DO TEDTTAL T Ay

AZINS Y BE ECTIIAC

§>,g: 2y L%ﬂ.:-‘ g :u.‘: 3"2?"

S SUSNTAN - Sal i3 B €

%f Q\ _a_ ':.E\.W

DEVISION DFE INOERTE ?uiﬁ.v.ﬁam.g B L URA

e

PROCGRAYA DE CRADEADCS FX IRGEND

S“H'ﬂn_g-w Eenla - S M o X o Raaclernd ™ S sy T
SACDIFICATICN OF THE PTT MODEL AND TS

"'_:;':-"" "f\: e Wﬂk‘ﬁ' AT W':‘"-:: W“"’*"""\“ﬂ"‘“’f" 9% f‘n?"
FAD O natvedrs s NN PRI 35S 2 O s TN
-cg & _.s‘b’ﬂ - mn%@ a o t ﬂf_m ﬂfﬁ
ZENARER I TUNAY, S .‘.’9 AT

”';-3""“9’ YF":,Q; i

Mol o o
TREIS
PRESENTADA C\’Jii;"} REQUISITO PARTIAY, PARA

Seifis 24
OBTENER 7L GRADD ACATEVIOD

3
7 ‘J:L:

LU

STRO ENCENCIAS
: jig@ma EAS AVBRIENTALE

S AVEESTTENY &

SOOI

B P ATV FEme s ba Yol ey
?im:?‘&ﬁvw il .LKEWW; \.ﬁ ROTRID

REVS 004

p\b(_r': g



INSTITUTO TECNOLOGICO Y DE ESTUDIOS
SUPERIORES DE MONTERREY

CAMPUS MONTERREY

DIVISION DE INGENIERIA Y ARQUITECTURA
PROGRAMA DE GRADUADOS EN INGENIERIA

TECNOLOGICO
DE MONTERREY.

“MODIFICATION OF THE PTT MODEL AND ITS
APPLICATION FOR THE PREDICTIONS OF
ELONGATIONAL VISCOSITY OF
POLYPROPYLENES”

TESIS
PRESENTADA COMO REQUISITO PARCIAL PARA
OBTENER EL GRADO ACADEMICO DE.:

MAESTRO EN CIENCIAS
CON ESPECIALIDAD EN SISTEMAS AMBIENTALES

POR:
LEONARDO FEDERICO CORTES RODRIGUEZ

MONTERREY, N. L. MAYO 2004



ABSTRACT

A comprehensive rheological study of four pairs of isotactic and syndiotactic
polypropylene resins with similar MFl was conducted. The study also includes the
standard quality properties commonly used in the industry. The rheological tests
included double bore capillary rheometry, frequency sweeps and creep and
recovery compliance. The standard quality properties tested were percentage of
Xylene Solubles (XS), Gel Permation Chromatography (GPC), Nuclear Magnetic
Resonance (NMR) and Differential Scanning Calorimetry (DSC). It was found that
the viscoelastic behavior is significantly different between these two types of
resins.

On the other hand, the PTT (Phan Thien and Tanner, 1977) and XPP (Verbeeten,
2001) models were analyzed and evaluated using the experimental data of the
resins under study. It was found that the PTT model fails to predict accurately the
elongational response of the syndiotactic resins.

In addition, a modified PTT model is proposed and evaluated with satisfactory
results. The parameters of this new model were found to be related to molecular
weight distributions features such as Mz and Me.

Additionally, an innovative approach using fractals theory is proposed for the
development of a new fundamental constitutive equation. Further study is
recommended to this topic as well as to the modified PTT model.
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NOMENCLATURE

Yasuda or Cross model
parameter

Giesekus model parameters

ai,a2,a3
Weighting factor for the
exponential terms of the

memory function ni/ ( Ak )?
Horizontal temperature shift

factor

Modified PTT model
parameter.

Vertical temperature shift
factor

Finger strain tensor or die
swell
Modified
parameter.
2-6 di-tert-butyl-p-cresol
Cauchy finite strain tensor
Modified PTT
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PTT model

model
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after die swell
Differential scanning
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Horizontal activation energy

for flow

Ev

fi,

G'(w)
G’ ()
G*(o)
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Gy

GPC

Gylay)

Gi

Go

Vertical activation energy for
flow

Weighting factor for damping
function

Storage modulus

Loss modulus

Complex modulus G'(e) +
iG” (o)

Relaxation modulus

Plateau modulus

Gel permeation
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Cross-over modulus

Shear
relaxation spectra

modulus n; /A in
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HDPE
I
h

I

I3

“wn

High density polyethylene
Identity tensor

First scalar invariant of the
Finger tensor
Second scalar invariant of the
Finger tensor
Third scalar invariant of the

Finger tensor

As a subscript refers to the
contribution for the stress
tensor of the i-th relaxation
element




Hn
1

iPP
Jt)

Jmax
Jr(®)

Je(t)

Lo

Ls

L/D

LDPE
MFi
Mn

Mw
MWD
Mz

As a superscript refers to the
component of the stress
tensor

Isotactic polypropylene
Creep compliance

Steady

compliance

state recoverable

Maximum compliance J(t.)
Recoverable compliance at
any time after the stress
ceased

Elastic compliance J;( 0 ) - J«(
t)

Length of the capillary die or
spinning

Length of the long capillary
die in the double barrel
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die in the double barrel
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Length to diameter ratio for
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Low density polyethylene
Melt flow index

Average number molecular
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Molecular weight distribution
Third
molecular weight

moment of the

M(t-t) Memory function

m Consistency  (power law
parameter)

m’ Parameter for  Hershel-
Bulkley model

N Number of relaxation
elements

NMR  Nuclear Magnetic Resonance

N1(t,7) First normal stress difference

nq, np Damping function strain
sensitive parameters

n Power-law model parameter

n’ Parameter for  Hershel-
Bulkley model

PDI Polydispersity index Mw/Mn

PTT  Phan-Thien and Tanner
Isotropic pressure
Dangling arms in a pom-pom
molecule

Q Volumetric flow rate through
die

RAA  Rheometrics asphalt
analyzer

RDA  Rheometrics dynamic
analyzer

RS5000 Rheometrics stress
rheometer

Ro Radius of the barrel or
reservoir

R? Correlation coefficient




S Second moment of the
orientation  distribution  of
backbone segments in XPP
model

Sty Convected time derivative of
S tensor.

sPP Syndiotactic Polypropyiene

SQP  Standard quality properties

T Temperature

Tg Glass transition temperature

m Melting temperature

To Reference temperature

TTS  Time-Temperature

Superposition

t Time

t Time relative to the position
attime t

t, Time at which stress ceases

in a creep test
tan 5(w) Loss tangent, ratio of
G"(0)/G'(n)
u Dimensioniess axial velocity
u=v/v,

w(I,I,)Potential Function in Wagner

Model

XPP  Extended Pom-Pom

XS Percentage of xylene
solubles

Z(trt,) Rate of destruction of

junctions function of the PTT

model corresponding to the i-
th contribution to the stress

Greek Symbols
o PTT model elongational
parameter.

¥(t)

Yo

Ye

Yo

Ta

it

Yii

APg

AP

APs

XPP model parameter defining

the amount of anisotropy.
imposed shear strain
y(1) =y, sin{ax)

Strain  amplitude in an

oscillatory test

Recovered shear strain in a
creep test

Rate of strain (deformation)
tensor

Imposed shear rate

Apparent shear rate
(32Q)/(nD?)

Corrected shear rate
3n+1]

|21,

Shear rate tensor component
Pressure drop due to
elasticity of the melt

Long capillary die pressure
drop

Short capillary die pressure
drop
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nt
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Xii

Total pressure drop APy +
APg
Pressure drop due to
viscosity of the melt
Elongational (Henky) strain
Extension rate

Maximum extension rate

Apparent shear viscosity
n,=7,[7a
Relaxation spectrum
viscosity

Zero shear viscosity

Shear viscosity

Shear free viscosity function
Shear free viscosity function
Elongational
n,(e0)

True shear viscosity from

viscosity

capiliary data

Dynamic viscosity G"(0) / ©
Imaginary component of
complex viscosity

Complex viscosity

Capillary die entrance angle:

Flat entrance 6 =180°= =
radian

Cone entrance 0 =90°= =
/2 radian

Ac

Ai O Ak

Aob
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Cross model characteristic
time

Relaxation spectrum time

the
backbone tube orientation in
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Stretch relaxation time.

Relaxation time of

Stretch ratio of the backbone
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Measure of the influence of
surroundings polymer chains
on the backbone tube stretch
Newtonian viscosity

PTT model shear parameter.
Density
Extensional (elongational)
stress

Stress amplitude

Sinusoidal stress
o, sin(ot + 5)

Extensional stress
component

Stress tensor
Component (kk) of the stress

tensor corresponding to the i-
th relaxation element
contribution to the stress

tensor.
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Tw

Ti

Tt
TR

1

Imposed stress in a creep
test

Shear stress at the wall

i-th contribution to the stress
tensor

Stress tensor component
True shear stress

Value of tx when n=n,/ 2
Convected time derivative of

the stress tensor
D
T =—1—)t—t—{(Vu)‘ -t +1:~(V\>)}

Piston velocity in a capillary
test
Wagner's (1976)

function parameter

damping
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(1]
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Vv

Wagners (1976) damping
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Wagner's (1979) damping
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First normal stress coefficient
Second normal stress
coefficient

Vorticity tensor
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Frequency (rad/sec)
Cross-over frequency
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CHAPTER I. Introduction

The polyolefins business is a commodity market where profit can be made only by
mass production. In order to maintain a financial performance, the competitive
strategy is to develop technological innovations and faster characterization
techniques, so the polyolefins can be processed faster and sold at higher prices.
However, any innovation requires large amounts of polymer in order to determine
its performance in the processing lines.

The manufacturing process of polymers has a large influence on the resuiting
mechanical and optical properties of the end product. For instance, dimensional
stability in precision injection molding or yield strength, Young’s modulus and even
tear strength of blown films are affected by the viscoelastic properties of the
polymer melt.

Therefore, a necessary requirement in the design of polymer processing
operations is a fundamental understanding of the rheology of the polymer melt.
Then, the industry needs both absolute quantitative information and also
inexpensive testing for multiple samples in order to understand polymer melt's
behavior. The difficulty in recovering research and development costs has made
some producers to think about modeling polymer processes to understand and
establish the processability of a new polymer. Therefore, experimentation demands
the greatest quantity of accurate information at a minimum cost in order to have a
fast ROl regarding the research and development costs and to be able to increase
the market shore.

Research and development departments have considered that the rheological
models (constitutive equations) are very important because they could predict melt
flow behavior in a wide range of deformation histories; however, the usefulness of
a constitutive equation lies in its ability to make accurate predictions for as many




polymer systems with as few adjustable parameters as possible. In addition, to
simulate polymer meit processing realistically, the model must be able to describe
material behavior in the linear and in the nonlinear regime. Particularly, the study
of the elongational behavior is very important because the flow behavior of polymer
melts in economically important processes like fiber spinning and film blowing is
governed rather by elongational than by shear properties of the melt. Furthermore,
processes such as extrusion, though primarily governed by shear properties, may
also be influenced by elongational properties. (Laun, 1976).

This thesis is a contribution to the predictive modeling of viscoelastic materials.
The PTT model (Phan Thien and Tanner, 1977) and XPP model (Verbeeten, 2001)
are analyzed and evaluated using the experimental data of eight polypropylene
resins. A modified PTT model is proposed as well as an innovative approach using
fractals theory.

A. Problem Statement

Previous work (Mier, 2000) proved that PTT model (Phan Thien and Tanner, 1977)
predicts rheological properties accurately in the steady state, but the predictions in
the transient state are not that accurate. Besides, several authors (Larson, 1987;
Stephenson, 1989) had showed some important limitations for this model. These
limitations of PTT model and other constitutive equations have caused the creation
of new constitutive equations, like the POM-POM model (McLeish and Larson,
2000).

On the other hand, most rheological models use empirical parameters to fit the
experimental data. Those parameters have no theoretical explanation; therefore
the models cannot relate the polymer behavior in extensional flow to their
molecular features, or to other fundamental aspects.




B. Research Proposal and Objectives

The primary objective of this research is to improve the existing constitutive
equations by reducing the number of empirical parameters, to better explain
polymer meit's behavior in extensional flow during transient state. In addition, there
are the following particular objectives:

1. Rheological characterization of isotactic and syndiotactic polypropylene resins.

2. ldentification of rheological differences between similar isotactic and
syndiotactic resins

3. Modification of the PTT model in order to obtain better predictions of
elongational behavior of polyolefins.

4. Build the basis for a new model that explains satisfactorily the rheological
behavior of polymer melts using fractals theory.

C. Justification

There are several rheological analytical techniques used in the characterization of
polymers, however such techniques not always discriminate resins with similar
quality control data but with different processing behavior. An example of a
technique typically used for discrimination of resins with similar steady state
viscoelastic data is the Cogswell analysis. Such technique is time consuming,
requires the use of costly equipment and uses empirical parameters not
necessarily related to typical molecular weight distribution features. Therefore,
there is a need for a constitutive equation capable of predicting the elongational
transient behavior of a polymer based on the fewest number of steady state linear
viscoelastic data, on molecular weight and/or other physical parameters. Based on
Mier's (2000) results, it sounds reasonable to propose a modification to the PTT
model in which the compressibility effect can be taken into consideration and in
which the deformation tensor might need a modification altogether.




it is worth to remember that the PTT model presents a relationship between strain
and elastic energy in addition to the inclusion of a set of multiple relaxation times,
which can easily be obtained in the laboratory.

D. General Methodology

To guarantee the accuracy of the results generated in this project, special care was
taken in materials preparation, standard quality control tests, rheological
technigues and validation of the constitutive equations.

1. Materials Preparation

All resins were prepared using the same conditions and with the same additive
package, so that any variations observed could be associated to changes in the
polymer's molecular structure and MWD and not to other factors.

2. Standard Quality Control Techniques

information on reproducibility on the quality control techniques was included to
determine if reported differences were significant or not.

3. Rheological Techniques
Standard well-documented and proven procedures were followed in each
rheological test. Conditions previously documented were used (Aguirre, 1999;
Mier, 2000).




E. General Organization

This thesis is divided in thirteen chapters, including the present one. Chapter Il
presents a literature review as a theoretical background. Chapter lil explains the
principles behind the standard quality control techniques and the rheological tests.

The experimental data is presented in Chapters IV through VII. Chapter IV
presents the resins' typical quality control properties (standard properties). Such
properties are the melt flow index (MFI), xylenes solubles percentage analysis
(PS), molecular weight distribution (MWD), differential scanning calorimetry (DSC),
and isotacticity analysis (NMR). Chapter V presents the oscillatory data and
Chapter VI presents the shear and elongational viscosity from capillary data.
Chapter VI presents the creep and recovery compliance experimental data.

Chapter VIl presents the development of the PTT model, as well as its rheological
functions predictions. Chapter IX shows the mathematical modification of the
model and its rheological functions predictions. Chapter X presents the
development of the POM-POM model and its rheological functions predictions.

Chapter X! presents a discussion of results in addition to several empirical
relationships that were found among the rheological parameters and the standard
quality properties. Chapter Xll presents a new way of modeling polymer's melt
using a fractals approach. Finally, Chapter XIll presents the conclusions of the
project as well as a summary of findings and recommendations for future work.






CHAPTER Ii. Theoretical Background

This chapter presents a complete literature review. It is divided in four sections.
Section A presents an introduction to rheology, section B shows some empirical
models while section C presents constitutive equations, and finally section D
shows an introduction to fractals theory.

In some cases, the nomenclature used by the original consulted articles is changed
to avoid confusions. The reader can look at the nomenclature list given in the first
pages of this thesis.

A. Introduction to Rheology

Rheology is the science that deals with the way materials deform when forces are
applied to them. The term is most commonly applied to the study of liquids and
liquid-like materials such as paint, catsup, oil well drilling mud, blood, polymer
solutions and molten plastics. However, rheology also includes the study of the
deformation of solids such as occurs in metal forming and the stretching of rubber.
(Dealy, 1990).

To learn anything about the rheological properties of a material, we must either
measure the deformation resulting from a given force or measure the force
required to produce a given deformation. (Dealy, 1990).

There are two principal aspects of rheology. One involves the development of
quantitative relationships between deformation and force for a material of interest.
The information for the development of such a relationship is obtained from
experimental measurements. For a linear elastic material or a Newtonian fluid,
such simple observations are sufficient to establish a general equation describing




how such material will respond to any type of deformation. Such an equation is
called a "constitutive equation” or a "rheological equation of state". (Dealy, 1990).

The second aspect of rheology is the development of relationships that show how
rheological behavior is influenced by the structure and composition of the material
and the temperature and pressure. Ideally, one would like to know how these
parameters affect the constitutive equation, but this has not been accomplished at
the present time, except for very simple materials such as Newtonian fluids.
(Dealy, 1990).

Molten plastics are rheologically complex materials that can exhibit both viscous
flow and elastic recoil. A truly general constitutive equation has not been
developed for these materials, and our present knowledge of their rheological
behavior is largely empirical. (Dealy, 1990).

1. Strain and Stress Tensors (Bird, 1987)

The velocity field for simple shear flow is given by the velocity field:

Oy =Y ¥ 21
v, =v,=0. (2 2)

¥y z

The velocity field for extensional flows (shear free flows) is given by generalized

forms:
1.
v, = —58(1+b)x , (2.3)
1. 2.4
Uy =——2—£(1_b)y » ( . )
v, =+£&, (2.5)

z




where £is the extension rate and b is a constant that is either 0 or 1. When b =0
and £> 0, the flow is a uniaxial extensional flow. When b =0 and £< 0, the flow is
an equibiaxial extensional flow. When b = 1, the flow is a planar extensional flow.

In uniaxial extensional flow, the system is stretched along the z axis while it
contracts uniformly along the x and y axis in such a manner that the volume is kept
constant. The elongational (Henky) strain is given bye=¢(r—¢'). In biaxial
extension flow, the differential element is stretched equally along the x and y axis,
but contracts in the z direction. In planar extensional flow, the system is stretched
along the z direction, but is constrained only in the x direction.

The different elongational flows have different effects on the orientation of the
macromolecules, for example the uniaxial extensional flow impart significant
molecular orientation (compared to shear flow), while biaxial extensional flow does
not lead to a strong degree of molecular orientation.

For shear flow, the components of the rate of strain (deformation) tensor are:

010
7, =71 0 0] (2. 6)
00 0

For extensional (shear free) flow, the components of the rate of strain tensor are:

—&(1+b) 0 0
Fi=| 0 —&1=b) 0} 2.7

0 0 2¢

For a viscoelastic fluid in shear flow, the components of the stress tensor are:




r=| 7, r,+p 0 . (2.8)

T +D 0 0
r={ 0 T,tp 0 . (2.9
0 0 T,+D

where p is the isotropic pressure. For Newtonian fluids, 7, =7, =7_=0.

Some other continuum mechanics tensors components for shear and shear free
flows can be found in appendix C of the monography by Bird et al. (1987).

2. Materials Functions

The stresses that are customarily used with shear flow are:

Tyx z—n(Y):ny! (2. 10)
T =Ty =~F, (VT3 2. 11)
Ty — T z_\P2(')")i’)2le (2 12)

where ¥,y) and w,y) are the first and second normal stress coefficients,

respectively.

The stresses that are customarily used with shear free flow are:
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T, =T =—N;(£bJE, (2. 13)
T, — T, =—T,(£b)¢, (2. 14)

where m,(¢,b) and n,(¢,b)are shear free viscosity functions. For the special case

when b =0, n,(£0)=0, and 7n,(£0)is equal to the elongational viscosity:

M.(€)=m,(e0), (2. 15)
n,(€0)=0. (2. 16)

For &¢>0, n,describes elongational flow, and for ¢<0, n_ describes biaxial

stretching.

3. Convected Derivative Tensors

It is important to define some tensors used frequently in constitutive modeling:

Velocity gradient tensor: Vo (2.17)
Rate-of-strain tensor: ¥ = Vo+ (Vo) (2. 18)
Vorticity tensor: o = Vo—(Vv)’ = 2Vo—v (2.19)
First rate-of-strain tensor: Yoy =7 (2. 20)
, D
Nth rate-OF-Strain tensor: ¥ .. = =¥ = (VO ¥ + ¥y - (VO] (2. 21)
Contravariant convected time derivative of the stress tensor:
D
T =51 {(VO) -1 +1- (V) (2. 22)

For convenience, the components of Vv, y , and @ in four coordinate systems are
completely given in appendices A and B of the monography by Bird et. al. (1987);
while T and 11y for shear and shear free flows are given in appendix C of the same
monography.

11
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Finger strain tensor: B(rtt')={E-E'}, (2. 23)

Cauchy finite strain tensors: B~ (r,t,t')={A" - A}, (2. 24)
Relative finite strain tensors: ~ y"\(r,1,1')= {A" - A} -5, (2. 25)
Vig(rt.t')=8—{E-E'}, (2. 26)
First scalar invariant of the Finger strain tensor: h=trB, (2. 27)
Second scalar invariant of the Finger strain tensor:
I2=(112)[ (tr B)* - tr (B?)), (2. 28)
Third scalar invariant of the Finger strain tensor: I3 =det B, (2. 29)

where 4; are measures of the displacements at time ¢’ relative to the positions at
time t, whereas Ej; are measures of the displacements at time t relative to the

positions at time ¢, and & is the unit tensor. Whenever components of 4, E, y%,

and vy, the reader can find complete tabulations for general deformations in

rectangular, cylindrical, and spherical coordinate systems in appendices B and C of
Bird et al. (1987) work. In addition, appendix C of the same work (Bird et al. 1987)

gives expressions for 4, E, y[‘”, Y101 1. 12, @nd I3 in rectangular coordinates worked

out specifically for simple shear flows and for shear-free flows.

B. Measurements and Empirical Models

1. Die Swell

A viscoelastic correlation can be useful for estimating the extrudate swell, which is
the recovery expansion that a polymer exhibits on leaving a die. It has been
suggested that die swell can be correlated to the primary normal stress difference
N; and to the shear stress at the wall, r,. The most common is that proposed by

Tanner (1970):

12
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w

2 1/6
D N
B=—2=01+ 1.0+l Ly , (2. 30)
D 2

o

where D, is the diameter of the extrudate and D, is the capillary diameter. The
capillary die swell, B, is also a function of the capillary L/D,, the entrance geometry,
the exit geometry, the time after a fluid element leaves the die, the time required for
the melt to pass through the die, and the longest relaxation time (1) of the fluid
(Baird, 1998).

2. Polidispersity Index

Zeichner and Patel (1981) found that the breadth of the MWD (PDI) for a family of
polypropylene resins was related to the value of the crossover modulus G; ; which

is the value of G’ and G” are equal at the crossover frequency we.

103

Pl = G @i=1Pa

@. 31)

Shang (1993) questioned the Zeichner-Patel correlation arguing that the crossover
point is sensitive to the strain at which the oscillatory data is obtained. He
suggested using 5% strain for resins with MFI > 30 and 15% for resins with MF| <
30.

Chambon (1995) used the Zeichner-Patel correlation and found that it predicted
the same PDI for several resins, while the GPC data reported different PDi values
for those resins. They suggested estimating PDI by the reciprocal of the slope of
plots of tan & versus frequency. The PDI should be estimated from specific regions
of the plot: for resins with MFR < 8, the slope in the region 1 < tan 3 < 4 should be
used; while for resins with MFR > 8, 2 < tan § < 10 region should be used.

13




3. Steady Shear Properties

Dynamic oscillatory properties are easier to measure and can be obtained over a
wide range of frequencies compared to the range of shear rates that can be
obtained using a rheometer. With the following relations, is then possible to obtain
steady shear rheological data from linear viscoelastic data over a wide range of
shear rates.

It has been observed experimentally for many polymers that the magnitude of the
complex viscosity, and the shear viscosity are identical (at least for flexible

polymers) if they are evaluated at the same values of @ and y. This relation is

known as the Cox-Merz rule (Cox and Merz, 1958).

2
_rrol 1 n”(w)J
o= n(m)[ +(ﬂ'(co)

where n’(0) and n”’(o) are the components of the complex viscosity n*(o).

0.5

n(i)=m’(o)

(2. 32)

-

A second, no less important, Cox-Merz rule relates the slope of the viscosity curve
to the dynamic viscosity (Cox and Merz, 1958):

dryx (7‘)/ r
_E?_=n@mmy (2. 33)

Laun (1986) proposed a relationship between the first normal stress coefficient and
the storage and loss modulus:

0.7 2 0.7
LG G\l _2(e) W'(®)
IPI('Y)=2;D‘2‘"[]+(—G*:T] :I | = o |71+(n'((‘0)] :l

o=y

(2. 34)

o=y
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An alternative form relating the mechanical loss angle and the in-phase component
of the complex viscosity is (Laun, 1986):

P () =277 (secd)" w'y (2. 35)

4. Time-Temperature Superposition Principle

Material functions (rheological properties) taken at several temperatures can be
brought together on a single master curve. This simplifies the description of the
effect of temperature and it makes possible to present the material function in a
much broader range of time or frequency than can ever be measured at a single
temperature. This principle is named Time-Temperature-Superposition (TTS) and
is useful for the analysis of non-isothermal flows as happens, for example, in
industrial melt spinning.

The linear viscoelastic behavior of a polymer melt can be described using a model
made of N Maxwell elements in parallel. Each of them is defined by the rigidity of
the spring G; and the relaxation time A; which is the ratio between the viscosity of
the dashpot and the rigidity of the spring (1, =n,/G,). Such model is called the

generalized Maxwell model and their 4, at a different temperature T are related to

the reference temperature Tq:
A(T)=a;M(T,) (2. 36)

where a,is called the horizontal shift factor. The coefficients G; are altered by a

change in temperature by:
G(T)=G,(T,)Ip/T,p, ' : (2. 37)

Using the above two relationships, the relaxation modulus of the generalized

Maxwell fluid is: 7088486
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Tp &
> G(T, Jexpl~t /(\,(T, )ar)] (2. 38)

oVo i=l

G(t,T)=

Defining G,(t)=G(1,T)T,p, /Tp and ¢, =t/ a, :

Glt, )= S G (T, Jexpl=t, /7T, (2. 39)

i=l

Thus, if G, is plotted as a function of ¢, the data taken at various temperatures
should fall on the same master curve as those taken at the reference temperature
To.

All linear viscoelastic properties obey a time-temperature superposition principle. It
is found that the shift factor is given by:

_N(T)Tp, (2. 40)
Mo(T, )Tp '

T

Since the ratio 7p_/7p has almost no change at ordinary temperature ranges.

_N,(7T)
a, —mﬂo(To) ) (2.41)

Two types of exponential functions have been used for describing the temperature
dependence of a,. The WLF equation (Hamed, 1988) holds in the range of
temperatures Tg to Tg + 100 °C, where Tg is the glass transition temperature for

the polymer.

_n(T) -C/(T-T,)

= - , Tg<T<Tg+100°C (2. 42)
n(T,) C;+(T~T,)

T
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where C; =900/Cjand C; =51.6 +(T,-T,).

For temperatures greater than Tg + 100 °C, the Arrhenius-type equation (Mavridis
et. al., 1992) is used:

_M(T) _  Ey(1 1 T>Tg+ 100 °C 2. 43
T N(T,) exp[R( H i @8

where Ey is the horizontal activation energy for flow.

Similar equations to 2.39 can be obtained for other material functions (Dealy,
1990):
G,(ar0)=arofG,(1, )sinl(a,0)(1, )4t, , (2. 44)
/]

G, (aTm)=aTmTG,(r,)cos[(aTm)(t,)]dr, (2. 45)
[}

where G.and G, have the same relationship to the storage modulus G’ and the

loss modulus G” as G, has to G.

If the ratio 7,p,/Tp varies little with temperature, superposition can often be
accomplished by plotting: G(t) versus t/a,, G'(w) versus wa,, G"(0) versus oa,,

n' () a, versus wa,, n’(0)/ a, versus wa,, J(t) versus t/a,.

5. Viscosity Models

Equations for modeling viscosity functions have been proposed by several authors,
and are summarized in Darby (1976) and in Dealy and Winsburn (1990):

17




n=mp|"” Ostwald-de Waele (power law) model, (2. 46)
a-1
L (—TX—J Ellis model, 2. 47)
n Tira
N2 P
n=rn, [1 +(47) T Carreau model, (2. 48)
n—1
7=, [1 + (,17)“}7 Yasuda model, (2. 49)
a Y\
n=n [(1 +|47] )} Cross model, (2. 50)
n=n1+06(47)™ ' Bueche-Harding model, (2. 51)

where: n describes the degree of deviation from Newtonian behavior; m, which
has units of Pa.s", is called the consistency; n. is the zero shear viscosity; 145 is
the value of 1ty when n=no/ 2; A is the reciprocal of the shear rate at the onset of
the shear thinning behavior, the parameter “a” indicates how fast the viscosity
decreases with shear rate.

The power law model introduces an error in the very low shear rate region by not
assuming that n = 1. Also the slope of the viscosity curve in the power law region
is not exactly a constant, since the flow index n decreases with increasing shear
rate. Thus the power law equation holds exactly only for limited ranges of shear
rate, for a given value of n. On the other hand, the Ellis model predicts a
Newtonian plateau at very low shear rate.

6. Zero-shear Viscosity
Until recent years n, has been estimated by relations of the type n, =kM,?. Such
relation requires viscosity measurements at shear rates y<<0.011/sec. Such long

time measurements can promote chemical changes in the melted polymer.
Another common way to estimate n, was from experimental creep data. Since J(1)

= Jg + Je(t) + t/no at very long times, J(t) = t/n,, $Q no = At/ AJ(R).

18




Recently, Bonilla and Mier (2000) predicted the zero shear viscosity for
polyproylene resins also from experimental creep data, but with the difference that
only 0.1 seconds of creep data are enough to make the predictions for high MFI PP
resins (20 < MFI < 40) applying a constant shear stress of 300 Pa. The estimation
method is known as the McLaurin Series Method (MSM) since it is based on the
McLaurin series expansion. The MSM was applied to the Jeffreys (1929) modei:

Ay = —1(2), (2. 52)
3\ a,
ajd,
=02 2.563
! aq +23212 ' ( )
1{ A -2
Mo =M =-5(~‘—~-2~2-J, (2. 54)
azhy

where the constants a4, a; and as known fitting parameters of a third order
minimum square regression polynomial for experimental data of creep J(t) versus
time (for at least 0.1 seconds).

C. Constitutive Equations

There is no usable constitutive equation that describes quantitatively a/f the flow
phenomena of polymer melts. In the absence of it, scientists and engineers use
equations that predict only the flow behavior that is important to the particular
problem. All constitutive equations for polymer melts are special cases of a, still
unknown, very general constitutive equation (Goddard, 1967):

(%)= — jG,(t ~0)Tdr -é j jG,,(t —tt=)f e ad - (2. 55)

—20—0D
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where G, Gq1 are characteristic material functions; t, t*, t” are integration
variables, and t is the present time; o is the vorticity tensor (which its components

can be found in Bird, 1977); T is the corotating rate of strain tensor, which can be
expanded in a Talylor series about t’ = t (Bird, 1977):

It )=y - (1~ t'{g—ﬁu foeVyl+ %—({m oy}-{ -m})J +... (2. 56)

1. Criminale - Ericksen - Filbey Equation
Equation 2.55 is not a practical form to represent the stress tensor. However, by
keeping only the first two terms of the Taylor series; for steady shear flows, the
Criminale-Ericksen-Filbey (CEF) consitutive equation is obtained (Criminale,
Ericksen, and Filbey, 1958; in Bird, 1987):

1= —m‘z-(%‘l’l +‘P2){7-7}+—;—T1[%+{u-w}%({m-?}—{?-m})] (2. 57)

where n,y,,w, are the viscosity, first, and second normal stress difference

coefficients, respectively. They are all functions of the magnitude of the rate of

strain 7 = /112(4:7).

2. Doi - Edwards Model

Doi and Edwards proposed a constitutive equation based on the concept of
entanglement (reptation) described by de Gennes (1971). They assumed that
surrounding molecules form mesh of obstacles through which a polymer chain
cannot pass. The chain is thus confined to a tube-like region. When the material
is deformed, the mesh and the tube deform affinely, but the strand can slip or
retract within the tube, and returns quickly to its equilibrium length: the orientation
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of the strand, however, remains that of the deformed tube. From these
assumptions, they derived a constitutive equation:

r= [m(—t)(t, )t (2. 58)
where the memory function is given by:

mit—t')= Z%exp[%} (2. 59)

1

and the relaxation moduli and times (G; and ;) are determined by the reptational

diffusion model:

8G

Tl
G = kT (2. 61)
5= 2 62)

1

Ag is the longest relaxation time and v is the number of entanglements per unit
volume. The non-linear strain measure Q is a “universal tensor’ dependent only
upon the deformation history and not upon material properties.

3. Giesekus Model

The Giesekus model is based on a kinetic theory of closely packed polymer chains
and on a series of simplifications leading to an equation for the extra stress that
contains no explicit integrals over the configurations of individual molecules
(Giesekus, 1982). The extra stress for the Giesekus model is given by
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o 1 .
Ty + jl—G_Tz toT= Gy (2. 63)
where « is an adjustable (“fitting”) parameter.

4. Jeffreys Model

or . oy
L, A=, )
T+ A py I7A (y+ ) 6t) (2. 64)

This equation contains two time constants A1 and A, (the “relaxation time” and “the
retardation time”, respectively). It was proposed for the study of wave propagation
in the earth’s mantle. |

5. Johnson ~ Segalman Model

The Johnson-Segalman model is given by

T +a(%-r,. t7, -g-)+11-r =G,y (2. 65)

The first two terms constitute the Gordon-Schowalter nonaffine convected
derivative with o being a slip parameter. This parameter is a single nonlinear
parameter of the model that is not obtained from the linear spectrum.

The model violates the experimentally observed Lodge-Meissner relation which
relates the first normal stress difference to the shear stress after a step shear strain

of magnitude v, by the following equation

y==lw (2. 66)
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It is know that the J-S equation shows singularity in the steady state viscosity in
uniaxial extension. These deficiencies limit the usefuiness of this model. (Larson,
1987).

6. Kaye ~ BKZ Model

The K-BKZ equation was proposed by Bernstein, Kearsley, and Zapas (Bernstein
et al., 1964). A. Kaye (1966) independently developed the same concept.

Movit-r1,1,)] [ov(t-r.1,1,)] :ldt', (2. 67)

(- | | — N e

—00

where V is an scalar function of the arguments indicated; |4 , I, are the first and
second scalar invariants of the Finger strain tensor, respectively. Very little work
has been done on describing material functions or solving flow problems with the
K-BKZ equation in its general form (equation 2.67). Instead, it is common to
introduce a product of time-dependent and strain-dependent factors as follows:

t [ow(l, I aw(l, I
T(t)= fM(t—t'{—-—(i—dy[m ( — 2 2) “’]Jdt (2. 68)

where M(t-t) is the linear viscoelastic memory function and W is a potential
function that must be determined experimentally by studying large and rapid
deformations. Depending on the assumptions, this model can lead to the Rouse-
Zimm model for dilute solutions, the Lodge network model, the Tanner-Simmons
network rupture model, the Doi-Edwards model, the Wagner modei or the
Papanastasiou model.

7. Larson Model

The separable differential model proposed by Larson is given by
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2avy 1
7o+ 55% t(r +GI)+ —7=Gp (2. 69)

where / is the unit tensor.

The first two terms represent a nonaffine convected derivative. o describes the
strain softening® character of the material, and causes equation 2.69 to vary
between the upper-convected Maxwell model and an approximation to the Doi-

Edwards model for o values of 0 and 0.6, respectively.

8. Marruci (Acierno) Model

The network model proposed by Acierno (1976), more commonly known as the
Marruci model, takes the form

1 1
x1'4(;rjm+§r =x"Gy (2.70)

where x satisfies the evolution equation

ox 1 44 a _o4f rr %
—— = l-x)—— —_— 2. 71
o= 7Y Umx)-o [2@:) 2.71)

The scalar dimensionless quantity x can be considered as a structural parameter
that represents the degree of connectivity of the macromolecular network with
respect to that at equilibrium. x=1 corresponds to the equilibrium structure and x<1
describes the deviation of the existing structure from equilibrium. The 1.4

" The term strain-softening here refers to the behavior of the transient viscosities after the start-up
of flow. it means that for strain rates in the nonlinear regime, the visocisty during the start-up falls
below the linear viscoelastic (low strain rate) response. On the other hand, strain-hardening, means
that the viscosity rises above the linear viscoelastic response (McLeish, 1998).
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exponent in the above equations is empirical and originated from the dependence
of shear viscosity on the 3.4 power of the polymer concentration in high molecular
weight concentrated polymer solutions or melts (Larson, 1987).

9. Phan Thien - Tanner Model

The multi-mode Phan-Thien and Tanner (PTT) model arises from a molecular
network theory. The PTT model is expressed by:

=1, (2.72)
i=}
2rs)s, + 4, 5+ S 4 (o5, 45, ) =07 .79
oA,
Z(trr,) = exp(————‘—trtij (2.74)
N

where the shear-free parameter a is obtained from elongational viscosity data, the
relaxation spectrum G; = n; /A; is obtained from linear viscoelastic measurements,
and the shear flow parameter £ is obtained by fitting the viscosity curve with the

equation ,,(};):i____’L__ﬁ. Z(trt,)is the rate of creation and destruction of
T1+4(2-5)Ay)

junctions. Further explanations of the constitutive equation will be covered in
chapters VIit and {X.

10. Pom - Pom Model

McLeish and Larson (1998) recently proposed the “pom-pom” model to describe
the complex rheology of branched polymers. A refined model with a molecular
drag-strain coupling has also been proposed (Blackwell, 2000) to smooth the sharp
transitions in the extensional viscosity at the maximum stretch condition.
Verbeeten (2001) proposed an extension to the model to improve the performance
of the original model. The original model limitations were:
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- Unbounded orientation for £4,,> 1.

- Non-smooth elongational viscosity due to maximum stretch condition.
- Second normal stress coefficient equali to zero.

According to Verbeeten (2001), the eXtended Pom - Pom (XPP) model solves
these limitations, by eliminating the maximum stretch condition and modifying the
orientation. The XPP model is written as:

r=G,3A%-1) (2. 75)

where S is the orientation tensor and it satisfies the evolution of orientation
equation:

Sy + 207 SIS + . lAz [3aA4S S +{1-a=3aA* (S - S))S - -(1:3-‘3‘_)1] =0 (2.76)

0b

hop IS the relaxation time of the backbone tube orientation, « is a fitting parameter
related to the amount of anisotropy of the material. A is the stretch and satisfies the
evolution of stretch equation:

A =A[yzs]—11—(A—1) (2. 77)

5

s is the stretch relaxation time, and it is given by
A, = A,e (2.78)

where v is a measure of the influence of the surrounding polymer chains on the

backbone tube stretch. It is approximated by
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y=2 (2.79)

where q is the number of dangling arms in the ‘pom-pom” molecule. This is taken
as a fitting parameter too.

Further explanation of this model will be covered in chapter X.

11. Wagner Model

Wagner (1976) is a special case of the K-BKZ constitutive equation (equation 2.58)
with:

M(Illalz) =exp(—ﬂ\/0£[1 +(1'~6¥)12 -3), (2. 80)
Wlr1a) (2. 81)
I;

However, the potential function W has been expressed in a variety of expressions,
for shear flow, equation 2.80 turns into:

oW(l;,1,) 2 2
—-—71—-——-=exp(—-ﬁ Yix) for \vix <13 (2. 82)

Wagner (1976) also used a two-exponential function to improve the predictions:

Wi}l 7
_._(_I_j__z_)= () exp(-B Y2 ) + (1= Vexp(-Bayfvi) for |you > 13 (2.8)

And for elongational flow, the damping function is:
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ow(i,;,15)

T exp(—Bya(2e ™ +e25) 4 (1-a)(26% +e~2% - 3) 2. 84)

The potential function is called the damping function, since it describes the
diminishing of the fluid memory by the various kinematic events of the past.

Wagner model can be restated in terms of the Finger tensor as follows:

() = jM(t—t’)h(]l,Iz)[B(t')— sl (2. 85)

where M(t-t)) is the linear viscoelastic memory function, 14 and I, are the first and

second invariants of the Finger tensor B, § is the unit tensor, and A(/,,1,)is the
damping function (A(I,,7,)< 1), and represents the probability of an entanglement

surviving at a given strain. h(/,,/,) tends to one for small deformations resulting in
the Lodge rubber-like behavior. The critical point in the rubberlike-liquid theory is
the assumption that the flow has no effect on the rate of formation and dissolution
of network junctions (entangiements).

12. White - Metzner Model

The White-Metzner model has the advantage of being relatively simple and still
giving reasonable shapes for the shear-rate dependent viscosity and first normal
stress coefficient and can be used to describe fast time dependent motions. In
steady shear free flows the model gives infinite elongational viscosities; the exact
value of elongation rate at which these viscosities become infinite depends on the
behavior of shear viscosity. The constitutive equation is given by

] .
r + 7 =GF (2. 86)
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where A is a relaxation time that depends on the deformation rate 7 . One

suggested form of this dependence (Larson, 1987) is

A=—=2t

1
1+aA(try:y )2 (2.87)

D. Introduction to Fractals Theory

Chaos science uses a different geometry called fractal geometry. It is providing us
with a new perspective to view the world. Fractal geometry is a new language used
to describe, model and analyze complex forms found in nature.

Fractal geometry is a mathematical tool for dealing with complex systems that have
no characteristic length scale. A well know example is the shape of a coastline.
When we see two pictures of a coastline on two different scales, with 1 cm
corresponding for example to 0.1 km or 10 km, we cannot tell which scale belongs
to which picture, both look the same. This means that the coastline is scale
invariant or, equivalently, has no characteristic length scale (Armin, 1994). Other
examples in nature are rivers, mountains, clouds, DNA, and, of course, polymers.
Scale invariant (no characteristic length scale) systems are usually characterized
by fractal (noninteger) dimensions.

A common way to measure the fractal dimension of an object is the Box Counting
Method. This method consists in lay over the object to be measure a grid of lattice
constant (box size) . The number of boxes, Ng(e), which cover any part of the
object (the occupied or intersected boxes), are counted and each data couple
Ng(e), € is tabulated. The same procedure is repeated with a set of successively

smaller e. Log [Ng(g)] is plotted versus log [1/e] and the slope of the resulting
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straight line (if such indeed exists) is taken as the fractal dimension of the object. If
the resulting plot is not a straight line, or if the slope of the resulting straight line is
an integer, then the object is not a fractal (Rothschild, 1998).

Fractals objects could be classified as deterministic and random fractals.
Deterministic fractals are generated iteratively in a deterministic way, while random
fractals are generated using a stochastic process. Although fractal structures in
nature are random, it is useful to study deterministic fractals where the fractal
properties can be determined exactly. By studying deterministic fractals one can
gain also insight into the fractal properties of random fractals, which usually cannot
be treated rigorously (Armin, 1994)

The simple fractal model is the random walk. Imagine a walker on a square lattice.
In one unit of time, the walker advances one step of length a to a randomly chosen
nearest neighbor site. The path that the walker follows after N number of steps is
called a random walk. The random walk model is very useful in science; its most
important use is to simulate the Brownian motion phenomena. Another important
model is the self-avoiding walk. It is very similar to a random walk, but in this
model, the walker can not return to a site in which he has already been.

In the past years, engineering empiricism has given way to obtain systematic
analytic techniques in the study of the kinetics of transport in disordered media;
however, these have been mainly based on different versions of the theory of
random walks. Therefore, an understanding of the kinetics of transport in fractal
and disordered media is almost necessarily phrased in terms of the random walk
model (Armin, 1994).

This mode!l is the simplest way to model a polymer chain, which could be
considered as a fractal object. However, actual polymer chains have steric
interaction that avoids monomers from placing on the top of each other. Random
walk and self-avoiding walk models describe a polymer in a solvent. 1t is assumed
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that polymer chains are made of N statistical units (some monomers units) which
are randomly oriented with respect to each other. Random walk describes a linear
chain where no interactions are present between monomers. Self-avoiding walk
describes an interaction between monomers. Further information about fractals
theory will be covered in chapter XIlI.
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CHAPTER lil. Experimental Techniques

This chapter presents the experimental techniques used for the characterization of
eight polypropylene resins. The resins were tested for their rheological response
under frequency sweeps, capillary and creep and recovery compliance. Standard
well-documented and proven procedures (Bonilla, 1996; Aguirre, 2000; Mier, 2000)
were followed in each rheological test.

A. Materials

Four pair of isotactic and syndiotactic polypropylene resins were used. Resins with
the same meit flow index (MFI) were selected in order to observe differences in
their rheological response. A small amount (approximately 0.1% wt) of 2-6 di-tert-
butyl-p-cresol, BHT, (as stabilizer) was added to all samples. Table Ill.1 shows the
description of the eight polypropylene resins.

Table iil.1. Polypropylene resins used in the research.
Resin ID MFI XS Type Lot

Fi?;‘g'fs A | 2 | 4 | Syndiotactic | HB-77239
Fiﬁﬂas B | 4 | 4 | Syndiotactic | HB-77361
F‘;‘g‘?"fs Cc | 12 | 5 | Syndiotactic | HB-77141
Fi;\?g'{’ﬂs D | 20 | 6 | Syndiotactic | Lot 68459
A;gf;réa E | 2 | 25| Isotactic | Lot77081
A;zféga F | 4 | 14| Isotactc | Lot69342
A;gfsiga G | 12| 2 Isotactic | HB-78128
Aet’ggr;a H | 18| 2 Isotactic | Lot 71269
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B. Standard Quality Control Techniques

The melt flow index (MFI), the molecular weight distribution (MWD), the percentage
of xylene solubles (XS), the differential scanning calorimetry (DSC), and the
synthesis’ effectiveness by nuclear magnetic resonance (NMR) are the standard
quality control attributes commonly used for PP resins.

1. Melt Flow Index

The melt flow index measurements (ASTM D1238) were carried out in a Tinius
Olsen Model MP600 at 230°C. The equipment has a die diameter of 0.0825
inches, a die length of 0.315 inches, a barrel diameter of 0.375 inches, and a 180°
die entrance angle. A constant load of 2.16 kg is applied to the plunger and the
amount (in grams) of material flowing during a given time is recorded. The MFl is
defined as the amount (in grams) of material flowing for 10 minutes.

The typical experimental error of a MFI study can be + 10%; so duplicates samples
are at least required and an average value is reported. A MFI measurement
represents a single shear rate point (approximately 10 sec™) in the shear viscosity
curve, if elastic and end effects are not present.

2. Percentage of Xylene Solubles

A Soxthlet extractor is used to extract material soluble in xylene. The xylene
soluble portion of the resin is extracted and reported as a weight percentage in the
sample. This portion is related to the low molecular weight and atactic species.

3. Molecular Weight Distribution

The molecular weight distribution (MWD) curves were determined using a Waters
Model 150C Gel Permeation Chromatograph (GPC). The tests were performed at
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135°C, with tricloro-benzene as the mobile phase. The system uses three columns
in series: two Shodex 806 m/sec columns and a Waters Styragel HT column. The
three columns used a styrene-divinyl benzene packing gel. A set of narrow
molecular weight PS standards with Mw ranging from 8x10° to 520x10° were used
for calibration.

4. Nuclear magnetic Resonance

NMR can be used to determine the isotactic or syndiotactic nature of polymers.
The effectiveness of synthesis of an isotactic or syndiotactic polypropylene is
attained by doing a NMR test on the xylene soluble fraction extracted from the
polymer sample. Atactic chains and low molecular weight isotactic chains are
soluble in some solvents and can be washed out of a polymer sample.

In an NMR study the soluble material is extracted from the samples in two steps.

1) Xylene soluble analysis: In this test the polymer is dissolved completely in
boiling xylene. The solution is allowed to cool slowly overnight (in a normal
xylene solubles procedure the solution is placed in an ice bath to speed up the
crystallization). The solution is then filtered by gravity through a coarse filter
paper and the filter cake is washed with cold xylene. The filter cake is the
xylene insoluble fraction.

2) Heptane extraction: The xylene insoluble fraction is granulated, placed in an
extraction thimble and extracted with heptane in a Soxtec apparatus. The
procedure places the extraction thimbie in boiling heptane for one hour, then it
is raised and rinsed with refluxed heptane for one hour. After drying it in a
vacuum oven the sample is ready for NMR analysis

To test the effectiveness of the xylene soluble extraction a second xylene soluble
procedure can be performed on the sample before heptane extraction. This is
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done because there could be some trapping of soluble material in the crystalline
(insoluble) fraction during recrystallization.

5. Differential Scanning Calorimetry

A differential scanning calorimeter (DSC) has the ability to program a heating cycle
and precisely control the cooling cycle to impose a thermal history upon a sample.
A control of the thermal history is a requirement for the complete characterization
of semi crystalline polymers. The meiting profile of a polymer during heating can
be different to the crystallization profile during cooling. Thermal history can have a
major effect on the properties of a given polymer. Different thermal histories can
produce a material with a different melting profile. To ensure an accurate DSC
analysis (melting or crystallization points and latent heats) all samples received the
same thermal history.

In the most popular DSC design, two pans sit on a pair of identically positioned
platforms connected to a furnace by a common heat flow path. In one pan, the
polymer sample is placed, while the other one (the reference pan) is left empty.
The furnace is turn on at a specific heating rate, usually something like 10 °C per
minute. The equipment is designed to assure that the heating rate stays exactly the
same throughout the experiment and that the two separate pans heat at the same
rate as each other. The polymer sample in one pan implies that there is extra
material, so it will take more heat to keep the temperature of the sample pan
increasing at the same rate as the reference pan. This difference is what is
measured in a DSC experiment.

After a certain temperature the heat will be absorbed by the sample, which means
a change (increase) in its heat capacity. This happens because the polymer has
just gone through the glass transition. Above the glass transition, the polymers
have a lot of mobility. They twist and struggle, and never stay in one position for
very long. When they reach the right temperature, they will have gained enough
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energy to move into very ordered arrangements, which are called crystals. When
polymers fall into these crystalline arrangements, they give off heat. This could be
seen as a big peak in the plot of heat flow versus temperature.

After the crystallization, if the heating continues, the polymer will reach another
thermal transition, melting. When polymer's melting temperature, or Ty, is reached,
those polymer crystals begin to fall apart, that is they melt. The chains come out of
their ordered arrangements, and begin to move around freely. There is a latent
heat of melting as well as a latent heat of crystallization. When the polymer crystals
melt, they must absorb heat in order to do so. Remember melting is a first order
transition, this means that when you reach the melting temperature, the polymer's
temperature won't rise until all the crystals have melted. This also means that the
furnace is going to have to put additional heat into the polymer in order to melt both
the crystals and keep the temperature rising at the same rate as that of the
reference pan. This extra heat flow during melting shows up as a large dip in the
DSC plot as heat is absorbed by the polymer. The heat of melting is measured by
calculating the area of this dip.

Reviewing the DSC process, we saw a step in the plot when the polymer was
heated past its glass transition temperature. Then we saw a big peak when the
polymer reached its crystallization temperature. Then finally we saw a big dip when
the polymer reached its melting temperature. Putting all together, a whole plot will
often look something like Figure 11.1.
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Figure 1ll.1. Schematic DSC plot.

It is worth to mention that crystallization peak and the meiting dip will only show up
for polymers that can form crystals. Completely amorphous polymers won't show
any crystallization, or any melting either. But polymers with both crystalline and
amorphous domains, will present all the features shown in Figure 111.1.

DSC can also tell us how much of a polymer is crystalline and how much is
amorphous. The percentage of crystalline polymer is calculated by (Dealy, 1990):

H,-H
%C?yS =—1”H—,—5—x100 (3 1)

m

where Hy, H¢ are the heat absorbed during the melting and the heat give off in
crystallization respectively. H*r is the latent heat of melting of the polymer.
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C. Rheological Characterization

1. Sample Preparation

A specific sample preparation technique was used for two main purposes: to have
homogeneous, bubble free and chemically stable samples; and to reduce
variability in the results. Standard well-documented procedures (Aguirre, 2000;
Mier, 2000) were followed in sample preparation. The samples were stabilized with
1000 ppm (0.1% weight) of 2-6 di-tert-butyl-p-cresol (BHT) and either used directly
for testing in the capillary rheometer or formed into 1 mm thick, 256 mm diameter
disks for oscillatory, and creep & recovery testing.

2. Testing Conditions

It is well known that the testing conditions are crucial in getting reliable linear
viscoelastic information. If testing temperature is too low, the material can be very
stiff and trimming of the sample to prepare the specimen for testing could be
difficult. If the stress is too high, centrifugal forces might expel the material from
between the plates. If strain is too high, stress overshoot can occur, and no
measurement can be done. If the testing time is too long, thermal degradation
might occur. Therefore, it was determined to use proven testing conditions (Mier,
2000).

3. Testing Equipment

The equipment used for rheological tests is presented in Table il.2. More specific
information about the equipment as well as their procedures, can be found in
Appendix C.
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Table I11.2. Equipment used for the rheological characterization.
Type of
T .
est Equipment Make Model

Frequency

Sweeps Strain Rheometer Rheometrics RAA
Shear and
Elongational Capillary Rheometry Rosand RH7-2
Viscosity
Creep and Controlled Stress .
Recovery Rheometer Rheometrics RS5000

4. Oscillatory Frequency Sweeps

In a small amplitude oscillatory shear experiment, a thin sample of material is
subjected to a simple shearing deformation such that the imposed shear strain is:

(1) = 7, sin(a) @3.2)

where y, is the strain amplitude and o is the frequency (rad/sec), both defined by

the experimenter. The imposed shear rate is then:

y(t) =y, cos(at) =y, cos(arn) (3.3)

where 7, is the shear rate amplitude. If y, is sufficiently small, the stress can be

calculated substituting equation 3.1 into o(t) = Gg * y(t) , resulting in a sinusoidal

stress:

oclt)=o,sin(at+75), (3.4)

where Gq = o,/ y,is the amplitude ratio, o, is the stress amplitude, and Sis a

phase shift, which is called the mechanical loss angle.
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The amplitude ratio G4 and the loss angle (&) are functions of the frequency, but
are independent of the strain amplitude as long as y, is sufficiently small. A

relation that has proven to be valid for a number of materials is (Booij and Thoone,
1982; in Dealy, 1992):

_x[dinG,)
ww~2[wmm} (-9

Knowing that o,= v,Gq and that sin(of+35)=sin(wt)cos(d)+ cos(wt)sin(s),

equation 3.3 can be restated as:
oct)=vy, [G'(cu)sin(a)t) + G"(a))cos(a)t)], (3. 6)
where G’(o) (the storage modulus) and G”(») (the loss modulus) are given by:

G'(w) =G, cos(F) 3.7)
G"(0) =G, sin(5) (3.8)

ifGa= o,/ y, then:

V(G (@) +(G"(w)) = JG3Cos*5 +G2Sin®S = G, Cos*s + Sin*s =G, =22 (3.9)

/0

tan( 8(n) ) = G”(0) / G'(w) (3. 10)
if tan( 8(w) ) = G”(w) / G'(w) then G”(») and G'(w) are the sides of a right triangle

that can be thought as the real (G'(»)) and imaginary (G”(»)) components of a

complex modulus:

41




G*(0)=G'(0)+iG" (o) (3.11)

Knowing that oo, = 0y,Gs = y,Gy n=0,/7,=G,/o, and that

sin(awt + &) = sin(wt) cos(5) + cos(wt) sin(F) , equation 3.3 can be restated as:
o(t) = 7,[n" (@) sin(wt) + 17 (@) cos(ar)], (3.12)

where n'(o) (the dynamic viscosity) and n’(e) are given by:

7'(@)=(G,/ ®)sin(d), (3.13)
7''(0)=(G,/ w)cos(d). (3.14)

From here, it can be obtained:

G,=0,17, =00 (@) + (7" (@) (3. 15)
tan(8()) = 7 (@)/ 7" (@) (3. 16)

n’(e) and n”’(m) can also be thought as the real and imaginary components of a

complex viscosity, which according to the empirical Cox-Mertz rule is related to the
steady shear viscosity:

n*(@)=n(@)-in'(e). ' (3.17)
Another important oscillatory parameter is the point at which the storage and loss
modulus are equal, which is known as the cross-over point. The cross-over point

G. is related to the polydispersity index of the polymers.

In conclusion, the results of an oscillatory shear experiment can be presented as:
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a) Plots of G’(») and G”(w) versus frequency by means of equations 3.7 and 3.8.
b) Plots of n'(w) and n”"(w) versus frequency by means of equations 3.13 and 3.14.
c) Plots of the phase shift 5§ versus frequency by means of equation 3.5.

5. Creep and Recovery Compliance

In a creep and recovery test, the polymer melt is subjected to a sudden shear
stress of constant magnitude, which is held for a period of time, while the resulting
deformation (called creep compliance J(t) when the deformation is divided by the
imposed stress) is monitored as a function of time. After the steady state
deformation is reached at a time ¢, , the shear stress ceases (z,=0) and the
material recoils in a direction opposite to that of the original applied force. This
recoil, when divided by the initial stress is known as the elastic recovery or
recovery compliance Jr(t). The amount of recovered shear strain is a function of
time ¢, and of time (t - ¢,) that has elapsed since the cessation of the applied shear

stress.

Yo(t—=t,)=y(t,)=y(1); t>t (3. 18)

If the stress is removed after the steady state has been achieved, then the
recovery strain is no longer a function of ¢,. If ¢ is taken as ¢ = 0; i.e. the

beginning of the recovery test:

7, () =y(0)—y(1) (3. 19)

As mentioned above, the creep and the recovery strains are divided by the applied
stress, the result is called creep and recovery compliance and is the result of
several modes of deformation:
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J(@) = @ =J,+J () + L (creep compliance) (3.20)

o o

t
Jr(t) = %2 (recovery compliance) (3. 21)

o

where Jq is the instantaneous or glassy compliance (or glassy deformation if
multiplied by stress), Je(t) is the retarded elastic compliance [ Je(t) = J( 0 ) - J( t
)), where J/( 0 ) is the compliance at the time the stress ceases ¢,], Ji( t) is the

recoverable compliance at any time after the stress ceased, and J.° is the steady
state recoverable compliance J° = J (t —» ).

6. Shear Viscosity by Capillary Rheometer

The capillary rheometer consists of a small tube (die) through which melt is forced
to flow by means of a piston moving at a fixed speed. The instrument measures
the pressure drop across the die (AP) (some capillary rheometers measures the
load F, and obtain the driving pressure (Pq) by Pq = F, / A, where A is the
transversal area of the barrel) over a range of piston velocities. Capillary
rheometers are used to determine the viscosity in the shear rate range of 5 to 1000
1/s using dies with different L/D and with typical diameters between 0.5 mm and
1.5 mm, although very wide capillaries can be used.

To calculate the shear viscosity, it is necessary to know the wall shear stress and the
wall shear rate. The wall shear stress is related to the pressure drop by:

AP

S (3.22)
XAL/R+e)
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where L and R are the capillary die length and radius, respectively; and e is the
Bagley (1957) correction factor. Bagley measured the pressure drop at various
values of the flow rate:

Q=v-n-R,, (3.23)

(where v is the piston velocity) using a variety of capillaries having different lengths
but the same diameter. For each value of the apparent wall shear rate:

_A0 320 (3. 24)
aR> n.D3

a

Bagley plotted the driving pressure (Pg) versus L/R and drew a straight line through
the points and by extrapolating the lines to the Py = 0 axes, the end correction
factor is obtained. The end correction factor “e” is defined as the negative of the
value of L/R at the point of interception. It represents the L/R of the capillary for
which fully developed flow would give a pressure drop equal to the excess
pressure drop due to the entrance effect.

Finally, it remains to determine the shear rate at the walil:

Y= ( & ZbR Jr'a (3. 25)

where br is the Rabinowitch correction factor given by:

, _ ddogz,)

® 7 d(logr,) (3-26)

The principal sources of error in the use of a capillary rheometer are:
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a) Nonuniform temperature due to viscous heating especially at large shear rates
or capillary radius.

b) Effect of pressure on viscosity.

c) Wall slip or unsteady flow due to oscillating entry streamlines.

7. Elongational Viscosity by Capillary Rheometer

The Cogswell analysis (Cogswell 1972a and 1972b) was applied for the
determination of the elongational viscosity. This estimation requires apparent
shear viscosity data; corrected stress data and elastic pressure gradient
information obtained from capillary measurements (see Appendix A). The
equations proposed by Cogswell are:

g =.3_.£’.1_-.’-_1)_.AP

¢ 3 E (3.27)
2 2

n, = S, _ 9-(n+1) (AZPE ) (when using a die with flat (180°) entrance angle) (3.28)

£ 32-n,7,
N, = 3(APg ) (when using a die with an entrance angie 6) (3. 29)

(Do)

Tan(B/Z){l ( 5 ) :iy,
g=2e (3. 30)
e
where:

va is the apparent shear rate,
na is the apparent viscosity na = 1t/ va (where 1iis the true shear stress),
n is the power law parameter n=d(logt,)/d(log7.),

APk is the pressure drop for a zero length die xp_ - A% —iPL/ILS /Ly
1- s/L

; ={3n+1];., is the corrected shear rate,
1 4" a

oe is the elongational stress,
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ne is elongational viscosity,

9 is the capillary die entrance angle (flat entrance 6 = 180° = n radian, cone
entrance 6 = 90° = n /2 radian)

£ is elongational rate.

It is important to mention that Rosand software recalculates the power law index
“n” using n =d(logz,)/ d(log7,) for equations 3.26 and 3.27 and uses the corrected

shear rate instead of the apparent shear rate in equation 3.28. Such calculations
differ from the original analysis done by Cogswell (1972a, 1972b). Figure 111.2
shows a comparison between the elongational viscosity (using a die with 90°
entrance angle) calculated from the original Cogswell’s analysis and that obtained
from Rosand software. The Rosand’s approach changes the slope of ne and
predicts higher elongational rates (Mier, 2000). In this thesis, the original Cogswell
approach will be used (see Appendix A).

—_
o

T —

T

il L
] -

-s-90° Coglswell un
+-90° Rosand | 1]

IR

/ h

I

uﬁH},___LﬂL
|

Elongational viscosity 1, (kPa.s)

0.1 L L l

10 100 1000 10000
elongational rate (1/sec)

Figure [11.2. Comparison between elongational viscosity at 200 °C calculated from the original Cogswell's
analysis and that obtained from Rosand software. Mier (2000) developed this plot using a metallocene
isotactic polypropylene resin.
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CHAPTER IV, Standard Quality Properties

The basic standard quality properties (SQP) for polypropylene resins are the meit
flow index (MFI) and the percentage of xylene solubles (XS). These properties
(MF1 and XS) for the resins used in this research are presented in Table lil.1 in the
previous chapter.

This chapter presents, as standard quality control properties, the Molecular Weigh
Distribution (MWD), the Nuclear Magnetic Resonance (NMR) and the calorimetric
properties for the resins.

A. Molecular Weight Distribution (MWD)

Table V.1 presents the molecular weigh moments and polydispersity data as
obtained from GPC measurements for all the resins. Mz/Mw is the polidispersity
index related to the content of high molecular weight species. Figure IV.1 shows the
molecular weight distributions for resins A and E (resins with melt flow 2,
syndiotactic and isotactic respectively). These resins present some notable
differences in their MWD. The MWD for resin A (syndiotactic) presents a bimodal
behavior with a Mw lower than resin E (isotactic). Figure IV.2 shows the MWD for

all the resins.

Resin Mn IVlw

A 421341190554} 518052 ) . 193756
B - 137960]158366] 421148 4.2 2.7 54742
C 331691121042{ 318803 3.6 26 48785
D 27265 96422 | 247354 3.5 26 43963
E 64131]414002)1526508] 6.5 3.7 191509
F 51229|345046]1411454 6.7 4.1 176522
G 362681236114} 855114 6.5 3.6 136878
H 351891214871] 7368338 6.1 3.4 133754
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B. Nuclear Magnetic Resonance (NMR)

1. Principles (Odian, 1991)

To better understand the NMR results is important to review before some important
concepts. Configurational (stereo) isomers differ in the spatial arrangements
(conformations) of their atoms or substituents in a molecule in a manner such that
they can be interconverted only by breaking and reforming chemical bonds.

The polymerization of a monosubstituted ethylene, CH,=CHR (for propylene, R is a
methyl group -CHs), leads to polymers in which every tertiary carbon atom in the
polymer chain is a stereocenter. A stereocenter is defined as an atom bearing
several groups whose identities are such that an interchange of two of the groups
produces a stereoisomer. Considering the main carbon-carbon chain of the
polymer —(-CH>-CHR-),— two different configurations are possible for each
stereocenter since the R group may be situated on either side of the plane of the
carbon-carbon polymer chain. The regularity in the configurations of successive
stereocenters determines the overall order (tacticity) of the polymer chain. An
isotactic structure occurs when the stereocenter in each repeating unit in the
polymer chain has the same configuration. A syndiotactic polymer structure occurs
when the configuration of the sterocenter alternates with the R groups located on
the opposite sides of the plane of the polymer chain. If the R groups are randomly
distributed on the two sides of the planar zigzag polymer chain, the polymer is
termed atactic.

Dyad tacticity is defined as the fractions of pairs of adjacent repeating units that are
isotactic or syndiotactic to one another. The isotactic (meso) and syndiotactic
(racemic) dyads can be depicted as shown in Figure IV.3. where the horizontal line
represent a segment of the polymer chain, the black circles represent the
configuration of the R group at the stereocenter, and the vertical line represents the
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two hidrogens at the carbon between adjacent stereocenters. The fractions of
isotactic and syndiotactic dyads are referred to as (m) and (r), respectively.

S

Isotactic dyad Syndiotactic dyad

Figure IV 3. Depicture of isotactic (meso) and syndiotactic (racemic) dyads.

Triad ftacticity describes isotactic, syndiotactic, and heterotactic triads whose
fractions are designated as (mm), (rr), and (mr), respectively (see Figure IV.4).

el nog

Isotactic triad Syndiotactic triad Heterotactic triad

Figure IV.4. Depiction of isotactic (meso), syndiotactic (racemic), and heterotactic triads.

The above definitions can be clarified by considering an example portion of a
polymer chain like the one shown in Figure IV.5. The chain segment has 8 dyads
and 7 triads. There are 6 meso dyads (m = 6/8) and 2 racemic dyads (r = 2/8).
There are 4 isotactic triads (mm = 4/7), 1 syndiotactic (rr = 1/7), and 2 heterotactic
(mr= 2/7).

Figure IV.5. Depiction of isotactic {meso), syndiotactic (racemic), and heterotactic triads.

The determination of the triad fractions allows a complete definition of dyad
structures using:
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(m) = (mm) + 0.5(mr) 4. 1)
() = (rr) + 0.5(mn) 4.2

The advent of high-resolution NMR allow the determination of tetrad, pentad and even
higher sequence distributions in many polymers. The tetrad distribution consists of the
isotactic sequence (mmm), the syndiotactic sequence (rrr), and the heterotactic
sequences (mmr), (rmr), (mrm), and (rrm). The following relationships exist between
tetrad and triad fractions:

(mm) = (mmm) + 0.5(mmr) : “4.3)
(rm) = (rrr) + 0.5(mrv) 4. 4)
(mr) = (mmr) + 2(rmr) = (mrr) + 2(mrm) 4.5)

The pentad distribution consists of the isotactic sequence (mmmm), the
syndiotactic sequence (rrrr), and the heterotactic sequences (rmmr), (mmrm),
(mmrr), (rmrm), (rmrr), (mrrm), and (rrmm). The following relationships exist
between pentad and tetrad fractions:

(mmm) = (mmmm) + 0.5(mmmr) (4. 6)
(mmr) = (mmmr) + 2(rmmr) = (mmrm) + (mmir) 4.7
(rmr) = 0.5(mrmr) + 0.5(rmrr) (4.8)
(mrm) = 0.5(mrmr) + 0.5(mmrm) 4.9)
(rrm) = 2(mrrm) + (mrrr) = (mmir) + (rmi) 4. 10)
(rrr) = (rrrr) + 0.5(mrrr) (4. 11)

2. Analysis of stereoregularity

As explained, NMR allows to obtain the sequence distribution of steroisomeric
units within the polymer chain. The NMR data can be used to determine the
effectiveness of the synthesis of an isotactic polypropylene by analyzing the
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soluble fraction of each resin. A typical commercial polypropylene resin is a
mixture of isotactic, syndiotactic and atactic chains.

Table V.2 presents the NMR spectrum (mol percentages) for the resins under
study. In Table IV.2 xmrx is the sum of mmrm and rmrr pentads since by NMR
such two sequences are indistinguishable.

Table IV.2. NMR Spectrum (% mot) for all the resins.

PENTAD A B C D E F G H
mmmm- 0 0 0 0 87.8 93.9 935 935
mmmr. | 02 0.2 0.3 0.2 3.4 23 2.4 2.4
mmr 23 2.3 2.4 2.8 0.6 0.6 0.4 0.4
mmrr 45 47 46 5 31 15 15 15
XMIrX 33 37 36 3.9 1.3 0.5 0.5 0.5
mrmf 0.5 0.6 0.7 0.8 0 0 0.2 0.2
[Tits 766 75.8 76.7 75.2 15 05 0.5 0.4
mm | 105 70.5 10.3 10.7 0.8 0 0.3 04
mrrm 2 21 15 14 15 0.7 0.8 0.7
% Meso 6.7 71 71 78 94 97.8 97 .4 97.4
% Facemic 933 92.9 92.9 92.2 6 22 26 2.6
% error 4 4.2 42 47 12 0.9 0.6 07
Defects per
1000 carbons| 338 35.4 355 39.2 30 11.2 13.2 12.8

C. Calorimetric Data

Table IV.3 shows the DSC calorimetric properties of all the polypropylene resins
under study. In general, higher latent heats correspond to higher recrystallization
and second melt temperatures. When polypropylene crystallizes from the melt,
different crystalline formations may develop; Table IV.4 presents the unit cell
parameters for syndiotactic and isotactic polypropylene as well as the theoretical
melting temperature (Tm). It can be seen that for syndiotactic resins, resin D with
the highest melt flow present the most similar melting temperature to the
theoretical melting temperature presented in Table IV.4. However, for isotactic
resins, the melting temperature closer to the theoretical melting temperature is the
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melting temperature of resin E, the isotactic resin with lowest melt flow. Finally
Table IV.5 presents the percentage of crystals in the samples according to
equation 3.1.

Table IV.3. DSC analysis results for all the resins.

Recrystallization Recrystallization  Second Second Melt
RESIN Peak AH Melt Peak AH

(°C) ( Joules/gram) (°C) ( Joules/gram )

A 66.63 ~-31.06 127.0

B 64.30 -30.23 127.4 28.09
c 71.63 -39.07 128.0 24.87
D 67.96 -38.96 131.7 30.46
E 107.3 -105.4 162.0 71.58
F 110.6 -114.4 160.7 86.19
G 110.3 -113.2 160.7 87.16
H 110.3 -121.8 159.0 89.48

Table IV.4. Polypropylene unit cell parameters.

Isotactic Syndiotactic

Unit Cell o monoclinic Orthorhombic
a (nm) 0.664 1.45

b (nm) 2.096 0.58

c (nm) 0.650 0.74

B 99° 20’ 90°

Density (gr/cm®) 0.936 0.91

Tm °C 165 135

Heat of Fusion (J/gr) 209 50.2
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Table IV.5. Percentage of crystallinity for all the resins.
RESIN % Crystallinity
A 5.48

4.26
28.29
16.93
16.18
13.50
12.46
15.46

IO moOjolw




CHAPTER V. Oscillatory Data

For each resin, the oscillatory data was obtained from frequency sweep tests at
200 °C by means of a RAA (see Table 1l1.2) with a 26 mm parallel plates
configuration and 1 mm gap. The frequency range used was from 500 to 0.01
rad/s and 10 % of the strain was utilized. In addition, frequency sweeps at 190 °C
and 210 °C were done and together with the 200 °C data, were brought into a
single master curve according to Mavridis (1992).

A. Storage and Loss Moduli

Figure V.1 through Figure V.8 show the storage (G') and loss (G") moduli for each
resin. The cross-over point is presented in the plots by a cross (x). The cross-over
point will be analyzed in the section B and C of this chapter. It is worth to mention
that data with a torque lower than 0.8 gr-cm were eliminated because of equipment

resolution.
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Figure V.1. Storage and loss moduli at 200 °C for resin A.
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Figure V.3. Storage and loss moduli at 200 °C for resin C.
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Figure V.5. Storage and loss moduli at 200 °C for resin E.
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Figure V.7. Storage and loss moduli at 200 °C for resin G.
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Table V.3. Zero shear viscosity calculated with the lowest frequency point of the ioss modulus.

A 0.056 348 7006 6964
B 0.09 423 4764 4759
C 0.16 301 1906 1905
D 0.28 286 1017 1015
E 0.05 317 6379 6334
F 0.05 341 6864 6819
G 0.16 329 2092 2081
H 0.28 435 1560 1548

G. Discrete Relaxation Spectrum

The discrete relaxation spectrum (n;, Aj) for each resin can be obtained by fitting its
storage and loss moduli with equations:

N 2

Ao
G’ =% —— 54
(@) ;H(liw)z (54)

N 7.0
ag" =y — 55
(a)) §1+(/1,.(o)2 (5:5)

where n;i = GiA,.

Mier (2000) developed a C language program for the determination of the discrete
relaxation spectrum from the loss modulus. This software is well-documented in
the cited reference. Mier (2000) used the relaxation spectrum of a LDPE at 150 °C
reported by Phan-Thien (1978) and Papanastasiou (1987) to validate his software,
and he used the software to obtain the discrete relaxation spectrum of eight
polypropylene resins with excellent results using 4 elements.

Therefore, the discrete relaxation spectrum for the resin under study was obtained
using the software developed by Mier (2000). Since Mier (2000) proved that the
best results are given by using 4 relaxation elements, such elements were used in
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this thesis. The discrete relaxation spectrum obtained from Mier's software for all

the resins is presented in Table V.4.

Table V.4. Disrete relaxation spectrum obtained from Mier's (2000) software for all the resins.

Resin A B C D E F G H

Ai ul N ni Ni Ni ni Ni ni
[s] [Pas] | [Pas] | [Pas] | [Pas] | [Pa.s] | [Pas] | [Pa.s] | [Pa.s]
0.001 199.6 | 2168 | 187.3 | 1514 | 104.2 127.1 1028 | 974
0.01 038.6 | 859.2 | 548.9 | 3506 | 536.5 625.5 | 375.1 | 330.1
0.1 3631.9 [2517.5[1116.8 | 439.9 | 2110.9 | 2300.8 | 938.1 | 729.6
1 15561.9 | 284.4 0 0 2706.6 | 2673.5 | 541.7 | 292.4

The discrete relaxation presented in Table V.4 fits very well equations 5.4 and 5.5.
The fittings produced residuals lowers than 5 % in most cases, just a few points
were higher than 5 %, but they were less than 10 %.

H. Time — Temperature Superposition (TTS)

According to Mavridis (1992) methodology, the dynamic data measure at different

temperatures must be screened by plotting tan & vs G*(w):

1) If the data from different temperatures superimpose (within experimental
error) then a vertical shift factor (br) is not required (br=1) and the vertical
energy of activation (Ev) is zero.

2) If the data from different temperatures do not superimpose but fall onto
parallel curves, then a vertical shift factor is required.

Figure V.11 shows the plot of tan & vs G*(w) at different temperatures for all the
resins. Since the data superimpose (case 1 above), therefore Ey=0 and br=1.
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Figure V.12. Loss tangent superposition master curve for resin A.

Table V.5. Horizontal activation energies for ali the resins.

. Ep . Ey
ResIN  tcamol] "o [camol]
A E
B 70218 F 8544
c 9398 G 8610
D 10497 H 9719




CHAPTER VI. Capillary Data

Chapter V! is divided in four sections. Section A shows the shear and extensional
viscosity at steady state. Shear and extensional viscosity were calculated from
experimental data according to the procedure shown in Appendix A. Capillary
steady-state tests were done using three dies with different diameters (see
Appendix A). Section B presents the shear and extensional viscosity at transient
state. Transient state data was obtained with the 0.5 mm diameter die.

Section C presents the steady shear viscosity data fitted using the Cross, Carreau
and Yasuda models. Finally, section D presents a capillary analysis done to the
eight resins in order to obtain the compressibility effect in the capillary flow. All the
capillary data presented in this chapter was obtained with the Rosand double bore
capillary rheometer (see Table li.2) at 200 °C.

A. Steady State

Figure V1.1 shows the shear viscosity curves calculated for resin B. It can be seen
that all three dies generate the same shear viscosity curve. Similar results are
observed for the rest of the resins.
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Figure V1.1. Shear viscosity curves for resin B obtained with three different dies.
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On the other hand, Figure VI.2 presents the extensional viscosity curves for the

same resin (resin B).

This figure shows that each die generate a different

extensional viscosity curve. The curve obtained from using the 0.5 mm die

presents the highest extensional viscosity. Similar results are observed for the rest

of the resins.
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Figure V1.2. Elongational viscosity curves for resin B using three different dies.
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Since, the data obtained from using the 0.5 mm die gives the highest values, and

then only the results obtained with such diameter are presented. Figure V1.3 and

Figure V1.4 show the shear viscosity and extensional

viscosity for all resins.
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Figure V1.3. Shear viscosity for all the resins (@ D=0.5 mm).
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Figure V1.4, Extensional viscosity for all the resin (@ D=0.5 mm). The open symbols were used for
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B. Transient State

Using the procedure shown in Appendix A, the transient shear and elongational
viscosity were obtained from capillary data. Figure V1.6 and Figure V1.7 present
the transient shear viscosity for all the resins at apparent shear rate of 500 /s and
1000 /s respectively. Similarly, in Figure VI.8 and Figure VI.9 are shown the
transient elongational viscosity for all the resins at the same apparent shear rates.
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C. Fitting Viscosity Curves

The shear viscosity curves were fitted by the Carreau, Yasuda and Cross models.
The modification to the Cross model proposed by Dealy and Wissburn (1990) was

considered. This modification requires that l/ly'“be multiplied by 0.6 and the

parameter “a” to be equal to 0.75. However, it was decided to use the unmodified
Cross model, because the exponent 0.75 produced poor fittings.

=1, :(1 + liﬂz)}p Carreau Model
n=1, :(1 + lﬁy[)]j " Yasuda Model
=1, :(1 + ll}?la)r ~ Cross Model

The three models used fit very well the viscosity curve for the eight resins, they all
produced fittings with an error lower than 5 % and correlation coefficients (Rz)
higher than 0.99. From Table VI.1 to Table VI.3 are presented the models’
parameters.

Table VI.1. Cross model parameters for fitting the shear viscosity curves.

: No A 2
e Pa.s S m R
A 6635 0.11 0.76 0.9998
B 2252 0.03 0.80 0.9996
C 2096 0.07 0.67 0.9998
D 1476 0.10 0.59 0.9990
E 7098 0.25 0.76 0.9997
F 6061 0.32 0.71 0.9986
G 2037 0.13 0.70 0.9999
H 779 0.03 0.77 0.999
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Table V1.2. Yasuda model parameters for fitting the shear viscosity curves.

- no Iy 2

. | ros s a " R
A 8300 0.25 353 0.31 0.9991
B 5121 0.03 0.44 008 | 09994
C 1967 0.05 0.64 030 | 0.9998
D 1014 0.07 0.80 043 | 00988
E 7975 0.39 1.55 028 | 00998
F 6848 0.15 0.46 017 | 00991
G 2095 0.03 047 010 | 0.9997
H 1634 0.03 0.44 0.15 | 0.9996

Table V1.3. Carreau model parameters for fitling the shear viscosity curves.

= no A 2
s Pa.s S P R
A 4285 0.09 0.35 0.9992
B 4125 0.19 0.31 0.9971
C 1775 0.12 0.28 0.9986
D 600 0.04 0.26 0.9985
E 8744 0.44 0.38 0.9998
F 6811 0.52 0.34 0.9975
G 2027 0.22 0.31 0.9990
H 15612 0.23 0.29 0.9957

Since these models are empirical, even though they were created to fit shear
viscosity curves, it was decided to fit elongational viscosity curves with these
models too. It was observed that these empirical models produce good fittings (R?
higher than 0.9) of the elongational viscosity; however they are not as good as
those for shear viscosity. Table V1.4 through Table V1.6 presents the parameters
of the model as well as the correlation coefficient (R?).

Table Vi.4. Cross model parameter for fitting the elongational viscosity

“ o 2 o R?
Pa.s ]
A 42817 0.06 0.74 0.9848
B 119877 2.75 0.50 0.8973
C 10171 0.01 0.88 0.9368
D 26148 1.23 0.44 0.9352
E 96657 2.33 0.43 0.9896
F 84703 9.52 0.34 0.9794
G 29183 1.68 Q.37 0.9545
H 23858 1.45 0.40 0.9023
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Table VI.5. Yasuda model parameters for fitting the elongational viscosity curves.

Res e x a. -} n, R?

" Pa.s $ ;

A .| 389357 6.80 0.29 0.47 0.9776
B 54736 1.05 3.89 0.55 0.9976
€ 8458 0.05 494 0.60 0.9461
D 21290 1.20 5.18 0.57 0.9537
E 28926 0.19 1.45 0.59 0.9904
F .| 81810 0.23 0.23 0.52 0.9776
G 377431 2.58 0.11 0.52 0.9552
“H 39554 22.78 1.85 0.66 0.9141

Table VI.6. Carreau model parameters for fitting the elongational viscosity curves.

Re s e St I po 4 R? i
Pa.s s

A 29394 0.09 0.28 0.9881
B 36822 0.41 0.23 0.9974
[ 8937 0.05 0.24 0.9424
D 23149 1.45 0.22 0.9534
E 26333 0.17 0.20 0.9912
i R 33757 1.61 0.14 0.9809
G 17764 1.75 0.15 0.9557
H 21044 3,54 0.17 0.9141

D. Capillary Analysis

Hatzikiriakos (1992, 1994) & Dealy (1995) concluded that the melt viscosity and
compressibility are the dominant factor in capillary flow and that the contribution of
melt elasticity is too small. Mier (2001a) develop software based on the
Hatzikiriakos and Dealy (1994) previous work, but the resuits were not conclusive.
However, we believe that the entrance pressure is a combination of both, the
compressibility and the elasticity of the polymer and that a procedure to determine
each value should be established. A capillary analysis using different diameters of
die is proposed to evaluate these effects.

The purpose of the capillary analysis with three different diameter dies was to
evaluate the compressibility of the resins. It was expected to obtain for each shear

rate the relationship between the pressure drop and the diameter of die.
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It is assumed that the total pressure is the sum of the pressure drop due to the melt
compressibility, the pressure drop due to the melt viscosity and the pressure drop
due to melt elasticity. In addition, it has been accepted that the pressure drop due
to the entrance effect (change in the diameter) is a measure of the melt elasticity of
the polymer and that the pressure drop due to the resistance against the wall of the
die is a measure of the polymer's viscosity (see Figure VI.10). For an ideal
situation where the die is not present, the pressure drop is due to a compressibility
of the material while flowing against a wall. Therefore, when there is no die the
total pressure drop will be equal to the pressure drop due to the melt
compressibility; that is, there is neither an elastic effect nor a viscous effect. It is
worth to mention that the viscous dissipation or pressure "resistance” of the shaft
against the barrel is not an issue in this study because the pressure transducer is
in the barrel wall and not at the top of the shaft as it happens in other capillary
rheometers.

Polymer

} AP elastic

AP viscous {

Figure V1.10. Pressure drop in a capillary flow.

Therefore, plotting entrance pressure drop (pressure drop at L/D=0 according to
Bagley correction) vs. 1/D we can obtain the pressure drop due to the melt
compressibility. An extrapolation to 1/D zero (when the die diameter tends to
infinite, therefore there is no change of diameter between the barrel and the die)
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might be done (see Figure VI.11) to obtain the pressure drop due to

compressibility, when no contraction occurs.

APA

| i ‘ —» 1/D
l/bg 1/D, 1/D

Figure VI1.11. Capillary analysis in order to look at the compressibility effects.

=

Figure VI.12 shows the capillary analysis in order to obtain the compressibility
effect for resin B. The equations on the left were obtained from linear regression
with Microsoft Excel in order to make the extrapolation. Similar results are
observed for the rest of the resins.
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Figure V1.12. Entrance pressure drop vs die diameter reciprocal for resin B.

On Table V1.7 are presented for all resins the pressure drop values due to the melt
compressibility obtained from the capillary analysis described.

due to the melt compressibility for all the resins.
AP @ 1/D =0 (psi)

Table VI.7. Pressure drop

shear

rate (/s) A B C D E F G H
50 45 25 14 0 45 20 8 7
67 52 34 15 7 54 33 12 12
95 68 43 22 10 68 41 16 15
135 86 54 26 13 91 52 21 19
190 107 68 34 17 113 65 26 24
260 130 85 45 25 143 81 37 33
372 180 105 55 31 178 104 46 42
515 196 130 69 40 229 131 60 54
715 236 162 86 51 281 165 76 69
1000 288 196 120 66 326 212 100 95

Since, the Cogswell's extensional viscosity is obtained from the entrance pressure
drop, it was decided to make a correction by subtracting the pressure drop due to
the melt compressibility to the entrance pressure.

AP, =AP  —AP

elas ent com

(6.1)
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Now, on Table V1.8 are presented the pressure drop due to elasticity, for all resins,

obtained from equation 6.1 using the 0.5 mm die diameter data. Figure VI1.13

shows the corrected extensional viscosity for resin B.

Table V1.8. Pressure drop due to the melt elasticity for all the resins.

shear A | B c D E F G

rate (/s) I H
50 17 22 7 17 7 16 11 8
67 33 20 16 12 12 11 10 5
95 32 24 13 13 13 16 13 3
135 34 27 22 18 B 16 16 10
190 35 29 24 20 8 19 19 11
260 41 30 25 19 4 21 16 11
372 a1 32 30 24 4 19 19 13
515 40 34 35 28 0 20 20 14
715 43 46 39 32 4 22 24 14
1000 41 37 30 36 34 17 23 9

10 —
1 - .

@ . e

a .

X L 2 B

2 MR

8 *

a 14 *

>

5 MR

8

2 FoCorrected & Cogswell

g
0.1 4— , e :

1 10 Extension Rate (/s) 100 1000

Figure V1.13. Corrected and Cogswell extensional viscosity for resin B.

It is thought that this corrected extensional viscosity is a better way to measure the

melt elasticity because Cogswell's extensional viscosity considers the pressure

drop due to the melt compressibility too. However, for some resins the corrected

extensional viscosity shows an irregular behavior even with some negative values.

It is thought that this irregular behavior is due to the regression technique used, so
it is proposed to make measurements with larger diameter of dies (1/D closer to
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zero) in order to have more points and then have a better regression and

extrapolation.
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strain while Figure VI1.5 and Figure VII.6 show the recovery compliance for all the
resins for creep times of 1 s and 60 s respectively.

60 ;

oAnB aC D
eEwF AG H

AfAAAAAARAAAAA A S

T e '

LA B S S N R S B B T T T T

0 10 20 30 40 50 60 70
Time [s]

Figure VII.3. Strain response vs time applying a stress of 600 Pa for 1 s for ali the resins. The open

symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19.
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Figure VI1.4. Strain response vs time applying a stress of 600 Pa for 60 s for all the resins. The open

symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19.
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Figure VII.5. Recovery compliance vs recovery time after applying a stress of 600 Pa for 1 s for all the
resins, The open symbols were used for syndiotactic PP. Same type of symbols are used for similar MF.
Diamonds are for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19.
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Figure VIL.6. Recovery compliance vs recovery time after applying a stress of 600 Pa for 60 s for all the
resins. The open symbols were used for syndiotactic PP. Same type of symbols are used for similar MF.
Diamonds are for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19.




Figure VII.3 and Figure V1.4 show that the strain responses present the same
behavior observed when using 400 seconds of creep time. However, in Figure
V1.5 and Figure VII.6 it can be seen that the recovery compliance behavior is
similar using 60 seconds of creep time, but for 1 second, there are some
differences. The same relation found when using 400 seconds between the MFI
and the time to reach steady state is present using 60 seconds of creep time too,
but it is not when using 1 second. It can also be seen that for 60 seconds only
three of the syndiotactic resins presents the same steady state recovery
compliance, and for 1 second only two of them.

C. Shear Stress Analysis

From previous section, it can be seen that the steady state recovery compliance for
the syndiotactic resins is the same when the creep time is 400 s and very similar at
the others creep times. It was decided to vary the shear stress to 300 Pa, 1200 Pa
and 2400 Pa to observe the recovery compliance behavior. The results for
syndiotactic resins are presented next in Figure VIL.7 to Figure VII.9.

o
=]
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o
—
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T T T T T T

0.001 0.01 0.1 1 10 100 1000
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Figure VII.7. Recovery compliance vs recovery time after applying a stress of 2400 Pa for 400 s for all the
resins.
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Figure VI1.8. Recovery compliance vs recovery time after applying a stress of 1200 Pa for 400 s for all the
resins.
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Figure VI1.9. Recovery compliance vs recovery time after applying a stress of 300 Pa for 400 s for all the
resins.

These results confirm the relation obsérved in pfevious sections between the MFI
and the time to reach the steady state. Besides, it can be seen for the three shear
stresses applied that even thought the steady state recovery compliance is similar,
a relation with the MFI could be observed; the higher the MFI, the lower the steady
state recovery compliance.
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CHAPTER VIII. PTT Model

This chapter presents the prediction of rheological properties using the Multi-mode
Phan-Thien-Tanner (PTT) model. Section A presents the PTT model. Section B
shows the expressions obtained and predictions of the shear viscosity. Section C
shows the expressions obtained and predictions of the elongational viscosity for
the resins under study. Software (C-language codes) created and validated by Mier
(2000) was used to accomplish the purposes of this chapter.

A. The Multi Mode Phan Thien — Tanner (PTT) Model

The PTT model has already been introduced in Chapter |l under the constitutive

equations section. In tensorial notation, the multi-mode PTT model is expressed
by:

N
T=)1, (8. 1)
=l
)V + 4 v+ S A G s D)=, 7 ®.2)
For shear flow:
r; r;y 0 ] r’%x Ty 0 Zr;x T, 0
Z(tr(t) o, 7, 0 [+] 51’” Ty 01-1t, 0 0
0 0 7 0 0 1 0 0 0
‘ 0 » O
21 1] 1
+2 | T e O =—ply 0 0 (8. 3)
2 |ttty 21, Ol 00 0
0 0 0
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For shear-free flow:

T 0 0 = 0 0) (-asbrl 0 0
Z(r(v))| 0 7, 0 |¥4 |0 ©, o4 0 —(1-b)x,, 0
0 0 7 0 0 1, 0 0 21,
~(1+b)7r. 0 0 ~1+6) 0 0
+521,1,. 260 0 -Q=byr, 0 |=-g| 0 -Q1-b) 0} (8.4)
0 0 27 0 0 2
oA
where Z(1r(1,)) = exp(———’—tr(t,-)J (8.5)
n;

The rationale of the notation used is as follows: “i” as a subscript refers to the
stress tensor for the i-th relaxation element or i-th relaxation element of the

Hin
|

relaxation spectrum, as a superscript refers to the component of the stress

tensor for the i-th relaxation element. z,,, is the contravariant (upper) convected

time derivative? of the stress tensor given by equation 2.22.

B. Predictions of PTT Model in Simple Shear

In simple shear the tensors of the multi-mode PTT model are given by:

i

Z(trr,)) = exp(— Ot—k"('rjcc +1T,, + t;)) (8.6)
n

2 The convected time derivative in the material may be described by using a material frame of
reference that is deformed and convected with the material. This can be understood to be the time
derivative calculated in a coordinate system that is translating and deforming with the fluid. This
then ensures frame invariance. There are a number of frame invariant choices for defining the
material frame of reference and thus the overall rate of change. The most common choices are:
contravariant base (upper convected derivative), covariant base (lower convected derivative) and
corotating base (Jauman derivative). Since the upper convected time derivative emphasizes the
stretching of materials planes, it is used in most constitutive equations. Usually, contravariant
(upper) is implied in the phrase “convected time derivative” if nothing else is specified. (Bird, 1987)
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T, T, O
r,=|1, 7, 0 8.7)
0 0 7.
0y 0
y=|7 00 (8.8)
0 0O
Gt 4t =] P Ty T 0 (8.9)
S WAty 21y Ol
0 0 0
Ty Ty O 2z, T,
Ty = 5 T T, O |=7 z';y 0 0 (8. 10)

Therefore, a set of coupled nonlinear algebraic equations result:

j dr, A i i i . i . i
) Ki—;{f‘—+exp(—%l-(tm +1,, +tzz)]txx—27»,.ytw +EMYT, =0 (8.11)
: izt O (e vt 1)+ EAgT, =0 8. 12
Ty) Ki—gr+exp _T(T’“+TW+TZZ) T, +ELYT, = (8.12)
1) x,ﬁg-tﬂ—+ exp(—g)i(-:;,c +1, +-:;)J1;z =0 (8.13)

. & T T VS
By A +exp(-—a—?\"('r;x v+ T;z)};y e +%’1(fw +7)=-ni (8. 14)
n

i

ar Oh N o L EMT ,
T) ,—Eyi+exp(——’(tﬂ+ryy+ta))1yx—kiytw+§’~§‘l(rw+tu)=—niy (8. 15)

i

Since the stress tensor is symmetric, r;x = r;y; equation 8.15 is trivial and it is only

included for sake of completeness. Equations 8.11 to 8.14 form a system of
ordinary differential equations which must be solved numerically to determine the
transient expressions for the shear viscosity.

The shear viscosity is given by:
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Y Y
10000
oA 1B aC
D eE mF
AG H

1000

100

Shear Viscosity (Pa.s)

bbbk,

10 " et

10 100 1000
Shear rate (/s)

Figure Viil.1. Experimental (symbols) and predicted (solid lines) steady shear viscosity.

Figure VIII.1 presents the experimental and predicted steady-state shear viscosity.
This figures shows that shear viscosity predictions (solid lines) are very accurate
with respect to the experimental data (symbols). PTT model parameters are
shown in Table VIil.1.

Table VIII.1. PTT Model

parameters

Fitting Para

Elongational | Shear

; o 1 e
A 0.22 0.24
B 0.24 0.15
€. 0.17 0.33
D 0.12 0.31
E 0.15 0.24
F 0.22 0.24
G 0.17 0.25
H 0.2 0.25
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C. Predictions of PTT Model in Shear-Free Flow

In shear-free flow the tensors of the multi-mode PTT model are given by:

Z(tre,) = exp(— %(r;x +T,, + T;))
. 0 0
=10 7, 0
0 0 7.
~(1+5) 0 0
y=| 0 —(@1-b) 0|6
0 0 2
~(1+b)r, 0 0
(-t +7,-9)=24 0 —(1-b), 0
0 0 27,
e 0 0 — 1+ b)th, 0 0
o= o o o |-d o ~(1=-b)7, 0
ot W won
0 0 1 0 0 215,

Therefore, a set of coupled nonlinear algebraic equations resuit:

,. dr' YR Y |
) oA —gl—f‘—+exp(—%’—(r;c +1, 4+, )Jr;x +(1=EAE(1+b)T. =n,8(1+b)

i

(8. 17)

(8. 18)

(8. 19)

(8. 20)

(8. 21)

(8. 22)

i d‘rlyy u‘}\‘l i i i i . i .
7,) ki—dt—+ex —T(tm +1,, +1,) |1, +(1=ENE(1-b)T) =7,&(1-b) (8. 23)

I

i dr. A, i i i i i
T,) A, 7:2+exp(—%l—’—(rm +1, +Tzz))‘t’zz =2(1-&)A.e1, =-2n,¢

1

(8. 24)
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Equations 8.22 to 8.24 form a system of ordinary differential equations which must
be solved numerically to determine the transient values of the stress tensor

components, which will be used to calculate the elongational stress (r, =7_-7_)
and then calculate the elongational viscosity, 7,(¢,¢), at a given elongational rate.

Therefore elongational viscosity is given by:

-7

N ; :
L Y-t
nn=tr=fale 0
£ £ &

Zz

(8. 25)

The o value must be of a magnitude that can fit the experimental transient
elongational viscosity. A C-language code, created and validated by Mier (2000)
was used for this purpose.

100000 -
1 oA 1B
% aC D

10000

Extensional Viscosity (Pa.s)

1000 S et ,
1 10  Extension rate (/s) 100 1000

v —————T T

Figure VIIL2. Experimental (Symbols) and predicted (solid lines) elongational viscosity for syndiotactic
resins.
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Figure ViI1.3. Experimental (symbols) and predicted (solid lines) elongational viscosity for isotactic resins.

Figure VIl.2 and Figure VIII.3 present experimental and predicted elongational
viscosity for the syndiotactic and isotactic resins under study respectively. The
PTT model parameters used in the fitting for each resin are shown in Table VIII.1.

These figures show that the PTT model predicts accurately elongational viscosity

for isotactic resins (see Figure VIII.3). However, for syndiotactic resins (see Figure
VIII.2) PTT model predictions are not that accurate, actually the fitting is very poor.
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CHAPTER IX. PTT Model Modification

Since PTT model gives poor predictions for elongational viscosity of the
syndiotactic resins, it was decided to do an analysis to the elongational parameter
(o) to look for possible explanations to the poor fittings and to propose a
modification to the model. In this chapter is presented this analysis and the
modification proposed as well as the predictions of the shear and elongational
viscosity of the new model.

A. Elongational Parameter Analysis

It was decided to analyze the elongational parameter because it is in the rate of
creation and destruction of junctions, which is related to the elastic energy. This
analysis consisted of two parts, first the elongational parameter was obtained as a
function of the extension rate and on the other hand, the PTT model was evaluated
when there was no elongational parameter (o« = 1) in order to observe its effect in
the model output.

Figure IX.1 shows the analysis for one isotactic resin. Similar results were
obtained for the other isotactic resins. This figure shows that the original PTT
model fittings is very similar to the one obtained with an elongational parameter as
a function of the extensional rate (£). This suggests that for isotactic resins the
elongational parameter is a constant with respect to the extensional rate (see
Figure IX.4). Furthermore, the predictions of the elongational viscosity using o = 1
are very similar to the actual elongational viscosity, but shifted to a lower value.
This shows that the elongational parameter (o) is just a damping function in the
model; actually, it is equivalent to a vertical shift factor.
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On the other hand, Figure IX.2 shows the elongational parameter analysis for one
syndiotactic resins. Similar results were obtained for the rest of the syndiotactic
resins. This figure confirms that the elongational parameters is just a damping
function in the model, because the predictions of the elongational viscosity using
o = 1 are again very similar to the actual elongational viscosity, but shifted to a
lower value.
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Figure IX.1. Elongational parameter analysis for isotactic resin F.
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Figure IX.2. Elongational parameter analysis for syndiotactic resin A.
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Figure IX.3. Elongational parameter as a function of the extension rate for syndiotactic resins.
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r=)7 9. 1)

Z(trri)zli + ’1;‘ Ti(1)=— ) 7 (9 2)

Z(tre) = exp(—-a—x'—trrl] (9. 3)

where a is a constant (C) for simple shear, and for shear-free flow is given by

a = Aln(¢)+ B (9. 4)

C. Predictions in Simple Shear

In simple shear the tensors of the modify PTT model are given by:

T, T, O

=1, 7, 0 (9. 5)
0 0 7,
0 v 0

y=17 0 0 ©. 6)
0 0 O

0
0 9.7)
0

Besides the fitting parameter « is just a constant C

a=C 9. 8)

Introducing these definitions in the modified PTT model, a set of coupled nonlinear
algebraic equations result:
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| dr’ R Y .
) /1,.——;—"‘—+exp[———’—(r;c+r;{y+r;)]r;——2l,.y'r;x=0 ©. 9)

yE
_ dr! _
7,,) Ai—z:—;iy—+exp(—§—%’—(r’ +T,, +T, )}r (9.10)
1) A£—+exp(—g—(r +7T,, +1, )) 9. 11)
dt )
. dr,, .
7,) it————+ex;{-—§i(r +7, +rzz)) ~AyT, =-n¥ (9.12)
dt m
, dr,, Ci . Y. . .
7. 4 o +exp ——(r, + 1, +7,) [t —~ AyT, =77 (9. 13)
7,

Just like the in the original PTT model, the stress tensor is symmetric, 7}, =7, ;
therefore equation 9.13 is trivial. Equations 9.9 to 9.12 form a system of ordinary
differential equations which must be solved numerically to determine the transient

expressions for the shear viscosity.

The shear viscosity is given by:

n(p, =2 =1L (9.14)

b4 e

A Fortran-language code was developed o solve this model (see Appendix B) with
satisfactory results. Figure IX.5 shows the modified PTT model predictions in
shear flow for one isotactic (Resin E) and one syndiotactic (resin A) resin. Similar
results are obtained for the rest of the resins. Table IX.1 present the shear
parameters (C) used in the fitting of the experimental data for all the resins. The
transient response of the model for resin A and resin E could be seen in Figure
IX.6 and Figure IX.7 respectively. Similar results were observed for the rest of the
resins.
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Table IX.1. Shear parameter (C) for the Modified PTT Modei for all resins.
Resin n Resin C
A 2.8 E 2.33
B 4.91 F 51
C 3.92 G 424
D 3.21 H 3.67
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1000 o\u‘
F) o o
& N
z I N
H e >
g \\’\ e
5 e \
E \0\\\ \(»\
“ 100 | n\
10 . o i
10 100 Shear Rate [/s] 1000

10000

Figure IX.5. Modified PTT model's predictions and experimental shear viscosity for syndiotactic resin A
(open symbols) and isotactic resin E (filled symbols).
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Figure IX.6. Prediction of the modified PTT model for the transient shear viscosity of synditactic resin A at

different shear rates.
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Figure IX.7. Prediction of the modified PTT mode! for the transient shear viscosity of isotactic resin E at
different shear rates.

D. Predictions in Shear — Free Flow

In shear-free flow the tensors of the modified PTT model are given by:

Z(tre,) = exp(—%(r;x +T,, + T, J (9. 15)
., 0 0

;=10 7, 0 (9. 16)
0 0 1

~(1+b) 0 0

y= 0 ~(1-b) Oj¢ (9 .17)
0 0 2
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1 0 0 ~(1+b)thy, 0 0
Ty = 2 (J;x Ti 0 |—¢ 0 —(1—-b)‘ti 0 (9. 18)
ot W W
0 0 1 0 0 21,

Therefore, a set of coupled nonlinear algebraic equations result:

)y A %Jrex{-f‘fi(r; +7) +r;)}; +AEQ+b)r = é(1+b)  (9.19)

_ dr’ A , Y ) . )
) A —zi—t’fy— + exp(— g%(rja +7,, +17, ))r)’y +Ae(=b)r,, =n,é(1-b) (9. 20)
) A _‘%tg_ + eXp(—%(r; +7,, 47, ))r; —2X61L, ==2n,¢ (9. 21)
7].

H

Equations 9.19 to 9.21 form a system of ordinary differential equations which must
be solved numerically to determine the transient values of the stress tensor

components, which will be used to calculate the elongational stress (r,=7,_—-7_)
and then calculate the elongational viscosity, 7,(¢,¢), at a given elongational rate.

Therefore elongational viscosity is given by:

N

> ~7L)
ne(é,t):-z—-:e—z z= TT'W = =1 (8 26)
&

£ £

The parameter o is given by equation 9.4, where the A and B values must be of
magnitude that can fit experimental elongational viscosity. A Fortran-language
code was developed to solve this model (see Appendix B). Figure 1X.8 shows the
predictions of elongational viscosity for resins A and E. Figure 1X.11 and Figure
IX.12 present the modified PTT model’s predictions and experimental elongational
viscosity for all syndiotactic and isotactic resins respectively. The parameters used
in the fitting could be seen in Table IX.2. Finally, the transient response of resins A
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and E at different extension rates can be seen in Figure IX.11 and Figure IX.12.
Similar results are obtained for the rest of the resins.
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Figure 1X.8. Modified PTT model's predictions and experimental elongational viscosity for syndiotactic
resin A (open symbols) and isotactic resin H (filled symboils).
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Figure IX.9. Modified PTT model's predictions and experimental efongational viscosity for syndiotactic
resins.
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Figure 1X.10. Modified PTT model’s predictions and experimental elongational viscosity for isotactic

resins.

Fitting Parameters

Elongational

A B
A 0.05 0.06
B 0.07 0.02
C 0.057 0.009
D 0.0714 -0.106
E 0 0.16
F 0 0.26
G 0 0.21
H 0 0.2

Table 1X.2. Elongational fitting parameters for the Modified PTT Model for all resins.
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Figure IX.11. Prediction of the modified PTT model for the transient elongational viscosity of syndiotactic
resin A at different extension rates.
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Figure IX.12. Prediction of the modified PTT model for the transient elongational viscosity of isotactic resin
E at different extension rates.
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CHAPTER X. POM — POM Model

This chapter presents the prediction of rheological properties using the extended
pom-pom model (XPP) introduced in Chapter |l. Section A presents the pom-pom
and XPP model. Section B shows the deduced expressions and predictions of the
shear viscosity. Section C shows the deduced expression for the elongational
viscosity predicted by the XPP model, as well as the prediction of such
elongational material function for the resins under study.

A. The POM - POM and XPP Model

Polymer melts with long chain branching have rheological properties that differ
distinctly from those of the linear polymers or polymer with side braches too short
o entangle with surrounding polymers. The POM-POM model is based on the idea
that the strain hardening behavior in extensional flow of multiply branched polymer
molecules is due to the trapped polymer chain segments in between branch points.
The simplest molecular structure that would have this property is an idealized
“pom-pom” molecule (see Figure X.1).

An idealized molecule called pom-pom, has a single backbone with multiples
branches emerging from each end. Because these branches are entangled with
the surrounding molecules, the backbone can readily be stretched in an
extensional flow, producing strain hardening. In start-up of shear, however, the
backbone stretches only temporarily, and eventually collapses as the molecule is
aligned, producing strain softening.
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Branch points

A=A

Y

Backbone

Figure X.1. Description of the Pom - Pom molecule.

After a strain (deformation), the orientation of the chains is remembered (fluid
memory). At short times the polymer chains are trapped in tubes. At longer times
the arms can relax from the free ends by fluctuation. At still longer times the arms
have totally relaxed and the backbones can move and relax (by reptation).

The POM-POM model consists of an equation set that describes the orientation
and stretch of the pom-pom backbones as they flow. The number of arms of each
mode is used as the parameter to fit extensional viscosity measurements. As it
was mentioned on Chapter I, there are several versions of this model. The
extended Pom — Pom model (Verbeeten, 2001), XPP model, overcome the
drawbacks of the original version, besides it presents some mathematical
advantages when solving the model.

The XPP model is written as:

r=G,BAS-1) (10.1)
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where S is the orientation tensor and it satisfies the evolution of orientation
equation:

2
0b

S(l)+2[y:S]S+/1 IA [3(1/\43-S+(1—a—3aA4zr(S-5))s—(i‘§9‘~)1]=o (10.2)

Aop is the relaxation time of the backbone tube orientation, o is a fitting parameter
related to the amount of anisotropy of the material. A is the stretch and satisfies the
evolution of stretch equation:

A=A[yzs]—%(A—1) (10.3)

s

As is the stretch relaxation time, and it is given by
A, = Ay,e” (10.4)

where v is a measure of the influence of the surrounding polymer chains on the
backbone tube stretch. It is approximated by

2
v==

(10.5)

where q is the number of dangling arms in the ‘pom-pom” molecule (see Figure
X.1). This is taken as a fitting parameter too.

B. Predictions of XPP Model in Shear — Free Flow

In shear-free flow the tensor of the XPP model are given by:
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(- 0 0]
7= 0 -& 0 (10.6)
0 0 2¢]
[z, 0 0]
=0 7, 0 (10.7)
0 0 7]
S, 0 0
S={0 s, 0 (10.8)
0 0 S,
5 S. 0 0 -S. 0 0
0=5 0 S» 0|-¢ 0 =-S5, 0 (10.9)
0 0 S, 0 0 2S_
[7:S]=-65, - &8, +265, (10.10)
tr(S-S)=SZ+82 +52 (10.11)

It is worth to mention that, since 1« and t,y components of the stress tensor are the
same, Syx and Syy components of the orientation tensor S, are the same t0o. Now,
introducing these definitions in the model, we obtain a system of three ordinary
differential equations.

2 — _ 4 2 2 _
Bo g5 _asls. -5 ). + 2 g2 1m@=30A (225,“ +S,2)Sxx e
di Jop Aoy 3AgpA
(10.12)
2 _ _ 4 2 2 —
B2 g _ap(s. -5 )5, + 2N g2, 1ma=3aA (22Sn +S”)Szz 1 @ _
dt Ao Ags A 3 A
(10.13)
%:-—Zé(Sﬁ—Szz) —%(A—l) (10.14)

s
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Solving simultaneously these differential equations, we obtain S, Sz and A as a
function of time. Now, we obtain the transient stress components using the

equations:
r. =3G,A’S_ -G, (10.15)
r_ =3G,A’S,, -G, (10.16)

Finally we obtain elongational viscosity using

m.(nt)= = (10.17)

A FORTRAN - language code was developed in order to make the XPP model
predictions. This code was validated using the experimental data presented by
Verbeeten et. al. (2001). For further information about the code see Appendix B.

Figure X.2 and Figure X.3 show the predictions of the XPP model for syndiotactic
and isotactic resins respectively. It can be seen that the fitting is good for most
resins; however, the fitting process is very complicated because the fitting
parameters must be fitted for each relaxation element. This means that there are
twelve fitting parameters® for most resins. These are too many parameters, which
mean that the model is not that robust. In addition, because of the number of
fitting parameters, more than one combination could be obtained. In any case,
Table X.1 shows the parameters used in the fitting of all the resins. It is worth to
mention that these parameters where found by fitting the experimental elongational
viscosity, and these same parameter, according to Verbeeten et. al. (2001), must
fit accurately the shear viscosity curve. Figure X.4 and Figure X.5 show the
transient response of resin A and E respectively. Similar resuits were obtained for
the rest of the resins.

% All the resins present four relaxation elements, except for resins C and D, which present three
relaxation elements as shown in Table V.4. Therefore, for resins C and D, there are nine fitting
parameters.
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Figure X.2. XPP model's predictions and experimental elongational viscosity for syndiotactic resins.
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Figure X.3. XPP model's predictions and experimental elongational viscosity for isotactic resins.
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Figure X.4. XPP model's predictions of transient elongational viscosity for syndiotactic resin A at different
extension rates.

115




100000 -

T 10000 -

g

P

=

(%1

o

H

£ 1000

= ]

=

£ -

B e 50 /S

5 100 4 -

[} ] - wammmen 100 /8
10 S — ——— - S
1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00)

Time [s]

Figure X.5. XPP model's predictions of transient elongational viscosity for isotactic resin E at different
extension rates.

C. Predictions of XPP Model in Simple Shear

In shear-free flow the tensor of the XPP model are given by:

T, Ty O
r,=|r, 7, O (10.18)
0 0 17
0 v O
y=17 0 0 (10. 19)
0 00
S, 0
S,=|s, s, 0 (10. 20)
0 St
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S. S, 0 28, S, 0

S = % S8 0 l-48, 0 0 (10.21)
0 0 S, 0 0 0

[7:5]= 7S, +52.) (10.22)

tr(S-S)=S2% +S2 +SZ +2S. 8!, (10.23)

It is worth to mention that, since 1y, and 1,x components of the stress tensor are the
same, Sy, and Syx components of the orientation tensor S, are the same too. Now,
introducing these definitions in the model, we obtain a system of five ordinary
differential equations.

d 2 1-a-3aA*{S2 +S? +82 +252 -
Be 25+ 45,5, + 22 (52 452 )4 (S= » = ”’)Sn-— e _
dt Aoy Aoy A 340\
(10.24)
ds 3aA? 1- = 3aA*(S2 + 82, +S2 +252) l—a
—Z +45 S+ S2 +82 )+ = r = 2°S,, - =
dt XYy /1017 (J’}’ W) A()bAz bid SA«ObAZ
(10.25)
s, 3aA’ - —3ah*(S2 +82 +52 +252)
Y 4182 xx » 2z Xy -
o A, e (S.. +SU)SW + e S, =0
(10.26)
2 1__ __3 4 2 2 2 2 _
ds.. PR L ah'(S2 +8% + 82 +2S”)Szz _d-a
dt Aos Aoy A2 3205\
(10.27)
dA 1
a8 A-—(A-1 .
o= e (A-1) (10.28)
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Solving simultaneously these differential equations, we obtain Sy, Syy, Syy, S;; and
A as a function of time. Now, we introduce them to the components of the
viscoelastic stress equations, given by:

7. =3G,A’S_ -G, (10.29)
r, =3G,AS, -G, (10.30)
7, =3G,A’S, -G, (10.31)
r. =3G,A*S_ -G, (10.32)

Finally we obtain the transient shear viscosity using

TJC

n(y.t)=-= (10.33)
y

A FORTRAN - language code was developed in order to make the XPP model
predictions. This code was validated using the experimental data presented by
Verbeeten et. al. (2001). For further information about the code see Appendix B.

As mentioned in previous section, the same parameters used to fit the elongational
viscosity are used to fit the shear viscosity. These parameters are presented in
Table X.1. Figure X.6 show the XPP model’s predictions in comparison to the
experimental values for all the resins. It can be seen that the model predicts
satisfactorily the shear viscosity too.
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Figure X.6. XPP model's predictions and experimental shear viscosity for all the resins.
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CHAPTER XI.

Discussion of Results

A. Comparison of viscoelastic properties of syndio- and

isotactic polypropylenes.

It is known that polypropylene is a polyolefin which monomer (propylene) consists

of a methyl group attached to a vinyl group. The existence of this methyl group

allows different stereochemical configurations of polypropylene (see Figure Xl1.1).

Figure XI.1 (a) shows the atactic polypropylene. It contains the methyl groups

placed randomly on both sides of the chain. On the other hand, Figure Xi.1 (b)

presents the isotactic polypropylene, which has all the methyl groups on one side

of the chain. Finally, syndiotactic polypropylene, in which methyl groups come on

alternating sides of the chain, is shown on Figure X1.1 (c).

a. Atactic Polypropylene

CH, CH, CH,
| | I

4 CH, —CH — CH, —CH — CH, ——L",H — CH, ~CH

b. lsotactic Polypropylene

CH, CH, CH, CH,
| | | |
4 CH, ~CH — CH, —CH — CH_ —CH — CH, —CH

c. Syndiotactic Polypropylene

CH, CH,
i i
CH, —CH — CH, —CH — GH, —CH — GH_, —CH
i |

~ -

- CH; .

8 .

., et

CHB CHJ ’

Figure X1.1. Different stereochemical configurations of polypropylene.
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Recently, with the developing of the metallocene based catalysts, the syndiotactic
polypropylene has become a very important material in plastic industry.
Nevertheless, the research that has been carried out on this material is limited. In
addition, the information with respect to the relation of the rheological properties
and the esterochemical configuration of polypropylene is limited. However, from
the experimental data obtained for this thesis, some interesting observations about
the role of stereoregularity on the rheological behavior could be made.

Figure V.1 through Figure V.8 show the storage and loss moduli, including the
crossover point, for all the resins. Even though the storage and loss moduli do not
present any trend or significant difference between isotactic and syndiotactic
resins; the crossover points do present some trends (see Table V.1).

32000 -
L J
30000 -
¢
— 28000 |
[
R
$ 26000 -
o TS
24000 - Gy Iso = 20252Ln(G, Syndio) - 193997
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Figure X1.2. Relationship between isotactic and syndiotactic resins' crossover modulus.
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Figure X1.3. Relationship between isotactic and syndiotactic resins' crossover frequency.

Figure X1.2 and Figure XI.3 show the relationship between isotactic and
syndiotactic resins’ crossover modulus and frequency respectuvely. It is observed
in these figures that there is a logarithmic functionality in both cases. In Figure XI.2
there is a poor fitting (R°=0.4938); however, it can be seen that it is only one point
(resin) out of trend (Resin F, approximatily +10%) . This suggests that there is a
slight experimental error in this point. This is opinion is reinforce by Figure XI.3,
because again Resin F point is slightly out of trend, although in this case the fitting
is a lot better (R*=0.9616).

On the hand, it was also found that there is a relationship between the crossover
point and the MFI. Figure XI1.4 and Figure XI.5 present the relationship between
MFI1 and the crossover modulus and frequency respectively. It can be seen in
these figures that isotactic and syndiotactic resins have a different behavior, but
both present the same power law functionality. Figure Xl.4 shows a poor fitting for
isotactic resins because of a point out of trend. This point is again corresponding
to Resin F, which confirms that it might be an experimental error in this point.
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Figure X1.5. Relationship between crossover frequency and MFI.

On the other hand, it was also observed a trend in the horizontal activation
energies, Ey (see Table V.5). It can be seen that the horizontal activation energies
for syndiotactic resins are about 15 to 20% larger than those for isotactic resins.

This difference was also observed by Eckstein ef. al. (1997).
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Another important observation is shown in Figure XI1.6. It was observed that
plotting the loss tangent (tan 8) versus the complex modulus (G*) at different
temperatures, data of all isotactic resins superimpose in the same curve. The
same happens with syndiotactic resins. These curves present power law
functionalities, as it is presented in Figure X1.6.

10

tan ||

DA@190°C -A@200°C ~A@210°C
xB@190°C xB@200°C -B@210°C
cC@190°C +C@200°C ®C@210°C
+D@190°C 4D@200°C « D@210°C tan 5 = 148.46(G*y**"
OE@190°C ©E@200°C AE@210°C

XF@190°C XF@200°C -F@210°C R%=0.9909
0G@190°C +G@200°C mG@210°C
eH@190°C AH@200°C e H@210°C

014 ,
1000 10000 G* [Pq] 100000 1000000

T T T T T T T T

Figure X1.6. Loss tangent vs. complex modulus data at different temperatures for all resins.

Now then, capillary data shows similarities (in both, shear and elongational
viscosity) between isotactic and syndiotactic resins with similar MFI (see Figure
VI.3 and Figure VI.4). However, it is worth to mention that Trotoun ratio* (Figure
V1.5) shows significantly differences, especially for high shear (extension) rates.
Trouton ratio for isotactic resins is considerably higher than syndiotactic resin’s
ratio. Therefore, Trouton ratio seems like a good alternative to discriminate
isotactic and syndiotactoc resins with the same MFI. However, it is recommended
more experimental data to have more conclusive results.

* Ratio between elongational and shear vicosity.
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In addition, creep and recovery data (Chapter VII) show that the strain under the
same stress is very similar for both types of resins. Syndiotactic resins present a
slightly higher strain. It can also be seen that there is a relationship between the
MFI and the strain (creep compliance) as well as to the time that the applied stress
lasts (creep time). Figure X1.7 shows that there is an exponential functionality
between the maximum compliance (Jmax) and the MFI in spite of the type of resin.
This figure also shows that the longer the creep time, the higher the maximum
compliance.

t o Isotactic Creep time: 40?25;”1::)
» Syndiotactic Jmax =0.0285e

R%=0.9145

0.1

*
Creep time: 60 s

Jmax = 0.004¢" 24

R?=0.9252
L 4
0.001 -

e Creeptime: 1s

Jmax = 0.0001¢% %M
R’ = 0.9499

0-0001 H T T T 1
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Figure X1.7. Creep compliance relation to MFi and creep time.

Now then, all the differences and similarities found in the rheological behavior must
be related to molecular aspects related to the stereochemical configuration,
because all the experimental conditions were the same for all the resins. It is
thought that a syndiotactic molecule, because of the configuration of the methyl
groups, might behave as a branched molecule. And then, it would produce more
entanglements with its surrounding molecules, creating a more complex network
than isotactic molecules.
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In any case, experimental data show significant viscoelastic differences between
these types of resins. However, it is recommended further analysis to evaluate
these differences and relate them to fundamental aspects of the molecular
conformation in the melt.

B. PTT Model

Since its publication (1977), PTT model has been used by many researchers to
model viscoelastic properties. It is considered like one of the best costitutive
equations. Besides, it has been used to model processing behavior in processes
such as fiber spinning. (Phan Thien and Tanner, 1977; Phan Thien, 1978;
Stephenson, 1986; Larson, 1987; Tanner, 1998; Tanner, 2003).

A sensibility analysis on the fitting parameters (elongational o and shear &) was
done in order to observe the effect of the fitting parameters in the model output.
The model output features evaluated were the zero-shear viscosity, no; the slope of
the viscosity curve; the elongational viscosity at low extension rate, neo; and the
slope of the elongational viscosity curve. Table XI.1 shows the results of this
analysis. The arrow pointing upwards means that the model output increases, if
pointing downwards the model output decreases and both means no change in the
model output.

Table X1.1. PTT mode! parameters effects on the model output.

If the parameter then then : then then
increases Mo Slope n vs 7 Neo Slope n, vs &
o 'Y Y Vv A
g v ) v v

It can be seen in Table XI.1 that the elongational parameter (o) does not have any
effect on the steady state shear viscosity curve. Nevertheless, this parameter has
a huge effect in the transient behavior of the shear viscosity. If this parameter is

127




equal to zero, the transient response of the model will be an oscillatory curve that
will reach the same steady state value. On the other hand, it is shown in this table
that the shear parameter (£) has a significant effect on the elongational viscosity
curve, which is contradictory with its name.

In any case, in Chapter VIl the PTT model was used to fit experimental data of the
isotactic and syndiotactic polypropylene resins. in Table Vill.1 are presented the
fitting parameters for all the resins. Mier (2000) found an empirical relationship
between the shear and the elongational parameter using metallocene-based
isotactic polypropylene resins. This relationship was a power law function;
however, this function do not applied for the resins under study as it is shown in
Figure X1.8.

o Isotactic
w | = Syndiotactic

g = 0.0393, 10048
R?= 0.8775

0.1 T T T T T T T T 1
0.1 o 1

Figure X1.8. Relationship between PTT model's shear and elongational parameters.

Nevertheless, practical empirical relationships were found for the fitting
parameters. The elongational parameter (o) was found to be related to percentage
of xylene soluble (XS) as shown in Figure XL9. It worth to mention that
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syndiotactic and

functionality, but with different function parameters.
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Figure X1.9. Relationship between elongational parameter and the percentage of xylene solubles.
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Figure X1.10. Relationship between shear parameter and the crossover frequency.

isotactic resins present the same negative exponential
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Now then, the shear parameter (£) presents an exponential functionality with
respect to the crossover frequency (wx). In this case, both resins present the exact
same functionality, but two points corresponding to syndiotactic resins are out of
trend. This deviation from the trend might be related to the poor fitting of the model
for the syndiotactic resins. It worth to remember that the model fits excellently the
isotactic resins’ data; however, it fails to predict accurately the syndiotactic resins’
experimental data as shown in Chapter VIil.

Since the PTT model fails to predict accurately the elongational viscosity of the
syndiotactic resins, a modification was proposed in Chapter IX. The same
parametric analysis done to the PTT model (see Table Xl.1) was done to the
modified PTT model. Table XI.2 shows the results of this analysis.

Table X1.2. Modified PTT model parameter effects on the model output.

If the parameter then then then then
increases Mo Slope nvs y Moo Slope n, vs £
A _ - Y A
B - - 1t . Z
C ¥ A - .

The modification proposed to the model gives a better fitting of the experimental
data for both, isotactic and syndiotactic resins, as shown in Chapter IX. With the
modification, now there are three parameters. There are two elongational
parameter (A, B) and one shear parameter (C). Even though it seems like a more
complex constitutive equation because of the number of parameters, it is not. The
elongational parameters are only used in predictions of the elongational flow, while
the shear parameter is only used to fit shear flow experimental data.

Now then, since A, B and C parameters control the model predictions; it was
thought that these adjustable parameters should be related to molecular aspects
and that there is a procedure to determine these parameters other than the empiric
fitting process.
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It was found that these parameters are related with standard properties and
molecular aspects. It was observed that the shear parameter (C) is related to MFI
as shown in Figure X1.11. This figure shows that for resin with similar MFI, the
shear parameter C is very similar too. The slight differences could be due to the
experimental error in the MFI determination. However, no quantitative relationship
was found.

» Syndiotactic
1 « Isotactic
0 i T T T

0 5 10 MFI 15 20 25

Figure X1.11. Relationship between modified PTT mode! shear parameter C and the MFI.

Nonetheless, it was found that this parameter is related to the average number of
entanglements (Mw/Me)°. Figure X1.12 shows a logarithmic functionality between
shear parameter C and the average number of junctions Mw/Me. Then, this might
imply that the number of junctions in the melt network is the determinant issue in
shear flow for both, isotactic and syndiotactic resins. Anyway, it is recommended
further study to have more conclusive results.

° Me refers to the average molecular weight between entanglements, then Mw/Me is the average

RT
number of entanglements. Me is obtain using the plateau modulus definition, Gf\), = —’IZA:[— The

plateau modulus can be obtained from the frequency where the minimum of the loss tangent (tan 5)
is located, Gf, = G'(w)mn smin (ECkstein, 1998). The theoretical density of polypropylene at 200 °C
was found to be 0.7617 gr/cm® (Bicerano, 1993).
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Figure X1.12. Relationship between modified PTT model shear parameter C and Mw/Me ratio.

On the other hand, the elongational parameter B was found to be related with the
percentage of xylene soluble (XS) and to the third moment of the molecular weight
distribution, Mz. Even though the relationship with the percentage of xylene
solubles (XS) gives a better correlation coefficient (R?), both could be useful for
further analysis of the model. The relationship between B and XS is linear, while B
presents a logarithmic functionality with respect to Mz as it is shown in Figure X1.13
and Figure XI.14 respectively.

Regarding the relationship to XS, it can be seen that a higher value of XS gives a
lower value of B (which means that a higher value of XS gives a lower value of
elongational viscosity). This behavior can be explained considering the low
molecular weight species. It is thought that shorter chains (low molecular weight)
might act like a “lubricator” between the longer chains (high molecular weight) and
help them flow, which means a lower stress and consequently a lower viscosity.

On the other hand, the relationship found between B and Mz indicates that a higher

value of Mz gives a higher value of B (which means a higher value of elongational
viscosity). It is known that Mz is related to the longest chains in the melt and it is
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thought that these chains, because of their size, present more entanglements and

impediments to flow, and then a higher elongational viscosity.
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Figure X1.13. Relationship between madified PTT mode! elongational parameter B and the percentage of

xylene soluble.
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Figure XlI.14. Relationship between modified PTT model elongational parameter B and molecular weight

average Mz.
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Figure X1.15. Relationship between modified PTT modetl elongational parameter A and Mz/Me ratio.

Finally, the elongational parameter A was found to be related, with an exponential
functionality to the Mz/Me ratio as it is presented in Figure XI1.15. The Mz/Me ratio
is related to the average number of junctions of the longest chains in the polymer
melts. Then, it can be conclude that the elongational rheological properties are
related to the longest chains in the melit.

It can be seen that Mz, Me and Mw result to be the important issues in the
determination of the fitting parameters of the modified PTT model. This suggests
that with an accurate determination of these molecular aspects, the shear and
elongational viscosity could be determined easily using this new model.

On the other hand, since these molecular weight distribution features are the most
important factors in the determination of the m-PTT model parameters, it is thought
that the viscoelastic response of a material is determined by the average number
of entanglements (Mw/Me) and the number of entanglements in the longest chains
(Mz/Me).
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Therefore, it is thought that an accurate determination of the number of
entanglements in a polymer melt could give a lot of information about the
rheological response of the material.

In addition, it can be seen that the relationships presented between the parameters
and the molecular features are logarithmic and exponential functions. It is thought
that these functions could be related between them and that a new function could
be obtained.

All this could be explained with the findings obtained during the simulation of the
random growth of polymers chains using random and self-avoiding walks (see
Chapter Xil). It was found that the number of junctions between two chains
presents an exponential functionality with respect to the distance between them at
their origin (this distance was taken to be the active sites in the catalysis system).

It worth to mention that this function is very similar to the PTT model's rate of
creation and destruction of junctions, which suggest that there is a relationship
between the catalysis system and the rheological behavior. Such relationship
might be implied in the relationships presented before, but further study is needed
to make conclusions.

C. XPP Model

In Chapter X, the XPP model was used to predict shear and elongational viscosity
of the resins under study. The XPP model, based on the Pom-Pom model
introduce by McLeish and Larson (1998), is considered a breakthrough in the field
of viscoelastic constitutive equations. The XPP model was created to predict the
viscoelastic behavior of highly entangled polymer melts. It is based on the tube
model (Doi-Edwards) and a simplified topology of branched molecules (pom-pom
molecule).
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According to several authors (Blackwell, 2000; Chodankar, 2001; Graham, 2001;
Verbeeten, 2002) the Pom-Pom and XPP models accomplish a correct nonlinear
behavior in both elongation and shear flow. It gives excellent results in HDPE and
LDPE resins; however, it hadn’t been used in polypropylene resins before.

The application of this model to the polypropylene resins gives a good fitting of the
viscoelastic behavior. Nonetheless, it is worth to mention that the fitting process is
complicated because the fitting parameters must be fit for each relaxation element.
Then, there are too many fitting parameters, which means that the model is not
that robust.

On the other hand, the shear viscosity is predicted (using the same parameters)
after fitting the elongational viscosity first. This is not what we are looking for. It is
needed a way to found elongational viscosity, but this model needs the
experimental data to make the fitting, and then the shear viscosity is calculated.
The shear viscosity is easy to obtain, then it would be better to fit the experimental
data of the shear viscosity and then predict the elongational viscosity, but this can’t
be done with this model.

The fitting parameters are related to molecular aspects according to the model
creator (Verbeeten, 2001). The q parameter is the number of dangling arms in a
pom-pom molecule and « is a measure of anisotropy in the material, however, no
relationship between the parameters and the standard properties or molecular
aspects was found.

In any case, a sensibility analysis on the fitting parameters, similar to the one done
to the PTT and modified PTT models, was done. Table XI.3 shows the results of
this analysis. It worth to remember that the parameters must be fitted for each
relaxation element, and then the information in this table is the general effect of the
parameter in the model output.
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Table XI 3. XPPr model Earameter effects on the model output _

increases : | . 710 o S!ope n vs‘,y : Neo S Slope 11; Vs &
e ® B 2 L v
@ g A v a4

It would be really helpful to develop a practical method to make the fitting of the
XPP model, because it is very complicated to fit that many parameters. Actually, it
is thought that there could be some relationships between the parameters, which
would reduce the number of fitting parameters and make easier and more useful
this model.

D. Constitutive Equations Comparison

In this section a comparative analysis of the constitutive equations used in this thesis is
presented. PTT and XPP model were used in Chapters VIl and X respectively. In
addition, a modified PTT was proposed and evaluated in Chapter IX. Table X1.4 shows
a summary of each constitutive equation. On the other hand, Table XI.5 presents the
most important advantages and disadvantages of the models under study.

Figure X1.16 shows the three models’ predictions of elongational viscosity for
syndiotactic resin A. It can be seen, that PTT model fails to predict accurately this
propertie, while mPTT and XPP models give good predictions. Since XPP
model’s fitting process and mathematical computations were found to be more
complicated, the modified PTT model (mPTT) seems to be an excellent alternative
in constitutive modeling. This new model predicts accurately shear and
elongational properties and its application is very easy. Even though, it has to be
fitted twice, one for shear and another for elongational; it does not represent any
difficulty, because the fitting process is very easy. In addition, the fitting
parameters are related to molecular aspects, which could help in the fitting
process.
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Constitutive
equation
Development

Parameters

Fitting
process

Major .
differences

Remarks

Table Xl.4. Compa

; Equations 8.1, 82and85

Molecular network theory
which considers that the
number  of  subunits
between two junctions has
a distribution  giving
multiple relaxation times.
(Phan Thien and Tanner,
1977)

‘Shear parameter (&)

Elongational  parameter

e

The shear paramters is
obtained from steady
state shear viscosity data.
Afterwards, the o is used
to fit the elongational
viscosity.

| 1. Based .on the idea

that the elastic energy
of .the network  strand
is important (Phan

Thien ‘and - Tanner,” -

1977).
2. The shear parameter
(&) has a significant
‘effect on’-

_elongational viscosity.

3. Poor - fiting  in
syndiotactic  resins’

1. Predictions are in
good agreement for
isotactic resins.

2. It had been used by
other researchers to
predict processing
characteristics  with
statisfactory  resuits.
(Mier, 2000)

3. The shear parameter
was found to cause
some problems such
as the violation of the

Lodge-Meissner
relation (Larson,
1987)

rison of the constitutive eg

the AN
 flow, while C is not

uations used in this thesis.

Equations. 9.1, 9.2, 9.3
and9.4

Semiempirical
modification of the PTT
model.

Shear parameter (C) . -
Elongational parameters
“(Aand B) i '

Different fitting processes
are made for shear and
elongational flow. On one
hand, C is used to fit
shear viscosity and on the
other hand, A and B fit the
elongational viscosity.

1.. The shear parameter
is set to zero and the
ejonation - parameter
is a function of the

2. Complete different
parameters for each
type of flow. A and B
are not used in'shear

* ‘used in elongation.
3. Excellent fitting of the

- gyndiotactic resins.
1. Predictions are in
excellent agreement

to experimental data.

2. Fitting parameters are
related to standard
quality properties and
molecular weight
distribution aspects.

3. Further study is
recommended.

‘extensiontate;

3. Good

Equations  10.1,
10.3, 10.4 and 10.5
Tube model theory and a
simplified topology of
branched molecules.
(Verbeeten, 2001)

10.2,

" Numbeét of dangling arms

@ L
‘Stretch relaxation : time’
(20e) . .
Measurement ' of
anisotropy (a)

First, the elongational
viscosity must be fitted,
and then, wusing the

parameters found in the
fitting, the shear viscosity
is fitted. The parameters
must be fitted for each
relaxation elements, then
the actual number of
fitting parameters is 3 x N,
where N is the number of
relaxation elements.
1. Developed for high
branched polymers
. such.as' LDPE melts:
2. Modification of the
Fiotientation” T and
stretch in the original
Pom-Pom model
(McLeish, 1958).
- fitting in
.. syndiotactic _ resins’
experimental dat.

1. Predictions are in
good agreement for
both types of resins.

2. There are too many
fitting parameters,
which implies that the
model is not robust.

3. Since it is a relatively

new model (2001),
further study is
recommended.
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Table XI1.5. Advantages and disadvantages of the constitutive equations used in this thesis.

Model Advantages Disadvantages
= The mathematical computations = Poor fitting for syndiotactic resins.
needed in the solving of the model = Poor fitting for high branched
Lo sape w.are faidysimple. e sxozeTpolymersc(Larson, 1987; - Mcleish,
PTT = The fitting process is snmple 1998, Verbeeten, 2001)
- | = Predictions are in good agreementto = Violation of ‘the Lodge-Meissner
 experimental data. ‘ _ relationship _(Larson, 1987,
' ' b ‘Stephenson, 1989).
= Excellent predictions in shear and Different fittings must be done for
shear-free flow for syndio- and elongation and shear flow.
isotactic resins. Further study is needed
m-PTT = Easy mathematical computations.
= The fitting process is very simple.
= Fitting parameters are related to
molecular aspects like Mz and Me.
= A correct viscoelastic prediction of There are too many parameters to
high branched polymers without the  fit, which makes this model not that
...drawbacks. of the original Pom-Pom. robust. . : .
model (Verbeeten, 2001). The fttmg process is very
XPP 1= The same fitting parameters -are complicated, - ,
used for elongation and shear flow. The elongational wseossty has to be
: ‘ ‘ fitted first.
- The mathematical computataons are
not that simple.
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Figure XI.16. Experimental elongational viscosity and mPTT, XPP and PTT models' predictions for
syndiotactic resins A.
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E. Other Practical Relationships

The purpose of this section is to present several empirical relationships that might
be useful in further studies. Such relationships can be used as an alternative
practical tool to determine properties from other know data. However, all the
relationships presented still need to be tested using more resins in order to verify
the relation. These relationships hold for 200 °C, which is the temperature at which
rheological tests were done.

Figure X1.17 and Figure X1.18 present relationships of the MFl. As it was
expected, the MFI was found to be related to the zero shear viscosity and the
molecular weight average Mw. In both cases, it can be seen a power law
functionality with good correlation coefficients (R*> 0.9). It is worth to mention that
in both cases, syndiotactic and isotactic resins present different function
parameters.
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Figure XI.17. Relationship between MF! and Zero-shear viscosity.
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Figure X1.18. Relationship between MF! and the molecular weight average Mw.
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Figure X1.19. Relationship between the zero-shear viscosity (@ 200 °C) and the molecuiar weight

average Mw.

Now then, Figure XI1.19 presents the relationship between the zero shear viscosity

and the molecular weight average Mw. As it was expected, the zero shear

viscosity depends on power law function with respect to the molecular weight
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average Mw. It can be seen that the power law index is lower than 3.4, which is
mentioned in the literature (Bird, 1987; Dealy, 1990) as the power law index of this
relationship. However, Figure X1.20 shows the same relationship, but with the zero
shear viscosity shifted® to 230 °C. In this case, the power faw index is very similar
to 3.4 which is in agreement with the theory.
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Figure X1.20. Relationship between the zero-shear viscosity shifted to 230 °C and the molecular weight
average Mw.

On the other hand, the zero shear viscosity was found to be related to the
crossover frequency (ox). As well as the zero shear viscosity, the molecular weigh
average Mw and Mz were also found to be related to the crossover frequency.
Figure X1.21, Figure X1.22 and Figure X1.23 present these relationships.

® 1,(200°C) = 7,(230°C)- a,
ar is found using the Arhenius type equation (Mavridis, 1992) and the Ey found in the TTS (see
Table V.5).
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Figure X1.21. Relationship between the zero-shear viscosity and the crossover frequency.
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Figure X1.23. Relationship between the molecular weight average Mz and the crossover frequency.
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Figure XI1.24. Relationship between the molecular weight average Mz and the percentage of soluble XS.

Otherwise, the percentage of xylene soluble (XS) was found to be related some
molecular aspects, such as Mz and Mw/Mn, Mz/Mw and Mz/Mn ratios. These
relationships are presented in Figure XI.24 through Figure XI1.27.
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Figure X1.25. Relationship between the polidispersity Mw/Mn and the percentage of soluble XS
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Figure X1.26. Relationship between Mz/Mw ratio and the percentage of soluble XS
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Figure X1.27. Relationship between Mz/Mn ratio and the percentage of soluble XS

In addition, XS is also related to the percentage of isotacticity (%meso) as shown
in Figure XI1.28.
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Figure X1.28. Relationship between percentage of isotacticity (%meso) and the percentage of soluble XS

Calorimetric data was found to be related to the percentage of isotacticity as shown
in Figure X1.29 and Figure XI.30.
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Figure X1.29. Relationship between the recrystallization peak and the percentage of isotacticity (%omeso).
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Figure X1.30. Relationship between the melting temperature and the percentage of isotacticity (% meso).
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Figure X1.31. Relationship between the second melt peak and the recrystallization peak in the DSC.

Finally, a practical relationship between the second melt peak and the
recrystallization peak in the DSC experiment was found. This relationship presents
a power law functionality and it is presented in Figure X1.31.
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to that at equilibrium (see Chapter I, page 23). This degree of connectivity is
related to the number of junctions, and as it is mentioned before, the number of
junctions is in some way related to fractals. The same happens with the PTT
model and other constitutive equations based on molecular network theory.
However, these models consider empirical fitting parameters that are not based on
fundamentals aspects of the polymerization, and then they still have some
drawbacks in the predictions of viscoelastic properties.

A rheological model completely based on fractals theory and fundamentals aspect
of the polymerization would be a huge innovation to constitutive modeling and to
plastic engineering. It is thought that this is the best, and maybe the only, solution
for solving the drawbacks in constitutive modeling of polymer melts.

Now then, a lot of work is left to do. The simulation of the random growth of
polymer chains using 3-D self-avoiding walks (SAW's) looks like a good way to
model a polymer network. However, some issues have to be improved in order to
make the model more realistic.

First of all, a better program is needed to generate the chains since FORTRAN
presented some limitations. It can’t generate chains greater than 2000 steps,
which makes the simulation unrealistic because actual polymer chains consist of
much more than 2000 monomeric units.

On the other hand, the simulations using 3-D SAW's presented before, are not
considering the mass and volume of actual polymer chains. They only represent
the path of a probable growth of the chain. However, in order to have a better
model of the polymer chain’s growth, the mass and volume of the chain must be
considered. In addition, stereochemical conformation must be considered too. The
angles between the chemical bonds, the stereochemical configuration (cis-, trans-,
isotactic or syndiotactic), and all the chemical and physical interactions have to be
taken into account in the simulation. Important issues to consider are that:

161




=» Monomeric units are no connected by 90° angles like it is shown in
the SAW's presented before.

=» Van de Waals forces could play an important role in the elongational
flow; therefore special attention must be put to these forces.

=>» Molecualr weigh distribution moments (Mw, Mn and Mz) must be
properly replicate by the model.

=>» The model should be able to describe all kinds of polymerization and
catalysis systems.

All these considerations will make possible the modeling of the growth of different
kinds of polymers, and then a proper constitutive equation could arise from these
simulations.

The fundamental idea for this new constitutive equation would be that a certain
strain will produce the destruction of some junctions and the viscoelastic stress
would be proportional the total force needed to destroy these junctions. However,
is important to consider that the force required to break a junction consist of two
parts. The process of destruction of junctions is described in Figure Xll.14. First,
Figure Xll.14 (a) represents a polymer network, which could be view, in an ideal
way, like a circle made of two chains, such as it is shown in Figure Xll.14 (b).
Figure XIl.14 (c) and (d) present these chains undergoing a certain deformation.
To reach this point (just before the break of junctions) a certain force was required.
Then, it comes the rupture of the junctions, represented in Figure XIl.14 (e).
Another force was needed here to actually break the entanglement. After this
rupture, it comes the relaxation of the polymer chains represented by Figure XIl.14

(f) and (g).
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Figure XI.14. llustration of the process of destruction of junctions.

Therefore, the viscoelastic stress is related with the force required to reach the
point of break and the force needed to actually break the junction. It is thought that
the forces required to break the junctions are the determinant issue in the
viscoelastic stress. It is also thought that to break a junction, is needed to beat van
der Waals forces (interaction between the chains). Consequently, the viscoelastic
stress must be related to the van der Waals forces.
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Now then, the number of junctions becomes very important in the development of
this new constitutive equation. Actually, the important feature is the change in the
number of junctions. However, the junctions can be inderectly related to the empty
spaces in the network, and it is thought that a quantitave relation could be found
between this two features. In addition, according to the box counting method,
described in section D of Chapter I, the empty spaces in the network give the
fractal dimension of the object. Then, the number of junctions is actually related to
the fractal dimension of the network. Therefore, the determinant element in this
new model would be the fractal dimension of the polymer network.

Even though the fractal dimension is silent on the detailed structure and absolute
size of the object (Rothschild, 1998), it is a characteristic feature and it seems to be
a good way to describe the polymer meilt. It is important to mention, that this fractal
dimension is not a constant. Since the number of junctions changes through time,
the fractal dimension is also a function of time.

Another important thing to mention is that fundamental aspects must be involved in
the model in order to make this equation more useful. It was found that Me and Mz
are closely related to the parameters in mPTT model. This suggests that this
molecular features influence significantly the viscoselastic response of the material;
then, it is thought that this features could be involved in the new model too.

In any case, a lot of work has to be done in this subject. Further study of
polymerization mechanisms and catalysis systems as well as of fractals theory is
required. However, a general procedure, shown in Figure XI1.15, to develop the
new constitutive equation based on fractals theory is proposed.
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Figure XI1.16. Procedure proposed to attain a new constitutive equation.
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Appendix A. Calculations to Transform Capillary
Rheometer Raw Data into Shear and Elongational Viscosity

A. Equipment Description

> Rosand Double Bore Capillary Rheometer
Model RH7-2
Barrel Diameter (Dy): 16 mm

Tabie A.1. Long dies used in the capillary analysis

Diameter Lenght L/D Entrance

0.5 mm 8 mm 16 90°
1 mm 16 mm 16 90°
1.5 mm 24 mm 16 90°

Table A.2. Short dies used in the capillary analysis

Diameter Lenght L/D Entrance
0.5 mm 0.25 mm 0.5 90°
1 mm 0.25 mm 0.25 90°
1.5 mm 0.25 mm | 0.1667 90°

B. Raw Data

Rosand software caiculates the shear and extensional viscosity, but as explained
in chapter lll, it gives different results to the Bagley and Rabinowitch correction and
the Cogswell (1972a, 1972b) analysis for shear and elongational viscosity
respectably. Therefore, the piston velocity (v) and the pressure drop in the short
(APs) and long die (AP.) are the only data needed as raw data, in addition to the
barrel and die dimensions, to calculate the shear and elongational viscosity.

183




C. Steady Shear Viscosity

1. Calculate the volumetric flow Q (mm?®/s) for each piston velocity.

2
Q= wr(l—)i) A1)
2
2. Calculate the apparent shear rate .
. 32
;. = ﬂDQ3 (A.2)
3. The apparent shear stress z_, is determined by:
_D 4
Ta =7 I, (A.3)
4. Then the apparent shear viscosity 7, is obtained by:
T
Mg 73 (A.4)

5. The pressure drop for a polymer melt flowing through a die is due to viscous
deformation and elastic deformation. The elastic deformation occurs due to the
contraction of the flow in going from the bigger diameter of the reservoir
(barrel) into the smaller diameter of the die. Therefore, it is important to
subtract the elastic pressure drop from the total pressure drop. The pressure
drop due to the elongation of the melt APg, can be taken as the total pressure
registered in the transducer above the short die (APs) minus the pressure due
to viscous resistance in the small length of the short die.

AP, - AP,

AP, = AP, —
E s I, -1,

L (A.5)

6. Determine the viscous pressure drop AP,;s (Pa) for each apparent shear rate.
AP, = AP, — AP, (A.6)

vis

7. For every apparent shear rate, the true shear stress 1 ; is determined by:
7, = (2)(%) (A7)
4 L,
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. The true shear rate is determined by using the Rabinowitch technique, in which
the parameter "n" is obtained from the point slope of the curve of the log 1 ¢
versus log 7,, Tadmor et al. (1979) noticed that "n" is constant if the polymer
melt is a power law fluid. For other non-Newtonian fluids, “n” will vary with the

apparent shear rate or true shear stress.

_ d(log Tz)
" dfiog7,) (A8)
7, =[3"‘+ 1]7;, (A.9)
4n

. Determine the true shear viscosity n:.
_

Ny =— A.10
! Ye ( )

D. Transient Shear Viscosity

. Calculate the volumetric flow, the apparent shear rate, the power law index and
the corrected shear rate from steady state values (see section C).

. Calculate the elastic pressure drop APe (equation A.5) using the transient
pressure data.

. Similarly, calculate the true shear stress t ; (equation A.7) for each recorded
time.

. Then, calculate the transient true shear viscosity n; (equation A.10) for each
time.

E. Steady Elongational Viscosity

The steady elongational viscosity can be determined from steady shear viscosity

capillary data by means of the Cogswell analysis as an extension of the procedure
follow in section C to calculate the steady shear viscosity.
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10. Calculate the elongational stress o, by:

11

3ln+1
O¢ = (8 )-APE (A11)
.Determine the elongational viscosity 7, using the corresponding equation.
_ 3(AFP)
n, = b 3 (for die with entrance angle 8) (A12)
Tan(@ /2 1-{ — | |y
( )[ ( DbJ }n
9n+1) (AP, )
. = ( ) ( 5 E) (for 180° entrance angle die) (A.13)
32n,7,

12. Calculate the elongational rate £.

_ %

Ne

F. Transient Elongational Viscosity

The procedure to obtain the transient elongational viscosity from transient capillary

test is a continuation of the procedure followed in section D to calculate the

transient shear viscosity.
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Calculate the transient elongational stress o, at each recorded time by
equation A.11.
Similarly, calculate the transient elongational viscosity 7, using equation A.12

or A.13 at each time.
Determine the elongational rate £ (equation A.14).



Appendix B. Software Developed

it was needed to develop some programs (coded in Fortran-language) in order to
make easier and faster some calculations along this research. There were
developed programs to solve the modified PTT model and XPP model in shear
flow, as well as in elongational flow. In addition, there were created other
programs to generate random walks and self-avoiding walks as well as to obtain
the number of junctions. It worth to mention that programs (coded in C-languege)
created by Mier (2000) were also used in this thesis.

A. Modified PTT Model

Chapter IX presents the modified PTT model as well as its rheological functions
predictions. The shear flow behavior is described by equations 9.9 to 9.12, which
form a system of ordinary differential equations that must be solved numerically. In
the same way, equations 9.19 to 9.21 describe the shear free flow. The fouth
order Runge Kutta method was applied to solve these systems of ordinary
differential equations. This method states that for a system of ordinary differential
equations of the form

%=f(x,y) (B.1)

the next step
’xn-H = xn + h (BZ)

has for solution

1
Vot =V, +'6_(k1 +2k, + 2k, + k4) (B.3)
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where

kl =h.f(xnﬂyn) (B4)
k?.:h. (xn+g—7yn+_l'€2l] (85)
k, =h-f(xn +—g,yn +—k§2—) (B.6)
ky=h-f(x,+h,y,+k) (B.7)

Next are presented the Fortran-language code developed to solve these systems
easier and faster.

1. Shear Flow

! MPTT_SHEAR.f90
|

| FUNCTIONS:
! This program finds the shear viscosity using the modified PTT model.
!

'************************************************************t*****t*************t******

INPUT: Relaxation spectrum, fitting parameter C, shear rate, step (h)
and tolerance.

called svisc.dat

!
!
!
!
! QUTPUT: Transient shear viscosity. The data is printed in an ASCI file
!
!
!

RARREREARKRRATXEARE AR EXRAREERAARRERKAATRA A AR AR A AR AL LR AR AAARR AR A XA T RARNA AL

PROGRAM mPTT_shear

IMPLICIT NONE

P\ ARIABL ES*

REAL C, srate, lamda(4), eta(4), svis, svisn, erate
REAL txx(4), tzz(4), tyy(4), txy(4)

REAL txxn(4), tzzn(4), tyyn(4), txyn(4)
REAL k1xx(4), k2xx(4), k3xx(4), k4xx(4)
REAL k1yy(4), k2yy(4), k3yy(4), kdyy(4)
REAL k1zz(4), k2zz(4), k3zz(4), kdzz(4)
REAL k1xy(4), k2xy(4), k3xy(4), kdxy(4)
REAL t, h tn

REAL tol, error

INTEGER i}, no
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CHARACTER*20 out1

P+ OPENING OUPUT FILE*****
out1 = 'svisc.dat'
OPEN (1, FILE=out1)

!*****'NPUT*****

! Fitting Parameter

WRITE(**) 'Fitting parameter C'
READ(**) C

{ Shear rate
WRITE(*,*) 'Shear rate'
READ(*,*) srate

IRelaxation Spectrum
WRITE(*,*) ‘Number of elements of de relaxation spectrum’
READ(*,*) no

DO i=1,no
WRITE(*,*) ‘Relaxation time’, i
READ(*,*) lamda(i)
WRITE(*,*) ‘Relaxation spectrum viscosty’, i
READ(**) eta(i)
END DO

! Step
WRITE(*,*) 'Step size i’
READ(*,*) h

! Tolerance
tol=0.000000000001

P SOLVING SIMULTANEOUS DIFF EQNS SYSTEM*****
! Runge-Kutta Method (Fourth Order)

DO i=1,no
bxn(i)=0
tyyn(i)=0
tzzn(i)=0
txyn(i)=0
END DO
svisn=0
tn=0
error=toi+1
DO WHILE (error>tol) 1)
t=tn
DO j=1,no
bex(j)=txxn(j)
tyy(j)=tyyn(j)
tzz(j)=tzzn())
ty(j)=txyn(j)
END DO
svis=svisn
WRITE(1,%) t, svis, error
tn=t+h
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DO i=1, no K2)
! txx
k1xx(iy=h*(1Aamda(i))*((2*lamda(i)*srate*txy(i))-(EXP(-
(Cytamda(i)*(box(i)+yy (i) Hzz(i))/eta(i))*bux(i)))
k2xx(i)=h*(1/lamda(i))*({2*lamda(i)*srate*txy(i))-(EXP(-
(C)*tamda(i)*((txx(i)+(k1xx(i)/2)) +Hyy (i) Hzz(i))/ eta(i)y* (txx(i)+(k 1 xx(0)/2))))
k3xx(i)=h*(1hamda(i))*({2*lamda(i)*srate*txy(i))-(EXP(-
(Cytamda(i)*((txx(i)+(k2xx(i)/2))+tyy (i) +zz (i)Y eta(i))* (bxx(i)+(k2xx(1)/2))))
kaxx(i)=h*(1/lamda(i))*((2*lamda(i)*srate*txy(i))-(EXP(-
(C)*lamda(i)* ((box(i)+(k3xx(i))) +tyy (i) +zz(i) Veta(i))* (txx(i)+(k3xx(i)))))
boxn{i)=box(i)+ (K 1xx(i)+2* k2xx (i) +2*k3xx(i ) +k4xx(i) }/6
yy
k1yy(i)=h*(1lamda(i))*(-(EXP(-
(C)rlamda(i)*(bex(iy+tyy (i) +tzz(i))/eta(i)) tyy(i)))
k2yy(i)=h*(1lamda(i))}*(-(EXP{-
(CyHtamda(i)*((tyy () +(k1yy(i)/2))+tax(i)+tzz(i))eta(i))* (tyy (i) +(k1yy(i)/2))))
k3yy(i)=h*(1lamda(i))*(-(EXP(-
(Cytamda(i)*({tyy(i)+(k2yy(i)/2))+bxx(i)+tzz(i)eta(i)) " (tyy(i)+(k2yy(i)/2))))
kdyy(i)=h*(1lamda(i))*(-(EXP(-
(C)*lamda(i)*((tyy (i)+(k3yy (i) +txx(i)+zz(i))/eta(i))* (tyy (i) + (k3yy(i)))))
fyén(l)=tyy(i)+(k1yy(')+2*k2yy(i)+2*k3yy(i)+k4yy(i))/6
tzz
k1zz(i)=h*(1hamda(i))*(-(EXP(-
(C)*lamda(iy*(txx(i)+tyy(i)+tzz(i))eta(i)) *tzz(i)))
k2zz(i)=h*(1lamda(i))*(-(EXP(-
(C)lamda(i)*((tzz(i)+(k1zz(i)/2))+txx(i)+tyy(i)/eta(i)) *(tzz(i)+(k12z(1)/2))))
k3zz(i)=h*(1/lamda(i))*(-(EXP(-
(C)*lamda(iy*((tzz(i)+(k2zz(i)/2))+txx(i)+tyy (i) eta(i))* (tzz(i)+(k2zz(i)/2))))
kdzz(i)=h*(1lamda(i))*(-(EXP(-
(Cyrlamda(i)*((tzz(i)+(k3zz(i))) +txx(i) +tyy (i) eta(i))*(tzz(i)+(k3zz(i)))))
tzzn(i)=tzz(i)+(k1zz(i)+2*k2z2(i)+2*k3zz(i)+kdzz(i))/6
L {xy
k1xy(i)=h*(1amda(i))*{(-eta(i)*srate)+(lamda(i)*srate*tyy(i))-(EXP(-
(Cy*tamda(i)*(bex(i)+tyy(i)+zz(i))/eta(i)) *txy(i)))
k2xy(i)y=h*(1lamda(i))*((-eta(i)*srate)+{lamda(i)*srate*tyy(i))(EXP(-
(C)yMamda(i)*(tyy(i)+box(i)+tzz(i))/eta(i)) " (tbxy (i) +(k 1xy(1)/2))))
k3xy(i)=h*(11amda(i))*((-eta(i)*srate)+(lamda(i)*srate*tyy(i))-(EXP(-
(C)y'lamda(i)*(tyy(i)+txx(i)+tzz(i))/eta(i))*(txy (i) +(k2xy(i)/2))))
kaxy(i)=h*(1/lamda(i))*((-eta(i)*srate)+(lamda(i)*srate*tyy(i))-(EX P(-
(C)*lamda(i)*(tyy(i)+txx(i)+tzz(i))/eta(i))*(txy (i) +(k3xy(i))))
txyn(i)=txy (i)+(k1xy (i)+2*k2xy (i) +2*k3xy (i) +k4xy(i)) /6
END DO (2)
svisn=-(txyn(1)+txyn(2)+txyn(3)+txyn(4))/srate
error=ABS(svisn-svis)
WRITE(**) tn, svisn, error
END DO 1(1)

e CLOSING OUTPUT FILE™**
CLOSE (1, STATUS='KEEP")

END PROGRAM mPTT_shear
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2. Shear Free Flow

! MPTT_ELONGATION.f90

|

| FUNCTIONS:

This program finds the elongationat viscosity using the maodified PTT model.

'*************************‘k*******************************************t******

!
!
!
!
{
f
1

INPUT:

step (h) and tolerance.

OUTPUT: Transient elongational viscosity. The data is printed in an ASCI

file called evisc.dat

!***************i’************************************************************

PROGRAM mPTT_ELONGATION

IMPLICIT NONE

!*****VAR IABLES*****

REAL A, B, erate, lamda(4), eta(4), evis, evisn
REAL txx(4), tzz(4), t, h, tn, txxn(4), tzzn(4)
REAL k1xx(4), k2xx(4), k3xx(4), k4xx(4)
REAL k1zz(4), k2zz(4), k3zz(4), kdzz(4)
REAL tol, error

INTEGER i, j, nO

CHARACTER out1

*++*OPENING OUTPUT FILE*****

out1 = 'evisc.dat’
OPEN (1, FILE=out1)

!*****INPU'I‘*****

t Fitting Parameters

WRITE(*,*) 'Fitting parameter A'
READ(**) A

WRITE(**) 'Fitting parameter B'
READ(**) B

! Extension rate
WRITE(*,*) 'Extension rate'
READ(**) erate

'Relaxation Spectrum
WRITE(*,*) ‘Number of elements of de relaxation spectrum’
READ(*,*) no

DO =1, no
WRITE(**) ‘Relaxation time’| i
READ(**) lamda(i)
WRITE(*,*) ‘Relaxation spectrum viscosty’, i

Relaxation spectrum, fitting parameters A and B, extension rate,
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READ(*,*) eta(i)
END DO

! Step
WRITE(**) ‘Step size '’
READ(**) h

! Tolerance
tol=0.000000001

F**+++*SOLVING DIFF EQNS SYSTEM*****
! Runge-Kutta Method (Fourth Order)
error=tol+1
tn=0
txxn(1)=0
txxn(2)=0
txxn(3)=0
txxn(4)=0
tzzn(1)=0
tzzn(2)=0
tzzn(3)=0
tzzn(4)=0
evisn=0
DO WHILE (error>tol) 1)
t=tn
txx(1)=txxn(1)
txx(2)=txxn(2)
txx(3)=txxn(3)
txx(4)=txxn(4)
tzz(1)=tzzn(1)
tzz(2)=tzzn(2)
tzz(3)=tzzn(3)
tzz(4)=tzzn(4)
evis=evisn
WRITE(1,*) t, evis, error
tn=t+h
DOi=1,no Y(2)
! txx
k1xx(i)=h*(1flamda(i))*((eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*bxx (i) +zz(i) eta(i)) *txx(i))-(lamda(i)*erate*txx(i)))
k2xx(i)=h*(1/lamda(i})*((eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)* (2* (b (i)+H(K1xx(i)/2))+tzz(i))eta(i))* (box(i)+H(K 1xx(i)/2)))-
(lamda(i)*erate* (txx(i)+(k 1xx(i)/2))))
k3xx(i)=h*(1Aamda(i))*((eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)* (2*(bx(i)+{k2xx(i)/2))+tzz (i)Y eta(i) )* (txx(i) +H(k2xx(i)/2)))-
(lamda(i)*erate* (txx(i)+(k2xx(i)/2))}))
kaxx(i)=h*(1/lamda(i))*((eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)* (2*(bx(i)+(k3xx(i)))Hzz(i))/eta(i))* (txx(i)+(k3xx(i))))-
(lamda(i)*erate*(tx(i)+(k3xx(i)))))
bon(i)=bax(i)+(k Dox(i)+2* k2xx(i)+2*k3xx (i) +k4xx(i))/6
1tzz
k1zz(i)=h*(1/lamda(i))*((-2*eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(iy*(2*txx(i)+tzz(i))/eta(i))*tzz(i))+(2*lamda(i)*erate*tzz(i)))
k2zz(i)=h*(1lamda(i))*((-2*eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*txx(i)+{tzz(i)+(k1zz(i)/2)))/eta(i))* (tzz(i) +(k12z(i)/2)))+(2*lamda(i)*erat
e*(tzz(i)+(k1zz(i)/2))))
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k3zz(i)=h*(1/lamda(i))*((-2*eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*tamda(i)*(2*txx(i)+(tzz(i)+(k2zz(i)/2)))eta(i))* (tzz(i)+(k2zz(i)/2)))+(2*lamda(i)*erat
e*(tzz(i)+(k2zz(i)/2))))
k4zz(i)=h*(1lamda(i))*((-2*eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*txx(i)+(tzz{i)+(k3zz(i))) eta(i))*(tzz(i)+(k3zz(i))))+(2*lamda(i)*erate*(tz
z(i)+(k3zz())))) .
tzzn(i)=tzz(i)+(k1zz(i)+2*k2zz(i)+2*k3zz(i)+k4zz(i))/6
END DO 1(2)
evisn=(bon(1)+bxxn(2)+txxn(3)+txn(4)-tzzn(1)-tzzn(2)-tzzn(3)-tzzn(4))/erate
error=ABS(evisn-evis)
WRITE(**) tn, evisn, error
END DO &)
e+ CLOSING OUPUT FILE*****
CLOSE (1, STATUS='KEEP")

END PROGRAM mPTT_ELONGATION

B. XPP Model

On the other hand, Chapter X presents the XPP model. The shear flow behavior
using this model is described by equations 10.24 to 10.28, while the shear-free
flow is governed by equation 10.12 to 10.14. Each of these two sets of equations
form a system of ordinary differential equations that must be solved numerically.
As well as with the modified PTT model, the fouth order Runge Kutta method was
applied. This method is presented in section A.

Next are presented the Fortran-language code developed to solve these systems
of equations.

1. Shear Flow

! XPPSHEAR.f90

!
'*******************************************t********************************
1

| PROGRAM: XPPSHEAR
|

i PURPOSE: To obtain shear viscosity using XPP model.
!

'****************************************************************************
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PROGRAM XPPSHEAR

IMPLICIT NONE

!*****VAR'ABLES*****

REAL t, tn itime

REAL Sxx(8), Syy(8), Sxy(8), Szz(8) !S tensor components

REAL Sxxn(8), Syyn(8), Sxyn(8), Szzn(8)

REAL bxx(8), tyy(8), txy(8), tzz(8) IStress tensor components
REAL txxn(8), tyyn(8), txyn(8), tzzn(8)

REAL SRB(8), SRBn(8) !Strech ratio of the backbone
REAL Is lamdas: stretch relaxation time

REAL 10s(8) llamdaOs: stretch relaxation time Q

REAL v(8) Imeasure of the influence of the surroundings polymer chains
REAL a(8) lalpha: Material parameter defining the amount of anisotropy
REAL lamda(8), eta(8) ldiscrite relaxation spectrum

INTEGER no INumber of elements in the discrete relaxation spectrum
INTEGER q(8) 'Number of dangling arms in the pom-pom molecule
REAL h, tol, error, srate, svis, svisn, sumxy

REAL k1xx(8), k2xx(8), k3xx(8), k4xx(8)

REAL k1yy(8), k2yy(8), k3yy(8), kdyy(8)

REAL k1xy(8), k2xy(8), k3xy(8), kdxy(8)

REAL k1zz(8), k22z(8), k3zz(8), kdzz(8)

REAL k1SRB(8), k2SRB(8), k3SRB(8), k4SRB(8)

REAL svisc(8), sviscn(8), r(8)

INTEGER ihj, Kk IL,mn

CHARACTER™20 out1

P***OPENING OUTPUT FILE*****
out1 = 'svisc.dat'
OPEN (1, FILE=o0ut1)

!*****INPUT*****

I Relaxation Spectrum and fitting parameters
WRITE(®,*) ‘Number of relaxation elements: ’
READ(*,") no

DO k=1, no
WRITE(*,*) ‘Relaxation time’
READ(*,*) lamda(k)
WRITE(**} ‘Relaxation spectrum viscosity’
READ(*,*) eta(i)
WRITE(*,*) 'Number of dangling arms in the pom-pom molecule q', k
READ(**) q(k)
WRITE(*,*) 'Ratio between relaxation time and stretch relaxation time 0', k
READ(**) r(k)
WRITE(*,*) 'Material parameter defining the amount of anisotropy a’, k
READ(*,*) a(k)

Imeasure of the influence of the surroundings polymer chains on thebackbone tube stretch

v(K)=2/q(k)
Istretch relaxation time 0
10s(k)=lamda(k)/r(k)
END DO

! Shear rate
WRITE(*,*) 'Shear rate'




READ(**) srate

! Step
WRITE(* *) 'Step size'
READ(* ") h

! Tolerance
tol=1E-12

P SOLVING DIFFERENTIAL EQUATIONS® ***

! Runge-Kutta Method (Fourth Order)

error=tol+1

th=0

svisn=0

SRBn(1)=1.12998

SRBn(2)=1.53499

SRBn(3)=2.63701

SRBn(4)=7.41824

SRBN(5)=15.24720

SRBn(6)=72.01033

DO i=1,no K{a)
Sxxn(i)=1/(3*SRBn(i)*SRBnN(i))
Syyn(i)=1/(3*SRBn(i)*SRBn(i))
Sxyn(i)=1/(3*SRBn(i)*SRBn(i})
Szzn(i)=1/(3*SRBn(i)*SRBN(i))

END DO i(a)
DO WHILE (error>tol) 1(2)
t=tn
svis=svisn
00 j=1, no I(b)

Sxx(j)=Sxxn(j)
Syy(j)=Syyn(j)
Sxy(j)=Sxyn(j)
Szz(j)=Szzn(j)
SRB(j)=SRBn(j)
txx(j)=txan)
tyy()=tyyn()
txy(j)=txyn(j)
tzz(j)=tzzn())
svisc(j)=sviscn(j)
END DO (b)
tn=t+h
DO i=1, no c)
k1xx(i)=h*((2*srate*Sxy(i))-(4*srate* Sxx(i)* Sxy(i))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)*Sxx(i)+Sxy(i)* Sxy(i)))/(lamda(i)))-({(1-a(i)-
((3*a(i)*(SRB(1))**4)* ((Sxx(i)* Sxx(i)}+(Syy (i)* Syy (i) +(2* Sxy (i) Sxy (i) +(Szz(i)*Szz(i)))))* (Sxx(i)))/(lam
da(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i))))
k2xx(i)=h*((2*srate*Sxy(i))-(4*srate*(Sxx(i)+(k 1xx(i)/2))* Sxy(i})-
((3*a(i)"SRB(i)* SRB(i)*(Sxx(i)+(k1xx(i)/2))*(Sxx(i)*+(k 1xx(i)/2))+Sxy(i)*Sxy(i))/(lamda(i)))(((1-a(i)-
((3*a(i)*(SRBY(i))**4)*(((Sxx(i)+(k1xx(i)/2))*(Sxx(i)+(k 1xx(i)/2)))+(Syy(i)* Syy (i))+(2*Sxy (i) Sxy(i))+(Szz
(i)*Szz(i)))N* ((Sxx(i)+{(k1xx(i)/2))))/(lamda(i)*SRB(iy* SR B(i)))+((1-a(i) /(3*lamda(i)* SRB(i)*SRB(i))))
k3xx(i)=h*((2*srate*Sxy (i})-(4*srate™ (Sxx(i)+(k2xx(i}/2))*Sxy (i))-
((3*a(§)*sRB(i)_*SRB(i)*(Sxx(i)+(k2xx(i)/2))*(Sxx(i)+(k2xx(i)l2))+Sxy(i)*Sxy(i))/(lamda(i)))-(((1 -a(i)-
((3*a(i)"(SRBY(i))**4)*(((Sxx(i)+ (k2xx(i)/2))* (Sxx(i)+(k2xx(i)/2)) +(Syy(i)*Syy(i))+(2* Sxy(i)* Sxy (i) +(Szz
(iY*Szz(i)))))* ((Sxx(i)+(k2xx(i)/2))))/{(lamda(iy* SRB(I)*SRB(i)))+((1-a(i))/(3*lamda(i)* SRB(i)*SRB(i))))
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kdxx(i)=h*((2*srate*Sxy (i))-(4*srate* (Sxx(i)+(k3xx(i)/1))*Sxy (i))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k3xx(i)/1))* (Sxx(i)+(k3xx(i)/1))+Sxy(i)*Sxy(i))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(1))**4)*(((Sxx(i)+(k3xx(i)/1))* (Sxx(i)+(k3xx(i)/1)) ) +(Syy(i)* Syy(i))+(2* Sxy(i)*Sxy(i))+(Szz
(i)*Szz(i))))*(Sxox(i)+(k3xx(i)/1))))/(lamda(i)* SRB(i*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)* SRB(}))))
Sxxn(i)=Sxx(i)+(k 130x(i )+ 2k 2x0x (i) + 2 k3xx(i) +kdxx(i))/6

k1yy(i)=h*(-(4*srate*Sxy(i)*Syy(i))-
((3*a(i)*SRB(i)*SRB(i)*(Syy(i)"Syy(i)+Sxy(i)*Sxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(1))**4)*((Sxx(i)"Sxx(i)+(Syy (i) Syy () +(2*Sxy (i) *Sxy (i) +(Szz(i)"Szz(i)))))*(Syy () /(lam
da(iy*SRB(i)*SRB(i)))+((1-a(i)/(3*lamda(i)*SRB(i)*SRBXi))))

, , _ k2yy(i)=h*(-(4"srate*Sxy(i)*(Syy () +(k1yy()12))-
((3*a(i)*SRB(I)*SRB(1)*((Syy(i)+(k1yy(i)/2))*(Syy(i)+(k1yy(i)/2))+Sxy(i)*Sxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(I))**4)*(Syy(iy+(k1yy(i)/2))*(Syy(i)+(K1yy (i)/2)))+(Sxx(i)* Sxx(i))+(2*Sxy (i) Sxy(i))+(Szz
(iy*Szz (i) ((Sxx(iy+(k1xx(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+{(1-a(i) /(3*lamda(i)* SRB(i)*SRBX(i))))

' _ __ k3yy(i)=h*(-(4*srate*Sxy(i)"(Syy(i)+(k2yy(i)/2)))-
((3*a(i)*SRB(i)*SRB(i)*((Syy(i)+(k2yy (1)/2))*(Syy (i) +(k2yy(i)/2))+Sxy(i)* Sxy(i))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB()**4)*((Syy(i)+(k2yy(i)/2))"(Syy (i) *+(k2yy (i)/2)))+(Sxx(i)* Sxx(i))+2*Sxy(i)*Sxy (i) +(Szz
(i)y*Szz(i)))))* ((Sxx(i)+(k2xx(1)/2))))/(lamda(i)*SRB(i)*SRB(i)))+(( 1-a(i))/(3*lamda(i)*SRB(i)*SRB(i))))

_ __ kayy(i)=nh*(-(4"srate*Sxy(i)*(Syy(i)+(k3yy(i)1)))-
((3"a(i)*SRB(1)*SRB(i)*((Syy(i)+(k3yy (i)/1))*(Syy (i) +(k3yy(i)/1))+Sxy(i)*Sxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(1)*4)*(((Syy(iy*+(k3yy(i)/1))*(Syy(i)+(k3yy (i)/1)))+(Sxx(i)*Sxx(i))+(2*Sxy(i)* Sxy(i)) +(Szz
(i)*Szz(i)))))*((Sxx(iy+(k3xx(i)/1))))/(lamda(i)* SRB(i)*SRB(i)))+((1-a(i) /(3*lamda(i)* SRB(i)* SR B(i))))

Syyn(i)=Syy (i)+(k1yy(i)+2"k2yy(i)+2*k3yy (i) +kdyy(i))/6

k1xy(i)=h*((srate*Syy(i))-(4*srate*(Sxy(i)**2))-
((3*a(i)*SRB(i)*SRB(i)*Sxy(i)* (Sxx(i)+Syy (i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(I))**4)* ((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2* Sxy (i) Sxy (i))+(Szz(i)*Szz(i)))))*(Sxy(i)))/(lam
da(i)*SRB(i)*SRB(i))))

k2xy(i)=h*((srate*Syy(i))-(4*srate*((Sxy(i)+(k 1xy(i)/2))**2))-
((3*a(iy*SRB(i)*SRB(i)*(Sxy(i)*+(k1xy(i)/2))* (Sxx(i)+Syy(i)))/(tamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)*((2*(Sxy (i) +(k1xy(i)/2))*(Sxy (i)+(k1xy(i)/2))) H(Sxx(i)* Sxx(i)) +(Syy(i)*Syy(i))+(Szz
(iy*Szz()N)*((Sxy(iy+(k1xy(i)/2))))/(lamda(i)* SRB(i)*SRB(i))))

k3xy(i)=h*((srate*Syy(i))-(4*srate*((Sxy(i)+(k2xy(i)/2))**2))-
((3*a(i)*SRB(iy*SRB(i)*(Sxy(i)+(k2xy (1)/2))*(Sxx(i)+Syy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)"((2* (Sxy (i) *+(k2xy (i)/2) )" (Sxy (i) + (kK2xy(i)/2))) H(Sxx(i)*Sxx(i))+(Syy(i)*Syy (i)) +(Szz
(i)*Szz(i)))*((Sxy(iy+(k2xy(i)/2)))}/(lamda(i)* SRB(i)*SRB(i))))

kdxy(i)=h*((srate*Syy(i))-(4*srate*((Sxy(i)+(k3xy(i)/1)}**2))-
((3*a(i)*SRB(i)*SRB(i)*(Sxy(i)+(k3xy(i)/1))*(Sxx(i)+Syy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))™4)*((2*(Sxy (i)+(k3xy (i)/1))*(Sxy (i) +(k3xy(i)/1)))+(Sxx(i)*Sxx(i))+(Syy (i) Syy(i)) +(Szz
(iy*Szz(i))))*((Sxy(i)+(k3xy(i)/1))))/(lamda(i)* SRB(i)*SRB(i))))

Sxyn(i)=Sxy(i)+(k1xy(i)+2*k2xy(i)+2*k3xy(i)+kdxy(i))/6

k1zz(i)=h*(-(4*srate*Sxy(i)*Szz(i))-
((3*a(i)*SRB(i)*SRB(i)*Szz(i)*Szz(i))/(lamda(i)))-(({1-a(i)-
((3*a(i)*(SRB(i))**4)*((Sxx(i)*Sxx(i))*+(Syy(i)* Syy (i) +(2*Sxy(i)*Sxy (i)} +(Szz(iy*Szz(i)))))*(Szz(i)))/(lam
da(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i))))

k2zz(i)=h*(-(4*srate*Sxy(i)* (Szz(i)+(k1zz(i)/2)))-
((3*a(i)*SRB(i)*SRB(i)*(Szz(i)+(k1zz(i)/2))*(Szz(i)+(k1zz(i)/2)))/(lamda(i)))-({{1-a(i)-
((3*a(i)*(SRB(i))**4)*((Sxx(i)*Sxx(i)) +(Syy(i)* Syy (i) +(2*Sxy (i) Sxy(i)) +((Szz(i)+(k 122(i)/2))*(Szz(i) +(k
1zz()2)M)*((Szz(iy+(k1zz(i)/2))))/(lamda(i)* SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i))))

k3zz(i)=h*(-(4*srate*Sxy(i)* (Szz(i)+(k2zz(i)/2)))-
{(3*a(i)*SRB(i)*SRB(i)*(Szz(i)*+(k2zz(i)/2))*(Szz(i)+(k2zz(i)/2)))/(lamda(i)))-(((1-a(i)- _
((3*a(i)*(SRB(i))**4)*((Sxx(i)*Sxx(i))+(Syy (i) Syy i))+(2*Sxy (i)*Sxy (i)) +((Szz(i)+(k2zz(i)/2))*(Szz(i)+(k
2zz(i2))M* ((Szz(i)+(k2zz(i)/2))))/(lamda(i)* SRB(i)* SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i))))

. kdzz(i)=h*(-(4*srate*Sxy(i)*(Szz(i)+(k3zz(i)/1)))-

((3*a(i)*SRB(i)*SRB(i)y*(Szz(i)+(k3zz(i)/1))*(Szz(i)+(k3zz(i)/1)))/(lamda(i)))-(((1-a(i)-
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Szzn(i)=Szz(i)*+(k1zz(i)+2*k2zz(i)+2*k3zz(i) +kdzz(i))/6

((3*a(i)*(SRB(i))™*4)*((Sxx(i)*Sxx(i)) +(Syy(i)*Syy(i))+(2*Sxy (i)*Sxy (i))+((Szz(i)+(k3z2(i)/1))*(Szz(i)+(k
3zz(1)))N)*((Szz(i)+(k3zz(i)1)))) (lamda(i)* SRB(i)* SRB(i))}+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i))))

k1SRB(i)=h*({srate* SRB(i)*(2* Sxy(i)))-((SRB(i)-1)/(10s(i)* exp(-v(i)*(SRB(i)-

k2SRB(i)=h*((srate*(SRB(i)+(k1SRB(i)/2))*(2*Sxy(i)))-

{{(SRB(i)*+(k1SRB(i)/2))-1)/(10s(i)*exp(-v(i)*((SRB(i)+(k 1SRB(i}/2))- 1))

k3SRB(i)=h*((srate*(SRB(i)+(k2SRB(i)/2))*(2*Sxy(i)))-

(((SRB(i)+(k2SRB(i)/2))-1)/(10s(i)*exp(-v{i)*((SRB(i)+(k2SRB(i}/2))- 1))

k4SRB(i)=h*((srate*(SRB(i)*+(K3SRB(i)/1))*(2*Sxy(i)))-

(((SRB(i)+(k3SRB(i)/1))-1)/(10s(i)*exp(-v(iy*{(SRB(i)+(k3SRB(i)/1))-1))))

SRBn(i)=SRB(i)+(k1SRB(i)*+2*k2SRB(i)+2*k3SRB(i)+k4SRB(i))/6

bon(i)=(3*(eta(iylamda(i))* SRBn(i)* SRBn(i)*Sxx(i))-(eta(i)*lamda(i))
tyyn(i)=(3*(eta(i)lamda(i))* SRBn(i)*SRBn(i)*Syy(i))-(eta(i)*lamda(i))
txyn(i)=(3*(eta(i)lamda(i)}*SRBn(i)* SRBn(i)*Sxy(i))-(eta(i)*lamdai))
tzzn(i)=(3*(eta(i)lamda(i))*SRBn(i)*SRBn(i)*Szz(i))-(eta(i)*lamda(i))

svisen(i)=(txyn(i))/srate

END DO i(c)

svisn=0

DO k=1, no I(d)
svisn=svisn+sviscn(k)

END DO Hd)

error=ABS(svisn-svis)
WRITE(**) tn, svisn, error
WRITE(1,*) tn, svisn, error
END DO (2)

#*+*CLOSING OUTPUT FILE*****
CLOSE (1, STATUS='KEEP)
END PROGRAM XPPSHEAR

2. Shear Free Flow

I XPPELONGATION.fo0
|

'****************************************************************************
!

é PROGRAM: XPPELONGATION
!

i PURPQOSE: To obtain elongational viscosity using XPP model.
{

,****************************************************************************

PROGRAM XPPELONGATION

IMPLICIT NONE

e VARIABLES

REAL t tn ftime

REAL Sxx(B), Szz(8), Sxxn(8), Szzn(8) IS tensor components
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REAL txx(8), tzz(8), txxn(8), tzzn(8) IStress tensor components

REAL SRB(8), SRBn(8) IStrech ratio of the backbone
REAL Is flamdas: stretch relaxation time
REAL 10s(8) llamda0s: stretch relaxation time 0

REAL v(8) Imeasure of the influence of the surroundings polymer chains
REAL a(8) lalpha: Material parameter defining the amount of anisotropy
REAL lamda(8), eta(8) ldiscrite relaxation spectrum

INTEGER no INumber of elements in the discrete retaxation spectrum
INTEGER q(8)  'Number of dangling arms in the pom-pom molecule
REAL h, tol, error, erate, evis, evisn, sumxx, sumzz

REAL  k1xx(8), k2xx(8), k3xx(8), k4xx(8)

REAL k1zz(8), k2zz(8), k32z(8), k4zz(8)

REAL Kk1SRB(8), k25RB(8), k3SRB(8), k4SRB(8)

REAL evisc(8), eviscn(8)

REAL r(4)

INTEGER i,k Lmn

CHARACTER*20 out1

P QPENING OUTPUT FILE****
out1 = 'evisc.dat'
OPEN (1, FILE=out1)

!*****'NPU‘T*****

I Relaxation Spectrum and fitting parameters
WRITE(*,*) ‘Number of relaxation elements: '
READ(*,*) no

DO k=1, no
WRITE(*,*) ‘Relaxation time’
READ(*,*) lamda(k)
WRITE(*,*) ‘Relaxation spectrum viscosity’
READ(*,*) eta(i)
WRITE(*,*) 'Number of dangling arms in the pom-pom molecule ¢'; k
READ(*,") q(k)
WRITE(*,*) 'Ratio between relaxation time and stretch relaxation time 0', k
READ(**) r(k)
WRITE(*,*) 'Material parameter defining the amount of anisotropy a', k
READ(**) a(k)

Imeasure of the influence of the surroundings polymer chains on thebackbone tube stretch
v(k)=2/q(k)

fstretch relaxation time O
10s(k)=lamda(k)/r(k)

END DO

! Extension rate
WRITE(*,*} 'Extension rate'
READ(*,*) erate

! Step
WRITE(*,*) ‘Step size’
READ(**) h

! Tolerance
tol=0.0000001

eSOl VING DIFFERENTIAL EQUAT!ONS*****




! Runge-Kutta Method (Fourth Order)
error=tol+1
tn=0
evisn=0
DO i=1, no Wa)
Sxxn(i)=0.333333
Szzn(i)=0.33333333
SRBn(i)=1
bxn(i)=0
tzzn(i)=0
evisen(i)=0
END DO a)
DO WHILE (error>tol) (2)
=in
evis=evisn
DG j=1,no i(b)
Sxx(j)=Sxxn(j)
Szz(j)=8zzn(j)
SRB(j)=SRBn(j)

bex(j)=txxn(j)

tzz(j)=tzzn(j)

evisc(j)=eviscn(j)
END DO i(b)
tn=t+h
DO =1, no )

K1xx(iy=h*(~(erate* Sxx(i))*+(4*erate* Sxx(i)*{Sxx(i)-Szz(i)))-
{(3*a(iy*SRB(i)*SRB(i)*Sxx(i)*Sxx(i)}/(lamda(i)))-(((1-a(i)-

((3*a(i)*(SRB(i))**4)*((2* Sxx(i)*Sxx(i))+(Szz(i)*Szz(i)))))*(Sxx(i)))/(lamda(i)*SRB(i)*SRB(i))) +((1-
a(i))/(3*lamda(i)*SRB(i)*SRB(i))))

K2xx(i)y=h*(-
(erate*(Sxx(i}+(k1xx(i)/2)) )+ (4*erate*(Sxx(i)+{k1xx(i)/2) }* ((Sxx(i)+(k1xx(i)/2))-Szz(i)})-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)*+(k 1xx(i)/2))* (Sxx(i)+(k 1xx(i)/2)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB()**4)*((2*(Sxx(i)+(k 1xx(i)/2))*(Sxx(i)+(K 1xx(i)/2)))+(Szz(i)* Szz(i)) ) * ((Sxx(i)+(k 1xx(i)/2
W) (lamda(i)* SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i}* SRB(i)*SRB(i))))

k3xx(i)=h*(-
(erate*(Sxx(i)+(k2xx(i)/2)))+(4*erate* (Sxx(i)+(K2xx(i)/2))* ((Sxx(i)+(k2xx(i)/2))-Szz(i}})-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k2xx(i)/2)y* (Sxx(i)+(k2xx(i)/2) )Y/ (lamda(i) ))-(((1-a(i)-
((3*a(i)*(SRB(i))"*4)*((2* (Sxx(i)y+(k2xx(i)}/2) )" (Sxx(i)+(K2xx(1)/2)))+(Szz(iy* Sz2(i)))))* ((Sxx(i)y+(k2xx(1)/2
W) (lamda(i)*SRB(I)*SRB(I)))+((1-a(i))/(3*lamda(i)* SRB(i)*SRB())))

kdxx(i)=h*(-

(erate*(Sxx(i)+(k3xx(i)/1)))+(4*erate* (Sxx(i)+(k3xx(i)/1))* ((Sxx(i)+(k3xx(i)/1))-Szz(i)))-
({3*a(i)*SRB(i)*SRB(i)*{Sxx(i)+(k3xx(i)/1))* (Sxx(i)+{k3xx(i)/1)))/ (lamda(i)))-({((1-a(i)-
((3*a(i)*(SRB())**4)* ((2*(Sxx(i)+(R3xx(i)/1 ) (Sxx(i)+(k3xx(i}1)))+{Szz(i)*Szz()))) Y {((Sxx(i)+(k3xx(i)y/1
N)H(lamda(iy*SRB(iY* SRB(i)))+((1-a(i})/(3*lamda(i)*SRB(i)*SRB(i))))

Sxxn(i)=Sxx(i)+(k1xx(i)+2*k2xx(i)+ 2 *k3xx(i) +kdxx(i))/6

kK1zz(i)=h*((2*erate*Szz{i))+(4*erate* Szz(i)* (Sxx(i)-Szz(i)))-
((3*a(i)*SRB(i)*SRB(i)*Szz(i)*Szz(i))/(lamda(i)))-(((1-a(i)-
((3*a(iy*(SRB(i))**4)*((2*Sxx(i)*Sxx(i))+(Szz(i)*Szz(i)))))*(Szz(i)))/(lamda(i)*SRB(i)*SRB(i) ) +((1-
a(i))/(3*lamda(i)*SRB(i)*SRB())))

k2zz(i)=h*((2*erate*(Szz(i)+(k122(i)/2)))+(4*erate*(Szz(i)+(k1zz(i)/2))*(Sxx(i)-

(%z(i)+(k1zz(i)12))))-((3*a(i)*SRB(i)*SRB(i)*(Szz(i)+(k1zz(i)/2))*(Szz(i)+(k1zz(i)/2)))/(lamda(i)))-(((1-
afl)-
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((3*a(i)*(SRB(1))**4)*((2*Sxox(i)* Sxx(i))+((Szz(i) +(k122(1)/2))*(Szz(i) +(k1z2(i)/2)))))* ((Szz(i)+(k1zz(i)/2
))(lamda(iy*SRB(i)*SRB(i)))+((1-a(i))/(3*|amda(i)*SRB(i)*SRB(}))))

k3zz(i)=h*((2*erate*(Szz(i)+(k22z(i)/2)))+(4*erate* (Szz(i)+(kK2zz(i)/2))* (Sxx(i)-
(?_»?Z(i)*'(|<222(i)/2))))-((3"&1(‘)*SRB(i)*SRB(i)"(SZZ(i)"“(k2ZZ(i)/2))"(SZZ(i)+(k2ZZ(i)/2)))/(|amda(i)))-(((1 -
a(j-
((3*a(i)*(SRB(i))™4)* ((2* Sxx(i)* Sxx(i))+((Szz(i)+(k2zz(i)/2))*(Szz(i)+(k22z(i)/2))))))* ((Szz(i)+(k2zz(i)/2
))))(tamda(i)*SRB(i)*SRB(i)))+((1-a(i))(3*lamda(i)*SRB(i)*SRB(H))))

kdzz(i)=h*((2*erate*(Szz(i)+(k3zz(i)/1)))+(4*erate*(Szz(i)+(k3zz(i)/1))*(Sxx(i)-
(%z(i)+(k3zz(i)/1))))-((3*a(i)*SRB(i)*SRB(i)*(Szz(i)+(k3zz(i)/1))*(Szz(i)+(k322(i)l1)))/(Iamda(i)))—(((1-
ail)-
((3*a(i)*(SRB(1))**4)*((2*Sxx(i)*Sxx(i))+((Szz(i)+(k3zz(1)/1))*(Szz(i)+(k3zz(i)1))))))*((Szz(i)+(k3zz(i)/1
)))(lamda(iy*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)* SRB(i))))
Szzn(i)=Szz(i)+(k1zz(i)+2*k2zz(i)+2*k3zz(i)+k4zz())/6

k1SRB(i)=h*(-(2*erate*SRB(i)*(Sxx(i)-Szz(i)))-((SRB(i)-1)/(10s(i)*exp(-

V(i)*(SRB(i)-1))))
k2SRB(i)=h*(-(2*erate*(SRB(i)+(k1SRB(i)/2))*(Sxx(i)-Szz(i)))-
(((SRB(i)+(k1SRB(i)/2))-1)/(10s(i)*exp(-v(i)*(SRB()*+(k1SRB(i)/2))-1)))))
k3SRB(i)=h*(-(2*erate*(SRB(i)+k2SRB(i)/2)) *(Sxx(i)-Szz(i)))-
((SRB(i)*+(k2SRB(i)/2))-1)/(10s(i)*exp(-v(i)*((SRB(i)*+(k2SRB(1)/2))-1)))))
kdSRB(i)=h*(-(2*erate*(SRB(i)+(K3SRB(i)/1))*(Sxx(i)-Szz(i)))-
(((SRB(i)+(K3SRB(i)/1))-1)/(10s(i)*exp(-v(i*((SRB()}+(k3SRB(i)/1))-1)))))
SRBn(i)=SRB(i)+(k1SRB(i)*+2*k2SRB(i)+2*k3SRB(i)+k4SRB(i))/6

boxn(iy=(3*(eta(iylamda(i))*SRBn(i)* SRBn(i)*Sxx(i))-(eta(i)*lamda(i))
tzzn(i)=(3*(eta(i)/lamda(i))*SRBn(i)* SRBn(i)*Szz(i))-(eta(i)*lamda(i))
eviscn(i)=(tzzn(i)-bxn(i))/erate

END DO i{c)

evisn=0

DO k=1, no I(d)
evisn=evisn+eviscn(k)

END DO I(d)

error=ABS(evisn-evis)
WRITE(*,*) tn, evisn, error
WRITE(1,*) tn, evisn, error
END DO (2)

prrr**CLOSING OUTPUT FILE*****
CLOSE (1, STATUS='KEEP")
END PROGRAM XPPELONGATION

C. Random Walks

Random walk theory is described in Chapters Il and Xli. Chapter Xil presents
some simulations of the random growth of polymer chains, where the starting
points were considered as the active sites in the catalyst surface. Here are
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presented the codes developed to generate the random walks in one (1-D) and two

(2-D) dimensions.

1. 1-D

1 1DRW.fQ0
!

'***************‘k************************************************************

!
PROGRAM: 1DRW

PURPOSE: To obtain the number of junctions between “two chains” ( one

given by the user, as well as the number of iterations and the
distance between the starting points of the chains.

!
!
!
! random walks). The number of steps in the random walks is
!
{
!

'****************************************************************************

PROGRAM RW1D

IMPLICIT NONE
!*****VAR‘ABLES*****

REAL rA, rB, RAND
REAL jun(1500)
REAL avejun
INTEGER d

INTEGER n

INTEGER it

INTEGER x(500)

INTEGER yA(500)

INTEGER yB(500)

INTEGER i, j, k, cont, res, ieo
CHARACTER archrsB, archrs?

(++*OPEN OUTPUT FILES**™

archrs6 = ‘junctions.dat'
archrs7 = "IDRW.dat'

OPEN (6, FiLE=archrs6)
OPEN (7, FILE=archrs7)

!***** I N PU 'r*****

frandom numbers
ljunctions

laverage of junctions
ldistance between starting points
Inumber of steps
Inumber of iterations
Istep

Iposition of chain A
!position of chain B
lauxiliary variables
loutput files

WRITE(*,*) 'Distance between starting points'

READ(*") d

WRITE(*,*) 'number of steps'
READ(**)n

WRITE(*,*) 'number of iterations'
READ(**) it
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DO j=1, it
cont=0
leo=0
x(1)=0
yA(1)=0
yB(1)=d
WRITE(™,*) x(1), YA(1), yB(1)
WRITE(7,*) x(1), YA(1), yB(1)
DO =2, n
x(H=x(i-1)+1
rA=rand()
rB=rand()
iF (rA<0.3333) THEN

literations loop (1)

linitial position
linitial position
linitial position

INumber of steps loop (2)
frandom number between 0 and 1

frandom number between 0 and 1
! Chain A new position (A)

yA()=yA(i-1)-1

ELSE

IF (rA<0.6666) THEN

END IF

END IF
IF (rB<0.3333) THEN

yA(i)=yA(i-1)

yA(i)=yA(i-1)+1

ELSE

! Chain A new position (A)
! Chain B new position (B)

yB(i)=yB(i-1)-1

ELSE

IF (rB<0.6666) THEN

END IF

END iF
WRITE(,*) x(i), YA(), yB(i)
WRITE(7,*) x(i), YA(D), yB(i)
res=yA(i)-yB(i)
IF (res.EQ.0) THEN

leo=1
ELSE

leo=0
END IF
cont=cont+leo

END DO
jun(j)=cont
END DO INumber of iterations loop (1)
avejun=cont/it
DO k=1, it
WRITE(S8,*) jun{k)
END DO
P+ CLOSING OUTPUT FILES™**

CLOSE (6, STATUS='KEEP")
CLOSE (7, STATUS='KEEP")

END PROGRAM RW1D

yB(i)=yB(i-1)

yB(i)=yB(i-1)+1

ELSE

{Chain B new position (B)

! Number of steps loop (2)



The program was used with different distance between starting points (d). Some
results are presented in Figure B.1 through Figure B.3.
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Figure B.1. Number of junctions distribution using d = 0.
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Figure B.2. Number of junctions distribution using d = 3.
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Figure B.3. Relationship between the average of junctions and distance (d) for different number of
steps (t).

2. 2-D

! 2DRW.fo0
!

| FUNCTIONS:

! 2DRW - Entry point of console application.
!

'******‘k**************************************i*******************************************

PROGRAM: 2DRW

!
{
!
! PURPOSE: To obtain the number of junctions between “two chains” ( two

! dimension random walks). The number of steps in the random walks
! is given by the user, as well as the number of iterations and the

! distance between the starting points of the chains.

!

,******************************************************************************************

PROGRAM RW2D

IMPLICIT NONE

!*****VARIABLES*****

REAL raA, rbA, raB, rbB, RAND frandom numbers

REAL jun(1500) ljunctions

REAL avejun laverage of junctions

INTEGER d Idistance between strating point
INTEGER n Inumber of steps

INTEGER it Inumber of iterations

INTEGER xA(500) X position in chain A

INTEGER xB(500) IX position in chain B
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INTEGER YA(500) 1Y position in chain A

INTEGER yB(500) 1Y position in chain B
INTEGER ABx(500,500) fiunctions in X
INTEGER ABy(500,500) fjunctions in'Y
INTEGER AB(500,500) ljunctions

INTEGER i, . k, h, cont, res, leoA, leoB, kjA, kiB

CHARACTER*20 archrs6, archrs7
P OPENING OQUTPRUT FILES* ™

archrs6 = 'jun2D.dat’
archrs7 = '2DRW.dat'

OPEN (6, FILE=archrs6)
OPEN (7, FILE=archrs7)

!***** | N PUT*****

WRITE(*,*) ‘Distance between starting points’
READ(**) d

WRITE(*,*) ‘Number of steps’

READ(*,*) n

WRITE(*,*)'Number of iterations’

READ(**) it

= CHAIN GROWTH* ****
DO j=1,it lliteration loop (1)

cont=0

XA(1)=0 linitial position
yA(1)=0

xB(1)=0

yB(1)=d

IWRITE(*,*) xA(1), xB(1), YA(1), yB(1)

WRITE(7,*) xA(1), xB(1), YA(1), yB(1)

DOi=2,n 'Number of steps loop (2)
raA=rand() {Random number to decide the direction of growth in A
raB=rand() ‘Random number to decide the direction of growth in B
rbA=rand() IRandom number to decide the sense of growth in A
rbB=rand() {Random number to decide the sense of growth in B
IF (raA>0.5) THEN 1(A)
kiA=1
ELSE
kjA=0
END iF F(A)
IF (raB>0.5) THEN 1(B)
kjB=1
ELSE
kjB=0
END iF 1(B)

1kj = 0, movement in X
I'kj =1, movementinY

INEW xA
iF (A==0)  THEN | (2A)




206

IF (bA>0.5) THEN
ELSE

END IF

XA(I)=xA(i-1)

{F (rbB>0.5) THEN
ELSE

END IF

xB(i)=xB(i-1)

IF (rbA>0.5) THEN
ELSE

END iF

YA(I)=yA(i-1)

{F (rbB>0.5) THEN
ELSE

END IF

yB(i)=yB(i-1)

'Number of steps loop (2)

ELSE
END IF
INEW xB
IF (kjB==0) THEN
ELSE
END IF
INEW yA
IF (kjA==1)  THEN
ELSE
END iF
INEW yB
IF (kjB==1)  THEN
ELSE
END IF
WRITE(7,*) XA(i), YA(D), xB(i), yB(i)
END DO
Pt NUMBER OF JUNCTIONS*****
DO k=1,n
DO h=1,n

IF (xA(K)==xB(h))

END IF
IF (yA(k)==yB(h))

THEN
ABx(k,h)=1
ELSE
ABx(k,h)=0

THEN
ABy(k,h)=1
ELSE
ABy(k,h)=0

I (3A)
XA(i)=xA(i-1)+1

XA(i)=xA(i-1)-1
I (3A)

| (2A)

1 (2B)
1 (3B)
XB(i)=xB(i-1)+1

XB(i)=xB(i-1)-1
1(3B)
 (2B)

[ (2A)
 (3A)
YA()=yA(i-1)+1

YA(i)=yA(i-1)-1
I (3A)

1 (2A)

1 (2B)
1 (3B)
yB(i)=yB(i-1)+1

yB(i)=yB(i-1)-1
1(3B)

1 (2B)

(1)
I(2)
X

X
Y




END IF Y
AB(k,h)=ABx(k,h)*ABy(k,h)
cont=cont+AB(k,h)

END DO 1(2)

END DO 1)

WRITE(*,*) cont

jun(j)=cont
END DO Hiterations loop (1)
DO k=1, it

WRITE(86,*) jun(k)
END DO

P+ CLOSING OUPUT FILE****

CLOSE (6, STATUS='KEEP")
CLOSE (7, STATUS='KEEP")

END PROGRAM RW2D

Some results obtained with this program are presented next.
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Figure B.4. Number of junctions distribution using d = 0.

207



[ SN
© o
L ‘S,J
./"
y
,f
B
¥
:

junctions
H
o
1

0 T T T

0 2 4 6 distance 8 10 12 14

Figure B.5. Relationship between the average of junctions and distance (d) for different number of
steps (t).

D. Self-avoiding Random Walks

Self-avoiding random walks are introduced in Chapter |l and are used to simuiate
the random growth of polymer chains in Chapter Xli. In this case, as well as in
random walks, the starting points were considered as the active sites in the
catalyst surface. Here are presented the codes developed to generate the self-
avoiding random walks (SAW's) in two (2-D) and three (3-D) dimensions.

1. 2-D

! SARW2D.f90
!

| FUNCTIONS:

! SARW2D - Entry point of console application.
]

'****************************************************************************

PROGRAM: SARW2D

|
1

!

! PURPOSE: To obtain the number of junctions between “two chains” ( two

! dimension SAW's). The number of steps in the random walks

! is given by the user, as well as the number of iterations and the
! distance between the starting points of the chains..

!

'****************************************************************************
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PROGRAM SARW2D

IMPLICIT NONE

!*****VAR'ABLES*****

REAL raA, rbA, raB, rbB, RAND random numbers

REAL maxX, maxyY, minX, minY

REAL jun(1500) fjunctions

INTEGER d ldistance between strating points
INTEGER n Inumber of steps

INTEGER it inumber of iterations

INTEGER XA(500), nxA(500) IX position in chain A
INTEGER xB(500), nxB(500) IX position in chain B
INTEGER yA(500), nyA(500) IY position in chain A
INTEGER yB(500), nyB(500) Y position in chain B

INTEGER ABx(500,500) fjunctions in X
INTEGER ABy(500,500) junctionsin Y
INTEGER AB(500,500) ljunctions

INTEGER leoxa(500,500), leoxb(500,500)

INTEGER leoya(500,500}, ieoyb(500,500)

INTEGER ca(1500), cb(1500)

INTEGER conta, contb, i, j, k, h, cont, res, kjA, kjB
CHARACTER*20 archrsb, archrs6, archrs7

F**OPENING OUTPUT FILES™***

archrs6 = junSAW(2).dat'
archrs7 = 'SAW(2).dat'

OPEN (6, FILE=archrs6)
OPEN (7, FILE=archrs7)

!***** I N PUT*****

WRITE(*,*) 'Distancia entre los puntos de origen'
READ(**) d

WRITE(*,*) 'numero de pasos (maximo 499)'
READ(**) n

WRITE(*,*) 'numero de iteraciones (maximo 1499)
READ(**} it

PELIMITS FOR X AND Y**ox+

maxX=n/5

maxY=n/5

minX=-n/5

minY=-n/5

e+ CHAIN GROWTH?***

DO j=1, it literation loop (1)
cont=0
XA(1)=0 finitial position
yA(1)=0
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xB(1)=0

yB(1)=d

nxA(1)=0
nyA(1)=0
nxB(1)=0
nyB(1)=d
DOi=2,n

I Number of steps loop (2)
raA=rand() IRandom number to decide the direction of growth in A
raB=rand() 'Random number to decide the direction of growth in B
rbA=rand() IRandom number to decide the sense of growth in A
rbB=rand() IRandom number to decide the sense of growth in B
IF (raA>0.5) THEN H(A)
kjA=1
ELSE
kjA=0
END iF L{A)
IF (raB>0.5) THEN 1(B)
kjB=1
ELSE
kjB=0
END iF 1(B)
tkj =0, movement in X
Tkj=1, movementinY
INEW xA
iF (kjA==0) THEN 1(2A)
IF (rbA>0.5) THEN 1(3A)
XA(1)=xA(i-1)+1
ELSE
XA(i)=xA(i-1)-1
END IF 1(3A)
ELSE
XA(i)=xA(i-1)
END IF 1(2A)
IF (xA(i)>maxX .OR. xA(i)<minX) THEN
XA(i)=xA(-1)
END IF
INEW xB
{F (kjB==0) THEN 1(2B)
IF (rbB>0.5) THEN 1(3B)
xB(i)=xB(i-1)+1
ELSE
xB(i)=xB(i-1)-1
END iF 1(3B)
ELSE
xB(i)=xB(i-1)
END IF ! (2B)
IF (xB(i)>maxX .OR. xB(i)<minX) THEN
xB(i)=xB(i-1)
END IF
INEW yA
IF (kKjA==1) THEN 1 (2A)
IF (rbA>0.5) THEN 1 (3A)

yA(i)=yAd-1)+1




ELSE
YA()=yA(i-1)-1

END IF [ (3A)
ELSE
YA(i)=YA(i-1)
END IF '(2A)
IF (yA(i)>maxY .OR. yA(i)<minY) THEN
YA(i)=yA(i-1)
END IF
INEWyB
iF (kjB==1)  THEN I (2B)
IF (bB>0.5) THEN 1(3B)
yB(i)=yB(i-1)+1
ELSE
yB(i)=yB(i-1)-1
END IF 1(3B)
ELSE
yB(i)=yB(i-1)
END IF 1 (2B)
IF (yB(i)>maxY .OR. yB(i)<minY) THEN
yB(i)=yB(i-1)
END IF

P SAW RESTRICTIONS*****

conta=0
contb=0
DO k=1, i-1 (1)
IF (XA(1))==xA(K)) THEN
leoxa(i,k)=1
ELSE
leoxa(i,k)=0
END IF
IF (yA(i)==yA(K)) THEN
leoya(i,k)=1
ELSE
leoya(i,k)=0
END IF
IF (xB(i)==xB(k)) THEN
leoxb(i,k)=1
ELSE
leoxb(i,k)=0
END IF
IF (yB(i)==yB(k)) THEN
teoyb(i,k)=1
ELSE
feoyb(i,k)=0
END IF

conta=conta+leoxa(i,k)*leoyal(i,k)
contb=contb+leoxb(i,k)*lecyb(i,k)
END DO K1)

IF (conta>0) THEN

XA(i)=xA(i-1)
YA()=yA(i-1)

21




212

END DO

ELSE

XA(I=xA(1)
YA(i)=yA(i)
ENDIF
IF (contb>0) THEN
xB(i)=xB(i-1)
yB(i)=yB(i-1)
ELSE
XA(I)=xA()
yB(i)=yB(i)
END IF

B IMINATING REPEATED POINTS*****

'Number of steps loop (2)

h=1
k=1
DO WHILE (h<=n) 1(2)
h=h+1
k=k+1
IF (xA(h)==nxA(k-1) .AND. yA(h)==nyA(k-1)) THEN
k=k-1
ELSE
nxA(k)=xA(h)
nyA(K)=yA(h)
END IF
END DO 12)
ca(j)=k-1
h=1
k=1
DO WHILE (h<=n) 12)
h=h+1
k=k+1
IF (xB(h)==nxB(k-1) .AND. yB(h)==nyB(k-1)) THEN
k=k-1
ELSE
nxB(k)=xB(h)
nyB(k)=yB(h)
END IF
END DO 12)
cb(j)=k-1

(e EINAL SAWH***

DO i=1, ca(j)
WRITE(7,*) nxA(i), nyA(), j, ‘A’
END DO
DO i=1, ¢cb(j)
WRITE(7,*) nxB(i), nyB(i), j, 'B'
END DO
P NUMBER OF JUNCTIONS*#*+*
DO k=1, ca(j)
DO h=1, ¢cb(j)

IF (nxA(k)==nxB(h)) THEN

I(1)
1(2)
IX




ABx(k,h)=1

ELSE
ABx(k,h)=0
END IF IX
IF (nyA(k)==nyB(h))  THEN %
ABy(k,h)=1
ELSE
ABy(k,h)=0
END IF Iy

AB(k,h)=ABx(k,h)*ABy(k,h)
cont=cont+AB(k,h)

END DO 1(2)

END DO (1)

WRITE(*,*) cont, ca(j), cb(j)

jun(j)=cont
END DO llterations loop (1)
DO k=1, it

WRITE(8,*) jun(k), ca(k), cb(k)
END DO

per*CLOSING OUPUT FILE*™**

CLOSE (6, STATUS='KEEP")
CLOSE (7, STATUS='KEEP")

END PROGRAM SARW2D

Figures B.6 to B.8 show results from this program.
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Figure B.6. Chains’ length distribution.
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Figure B.8. Number of junctions distribution using d = 3.
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2, 3-D

! SAW3DV2.f90
!

| FUNCTIONS:
! SAW3DV2 - Entry point of console application.
|

'************************i’**********t*************************************************************

PROGRAM: SAW3DV2

f
!

!

! PURPOSE: To obtain the number of junctions between “two chains” { three

! dimension self-avoiding random walks). The number of steps

! in the SAW's is given by the user, as well as the number of iterations
! and the distance between the starting points of the chains.

!

,*********‘k*t*****t********************************************************************************

PROGRAM SAW3Dv2

IMPLICIT NONE

!*****VAR‘ABLES*****

REAL raA, rbA, raB, rbB, RAND frandom numbers
REAL maxX, maxy, minx, minY, maxZ, minZ

REAL jun(1501) ljlunctions

INTEGER d 'distance between strating points
INTEGER n Inumber of steps

INTEGER it Inumber of iterations

INTEGER xA(1501), nxA(1501) X position in chain A
INTEGER xB(1501), nxB(1501) !X position in chain B
INTEGER yA(1501), nyA(1501) 'Y position in chain A
INTEGER yB(1501), nyB(1501) Y position in chain B
INTEGER zA(1501), nzA(1601)  1Z position in chain A
INTEGER zB(1501), nzB(1501)  !Z position in chian B
INTEGER ABx(1501,1501) ljunctions in X
INTEGER ABy(1501,1501) fjunctionsinY
INTEGER ABz(1501,1501) fjunctions in Z
INTEGER AB(1501,1501) ljunctions

INTEGER leoxa(1501,1501), leoxb(1501,1501)

INTEGER leoya(1501,1501), leoyb(1501,1501)

INTEGER leoza(1601,1501), leozb(1501,1501)

INTEGER ca(1501), cb(1501)

INTEGER conta, contb, i, j, k, h, cont, res, kjA, kiB
CHARACTER*20 archrs6, archrs7

**+OPENING OUTPUT FILES*****

archrsé = 'JunSAW3D(2).dat'
archrs7 = 'SAW3D(2).dat'

OPEN (6, FILE=archrs6)
OPEN (7, FiLE=archrs7)

resss NPUT*
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WRITE(**) ‘Distance between starting points’
READ("") d

WRITE(*,*) ‘Number of steps’

READ(*,*) n

WRITE(*,*) ‘Number of iterations’

READ(**) it

P+ LIMITS FOR X, Y AND Z***

maxX=n/5
maxY=n/5
maxZ=nf5
minX=-n/5
minY=-n/5
minZ=-n/5

(e CHAIN GROWTH****

DO j=1,it literation loop (1)
cont=0
xA(1)=0 linitial position
yA{(1)=0
zA(1)=0
xB(1)=0
yB(1)=d
zB(1)=0
nxA(1)=0
nyA(1)=0
nzA(1)=0
nxB(1)=0
nyB(1)=d
nzB(1)=0
DOi=2,n INumber of steps loop (2)
raA=rand() IRandom number to decide the direction of growth in A
raB=rand() IRandom number to decide the direction of growth in B
rbA=rand() 'Random number to decide the sense of growth in A
rbB=rand() IRandom number to decide the sense of growth in B
IF (raA>0.6666) THEN 1(A)
kjA=2
ELSE
IF (raA>0.3333) THEN
kjA=1
ELSE
kjA=0
END IF
END IF 1{A)
IF (raB>0.6666) THEN 1 (B)
kjB=2
ELSE
IF (raB>0.3333) THEN
kjB=1
ELSE
kiB=0
END IF
END IF 1(B)
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kj =0, movementin X
Tkji=1, movementinY
'kj = 2, movement in Z

INEW xA
IF (kjA==0) THEN
IF (rbA>0.5)
END IF
ELSE
XA(i)=xA(i-1)
END IF
IF (xA(i)>maxX .OR. xA(i)<minX)
END IF
INEW xB
IF (kiB==0) THEN
iF (rbB>0.5)
END IF
ELSE
xB(i)=xB(i-1)
END IF
IF (xB(i)>maxX .OR. xB(i)<minX)
END IF
INEW yA
IF (kKjA==1) THEN
i (rbA>0.5)
END IF
ELSE
YA()=YA(i-1)
END IF
IF (yA(i)>maxY .OR. yA(i)<minY)
END IF
INEW yB
[F (kiB==1) THEN
IF (rbB>0.5)
END IF
ELSE
yB(i)=yB(i-1)

ENDIF

THEN

THEN

ELSE

THEN

THEN

THEN

ELSE

1 (2A)

1 (3A)
XA(i)=xA>-1)+1
XA(i)=xA(i-1)-1

1 (3A)

1 (2A)

XA(i)=xA(-1)

| (2B)
1 (3B)
XB(iy=xB(i-1)+1
XB(i)=xB(i-1)-1
! (3B)
1 (2B)

xB(i)=xB(i-1)

1(2A)

1(3A)
YA(i)=yA(i-1)+1
yA®i)=yA(i-1)-1

1 (3A)

1 (2A)

YA(i)=yA(i-1)

1 (2B)
1 (3B)
yB(i)=yB(i-1)+1

yB(i)=yB(i-1)-1
1(3B)

! (2B)
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IF (yB(i)>maxY .OR. yB(i)<minY)

END IF
INEW zA
IF (kKjA==2) THEN
IF (bA>0.5)
END IF
ELSE
zA(i)=zA(i-1)
END IF
IF (zA(i)>maxZ .OR. zA(i)<minZ)
END IF
INEW zB
IF (kiB==2) THEN
IF (rbB>0.5)
END IF
ELSE
zB(i)=zB(i-1)
END IF

IF (zB(i)>maxZ .OR. zB(j)<minZz)

END IF

P SAW RESTRICTIONS*****

conta=0
contb=0
DO k=1, i-1
IF (xA(@i)==xA(K)) THEN
ELSE
END IF
IF (YA())==yA(k)) THEN
ELSE
END IF
IF (zA(i)==zA(K)) THEN
ELSE
END IF
IF (xB(i)==xB(K)) THEN
ELSE

THEN
yB(i)=yB(i-1)
(2A)
THEN ! (3A)
ZA(i)=zA(i-1)+1
ELSE
ZA(i)=zA(i-1)-1
1(3A)
1 (2A)
THEN
zA(iy=zA(i-1)
1(2B)
THEN 1(3B)
ZB(i)=zB(i-1)+1
ELSE
zB(i)=zB(i-1)-1
1(3B)
1(2B)
THEN
zB(i)=zB(i-1)
(1)
leoxa(i,k)=1
teoxa(i,k)=0
leoya(i,k)=1
leoya(i,k)=0
leoza(i,k)=1
leoza(i,k)=0
leoxb(i,k)=1
leoxb(i,k)=0




END IF

IF (yB()==yB(k))

END IF

IF (zB(i)==zB(K))

ENDIF

THEN

ELSE

THEN
ELSE

leoyb(i,k)=1

leoyb(i,k)=0

jeozb(i,k)=1

leozb(i,k)=0

conta=conta+leoxa(i, k)*leoya(i,k)*leoza(i,k)
contb=contb+leoxb(i,k)*leayb(i,k)*leozb(i,k)

END DO

IF (conta>0)

END IF
IF (contb>0)

END IF
END DO

THEN

ELSE

THEN

ELSE

XA(i)=xA(i-1)
YA(I)=YA(i-1)
zA(i)=zA(i-1)

XA(i)=XA()
YA(i)=yA(i)
zA(i)=zA(i)

xB(i)=xB(i-1)
yB(i)=yB(i-1)
zB(i)=zB(i-1)

XA(i)=xA(i)
yB(i)=yB(i)
zB(i)=zB(i)

'(1)

INumber of steps loop (2)

e ELIMINATING REPEATED POINTS*™****

h=1

k=1

DO WHILE (h<=n)
h=h+1
k=k+1

1(2)

IF (xA(h)==nxA(k-1) .AND. yA(h)==nyA(k-1) .AND. zA(h)==nzA(k-1)) THEN

END IF

END DO

ca(j)=k-1

h=1

k=1

DO WHILE (h<=n)
h=h+1

k=k-1

ELSE
nXA(K)=xA(h)
nyA(K)=yA(h)
nzA(k)=zA(h)

I2)

'(2)
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k=k+1

iF (xB(h)==nxB(k-1) .AND. yB(h)==nyB(k-1) .AND. zB(h)==nzB(k-1)) THEN

END IF

END DO
cb(j)=k-1

[+ FINAL SAW***

DO i=1, ca(j)

WRITE(7,*) nxA(i), nyA(i), nzA(), j, 'A'

END DO

DO i=1, ¢cb(j)

WRITE(7,*) nxB(i), nyB(i), nzB(i), j, 'B'

END DO

p***NUMBER OF JUNCTIONS****
DO k=1, ca())

DO h=1, cb(j)

F (nxA(k)==nxB(h))

END IF
IF (nyA(k)==nyB(h))

END IF
IF (nzA(k)==nzB(h))

END IF

THEN

ELSE

THEN

ELSE

THEN

ELSE

ABx(k,h)=1

ABXx(k,h)=0

ABy(k h)=1

ABy(k,h)=0

ABz(k,h)=1

ABz(k,h)=0

AB(k,h)=ABx(k,h)*ABy(k,h)*ABz(k,h)

cont=cont+AB(k,h)

END DO

END DO

WRITE(**) cont, ca(j), cb(j)

jun(i)=cont
EMD DO

DO k=1, it

WRITE(6,*) jun(k), ca(k), cb(k)

END DO

p**+*CLOSING OUPUT FILE*****

CLOSE (6, STATUS='KEEP")
CLOSE (7, STATUS='KEEP")

END PROGRAM SAW3Dv2

k=k-1

ELSE
nxB(k)=xB(h)
nyB(k)=yB(h)
nzB(k)=zB(h)

2)

K1)
')
X

X
Y

Y
Iz

lIterations loop (1)




Some results from this program are given in Figures B.9 to B.13.
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Figure B.9. Chains’ length distribution.
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Appendix C. Rheometers Procedures

A. Parallel Plate Rheometer

1. Equipment description

Constant Strain Rheometer RDA |l Rheometrics Dynamics Analyzet.
Rheometrics Scientific (RSI) software.

Configuration: Parallel plates.

Geometry: 25 mm in diameter.

2. Safety precautions

= The use of heat resistant gloves is recommended, since the oven and test
fixtures are hot when testing at elevated temperatures.
= A cryogenic hazard exists, since sub-ambient temperature testing involves the
use of liquid nitrogen. Transfer lines, oven chamber and its contents may be
extremely cold. Use appropriate gloves when working around these areas.
= The torque transducer is sensitive to axial and normal forces and can be
damaged if overloaded. Pay close attention to torque and normal force
indicators when performing the following:
1. Turning on motor drive; if a sample is loaded when energizing the motor
drive, the torque transducer will be damaged.
2. Attaching or removing test fixtures.
3. Loading or unloading test specimens.
4. Cleaning test fixtures.

3. Sample preparation

a. Weight 30.0 grams of polymer pellets and 0.03 grams of 2-6 di-tert-butyl-p-
cresol (BHT) on analytical balance. BHT concentration can be 1000 ppm up
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to 2% in weight. Polypropylene fiuff samples first need to be stabilized with
irganox 1076 in a ratio of 15 grams of fluff to 7 mii of Irganox.

Pour polymer pellets and BHT on grinder (coffee mill).

Cut two sheets of Mylar and place them over the metal plates.

Press mixer bottom for 1 second and then interrupt the mixing by
depressing it. Do this 5 times.

Place the appropriate (1 or 2 mm) thickness sample plate (mold plate) over
one of the metal plates with Mylar over it.

Place the mixed pellets over the sample plate holes and square.

Place the Mylar sheet and the other metal plate over the mould plate (with
polymer peliets poured on it).

Mold press 25 mm diameter disks with minimum thickness of 2.5 mm by
leaving 2 minutes of pre-heating at 5,000 psi and 375 - 400 °F in mold, then
2 minutes of compression by increasing mold pressure up to 25,000 psi.
Using gloves, take away steel plates from the mold press and leave them to
bench cooling for 15 minutes.

Separate the plates, and take away sampling material from the moid. Cut
off sample material.

Take away Mylar from the steel plates and clean them using spatula.

4. System start-up

a. Clean parallel plates.

b. Install lower tool thermocouple (sample temperature is monitored by lower
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tool thermocouple).

At the front panel of the rheometer, set thermocouple jumper to
“Computer/Tool”.

Tight upper and bottom fixtures with 256 mm plates correctly (with motor
power off). Ensure normal force not to exceed +10%.

Lower plates until contact is made and inspect visually to ensure
concentricity (how parallel plates are).




Turn the motor off, and freely turn the lower fixture plate to see if gap is
changing (no change in gap ensures concentricity).

. Separate the plates.

. At the back of the rheometer, check nitrogen pressure settings for the oven
(while closed) is at 40 psi and transducer pressure is at 35 psi.

Turn main power of the system control on.

Turn main power of the control computer on.

. Checking that no sample is loaded, turn motor power on. Make sure that
there is no sample loaded in the fixtures prior to energizing the motor,
otherwise damage to transducer will occur.

Verify that both, torque and normal indicators are at cero.

. Being in the RSI software environment, in user login choose the RAA or the
RDA 1l equipment.

. Configure instrument to control temperature by the oven by selecting in
utilities window: service, instrument configuration, temperature control loop,
and oven air temperature.

. Verify status to be ok and in dynamic mode. Otherwise, set motor mode to
“dynamic” in control Window (verifying that no sample is loaded and that the
parallel plates aren’t together).

. Raise top plate approximately 1 mm to allow for fixture expansion during the
heating process.

. Close the oven, making sure that both upper and lower baffles are in the
right position (so that insulation is ensured). Make sure that the upper baffle
is not touching the oven, since this would cause a normal force that can
damage the equipment.

Set temperature in panel icon. At the start of the heating process, the
setpoint should be 50 °C more than the test temperature. Once temperature
has achieved 5 °C less than the test temperature, the actual setpoint is set to
a slightly higher temperature (5°C more) than the desired test temperature.
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Once temperature has equilibrated (1/2 hour), adjust plates to zero gap by
turning knob slowly until parallel plates touch each other (identified by the

last zero normal force while approaching paraliel plates).

Reset gap indicator.

In start icon save the test file following the test conditions.

Press exit test bottom (do not begin test).

Table C.1. Frequency sweep test conditions

VARIABLE TEST CONDITIONS
Test type Frequency Sweep (dynamic
mode)
Test name Frequency Sweep for all
Polymers
Location C:\RSIOrche600\Data\Polymers
Geometry 25 mm Parallel Plate
Gap 1 mm
Strain 10 % (standard)
Sweep type logarithmic
Sweep range 500 to 0.01 rad/sec
Points per decade 4
Correlation Delay 0.5 cycles

Temperature Loop
Control

Oven air temperature

Temperature monitor

Lower tool thermocouple
(set jumper to Computer/Tool)

5. Specimen loading

Open oven, raise upper plate enough so that specimen can be inserted (3

mm maximum).



file://C:/RSIOrche600/Data/Polymers

j.

Place the specimen between the plates. Safety precautions should be
taken, since oven is hot).

Close the oven.

Lower upper plate until contact is made with specimen and close oven.
50% of normal force will ensure full contact.

Allow 5 minutes for specimen preheating, then lower upper plate to 1.05 or
2.05 mm gap (depending on the specimen thickness).

Allow normal force to diminish to 30% or less before trimming specimen.
Open oven and trim excess material away from plates.

Lower upper plate to 1.0 or 2.0 mm final gap (final gap should be a little
less than the specimen thickness), close oven.

Allow additional 5 minutes for temperature equilibrium prior to testing (+ 0.2
°C from setpoint). ' o

Ensure that the normal force is less than 10% before beginning test.

Note: each time oven is opened, setpoint should be raised 50 °C more than the

a.

actual temperature, to achieve testing temperature again. Once the
temperature has returned to its setpoint temperature, re-adjust the
setpoint to this desired value.

6. Begin test

In start icon, verify that the testing conditions are the desired ones. Then
press begin test bottom. The start icon (in green) should change to stop
icon (in red).

The view icon is for choosing between results in graph format or in table
format. Display results in a table that shows frequency, G’, G”, G*, Eta*,
Tan Delta, Temperature, and Torque.

The torque resolution is more than 2 gr cm, but leave resuiting data with
torque greater than 0.8 gr cm. Eliminate data with a lower torque. -
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d. Once test is finished, calculate the point at which G’ (storage modulus) and

G” (loss modulus) intersect by selecting analysis, then G'/G” crossover,
and finally, stamp crossover modulus and frequency on graph option.

Once test is finished, fit viscosity data by selecting viscosity curve by
double clicking on curve itself, then select curve fit window, followed by fit
data to model, viscosity models, carreau model, fit, save fit, and stamp fit
on graph.

=» To save the results file in an ASC Il format (*.txt), choose the export option in

the file window.

7. Equipment clean up
Separate the gap slowly up to 3 mm (check normal force).
Open oven, separate still more the plates, and clean plates using a spatula
and a brass brush.

c. Clean plates by wiping them with isopropyi alcohol.

d. Close gap to 3 mm and close oven again.
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If no more tests are to be done, lower the temperature setpoint to 25 °C, then
wait until the rheometer cools down. Finally, turn off the system control, the
motor, the gap gage, and the control computer.

8. Emergency shut down procedure

Turn off the test station motor, system control, and the control computer of
the rheometer.

Determine if a test specimen is loaded (open oven chamber and visually
determine it).

Remove test specimen.

Open oven chamberi



e. Loosen the top (transducer) and bottom (motor actuator) test fixture clamps
(thumbs screws located on the right side of the motor actuator and
transducer clamps).

f. Raise the torque transducer platform up with the hand crank located on the
right side of the test station and remove the test fixtures. Monitor the normal
force meter while raising the torque transducer platform. The control
computer should be turned back on to monitor the normal force. If the top
fixture clamp is not lose enough to allow the fixture to slide out of the clamp,
transducer overloading may occur.

g. Turn off the gas chiller if applicable.

h. Turn off the computer, the nitrogen filters, the printer and plotter.

i.  Unplug all electrical cards.

j-  Biock in the nitrogen supply.

k. Block in liquid nitrogen if applicable.

B. Capillary Rheometer

1. Equipment description
Rosand Capillary Rheometer
Model RH7-2
Double Bore
Barrel Diameter: 15 mm
Available Pair of Capillary Dies:

= Diameter: 0.5 mm
Entrance Type: 90 °
Short Die Lenght:  0.25 mm
Long Die Lenght: 8 mm
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< Diameter: 1.0 mm
Entrance Type: 90 °
Short Die Length:  0.25 mm
Long Die Lenght: 16 mm

=» Diameter: 1.0 mm
Entrance Type: 180 ° (Flat)
Short Die Lenght:  0.25 mm
Long Die Lenght: 16 mm

= Diameter: 0.5 mm
Entrance Type: 90°
Short Die Lenght:  0.25 mm
Long Die Lenght: 24 mm

2. Safety precautions

The use of heat resistant gloves is necessary, especially while changing dies
and cleaning the barrel and pistons.

Keep hands clear of crosshead while operating the equipment.

Care must be taken when initially lowering pistons into barrels so as not to bend
the pistons or overioad the transducer. Monitor transducer load and ensure
that the pistons are properly inserted into the barrels.

3. Test Setup

a. Open the Dr. Rheology software in the computer.

b. Ensure that the proper dies and tranducer are assigned in the software.
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Indicate the desire temperature and allow enough time to temperature
equilibrium.

Go to the pretest section, and introduce a preheat-compression-preheat-
compression stage to ensure the accuracy of the test.
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Indicate the velocity range of testing by creating a shear rate schedule.

4. Running tests

Ensure that the appropriate transducers are properly installed.

Place the short and long dies in the bottom of the barrels.

Calibrate and re-zero, using Dr. Rheology software, the pressure transducers.
Load the polymer sample into the barrel. Add material in small increments and
tamp with the compressing rod.

Place the pistons on the crosshead. Lower the crosshead with the pistons until
plungers contact the material.

Close the crosshead door.

Start test.

5. Equipment cleanup

Unscrew (turning clockwise) the die fixtures using the iron made plain screw.
The fixture will come down, but the capillary die will still be attached to the
barrel, since the residual melt holds it to the barrel’s walls.

Introduce the compressing or tamping brass rod to the barrel’'s feeding opening
and push downwards until the residual melt and capillary die are expunged
from the barrel. Care must be taken, since the residual meit and capillary die
are extremely hot and can touch your feet when they are expunged. After
expunging is done, take away the compressing rod from the barrel. Notice that
you can see now through the barrel.

In order to clean the barrel as much as possible, introduce the cleaning tube to
the barrel's feeding opening using a folded cleaning pad on its tip. After
cleaning, take away the cleaning tube from the barrel.

See if the barrel is completely clean; if not, repeat previous step as necessary.
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C. Controlled Stress Rheometer

1. Equipment description

Constant Stress Rheometer SR5000 Rheometrics.
Rheometrics Scientific (RSI) software.
Configuration: Cone and Plate.

Geometry: 25 mm in diameter.

Cone Angle: 0.0996 radians

Gap: 0.048 mm

Stress limits: 0.239736 to 11,986.77 Pa.

2. Safety precaution

= The use of heat resistant gloves is recommended, since the oven and test
fixtures are hot when testing at elevated temperatures.
= A cryogenic hazard exists, since sub-ambient temperature testing involves the
use of liquid nitrogen. Transfer lines, oven chamber and its contents may be
extremely cold. Use appropriate gloves when working around these areas.
= The torque transducer is sensitive to axial and normal forces and can be
damaged if overloaded. Pay close attention to torque and normal force
indicators when performing the following:
1. Attaching or removing test fixtures.
2. Loading or unloading test specimens.
3. Cleaning test fixtures.

3. Sample preparation

a. Weight 30.0 grams of polymer pellets and 0.03 grams of 2-6 di-tert-butyl-p-
cresol (BHT) on analytical balance. BHT concentration can be 1000 ppm up
to 2% in weight.

b. Pour polymer pellets and BHT on grinder (coffee mili).
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Cut two sheets of Mylar and place them over the metal plates.

Press mixer bottom for 1 second and then interrupt the mixing by
depressing it. Do this 5 times.

Place the appropriate (1 or 2 mm) thickness sample plate (mold plate) over
one of the metal plates with Mylar over it.

Place the mixed pellets over the sample plate holes and square.

Place the Mylar sheet and the other metal plate over the mould plate (with
polymer peliets poured on it).

Mold press 25 mm diameter disks with minimum thickness of 2.5 mm by
leaving 2 minutes of pre-heating at 5,000 psi and 375 - 400 °F in mold, then
2 minutes of compression by increasing mold pressure up to 25,000 psi.
Using gloves, take away steel plates from the mold press and leave them to
bench cooling for 15 minutes.

Separate the plates, and take away sampling material from the mold. Cut
off sample material.

Take away Mylar from the steel plates and clean them using spatula.

4. System start-up

Insure proper nitrogen pressure to air bearing and flow to oven purge. Air
bearing regulator should be 80 psi minimum and oven flow meter 20 psi, inlet
pressure to filter should be 60 psi.

Load Rheometric’s Orchestrator Software vis RSl Orchestrator icon.

Turn on heater on rheometer.

Set operating temperature on software.

Allow 30 minutes for temperature equilibration.

Set up desired test conditions at start buttom icon in Rheometrics Software

5. Zeroing the gap

Unlock shaft mechanism in the rheometer.
Press gap icon in rheometrics software, introduce 0.048 mm of gap.
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Press zero fixture buttom.
Verify that the gap reader in the rheometer indicates 0.048.
Press exit buttom in the zeroing gap window.

6. Specimen loading

Insure that the drive shaft is locked; turn carfuly shaft clockwise until flat
face faces the locking mechanism.

Move to 1.5 mm gap to load sample.

Raise measuring geometry and oven cover, and using tweezers insert
specimen on lower plate.

Lower measuring geometry until contact with specimen is made, then lower
oven cover back into place; lower gap if necessary to about 1.5 mm).
Pre-heat specimen for 2 minutes.

Lower measuring geometry to specified gap (0.052 mm).

Raise oven cover and trim excess polymer away from plates. Use
aluminum trimming tool.

Lower oven cover back into place.

Reduce gap to 0.048 mm if necessary.

Unlock drive shaft.

Equilibrate temperature for 2 minutes.

Start test.

7. Equipment cleanup

Separate the gap slowly up to 1.5 mm (check normal force).

Insure that the drive shaft is locked.

Raise gap to about 0.5 mm

Raise oven and measuring geometry.

Clean cone and plate using aluminum spatula and special metal brush
Clean plates by wiping them with isopropyl alcohol.

Close oven again.



h. If no more tests are to be done, lower the temperature setpoint to 25 °C,
then wait until the rheometer cools down.
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