for vehicles to

coordinate their pass through them in a safe and efficient way. When the flock enters an

intersection safety zone, which surrounds the intersection at a distance m, as illustrated

in Figure 3.8. Distance m should be conveniently set to allow vehicles to decelerate or

even stop if necessary.

The repulsion potential established for this intersection management objec-

tive has the objective of making vehicles decelerate to avoid collisions and to let larger
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Figure 3.8: Intersection Safety Zone, delimited by the dashed contour.

flocks pass through the intersections first, as the repulsion force they induce is greater.

This potential is defined by equation (3.12).

Uintersection(x) = −
∑

i

1

2
kint(x− xi)

2 (3.12)

Once again, by computing the proper derivatives, equation (3.12) results in the

following force law:

Fintersection(x) =
∑

i

kint(x− xi) (3.13)

Where kint is a positive gain, x is the vehicle’s position and xi is the position of

vehicle i of the other flock. Thus, the summation is over the force induced by all of the

vehicles which belong to another flock approaching the same intersection.

When flocks enter the intersection safety zone they already know the direction

they are going to take as their new heading when they pass the intersection, and

so this repulsion force will only act when those new headings lead to collisions. For

instance, suppose that one flock is approaching an intersection from North to South

and it is going to keep heading South beyond the intersection, while a second flock is

approaching the same intersection from South to North and its heading beyond the

intersection is still North; since their paths do not collide, this repulsion force will not

be activated. On the other hand, if the second flock’s new heading was West, their

paths would collide and so this respulsion force at the intersection would be activated.

This example is depicted if Figure 3.9.

On the other hand, if there are already congested streets, the flocking nature of

both the rFTN and the FTN could contribute to worsening congestion levels, and so

it is important to detect and avoid them. Within the rFTN model this is achieved

by computing a repulsion force parameterized by p, the traffic density factor stated in

equation (2.2), which will be rewritten here for convenience:
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Figure 3.9: Example of colliding and non-colliding paths at intersections. The dashed
arrow shows a colliding path which will activate the repulsion force.

p =
n

l

Where p is the traffic density in vehicles per unit distance, n is the number of

vehicles occupying some length of the roadway at some specified time and l is the

length of the roadway.

The potential equation by which this congestion avoidance feature is achieved

is defined as:

Uca(x) =

{
0 if p = 0

−1
2
kca(x− xa)2 if p > 0

(3.14)

Once again, x is the current position of the vehicle, xa is the position of the

nearest vehicle within the congested street and p is the traffic density factor. It should

be noticed that when p = 0, there is no traffic at all, and so no repulsion will be induced;

otherwise, factor kca in the repulsion potential is given by:

kca =

(
ut

mspeed

− 1

)2

Where ut is the average traffic speed, see equation (2.4), of vehicles within the

street which is being analyzed, and mspeed is the maximum allowed speed in the city.

When ut = 0 it means that all vehicles are stopped and so term kca would result in the

maximum value, which is 1, while, on the other hand, if the average speed is equal to

the maximum speed, kca would be 0 and no repulsion will be induced. This behavior

can be depicted in Figure 3.10.

Equation (3.14) derives in the following force law:
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Figure 3.10: Factor kca.

Fca(x) =

{
0 if p = 0

kca(x− xa) if p > 0
(3.15)

Vehicles compute this force law at intersections when they are able to change their

headings; every street that may be reached through a given intersection is analyzed as

explained previously.

3.3 Acceleration and Velocity Modulation

Now, once we compute the resulting force at a given moment of time, by adding

up all of the force laws explained before, we can use the resulting force vector either as

the acceleration of the vehicle or as the direction that it must follow, according to the

APF theory. In this research work, it is preferred to use it as the acceleration, in order

to meet the following two objectives:

1. Flockmates have to be able to reach each other. This can be achieved by modu-

lating the acceleration and, consequently, the velocity of vehicles, in order to let

them speed up or slow down to meet flockmates located ahead or behind them,

respectively.

2. To keep a realistic scenario, in which vehicles may travel at different speeds.

However, since the sum of the force laws may result in a very large value, the

force vector can not be taken directly as the acceleration or it might lead to dangerous

and even unrealistic scenarios. Thus, the rFTN takes into account an acceleration

modulating process, that can be described as follows. According to [13], let F be the
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resultant force vector at time t, v represents the velocity of the vehicle at some time t,

m denotes its mass, and ∆v the velocity change from time t to t+ ∆t, described by:

∆v =

(
F− v

m

)
∆t (3.16)

For simplicity, we will consider objects of unitary mass; that is, m = 1. Then,

the rFTN makes ∆v comply with −amax ≤ ∆v ≤ amax by using its magnitude to

parameterize the following equation:

a = amax tanh(|∆v|) (3.17)

Figure 3.11, shows the plot for equation (3.17). We can see that if parameter ∆v

is too large or too small at time t, the acceleration is bounded to amax and −amax,

respectively, and so it remains in a realistic value range, making the navigation safe for

vehicles. This modulation is computed at every time step of the simulation.

Figure 3.11: Acceleration Modulation.

Finally, the velocity is computed in the following way:

v = v + a (3.18)

Still we have to make sure that this velocity complies at any given moment of time

with −vmax ≤ v ≤ vmax, and, in order to achieve this velocity modulation the rFTN

makes use of the following function:

v =
vmax

1 + e−v/2
(3.19)

For the rFTN navigational model, the minimum velocity will be set to 0 and

the maximum velocity vmax will be determined by the city traffic restrictions. Overall

behavior of equation (3.19) can be analyzed in the plot provided by Figure 3.12.
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Figure 3.12: Velocity Modulation.

These processes are different from those perfomed in [13], in which the authors

only get the acceleration and velocity parameters “clipped” to comply with the maxi-

mum/minimum restrictions of their model. It is claimed that the processes explained

in this section are innovative and a more convenient way to deal with this problem.

3.4 Summary

This Chapter presented an in-depth description about the solution model. First,

it is provided an overall description of the set of features designed for this navigation

method, which represent its underlying workings. Later, technical details about the

solution model are given, in order to describe the actual calculations perform within

the algorithm. The next Chapter introduces a simulation tool developed to serve as an

experimental platform for this research work.
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Chapter 4

Traffic Simulator

This Chapter introduces a Traffic Simulator tool, that was developed to support

the experimental analysis within this research work.

4.1 The Simulation Tool

As stated in Section 2.7, the NetLogo plaftform is a multi-agent programable

modeling environment which is useful to simulate both natural and social phenomena.

Complex systems can be modeled as well, in which both the individual behavior of

agents and the emergent behavior which results from the interaction of several individ-

uals can be analyzed and explored.

Because of these features, NetLogo is the platform that was selected to design and

develop the experimental framework which enabled us to gather up the required data to

measure different performance-parameters of the rFTN, and to compare them against

other navigational methods that were also implemented, namely: Traffic-Light-based

navigation, and Chaotic navigation; please refer to section 6.1 for a detailed description

of these approaches.

This experimental framework consists in a Traffic Simulator, in which the user can

set the values of different parameters of both the navigational model and the simulation

itself. A list of those parameters and their description is provided in the following:

1. Size of the Grid: this parameter sets the amount of blocks and streets that will

be displayed in the simulation. Values range from a 1× 1, to a 9× 9 city-blocks

grid.

2. Number of Cars: the user can specify the number of cars that will be displayed

during the simulation; cars and their destinations are generated in a random

position on the streets.

3. Speed Limit: this parameter is used to determine the maximum allowed speed

within the city; vehicles will not exceed this speed limit restriction under any

circumstances, for the scenario to keep a realistic and safe behavior. The speed
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of vehicles is modulated as explained in section 3.3, for vehicles to comply with

this restriction.

4. Maximum Acceleration: to establish the amax and −amax factors, which will

be used as explained in the previous section.

5. Position Gains: for each Force Law previously described, there is a parameter

that can be adjusted by the user to set the value for the position gain that each

of them requires. Values range from 0.1 to 2.0.

6. Vision Range: this parameter establishes the radius of the “radar” which lets

vehicles compute the rFTN calculations with the vehicles within this range. It

can be set to cover the whole scenario, in which case the calculations will take

into account every other vehicle in the city.

7. Navigational Model: it lets the user select the navigational model for the

simulation. Options are: rFTN, Traffic-Light-based, and Chaotic; the latter two

models will be described further later on this document.

Besides, user can observe and analyze the parameters during the simulation with

the aid of the provided plots, which present on-line information about the average

speed of cars, average wait time of cars, the average computational time to compute

the rFTN’s calculations and an additional factor called dispersion. Figure 4.1 presents

sample plots for the previously mentioned parameters. All of these parameters will be

described in the subsequent chapters.

Finally, the user can observe the navigation of vehicles within the simulation itself,

presented in an area which shows the city blocks in gray color, and the streets in white.

Vehicles can go everywhere in the city block, since all of the streets in the simulation are

two-way streets. Figure 4.2(a) and Figure 4.2(b) present a 2D and 3D representation

of the Traffic Simulator, respectively.

4.2 Summary

This Chapter provided a description of the a Traffic Simulator, that was developed

using the NetLogo platform. This simulation tool served as an experimental platform,

which enabled the conduction of experiments and the measurement of different param-

eters within them. Next Chapter presents and explains the preliminar experimentation

conducted as part of this research; the drawn results are explained.
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(a) Sample Plot for the Average
Speed of cars.

(b) Sample Plot for the Average Wait
Time of cars.

(c) Sample Plot for the
Computational Time.

(d) Sample Plot for the Dispersion
Factor.

Figure 4.1: Sample Plots for different parameters of the model.

(a) Traffic Simulator in 2D. (b) Traffic Simulator in 3D.

Figure 4.2: Traffic Simulator.
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Chapter 5

Preliminary Experimentation

The objective of the preliminar experimentation presented in this chapter is to

find an appropriate configuration to tune critical parameters of the proposed solution

model, such as the intersection safety zone and the variables included in the forces that

make the flocking feature possible. This experimentation is done in order to obtain

exploratory data about the rFTN’s performance with different configurations of those

parameters and to select those which provide the designed behavior.

A general description of the experiments is given in section 5.1, while the actual

experimentation setup is presented in section 5.2, which provides with the traffic-related

parameters that are going to be measured as key outputs, that will be analyzed to

select the configuration of the parameters that leads to the desired performance of the

solution model. The results drawn from this experiments are presented and discussed

in section 5.3. Finally, conclusions of this preliminar experimentation are given in

section 5.4.

5.1 Description of the Experiments

These preliminar experiments are intended to determine the most appropiate con-

figuration for the rFTN’s parameters that enable critical features of the model. Dif-

ferent values are going to be tested, in order to select those which provide the desired

performance of the solution model, based on its design and expected behavior.

The rFTN’s features that are the most important to be tuned are listed below:

• The reactive creation of the bone structure, since this feature enables vehi-

cles to gather up with others, in order to create flocks, which is clearly a major

objective within this research work. Recall that the flocking process within the

rFTN involves two other features or processes, namely: the flockmates selection

and the the attraction force that makes vehicles navigate towards their destina-

tion; this way, the only parameter that is going to be tuned within this exper-

iments is the kt factor, related to the magnitude of the attraction induced by
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the destination, since the kp variable, that describes the magnitude of attraction

related to the flockmates, is always computed as explained in section 3.2.2.

• The intersection management feature, since it is of major importance to de-

termine the configuration of its parameters that will enable vehicles to go through

intersections with the lowest possible delay, while providing a safe environment

for them by preventing collisions. One of the parameters that are going to be

tuned for this feature is the intersection safety zone, in order to make sure that its

length m is long enough to let vehicles decelerate on time before they get to the

intersection and, hence, to avoid collisions. Besides, it is important to determine

the appropriate value for the kint parameter, which is related to the repulsion

that the intersection induces, making sure that this force is strong enough to

make cars decelerate as much as needed.

• The collision avoidance feature, that also enables a safe scenario by preventing

collisions between vehicles traveling on lanes of the same way. The length d of the

repulsion zone and the kr factor are going to be tuned to ensure that no collisions

are going to happen; as for the length s of the safety zone, it will always be set

to be the half of the repulsion zone’s length.

It should be noticed that not all of the rFTN’s features will be enabled, only those

of interest for this preliminar experimentation, leaving the test of the complete set of

features for the final experimentation to be presented later on this document.

The simulation itself was run for a fixed amount of 5, 000 time steps, for each of the

experiments presented next in this chapter. Vehicles and their targets were generated

uniformly within a 9×9 block area, with a probability of 0.1 in each time step. The

speed limit was set to 1.0 units of length per time step and the maximum acceleration

value was 0.4 cells per simulation steps squared. The so-called vision range of vehicles

was set to make them compute the flockmate-selection test with every other car in the

world.

5.2 Experimentation Setup

This section describes a list of different measurements that are of interest for this

preliminar phase of experimentation; such measurements will provide with important

information about the performance of the model under different configurations of its

parameters, in order to select the specific values that leads the model to aquire the

desired performance.

The measured parameters and their descriptions are presented in the following:
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1. Cohesion Index (CI).-

Since flocking is about gathering elements or objects into groups, the average

distance among them decreases, and so the cohesion of those elements within the

scenario raises, and viceversa.

Thus, we can measure the closeness of elements as in equation (5.1).

X =
1

d2 + ε
(5.1)

Where d is the distance between two given elements, and ε is a factor that is set

to be sufficiently small to avoid divisions by zero without affecting the original

equation. The value that has been chosen for this factor is ε = 0.001.

Furthermore, we can use this variable to compute a cohesion index as in equa-

tion (5.2).

D =
σ2

µ
, (5.2)

σ2(x) =
1

n

n∑
i=1

(Xi − µ)2

Where σ2 is the variance, n is the number of elements being measured, and µ is

the mean of them.

This parameter was designed to serve as evidence of the fact that vehicles were

actually gathering into flocks; however, it does not provide further information

about the created flocks themselves, like the number of groups that were created,

the size of the flocks, etcetera.

2. Average Completion Time (ACT).-

This parameter tells us the average of the amount of time it took vehicles to reach

their destinations. The overall trip time of each vehicle is computed and, at the

end of the simulation, all of them are averaged.

Since the experiments are carried out via a simluation, the completion time units

will be expressed in terms of simulation steps and so, this parameter will actually

tell the amount of steps that it took for all vehicles in the simulation to get to

their destinations.

3. Number of Collisions (NC).-

As its name already suggests, this parameter will count the number of collisions

between vehicles that happened within the simulation time. This will help to
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analyze the ability of the proposed solution model to keep a safe navigation

environment for urban traffic.

The rFTN’s features that are going to be tuned (described above) were progres-

sively added up throughout this experimentation phase. That is, in the first experi-

ments only the flocking feature was enabled, in order to isolate it and, hence, be able

to analyze it without external “noise”. Once the convenient values for flocking were

selected, they were used to run once again the experiments, but this time enabling the

intersection management feature as well. A final set of experiments were conducted at

the end, enabling the collision avoidance feature and using the selected values for the

parameters of both of the previously tuned features.

5.3 Preliminary Results

This section presents the results drawn from this experimentation phase. Refer to

the previous section for a description of the way these experiments were conducted, or

the way in which the results presented here were computed.

Flocking is the first rFTN feature to be tuned by experimentation. Having

this mechanism working appropriately is essential to establish the traffic-management

paradigm upon which this research work was conducted; besides, this feature will serve

as a navigation principle, over which the rest of the features can be added up.

Table 5.1 shows the results drawn from the experiments that were conducted to

tune the kt factor related to the attraction induced by the destination. We can see that

different values were tested, all of them complying with being greater than 1, which is

the greatest value that can be achieved by the kp factor regarding the attraction force

induced by flockmates (see section 3.2.2). It should be noticed that, if kt was set to be

less than 1, the attraction by flockmates would be stronger and vehicles will tend to

follow its group more than their destinations, which would probably prevent cars from

reaching them at all; that is why all tested values comply with that restriction.

kt Cohesion Average Completion CI/ACT
Index (CI) Time (ACT) factor

1.1 233.8173 50.4581 4.63
1.2 187.1972 45.0823 4.15
1.3 159.4297 30.7619 5.18
1.5 72.1395 28.9782 2.48
1.7 45.1836 27.0638 1.67

Table 5.1: Cohesion Index and Average Completion Time results for different kt values.

Furthermore, two key outputs were measured: the Cohesion Index (CI) and the

Average Completion Time (ACT). From the analysis of both parameters we can select
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the most convenient value to tune the feature in question, as we need the model to

present a reasonably high CI (to prove that vehicles are actually gathering up), but

making sure that this flocking mechanism do not deviate vehicles’ paths too much, in

which case it will take too long for them to get to their destinations, thus presenting

too large ACT values.

Taking this into consideration, we are looking for a kt value that provides the

gratest CI/ACT factor, which is a measure of the proportion between the provided

CI and the computed ACT. Hence, Table 5.1 shows that kt = 1.3 complies with this

desired condition; moreover, we can see that it presents an ACT very similar to the

lowest drawn value (which is 27.0638) and also a high CI. Thus, it will be used to tune

this force law. Other alternatives such as kt = 1.2 or kt = 1.5 introduce very large

ACT and CI values, respectively, making them less convenient for the desired behavior

of the solution model, which is shown in the “CI/ACT factor” column.

Now that we have tuned the flocking mechanism, vehicles have a navigation ap-

proach that can be enhanced by introducing additional features. As mentioned before,

it is of major importance to keep a safe and realistic scenario within this solution model;

thus, it is imperative to conduct experiments directed to determining the proper con-

figuration of the intersection management process taken into account within the rFTN,

with the objective of completely preventing collisions.

It should be recalled that the designed intersection management requires two pa-

rameters, namely: m, the length of the so-called intersection safety zone and kint, the

magnitude of the repulsion induced by the intersection. Refer to section 3.2.3 for more

details about this process.

Another set of experiments were run to achieve this objective, by making use of

the already tuned flocking process. Several values for both parameters m and kint were

tested, as shown in Table 5.2. Each cell of the table represents a different configura-

tion of both parameters, and were used to perform different experiments; collisions at

intersections were counted for each of them and the final sum is provided.

m
kint 1 2 3
1.1 896 72 17
1.3 775 46 8
1.5 732 34 0
1.7 719 17 0
1.9 703 9 0

Table 5.2: Number of collisions for different kint and m values.

We can see that the greatest amount of collisions happened when the length m of

the intersection safety zone is too small (m = 1). Besides, the results show that, for
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this case, even if the magnitude kint of repulsion is increased, the number of collisions

is still too large.

On the other hand, when m = 2 the number of collisions decreased drastically if

compared to those counted when m = 1, but even a single collision is not affordable

in this research work. Furthermore, in column m = 3 we can see that for kint = 1.5

to kint = 1.9 no collisions happened and all those parameters are convenient in terms

of making the navigation safety for vehicles; however, it will be selected the value

kint = 1.5, as it is enough to ensure collision avoidance, and greater values could only

introduce unnecessary trip-time delays.

So far, we have tuned the flocking and the intersection management processes, in

a progressive way. Nevertheless, in order for the solution model to completely prevent

accidents during the entire trip of vehicles (and not only at intersections), we have to

once again determine the appropriate values to make the collision avoidance feature

work in the safest possible manner.

This feature requires three parameters to be set: d, the length of the repulsion

zone, s the length of the safety zone and factor kr which determines the magnitude of

the induced repulsion.

In a very similar way as with the intersection management configuration, several

values for parameters d and kr were tested, in order to know the most convenient

combination. Recall that, as for factor s, it will always be set to be half the length of

d.

In each of the conducted experiments, the number of collisions were counted.

Table 5.3 presents the total amount of collisions that happened for each test scenario.

It is shown that when d = 0.75 and s = 0.375, vehicles are most likely to collide between

them, as the repulsion zone is too small and they are not able to slow down in time,

no matter the magnitude of the induced repulsion.

kr d = 0.75, d = 1, d = 1.5,
s = 0.375 s = 0.5 s = 0.75

1.5 581 56 12
1.7 574 32 5
1.9 563 24 0
2.1 548 13 0
2.3 536 4 0

Table 5.3: Number of collisions for different kr, d and s values.

On the other hand, when d = 1 and s = 0.5 the amount of collisions is not that

large, but still does not represent a safe scenario for urban traffic. It is only until

d = 1.5 and s = 0.75 when there are no collisions detected for kr = 1.9 to kr = 2.3;

yet, it is once again enough to select kr = 1.9, in order to avoid using a repulsion force

unnecessarily stronger.
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5.4 Summary and Conclusions

The preliminar experimentation presented in this Chapter is aimed to provide the

proposed solution model with exploratory data about the appropriate configuration of

critical mechanisms, such as flocking, intersection management and collision avoidance.

Having this objective as a background, the rFTN navigation model was tested pro-

gressively by adding up the three processes mentioned above. This processes involved

the following rFTN features described in section 3.2:

1. Flockmate selection.

2. Reactive creation of the bone structure.

3. Navigation towards destination.

4. Collision avoidance.

5. Intersection management.

The complete set of feeatures is going to be tested in the final experimentation

conducted for this research, and the results drawn from it are reported in Chapter 6.

The results presented in this preliminary experimentation determined the most

convenient parameters to tune the solution model as designed. Thus, it can be con-

cluded that the rFTN’s behavior as a navigation model is the desired one, and that

further experiments can be conducted to test its performance regarding now its ability

to manage traffic; furthermore, a full comparison between this model and the FTN has

been enabled.

The experimentation was conducted via a traffic simulation, which had the fol-

lowing characteristics:

1. Each simulation was run for a fixed time of 5, 000 steps.

2. The traffic simulator provided with a 9×9 block area.

3. Vehicles and their targets were generated uniformly with a probability of 0.1

4. Cars take into account all the rest of the vehicles to perform the flockmate-

selection process.

5. Speed limit was set to 1.0 units of length per time step.

6. Maximum acceleration value was 0.4 cells per simulation steps squared.
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There were defined some performance parameters that were measured during the

simulation, as key outputs that were used to select the most appropriate values for

critical variables of the previously mentioned rFTN features. Those key outputs are

summarized in the following list:

1. Cohesion Index (CI).

2. Average Completion Time (ACT).

3. Number of Collisions (NC).

The performed experiments to tune the flocking process took into account the CI

and ACT. The objective of this analysis was to determine a value for the kt factor

to make the scenario stay as close as possible to the largest CI, while ensuring that

vehicles do not deviate their path too much, in order to prevent the ACT from being too

high. As for the intersection management and collision avoidance the output measured

was the number of collisions that were detected during each experiment; it is clear to

see that in this case the best configuration of parameters is the one that leads to a

collision-free navigation for vehicles.

In this way, the tuned parameters and their values are presented in Table 5.4.

These values can be used to conduct the final experimentation phase, as it has been

proven that they make the rFTN achieve the designed behavior and performance.

Parameter Name Value
kt 1.3
kint 1.5
m 3 cells
kr 1.9
d 1.5 cells
s 0.75 cells

Table 5.4: Selected values to tune the rFTN model.
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Chapter 6

Final Experimentation and Results

This Chapter presents the final experimentation phase, which was conducted for

the solution model of this research work to be compared against other two basic, low-

level urban traffic methods and also other advanced approaches. These experiments

are intended to show that the rFTN outperforms representative traditional navigation

models we can see these days, hence, proving to be an effective and innovative solution

for the urban traffic management problem. Besides it will show that the rFTN’s per-

formance is as good as the advanced approaches mentioned here, and sometimes even

better. As explained before, Chapter 5 presented exploratory data about the solution

model’s perfomance under different configurations for their critical parameters; now,

this Chapter is aimed to provide with validatory data, which were drawn by testing and

comparing the rFTN against other navigation methods, taking into account different

traffic-related parameters. Once again, for this experimentation phase an experiment

is defined as the result of separately testing the three methods under identical setup.

First, section 6.1 provides an in-depth description of the final experiments that

were conducted for this research work. Then, section 6.2 provides the selected setup

for this final experimentation, specifying the measured traffic parameters which are of

most interest in this validatory phase, as well as the values for the force laws’s variables

in the rFTN. The analysis of the results drawn from this experiments is provided in

section 6.3, which will show a comparison of the rFTN’s performance against both

traditional and high-level methods. Finally, section 6.4 presents the conclusions for

this final experimentation phase.

6.1 Description of the Experiments

This final experimentation phase is aimed to prove that the rFTN is a more efficient

model to deal with urban traffic management, than two traditional methods that were

selected for this matter, namely: Traffic light based navigation and Chaotic navigation.

These two approaches are currently present in most cities, and the navigation policies

that they take into account are well known. Furthermore, it will be proved that it can
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even outperform high-level methods, like the FTN.

As previously mentioned in Chapter 5, in this final phase of experimentation all of

the features designed for the rFTN will be enabled, in order to compare the complete

solution model’s performance and its ability to handle traffic. For convenience, a general

description of the rFTN’s features will be provided in the following, in despite of the

fact that they were thoroughly described in Chapter 3, along with a formal definition

for the other navigation methods mentioned above:

1. rFTN: this experimentation will test the rFTN’s fitness as a solution for handling

urban traffic, and so, the complete set of features described in section 3.2 are

enabled.

Recall that the list of features is divided into two groups:

(a) Intra-group forces: which include the Flockmates selection, Reactive cre-

ation of the Bone Structure, Navigate towards destination, Flocking forma-

tion, and Collision avoidance processes.

(b) Inter-group forces: which considers the Intersection management and

Congestion avoidance features.

Furthermore, modulation of the acceleration and velocity of vehicles will also be

taken into account and will be performed as explained in section 3.3.

2. Traffic-Light based navigation: this is the traditional model in which vehicles

stop at every intersection when the traffic light is red, and they may go through

the intersection if the light is green.

In the developed simulator, traffic lights are present in all of the intersections in

the city and vehicles accelerate to reach the maximum allowed velocity whenever

possible. On the other hand, cars decelerate when they get close to each other,

in order to avoid collisions.

3. Chaotic navigation: in this model there are no traffic lights at intersections.

Moreover, there does not exist any intersection management policies; vehicles in

this navigation approach try to go through them whenever possible. That is why

it is called chaotic.

Vehicles decelerate before reaching an intersection, in order to avoid collisions

and to keep a safe environment. Besides, in a similar way as in the Traffic-Light

model, cars navigate at the maximum velocity of the city and decelerate if they

approach another vehicle, for collision avoidance.

4. Flock Traffic Navigation Based on Negotiation (FTN): see section 2.6.2

for a brief explanation of this method, or refer to [4], for an in-depth description

of it.
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The number of vehicles in the experiments was set to 50, 100, 200, 300 and 400.

The rest of the simulation-related parameters remained the same as in the preliminar

experimentation presented in Chapter 5; a summary of them and their values is presened

in the following:

• The city was represented by a 9× 9 block area.

• Vehicles were generated uniformly along with their targets.

• The vision range of cars was also set to cover the whole world, in order to test

the computational time required to compute the processes with the largest work

load.

Besides, the speed limit was set to 1.0 units of length per time step and the

maximum acceleration value was 0.7 cells per simulation steps squared. As for the

traffic-light model, the light period was set to 20 time steps of the simulation.

In this set of tests, every experiment was run three times, in order to test the

rFTN, the Traffic-light based and the Chaotic navigation in each one of the runs. As

one may expect, this enabled a fair comparison of the traffic navigation approaches

described previously, since they shared identical simulation setup and were tested over

the exact same scenario (i.e. coordinates of vehicles and their targets remained the

same each run). As for the FTN, the experimentation results presented in [4] are going

to be used.

6.2 Experimentation Setup

This section provides a list of the parameters which were selected to test the ability

of the models mentioned above to handle urban traffic. Once again, it is important to

measure the computational time required for the complete rFTN to be processed, in

order to prove that the solution model is able to be work in real-time scenarios, such

as traffic management.

Not all of the parameters listed in section 5.2 are of interest for this final experi-

mentation, only those traffic-related ones presented in the following:

1. Average Speed (AS).-

This parameter is measured by computing the mean of all vehicles’s speed in the

scenario at every moment of time during the simulation.

This calculation is performed by using the equation (2.4) from the traffic theory

concepts.
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2. Average Wait Time (AWT).-

This parameter tells us the average units of time that vehicles remain stopped,

during their trip to their destinations. It is measured every time a given vehicle’s

velocity is 0, and stops when that vehicle begins to accelerate.

This parameter is measured at every moment during the simulation.

3. Average Completion Time (ACT).-

This parameter was explained before in section 5.2, but it will be described again

here for convenience: the ACT tells us the average of the amount of time it

took all of the vehicles to reach their destinations. The overall trip time of each

vehicle is computed and, at the end of the simulation, all of them are averaged;

it is expressed in terms of simulation steps.

4. Average Computational Time (ACPUT).-

This variable shows the average of the amount of CPU time, in seconds, that it

takes for a given vehicle to compute the flocking calculations. It is measured at

every time step during the simulation, and will provide information about the

computational effort required for the rFTN to be computed.

It should be recalled that one of the major objectives of this research work is to

design and develop an algorithm that requires the minimum computational time

to be processed and, so, the results for this parameter are expected to be low.

Therefore, this measurement is extremely important, since it will lead us to find

out if the rFTN meets this objective.

5. Saved Trip-Time (STT).-

This factor represents the aritmetic difference of the Average Completion Time

(ACT) between the rFTN and one of the other traffic navigation approaches.

Formally:

S = Cother − CrFTN

Where S is the Completion Time Delay, Cother is the ACT presented by the other

method against which the rFTN is being compared and CrFTN is the ACT value

drawn when vehicles are navigating as in the rFTN model.

Now, this parameter is intended to show the amount of trip time which the

solution model is able to save, while being compared against other approaches.

As for the rFTN itself, there are several parameters that have to be set to tune

the model, regarding variables included in its force laws and other safety zones both

around vehicles and at intersections. These values were appropriately set, based on
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the experimentation conducted in Chapter 5 for the critical features, such as flocking,

collision avoidance and intersection management. Variables for the flocking formation

(kap) and congestion avoidance (kca), where conveniently selected, as well as the noise

parameter (kn). Table 6.1 presents the selected values for the force laws’s variables.

Parameter name Value
kp computed as explained in section 3.2.2
kt 1.3
kap 1.5
kr 1.9
kn 0.2
kint 1.5
kca 1.2

Table 6.1: Selected values to tune the rFTN’s force laws for final experimentation.

The so-called safety zones taken into account by the solution model’s processes

are present in two different locations:

1. Around Vehicles: which is composed by both the Repulsion Zone d and the

Safety Zone s.

2. Around Intersections: composed by the Intersection Safety Zone m.

Values for these dimension variables (d, s and m) are provided next in Table 6.2.

For more specific information about them, refer to section 3.2 or to section 5.3 to know

the way that these values were selected, based on experimentation.

Parameter name Value
Vehicle Repulsion Zone d 1.5 cells

Vehicle Safety Zone s 0.75 cells
Intersection Safety Zone m 3 cells

Table 6.2: Selected values to tune the rFTN’s safety zones.

6.3 Results Anlysis

Now, it will be presented the results drawn from the final experimentation phase,

where the rFTN is compared against both traditional methods and advanced ap-

proaches such as the FTN. First, section 6.3.1 provides a comparative analysis between

the Traffic-light based model and the Chaotic navigation, in order to know which of

them is a more efficient traffic method. Later, section 6.3.2 provides a comparison be-

tween the rFTN and Traffic-Light based navigation, while section 6.3.3 compares the
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Number Traffic-Light Chaotic
of Agents based navigation navigation

50 0.418 0.877
100 0.395 0.775
200 0.323 0.517
300 0.289 0.352
400 0.246 0.156

Table 6.3: Final Results for the Average Speed (AS) parameter, concerning the Traffic-
lights and Chaotic navigation.

solution model results against those obtained by the Chaotic model. Then, an analysis

of rFTN and FTN’s results is conducted in section 6.3.4.

6.3.1 Comparing Traffic-Lights against Chaotic navigation

Traffic-light based and Chaotic navigation are traffic models that were selected to

be compared against the rFTN’s performance, in order to prove that the proposed solu-

tion model is a better approach to the urban traffic problem, than the traditional ones.

However, it is also of interest for this phase of experimenation to know which of these

traditional approaches is better than the other, thus representing a more challenging

competition for the rFTN.

Table 6.3 provide the results regarding the Average Speed (AS) parameter,

drawn from the conducted experiments. We can see that, consistently, the Chaotic

navigation presented the higher values for this paramenter, for all scenarios but the

last one consisting in 400 agents. Moreover, we can see that in both models the AS

tends to decrease as the number of agents in the scenario increases; these data is

evidence for the fact that both approaches lead to congestions that are worsened as

more vehicles are introduced in the city.

Now, the Average Completion Time (ACT) results are shown in Table 6.4.

For scenarios with a relatively low amount of agents (50 to 100), the Chaotic navigation

performed better than the Traffic-lights, which is consistent with the nature of both

models, since the chaotic navigation does not requires vehicles to stop at intersections if

there are not other vehicles approaching it (which is more likely to happen in scenarios

with fewer agents) and so their trip-times are lower.

On the other hand, in crowded scenarios the chaotic navigation is most likely

to lead to congestions, because the amount of vehicles that have to go through in-

tersections is greater and the coordination between them is more difficult, while the

ordered navigation provided by traffic-lights, in a way, guarantee that all vehicles will

go through intersections, as it assigns some amount of green-light time to all streets.

Hence, for these crowded scenarios (200 to 400 agents) traffic-lights performed better.
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Number Traffic-Light Chaotic
of Agents based navigation navigation

50 115.972 113.813
100 163.273 161.128
200 220.375 233.380
300 279.732 284.442
400 339.185 396.041

Table 6.4: Final Results for the Average Completion Time (ACT) parameter, concern-
ing the Traffic-lights and Chaotic navigation.

Number Traffic-Light Chaotic
of Agents based navigation navigation

50 23.2920 22.4160
100 63.1694 62.1911
200 85.0973 89.6881
300 102.8412 107.9545
400 146.4592 152.6523

Table 6.5: Final Results for the Average Wait Time (AWT) parameter, concerning the
Traffic-lights and Chaotic navigation.

Finally, Table 6.5 presents the results for the Average Wait Time (AWT)

parameter, in which we can see that, consistently with the ACT results, the Chaotic

navigation presented lower values for the 50 and 100-agent scenarios, while, on the

other hand, the traffic-lights performed better for the rest of them.

We can conclude that the traffic-light based model represents a better approach

to the urban traffic management problem, as it presented better performance than

the chaotic navigation, regarding the ACT and AWT parameters, which provide with

important traffic-related data.

6.3.2 Comparing rFTN against Traffic-Light based navigation

Traffic-light based navigation is a current well-known approach, and so it is essen-

tial to compare its results against the rFTN’s.

Table 6.6 presents the results of these methods, regarding the AS parameter.

In this table we can see that vehicles in navigating as in the Traffic-light model tend

to decrease their speed (in the average), when the number of agents in the scenario

increases. This is because, in despite of the fact that some vehicles are moving at,

perhaps, the maximum speed limit, the rest of them are stopped at an intersection;

this fact affects the average speed of the complete set of cars (i.e. as a whole) within

the scenario at any given moment of time.
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Number Traffic-Light rFTN
of Agents based navigation navigation

50 0.418 0.902
100 0.395 0.904
200 0.323 0.909
300 0.289 0.910
400 0.246 0.915

Table 6.6: Final Results for the Average Speed (AS) parameter, concerning the Traffic-
light-based navigation and the rFTN.

Number Traffic-Light rFTN
of Agents based navigation navigation

50 115.972 43.240
100 163.273 54.348
200 220.375 70.831
300 279.732 82.864
400 339.185 93.873

Table 6.7: Final Results for the Average Completion Time (ACT) parameter, concern-
ing the Traffic-light-based navigation and the rFTN.

On the other hand, we can see that, for all of the test scenarios, the AS values

obtained whith the rFTN remain almost equal to the maximum allowed speed value,

no matter the amount of agents in the simulation. In fact, as the number of agents

increases, so do the AS values; this behavior is coherent with the design of the solu-

tion model because, as one may recall, the acceleration is modulated in terms of the

magnitude of the force vector, which is computed taking into account the flockmates

that each vehicle has ”selected“, and it is more likely for the set of flockmates to be

greater in scenarios with larger amount of agents. Consequently, the acceleration value

remains in the maximum, hence enabling vehicles to navigate at the maximum allowed

speed.

Now, the ACT values obtained in this final experimenation are presented in

Table 6.7, in which we can see that, consistently, the rFTN’s results are lower than those

obtained with the traffic-light method. Moreover, the values of the latter approach grow

in a somewhat exponential way, while those of the former grow almost linearly. These

results prove that the rFTN leads to lower overall trip times, than those which can be

obtained with a traditional traffic-light navigation.

Furthermore, Table 6.8 shows the STT results drawn from the previous ACT val-

ues, which represent the amount of trip-time saved by using the rFTN model, over the

traffic-light approach. These results show that the magnitude of the solution model’s

savings are always more than one ten of simulation steps and it increases as the number
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Number Saved
of Agents Trip-Time (STT)

50 16.295
100 10.185
200 12.543
300 31.289
400 61.470

Table 6.8: Final Results for the Saved Trip-Time (STT) parameter, concerning the
Traffic-light-based navigation and the rFTN.

Number Traffic-Light rFTN
of Agents based navigation navigation

50 2.2920 0.0009
100 2.4022 0.0062
200 3.2464 0.0025
300 16.3881 0.0067
400 25.4412 0.0089

Table 6.9: Final Results for the Average Wait Time (AWT) parameter, concerning the
Traffic-light-based navigation and the rFTN.

of agents in the scenario is greater, which is clearly an advantage of the solution model,

because it will lead to grater trip-time savings in the presence of high urban traffic

volumes.

Concerning the Average Wait Time (AWT) values presented in Table 6.9 we

can see that, once again, the rFTN clearly outperforms the traffic-light model, by more

than 3 orders of magnitude. Moreover, the AWT values for the latter method have a

greater growth rate than that presented by the rFTN; that is, as the number of agents

in the world increases, the traffic-light’s AWT values grow by a larger amount each

time. On the other hand, the results presented by the rFTN remains low and almost

the same for all of the different test scenarios, which proves that the solution model

represents a very effective traffic-handling approach.

6.3.3 Comparing rFTN against Chaotic navigation

When there are no traffic-lights in a city, it leads to a scenario in which vehicles, at

intersections, just try to go through them whenever they can, without any intersection-

management policy to follow. This can be thought of as a chaotic navigation approach.

Since this is another traditional well-know approach, it is important to test and compare

it against the rFTN. It should be remarked that the rFTN’s results are the same

presented in section 6.3.2.
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Number Chaotic rFTN
of Agents navigation navigation

50 0.877 0.902
100 0.775 0.904
200 0.517 0.909
300 0.352 0.910
400 0.156 0.915

Table 6.10: Final Results for the Average Speed (AS) parameter, concerning the
Chaotic navigation and the rFTN.

Number Chaotic rFTN
of Agents navigation navigation

50 113.813 43.240
100 161.128 54.348
200 233.38 70.831
300 284.442 82.864
400 396.041 93.873

Table 6.11: Final Results for the Average Completion Time (ACT) parameter, con-
cerning the Chaotic navigation and the rFTN.

Table 6.10 presents the results of both the Chaotic navigation and the rFTN,

regarding the AS parameter. These data show that the former approach makes

vehicles decrease their average speed, as a greater amount of agents is present in the

scenario. This an expected behavior, since this model does not guarantee that vehicles

can go at the maximum speed, as they have to stop frequently at intersections for an

undefined amount of time.

Once again, the rFTN presented results that are almost the same for all the test

scenarios. As explained before, in scenarios containing a greater amount of agents,

it is more likely for a given vehicle to select a greater amount of flockmates as well

and, since the acceleration and, hence, velocity modulation is computed in terms of

the summation of force laws over the flockmates, the average speed of cars tends to

increase, as shown in Table 6.10.

The ACT values drawn from this final set of experiments are shown in Table 6.11.

We can see that the rFTN is able to make vehicles end their trip within a lower amount

of simulation time steps than the Chaotic approach. Moreover, in crowded scenarios,

like the 400-agent scenario of this table of results, the ACT values for the solution

model are almost one third of those drawn from the chaotic navigation. That is, the

amount of overall trip time required for the latter approach is almost three times the

amount needed for the rFTN model.

Now, Table 6.12 provides the STT results computed with the ACT values pre-
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Number Saved
of Agents Trip-Time (STT)

50 70.573
100 106.780
200 162.549
300 201.578
400 302.168

Table 6.12: Final Results for the Saved Trip-Time (STT) parameter, concerning the
Chaotic navigation and the rFTN.

Number Chaotic rFTN
of Agents navigation navigation

50 22.416 0.0009
100 62.1911 0.0062
200 89.6881 0.0025
300 107.9545 0.0067
400 152.6523 0.0089

Table 6.13: Final Results for the Average Wait Time (AWT) parameter, concerning
the Chaotic navigation and the rFTN.

sented previously in Table 6.11. These data show the rFTN’s savings regarding the

average trip-time needed for vehicles to get to their desinations, which tend to increase

as the amount of agents in the scenario is greater. Moreover, these values are even

greater than those drawn from the comparison between the rFTN and the Traffic-light

based navigation, which means that the existence of a intersection management policy,

even a low-level one such as traffic-lights, can lead to decreasing overall trip-times;

this is because policies, in a way, guarantee that vehicles will make it through the

intersection, and on the other hand, a chaotic navigation cannot.

Besides, we can see that in crowded scenarios the STT values tend to increase,

hence, proving that ability of the solution model to handle high volumes of traffic in

an efficient way.

Finally, concerning the Average Wait Time (AWT), data provided in Ta-

ble 6.13 show that the rFTN navigation method drastically outperforms the chaotic

navigation, by more than 3 orders of magnitude. Once again, AWT values grow by

a greater rate than those obtained with the rFTN, which means that it will lead to

greater wait times in scenarios containing large amounts of agents; on the contrary,

the rFTN is capable of keeping these AWT values very low, no matter the amount of

vehicles in the city, as its values grow by a very low rate.
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6.3.4 Comparing rFTN against FTN

Being the FTN an advanced method for handling traffic, it is necessary to extend

the set of experiments, in order to formally compare the rFTN’s results against those

presented in [4] for the FTN approach (see Table 2.2). This will also provide with

the proper data to conduct an analysis of both models’ performance and to make

conclusions.

Hence, the set of test scenarios will now include 2, 5, 10, 25, 50, 100, 250 and 500

vehicles, in order to match the number of agents which were selected to run the FTN

experiments, while the rest of the parameters mentioned previously in this Chapter,

both for the simulation and the solution model, remain the same.

As Table 2.2 shows, two important parameters were measured in the FTN’s ex-

perimentation phase: Saved Time and Computational Time, which are renamed here

as Saved Trip-Time (STT) and Average Computational Time (ACPUT), re-

spectively.

Moreover, the saving times for the FTN were measured by comparing the trip-

time that takes for vehicles to get to their destinations without flocking with any others,

against the trip-time obtained by navigating as in the FTN.

In a similar way, the rFTN’s saving times were drawn from the comparison of this

model against the Chaotic navigation, as the latter approach describes a non-flocking

behavior that does not take into account any traffic-management policy; this way we

will succeed in matching the strategy used to compute the FTN’s experimentation

measurements.

Nevertheless, it should be remarked that these saving times were measured in a

different way for each of these models, and does not necessarily provide exact same

information. Moreover, the FTN experiments were run over a 50× 50 city block area,

while the rFTN experiments used a 9 × 9 city block; thus, the FTN workload was

greater and it will affect the ACPUT parameter, since this measure in the FTN model

depends on the number of flocks.

However, results drawn from this experimentation serve as an initial comparison

between both navigation approaches.

Table 6.14 provides the results of both models, concerning the Saved Trip-Time

(STT) parameter, along with their variances, which are always almost the same for

both models. We can see that for 1 to 10 agents these values are almost the same for

both models, being the FTN results higher for the 2-agent scenario and slightly lower

in the 5 and 10-agent ones. However, as for the STT values themselves, both models

appear to perform poorly for this range of agents, since there is not much vehicles can

do about gathering into groups, in order to get the flocking benefits that these models

are designed to provide.

Furhtermore, for 5 to 50 agents the rFTN presented slightly higher saving times,
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than those obtained by the FTN model, but in the range from 75 and 500 agents the

latter approach proved to be capable of bringing the greater amount of time savings,

being the 100 scenario the only one in which the former navigation method performed

better.

FTN rFTN
Number of Saved Variance Saved Variance

Agents Trip-Time (STT) of STT Trip-Time (SST) of STT
2 3.17 34.7688 1.325 36.762
5 12.29 44.1423 16.712 47.235
10 24.175 78.3251 24.252 72.281
25 42.15 141.1389 46.450 122.174
50 64.705 252.1217 70.573 259.237
75 85.41 319.613 77.625 324.128
100 100.915 398.374 106.780 448.127
250 204.13 1320.300 181.635 1451.983
500 366.575 2172.400 333.258 2242.971

Table 6.14: FTN and rFTN’s saving times.

This is probably due to the speeding bonus that the FTN assigns to the flocks,

based on their size; this way, the larger the flock, the faster they are allowed to travel

across the city, hence enabling vehicles to get to their desinations in less amount of

time, reducing their overall trip-time; clearly, scenarios containing a greater amount of

agents are more likely to create larger flocks with greater speeding bonuses. On the

other hand, the rFTN takes into account a speed limit, and so vehicles are required to

modulate their velocity to meet this restriction (see section 3.3); even if they could,

vehicles are never allowed to break this speed limit and, therefore, they are not able to

achieve the trip-time reduction in the exact magnitudes obtained by the FTN.

However, the STT values drawn from the rFTN remain very close to the FTN’s,

which means that the solution model presented in this research work is capable of

providing almost the same time savings (often even better), with the additional, and

very critical advantage of keeping a safe and also realistic scenario, in which vehicles do

not profit from speeding, but from their ability to go through intersections faster, given

their flock size. Having said that, it can be claimed that the intersection management

mechanism designed for the rFTN is proving to be a highly efficient solution to this

problem.

Figure 6.1 shows a plot for the STT values, in order to graphically analyse their

behavior as the number of agents increases. As stated above, we can see that for 2 to 50

agents both models performed almost the same, being the rFTN time savings slightly

higher. This plot also also shows that for the final test scenarios, composed of 250 and

500 vehicles, the FTN performed better, but still the rFTN results stayed very close.
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Figure 6.1: Plot for the Saving Trip-Times results.

Now, Table 6.15 presents the results drawn from both models, reagarding the Av-

erage Computational Time (ACPUT) that each one need to perform its activities.

It is important to mention that the FTN experimentation was conducted using a Cen-

trino 1.10 GHz microprocessor, and the Matlab 7.0 platform, running on a Windows

XP operating system [4]. As for the rFTN, it was used a Pentium Dual-Core 1.73 GHz

microprocessor, and it was selected NetLogo as the experimentation platform, running

on Microsoft Windows Vista.

We can see in Table 6.15 that the FTN requires a somewhat low ACPUT when

tested within scenarios containing less than 100 agents; however for the range of 100

to 500 agents it needs more than one second to run, which can be seen as a hazardous

procedure, because of the velocity involved. One vehicle at 100 km/hr might travel

27.7 meters before it receives the negotiation messages, which may be too late to

resume the algorithm’s processes accurately, and will result in coordination problems.

Moreover, these results show that the FTN’s fitness as a solution to the real-time traffic

management problem is clearly low.

On the other hand, the rFTN requires always a very low computational time to be

processsed with its complete set of features, even when tested in crowded scenarios like

the 100-agent to 500-agent scenarios taken into account in these experiments. In more

specific terms, the solution model always needs an ACPUT in the order of a fraction of

a second: milliseconds for most of the scenarios (25 to 100 agents) and slightly greater

for the 250 and 500-agent scenarios.

Therefore, it can be claimed that these results prove that the rFTN model is able

to handle real-time problems, like the urban traffic scenario, in which it is essential

for the underlying traffic-management mechanism to respond almost immediately, or

delays may lead to disasters in a real-life implementation.

Moreover, Figure 6.2 provides a plot for the ACPUT values presented above, in

which we can see that the rFTN drastically outperforms the FTN model, in terms of
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FTN model rFTN
Number of Avg. CPU Variance Avg. CPU Variance

Agents Time (ACPUT) of ACPUT Time (ACPUT) of ACPUT
2 0.0149 0.0004 0.00061 0.0002
5 0.0146 0.0003 0.00071 0.0001
10 0.0222 0.0004 0.00089 0.0004
25 0.0769 0.0003 0.00138 0.0002
50 0.2489 0.0005 0.00268 0.0003
75 0.5258 0.0006 0.00396 0.0004
100 0.9116 0.0005 0.00430 0.0003
250 5.4622 0.00001 0.01372 0.0000087
500 21.7039 0.00001 0.01830 0.0000092

Table 6.15: FTN and rFTN’s CPU Time.

computational time. Besides, the figure shows that the ACPUT results for the latter

approach increase in an exponential way, while the former presents a more linear grow

rate.

Figure 6.2: Average Computational Time.

As stated before in this document, one of the main objectives of this research work

is to design and develop a reactive analogy to the FTN algorithm, which is intended to

be ”lighter“ to process in terms of computational effort. This is why it was of major

relevance to compute the amount of CPU time which was required for the solution

model to run the final set of experiments and, now, it can be claimed that the design

of the rFTN clearly meets this objective.

Besides, the very low values obtained by the rFTN accounts in a positive way

for the scalability of the features that this model includes, as more restrictions and/or

processes can be added in the form of force-laws, without affecting the overall compu-

tational effort required to process the algorithm.
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Number Average Avg Completion Avg Wait
of Agents Speed (AS) Time (ACT) Time (AWT)

50 0.902 43.240 0.0009
100 0.904 54.348 0.0062
200 0.909 70.831 0.0025
300 0.910 82.864 0.0067
400 0.915 93.873 0.0089

Table 6.16: Summary of the rFTN final results.

6.4 Summary and Conclusions

This Chapter presented the final experimentation of this research work, which was

conducted to provide a comparative framework of the solution model’s performance

against both traditional and advanced traffic management methods, with the objective

of providing validatory data. This evaluation enables us to actually make conclussions

about its fitness as a solution to the urban traffic problem.

The following related-methods were taken into account for these final set of tests:

Traffic-light based navigation, Chaotic navigation and the FTN model; the rFTN was

compared individually against each one of them. For the first two traditional ap-

proaches, the test scenarios included 50, 100, 200, 300 and 400 vehicles, while for the

comparison between the rFTN and the FTN the test scenarios were extended to 2, 5,

10, 25, 50, 75, 100, 250 and 500 agents, in order to match the experimental framework

used to test the FTN in [4].

The parameters which were of most interest in this validatory phase are the fol-

lowing:

1. Average Speed (AS).

2. Average Wait Time (AWT).

3. Average Completion Time (ACT).

4. Average Computational Time (ACPUT).

5. Saved Trip-Time (STT).

Table 6.16, Table 6.17 and Table 6.18 present a summary of the experiment results

for the rFTN, Traffic light and Chaotic navigation models, respectively.

Based on the information provided by the presented tables, we can conclude that

the solution model outperforms both traffic lights and a chaotic navigation:

• In the “wait time” column, rFTN is better than the other two methods by more

than 3 orders of magnitude;

70



Number Average Avg Completion Avg Wait
of Agents Speed (AS) Time (ACT) Time (AWT)

50 0.418 115.972 23.2920
100 0.395 163.273 63.1694
200 0.323 220.375 85.0973
300 0.289 279.732 102.8412
400 0.246 339.185 146.4592

Table 6.17: Summary of the Traffic-light model final results.

Number Average Avg Completion Avg Wait
of Agents Speed (AS) Time (ACT) Time (AWT)

50 0.877 113.813 22.416
100 0.775 161.128 62.1911
200 0.517 233.38 89.6881
300 0.352 284.442 107.9545
400 0.156 396.041 152.6523

Table 6.18: Summary of the Chaotic navigation final results.

• Concerning the average speed, we see that not only rFTN is better than the other

two (i.e. the average speed for the rFTN model is almost equal to the maximum

allowed speed within the city, while the traffic-light-based model and the chaotic

model presented a lower average speed), but also that it gets improving when

increasing the number of vehicles, which is the opposite of what happens to

traffic lights and a chaotic scheme. This improvement in the rFTN method can

be attributed to the fact that with more cars in the scene, flocks are easier to

form;

• In completion time we also see an advantage of rFTN over the other two, as well

as an increased advantage as the number of vehicles gets higher.

The great advantage of rFTN over traffic lights and chaotic traffic as the number

of vehicles increases is an argument for the scalability of this proposed method.

Now, as for advanced models such as the FTN, the solution model has proven to

be as effective in terms of the measured traffic-related parameters. Besides, this ex-

perimentation phase has provided evidence for the drastically low computational effort

that the rFTN demands, which is clearly an advantage over the FTN, and accounts

for the model’s fitness within real-time aplications, such as traffic handling. Table 6.19

provides a summary of the comparison between both approaches.
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Saving Times ACPUT
Agents FTN rFTN FTN rFTN

2 3.17 1.325 0.0149 0.00061
5 12.29 16.712 0.0146 0.00071
10 24.175 24.252 0.0222 0.00089
25 42.15 46.450 0.0769 0.00138
50 64.705 70.573 0.2489 0.00268
75 85.41 77.625 0.5258 0.00396
100 100.915 106.780 0.9116 0.00430
250 204.13 181.635 5.4622 0.01372
500 366.575 333.258 21.7039 0.01830

Table 6.19: Summary of the comparison between FTN and rFTN.
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Chapter 7

Conclusions

This Chapter presents the conclusions and contributions that can be drawn from

this project, as well as several suggestions to extend the effort undertaken for this

research work.

The present document explains an emergent behavior, designed to serve as an

urban traffic management method, having the flocking approach introduced in [4], as

the underlying navigation paradigm, in which vehicles gather up into groups, in order

to speed-up their trip to their destinations across the city. The rFTN achieves this

this behavior by way of an implicit coordination mechanism, embedded in vehicles, as

explained in Chapter 3.

The conducted experiments provided full evidence of the high performance of the

solution model, concerning both traffic parameters and computational effort required

to run the algorithm. Along the experiments several test cases were explored, varying

the number of agents within the simulation to know the way it affected the proposed

traffic-handling model, and to compare its results against those obtained by different

related approaches, both traditional and advanced.

7.1 Conclusions

The present research work focused on the development of a reactive approach to

the Flock Traffic Navigation (FTN) method, which still was able to provide the scenario

with the benefits specified by that advanced traffic-handling model. It was of major

relevance for the designed algorithm to show a very low demand of computational effort,

since the FTN’s performance on that matter proved to be an opportunity area. This

way, this project was aimed to build a traffic-management mechanism, which could be

competitive when compared to the large set of solutions to this problem, including the

FTN.

The rFTN was designed upon the Social Potential Fields approach, which estab-

lishes a set of control laws within a distributed-control scenario; such forces are intended

to determine a specific behavior for the agents who are going to compute them. In this
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case, the most important one was for vehicles to create flocks in the way described by

the FTN, and so the design of the solution model’s force laws was oriented to achieve

that goal.

Moreover, we can say that the rFTN is the result of several behaviors, or features,

designed for this model to perform as expected, such as the following:

1. Flockmates selection.

2. Reactive creation of the Bone Structure.

3. Navigate towards destination.

4. Flocking formation.

5. Collision avoidance.

6. Intersection management.

7. Congestion avoidance.

Two phases of experimentation were designed with different objectives: the Pre-

liminar Experimentation presented in Chapter 5 was aimed to provide exploratory data,

in order to know the proper values for critical variables of the rFTN to make it perform

as expected, while the Final Experimentation provided in Chapter 6 was focused on

obtaining validatory data about the model’s performance when compared against some

other solutions, namely: Traffic-Light based navigation, Chaotic navigation and the

FTN itself.

From the latter experimentation phase, we can conclude that the drawn results

are very favorable for the rFTN as an urban traffic management method. The solution

model outperformed both of the selected traditional approaches; the results shown a

significant improvement in every traffic-related parameter that was measured during

experiments, sometimes by more of three orders of magnitude. Furthermore, the rFTN

presented very high saving times, even in the presence of high volumes of traffic, which

is a very positive feature of the solution model, since it is in crowded scenarios when the

major traffic problems arise, as can be seen by analyzing the results for the traffic-lights

and chaotic navigation. Besides, this is consistent with the model’s expected behavior,

since it was designed to bring benefits to larger flocks, and crowded scenarios bring

more possibilities for vehicles to select appropriate flockmates to gather up with.

Even when tested against high-level methods, the rFTN remained as a competitive

mechanism, since its results reached the standards of the FTN algorithm, which is very

important, as it is a direct reference for the undertaking of this research work. Besides,

in some test cases the rFTN slightly outperformed the FTN, and stayed very close to

it in the rest of them. Hence, it can be claimed that the solution model is capable
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of providing almost the same results as the FTN, with the additional characteristic of

keeping a safe and realistic scenario by taking into account a limit for the speed at

which vehicles are allowed to travel, which is something that is not determined in the

FTN.

Moreover, the computational time demanded by the rFTN is shown to be very

low, while being compared to that required by the FTN. It should be recalled that

the experiments were setup to make vehicles analyze and test all of the rest, in or-

der to select their flockmates (which represents the largest possible work load for the

algorithm) and still the greatest amount of time it took for the rFTN to perform its ac-

tivities was in the order of the centiseconds. As for this parameter, the solution model

drastically outperformed the FTN, meeting one of the main objectives established for

this reasearch and proving that it is capable of handling real-time scenarios.

7.2 Contributions

This research work contributes to the enrichment of the studies that have been

conducted for the urban traffic problem. The measurements drawn from this project

also accounts for the extension of the available knowledge for this matter. Besides, the

comparative framework provided by the experiments contributes for the understanding

of the way the traditional methods can be outperformed by the use of emergent tech-

nologies that enable us to develop high-level traffic management approaches. In more

specific terms, the contributions of this research work are:

• Scientific contributions:

1. The development of an innovative and high-level urban traffic-management

mechanism, having the FTN as the underlying paradigm, but created upon

a completely different approach: a reactive approach, instead of a delib-

erative one. This also contributes directly to enabling the analysis of the

advantages and disadvantages of both approaches. Besides, it extends the

information and knowledge for the urban traffic projects being undertaken

within the Context Intelligence Research Chair of ITESM, Monterrey Cam-

pus.

2. The development of an intersection management approach, based on the

same social potential fields paradigm that was used to design the rest of the

rFTN features. An intersection management approach is not included in the

FTN, as it assumes the existence of one in the city.

3. The design of proper flocking-formations, in order to increase the adher-

ence to the flock, and to make vehicles respect the lane restrictions while

navigating across the city.
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4. An explicit mechanism of collision avoidance, that helps mantain a safe

scenario for vehicle navigation.

5. The reactive way of creating the so-called bone structure and the convenient

and efficient way of selecting flockmates, which might be taken into consid-

eration for designing a hybrid algorithm between the FTN and rFTN, since

the former model’s high demand of computational time lies largely in the

performance of this process.

6. The solution model includes the process of redirecting traffic away from

already-congested streets, which is a feature that is not performed by the

FTN.

7. An innovative acceleration and velocity modulation, computed upon the

force vector which results from the summation of the rFTN’s force laws.

These two processes are different from those performed in several research

works, like the one conducted in [13], in which both the acceleration and ve-

locity parameters are just “clipped” to comply with the maximum/minimum

values.

• Practical contributions:

1. The development of a Traffic Simulator, which served as an experimental

platform for this solution model. It might be scaled to include other traffic

approaches, in order to extend the comparative framework and to conduct

more experiments to measure their performances.

2. The implementation of two traditional traffic navigation models on the

Traffic Simulator, which were added to the comparative framework of this

project, namely: the Traffic-light based navigation and the Chaotic naviga-

tion.

3. To provide an analysis of the effects of the rFTN’s flocking mechanisms

(preliminar experimentation).

4. To provide data about the final results, drawn from the implementation of

the solution model and its comparison against the two traditional methods

mentioned lines above, as well as the high-level FTN model itself.

7.3 Future Work

Some ideas about the way that the conducted work may be extended are listed in

the following:

• To design and test some other potential functions, in order to explore if it is

possible to enhance the rFTN’s features.
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• To develop a complete and in-depth analysis of the advantages and disadvantages

of the rFTN and FTN, in order to develop a hybrid approach which can profit

from the best features of both models.

• The intersection management mechanism developed within this model assumes

that vehicles are able to know the exact position of both the intersections and the

rest of the cars in the scenario, at any given moment of time. However, in a real-

life scenario, it could be difficult to come up with this information in an accurate

and fast way; being this feature very critical in terms of navigation safety, it could

be taken into consideration that this model can be extended by the design and the

development of an alternative intersection management approach, using different

techniques like Fuzzy Logic or Bayesian Networks, which may enable vehicles to

perform inferences and forecasts based on less data that the one required in the

developed approach.

• In order to extend the experimental testbed, the Traffic Simulator can be scaled-

up to include two or more lanes in the city, since, as for now, it only takes into

account one-lane streets. This extension will enable the design and development of

mechanisms to switch between the flocking-formations mentioned in this research,

as required by the varying number of lanes in the streets they are currently

navigating on, which will result in an interesting flock-coordination mechanism.

Furthermore, this issue will contribute to push the model to an even more realistic

implementation.

• The blocks in a real city are not always of a squared shape, and so the Traffic

Simulator can be extended further to take this issue into consideration to make

more realistic experiments, in which case the navigation approach described here

might be redesigned.

• Since the presented solution has proven to be a very scalable model, it could be

possible to extend its features to include more elements, such as pedestrians or

vehicles with a higher priority like ambulances, police patrols, etcetera.

• The final experiments can also be extended to compare the rFTN against several

other urban traffic management approaches. The analysis that can be drawn from

this evaluation might lead to the detection of opportunity areas, if any, in which

case, new research lines can be open to enhance the proposed solution model and

to make it even more competitive.
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