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ABSTRACT 

A comprehensive Theological study of four pairs of isotactic and syndiotactic 

polypropylene resins with similar MFI was conducted. The study also includes the 

standard quality properties commonly used in the industry. The Theological tests 

included double bore capillary rheometry, frequency sweeps and creep and 

recovery compliance. The standard quality properties tested were percentage of 

Xylene Solubles (XS), Gel Permation Chromatography (GPC), Nuclear Magnetic 

Resonance (NMR) and Differential Scanning Calorimetry (DSC). It was found that 

the viscoelastic behavior is significantly different between these two types of 

resins. 

On the other hand, the PTT (Phan Thien and Tanner, 1977) and XPP (Verbeeten, 

2001) models were analyzed and evaluated using the experimental data of the 

resins under study. It was found that the PTT model fails to predict accurately the 

elongational response of the syndiotactic resins. 

In addition, a modified PTT model is proposed and evaluated with satisfactory 

results. The parameters of this new model were found to be related to molecular 

weight distributions features such as Mz and Me. 

Additionally, an innovative approach using fractals theory is proposed for the 

development of a new fundamental constitutive equation. Further study is 

recommended to this topic as well as to the modified PTT model. 
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N O M E N C L A T U R E 
a Yasuda or Cross model 

parameter 

ai Giesekus model parameters 

a i , a 2 , a 3 

a k Weighting factor for the 

exponential terms of the 

memory function r ) k / (Xk) 2 

a T Horizontal temperature shift 

factor 

A Modified PTT model 

parameter. 

b T Vertical temperature shift 

factor 

B Finger strain tensor or die 

swell 

B Modified PTT model 

parameter. 

BHT 2-6 di-tert-butyl-p-cresol 

b~' Cauchy finite strain tensor 

C Modified PTT model 

parameter. 

D Capillary diameter in capillary 

rheometry 

Dp Diameter of the extrudate 

after die swell 

DSC Differential scanning 

calorimeter 

E H Horizontal activation energy 

for flow 

Ev 

f i , f 2 

G'(o>) 

G"(co) 

G » 

G(t) 
GN 
GPC 

Gi 

Go 

K I M

HDPE 

I 

/, 

h 
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Vertical activation energy for 

flow 

Weighting factor for damping 

function 

Storage modulus 

Loss modulus 

Complex modulus G'(«) + 

/G"(e>) 

Relaxation modulus 

Plateau modulus 

Gel permeation 

chromatography 

Cross-over modulus 

Shear modulus r\\ /X\ in 

relaxation spectra 

Plateau Modulus 

Damping function 

High density polyethylene 

Identity tensor 

First scalar invariant of the 
Finger tensor 
Second scalar invariant of the 
Finger tensor 

Third scalar invariant of the 

Finger tensor 

As a subscript refers to the 

contribution for the stress 

tensor of the i-th relaxation 

element 

ix 



(1 j)1 As a superscript refers to the M(t-

component of the stress m 

tensor 

iPP Isotactic polypropylene m' 

J(t) Creep compliance 

J°e Steady state recoverable N 

compliance 

Jmax Maximum compliance J(t 0) NM

Jr(t) Recoverable compliance at N i (

any time after the stress n-i, 

ceased 

Je(t) Elastic compliance J r ( 0 ) - J r( n 

t ) n' 

L Length of the capillary die or 

spinning PDI

LL Length of the long capillary PTT

die in the double barrel P 

rheometer (Rosand) q 

Ls Length of the short capillary 

die in the double barrel Q 

rheometer (Rosand) 

L / D Length to diameter ratio for RAA

capillary die 

LDPE Low density polyethylene RDA

MFI Melt flow index 

Mn Average number molecular RS5

weight 

Mw Average molecular weight R b 

MWD Molecular weight distribution 

Mz Third moment of the R 2 

molecular weight 
t') Memory function 

Consistency (power law 

parameter) 

Parameter for Hershel-

Bulkley model 

Number of relaxation 

elements 

R Nuclear Magnetic Resonance 

t , f ) First normal stress difference 

n 2 Damping function strain 

sensitive parameters 

Power-law model parameter 

Parameter for Hershel-

Bulkley model 

 Polydispersity index Mw/Mn 

 Phan-Thien and Tanner 

Isotropic pressure 

Dangling arms in a pom-pom 

molecule 

Volumetric flow rate through 

die 

 Rheometrics asphalt 

analyzer 

 Rheometrics dynamic 

analyzer 

000 Rheometrics stress 

rheometer 

Radius of the barrel or 

reservoir 

Correlation coefficient 



S Second moment of the 

orientation distribution of 

backbone segments in XPP 

model 

S(i) Convected time derivative of 

S tensor. 

sPP Syndiotactic Polypropylene 

SQP Standard quality properties 

T Temperature 

Tg Glass transition temperature 

Tm Melting temperature 

To Reference temperature 

TTS Time-Temperature 

Superposition 

t Time 

t' T ime relative to the position 

at time t 

tQ Time at which stress ceases 

in a creep test 

tan 5(co) Loss tangent, ratio of 

G"(co)/G'((o) 

u Dimensionless axial velocity 

u = u / u c 

w(i,,i2)Potential Function in Wagner 

Model 

XPP Extended Pom-Pom 

XS Percentage of xylene 

solubles 

Z(frt,.) Rate of destruction of 

junctions function of the PTT 

Greek 

a 

a 

y(t) 

y 0 

y r 

y 

Y0 

Ya 

t t 

ru 

A P E 

APL 

APs 
model corresponding to the i-

th contribution to the stress 

Symbo l s 

PTT model elongational 

parameter, 

XPP model parameter defining 

the amount of anisotropy. 

Imposed shear strain 

y(t) = ya sin(erf) 

Strain amplitude in an 

oscillatory test 

Recovered shear strain in a 

creep test 

Rate of strain (deformation) 

tensor 

Imposed shear rate 

Apparent shear rate 

(32Q)/(rtD 3) 

Corrected shear rate 

r3n + l l 

Shear rate tensor component 

Pressure drop due to 

elasticity of the melt 

Long capillary die pressure 

drop 

Short capillary die pressure 

drop 
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AP Total pressure drop AP V + 
T Xc 

AP E 

A P V Pressure drop due to h or 

viscosity of the melt 

e Elongational (Henky) strain 

£ Extension rate 

£ max Maximum extension rate As 

Ha Apparent shear viscosity A 

na = Tw/fa 

Hi Or r(k Relaxation spectrum V 

viscosity 

Ho Zero shear viscosity 

n( t , t ) Shear viscosity 

r\,(z,b) Shear free viscosity function r\,(z,b) Shear free viscosity function 

i\2(i,b) Shear free viscosity function i\2(i,b) Shear free viscosity function 
p 

ne(s) Elongational viscosity ne(s) Elongational viscosity 

nt True shear viscosity from 
°o 

capillary data 
o(t) 

Dynamic viscosity G"(co) / © 
o(t) 

Dynamic viscosity G"(co) / © 

T1"(C0) Imaginary component of 

complex viscosity on complex viscosity on 

n » Complex viscosity 

Capillary die entrance angle: 
X CD Capillary die entrance angle: 

Flat entrance 9 = 180°= % 
Tkk 

radian radian 

Cone entrance 6 = 90° = it 

12 radian 12 radian 

xii 
Cross model characteristic 

time 

Xk Relaxation spectrum time 

Relaxation time of the 

backbone tube orientation in 

the XPP model. 

Stretch relaxation time. 

Stretch ratio of the backbone 

in XPP model 

Measure of the influence of 

surroundings polymer chains 

on the backbone tube stretch 

Newtonian viscosity 

PTT model shear parameter. PTT model shear parameter. 

Density 

Extensional (elongational) Extensional (elongational) 

stress 

Stress amplitude 

Sinusoidal stress 

CJ0 sin(©t + 8) CJ0 sin(©t + 8) CJ0 sin(©t + 8) 

Extensional stress Extensional stress 

component 

Stress tensor Stress tensor 

Component (kk) of the stress 

tensor corresponding to the i-

th relaxation element th relaxation element 

contribution to the stress contribution to the stress 

tensor. 



Imposed stress in a creep 

test 

Shear stress at the wall 

i-th contribution to the stress 

tensor 

Stress tensor component 

True shear stress 

Value of t y x when r p r\012 

Convected time derivative of 

the stress tensor 

t w = J U - { ( V o ) r - c + t ( V u ) } 

Piston velocity in a capillary 

test 

Wagner's (1976) damping 

function parameter 

<D Wag

fu

S Wag

fu

wrfy) Fi

*¥2(y) Se

co

ca Vort

Vu

© Fr

c o x Cr

(ra

Vv Ve
ner's (1976) damping 

nction parameter 

ner's (1979) damping 

nction parameter 

rst normal stress coefficient 

cond normal stress 

efficient 

icity tensor 

-(Vv)* =2Vu-r 

equency (rad/sec) 

oss-over frequency 

d/sec) 

locity gradient tensor 
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C H A P T E R L. I N T R O D U C T I O N 

T H E POLYOLEFINS BUSINESS IS A COMMODITY MARKET WHERE PROFIT CAN B E M A D E ONLY BY 

M A S S PRODUCTION. IN ORDER TO MAINTAIN A FINANCIAL PERFORMANCE, THE COMPETITIVE 

STRATEGY IS TO DEVELOP TECHNOLOGICAL INNOVATIONS AND FASTER CHARACTERIZATION 

TECHNIQUES, SO THE POLYOLEFINS CAN BE PROCESSED FASTER AND SOLD AT HIGHER PRICES. 

HOWEVER, ANY INNOVATION REQUIRES LARGE AMOUNTS OF POLYMER IN ORDER TO DETERMINE 

ITS PERFORMANCE IN THE PROCESSING LINES. 

T H E MANUFACTURING PROCESS OF POLYMERS HAS A LARGE INFLUENCE ON THE RESULTING 

MECHANICAL AND OPTICAL PROPERTIES OF THE END PRODUCT. FOR INSTANCE, DIMENSIONAL 

STABILITY IN PRECISION INJECTION MOLDING OR YIELD STRENGTH, YOUNG'S MODULUS AND EVEN 

TEAR STRENGTH OF BLOWN FILMS ARE AFFECTED BY THE VISCOELASTIC PROPERTIES OF THE 

POLYMER MELT. 

THEREFORE, A NECESSARY REQUIREMENT IN THE DESIGN OF POLYMER PROCESSING 

OPERATIONS IS A FUNDAMENTAL UNDERSTANDING OF THE RHEOLOGY OF THE POLYMER MELT. 

T H E N , THE INDUSTRY NEEDS BOTH ABSOLUTE QUANTITATIVE INFORMATION AND ALSO 

INEXPENSIVE TESTING FOR MULTIPLE SAMPLES IN ORDER TO UNDERSTAND POLYMER MELT'S 

BEHAVIOR. T H E DIFFICULTY IN RECOVERING RESEARCH AND DEVELOPMENT COSTS HAS M A D E 

S O M E PRODUCERS TO THINK ABOUT MODELING POLYMER PROCESSES TO UNDERSTAND AND 

ESTABLISH THE PROCESSABILITY OF A NEW POLYMER. THEREFORE, EXPERIMENTATION D E M A N D S 

THE GREATEST QUANTITY OF ACCURATE INFORMATION AT A M I N I M U M COST IN ORDER TO HAVE A 

FAST R O I REGARDING THE RESEARCH AND DEVELOPMENT COSTS AND TO B E ABLE TO INCREASE 

THE MARKET SHORE. 

RESEARCH AND DEVELOPMENT DEPARTMENTS HAVE CONSIDERED THAT THE THEOLOGICAL 

MODELS (CONSTITUTIVE EQUATIONS) ARE VERY IMPORTANT BECAUSE THEY COULD PREDICT MELT 

FLOW BEHAVIOR IN A WIDE RANGE OF DEFORMATION HISTORIES; HOWEVER, THE USEFULNESS OF 

A CONSTITUTIVE EQUATION LIES IN ITS ABILITY TO M A K E ACCURATE PREDICTIONS FOR AS M A N Y 
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polymer systems with as few adjustable parameters as possible. In addition, 

simulate polymer melt processing realistically, the model must be able to descri

material behavior in the linear and in the nonlinear regime. Particularly, the stu

of the elongational behavior is very important because the flow behavior of polym

melts in economically important processes like fiber spinning and film blowing 

governed rather by elongational than by shear properties of the melt. Furthermo

processes such as extrusion, though primarily governed by shear properties, m

also be influenced by elongational properties. (Laun, 1976). 

This thesis is a contribution to the predictive modeling of viscoelastic materia

The PTT model (Phan Thien and Tanner, 1977) and XPP model (Verbeeten, 200

are analyzed and evaluated using the experimental data of eight polypropyle

resins. A modified PTT model is proposed as well as an innovative approach usi

fractals theory. 

A. Problem Statement 

Previous work (Mier, 2000) proved that PTT model (Phan Thien and Tanner, 197

predicts rheological properties accurately in the steady state, but the predictions 

the transient state are not that accurate. Besides, several authors (Larson, 198

Stephenson, 1989) had showed some important limitations for this model. The

limitations of PTT model and other constitutive equations have caused the creati

of new constitutive equations, like the POM-POM model (McLeish and Larso

2000). 

On the other hand, most rheological models use empirical parameters to fit t

experimental data. Those parameters have no theoretical explanation; therefo

the models cannot relate the polymer behavior in extensional flow to th

molecular features, or to other fundamental aspects. 
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B. Research Proposal and Objectives 

T H E PRIMARY OBJECTIVE OF THIS RESEARCH IS to improve the existing constitut

equations by reducing the number of empirical parameters, to better expl

polymer melt's behavior in extensional flow during transient state. IN ADDITION, THE

ARE THE FOLLOWING PARTICULAR OBJECTIVES: 

1 . RHEOLOGICAL CHARACTERIZATION OF ISOTACTIC AND SYNDIOTACTIC POLYPROPYLENE RESINS

2 . IDENTIFICATION OF RHEOLOGICAL DIFFERENCES BETWEEN SIMILAR ISOTACTIC A

SYNDIOTACTIC RESINS 

3 . MODIFICATION OF THE P T T MODEL IN ORDER TO OBTAIN BETTER PREDICTIONS 

ELONGATIONAL BEHAVIOR OF POLYOLEFINS. 

4 . BUILD THE BASIS FOR A NEW MODEL THAT EXPLAINS SATISFACTORILY THE RHEOLOGIC

BEHAVIOR OF POLYMER MELTS USING FRACTALS THEORY. 

C. Justification 

THERE ARE SEVERAL RHEOLOGICAL ANALYTICAL TECHNIQUES USED IN THE CHARACTERIZATION 

POLYMERS, HOWEVER SUCH TECHNIQUES NOT ALWAYS DISCRIMINATE RESINS WITH SIMIL

QUALITY CONTROL DATA BUT WITH DIFFERENT PROCESSING BEHAVIOR. A N EXAMPLE OF

TECHNIQUE TYPICALLY USED FOR DISCRIMINATION OF RESINS WITH SIMILAR STEADY STA

VISCOELASTIC DATA IS THE COGSWELL ANALYSIS. SUCH TECHNIQUE IS TIME CONSUMIN

REQUIRES THE USE OF COSTLY EQUIPMENT AND USES EMPIRICAL PARAMETERS N

NECESSARILY RELATED TO TYPICAL MOLECULAR WEIGHT DISTRIBUTION FEATURES. THEREFOR

THERE IS A NEED FOR A CONSTITUTIVE EQUATION CAPABLE OF PREDICTING THE ELONGATION

TRANSIENT BEHAVIOR OF A POLYMER BASED ON THE FEWEST NUMBER OF STEADY STATE LINE

VISCOELASTIC DATA, ON MOLECULAR WEIGHT AND/OR OTHER PHYSICAL PARAMETERS. BASED 

MIER'S ( 2 0 0 0 ) RESULTS, IT SOUNDS REASONABLE TO PROPOSE A MODIFICATION TO THE P

MODEL IN WHICH THE COMPRESSIBILITY EFFECT CAN B E TAKEN INTO CONSIDERATION AND 

WHICH THE DEFORMATION TENSOR MIGHT NEED A MODIFICATION ALTOGETHER. 
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It is worth to remember that the PTT model presents a relationship between str
and elastic energy in addition to the inclusion of a set of multiple relaxation times
which can easily be obtained in the laboratory. 

D. General Methodology 

To guarantee the accuracy of the results generated in this project, special care w
taken in materials preparation, standard quality control tests, rheological
techniques and validation of the constitutive equations. 

1. Materials Preparation 
All resins were prepared using the same conditions and with the same additive
package, so that any variations observed could be associated to changes in th
polymer's molecular structure and MWD and not to other factors. 

2. Standard Quality Control Techniques 
Information on reproducibility on the quality control techniques was included to
determine if reported differences were significant or not. 

3. Rheological Techniques 
Standard well-documented and proven procedures were followed in each
rheological test. Conditions previously documented were used (Aguirre, 1999
Mier, 2000). 
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E. General Organization 

This thesis is divided in thirteen chapters, including the present one. Chapter 

presents a literature review as a theoretical background. Chapter III explains th

principles behind the standard quality control techniques and the rheological tests. 

The experimental data is presented in Chapters IV through VII . Chapter IV

presents the resins' typical quality control properties (standard properties). Suc

properties are the melt flow index (MFI), xylenes solubles percentage analysi

(PS), molecular weight distribution (MWD), differential scanning calorimetry (DSC)

and isotacticity analysis (NMR). Chapter V presents the oscillatory data an

Chapter VI presents the shear and elongational viscosity from capillary data

Chapter VII presents the creep and recovery compliance experimental data. 

Chapter VIII presents the development of the PTT model, as well as its rheologica

functions predictions. Chapter IX shows the mathematical modification of th

model and its rheological functions predictions. Chapter X presents th

development of the POM-POM model and its rheological functions predictions. 

Chapter XI presents a discussion of results in addition to several empirica

relationships that were found among the rheological parameters and the standar

quality properties. Chapter XII presents a new way of modeling polymer's me

using a fractals approach. Finally, Chapter XIII presents the conclusions of the

project as well as a summary of findings and recommendations for future work. 
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CHAPTER II. Theoretical Background 

This chapter presents a complete literature review. It is divided in four sections

Section A presents an introduction to rheology, section B shows some empirica

models while section C presents constitutive equations, and finally section D

shows an introduction to fractals theory. 

In some cases, the nomenclature used by the original consulted articles is changed

to avoid confusions. The reader can look at the nomenclature list given in the firs

pages of this thesis. 

A. Introduction to Rheology 

Rheology is the science that deals with the way materials deform when forces are

applied to them. The term is most commonly applied to the study of liquids and

liquid-like materials such as paint, catsup, oil well drilling mud, blood, polyme

solutions and molten plastics. However, rheology also includes the study of the

deformation of solids such as occurs in metal forming and the stretching of rubber

(Dealy, 1990). 

To learn anything about the rheological properties of a material, we must either

measure the deformation resulting from a given force or measure the force

required to produce a given deformation. (Dealy, 1990). 

There are two principal aspects of rheology. One involves the development o

quantitative relationships between deformation and force for a material of interest.

The information for the development of such a relationship is obtained from

experimental measurements. For a linear elastic material or a Newtonian fluid

such simple observations are sufficient to establish a general equation describing

7



how such material will respond to any type of deformation. Such an equation is 
called a "constitutive equation" or a "rheological equation of state". (Dealy, 1990). 

The second aspect of rheology is the development of relationships that show how 

rheological behavior is influenced by the structure and composition of the material 

and the temperature and pressure. Ideally, one would like to know how these 

parameters affect the constitutive equation, but this has not been accomplished at 

the present time, except for very simple materials such as Newtonian fluids. 

(Dealy, 1990). 

Molten plastics are Theologically complex materials that can exhibit both viscous 

flow and elastic recoil. A truly general constitutive equation has not been 

developed for these materials, and our present knowledge of their rheological 

behavior is largely empirical. (Dealy, 1990). 

1 . S t r a i n a n d S t r e s s T e n s o r s ( B i r d , 1987) 

The velocity field for simple shear flow is given by the velocity field: 

The velocity field for extensional flows (shear free flows) is given by generalized 

forms: 

u (2.1) 

(2.2) 

(2.3) 

-e(l-b)y , (2.4) 

OZ=+£Z, (2.5) 
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where k is the extension rate and b is a constant that is either 0 or 1. When b = 0 

and s> 0, the flow is a uniaxial extensional flow. When b = 0 and s< 0, the flow is 

an equibiaxial extensional flow. When b = 1, the flow is a planar extensional flow. 

In uniaxial extensional flow, the system is stretched along the z axis while it 

contracts uniformly along the x and y axis in such a manner that the volume is kept 

constant. The elongational (Henky) strain is given bys = e(t-t'). In biaxial 

extension flow, the differential element is stretched equally along the x and y axis, 

but contracts in the z direction. In planar extensional flow, the system is stretched 

along the z direction, but is constrained only in the x direction. 

The different elongational flows have different effects on the orientation of the 

macromolecules, for example the uniaxial extensional flow impart significant 

molecular orientation (compared to shear flow), while biaxial extensional flow does 

not lead to a strong degree of molecular orientation. 

For shear flow, the components of the rate of strain (deformation) tensor are: 

(0 1 0\ 

r ,=r(0 | i o o 
o o o 

(2.6) 

For extensional (shear free) flow, the components of the rate of strain tensor are: 

v . . = 

' IJ 

(-i(l + b) 0 0\ 
0 -e(l-b) 0 
0 0 2s 

(2.7) 

For a viscoelastic fluid in shear flow, the components of the stress tensor are: 
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*"= + P 
T = 

" yx 
0 

T„+P 

0 > 

0 ( 2 . 8 ) 

F o r a v i s c o e l a s t i c f l u i d i n extensional f l o w , t h e c o m p o n e n t s o f t h e s t r e s s t e n s o r a r e : 

r = 

0 0 r^+p 

( 2 . 9 ) 

w h e r e p i s t h e i s o t r o p i c p r e s s u r e . F o r N e w t o n i a n f l u i d s , RXX = RYY=TZZ= 0 . 

S o m e o t h e r c o n t i n u u m m e c h a n i c s t e n s o r s c o m p o n e n t s f o r s h e a r a n d s h e a r f r e e 

f l o w s c a n b e f o u n d i n a p p e n d i x C o f t h e m o n o g r a p h y b y B i r d e t a l . ( 1 9 8 7 ) . 

2. M a t e r i a l s F u n c t i o n s 

T h e s t r e s s e s t h a t a r e c u s t o m a r i l y u s e d w i t h shear flow a r e : 

v =-r\(y)yyx> 
• , - 2 

( 2 . 1 0 ) 

( 2 . 1 1 ) 

( 2 . 1 2 ) 

w h e r e */y; a n d v2(y) a r e t h e f i r s t a n d s e c o n d n o r m a l s t r e s s c o e f f i c i e n t s , 

r e s p e c t i v e l y . 

T h e s t r e s s e s t h a t a r e c u s t o m a r i l y u s e d w i t h s h e a r f r e e f l o w a r e ; 
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=-i]I(e,b)k, (2.13) 
T„-xa=-n2(i,b)i, (2.14) 

where nj(i,b) and ri/e.Ajare shear free viscosity functions. For the special case 
when b = 0, rf2 (i,o)=o, and r\, (k,o) is equal to the elongational viscosity: 

ri.fi) = Hj(kfl), (2.15) 

n2(k,u) = o. (2.16) 

For i>o, r)edescribes elongational flow, and for k<o, r\edescribes biaxial 
stretching. 

3. Convected Derivative Tensors 
It is important to define some tensors used frequently in constitutive modeling: 

Velocity gradient tensor. Vo (217) 

Rate-of-strain tensor: y = Vo+ (Vo)' (2.18) 

Vorticity tensor. m = Vu - (Vo)' = 2 Vo - y (2.19) 

First rate-of-strain tensor. y ( i ) = y (2. 20) 

Nth rate-of-strain tensor y(n+1) = ~^yin) - {(Vo)' • y ( n ) + y ( n ) • (Vo)} (2. 21) 

Contravariant convected time derivative of the stress tensor: 

For convenience, the components of Vv, y , and <o in four coordinate systems are 
completely given in appendices A and B of the monography by Bird et. at. (1987); 
while x and for shear and shear free flows are given in appendix C of the same 
monography. 
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Finger strain tensor 

Cauchy finite strain tensors: 

B(r,t,t') = {EE'}, 

B-1(r,t,t') = {At A}, (2. 24) 

(2. 23) 

Relative finite strain tensors: y[0] (r, t,t') = JA' • A) - 8, 

y[0](r,t,t') = 6-{E-E'}, 

(2. 25) 

(2. 26) 
First scalar invariant of the Finger strain tensor: U = 

Second scalar invariant of the Finger strain tensor 

li = \rB (2. 27) 

/^(l/^KtrSf-trCB2)], 
Third scalar invariant of the Finger strain tensor l3 =< h =det B, 

(2. 28) 
(2. 29) 

where 4,y are measures of the displacements at time f relative to the positions at 
time t, whereas £# are measures of the displacements at time t relative to the 
positions at time f, and 8 is the unit tensor. Whenever components of A, E, y[0], 
and y[0] the reader can find complete tabulations for general deformations in 
rectangular, cylindrical, and spherical coordinate systems in appendices B and C of 
Bird et al. (1987) work. In addition, appendix C of the same work (Bird et al. 1987) 
gives expressions for A, E, yl0], y[0], I2, and h in rectangular coordinates worked 
out specifically for simple shear flows and for shear-free flows. 

5. Measurements and Empirical Models 

1. Die Swell 

A viscoelastic correlation can be useful for estimating the extrudate swell, which is 
the recovery expansion that a polymer exhibits on leaving a die. It has been 
suggested that die swell can be correlated to the primary normal stress difference 
Ni and to the shear stress at the wall, rw. The most common is that proposed by 
Tanner (1970): 
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2 - i l / 6 

I & L I ( 2 . 3 0 ) 

A* J J 

w h e r e D p i s t h e d i a m e t e r o f t h e e x t r u d a t e a n d D 0 i s t h e c a p i l l a r y d i a m e t e r . T h e 

c a p i l l a r y d i e s w e l l , B , i s a l s o a f u n c t i o n o f t h e c a p i l l a r y L / D 0 , t h e e n t r a n c e g e o m e t r y , 

t h e e x i t g e o m e t r y , t h e t i m e a f t e r a f l u i d e l e m e n t l e a v e s t h e d i e , t h e t i m e r e q u i r e d f o r 

t h e m e l t t o p a s s t h r o u g h t h e d i e , a n d t h e l o n g e s t r e l a x a t i o n t i m e (X) o f t h e f l u i d 

( B a i r d , 1 9 9 8 ) . 

B = —p- = 0.\ + 

2 . P o l i d i s p e r s i t y I n d e x 

Z e i c h n e r a n d P a t e l ( 1 9 8 1 ) f o u n d t h a t t h e b r e a d t h o f t h e M W D ( P D I ) f o r a f a m i l y o f 

p o l y p r o p y l e n e r e s i n s w a s r e l a t e d t o t h e v a l u e o f t h e c r o s s o v e r m o d u l u s G c ; w h i c h 

i s t h e v a l u e o f G ' a n d G " a r e e q u a l a t t h e c r o s s o v e r f r e q u e n c y a > c -

P D I = r ( 10J 1 P ( 2 - 3 1 ) 

S h a n g ( 1 9 9 3 ) q u e s t i o n e d t h e Z e i c h n e r - P a t e l c o r r e l a t i o n a r g u i n g t h a t t h e c r o s s o v e r 

p o i n t i s s e n s i t i v e t o t h e s t r a i n a t w h i c h t h e o s c i l l a t o r y d a t a i s o b t a i n e d . H e 

s u g g e s t e d u s i n g 5 % s t r a i n f o r r e s i n s w i t h M F I > 3 0 a n d 1 5 % f o r r e s i n s w i t h M F I < 

3 0 . 

C h a m b o n ( 1 9 9 5 ) u s e d t h e Z e i c h n e r - P a t e l c o r r e l a t i o n a n d f o u n d t h a t i t p r e d i c t e d 

t h e s a m e P D I f o r s e v e r a l r e s i n s , w h i l e t h e G P C d a t a r e p o r t e d d i f f e r e n t P D I v a l u e s 

f o r t h o s e r e s i n s . T h e y s u g g e s t e d e s t i m a t i n g P D I b y t h e r e c i p r o c a l o f t h e s l o p e o f 

p l o t s o f t a n 5 v e r s u s f r e q u e n c y . T h e P D I s h o u l d b e e s t i m a t e d f r o m s p e c i f i c r e g i o n s 

o f t h e p l o t : f o r r e s i n s w i t h M F R < 8 , t h e s l o p e i n t h e r e g i o n 1 < t a n 8 < 4 s h o u l d b e 

u s e d ; w h i l e f o r r e s i n s w i t h M F R > 8 , 2 < t a n 5 < 1 0 r e g i o n s h o u l d b e u s e d . 
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3 . S T E A D Y S H E A R PROPERTIES 

D Y N A M I C OSCILLATORY PROPERTIES ARE EASIER TO MEASURE AND CAN B E OBTAINED OVER A 

WIDE RANGE OF FREQUENCIES COMPARED TO THE RANGE OF SHEAR RATES THAT CAN B E 

OBTAINED USING A RHEOMETER. WITH THE FOLLOWING RELATIONS, IS THEN POSSIBLE TO OBTAIN 

STEADY SHEAR RHEOLOGICAL DATA FROM LINEAR VISCOELASTIC DATA OVER A WIDE RANGE OF 

SHEAR RATES. 

IT HAS BEEN OBSERVED EXPERIMENTALLY FOR M A N Y POLYMERS THAT THE MAGNITUDE OF THE 

COMPLEX VISCOSITY, AND THE SHEAR VISCOSITY ARE IDENTICAL (AT LEAST FOR FLEXIBLE 

POLYMERS) IF THEY ARE EVALUATED AT THE S A M E VALUES OF A AND Y. T H I S RELATION IS 

KNOWN AS THE COX-MERZ RULE (COX AND MERZ, 1 9 5 8 ) . 

T| ( & ) 
(o-y 

1 + R\"(<O) 
0.5 

( 2 . 3 2 ) 

WHERE RJ'(CO) AND RI"(CO) ARE THE COMPONENTS OF THE COMPLEX VISCOSITY RF((O). 

A SECOND, NO LESS IMPORTANT, COX-MERZ RULE RELATES THE SLOPE OF THE VISCOSITY CURVE 

TO THE DYNAMIC VISCOSITY (COX AND MERZ, 1 9 5 8 ) : 

DRYX(F) 

DF 
( 2 . 3 3 ) 

L A U N ( 1 9 8 6 ) PROPOSED A RELATIONSHIP BETWEEN THE FIRST NORMAL STRESS COEFFICIENT AND 

THE STORAGE AND LOSS MODULUS: 

G 

CO 
1 + 

G" 

0.7 
2TVW 

CO 
7 + 

0.7 

( 2 . 3 4 ) 

03= Y 
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ition ( T T S ) AND 
A N ALTERNATIVE FORM RELATING THE MECHANICAL LOSS ANGLE AND THE IN-PHASE COMPONENT 

OF THE COMPLEX VISCOSITY IS ( L A U N , 1 9 8 6 ) : 

V F 1 ( R ) = 2rj"(secS)lA(o\ (2 . 3 5 ) 

4 . T I M E - T E M P E R A T U R E S U P E R P O S I T I O N P R I N C I P L E 

MATERIAL FUNCTIONS (RHEOLOGICAL PROPERTIES) TAKEN AT SEVERAL TEMPERATURES CAN B E 

BROUGHT TOGETHER ON A SINGLE MASTER CURVE. THIS SIMPLIFIES THE DESCRIPTION OF THE 

EFFECT OF TEMPERATURE AND IT M A K E S POSSIBLE TO PRESENT THE MATERIAL FUNCTION IN A 

MUCH BROADER RANGE OF TIME OR FREQUENCY THAN CAN EVER B E MEASURED AT A SINGLE 

TEMPERATURE. T H I S PRINCIPLE IS N A M E D Time-Temperature-Superpos
IS USEFUL FOR THE ANALYSIS OF NON-ISOTHERMAL FLOWS AS HAPPENS, FOR EXAMPLE, IN 

INDUSTRIAL MELT SPINNING. 

T H E LINEAR VISCOELASTIC BEHAVIOR OF A POLYMER MELT CAN B E DESCRIBED USING A MODEL 

M A D E OF N MAXWELL ELEMENTS IN PARALLEL. EACH OF THEM IS DEFINED BY THE RIGIDITY OF 

THE SPRING GJ AND THE RELAXATION TIME h WHICH IS THE RATIO BETWEEN THE VISCOSITY OF 

THE DASHPOT AND THE RIGIDITY OF THE SPRING (A.,. = t i , . /G , . ) . SUCH MODEL IS CALLED THE 

GENERALIZED MAXWELL MODEL AND THEIR x, AT A DIFFERENT TEMPERATURE T ARE RELATED TO 

THE REFERENCE TEMPERATURE T 0 : 

WHERE aT)s CALLED THE HORIZONTAL SHIFT FACTOR. T H E COEFFICIENTS G, ARE ALTERED BY A 

CHANGE IN TEMPERATURE BY: 

USING THE ABOVE TWO RELATIONSHIPS, THE RELAXATION MODULUS OF THE GENERALIZED 

MAXWELL FLUID IS: HfXQQA O 

XJTJ-a^fTJ ( 2 . 3 6 ) 

GJTJ-GJTJTp/T.p, (2 . 3 7 ) 
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G(t,T) = ̂ fAGi(T0)exp[-t/{^(T0)aT)} (2. 38) 

Defining Gr(t)=G(t,T)Top0/Tp and tr =t/a T • 

G(tr)^G,(T0)exP\-trfk,(T0)\ (2. 39) 

Thus, if Gr is plotted as a function of tr, the data taken at various temperatures 

should fall on the same master curve as those taken at the reference temperature 

T 0 . 

All linear viscoelastic properties obey a time-temperature superposition principle. It 

is found that the shift factor is given by: 

r\o(TJTp 

Since the ratio rop0 iTp has almost no change at ordinary temperature ranges. 

a (2. 41) 

Two types of exponential functions have been used for describing the temperature 

dependence of aT. The WLF equation (Hamed, 1988) holds in the range of 

temperatures Tg to Tg + 100 °C, where Tg is the glass transition temperature for 

the polymer. 

a =
 ^(T) =-C,(T-TJ 

T n0(T0) c°+(T-Tj' 
Tg < T < T g + 100°C (2.42) 
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WHERE C° =9UO/c°2 AND c°2 =51.6 + (TO -TG). 

FOR TEMPERATURES GREATER THAN T G + 1 0 0 ° C , THE ARRHENIUS-TYPE EQUATION (MAVRIDIS 

ET. AL., 1 9 9 2 ) IS USED: 

WHERE E H IS THE HORIZONTAL ACTIVATION ENERGY FOR FLOW. 

SIMILAR EQUATIONS TO 2 . 3 9 CAN BE OBTAINED FOR OTHER MATERIAL FUNCTIONS (DEALY, 

1 9 9 0 ) : 

WHERE G ^ A N D GR HAVE THE S A M E RELATIONSHIP TO THE STORAGE MODULUS G ' AND THE 

LOSS MODULUS G " AS GR HAS TO G . 

IF THE RATIO 7 > 0 / 7 P VARIES LITTLE WITH TEMPERATURE, SUPERPOSITION CAN OFTEN B E 

ACCOMPLISHED BY PLOTTING: G(T) VERSUS t LAT, G ' ( © ) VERSUS &AT, G"(<O) VERSUS &AT, 

r\'(&)/AT VERSUS COAR, r\"((O)/AT VERSUS COAR, J(T) VERSUS tLAT. 

5 . V I S C O S I T Y M O D E L S 

EQUATIONS FOR MODELING VISCOSITY FUNCTIONS HAVE BEEN PROPOSED BY SEVERAL AUTHORS, 

AND ARE SUMMARIZED IN DARBY ( 1 9 7 6 ) AND IN DEALY AND WINSBURN ( 1 9 9 0 ) : 

T > TG + 1 0 0 ° C ( 2 . 4 3 ) 

( 2 . 4 4 ) 

GR (aT m) = aT c o J GR (tr) cos[( aTa)(tr )}itr (2 . 4 5 ) 
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N = MM Ostwald-de Waele (power law) model, (2.46) 

Carreau model, 

Ellis model (2. 47) 

(2. 48) 

I = NT 

7 = % 

,0{I + O.6(ARR\] 

Yasuda model, 

Cross model 

Bueche-Harding model, 

(2. 50) 

(2. 51) 

(2. 49) 

where: N describes the degree of deviation from Newtonian behavior; M, which 
has units of Pa.sn, is called the CONSISTENCY; R\0 is the zero shear viscosity; x1 / 2 is 
the value of xyx when R\= R\012; A is the reciprocal of the shear rate at the onset of 
the shear thinning behavior, the parameter "a" indicates how fast the viscosity 
decreases with shear rate. 

The power law model introduces an error in the very low shear rate region by not 
assuming that n = 1. Also the slope of the viscosity curve in the power law region 
is not exactly a constant, since the flow index N decreases with increasing shear 
rate. Thus the power law equation holds exactly only for limited ranges of shear 
rate, for a given value of N. On the other hand, the Ellis model predicts a 
Newtonian plateau at very low shear rate. 

6. Zero-shear Viscosity 

Until recent years no has been estimated by relations of the type rj0 =kMw

a. Such 
relation requires viscosity measurements at shear rates Y«o.oi1/sec. Such long 
time measurements can promote chemical changes in the melted polymer. 
Another common way to estimate R\0 was from experimental creep data. Since J(t) 
= J g + Je(t) + t/rio at very long times, J(t) = VR\0, so r|0 = At / AJ(t).. 
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Recently, Bonilla and Mier (2000) predicted the zero shear viscosity for 

polyproylene resins also from experimental creep data, but with the difference that 

only 0.1 seconds of creep data are enough to make the predictions for high MFI PP 

resins (20 < MFI < 40) applying a constant shear stress of 300 Pa. The estimation 

method is known as the McLaurin Series Method (MSM) since it is based on the 

McLaurin series expansion. The MSM was applied to the Jeffreys (1929) model: 

2 3 \ D I J 

a i A . 2 

3 - j + 2 a 2 ^ " 2 

A. 2 

V a 2 ^ 2 J 

(2. 52) 

(2. 53) 

(2. 54) 

where the constants a-i, a 2 and a 3 known fitting parameters of a third order 

minimum square regression polynomial for experimental data of creep J(t) versus 

time (for at least 0.1 seconds). 

C. Constitutive Equations 

There is no usable constitutive equation that describes quantitatively all the flow 

phenomena of polymer melts. In the absence of it, scientists and engineers use 

equations that predict only the flow behavior that is important to the particular 

problem. All constitutive equations for polymer melts are special cases of a, still 

unknown, very general constitutive equation (Goddard, 1967): 

t(x,t) = - JG/t-t')fdf - - \ \ G n ( t - t ' , t - o f f ' . f " + f " « f - ( 2 . 55) 
—'X) —CO—oo 
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where G i , G n are characteristic materia! functions; t', t", f " are integration 

variables, and T is the present time; a> is the vorticity tensor (which its components 

can be found in Bird, 1977); f is the corotating rate of strain tensor, which can be 

expanded in a Talylor series about t' = t (Bird, 1977): 

f (t,f) = y(0 -(t- A%- + {o • V y } + I ( { G , . y } - {y . «,}) 
AT 2 

+ ... (2. 56) 

1 . Criminale - Ericksen - Filbey Equation 
Equation 2.55 is not a practical form to represent the stress tensor. However, by 

keeping only the first two terms of the Taylor series; for STEADY SHEAR FLOWS, the 

Criminale-Ericksen-Filbey (CEF) consitutive equation is obtained (Criminale, 

Ericksen, and Filbey, 1958; in Bird, 1987): 

(2. 57) 

where rj,WI,W2

 a r e t n e viscosity, first, and second normal stress difference 

coefficients, respectively. They are all functions of the magnitude of the rate of 

strain / = ^ 1 / 2 ( y : y ) . 

2. Doi - Edwards Model 
Doi and Edwards proposed a constitutive equation based on the concept of 

entanglement (reptation) described by de Gennes (1971). They assumed that 

surrounding molecules form mesh of obstacles through which a polymer chain 

cannot pass. The chain is thus confined to a tube-like region. When the material 

is deformed, the mesh and the tube deform affmely, but the strand can slip or 

retract within the tube, and returns quickly to its equilibrium length: the orientation 
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of the strand, however, remains that of the deformed tube. From these 
assumptions, they derived a constitutive equation: 

(2. 58) 

where the memory function is given by: 

M 
T-T 

(2. 59) 

and the relaxation moduli and times (Gi and X) are determined by the reptational 
diffusion mpdel: 

%G 
2.-2 

71 I 
G = VKT 

\ 
~ I 2 

(2. 60) 

(2. 61) 

(2. 62) 

Ao is the longest relaxation time and v is the number of entanglements per unit 
volume. The non-linear strain measure Q is a "universal tensor" dependent only 
upon the deformation history and not upon material properties. 

3. Giesekus Model 
The Giesekus model is based on a kinetic theory of closely packed polymer chains 
and on a series of simplifications leading to an equation for the extra stress that 
contains no explicit integrals over the configurations of individual molecules 
(Giesekus, 1982). The extra stress for the Giesekus model is given by 
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(2. 63) 

where a is an adjustable ("fitting") parameter. 

4 . J e f f r e y s M o d e l 

8t y (2. 64) 

This equation contains two time constants Xi and la (the "relaxation time" and "the 

retardation time", respectively). It was proposed for the study of wave propagation 

in the earth's mantle. 

5. J o h n s o n - S e g a l m a n M o d e l 

The Johnson-Segalman model is given by 

The first two terms constitute the Gordon-Schowalter nonaffine convected 

derivative with a being a slip parameter. This parameter is a single nonlinear 

parameter of the model that is not obtained from the linear spectrum. 

The model violates the experimentally observed Lodge-Meissner relation which 

relates the first normal stress difference to the shear stress after a step shear strain 

of magnitude y , by the following equation 

(2. 65) 

r — r 

(2. 66) 
r xy 
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It is know that the J-S equation shows singularity in the steady state viscosity in 

uniaxial extension. These deficiencies limit the usefulness of this model. (Larson, 

1987). 

6. K a y e - B K Z M o d e l 

The K-BKZ equation was proposed by Bernstein, Kearsley, and Zapas (Bernstein 

et al., 1964). A. Kaye (1966) independently developed the same concept. 

x(t) -J dV(t-t',I„I2) 
+ 

dV(t-t',Iltl2) 
it', (2. 67) 

where V is an scalar function of the arguments indicated; l i , l 2 are the first and 

second scalar invariants of the Finger strain tensor, respectively. Very little work 

has been done on describing material functions or solving flow problems with the 

K-BKZ equation in its general form (equation 2.67). Instead, it is common to 

introduce a product of t ime-dependent and strain-dependent factors as follows: 

M(t-fj mi,J2) ew(ilti3) [0] 
Mi 

(2. 68) 

where M(t-t') is the linear viscoelastic memory function and W is a potential 

function that must be determined experimentally by studying large and rapid 

deformations. Depending on the assumptions, this model can lead to the Rouse-

Zimm model for dilute solutions, the Lodge network model, the Tanner-Simmons 

network rupture model, the Doi-Edwards model, the Wagner model or the 

Papanastasiou model. 

7. L a r s o n M o d e l 

The separable differential model proposed by Larson is given by 
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rm + ——^:t(r + Gl)+—T = Gf 
m 3G2 v A 

(2. 69) 

where / is the unit tensor. 

The first two terms represent a nonaffine convected derivative, a describes the 

strain softening 1 character of the material, and causes equation 2.69 to vary 

between the upper-convected Maxwell model and an approximation to the Doi-

Edwards model for a values of 0 and 0.6, respectively. 

8 . M a r r u c i ( A c i e r n o ) M o d e l 

The network model proposed by Acierno (1976), more commonly known as the 

Marruci model, takes the form 

J-4 
1 

(1) 
1 

+ — r 

xA, 
x14Gy (2. 70) 

where x satisfies the evolution equation 

dt X A 

' trr ^ 
2Gx 

(2. 71) 

The scalar dimensionless quantity x can be considered as a structural parameter 

that represents the degree of connectivity of the macromolecular network with 

respect to that at equilibrium. x=1 corresponds to the equilibrium structure and x<1 

describes the deviation of the existing structure from equilibrium. The 1.4 

1 The term strain-softening here refers to the behavior of the transient viscosities after the start-up 
of flow. It means that for strain rates in the nonlinear regime, the visocisty during the start-up falls 
below the linear viscoelastic (low strain rate) response. On the other hand, strain-hardening, means 
that the viscosity rises above the linear viscoelastic response (McLeish, 1998). 
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EXPONENT IN THE ABOVE EQUATIONS IS EMPIRICAL AND ORIGINATED FROM THE DEPENDENCE 

OF SHEAR VISCOSITY ON THE 3 . 4 POWER OF THE POLYMER CONCENTRATION IN HIGH MOLECULAR 

WEIGHT CONCENTRATED POLYMER SOLUTIONS OR MELTS (LARSON, 1 9 8 7 ) . 

9 . P H A N T H I E N - T A N N E R M O D E L 

T H E MULTI-MODE PHAN-THIEN AND TANNER ( P T T ) MODEL ARISES FROM A MOLECULAR 

NETWORK THEORY. T H E P T T MODEL IS EXPRESSED BY: 

R = I > , ( 2 . 7 2 ) 

Z(trt, )R, + 4 R J ( 1 ) + | Xt {y • rt + R, • y)88 - 1 , Y ( 2 - 7 3 ) 

Z(trr,) = E X P F - ^ F R T I j ( 2 . 7 4 ) 

WHERE THE SHEAR-FREE PARAMETER a IS OBTAINED FROM ELONGATIONAL VISCOSITY DATA, THE 

RELAXATION SPECTRUM G I = r\\ Ih IS OBTAINED FROM LINEAR VISCOELASTIC MEASUREMENTS, 

AND THE SHEAR FLOW PARAMETER % IS OBTAINED BY FITTING THE VISCOSITY CURVE WITH THE 

EQUATION „ (V ) = Y n< Z(trz,)\s THE RATE OF CREATION AND DESTRUCTION OF 

T R W ( 2 - S W ) 2 

JUNCTIONS. FURTHER EXPLANATIONS OF THE CONSTITUTIVE EQUATION WILL B E COVERED IN 

CHAPTERS V I I I AND I X . 

1 0 . P O M - P O M M O D E L 

M C L E I S H AND LARSON ( 1 9 9 8 ) RECENTLY PROPOSED THE " P O M - P O M " MODEL TO DESCRIBE 

THE COMPLEX RHEOLOGY OF BRANCHED POLYMERS. A REFINED MODEL WITH A MOLECULAR 

DRAG-STRAIN COUPLING HAS ALSO BEEN PROPOSED (BLACKWELL, 2 0 0 0 ) TO SMOOTH THE SHARP 

TRANSITIONS IN THE EXTENSIONAL VISCOSITY AT THE M A X I M U M STRETCH CONDITION. 

VERBEETEN ( 2 0 0 1 ) PROPOSED AN EXTENSION TO THE MODEL TO IMPROVE THE PERFORMANCE 

OF THE ORIGINAL MODEL. T H E ORIGINAL MODEL LIMITATIONS WERE: 
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- U n b o u n d e d o r i e n t a t i o n f o r sA  > 1 . 
Qb

- N o n - s m o o t h e l o n g a t i o n a l v i s c o s i t y d u e t o m a x i m u m s t r e t c h c o n d i t i o n . 

- S e c o n d n o r m a l s t r e s s c o e f f i c i e n t e q u a l t o z e r o . 

A c c o r d i n g t o V e r b e e t e n ( 2 0 0 1 ) , t h e e x t e n d e d P o m - P o m ( X P P ) m o d e l s o l v e s 

t h e s e l i m i t a t i o n s , b y e l i m i n a t i n g t h e m a x i m u m s t r e t c h c o n d i t i o n a n d m o d i f y i n g t h e 

o r i e n t a t i o n . T h e X P P m o d e l i s w r i t t e n a s : 

r = G0{3A2S-l) ( 2 . 7 5 ) 

w h e r e S i s t h e o r i e n t a t i o n t e n s o r a n d i t s a t i s f i e s t h e e v o l u t i o n o f o r i e n t a t i o n 

e q u a t i o n : 

Sm + 2\y: S}S + 3aA*S • S + (l - a - 3aA4tr{S • S))s - ^-^-1 = 0 ( 2 . 7 6 ) 

? , o b i s t h e r e l a x a t i o n t i m e o f t h e b a c k b o n e t u b e o r i e n t a t i o n , a i s a f i t t i n g p a r a m e t e r 

r e l a t e d t o t h e a m o u n t o f a n i s o t r o p y o f t h e m a t e r i a l . A i s t h e s t r e t c h a n d s a t i s f i e s t h e 

e v o l u t i o n o f s t r e t c h e q u a t i o n : 

k = A\y:S]-~{A-\) ( 2 . 7 7 ) 

X. 

is i s t h e s t r e t c h r e l a x a t i o n t i m e , a n d i t i s g i v e n b y 

K = A ) S
e ~ " ( A _ 1 ) ( 2 - 7 8 ) 

w h e r e v i s a m e a s u r e o f t h e i n f l u e n c e o f t h e s u r r o u n d i n g p o l y m e r c h a i n s o n t h e 

b a c k b o n e t u b e s t r e t c h . I t i s a p p r o x i m a t e d b y 

2 6 



V = ~ (2.79) 
Q 

where Q is the number of dangling arms in the 'pom-pom" molecule. This is taken 
as a fitting parameter too. 

Further explanation of this model will be covered in chapter X. 

11. Wagner Model 
Wagner (1976) is a special case of the K-BKZ constitutive equation (equation 2.58) 
with: 

= QXV(-P^CDL+(\-A)I2-^), (2. 80) 

DW(IJJ2) 
y 2 = 0, (2.81) 

However, the potential function W has been expressed in a variety of expressions, 
for SHEAR FLOW, equation 2.80 turns into: 

DW(IJ,I2) Y^1 = exp(-p^) for < 13 (2. 82) 

Wagner (1976) also used a two-exponential function to improve the predictions: 

8 W U ^ L 2 ) = (C) exp(-p; J ^ ) + (/ - c) exp(-p2 for ̂ > 13 (2. 83) 

And for ELONGATIONAL FLOW, the damping function is: 
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DW(ILJ2) E X P ( - P i / A ( 2 ( 'E-ES + EJ£S) + (L-A)(2EES + E —2ZS -3) ( 2 . 8 4 ) 

T H E POTENTIAL FUNCTION IS CALLED THE DAMPING FUNCTION, SINCE IT DESCRIBES T

DIMINISHING OF THE FLUID MEMORY BY THE VARIOUS KINEMATIC EVENTS OF THE PAST. 

WAGNER MODEL CAN B E RESTATED IN TERMS OF THE FINGER TENSOR AS FOLLOWS: 

WHERE M(T-T') IS THE LINEAR VISCOELASTIC MEMORY FUNCTION, L-i AND L 2 ARE THE FIRST AND

SECOND INVARIANTS OF THE FINGER TENSOR B, 5 IS THE UNIT TENSOR, AND / * ( / , , / 2 ) IS THE

DAMPING FUNCTION (H(IXJ2)< 1 ) , AND REPRESENTS THE PROBABILITY OF AN ENTANGLEMENT

SURVIVING AT A GIVEN STRAIN. H(LY,I2) TENDS TO ONE FOR SMALL DEFORMATIONS RESULTING IN

THE LODGE RUBBER-LIKE BEHAVIOR. T H E CRITICAL POINT IN THE RUBBERLIKE-LIQUID THEORY IS

THE ASSUMPTION THAT THE FLOW HAS NO EFFECT ON THE RATE OF FORMATION AND DISSOLUTION

OF NETWORK JUNCTIONS (ENTANGLEMENTS). 

1 2 . W H I T E - M E T Z N E R M O D E L 

T H E WHITE-METZNER MODEL HAS THE ADVANTAGE OF BEING RELATIVELY SIMPLE AND STILL

GIVING REASONABLE SHAPES FOR THE SHEAR-RATE DEPENDENT VISCOSITY AND FIRST NORMAL

STRESS COEFFICIENT AND CAN BE USED TO DESCRIBE FAST TIME DEPENDENT MOTIONS. IN

STEADY SHEAR FREE FLOWS THE MODEL GIVES INFINITE ELONGATIONAL VISCOSITIES; THE EXACT

VALUE OF ELONGATION RATE AT WHICH THESE VISCOSITIES B E C O M E INFINITE DEPENDS ON THE

BEHAVIOR OF SHEAR VISCOSITY. T H E CONSTITUTIVE EQUATION IS GIVEN BY 

(2 . 8 5 ) 

( 2 . 8 6 ) 
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WHERE A IS A RELAXATION TIME THAT DEPENDS ON THE DEFORMATION RATE Y . O N E 

SUGGESTED FORM OF THIS DEPENDENCE (LARSON, 1 9 8 7 ) IS 

A = x 
, , t • V ( 2 - 8 7 ) 

D. Introduction to Fractals Theory 

CHAOS SCIENCE USES A DIFFERENT GEOMETRY CALLED FRACTAL GEOMETRY. IT IS PROVIDING US 

WITH A NEW PERSPECTIVE TO VIEW THE WORLD. FRACTAL GEOMETRY IS A NEW LANGUAGE USED 

TO DESCRIBE, MODEL AND ANALYZE COMPLEX FORMS FOUND IN NATURE. 

FRACTAL GEOMETRY IS A MATHEMATICAL TOOL FOR DEALING WITH COMPLEX SYSTEMS THAT HAVE 

NO CHARACTERISTIC LENGTH SCALE. A WELL KNOW EXAMPLE IS THE SHAPE OF A COASTLINE. 

W H E N W E SEE TWO PICTURES OF A COASTLINE ON TWO DIFFERENT SCALES, WITH 1 C M 

CORRESPONDING FOR EXAMPLE TO 0 .1 K M OR 1 0 K M , W E CANNOT TELL WHICH SCALE BELONGS 

TO WHICH PICTURE, BOTH LOOK THE S A M E . T H I S M E A N S THAT THE COASTLINE IS SCALE 

INVARIANT OR, EQUIVALENTLY, HAS NO CHARACTERISTIC LENGTH SCALE (ARMIN, 1 9 9 4 ) . OTHER 

EXAMPLES IN NATURE ARE RIVERS, MOUNTAINS, CLOUDS, D N A , AND, OF COURSE, POLYMERS. 

SCALE INVARIANT (NO CHARACTERISTIC LENGTH SCALE) SYSTEMS ARE USUALLY CHARACTERIZED 

BY FRACTAL (NONINTEGER) DIMENSIONS. 

A C O M M O N WAY TO MEASURE THE FRACTAL DIMENSION OF AN OBJECT IS THE BOX COUNTING 

METHOD. T H I S METHOD CONSISTS IN LAY OVER THE OBJECT TO B E MEASURE A GRID OF LATTICE 

CONSTANT (BOX SIZE) E. T H E NUMBER OF BOXES, N B ( E ) , WHICH COVER ANY PART OF THE 

OBJECT (THE OCCUPIED OR INTERSECTED BOXES), ARE COUNTED AND EACH DATA COUPLE 

NB(E) , S IS TABULATED. T H E S A M E PROCEDURE IS REPEATED WITH A SET OF SUCCESSIVELY 

SMALLER E. LOG [ N B ( S ) ] IS PLOTTED VERSUS LOG [1 /S] AND THE SLOPE OF THE RESULTING 
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straight line (if such indeed exists) is taken as the fractal dimension of the object. If 

the resulting plot is not a straight line, or if the slope of the resulting straight line is 

an integer, then the object is not a fractal (Rothschild, 1998). 

Fractals objects could be classified as deterministic and random fractals. 

Deterministic fractals are generated iteratively in a deterministic way, while random 

fractals are generated using a stochastic process. Although fractal structures in 

nature are random, it is useful to study deterministic fractals where the fractal 

properties can be determined exactly. By studying deterministic fractals one can 

gain also insight into the fractal properties of random fractals, which usually cannot 

be treated rigorously (Armin, 1994) 

The simple fractal model is the random walk. Imagine a walker on a square lattice. 

In one unit of time, the walker advances one step of length a to a randomly chosen 

nearest neighbor site. The path that the walker follows after N number of steps is 

called a random walk. The random walk model is very useful in science; its most 

important use is to simulate the Brownian motion phenomena. Another important 

model is the self-avoiding walk. It is very similar to a random walk, but in this 

model, the walker can not return to a site in which he has already been. 

In the past years, engineering empiricism has given way to obtain systematic 

analytic techniques in the study of the kinetics of transport in disordered media; 

however, these have been mainly based on different versions of the theory of 

random walks. Therefore, an understanding of the kinetics of transport in fractal 

and disordered media is almost necessarily phrased in terms of the random walk 

model (Armin, 1994). 

This model is the simplest way to model a polymer chain, which could be 

considered as a fractal object. However, actual polymer chains have steric 

interaction that avoids monomers from placing on the top of each other. Random 

walk and self-avoiding walk models describe a polymer in a solvent. It is assumed 
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that polymer chains are made of N statistical units (some monomers units) which 

are randomly oriented with respect to each other. Random walk describes a linear 

chain where no interactions are present between monomers. Self-avoiding walk 

describes an interaction between monomers. Further information about fractals 

theory will be covered in chapter XII . 
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CHAPTER III. Experimental Techniques 

This chapter presents the experimental techniques used for the characterization of 
eight polypropylene resins. The resins were tested for their rheological response 
under frequency sweeps, capillary and creep and recovery compliance. Standard 
well-documented and proven procedures (Bonilla, 1996; Aguirre, 2000; Mier, 2000) 
were followed in each rheological test. 

A. Materials 

Four pair of isotactic and syndiotactic polypropylene resins were used. Resins with 
the same melt flow index (MFI) were selected in order to observe differences in 
their rheological response. A small amount (approximately 0.1% wt) of 2-6 di-tert-
butyl-p-cresol, BHT, (as stabilizer) was added to all samples. Table 111.1 shows the 
description of the eight polypropylene resins. 

Table 111.1. Polypropylene resins used in the research. 
Resin ID MFI XS Type Lot 

Finaplas 
1251 A 2 4 Syndiotactic HB-77239 

Finaplas 
1471 B 4 4 Syndiotactic HB-77361 

Finaplas 
1571 C 12 5 Syndiotactic HB-77141 

Finaplas 
1751 D 20 6 Syndiotactic Lot 68459 

Atofina 
3276 E 2 2.5 Isotactic Lot 77081 

Atofina 
3462 F 4 1.4 Isotactic Lot 69342 

Atofina 
3652 G 12 2 Isotactic HB-78128 

Atofina 
3761 H 18 2 Isotactic Lot 71269 
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B. Standard Quality Control Techniques 

The melt flow index (MFI), the molecular weight distribution (MWD), the percentage 
of xylene solubles (XS), the differential scanning calorimetry (DSC), and the 
synthesis' effectiveness by nuclear magnetic resonance (NMR) are the standard 
quality control attributes commonly used for PP resins. 

1. Melt Flow Index 
The melt flow index measurements (ASTM D1238) were carried out in a Tinius 
Olsen Model MP600 at 230°C. The equipment has a die diameter of 0.0825 
inches, a die length of 0.315 inches, a barrel diameter of 0.375 inches, and a 180° 
die entrance angle. A constant load of 2.16 kg is applied to the plunger and the 
amount (in grams) of material flowing during a given time is recorded. The MFI is 
defined as the amount (in grams) of material flowing for 10 minutes. 

The typical experimental error of a MFI study can be + 10%; so duplicates samples 
are at least required and an average value is reported. A MFI measurement 
represents a single shear rate point (approximately 10 sec"1) in the shear viscosity 
curve, if elastic and end effects are not present. 

2. Percentage of Xylene Solubles 
A Soxthlet extractor is used to extract material soluble in xylene. The xylene 
soluble portion of the resin is extracted and reported as a weight percentage in the 
sample. This portion is related to the low molecular weight and atactic species. 

3. Molecular Weight Distribution 
The molecular weight distribution (MWD) curves were determined using a Waters 
Model 150C Gel Permeation Chromatograph (GPC). The tests were performed at 
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135°C, with tricloro-benzene as the mobile phase. The system uses three columns 
in series: two Shodex 806 m/sec columns and a Waters Styragel HT column. The 
three columns used a styrene-divinyl benzene packing gel. A set of narrow 
molecular weight PS standards with Mw ranging from 8x106 to 520x106 were used 
for calibration. 

4. Nuclear magnetic Resonance 

NMR can be used to determine the isotactic or syndiotactic nature of polymers. 
The effectiveness of synthesis of an isotactic or syndiotactic polypropylene is 
attained by doing a NMR test on the xylene soluble fraction extracted from the 
polymer sample. Atactic chains and low molecular weight isotactic chains are 
soluble in some solvents and can be washed out of a polymer sample. 

In an NMR study the soluble material is extracted from the samples in two steps. 

1) Xylene soluble analysis: In this test the polymer is dissolved completely in 
boiling xylene. The solution is allowed to cool slowly overnight (in a normal 
xylene solubles procedure the solution is placed in an ice bath to speed up the 
crystallization). The solution is then filtered by gravity through a coarse filter 
paper and the filter cake is washed with cold xylene. The filter cake is the 
xylene insoluble fraction. 

2) Heptane extraction: The xylene insoluble fraction is granulated, placed in an 
extraction thimble and extracted with heptane in a Soxtec apparatus. The 
procedure places the extraction thimble in boiling heptane for one hour, then it 
is raised and rinsed with refluxed heptane for one hour. After drying it in a 
vacuum oven the sample is ready for NMR analysis 

To test the effectiveness of the xylene soluble extraction a second xylene soluble 
procedure can be performed on the sample before heptane extraction. This is 
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done because there could be some trapping of soluble material in the crystalline 
(insoluble) fraction during recrystallization. 

5. Differential Scanning Calorimetry 
A differential scanning calorimeter (DSC) has the ability to program a heating cycle 
and precisely control the cooling cycle to impose a thermal history upon a sample. 
A control of the thermal history is a requirement for the complete characterization 
of semi crystalline polymers. The melting profile of a polymer during heating can 
be different to the crystallization profile during cooling. Thermal history can have a 
major effect on the properties of a given polymer. Different thermal histories can 
produce a material with a different melting profile. To ensure an accurate DSC 
analysis (melting or crystallization points and latent heats) all samples received the 
same thermal history. 

In the most popular DSC design, two pans sit on a pair of identically positioned 
platforms connected to a furnace by a common heat flow path. In one pan, the 
polymer sample is placed, while the other one (the reference pan) is left empty. 
The furnace is turn on at a specific heating rate, usually something like 10 °C per 
minute. The equipment is designed to assure that the heating rate stays exactly the 
same throughout the experiment and that the two separate pans heat at the same 
rate as each other. The polymer sample in one pan implies that there is extra 
material, so it will take more heat to keep the temperature of the sample pan 
increasing at the same rate as the reference pan. This difference is what is 
measured in a DSC experiment. 

After a certain temperature the heat will be absorbed by the sample, which means 
a change (increase) in its heat capacity. This happens because the polymer has 
just gone through the glass transition. Above the glass transition, the polymers 
have a lot of mobility. They twist and struggle, and never stay in one position for 
very long. When they reach the right temperature, they will have gained enough 
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energy to move into very ordered arrangements, which are called crystals. When 
polymers fall into these crystalline arrangements, they give off heat. This could be 
seen as a big peak in the plot of heat flow versus temperature. 

After the crystallization, if the heating continues, the polymer will reach another 
thermal transition, melting. When polymer's melting temperature, or Tm, is reached, 
those polymer crystals begin to fall apart, that is they melt. The chains come out of 
their ordered arrangements, and begin to move around freely. There is a latent 
heat of melting as well as a latent heat of crystallization. When the polymer crystals 
melt, they must absorb heat in order to do so. Remember melting is a first order 
transition, this means that when you reach the melting temperature, the polymer's 
temperature won't rise until all the crystals have melted. This also means that the 
furnace is going to have to put additional heat into the polymer in order to melt both 
the crystals and keep the temperature rising at the same rate as that of the 
reference pan. This extra heat flow during melting shows up as a large dip in the 
DSC plot as heat is absorbed by the polymer. The heat of melting is measured by 
calculating the area of this dip. 

Reviewing the DSC process, we saw a step in the plot when the polymer was 
heated past its glass transition temperature. Then we saw a big peak when the 
polymer reached its crystallization temperature. Then finally we saw a big dip when 
the polymer reached its melting temperature. Putting all together, a whole plot will 
often look something like Figure 111.1. 
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Figure 111.1. Schematic DSC plot. 

It is worth to mention that crystallization peak and the melting dip will only show up 
for polymers that can form crystals. Completely amorphous polymers won't show 
any crystallization, or any melting either. But polymers with both crystalline and 
amorphous domains, will present all the features shown in Figure 111.1. 

DSC can also tell us how much of a polymer is crystalline and how much is 
amorphous. The percentage of crystalline polymer is calculated by (Dealy, 1990): 

%crys=Hm

 t

H c xlOO (3- 1) 

where Hm, H c are the heat absorbed during the melting and the heat give off in 
crystallization respectively. H*m is the latent heat of melting of the polymer. 
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C. Rheological Characterization 

1. Sample Preparation 
A specific sample preparation technique was used for two main purposes: to have 
homogeneous, bubble free and chemically stable samples; and to reduce 
variability in the results. Standard well-documented procedures (Aguirre, 2000; 
Mier, 2000) were followed in sample preparation. The samples were stabilized with 
1000 ppm (0.1% weight) of 2-6 di-tert-butyl-p-cresol (BHT) and either used directly 
for testing in the capillary rheometer or formed into 1 mm thick, 25 mm diameter 
disks for oscillatory, and creep & recovery testing. 

2. Testing Conditions 
It is well known that the testing conditions are crucial in getting reliable linear 
viscoelastic information. If testing temperature is too low, the material can be very 
stiff and trimming of the sample to prepare the specimen for testing could be 
difficult. If the stress is too high, centrifugal forces might expel the material from 
between the plates. If strain is too high, stress overshoot can occur, and no 
measurement can be done. If the testing time is too long, thermal degradation 
might occur. Therefore, it was determined to use proven testing conditions (Mier, 
2000). 

3. Testing Equipment 
The equipment used for rheological tests is presented in Table III.2. More specific 
information about the equipment as well as their procedures, can be found in 
Appendix C. 
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Table III.2. Equipment used for the rheological characterization. 
Test Type of 
Equipment Make Model 

Frequency 
Sweeps Strain Rheometer Rheometrics RAA 

Shear and 
Elongational 

Viscosity 
Capillary Rheometry Rosand RH7-2 

Creep and 
Recovery 

Controlled Stress 
Rheometer Rheometrics RS5000 

4. Oscillatory Frequency Sweeps 

In a small amplitude oscillatory shear experiment, a thin sample of material is 
subjected to a simple shearing deformation such that the imposed shear strain is: 

/(0 = rosin(»0 (3.2) 

where y0

 i s t n e s t r a i n amplitude and a> is the frequency (rad/sec), both defined by 

the experimenter. The imposed shear rate is then: 

f{t) = y06> cos(tfrf) = f0 cos(tfrf), (3.3) 

where fa is the shear rate amplitude. If ya is sufficiently small, the stress can be 

calculated substituting equation 3.1 into a(t) = G d *y(t) , resulting in a sinusoidal 

stress: 

o-(t) = o-asm(a)t + S), (3.4) 

where Gd = cj yjs t n e amplitude ratio, er0 is the stress amplitude, and S\s a 

phase shift, which is called the mechanical loss angle. 
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cos(®t)sin(b'), 

 Gd = ̂  (3.9) 
The amplitude ratio G d and the loss angle (8) are functions of the frequency, but 

are independent of the strain amplitude as long as ya is sufficiently small. A 

relation that has proven to be valid for a number of materials is (Booij and Thoone, 

1982; in Dealy, 1992): 

J 2 
d(lnGd ) 
d(lna>) (3. 5) 

Knowing that a 0 = y0Gd and that sin((ot + 8) = sin(®t)cos(h) + 
equation 3.3 can be restated as: 

r(t) = y0[G'(o))sm(at) + G"(a))cos(<i>t)], (3. 6) 

where G'(co) (the storage modulus) and G"(co) (the loss modulus) are given by: 

G' ((») = Gd cos(<5) 

G"((o) = Gdsm(8) 
(3. 7) 

(3. 8) 

if G d = a J y0 then: 

V(G»)2 + ( G * » ) 2 = 4G]Cos25 + G]Sin25 = Gd4c.os28 + Sin2 8 =
y 
/ o 

tan( 8(<a)) = G"(co) / G'(co) (3. 10) 

if tan( 8(co)) = G"(co) / G'(a>) then G"(co) and G'(co) are the sides of a right triangle 

that can be thought as the real (G'(co)) and imaginary (G"(co)) components of a 

complex modulus: 
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G*(e>) = G'(a>) + iG"(a)) (3.11) 
Knowing that rocr0 = co/ 0G d = y0Ga, n = <70ly0 = Gdlco, and that 

sin(e# + S) = sin((ot) cos(<5) + cos(ftrf) sin(£), equation 3.3 can be restated as: 

^(0 = to Vf' (<») sin(fitf) + 7' 0») cos(<aO]. (3. 12) 

where r\'{(a) (the dynamic viscosity) and X\"{G>) are given by: 

i7'(®) = (Grf/a»)sin(<y), (3.13) 

rf'(a) = (Gd/a>)cos(S). (3.14) 

From here, it can be obtained: 

G d = < T 0 / r 0 = e > J m a , ) ) 2 + (TT(«>))2 (3.15) 

tm(S(a>)) = rf(.(D)lrf{a>) (3. 16) 

r\'(<a) and ri"(co) can also be thought as the real and imaginary components of a 
complex viscosity, which according to the empirical Cox-Mertz rule is related to the 
steady shear viscosity: 

Tj*((D) = if(a)-iTf\a>). (3.17) 

Another important oscillatory parameter is the point at which the storage and loss 
modulus are equal, which is known as the cross-over point. The cross-over point 
G c is related to the polydispersity index of the polymers. 

In conclusion, the results of an oscillatory shear experiment can be presented as: 
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a) Plots of G'(co) and G"(©) versus frequency by means of equations 3.7 and 3.8. 

b) Plots of ri'(co) and r)"(o) versus frequency by means of equations 3.13 and 3.14. 

c) Plots of the phase shift 8 versus frequency by means of equation 3.5. 

5. Creep and Recovery Compliance 
In a creep and recovery test, the polymer melt is subjected to a sudden shear 
stress of constant magnitude, which is held for a period of time, while the resulting 
deformation (called creep compliance J(t) when the deformation is divided by the 
imposed stress) is monitored as a function of time. After the steady state 
deformation is reached at a time TOT the shear stress ceases (rD = 0 ) and the 

material recoils in a direction opposite to that of the original applied force. This 

recoil, when divided by the initial stress is known as the elastic recovery or 

recovery compliance Jr(t). The amount of recovered shear strain is a function of 

time *0and of time (f - TA) that has elapsed since the cessation of the applied shear 

stress. 

YR(T-TO) = Y(TO)-Y(0\ t>to (3.18) 

If the stress is removed after the steady state has been achieved, then the 

recovery strain is no longer a function of T0. If TJS taken as TA= 0; i.e. the 

beginning of the recovery test: 

r,(0 = KO)-KO (3. 19) 

As mentioned above, the creep and the recovery strains are divided by the applied 
stress, the result is called creep and recovery compliance and is the result of 
several modes of deformation: 
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j(t)=m=Jg+jeit)+i_ (creep compliance) (3.20) 

Jr{t) = (recovery compliance) (3. 21) 

where J g is the instantaneous or glassy compliance (or glassy deformation if 

multiplied by stress), Je(t) is the retarded elastic compliance [ Je( t ) = Jr( 0 ) - Jr( t 

)), where Jr( 0 ) is the compliance at the time the stress ceases ta], Jr( t ) is the 

recoverable compliance at any time after the stress ceased, and Je° is the steady 

state recoverable compliance rt =jr(t->oo). 

6. Shear Viscosity by Capillary Rheometer 
The capillary rheometer consists of a small tube (die) through which melt is forced 
to flow by means of a piston moving at a fixed speed. The instrument measures 
the pressure drop across the die (AP) (some capillary rheometers measures the 
load Fp and obtain the driving pressure (Pd) by Pd = F p / A, where A is the 
transversal area of the barrel) over a range of piston velocities. Capillary 
rheometers are used to determine the viscosity in the shear rate range of 5 to 1000 
1/s using dies with different L/D and with typical diameters between 0.5 mm and 
1.5 mm, although very wide capillaries can be used. 

To calculate the shear viscosity, it is necessary to know the wall shear stress and the 
wall shear rate. The wall shear stress is related to the pressure drop by: 

AP (3. 22) 
2(L/R + e) 
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where L and R are the capillary die length and radius, respectively; and e is the 
Bagley (1957) correction factor. Bagley measured the pressure drop at various 
values of the flow rate: 

Q = u - 7 t ( R j (3. 23) 

(where o is the piston velocity) using a variety of capillaries having different lengths 
but the same diameter. For each value of the apparent wall shear rate: 

Bagley plotted the driving pressure (Pd) versus L/R and drew a straight line through 
the points and by extrapolating the lines to the Pd = 0 axes, the END CORRECTION 

factor is obtained. The end correction factor "e" is defined as the negative of the 
value of L/R at the point of interception. It represents the L/R of the capillary for 
which fully developed flow would give a pressure drop equal to the excess 
pressure drop due to the entrance effect. 

Finally, it remains to determine the shear rate at the wall: 

AQ _ 32Q (3. 24) 
NR3 N-D3 

(3. 25) 

where bR is the Rabinowitch correction factor given by: 

(3. 26) 

The principal sources of error in the use of a capillary rheometer are: 
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a) Nonuniform temperature due to viscous heating especially at large shear rates 
or capillary radius. 

b) Effect of pressure on viscosity. 
c) Wall slip or unsteady flow due to oscillating entry streamlines. 

7 . ELONGATIONAL V I S C O S I T Y B Y CAPILLARY R H E O M E T E R 

The Cogswell analysis (Cogswell 1972a and 1972b) was applied for the 
determination of the elongational viscosity. This estimation requires apparent 
shear viscosity data; corrected stress data and elastic pressure gradient 
information obtained from capillary measurements (see Appendix A). The 
equations proposed by Cogswell are: 

(3. 27) 

(when using a die with flat (180°) entrance angle) (3.28) 

(when using a die with an entrance angle 8) (3. 29) 

(3. 30) 

where: 

Y a is the apparent shear rate, 

T|A is the apparent viscosity n a = IT / Y A (where J tis the true shear stress), 

n is the power law parameter N=D(IOGXT)/D(IOGYA), 

APE is the pressure drop for a zero length d i e ^ = A P S - A P L L S / L L > 

1 - L S / L L 

. is the corrected shear rate, 
a 

o e is the elongational stress, 

3(« + l)-
8 

AP, 

T?E = 
T E 9-(N + L)2(APEF 

E 32 • NAFA 

3(AP E) 

TAN(9/2) 1 -
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RJE is elongational viscosity, 
6 is the capillary die entrance angle (flat entrance 9 = 180° = n radian, cone 

entrance 9 = 90° = n 12 radian) 

s is elongational rate. 

It is important to mention that Rosand software recalculates the power law index 
"n" using « = D(LOGRT)/D(LOGFT) for equations 3.26 and 3.27 and uses the corrected 
shear rate instead of the apparent shear rate in equation 3.28. Such calculations 
differ from the original analysis done by Cogswell (1972a, 1972b). Figure III.2 
shows a comparison between the elongational viscosity (using a die with 90° 
entrance angle) calculated from the original Cogswell's analysis and that obtained 
from Rosand software. The Rosand's approach changes the slope of R\E and 
predicts higher elongational rates (Mier, 2000). In this thesis, the original Cogswell 
approach will be used (see Appendix A). 

\f\o c 

K) Gogswen 
)0° Rosand 
K) Gogswen 
)0° Rosand 

— 

V 
• 

1 0 100 1000 
elongational rate (1/sec) 

10000 

Figure III.2. Comparison between elongational viscosity at 200 °C calculated from the original Cogswell's 
analysis and that obtained from Rosand software. Mier (2000) developed this plot using a metallocene 
isotactic polypropylene resin. 
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CHAPTER IV. Standard Quality Properties 

The basic standard quality properties (SQP) for polypropylene resins are the melt 
flow index (MFI) and the percentage of xylene solubles (XS). These properties 
(MFI and XS) for the resins used in this research are presented in Table 111.1 in the 
previous chapter. 

This chapter presents, as standard quality control properties, the Molecular Weigh 
Distribution (MWD), the Nuclear Magnetic Resonance (NMR) and the calorimetric 
properties for the resins. 

A. Molecular Weight Distribution (MWD) 

Table IV. 1 presents the molecular weigh moments and polydispersity data as 
obtained from GPC measurements for all the resins. Mz/Mw is the polidispersity 
index related to the content of high molecular weight species. Figure iv.1 shows the 
molecular weight distributions for resins A and E (resins with melt flow 2, 
syndiotactic and isotactic respectively). These resins present some notable 
differences in their MWD. The MWD for resin A (syndiotactic) presents a bimodal 
behavior with a Mw lower than resin E (isotactic). Figure IV.2 shows the MWD for 
all the resins. 

Table IV.1. Molecular weigh moments and polydispersity indices as obtained from GPC. 
Resin M w Mz Mw/M n M z/Mw Peak M w 

A 42134 190554 518052 4.5 2.7 193756 
B 37960 158366 421148 4.2 2.7 54742 
C 33169 121042 318803 3.6 2.6 48785 
D 27265 96422 247354 3.5 2.6 43963 
E 64131 414092 1526508 6.5 3.7 191509 
F 51229 345046 1411454 6.7 4.1 176522 
G 36268 236114 855114 6.5 3.6 136878 
H 35189 214871 736338 6.1 3.4 133754 
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FIGURE IV. 1. MOLECULAR WEIGHT DISTRIBUTIONS AS OBTAINED FROM GPC FOR RESIN A AND E. 
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FIGURE IV.2. MOLECULAR WEIGHT DISTRIBUTIONS AS OBTAINED FROM GPC FOR ALL THE RESINS. 
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B. Nuclear Magnetic Resonance (NMR) 

1. Principles (Odian, 1991) 

To better understand the NMR results is important to review before some important 
concepts. Configurational (stereo) isomers differ in the spatial arrangements 
(conformations) of their atoms or substituents in a molecule in a manner such that 
they can be interconverted only by breaking and reforming chemical bonds. 

The polymerization of a monosubstituted ethylene, CH2=CHR (for propylene, R is a 
methyl group -CH3), leads to polymers in which every tertiary carbon atom in the 
polymer chain is a stereocenter. A stereocenter is defined as an atom bearing 
several groups whose identities are such that an interchange of two of the groups 
produces a stereoisomer. Considering the main carbon-carbon chain of the 
polymer - ( -CH2-CHR-) n - two different configurations are possible for each 
stereocenter since the R group may be situated on either side of the plane of the 
carbon-carbon polymer chain. The regularity in the configurations of successive 
stereocenters determines the overall order (tacticity) of the polymer chain. An 
isotactic structure occurs when the stereocenter in each repeating unit in the 
polymer chain has the same configuration. A syndiotactic polymer structure occurs 
when the configuration of the sterocenter alternates with the R groups located on 
the opposite sides of the plane of the polymer chain. If the R groups are randomly 
distributed on the two sides of the planar zigzag polymer chain, the polymer is 
termed atactic. 

Dyad tacticity is defined as the fractions of pairs of adjacent repeating units that are 
isotactic or syndiotactic to one another. The isotactic (meso) and syndiotactic 
(racemic) dyads can be depicted as shown in Figure IV.3. where the horizontal line 
represent a segment of the polymer chain, the black circles represent the 
configuration of the R group at the stereocenter, and the vertical line represents the 

51 



two hidrogens at the carbon between adjacent stereocenters. The fractions of 
isotactic and syndiotactic dyads are referred to as (m) and (r), respectively. 

Isotactic dyad Syndiotactic dyad 

Figure IV.3. Depicture of isotactic (meso) and syndiotactic (racemic) dyads. 

Triad tacticity describes isotactic, syndiotactic, and heterotactic triads whose 
fractions are designated as (mm), (rr), and (mr), respectively (see Figure IV.4). 

Isotactic triad Syndiotactic triad Heterotactic triad 

Figure IV.4. Depiction of isotactic (meso), syndiotactic (racemic), and heterotactic triads. 

The above definitions can be clarified by considering an example portion of a 
polymer chain like the one shown in Figure IV.5. The chain segment has 8 dyads 
and 7 triads. There are 6 meso dyads (m = 6/8) and 2 racemic dyads (r = 2/8). 
There are 4 isotactic triads (mm = 4/7), 1 syndiotactic (rr = 1/7), and 2 heterotactic 
(mr= 2/7). 

Figure IV.5. Depiction of isotactic (meso), syndiotactic (racemic), and heterotactic triads. 

The determination of the triad fractions allows a complete definition of dyad 

structures using: 
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(m) = (mm) + 0.5(mr) 
(r) = (rr) + 0.5(mr) 

(4.1) 
(4.2) 

The advent of high-resolution NMR allow the determination of tetrad, pentad and even 
higher sequence distributions in many polymers. The tetrad distribution consists of the 
isotactic sequence (mmm), the syndiotactic sequence (rrr), and the heterotactic 
sequences (mmr), (rmr), (mrm), and (rrm). The following relationships exist between 
tetrad and triad fractions: 

(mm) = (mmm) + 0.5(mmr) (4. 3) 
(rr) = (rrr) + 0.5(mrr) (4. 4) 
(mr) = (mmr) + 2(rmr) = (mrr) + 2(mrm) (4. 5) 

The pentad distribution consists of the isotactic sequence (mmmm), the 
syndiotactic sequence (rrrr), and the heterotactic sequences (rmmr), (mmrm), 
(mmrr), (rmrm), (rmrr), (mrrm), and (rrmm). The following relationships exist 
between pentad and tetrad fractions: 

(mmm) = (mmmm) + 0.5(mmmr) (4.6) 
(mmr) = (mmmr) + 2(rmmr) = (mmrm) + (mmrr) (4. 7) 
(rmr) = 0.5(mrmr) + 0.5(rmrr) (4. 8) 
(mrm) = 0.5(mrmr) + 0.5(mmrm) (4. 9) 
(rrm) = 2(mrrm) + (mrrr) = (mmrr) + (rmrr) (4.10) 
(rrr) = (rrrr) + 0.5(mrrr) (4. 11) 

2. Analysis of stereoregularity 
As explained, NMR allows to obtain the sequence distribution of steroisomeric 
units within the polymer chain. The NMR data can be used to determine the 
effectiveness of the synthesis of an isotactic polypropylene by analyzing the 
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soluble fraction of each resin. A typical commercial polypropylene resin is a 
mixture of isotactic, syndiotactic and atactic chains. 

Table IV.2 presents the NMR spectrum (mol percentages) for the resins under 
study. In Table IV.2 xmrx is the sum of mmrm and rmrr pentads since by NMR 
such two sequences are indistinguishable. 

Table IV.2. NMR Spectrum (% mol) for all the resins. 

PENTAD A B c D E F G H 
mmmm 0 0 0 0 87.8 93.9 93.5 93.5 
mmmr 0.2 0.2 0.3 0.2 3.4 2.3 2.4 2.4 
rmmr 2.3 2.3 2.4 2.8 0.6 0.6 0.4 0.4 
mmrr 4.5 4.7 4.6 5 3.1 1.5 1.5 1.5 
xmrx 3.3 3.7 3.6 3.9 1.3 0.5 0.5 0.5 
mrmr 0.5 0.6 0.7 0.8 0 0 0.2 0.2 
rrrr 76.6 75.8 76.7 75.2 1.5 0.5 0.5 0.4 
rrrm 10.5 70.5 10.3 10.7 0.8 0 0.3 0.4 
mrrm 2 2.1 1.5 1.4 1.5 0.7 0.8 0.7 

% meso 6.7 7.1 7.1 7.8 94 97.8 97.4 97.4 
% racemic 93.3 92.9 92.9 92.2 6 2.2 2.6 2.6 

% error 4 4.2 4.2 4.7 1.2 0.9 0.6 0.7 

Defects per 
1000 carbons 33.6 35.4 35.5 39.2 30 11.2 13.2 12.8 

C. Calorimetric Data 

Table IV.3 shows the DSC calorimetric properties of all the polypropylene resins 
under study. In general, higher latent heats correspond to higher recrystallization 
and second melt temperatures. When polypropylene crystallizes from the melt, 
different crystalline formations may develop; Table IV.4 presents the unit cell 
parameters for syndiotactic and isotactic polypropylene as well as the theoretical 
melting temperature (Tm). It can be seen that for syndiotactic resins, resin D with 
the highest melt flow present the most similar melting temperature to the 
theoretical melting temperature presented in Table IV.4. However, for isotactic 
resins, the melting temperature closer to the theoretical melting temperature is the 
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melting temperature of resin E, the isotactic resin with lowest melt flow. Finally 
Table IV.5 presents the percentage of crystals in the samples according to 
equation 3.1. 

Table IV.3. DSC analysis results for all the resins. 

Recrystallization Recrystallization Second Second Melt 
RESIN Peak AH Melt Peak AH 

(°C) (Joules/gram ) (°C) (Joules/gram ) 
A 66.63 -31.06 127.0 28.31 
B 64.30 -30.23 127.4 28.09 
C 71.63 -39.07 128.0 24.87 
D 67.96 -38.96 131.7 30.46 
E 107.3 -105.4 162.0 71.58 

Tl
 110.6 -114.4 160.7 86.19 

G 110.3 -113.2 160.7 87.16 
H 110.3 -121.8 159.0 89.48 

Table IV.4. Polypropylene unit cell parameters. 

Isotactic Syndiotactic 
Unit Cell a monoclinic Orthorhombic 
a (nm) 0.664 1.45 
b (nm) 2.096 0.58 
c (nm) 0.650 0.74 

P 99° 20' 90° 
Density (gr/cm3) 0.936 0.91 

Tm °C 165 135 

Heat of Fusion (J/gr) 209 50.2 
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Table IV.5. Percentage of crystallinity for all the resins. 

RESIN % Crystallinity 

A 5.48 
B 4.26 
C 28.29 
D 16.93 
E 16.18 
F 13.50 
G 12.46 
H 15.46 
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CHAPTER V. Oscillatory Data 

For each resin, the oscillatory data was obtained from frequency sweep tests at 
200 °C by means of a RAA (see Table 111.2) with a 25 mm parallel plates 
configuration and 1 mm gap. The frequency range used was from 500 to 0.01 
rad/s and 10 % of the strain was utilized. In addition, frequency sweeps at 190 °C 
and 210 °C were done and together with the 200 °C data, were brought into a 
single master curve according to Mavridis (1992). 

A. Storage and Loss Moduli 

Figure V.1 through Figure V.8 show the storage (G') and loss (G") moduli for each 
resin. The cross-over point is presented in the plots by a cross (x). The cross-over 
point will be analyzed in the section B and C of this chapter. It is worth to mention 
that data with a torque lower than 0.8 gr-cm were eliminated because of equipment 
resolution. 

1.E+06 

1.E+05 

1.E+01 
0.01 0.1 1 10 

Frequency [rad/s] 

100 1000 

Figure V.1. Storage and loss moduli at 200 °C for resin A. 
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Figure V.2. Storage and loss moduli at 200 °C for resin B. 
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Figure V.3. Storage and loss moduli at 200 °C for resin C. 
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Figure V.4. Storage and loss moduli at 200 °C for resin D. 
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Figure V.5. Storage and loss moduli at 200 °C for resin E. 
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Figure V.6. Storage and loss moduli at 200 °C for resin F. 
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Figure V.7. Storage and loss moduli at 200 °C for resin G. 
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Figure V.8. Storage and loss moduli at 200 °C for resin H. 

B, Cross-over point 

The cross-over point Theological parameter is obtained from direct reading from the 

combined plots of G' (co) and G" (co ) . The cross-over points ( c o x , G x ) for each resin 

are listed in Table V . 1 . 

Table V. 1. Cross-over frequency and modulus for all resins at 200 °C. 

Resin © X 

[ rad/s] 
G x 

[Pa] Resin © X 

[ rad/s] 
G x 

[Pa] 
A 40.44 52250 E 26.508 24850 
B 74.286 58110 F 32.286 30760 
C 199.53 60440 G 99.14 28670 
D 459.17 64180 H 133.58 29050 
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C. Loss Tangent 

Figure V.9 presents the loss tangent (tan 8) as a function of the frequency for all 

the resins at 200 °C. 

A 
• A 

A 
OA ° B A C D 

• o 8 n " A • E * F A G H 

* | " I 1 A 
• • * 2 A A 

- * 8 i i •Mi j i 
0.01 0.1 1 10 100 1000 

Frequency [rad/s] 

Figure V.9. Loss tangent vs. frequency for all resins at 200 °C. The open symbols were used for 
syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, squares 
for MF=4, triangles for MF=12 and circles for MF=19. 

D. Complex Viscosity 

The loss and storage moduli are used to estimate are used to estimate the 

complex viscosity by: 

/; {co)=-—— (5. 1) 
CO 

Figure V.10 shows the complex viscosity for all the resins. By means of the Cox-

Mertz rule, such complex viscosity curves will be used to determine the shear 
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viscosity at intermediate shear rates. Such shear viscosity points will be presented 

in the next chapter together with the capillary shear viscosity. 

10000 

1 10 

Frequency [rad/s] 

100 1000 

Figure V.10. Complex Viscosity for all the resins at 200 °C. The open symbols were used for 
syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, squares 
for MF=4, triangles for MF=12 and circles for MF=19. 

E. Polidispersity Index 

The polidispersity index (PDI = Mw/Mn) can be estimated from the cross-over 

modulus using the equation below proposed by Zeichner and Patel (1981). Table 

V.2 shows the estimated PDI and the PDI obtained from GPC. 

Mn 105 

Mw Gx{Pa) 
(5. 2) 
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Table V.2. Comparison between PDI estimated as suggested by Zeichner and Patei (1981) and PDI 
obtained from GPC measurements. 

Resin G x 

[Pa] 
PDI 

10 5/G X 

PDI 
GPC % Error 

A 52250 1.9139 4.5226 57.68% 
B 58110 1.7209 4.1719 58.75% 
C 60440 1.6545 3.6493 54.66% 
D 64180 1.5581 3.5365 55.94% 
E 24850 4.0241 6.4570 37.68% 

LL 30760 3.2510 6.7354 51.73% 
G 28670 3.4880 6.5103 46.42% 
H 29050 3.4423 6.1062 43.63% 

It is clear in Table V.2 that the Zeichner - Patel prediction do not agree with the 

polidispersity index obtained from GPC. Such variations have been also observed 

by Bonilla (1996) and Mier (2000). 

F. Zero - Shear Viscosity 

The zero shear viscosity (r| 0) could be determined from the loss modulus by: 

% = h m — — ( 5 - 3 ) 
o-M) L ( 0 -

In Table V.3 are presented the values for all the resins of the zero shear viscosity 

obtained using the lowest frequency point of the loss modulus curve. The complex 

viscosity at this is also shown just as a point of reference. 
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Table V.3. Zero shear viscosity calculated with the lowest frequency point of the loss modulus. 
Resin T O 

[rad/s] 
G " ( C O ) 

[Pa] 
n* 

[Pa.s] no 
[Pa.s] 

A 0.05 348 7006 6964 
B 0.09 423 4764 4759 
C 0.16 301 1906 1905 
D 0.28 286 1017 1015 
E 0.05 317 6379 6334 

Tl
 0.05 341 6864 6819 

G 0.16 329 2092 2081 
H 0.28 435 1560 1548 

G. Discrete Relaxation Spectrum 

The discrete relaxation spectrum (ry,, for each resin can be obtained by fitting its 
storage and loss moduli with equations: 

(5.4) 

(5.5) 

where m = Gfc. 

Mier (2000) developed a C language program for the determination of the discrete 
relaxation spectrum from the loss modulus. This software is well-documented in 
the cited reference. Mier (2000) used the relaxation spectrum of a LDPE at 150 °C 
reported by Phan-Thien (1978) and Papanastasiou (1987) to validate his software, 
and he used the software to obtain the discrete relaxation spectrum of eight 
polypropylene resins with excellent results using 4 elements. 

Therefore, the discrete relaxation spectrum for the resin under study was obtained 
using the software developed by Mier (2000). Since Mier (2000) proved that the 
best results are given by using 4 relaxation elements, such elements were used in 
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this thesis. The discrete relaxation spectrum obtained from Mier's software for all 
the resins is presented in Table V.4. 

Table V.4. Disrete relaxation spectrum obtained from Mier's (2000) software for all the resins. 

Resin A B C D E H 
h 
[s] 

m 
[Pa.s] 

m 
[Pa.s] 

m 
[Pa.s] 

m 
[Pa.s] 

m 
[Pa.s] 

m 
[Pa.s] 

m 
[Pa.s] 

Hi 
[Pa.s] 

0.001 199.6 216.8 187.3 151.4 104.2 127.1 102.8 97.4 
0.01 938.6 859.2 548.9 350.6 536.5 625.5 375.1 330.1 
0.1 3631.9 2517.5 1115.8 439.9 2110.9 2300.8 938.1 729.6 
1 1551.9 284.4 0 0 2706.6 2673.5 541.7 292.4 

The discrete relaxation presented in Table V.4 fits very well equations 5.4 and 5.5. 
The fittings produced residuals lowers than 5 % in most cases, just a few points 
were higher than 5 %, but they were less than 10 %. 

H. Time - Temperature Superposition (TTS) 

According to Mavridis (1992) methodology, the dynamic data measure at different 

temperatures must be screened by plotting tan 8 vs G*(w): 

1) If the data from different temperatures superimpose (within experimental 
error) then a vertical shift factor (b-r) is not required (bT=1) and the vertical 
energy of activation (Ev) is zero. 

2) If the data from different temperatures do not superimpose but fall onto 
parallel curves, then a vertical shift factor is required. 

Figure V.11 shows the plot of tan 5 vs G*(co) at different temperatures for all the 

resins. Since the data superimpose (case 1 above), therefore Ev=0 and DT=1 . 
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Figure V . 1 1 . Loss tangent vs. complex modulus data at different temperatures for all the resins. 

Once proven that no vertical shift factor is needed, the horizontal shift factor can be 

determined. Following the Mavridis (1992) methodology, the horizontal shift factor 

was obtained by superimposing the loss tangent vs frequency data at different 

temperatures. Plotting data from different temperatures as loss tangent vs 

frequency gives parallel curves separated by a certain distance determined by the 

horizontal shift factor aj. Figure V.12 shows for resin A the loss tangent 

superposition master curve after the horizontal shift factor has been applied to the 

data. From the shift factors at each temperature, the horizontal shift activation 

energy (EH) is obtained, according to Mavridis (1992), using the WLF equation. 

This procedure was done for the eight resins; the computed activation energies are 

show in Table V.5. 
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Figure V.12. Loss tangent superposition master curve for resin A. 

Table V.5. Horizontal activation energies for all the resins. 
EH 

[cal/mol] 
EH 

[cal/mol] 
A 9712 E 8094 
B 10218 F 8544 
C 9398 G 8610 
D 10497 H 9719 
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CHAPTER VI. Capillary Data 

Chapter VI is divided in four sections. Section A shows the shear and extensional 
viscosity at steady state. Shear and extensional viscosity were calculated from 
experimental data according to the procedure shown in Appendix A. Capillary 
steady-state tests were done using three dies with different diameters (see 
Appendix A). Section B presents the shear and extensional viscosity at transient 
state. Transient state data was obtained with the 0.5 mm diameter die. 

Section C presents the steady shear viscosity data fitted using the Cross, Carreau 
and Yasuda models. Finally, section D presents a capillary analysis done to the 
eight resins in order to obtain the compressibility effect in the capillary flow. All the 
capillary data presented in this chapter was obtained with the Rosand double bore 
capillary rheometer (see Table III.2) at 200 °C. 

A. Steady State 

Figure VI.1 shows the shear viscosity curves calculated for resin B. It can be seen 
that all three dies generate the same shear viscosity curve. Similar results are 
observed for the rest of the resins. 
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Figure VI. 1. Shear viscosity curves for resin B obtained with three different dies. 

1 0 0 0 

On the other hand, Figure VI.2 presents the extensional viscosity curves for the 
same resin (resin B). This figure shows that each die generate a different 
extensional viscosity curve. The curve obtained from using the 0.5 mm die 
presents the highest extensional viscosity. Similar results are observed for the rest 
of the resins. 
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Figure VI.2. Elongational viscosity curves for resin B using three different dies. 
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Since, the data obtained from using the 0.5 mm die gives the highest values, and 
then only the results obtained with such diameter are presented. Figure VI.3 and 
Figure VI.4 show the shear viscosity and extensional viscosity for all resins. 

1 0 0 0 0 

1 0 1 0 0 
Shear rate (/s) 

1 0 0 0 1 0 0 0 0 

Figure VI.3. Shear viscosity for all the resins (@ D=0.5 mm). The open symbols were used for 
syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, squares for 
MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VI.4. Extensional viscosity for all the resin (@ D=0.5 mm). The open symbols were used for 
syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, squares 
for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure Vl.5. Trouton ratio for all the resin (@ D=0.5 mm). The open symbols were used for syndiotactic 
PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, squares for MF=4, triangles 
for MF=12 and circles for MF=19. 

B. Transient State 

Using the procedure shown in Appendix A, the transient shear and elongational 
viscosity were obtained from capillary data. Figure VI.6 and Figure VI.7 present 
the transient shear viscosity for all the resins at apparent shear rate of 500 /s and 
1000 Is respectively. Similarly, in Figure VI.8 and Figure VI.9 are shown the 
transient elongational viscosity for all the resins at the same apparent shear rates. 
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Figure VI.6. Transient shear viscosity at apparent shear rate of 500 Is at 200 °C. The open symbols were 
used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, 
squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VIJ.Transient shear viscosity at apparent shear rate of 1000 Is at 200 °C. The open symbols 
were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are for MF=2, 
squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VI.8. Transient elongational viscosity at apparent shear rate of 500 Is at 200 °C. The open 
symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are 
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VI.9. Transient elongational viscosity at apparent shear rate of 1000 Is at 200 °C. The open 
symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are 
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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C. Fitting Viscosity Curves 

The shear viscosity curves were fitted by the Carreau, Yasuda and Cross models. 

The modification to the Cross model proposed by Dealy and Wissburn (1990) was 

considered. This modification requires that be multiplied by 0.6 and the 

parameter "a" to be equal to 0.75. However, it was decided to use the unmodified 

Cross model, because the exponent 0.75 produced poor fittings. 

Carreau Model 

Yasuda Model 

Cross Model 

The three models used fit very well the viscosity curve for the eight resins, they all 

produced fittings with an error lower than 5 % and correlation coefficients (R 2) 

higher than 0.99. From Table VI.1 to Table VI.3 are presented the models' 

parameters. 

Table VI.1. Cross model parameters for fitting the shear viscosity curves. 
no X m R 2 

Pa.s s 
A 6635 0.11 0.76 0.9998 
B 2252 0.03 0.80 0.9996 
C 2096 0.07 0.67 0.9998 
D 1476 0.10 0.59 0.9990 
E 7098 0.25 0.76 0.9997 
F 6061 0.32 0.71 0.9986 
G 2037 0.13 0.70 0.9999 
H 779 0.03 0.77 0.9996 
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Table VI.2. Yasuda model parameters for fitting the shear viscosity curves. 
no X a n R 2 

Pa.s s 
A 8300 0.25 3.53 0.31 0.9991 
B 5121 0.03 0.44 0.08 0.9994 
C 1967 0.05 0.64 0.30 0.9998 
D 1014 0.07 0.80 0.43 0.9988 
E 7975 0.39 1.55 0.28 0.9998 
F 6848 0.15 0.46 0.17 0.9991 
G 2095 0.03 0.47 0.10 0.9997 
H 1634 0.03 0.44 0.15 0.9996 

Table VI.3. Carreau model parameters for fitting the shear viscosity curves. 

IP1IPP" 
no 

Pa.s 
X 
s 

P R 2 

A 4285 0.09 0.35 0.9992 
B 4125 0.19 0.31 0.9971 
C 1775 0.12 0.28 0.9986 
D 600 0.04 0.26 0.9985 
E 8744 0.44 0.36 0.9998 
F 6811 0.52 0.34 0.9975 
G 2027 0.22 0.31 0.9990 
H 1512 0.23 0.29 0.9957 

Since these models are empirical, even though they were created to fit shear 

viscosity curves, it was decided to fit elongational viscosity curves with these 

models too. It was observed that these empirical models produce good fittings (R 2 

higher than 0.9) of the elongational viscosity; however they are not as good as 

those for shear viscosity. Table VI.4 through Table VI.6 presents the parameters 

of the model as well as the correlation coefficient (R 2) . 

Table VI.4. Cross model parameter for fitting the elongational viscosity 

M i ™ n l i T]0 X m R 2 

warn Pa.s s 
A 42817 0.06 0.74 0.9848 
B 119677 2.75 0.50 0.9973 
C 10171 0.01 0.88 0.9368 
D 26148 1.23 0.44 0.9352 
E 96657 2.33 0.43 0.9896 
F 84703 9.52 0.34 0.9794 
G 29183 1.68 0.37 0.9545 
H 23858 1.45 0.40 0.9023 
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Table VI.5. Yasuda model parameters for fitting the elongational viscosity curves. 

Resin n o 
Pas 

X 

S 
a n R 2 

A 389357 6.80 0.29 0.47 0.9776 
8 54736 1.05 3.89 0.55 0.9976 
C 8458 0.05 4.94 0.60 0.9461 
D 21290 1.20 5.18 0.57 0.9537 
E 28926 0.19 1.45 0.59 0.9904 
F 81810 0.23 0.23 0.52 0.9776 
G 377431 2.58 0.11 0.52 0.9552 
H 39554 22.78 1.95 0.66 0.9141 

Table VI.6. Carreau model parameters for fitting the elongational viscosity 

Resin | VP 

I Pa.s 
X 

s P R2 

A 29394 0.09 0.28 0.9881 
B 36822 0.41 0.23 0.9974 
C 8937 0.05 0.24 0.9424 
D 23149 1.45 0.22 0.9534 
E 26339 0.17 0.20 0.9912 
F 33757 1.61 0.14 0.9809 
G 17764 1.75 0.15 0.9557 
H 21044 3.54 0.17 0.9141 

D. Capillary Analysis 

Hatzikiriakos (1992, 1994) & Dealy (1995) concluded that the melt viscosity and 
compressibility are the dominant factor in capillary flow and that the contribution of 
melt elasticity is too small. Mier (2001a) develop software based on the 
Hatzikiriakos and Dealy (1994) previous work, but the results were not conclusive. 
However, we believe that the entrance pressure is a combination of both, the 
compressibility and the elasticity of the polymer and that a procedure to determine 
each value should be established. A capillary analysis using different diameters of 
die is proposed to evaluate these effects. 

The purpose of the capillary analysis with three different diameter dies was to 
evaluate the compressibility of the resins. It was expected to obtain for each shear 
rate the relationship between the pressure drop and the diameter of die. 
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It is assumed that the total pressure is the sum of the pressure drop due to the melt 

compressibility, the pressure drop due to the melt viscosity and the pressure drop 
due to melt elasticity. In addition, it has been accepted that the pressure drop due 
to the entrance effect (change in the diameter) is a measure of the melt elasticity of 
the polymer and that the pressure drop due to the resistance against the wall of the 
die is a measure of the polymer's viscosity (see Figure VI.10). For an ideal 
situation where the die is not present, the pressure drop is due to a compressibility 
of the material while flowing against a wall. Therefore, when there is no die the 
total pressure drop will be equal to the pressure drop due to the melt 
compressibility; that is, there is neither an elastic effect nor a viscous effect. It is 
worth to mention that the viscous dissipation or pressure "resistance" of the shaft 
against the barrel is not an issue in this study because the pressure transducer is 
in the barrel wall and not at the top of the shaft as it happens in other capillary 
rheometers. I 

Figure VI. 10. Pressure drop in a capillary flow. 

Therefore, plotting entrance pressure drop (pressure drop at L/D=0 according to 
Bagley correction) vs. 1/D we can obtain the pressure drop due to the melt 
compressibility. An extrapolation to 1/D zero (when the die diameter tends to 
infinite, therefore there is no change of diameter between the barrel and the die) 

Polymer 

AP viscous 

( ) 

AP elastic 
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might be done (see Figure Vl.11) to obtain the pressure drop due to 
compressibility, when no contraction occurs. 

AP* 

1/D3 I/D2 1/Di < 
• 1/D 

Figure VI. 11 . Capillary analysis in order to look at the compressibility effects. 

Figure VI. 12 shows the capillary analysis in order to obtain the compressibility 
effect for resin B. The equations on the left were obtained from linear regression 
with Microsoft Excel in order to make the extrapolation. Similar results are 
observed for the rest of the resins. 
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Figure VI. 12. Entrance pressure drop vs die diameter reciprocal for resin B. 

On Table VI.7 are presented for all resins the pressure drop values due to the melt 
compressibility obtained from the capillary analysis described. 

Table VI.7. Pressure drop due to the melt compressibility for all the resins. 
AP @ 1/D =0 (psi) 

shear 
rate {Is) A B C D E F G H 

50 45 25 14 0 45 20 8 7 
67 52 34 15 7 54 33 12 12 
95 68 43 22 10 68 41 16 15 
135 86 54 26 13 91 52 21 19 
190 107 68 34 17 113 65 26 24 
260 130 85 45 25 143 81 37 33 
372 160 105 55 31 178 104 46 42 
515 196 130 69 40 229 131 60 54 
715 236 152 86 51 281 165 76 69 
1000 288 196 120 66 326 212 100 95 

Since, the Cogswell's extensional viscosity is obtained from the entrance pressure 
drop, it was decided to make a correction by subtracting the pressure drop due to 
the melt compressibility to the entrance pressure. 

AP = AP - AP 
1 X 1 7 elas 1 X 1 ent 1 X 1 com 

(6.1) 
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Now, on Table VI.8 are presented the pressure drop due to elasticity, for all resins, 
obtained from equation 6.1 using the 0.5 mm die diameter data. Figure VI. 13 
shows the corrected extensional viscosity for resin B. 

Table VI.8. Pressure drop due to the melt elasticity for all the resins. 
APelas (PSi) 

shear 
rate {IS) A B C D E F G H 

50 17 22 7 17 7 16 11 8 
67 33 20 16 12 12 11 10 5 
95 32 24 13 13 13 16 13 6 
135 34 27 22 18 6 16 16 10 
190 35 29 24 20 8 19 19 11 
260 41 30 25 19 4 21 16 11 
372 41 32 30 24 4 19 19 13 
515 40 34 35 28 0 20 20 14 
715 43 46 39 32 4 22 24 14 
1000 41 37 30 36 34 17 23 9 
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Figure VI. 13. Corrected and Cogswell extensional viscosity for resin B. 

It is thought that this corrected extensional viscosity is a better way to measure the 
melt elasticity because Cogswell's extensional viscosity considers the pressure 
drop due to the melt compressibility too. However, for some resins the corrected 
extensional viscosity shows an irregular behavior even with some negative values. 
It is thought that this irregular behavior is due to the regression technique used, so 
it is proposed to make measurements with larger diameter of dies (1/D closer to 
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zero) in order to have more points and then have a better regression and 

extrapolation. 



CHAPTER VII. Creep and Recovery Compliance 

This chapter is divided in three sections. Section A presents the creep and 

recovery measurements using standard tests. Sections B and C present an 

analysis of creep and recovery data using different creep times and different shear 

stress respectively. All the data presented was obtained from SR5000 (see Table 

III.2) at 200 °C. 

A. Creep and Recovery Standard Test 

Standard well-documented tests (Bonilla, 1996; Aguirre, 1999; Mier, 2000) indicate 

that the testing stress should be 600 Pa, the creep time 400 s and the recovery 

time 800 s. Figure VII. 1 shows the strain for all the resins during the creep and 

recovery test, and Figure VII.2 shows the recovery compliance for all the resins. 
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Figure VII. 1. Strain response vs time applying a stress of 600 Pa for 400 s for all the resins. The open 
symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are 
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VII.2. Recovery compliance vs recovery time after applying a stress of 600 Pa for 400 s for all the 
resins. The open symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. 
Diamonds are for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 

Figure VII . 1 shows that the strain response for resins with similar MFI is similar too, 

besides, it can be seen that the higher the MFI the higher the strain. It can also be 

seen in Figure VII. 1 that syndiotactic resins presents a strain just a little higher than 

isotactic. It worth to mention that strain responses for resin D and H are not that 

similar because they are not the same MFI, resin D has a higher MFI than resin H. 

On the other hand, Figure VII.2 shows that the recovery compliance for isotactic 

resins is significantly higher than for syndiotactic resins. It can be seen that the 

time to reach steady state is related to the MFI, the higher the MFI the lower the 

time it takes to reach the steady state. In addition, it is observed that the four 

syndiotactic resins have the same steady state recovery compliance. 

B. Creep Time Analysis 

Using the same shear stress (600 Pa), the creep time was varied in order to 

observe differences between the resins. Figure VII.3 and Figure VII.4 present the 
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strain while Figure VII.5 and Figure VII.6 show the recovery compliance for all the 
resins for creep times of 1 s and 60 s respectively. 
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Figure VII.3. Strain response vs time applying a stress of 600 Pa for 1 s for all the resins. The open 
symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are 
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VII.4. Strain response vs time applying a stress of 600 Pa for 60 s for all the resins. The open 
symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. Diamonds are 
for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VII.5. Recovery compliance vs recovery time after applying a stress of 600 Pa for 1 s for all the 
resins. The open symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. 
Diamonds are for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VII.6. Recovery compliance vs recovery time after applying a stress of 600 Pa for 60 s for all the 
resins. The open symbols were used for syndiotactic PP. Same type of symbols are used for similar MF. 
Diamonds are for MF=2, squares for MF=4, triangles for MF=12 and circles for MF=19. 
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Figure VII.3 and Figure VII.4 show that the strain responses present the same 
behavior observed when using 400 seconds of creep time. However, in Figure 
VII.5 and Figure VII.6 it can be seen that the recovery compliance behavior is 
similar using 60 seconds of creep time, but for 1 second, there are some 
differences. The same relation found when using 400 seconds between the MFI 
and the time to reach steady state is present using 60 seconds of creep time too, 
but it is not when using 1 second. It can also be seen that for 60 seconds only 
three of the syndiotactic resins presents the same steady state recovery 
compliance, and for 1 second only two of them. 

C. Shear Stress Analysis 

From previous section, it can be seen that the steady state recovery compliance for 
the syndiotactic resins is the same when the creep time is 400 s and very similar at 
the others creep times. It was decided to vary the shear stress to 300 Pa, 1200 Pa 
and 2400 Pa to observe the recovery compliance behavior. The results for 
syndiotactic resins are presented next in Figure VII.7 to Figure VII.9. 
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Figure VII.7. Recovery compliance vs recovery time after applying a stress of 2400 Pa for 400 s for all the 
resins. 
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Figure VII.8. Recovery compliance vs recovery time after applying a stress of 1200 Pa for 400 s for all the 
resins. 
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Figure VII.9. Recovery compliance vs recovery time after applying a stress of 300 Pa for 400 s for all the 
resins. 

These results confirm the relation observed in previous sections between the MFI 
and the time to reach the steady state. Besides, it can be seen for the three shear 
stresses applied that even thought the steady state recovery compliance is similar, 
a relation with the MFI could be observed; the higher the MFI, the lower the steady 
state recovery compliance. 
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CHAPTER VIII. PTT Model 

This chapter presents the prediction of rheological properties using the Multi-mode 
Phan-Thien-Tanner (PTT) model. Section A presents the PTT model. Section B 
shows the expressions obtained and predictions of the shear viscosity. Section C 
shows the expressions obtained and predictions of the elongational viscosity for 
the resins under study. Software (C-language codes) created and validated by Mier 
(2000) was used to accomplish the purposes of this chapter. 

A. The Multi Mode Phan Thien - Tanner (PTT) Model 

The PTT model has already been introduced in Chapter II under the constitutive 
equations section. In tensorial notation, the multi-mode PTT model is expressed 
by: 

N 

i=l 

z("{T,-))t,- + K rim + - 4 (r • rt + r, • f) =- ^ f 

(8. 1) 

(8.2) 
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FOR SHEAR-FREE FLOW: 
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(8. 4) 

where z(tr(%t)) = E X P F - ̂ -tr^) (8. 5) 

The rationale of the notation used is as follows: " i" as a subscript refers to the 
stress tensor for the i-th relaxation element or i-th relaxation element of the 
relaxation spectrum; " i" as a superscript refers to the component of the stress 
tensor for the i-th relaxation element. is the contravariant (upper) convected 

time derivative2 of the stress tensor given by equation 2.22. 

B. Predictions of PTT Model in Simple Shear 

In simple shear the tensors of the multi-mode PTT model are given by: 

Z(trTt)= EXP 
GCA, 

'-(xl + T' + T' ) 
V x x vy zz / 

(8.6) 

2 The convected time derivative in the material may be described by using a material frame of 
reference that is deformed and convected with the material. This can be understood to be the time 
derivative calculated in a coordinate system that is translating and deforming with the fluid. This 
then ensures frame invariance. There are a number of frame invariant choices for defining the 
material frame of reference and thus the overall rate of change. The most common choices are: 
contravariant base (upper convected derivative), covariant base (lower convected derivative) and 
corotating base (Jauman derivative). Since the upper convected time derivative emphasizes the 
stretching of materials planes, it is used in most constitutive equations. Usually, contravariant 
(upper) is implied in the phrase "convected time derivative" if nothing else is specified. (Bird, 1987) 
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Therefore, a set of coupled nonlinear algebraic equations result: 

O 

4 ) 

4 ) 

dx'„ ( aX 
+ EXP X 

• dt 

dxl 

X —— 

V 
•- ( 4 + 4> + 0 T ' „ - 2 ^ y t ' + ^ T T ' =0 (8.11) 

+ EXP Kt^+t^ + O t ' + =0 (8.12) 

. ^4 
' dt 

dx\ 

- + EXP 
aX . ( t » + T « + T - ) 

V " J Y * Z Z / 4 = 0 (8.13) 
j 

^ ^ + expj-^(x'„ + x; + 4 ) j 4 - X , Y T ; + ^ ( x ; + T ' J = - T 1 , . Y (8. 14) 

r aX, 
J 

+ expj L(txx + ?yy + i'zz) ^ - M ^ + ^ ( 4 + 0 = -nj (8.15) 

Since the stress tensor is symmetric, ri

yx = ti

xy \ equation 8.15 is trivial and it is only 

included for sake of completeness. Equations 8.11 to 8.14 form a system of 
ordinary differential equations which must be solved numerically to determine the 
transient expressions for the shear viscosity. 

The shear viscosity is given by: 
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Figure VIII.1. Experimental (symbols) and predicted (solid lines) steady shear viscosity. 

Figure VIII. 1 presents the experimental and predicted steady-state shear viscosity. 
This figures shows that shear viscosity predictions (solid lines) are very accurate 
with respect to the experimental data (symbols). PTT model parameters are 
shown in Table VIII. 1. 

Table VI11.1. PTT Model parameters 
Fitting Parameters 

I Elongational Shear 
Resin a V •' 
A 0.22 0.24 

B 0.24 0.15 

C 0.17 0.33 

D 0.12 0.31 

E 0.15 0.24 

F 0.22 0.24 

G 0.17 0.25 

H 0.2 0.25 
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C. Predictions of PTT Model in Shear-Free Flow 

In shear-free flow the tensors of the multi-mode PTT model are given by: 
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(8. 21) 

Therefore, a set of coupled nonlinear algebraic equations result: 

^ H - t ( 4 + t - + 4 ) 

' dt 

TL + ( 1 - ^ , 6 ( 1 + ^ = UML+B) (8. 22) 

T' + ( 1 - ^ , E ( 1 - 6 ) T ' = n,£(l-*) (8- 23) 

. ch' f a A , . , , 

X, . - f - + e x p ^ ( T ' „ + + X\Z) 
(8. 24) 
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Equations 8.22 to 8.24 form a system of ordinary differential equations which must 
be solved numerically to determine the transient values of the stress tensor 
components, which will be used to calculate the elongational stress {re = - t„) 

and then calculate the elongational viscosity, J]e(s,t), at a given elongational rate. 

Therefore elongational viscosity is given by: 

T —X 
£ ( 4 - 4 ) 

(8. 25) 

The a value must be of a magnitude that can fit the experimental transient 
elongational viscosity. A C-language code, created and validated by Mier (2000) 
was used for this purpose. 
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Figure VIII.2. Experimental (Symbols) and predicted (solid lines) elongational viscosity for syndiotactic 
resins. 
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Figure VIII.3. Experimental (symbols) and predicted (solid lines) elongational viscosity for isotactic resins. 

Figure VIII.2 and Figure VIII.3 present experimental and predicted elongational 
viscosity for the syndiotactic and isotactic resins under study respectively. The 
PTT model parameters used in the fitting for each resin are shown in Table VIII.1. 

These figures show that the PTT model predicts accurately elongational viscosity 
for isotactic resins (see Figure VIII.3). However, for syndiotactic resins (see Figure 
VIII.2) PTT model predictions are not that accurate, actually the fitting is very poor. 
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CHAPTER IX. PTT Model Modification 

Since PTT model gives poor predictions for elongational viscosity of the 
syndiotactic resins, it was decided to do an analysis to the elongational parameter 
(a) to look for possible explanations to the poor fittings and to propose a 
modification to the model. In this chapter is presented this analysis and the 
modification proposed as well as the predictions of the shear and elongational 
viscosity of the new model. 

A. Elongational Parameter Analysis 

It was decided to analyze the elongational parameter because it is in the rate of 
creation and destruction of junctions, which is related to the elastic energy. This 
analysis consisted of two parts, first the elongational parameter was obtained as a 
function of the extension rate and on the other hand, the PTT model was evaluated 
when there was no elongational parameter (a = 1) in order to observe its effect in 
the model output. 
Figure IX. 1 shows the analysis for one isotactic resin. Similar results were 
obtained for the other isotactic resins. This figure shows that the original PTT 
model fittings is very similar to the one obtained with an elongational parameter as 
a function of the extensional rate (s). This suggests that for isotactic resins the 
elongational parameter is a constant with respect to the extensional rate (see 
Figure IX.4). Furthermore, the predictions of the elongational viscosity using a = 1 
are very similar to the actual elongational viscosity, but shifted to a lower value. 
This shows that the elongational parameter (a) is just a damping function in the 
model; actually, it is equivalent to a vertical shift factor. 
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On the other hand, Figure IX.2 shows the elongational parameter analysis for one 
syndiotactic resins. Similar results were obtained for the rest of the syndiotactic 
resins. This figure confirms that the elongational parameters is just a damping 
function in the model, because the predictions of the elongational viscosity using 
a = 1 are again very similar to the actual elongational viscosity, but shifted to a 
lower value. 
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Figure IX. 1 . Elongational parameter analysis for isotactic resin F. 

100000 

(C 
£ ^ 

to o o 
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Figure IX.2. Elongational parameter analysis for syndiotactic resin A. 
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Figure IX.2 also shows that the PTT model using an elongational parameter as a 

function of the extension rate gives better fittings of the experimental data. It was 
observed that the functionality of the elongational parameter (a) with respect of the 
extension rate is a logarithmic function for syndiotactic resins, while isotactic resins 
do not present any functionality and the elongational parameter (a) could be 
considered as a constant value. Figure IX.3 presents the elongational parameter 
as a function of the extension rate for syndiotactic resins and their fitting to a 
logarithmic function. The functions for each resin as well as their correlation 
coefficient (R2) are also presented in this figure. Figure IX.4 presents the behavior 
of the elongational parameter for isotactic resins. The straight lines in this figure 
show the average value of the elongational parameter. The deviation of the points 
from the average value is between ± 5 %. 
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Figure IX.4. Elongational parameter as a function of extension rate for isotactic resins. 

B. Modification 

The functionality shown by the elongational parameter with respect of the 

extension rate suggests a modification in the elongational parameter. On the other 

hand, according to several authors (Larson, 1987; Stephenson, 1989), the shear 

parameter, §, in the PTT model causes the violation of the Lodge-Meissner relation 

which relates the first normal stress difference to the shear stress after a step 

T — T 
shear strain of magnitude y, by y = — — — . By setting this parameter to zero, this 

violation is avoided (Larson, 1987; Verbeeten, 2001 ; Tanner, 2002). Then, using 

these findings, a modification of the model is proposed as follows: 
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Z(trTt)T, + 4 TK1) = -jjtr 
f 

Z(trT,) = exp 
a/,, 
—Lrrr, 

(9.1) 

(9. 2) 

(9. 3) 

where a is a constant (C) for simple shear, and for shear-free flow is given by 

a = Aln(s)+B (9. 4) 

C. Predictions in Simple Shear 

In simple shear the tensors of the modify PTT model are given by: 

Tt = 

r = 

T1 0 
xy < i 0 

0 0 rl 
(0 y 0X 

y 0 0 
0 0 0 

r 
a 

v 

dt T 
yx yy 

0 
0 

V 0 0 ri o 
r' 0 
0 0 
0 0 

(9.5) 

(9. 6) 

(9.7) 

Besides the fitting parameter a is just a constant C 

a = C (9.8) 

Introducing these definitions in the modified PTT model, a set of coupled nonlinear 
algebraic equations result: 
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4) 
' dt 

( CX. A 

dt' 
A — — + e x p 

' dt 

• + e x p 44 + r ^ 

V It 
r 

A , — — + e x p 

XX: yy zz 
/ 

V " W " yy " ZZ / 
J 
\ 

T'xx-2XJT'=0 

r' = 0 

C A , 

V".!Q; * V ZZ / 
V 

TL =0 

dr' ( CX A , - f + e x d KrL+̂  + O *'xy-Wyy=-lj 

A ^ + e x / - ^ ( r ; + r < + 4 ) V - A , r r L = - 7 , / 

' dt 1, 

(9.9) 

(9. 10) 

(9. 11) 

(9. 12) 

(9. 13) 

Just like the in the original PTT model, the stress tensor is symmetric, ri

yx=r'xy\ 

therefore equation 9.13 is trivial. Equations 9.9 to 9.12 form a system of ordinary 
differential equations which must be solved numerically to determine the transient 
expressions for the shear viscosity. 

The shear viscosity is given by: 

2X w _ < = i 

Y Y 
(9. 14) 

A Fortran-language code was developed to solve this model (see Appendix B) with 
satisfactory results. Figure IX.5 shows the modified PTT model predictions in 
shear flow for one isotactic (Resin E) and one syndiotactic (resin A) resin. Similar 
results are obtained for the rest of the resins. Table IX. 1 present the shear 
parameters (C) used in the fitting of the experimental data for all the resins. The 
transient response of the model for resin A and resin E could be seen in Figure 
IX.6 and Figure IX.7 respectively. Similar results were observed for the rest of the 
resins. 
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Table IX. 1. Shear parameter (C) for the Modified PTT Model for all resins 

Resin C Resin C 

A 2.8 E 2.33 
B 4.91 F 5.1 
C 3.92 G 4.24 
D 3.21 H 3.67 

1 0 0 0 0 

1 0 0 0 

1 0 0 

1 0 

1 0 Shear Rate [/s] 1 0 0 0 1 0 0 0 0 

Figure IX.5. Modified PTT model's predictions and experimental shear viscosity for syndiotactic resin A 
(open symbols) and isotactic resin E (filled symbols). 
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Figure IX.6. Prediction of the modified PTT model for the transient shear viscosity of synditactic resin A at 
different shear rates. 
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Figure IX.7. Prediction of the modified PTT model for the transient shear viscosity of isotactic resin E at 
different shear rates. 

D. Predictions in Shear- Free Flow 

In shear-free flow the tensors of the modified PTT model are given by: 

Z{trti) = exp 
ok 

1 

L(x' +x' + T ' ) (9. 15) 

0 °] XX 

0 TL 0 0 
yy 

0 0 r ' 
V 

0 
27) 

(9. 16) 

Y = 

'-(l + b) 0 0 " ! 

0 -(l-b) 0 
0 0 2 

(9.17) 
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dt 

l 
XX 

0 0 
0 0 

0 0 lZZ j 

— E 0 

0 

0 0 

-(\-b)xL 0 

0 2T' 

(9. 18) 

Therefore, a set of coupled nonlinear algebraic equations result: 

4 ) 

4 —f - + exp L(*„ + r w + O 

A, —z- + exp| ,-(r'xx+r,

yy + r'zz) 
1 dt 

Tt

xx+Aie{\ + b)T^=r1,S(\ + b) (9.19) 

Ti

yy+Als{\-bYyy=r]i£{\-b) (9.20) 

4 - 2 ^ 4 = -2/^ (9.21) 

Equations 9.19 to 9.21 form a system of ordinary differential equations which must 
be solved numerically to determine the transient values of the stress tensor 
components, which will be used to calculate the elongational stress (te = r2z - r n ) 

and then calculate the elongational viscosity, rje(s,t), at a given elongational rate. 

Therefore elongational viscosity is given by: 

£ 

I ( ^ - C ) (8. 26) 

The parameter a is given by equation 9.4, where the A and B values must be of 
magnitude that can fit experimental elongational viscosity. A Fortran-language 
code was developed to solve this model (see Appendix B). Figure IX.8 shows the 
predictions of elongational viscosity for resins A and E. Figure IX. 11 and Figure 
IX.12 present the modified PTT model's predictions and experimental elongational 
viscosity for all syndiotactic and isotactic resins respectively. The parameters used 
in the fitting could be seen in Table IX.2. Finally, the transient response of resins A 
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and E at different extension rates can be seen in Figure IX.11 and Figure IX.12. 
Similar results are obtained for the rest of the resins. 
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Figure IX.8. Modified PTT model's predictions and experimental elongational viscosity for syndiotactic 
resin A (open symbols) and isotactic resin H (filled symbols). 
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Figure IX.9. Modified PTT model's predictions and experimental elongational viscosity for syndiotactic 
resins. 
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Figure IX. 10. Modified PTT model's predictions and experimental elongational viscosity for isotactic 
resins. 

Table IX.2. Elongational fitting parameters for the Modified PTT Model for all resins. 
Fitting Parameters 

Elongational 
A B 

A 0.05 0.06 
B 0.07 0.02 
C 0.057 0.009 
D 0.0714 -0.106 
E: 0 0.16 
F 0 0.26 
G 0 0.21 
H 0 0.2 
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Figure IX. 11. Prediction of the modified PTT model for the transient elongational viscosity of syndiotactic 
resin A at different extension rates. 
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Figure IX. 12. Prediction of the modified PTT model for the transient elongational viscosity of isotactic resin 
E at different extension rates. 
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CHAPTER X. POM - POM Model 

This chapter presents the prediction of rheological properties using the extended 
pom-pom model (XPP) introduced in Chapter II. Section A presents the pom-pom 
and XPP model. Section B shows the deduced expressions and predictions of the 
shear viscosity. Section C shows the deduced expression for the elongational 
viscosity predicted by the XPP model, as well as the prediction of such 
elongational material function for the resins under study. 

A. The POM - POM and XPP Model 

Polymer melts with long chain branching have rheological properties that differ 
distinctly from those of the linear polymers or polymer with side braches too short 
to entangle with surrounding polymers. The POM-POM model is based on the idea 
that the strain hardening behavior in extensional flow of multiply branched polymer 
molecules is due to the trapped polymer chain segments in between branch points. 
The simplest molecular structure that would have this property is an idealized 
"pom-pom" molecule (see Figure X.1). 

An idealized molecule called pom-pom, has a single backbone with multiples 
branches emerging from each end. Because these branches are entangled with 
the surrounding molecules, the backbone can readily be stretched in an 
extensional flow, producing strain hardening. In start-up of shear, however, the 
backbone stretches only temporarily, and eventually collapses as the molecule is 
aligned, producing strain softening. 
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Figure X. 1. Description of the Pom - Pom molecule. 

After a strain (deformation), the orientation of the chains is remembered (fluid 
memory). At short times the polymer chains are trapped in tubes. At longer times 
the arms can relax from the free ends by fluctuation. At still longer times the arms 
have totally relaxed and the backbones can move and relax (by reptation). 

The POM-POM model consists of an equation set that describes the orientation 
and stretch of the pom-pom backbones as they flow. The number of arms of each 
mode is used as the parameter to fit extensional viscosity measurements. As it 
was mentioned on Chapter II, there are several versions of this model. The 
extended Pom - Pom model (Verbeeten, 2001), XPP model, overcome the 
drawbacks of the original version, besides it presents some mathematical 
advantages when solving the model. 

The XPP model is written as: 

R = G0(3A2S-L) (10.1) 
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where S is the orientation tensor and it satisfies the evolution of orientation 

equation: 

Sm + l[y : S ] S + — ^ 3aA4S • S + (l - a - 3aA4tr{S • S))s - fl—^1/ 
A0bA 3 

= 0 (10.2) 

A,0B is the relaxation time of the backbone tube orientation, A is a fitting parameter 

related to the amount of anisotropy of the material. A is the stretch and satisfies the 

evolution of stretch equation: 

A = A B : S ] - I - ( A - l ) (10.3) 

A,S is the stretch relaxation time, and it is given by 

As=A,se~^ (10.4) 

where v is a measure of the influence of the surrounding polymer chains on the 
backbone tube stretch. It is approximated by 

v = - (10.5) 
q 

where q is the number of dangling arms in the 'pom-pom" molecule (see Figure 
X.1). This is taken as a fitting parameter too. 

B. Predictions of XPP Model in Shear- Free Flow 

In shear-free flow the tensor of the XPP model are given by: 

1 1 1 



r 

r -

-£ 0 

0 - £ 

0 0 

*•» 0 

0 T „, 0 

0 0 

X 0 
0 

yy 0 0 

s 
V 

o 

o 

2k 
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0 

0 

0 

0 0 ^ 0 0 ^ 
0 0 - £• 0 0 0 

yy 
0 

0 0 22 y I o 0 ^ 2 2 , 

\f:S]=-£Sxx-£Syy + 2£S 
tr(S-S)=S2

xx+S2

yy+Sl 

(10.6) 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

It is worth to mention that, since Txx and % components of the stress tensor are the 
same, Sxx and S y y components of the orientation tensor S, are the same too. Now, 
introducing these definitions in the model, we obtain a system of three ordinary 
differential equations. 

dt 

dt 

A, •0b 

(10.12) 

A) 6 3AobA2 
0 

§ = - 2 ^ - 5 j A - | ( A - l ) dt A. 

(10.13) 

(10.14) 
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Solving simultaneously these differential equations, we obtain S x x, Szz and A as a 
function of time. Now, we obtain the transient stress components using the 
equations: 

(10.15) 

r „ = 3 G 0 A 2 S „ - < 7 , (10.16) 

Finally we obtain elongational viscosity using 

(10.17) 
e 

A FORTRAN - language code was developed in order to make the XPP model 
predictions. This code was validated using the experimental data presented by 
Verbeeten et. al. (2001). For further information about the code see Appendix B. 

Figure X.2 and Figure X.3 show the predictions of the XPP model for syndiotactic 
and isotactic resins respectively. It can be seen that the fitting is good for most 
resins; however, the fitting process is very complicated because the fitting 
parameters must be fitted for each relaxation element. This means that there are 
twelve fitting parameters3 for most resins. These are too many parameters, which 
mean that the model is not that robust. In addition, because of the number of 
fitting parameters, more than one combination could be obtained. In any case, 
Table X.1 shows the parameters used in the fitting of all the resins. It is worth to 
mention that these parameters where found by fitting the experimental elongational 
viscosity, and these same parameter, according to Verbeeten et. al. (2001), must 
fit accurately the shear viscosity curve. Figure X.4 and Figure X.5 show the 
transient response of resin A and E respectively. Similar results were obtained for 
the rest of the resins. 

3 All the resins present four relaxation elements, except for resins C and D, which present three 
relaxation elements as shown in Table V.4. Therefore, for resins C and D, there are nine fitting 
parameters. 

113 



100000 -, 

1000 -I , , . . • • • • • r ^ ^ - ^ - , 

1 10 100 1000 
Extension rate [Is] 

Figure X.3. XPP model's predictions and experimental elongational viscosity for isotactic resins. 
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Table X. 1 . XPP model parameters for fitting the elongational viscosity for all the resins. 
RESIN A RESIN B 

I Q I XOB,I' fate, I OH I Q T XOB.I 1 AOS, I CM 

1 1 17 0.1 1 1 15 0.05 
2 1 9 0.1 2 1 11 0.05 
3 1 0.2 0.1 3 1 0.75 0.1 
4 2 0.2 0.1 4 2 0.3 0.1 

RESIN C RESIN D 

I Q . XOB,I ' XOS, I OH OH 

1 1 15 0 1 1 14 0.15 
2 1 9 1 2 1 8 0.01 
3 2 0.4 1 3 1 0.3 0.01 

RESIN E RESIN F 

I Q * XOB.I / XOS, I C T I I hx>,i 1 *OS, I m 
1 1 3.5 0.3 1 1 3.5 0.2 
2 1 3.5 0.3 2 1 2 0.2 
3 1 2.9 0.2 3 2 2 0.2 
4 3 2.9 0.2 4 2 2 0.2 

RESIN G RESIN H 

I Q I OH I Q I XOB.I / XOS, I OF 
1 1 3.3 0.2 1 1 3 0.2 
2 1 2.8 0.2 

CM
 1 3 0.1 

3 2 2.5 0.1 3 1 2.6 0.1 
4 3 2.5 0.3 4 

CM
 1.8 0.1 
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Figure X.4. XPP model's predictions of transient elongational viscosity for syndiotactic resin A at different 
extension rates. 
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Figure X.5. XPP model's predictions of transient elongational viscosity for isotactic resin E at different 
extension rates. 

C. Predictions of XPP Model in Simple Shear 

In shear-free flow the tensor of the XPP model are given by: 

XX xy 

RL 0 y* yy 0 
0 0 0 77 J 

0 Y Q\ 

Y 0 0 
0 0 0 

° r c 
0" 

S'yx 0 
I 0 0 5-J 

(10.18) 

(10. 19) 

(10. 20) 
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s - i -

m - dt 

S'xx S'xy 0 ^ 0 ^ 

S'yx 0 -y 0 0 

I 0 0 I 0 0 0 

J 
[y • s]= y^ + S'J 

tr{S • iS) = 5 ^ + SJL + + S' 

(10.21) 

(10.22) 

(10.23) 

It is worth to mention that, since t X y and x y x components of the stress tensor are the 
same, S x y and S y x components of the orientation tensor S , are the same too. Now, 
introducing these definitions in the model, we obtain a system of five ordinary 
differential equations. 

dS 3aA2 < , , \ l-a-3aA4(s2

xx+S2+S2

z+2S2) \ - a 

dt v ' " " Aot / I q 6 A 3 ^ A 2 

(10.24) 

dS yy 

dt 
3aA2 / , ,\ \-a-3aAHsl+S2

w+Sl+2S2) \-
+ WVS„ + ̂ ) + V \bA S» ~~ 

a 

(10.25) 

dt 
, 3 a A 2 / \ l - t f - 3 r ^ 4 f c + S 2 + S 2 + 2 S 2 ) 

5 ^ = 0 

* ^ A * At A 2 3 ^ F T A 2 

f - ^ A - ± ( A - l ) 

(10.26) 

(10.27) 

(10.28) 
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Solving simultaneously these differential equations, we obtain SxX, S x y , S y y , S z z and 

A as a function of time. Now, we introduce them to the components of the 

viscoelastic stress equations, given by: 

r „ = 3 G 0 A X - < 7 0 (10.29) 

r v = 3 G 0 A a 5 v - G 0 (10.30) 

r w = 3 G 0 A 2 5 w - G 0 (10.31) 

r = =3G 0 A 2 5 z z - G 0 (10.32) 

Finally we obtain the transient shear viscosity using 

n{y,t)=— (10.33) 

A FORTRAN - language code was developed in order to make the XPP model 
predictions. This code was validated using the experimental data presented by 
Verbeeten et. al. (2001). For further information about the code see Appendix B. 

As mentioned in previous section, the same parameters used to fit the elongational 
viscosity are used to fit the shear viscosity. These parameters are presented in 
Table X.1. Figure X.6 show the XPP model's predictions in comparison to the 
experimental values for all the resins. It can be seen that the model predicts 
satisfactorily the shear viscosity too. 
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Figure X.6. XPP model's predictions and experimental shear viscosity for all the resins. 
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CHAPTER XI. Discussion of Results 

A. Comparison of viscoelastic properties of syndio- and 

isotactic polypropylenes. 

It is known that polypropylene is a polyolefin which monomer (propylene) consists 
of a methyl group attached to a vinyl group. The existence of this methyl group 
allows different stereochemical configurations of polypropylene (see Figure XI.1). 
Figure XI. 1 (a) shows the atactic polypropylene. It contains the methyl groups 
placed randomly on both sides of the chain. On the other hand, Figure XI. 1 (b) 
presents the isotactic polypropylene, which has all the methyl groups on one side 
of the chain. Finally, syndiotactic polypropylene, in which methyl groups come on 
alternating sides of the chain, is shown on Figure XI.1 (c). 

a. Atactic Polypropylene 

CH. CH. 
I I 

CH~] 
I t 

- CH, — CH — CH, —CH — CH, —CH — 
1 

CH, 
1 

—CH 
1 
CH a 

b. Isotactic Polypropylene 

CH- CH-
I " I 1 

CH, 
| 

i I 
- CH ; — CH — CH, —'CH — CH. —CH — CH, 

1 
—CH 

c. Syndiotactic Polypropylene 

CH. 
1 

CH, 
f I 

- CH, — CH — CH, —CH — CH-
' 1 

CH, 

— CH - CH, —CH 
1 

• 

Figure XI. 1. Different stereochemical configurations of polypropylene. 
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Recently, with the developing of the metallocene based catalysts, the syndiotactic 
polypropylene has become a very important material in plastic industry. 
Nevertheless, the research that has been carried out on this material is limited. In 
addition, the information with respect to the relation of the rheological properties 
and the esterochemical configuration of polypropylene is limited. However, from 
the experimental data obtained for this thesis, some interesting observations about 
the role of stereoregularity on the rheological behavior could be made. 

Figure V.1 through Figure V.8 show the storage and loss moduli, including the 
crossover point, for all the resins. Even though the storage and loss moduli do not 
present any trend or significant difference between isotactic and syndiotactic 
resins; the crossover points do present some trends (see Table V.1). 

32000 
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Figure XI .2. Relationship between isotactic and syndiotactic resins' crossover modulus. 
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Figure XI.3. Relationship between isotactic and syndiotactic resins' crossover frequency. 

Figure XI.2 and Figure XI.3 show the relationship between isotactic and 
syndiotactic resins' crossover modulus and frequency respectuvely. It is observed 
in these figures that there is a logarithmic functionality in both cases. In Figure XI.2 
there is a poor fitting (R2=0.4938); however, it can be seen that it is only one point 
(resin) out of trend (Resin F, approximatily +10%) . This suggests that there is a 
slight experimental error in this point. This is opinion is reinforce by Figure XI.3, 
because again Resin F point is slightly out of trend, although in this case the fitting 
is a lot better (R2=0.9616). 

On the hand, it was also found that there is a relationship between the crossover 
point and the MFI. Figure XI.4 and Figure XI.5 present the relationship between 
MFI and the crossover modulus and frequency respectively. It can be seen in 
these figures that isotactic and syndiotactic resins have a different behavior, but 
both present the same power law functionality. Figure XI.4 shows a poor fitting for 
isotactic resins because of a point out of trend. This point is again corresponding 
to Resin F, which confirms that it might be an experimental error in this point. 
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Figure XI.4. Relationship between crossover modulus and MFI. 
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Figure XI.5. Relationship between crossover frequency and MFI. 

On the other hand, it was also observed a trend in the horizontal activation 
energies, E H (see Table V.5). It can be seen that the horizontal activation energies 
for syndiotactic resins are about 15 to 20% larger than those for isotactic resins. 
This difference was also observed by Eckstein et. al. (1997). 
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Another important observation is shown in Figure XI.6. It was observed that 
plotting the loss tangent (tan 5 ) versus the complex modulus (G*) at different 
temperatures, data of all isotactic resins superimpose in the same curve. The 
same happens with syndiotactic resins. These curves present power law 
functionalities, as it is presented in Figure XI.6. 
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Figure XI.6. Loss tangent vs. complex modulus data at different temperatures for all resins. 

Now then, capillary data shows similarities (in both, shear and elongational 
viscosity) between isotactic and syndiotactic resins with similar MFI (see Figure 
VI.3 and Figure VI.4). However, it is worth to mention that Trotoun ratio4 (Figure 
VI.5) shows significantly differences, especially for high shear (extension) rates. 
Trouton ratio for isotactic resins is considerably higher than syndiotactic resin's 
ratio. Therefore, Trouton ratio seems like a good alternative to discriminate 
isotactic and syndiotactoc resins with the same MFI. However, it is recommended 
more experimental data to have more conclusive results. 

4 Ratio between elongational and shear vicosity. 
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In addition, creep and recovery data (Chapter VII) show that the strain under the 
same stress is very similar for both types of resins. Syndiotactic resins present a 
slightly higher strain. It can also be seen that there is a relationship between the 
MFI and the strain (creep compliance) as well as to the time that the applied stress 
lasts (creep time). Figure XI.7 shows that there is an exponential functionality 
between the maximum compliance (Jmax) and the MFI in spite of the type of resin. 
This figure also shows that the longer the creep time, the higher the maximum 
compliance. 

Figure XI.7. Creep compliance relation to MFI and creep time. 

Now then, all the differences and similarities found in the rheological behavior must 
be related to molecular aspects related to the stereochemical configuration, 
because all the experimental conditions were the same for all the resins. It is 
thought that a syndiotactic molecule, because of the configuration of the methyl 
groups, might behave as a branched molecule. And then, it would produce more 
entanglements with its surrounding molecules, creating a more complex network 
than isotactic molecules. 
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In any case, experimental data show significant viscoelastic differences between 
these types of resins. However, it is recommended further analysis to evaluate 
these differences and relate them to fundamental aspects of the molecular 
conformation in the melt. 

B. PTT Model 

Since its publication (1977), PTT model has been used by many researchers to 
model viscoelastic properties. It is considered like one of the best costitutive 
equations. Besides, it has been used to model processing behavior in processes 
such as fiber spinning. (Phan Thien and Tanner, 1977; Phan Thien, 1978; 
Stephenson, 1986; Larson, 1987; Tanner, 1998; Tanner, 2003). 

A sensibility analysis on the fitting parameters (elongational a and shear Q was 
done in order to observe the effect of the fitting parameters in the model output. 
The model output features evaluated were the zero-shear viscosity, no; the slope of 
the viscosity curve; the elongational viscosity at low extension rate, tieo; and the 
slope of the elongational viscosity curve. Table XI. 1 shows the results of this 
analysis. The arrow pointing upwards means that the model output increases, if 
pointing downwards the model output decreases and both means no change in the 
model output. 

Table XI. 1. PTT model parameters effects on the model output. 
If the parameter then then then then 
increases n 0 Slope r\ vs y ' to Slope tie vs s 

a * 
\ * * * * 

It can be seen in Table XI. 1 that the elongational parameter (a) does not have any 
effect on the steady state shear viscosity curve. Nevertheless, this parameter has 
a huge effect in the transient behavior of the shear viscosity. If this parameter is 
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equal to zero, the transient response of the model will be an oscillatory curve that 

will reach the same steady state value. On the other hand, it is shown in this table 
that the shear parameter (£) has a significant effect on the elongational viscosity 
curve, which is contradictory with its name. 

In any case, in Chapter VIII the PTT model was used to fit experimental data of the 
isotactic and syndiotactic polypropylene resins. In Table VIII.1 are presented the 
fitting parameters for all the resins. Mier (2000) found an empirical relationship 
between the shear and the elongational parameter using metallocene-based 
isotactic polypropylene resins. This relationship was a power law function; 
however, this function do not applied for the resins under study as it is shown in 
Figure XI.8. 

0.1 

• Isotactic 
• Syndiotactic 

\ = 0.0393a 
R2 = 0.8775 

1 . 0 0 4 8 

0.1 a 
Figure XI.8. Relationship between PTT model's shear and elongational parameters. 

Nevertheless, practical empirical relationships were found for the fitting 

parameters. The elongational parameter (a) was found to be related to percentage 

of xylene soluble (XS) as shown in Figure XI.9. It worth to mention that 
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syndiotactic and isotactic resins present the same negative exponential 
functionality, but with different function parameters. 
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Figure XI. 10. Relationship between shear parameter and the crossover frequency. 
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Now then, the shear parameter (£) presents an exponential functionality with 
respect to the crossover frequency (wx). In this case, both resins present the exact 
same functionality, but two points corresponding to syndiotactic resins are out of 
trend. This deviation from the trend might be related to the poor fitting of the model 
for the syndiotactic resins. It worth to remember that the model fits excellently the 
isotactic resins' data; however, it fails to predict accurately the syndiotactic resins' 
experimental data as shown in Chapter VIII. 

Since the PTT model fails to predict accurately the elongational viscosity of the 
syndiotactic resins, a modification was proposed in Chapter IX. The same 
parametric analysis done to the PTT model (see Table XI. 1) was done to the 
modified PTT model. Table XI.2 shows the results of this analysis. 

Table XI.2. Modified PTT model parameter effects on the model output. 
If the parameter then then then then 
increases r\0 Slope TI vs y TfeO Slope tie vs e 

A - * 
B - * 
C * * - -

The modification proposed to the model gives a better fitting of the experimental 
data for both, isotactic and syndiotactic resins, as shown in Chapter IX. With the 
modification, now there are three parameters. There are two elongational 
parameter (A, B) and one shear parameter (C). Even though it seems like a more 
complex constitutive equation because of the number of parameters, it is not. The 
elongational parameters are only used in predictions of the elongational flow, while 
the shear parameter is only used to fit shear flow experimental data. 

Now then, since A, B and C parameters control the model predictions; it was 
thought that these adjustable parameters should be related to molecular aspects 
and that there is a procedure to determine these parameters other than the empiric 
fitting process. 
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It was found that these parameters are related with standard properties and 
molecular aspects. It was observed that the shear parameter (C) is related to MFI 
as shown in Figure Xl.11. This figure shows that for resin with similar MFI, the 
shear parameter C is very similar too. The slight differences could be due to the 
experimental error in the MFI determination. However, no quantitative relationship 
was found. 

o 3 

1 
a Syndiotactic 
• Isotactic 

1 0 MFI 1 5 20 25 

Figure XI. 11. Relationship between modified PTT model shear parameter C and the MFI. 

Nonetheless, it was found that this parameter is related to the average number of 
entanglements (Mw/Me)5. Figure XI. 12 shows a logarithmic functionality between 
shear parameter C and the average number of junctions Mw/Me. Then, this might 
imply that the number of junctions in the melt network is the determinant issue in 
shear flow for both, isotactic and syndiotactic resins. Anyway, it is recommended 
further study to have more conclusive results. 

5 Me refers to the average molecular weight between entanglements, then Mw/Me is the average 

number of entanglements. Me is obtain using the plateau modulus definition, G°N - . The 
Me 

plateau modulus can be obtained from the frequency where the minimum of the loss tangent (tan 5) 
is located, G°N = G'(tix)mSmin (Eckstein, 1998). The theoretical density of polypropylene at 200 °C 
was found to be 0.7617 gr/cm3 (Bicerano, 1993). 
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Figure XI. 12. Relationship between modified PTT model shear parameter C and Mw/Me ratio. 

On the other hand, the elongational parameter B was found to be related with
percentage of xylene soluble (XS) and to the third moment of the molecular we
distribution, Mz. Even though the relationship with the percentage of xy
solubles (XS) gives a better correlation coefficient (R2), both could be usefu
further analysis of the model. The relationship between B and XS is linear, wh
presents a logarithmic functionality with respect to Mz as it is shown in Figure X
and Figure XI. 14 respectively. 

Regarding the relationship to XS, it can be seen that a higher value of XS giv
lower value of B (which means that a higher value of XS gives a lower valu
elongational viscosity). This behavior can be explained considering the 
molecular weight species. It is thought that shorter chains (low molecular we
might act like a "lubricator" between the longer chains (high molecular weight)
help them flow, which means a lower stress and consequently a lower viscosity

On the other hand, the relationship found between B and Mz indicates that a hi
value of Mz gives a higher value of B (which means a higher value of elongat
viscosity). It is known that Mz is related to the longest chains in the melt and
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thought that these chains, because of their size, present more entanglements and 
impediments to flow, and then a higher elongational viscosity. 

0.3 -| 

-0.15 -
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XS 

Figure XI. 13. Relationship between modified PTT model elongational parameter B and the percentage of 
xylene soluble. 
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Figure XI.14. Relationship between modified PTT model elongational parameter B and molecular weight 
average Mz. 
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Figure Xi. 15. Relationship between modified PTT model elongational parameter A and Mz/Me ratio. 

Finally, the elongational parameter A was found to be related, with an exponential 
functionality to the Mz/Me ratio as it is presented in Figure XI. 15. The Mz/Me ratio 
is related to the average number of junctions of the longest chains in the polymer 
melts. Then, it can be conclude that the elongational rheological properties are 
related to the longest chains in the melt. 

It can be seen that Mz, Me and Mw result to be the important issues in the 
determination of the fitting parameters of the modified PTT model. This suggests 
that with an accurate determination of these molecular aspects, the shear and 
elongational viscosity could be determined easily using this new model. 

On the other hand, since these molecular weight distribution features are the most 
important factors in the determination of the m-PTT model parameters, it is thought 
that the viscoelastic response of a material is determined by the average number 
of entanglements (Mw/Me) and the number of entanglements in the longest chains 
(Mz/Me). 
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Therefore, it is thought that an accurate determination of the number of 
entanglements in a polymer melt could give a lot of information about the 
rheological response of the material. 

In addition, it can be seen that the relationships presented between the parameters 
and the molecular features are logarithmic and exponential functions. It is thought 
that these functions could be related between them and that a new function could 
be obtained. 

All this could be explained with the findings obtained during the simulation of the 
random growth of polymers chains using random and self-avoiding walks (see 
Chapter XII). It was found that the number of junctions between two chains 
presents an exponential functionality with respect to the distance between them at 
their origin (this distance was taken to be the active sites in the catalysis system). 

It worth to mention that this function is very similar to the PTT model's rate of 
creation and destruction of junctions, which suggest that there is a relationship 
between the catalysis system and the rheological behavior. Such relationship 
might be implied in the relationships presented before, but further study is needed 
to make conclusions. 

C. XPP Model 

In Chapter X, the XPP model was used to predict shear and elongational viscosity 
of the resins under study. The XPP model, based on the Pom-Pom model 
introduce by McLeish and Larson (1998), is considered a breakthrough in the field 
of viscoelastic constitutive equations. The XPP model was created to predict the 
viscoelastic behavior of highly entangled polymer melts. It is based on the tube 
model (Doi-Edwards) and a simplified topology of branched molecules (pom-pom 
molecule). 
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According to several authors (Blackwell, 2000; Chodankar, 2001; Graham, 2001; 

Verbeeten, 2002) the Pom-Pom and XPP models accomplish a correct nonlinear 
behavior in both elongation and shear flow. It gives excellent results in HDPE and 
LDPE resins; however, it hadn't been used in polypropylene resins before. 

The application of this model to the polypropylene resins gives a good fitting of the 
viscoelastic behavior. Nonetheless, it is worth to mention that the fitting process is 
complicated because the fitting parameters must be fit for each relaxation element. 
Then, there are too many fitting parameters, which means that the model is not 
that robust. 

On the other hand, the shear viscosity is predicted (using the same parameters) 
after fitting the elongational viscosity first. This is not what we are looking for. It is 
needed a way to found elongational viscosity, but this model needs the 
experimental data to make the fitting, and then the shear viscosity is calculated. 
The shear viscosity is easy to obtain, then it would be better to fit the experimental 
data of the shear viscosity and then predict the elongational viscosity, but this can't 
be done with this model. 

The fitting parameters are related to molecular aspects according to the model 
creator (Verbeeten, 2001). The q parameter is the number of dangling arms in a 
pom-pom molecule and a is a measure of anisotropy in the material; however, no 
relationship between the parameters and the standard properties or molecular 
aspects was found. 

In any case, a sensibility analysis on the fitting parameters, similar to the one done 
to the PTT and modified PTT models, was done. Table XI.3 shows the results of 
this analysis. It worth to remember that the parameters must be fitted for each 
relaxation element, and then the information in this table is the general effect of the 
parameter in the model output. 
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Table XI.3. XPP model parameter effects on the model output. 
If the parame iter then then then then 

increases no Slope r\MS/ r\iO Slope TJ, vs s 

IT 

a t * 

It would be really helpful to develop a practical method to make the fitting of the 
XPP model, because it is very complicated to fit that many parameters. Actually, it 
is thought that there could be some relationships between the parameters, which 
would reduce the number of fitting parameters and make easier and more useful 
this model. 

D. Constitutive Equations Comparison 

In this section a comparative analysis of the constitutive equations used in this thesis is 
presented. PTT and XPP model were used in Chapters VIII and X respectively. In 
addition, a modified PTT was proposed and evaluated in Chapter IX. Table XI.4 shows 
a summary of each constitutive equation. On the other hand, Table XI.5 presents the 
most important advantages and disadvantages of the models under study. 

Figure XI. 16 shows the three models' predictions of elongational viscosity for 
syndiotactic resin A. It can be seen, that PTT model fails to predict accurately this 
propertie, while mPTT and XPP models give good predictions. Since XPP 
model's fitting process and mathematical computations were found to be more 
complicated, the modified PTT model (mPTT) seems to be an excellent alternative 
in constitutive modeling. This new model predicts accurately shear and 
elongational properties and its application is very easy. Even though, it has to be 
fitted twice, one for shear and another for elongational; it does not represent any 
difficulty, because the fitting process is very easy. In addition, the fitting 
parameters are related to molecular aspects, which could help in the fitting 
process. 
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Table XI.4. Comparison of the constitutive equations used in this thesis. 

Constitutive 
equation 
Development 

Parameters 

Fitting 
process 

Major 
differences 

Remarks 

Equations 8.1, 8.2 and 8.5 

Molecular network theory 
which considers that the 
number of subunits 
between two junctions has 
a distribution giving 
multiple relaxation times. 
(Phan Thien and Tanner, 
1977) 
Shear parameter (Q 
Elongational parameter 
(«) 

The shear paramters is 
obtained from steady 
state shear viscosity data. 
Afterwards, the a is used 
to fit the elongational 
viscosity. 

1. Based on the idea 
that the elastic energy 
of the network strand 
is important (Phan 
Thien and Tanner, 
1977). 

2. The shear parameter 
(£) has a significant 
effect on the 
elongational viscosity. 

3. Poor fitting in 
syndiotactic resins' 
data. 

1. Predictions are in 
good agreement for 
isotactic resins. 

2. It had been used by 
other researchers to 
predict processing 
characteristics with 
statisfactory results. 
(Mier, 2000) 

3. The shear parameter 
was found to cause 
some problems such 
as the violation of the 
Lodge-Meissner 
relation (Larson, 
1987) 

m-PTT 
Equations 9.1, 9.2, 9.3 
and 9.4 
Semiempirical 
modification of the PTT 
model. 

Shear parameter (C) 
Elongational parameters 
(A and B) 

Different fitting processes 
are made for shear and 
elongational flow. On one 
hand, C is used to fit 
shear viscosity and on the 
other hand, A and B fit the 
elongational viscosity. 

1. The shear parameter 
is set to zero and the 
elonation parameter 
is a function of the 
extension rate. 

2. Complete different 
parameters for each 
type of flow. A and B 
are not used in shear 
flow, while C is not 
used in elongation. 

3. Excellent fitting of the 
syndiotactic resins. 

1. Predictions are in 
excellent agreement 
to experimental data. 

2. Fitting parameters are 
related to standard 
quality properties and 
molecular weight 
distribution aspects. 

3. Further study is 
recommended. 

Equations 10.1, 10.2, 
10.3,10.4 and 10.5 
Tube model theory and a 
simplified topology of 
branched molecules. 
(Verbeeten, 2001) 

Number of dangling arms 
(q) 
Stretch relaxation time 
(*<*) 
Measurement of 
anisotropy (a) 
First, the elongational 
viscosity must be fitted, 
and then, using the 
parameters found in the 
fitting, the shear viscosity 
is fitted. The parameters 
must be fitted for each 
relaxation elements, then 
the actual number of 
fitting parameters is 3 x N, 
where N is the number of 
relaxation elements. 
1. Developed for high 

branched polymers 
such as LDPE melts. 

2. Modification of the 
orientation and 
stretch in the original 
Pom-Pom model 
(McLeish, 1998). 

3. Good fitting in 
syndiotactic resins' 
experimental dat. 

1. Predictions are in 
good agreement for 
both types of resins. 

2. There are too many 
fitting parameters, 
which implies that the 
model is not robust. 

3. Since it is a relatively 
new model (2001), 
further study is 
recommended. 
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Table XI.5. Advantages and disadvantages of the constitutive equations used in this thesis. 
Model Advantages 

The mathematical computations 
needed in the solving of the model 
are fairly simple, 

o The fitting process is simple. 
•=> Predictions are in good agreement to 

experimental data. 

•=> Excellent predictions in shear and 
shear-free flow for syndio- and 
isotactic resins. 

•=> Easy mathematical computations. 
<=> The fitting process is very simple. 
^ Fitting parameters are related to 

molecular aspects like Mz and Me. 
& A correct viscoelastic prediction of 

high branched polymers without the 
drawbacks of the original Pom-Pom 
model (Verbeeten, 2001). 

•=> The same fitting parameters are 
used for elongation and shear flow. 

Disadvantages 
o Poor fitting for syndiotactic resins. 

Poor fitting for high branched 
polymers (Larson, 1987; McLeish, 
1998, Verbeeten, 2001) 

•=> Violation of the Lodge-Meissner 
relationship (Larson, 1987; 
Stephenson, 1989). 

•=> Different fittings must be done for 
elongation and shear flow, 

o Further study is needed 

There are too many parameters to 
fit, which makes this model not that 
robust. 
The fitting process is very 
complicated. 
The elongational viscosity has to be 
fitted first. 
The mathematical computations are 
not that simple. 

10 100 
Extension rate [Is] 

1000 

Figure XI. 16. Experimental elongational viscosity and mPTT, XPP and PTT models' predictions for 
syndiotactic resins A. 
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E. Other Practical Relationships 

The purpose of this section is to present several empirical relationships that might 
be useful in further studies. Such relationships can be used as an alternative 
practical tool to determine properties from other know data. However, all the 
relationships presented still need to be tested using more resins in order to verify 
the relation. These relationships hold for 200 °C, which is the temperature at which 
rheological tests were done. 

Figure XI.17 and Figure XI.18 present relationships of the MFI. As it was 
expected, the MFI was found to be related to the zero shear viscosity and the 
molecular weight average Mw. In both cases, it can be seen a power law 
functionality with good correlation coefficients (R 2> 0.9). It is worth to mention that 
in both cases, syndiotactic and isotactic resins present different function 
parameters. 

25 i 

8000 

Figure XI. 17. Relationship between MFI and Zero-shear viscosity. 
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Figure XI. 19. Relationship between the zero-shear viscosity (@ 200 °C) and the molecular weight 
average Mw. 

Now then, Figure XI. 19 presents the relationship between the zero shear viscosity 
and the molecular weight average Mw. As it was expected, the zero shear 
viscosity depends on power law function with respect to the molecular weight 
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average Mw. It can be seen that the power law index is lower than 3.4, which is 
mentioned in the literature (Bird, 1987; Dealy, 1990) as the power law index of this 
relationship. However, Figure XI.20 shows the same relationship, but with the zero 
shear viscosity shifted6 to 230 °C. In this case, the power law index is very similar 
to 3.4 which is in agreement with the theory. 
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Figure XI.20. Relationship between the zero-shear viscosity shifted to 230 °C and the molecular weight 
average Mw. 

On the other hand, the zero shear viscosity was found to be related to the 
crossover frequency (cox)- As well as the zero shear viscosity, the molecular weigh 
average Mw and Mz were also found to be related to the crossover frequency. 
Figure XI.21, Figure XI.22 and Figure XI.23 present these relationships. 

6 /70(200°C) = /7 0(230°C)-a r 

a T is found using the Arhenius type equation (Mavridis, 1992) and the EH found in the TTS (see 
Table V.5). 
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Figure XI.21. Relationship between the zero-shear viscosity and the crossover frequency. 
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Figure XI .22. Relationship between the molecular weight average Mw and the crossover frequency. 
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Figure XI.23. Relationship between the molecular weight average Mz and the crossover frequency. 
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Figure XI.24. Relationship between the molecular weight average Mz and the percentage of soluble XS. 

Otherwise, the percentage of xylene soluble (XS) was found to be related some 
molecular aspects, such as Mz and Mw/Mn, Mz/Mw and Mz/Mn ratios. These 
relationships are presented in Figure XI.24 through Figure XI.27. 
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Figure XI.27. Relationship between Mz/Mn ratio and the percentage of soluble XS 

In addition, XS is also related to the percentage of isotacticity (%meso) as shown 
in Figure XI.28. 
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Figure XI.28. Relationship between percentage of isotacticity (%meso) and the percentage of soluble XS 

Calorimetric data was found to be related to the percentage of isotacticity as shown 
in Figure XI.29 and Figure XI.30. 
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Figure XI .29. Relationship between the recrystallization peak and the percentage of isotacticity (%meso). 
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Figure XI.30. Relationship between the melting temperature and the percentage of isotacticity (% meso). 
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Figure XI.31. Relationship between the second melt peak and the recrystallization peak in the DSC. 

Finally, a practical relationship between the second melt peak and the 
recrystallization peak in the DSC experiment was found. This relationship presents 
a power law functionality and it is presented in Figure XI.31. 
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C H A P T E R xil. Fractals Approach 

THERE IS NO USABLE CONSTITUTIVE EQUATION THAT DESCRIBES QUANTITATIVELY ALL THE FLOW 

PHENOMENA OF POLYMER MELTS. IN THE ABSENCE OF IT, SCIENTISTS AND ENGINEERS USE 

EQUATIONS THAT PREDICT ONLY THE FLOW BEHAVIOR THAT IS IMPORTANT TO THE PARTICULAR 

PROBLEM (MIER, 2 0 0 0 ) . FLOWS THAT CONSIST PRIMARILY OF SHEARING DEFORMATIONS, WITH 

NO STRONG CONVERGENCE OR DIVERGENCE, HAVE BEEN SUCCESUFULLY MODELED USING 

PURELY VISCOUS MODELS. BUT WHEN ELASTICITY PLAYS AN IMPORTANT ROLE, TRADITIONAL 

NUMERICAL TECHNIQUES FAIL TO YIELD USEFUL RESULTS. T H I S SUGGESTS THAT A NEW 

APPROACH IS NEEDED IF USEFUL MODELS ARE TO BE DEVELOPED. IN ANY CASE, IT IS THOUGHT 

THAT A FUNDAMENTAL CONSTITUTIVE EQUATION, WHICH COULD DESCRIBE ALL THE FLOW 

PHENOMENA OF POLYMER MELTS, COULD ARISE FROM UNDERSTANDING THE POLYMERS NATURE 

SINCE THE POLYMERIZATION. IT IS BELIEVED THAT FRACTALS THEORY COULD HELP IN 

UNDERSTANDING THIS NATURE AND THEREFORE, A NEW AND BETTER CONSTITUTIVE EQUATION 

COULD BE DEVELOPED. 

A. Background 

CHAOS SCIENCE USES A DIFFERENT GEOMETRY CALLED FRACTAL GEOMETRY. IT IS PROVIDING US 

WITH A NEW PERSPECTIVE TO VIEW THE WORLD. FRACTAL GEOMETRY IS A NEW LANGUAGE USED 

TO DESCRIBE, MODEL AND ANALYZE COMPLEX FORMS FOUND IN NATURE. 

POLYMERS CHAINS COULD B E CONSIDERED AS FRACTALS, AND THEN FRACTAL GEOMETRY COULD 

B E APPLIED TO EXPLAIN POLYMERS BEHAVIOR. T H E SIMPLEST WAY TO MODEL A POLYMER IS 

TO A S S U M E THAT IT IS A RANDOM WALK. 

HOWEVER, ACTUAL POLYMER CHAINS HAVE STERIC INTERACTION THAT AVOIDS MONOMERS FROM 

PLACING ON THE TOP OF EACH OTHER. R A N D O M WALK AND SELF-AVOIDING WALK MODELS 

DESCRIBE A POLYMER IN A SOLVENT. IT IS ASSUMED THAT POLYMER CHAINS ARE M A D E OF N 
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statistical units (some monomers units) which are randomly oriented with respect 
to each other. Random walk describes a linear chain where no interactions are 
present between monomers. Self-avoiding walk describes an interaction between 
monomers. 

In a polymer melt, two regimes may be found, depending on the mass of the 
chains. For short chains, the viscosity is proportional to the mass of the polymers 
(Rouse model). For large chains, it becomes proportional to A/3 4 (Reptation 
theory). 

Fractals theory is not exclusive to polymers chains. A lot of things could be 
describe by fractals; for example, the abstract painter Jackson Pollock (1912-1956) 
is widely known for his spectacular, wall-sized paintings, which typically feature a 
combination of swirling drips, bright splotches, and bold, rhythmic streaks. Figure 
XII. 1 and Figure XII.2 present examples of Pollock's work. 

Figure XII. 1. Pollock's CONVERGENCE: NUMBER 10,1952 (Albright - Know Gallery, USA) 
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Figure XII.2. Pollock's Blue Poles, 1952 (Australian National Gallery). 

Physicist Richard P. Taylor of the University of New South Wales in Sydney, Australia, 
who is also trained as an artist, has taken a mathematical look at Pollock's splatter 
paintings to try to uncover the secret of their appeal to many viewers. He discovered 
that Pollock's patterns could be characterized as fractals.7 A description of fractals 
dimension is shown in Figure XII.3 and it could be observed that there is a huge 
similarity between fractals dimensions and Pollock's paintings. 

(non-fractal) (non-fractal) 
Figure XII.3. Description of fractals dimensions. 

7 The technique that Taylor used to characterize Pollock's paintings was the Box Counting Method. 
This method consists in lay over the object to be measure a grid of lattice constant (box size) e. The 
number of boxes, N B ( E ) , which cover any part of the object (the occupied or intersected boxes), are 
counted and each data couple NB(s), e is tabulated. The same procedure is repeated with a set of 
successively smaller e. Log [NB(s)j is plotted versus log [1/e] and the slope of the resulting straight 
line (if such indeed exists) is taken as the fractal dimension of the object. If the resulting plot is not 
a straight line, or if the slope of the resulting straight line is an integer, then the object is not a fractal 
(Rothschild, 1998). 
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According to Taylor's analysis (2003), Pollock perfected his technique over ten 

years. Art theorists categorize the evolution of Pollock's drip technique into three 

phases. In the 'preliminary' phase of 1943-45, his initial efforts were characterized 

by low fractal dimension (D) values. During his 'transitional phase' from 1945-1947, 

he started to experiment with the drip technique and his D values rose sharply (as 

indicated by the first dashed gradient in Figure XII.4). In his 'classic' period of 1948-

52, he perfected his technique and D rose more gradually to the value of D = 1.7-

1.9 (see Figure XII.4). 

1.7 

1.5 
D 

• 
• 

1.3 I 
t 

1 

1.1 

t 
> 

44 46 48 50 52 54 

Year 

Figure XII.4. Fractal dimension evolution in Pollock's paintings 

Nevertheless, it is thouaht that polvmer melts look like Pollock's paintings and then 

they could be characterized as fractals too. Empty spaces in a polymer melt could 

be analyzed in a similar way that Taylor did with Pollock's paintings. This suggests 

an innovative way to characterize polymers and a probable new constitutive 

equation based on fractals approach with huge advantages. The major promise of 

the fractals approach is that a view of local conditions implied the view of the 

whole. 
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B. Random Walks 
One dimension (1-D) random walk theory was applied to simulate the random 
growth of polymer chains, where the starting points were considered as the active 
sites in a catalyst surface. Different distances between the starting points and 
different number of steps were used. By using two and three "chains" (random 
walks), it was observed that the number of times that the chains crossed over 
(junctions) was related to the distance between the starting points and the number 
of steps in the random grow. Similar analysis was done using 2-D random grow. 

Figure XII.5. Three1-D random walks starting at the same point (distance = 0). 

Figure XII.5 shows an example of three "chains" (random walks) starting at the same 
point. On the other hand, Figure Xll.6 presents the relation between the number of 
junctions and the distance between the starting points. The number of junctions is 
taken as the average of 1000 iterations. Finally, 
Figure xn.7 shows an example of 2-D random walks. It is worth to mention that the 
relationship between the number of junctions and the distance between starting points 
for 2-D random walks, was also a negative exponential function. 

153 



Y = 2 9 . 9 7 6 " ° 1 1 4 9 * 

R 2 = 0 . 9 9 7 2 

Y = 2 6 . 4 5 7 E - ° 1 3 M * 

2 2 0 

. 3 , 1 5 

Figure XII.6. Relation between the number of junctions and the distance between starting points for three 
1-D random walks. 

Figure XII.7. 2-D random walks starting at different points (distance = 5). 

C. Self-avoiding Walks 

In order to make the simulation of random growth of polymer chains more realistic, 
self-avoiding walk theory was applied. Polymer chains have steric interaction that 
avoids monomers from placing on the top of each other. Then, if it is assumed that 
polymer chains are made of N statistical units (some monomers units) which are 
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randomly oriented with respect to each other, random walk describes a linear chain 

where no interactions are present between monomers and self-avoiding walk 

describes an interaction between monomers. 

The same analysis done with random walks was applied as well to 2-D and 3-D 

self avoiding walks (SAW). In these cases, it was also found a negative 

exponential function for the number of junctions with respect of distance between 

the starting points. 

Figure XII.8 shows examples of 2-D self-avoiding walks, and Figure XII.9 and Figure 

XII. 10 present examples of 3-D self-avoiding walks. 

Figure XII.8. Examples of 2-D self -avoiding walks. 
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Figure XII.9. Two 3-D self-avoiding walks starting from different points (distance = 1). 

Figure XII.10. Two 3-D self-avoiding walks starting from the same point (distance = 0). 
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It worth to mention that since self-avoiding walks model do not allow the walker to 

return to a site already visited, sometimes the chain must be terminated because it 

can not grow farther. 

D. Discussion 

The results from random growth analysis are very promising, because of the 

similarity of the function found for the number of junctions and the function in the 

PTT model for the rate of creation and destruction of junctions (Z(trr)); they are 

both negative exponential functions. This could suggest a new approach for a 

constitutive equation, which could relate the rheological properties with the catalyst 

site distribution in the polymerization. 

Figure XII. 11 to Figure XII. 13 present ten 3-D self avoiding walks starting form different 

points. All three figures are the same picture. Figure XII.12 is the exact same view of 

Figure XII. 11 but without the dimension axes (xyz). It could be seen that the picture 

without the frame of the axes, is a two dimensional picture and looks very similar to 

Pollock's paintings. This suggests that an analysis similar to the one done with 

Pollock's paintings is suitable to polymer chains. On the other hand, Figure XII.13 

shows the same picture, but with different view. This picture shows a view of the xy 

plane. This picture looks very similar to Figure XII. 12 and confirms the similarity with 

Pollock's paintings. 
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Figure XII.11. Ten3-D self-avoiding walks starting from different points. 

Figure XII. 12. Same picture that previous picture, but with out the dimension axes. 
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Figure XII.13. View of xy plane of previous picture. 

Then, if actual polymer melts network looks something similar to Pollock's 

paintings (or to figures above), they could be characterized as fractals. Empty 

spaces in a polymer melt could be analyzed in a similar way that Taylor did with 

Pollock's paintings. This suggests an innovative way to characterize polymers and 

a probable new constitutive equation based on fractals approach with huge 

advantages. In spite of this, a huge problem appears: how to get the actual picture 

of a polymer melt network? Even though we can get it from an electronic 

microscope, it won't be enough, because during the processing of the material, this 

network will be changing through time. 

However, the idea of a model based on fractals theory is still very promising. The 

major promise of the fractals approach is that a view of local conditions implied the 

view of the whole. In addition, this model would be based on more fundamental 

aspects of the polymer chains (such as the catalysis and the polymerization itself) 

and therefore it would be able to describe a wider range of polymers. 
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On the other hand, Bonilla (1996) found that viscoelastic properties of CRPP 

(controlled-rheology polypropylene) are related with the properties of their "mother" 

resins. This suggests that there are intrinsic properties that are not modified with 

modifications (in this case, the vis-breaking process with peroxide radicals) of the 

resins. This is something similar to what happens in genetics, there are some 

genes that are passed from one generation to the next. 

Then, it is thought that there are some properties ("genes") in the resins that are 

inherited from its "mother" resins. This could mean that some properties of 

polymers, including viscoelastic properties, are generated during the 

polymerization, and they won't change that much in spite of some modifications. 

These properties are their "genes". This reinforces the possibility of a general 

constitutive equation based on fundamental aspects of the polymerization capable 

of predicting viscoelastic properties. Fractals theory seems like the best alternative 

to attain such model. 

The idea of constitutive equations based on fractals theory is not that new. Some 

constitutive equations are based indirectly on fractals theory. The Doi - Edwards 

(DE) model, mentioned under the constitutive equations section in Chapter II (page 

19), is based in the concept of reptation (the tube model), and this concept uses 

fractals to explain the polymer chain behavior. The DE model is very successful in 

describing the rheological behavior of linear polymers with narrow molecular weight 

distribution. However, other polymers, such as those with long side branches like 

LDPE, are not well described by the DE model. (Larson, 1984; Dealy, 1990). 

Nevertheless, there are several models based on the DE model (therefore, in a 

certain way based on fractals theory), such as the Pom-Pom (Mcleish and Larson, 

1998) and XPP (Verbeeten, 2000) that are very accurate. 

Alternatively, the Marruci Model (1976) considers a scalar dimensionless quantity, 

x, related to the degree of connectivity of the macromolecular network with respect 
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to that at equilibrium (see Chapter II, page 23). This degree of connectivity is 
related to the number of junctions, and as it is mentioned before, the number of 
junctions is in some way related to fractals. The same happens with the PTT 
model and other constitutive equations based on molecular network theory. 
However, these models consider empirical fitting parameters that are not based on 
fundamentals aspects of the polymerization, and then they still have some 
drawbacks in the predictions of viscoelastic properties. 

A rheological model completely based on fractals theory and fundamentals aspect 
of the polymerization would be a huge innovation to constitutive modeling and to 
plastic engineering. It is thought that this is the best, and maybe the only, solution 
for solving the drawbacks in constitutive modeling of polymer melts. 

Now then, a lot of work is left to do. The simulation of the random growth of 
polymer chains using 3-D self-avoiding walks (SAWs) looks like a good way to 
model a polymer network. However, some issues have to be improved in order to 
make the model more realistic. 

First of all, a better program is needed to generate the chains since FORTRAN 
presented some limitations. It can't generate chains greater than 2000 steps, 
which makes the simulation unrealistic because actual polymer chains consist of 
much more than 2000 monomeric units. 

On the other hand, the simulations using 3-D SAWs presented before, are not 
considering the mass and volume of actual polymer chains. They only represent 
the path of a probable growth of the chain. However, in order to have a better 
model of the polymer chain's growth, the mass and volume of the chain must be 
considered. In addition, stereochemical conformation must be considered too. The 
angles between the chemical bonds, the stereochemical configuration (c/s-, trans-, 

isotactic or syndiotactic), and all the chemical and physical interactions have to be 
taken into account in the simulation. Important issues to consider are that: 
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Monomeric units are no connected by 90° angles like it is shown in 

the SAWs presented before. 
Van de Waals forces could play an important role in the elongational 
flow; therefore special attention must be put to these forces. 
Molecualr weigh distribution moments (Mw, Mn and Mz) must be 
properly replicate by the model. 
The model should be able to describe all kinds of polymerization and 
catalysis systems. 

All these considerations will make possible the modeling of the growth of different 
kinds of polymers, and then a proper constitutive equation could arise from these 
simulations. 

The fundamental idea for this new constitutive equation would be that a certain 
strain will produce the destruction of some junctions and the viscoelastic stress 
would be proportional the total force needed to destroy these junctions. However, 
is important to consider that the force required to break a junction consist of two 
parts. The process of destruction of junctions is described in Figure XII.14. First, 
Figure XII.14 (a) represents a polymer network, which could be view, in an ideal 
way, like a circle made of two chains, such as it is shown in Figure XII. 14 (b). 
Figure XII. 14 (c) and (d) present these chains undergoing a certain deformation. 
To reach this point (just before the break of junctions) a certain force was required. 
Then, it comes the rupture of the junctions, represented in Figure XII. 14 (e). 
Another force was needed here to actually break the entanglement. After this 
rupture, it comes the relaxation of the polymer chains represented by Figure XII. 14 
(f) and (g). 
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(a) - (b) 

(g) 

Figure XI1.14. Ilustration of the process of destruction of junctions. 

Therefore, the viscoelastic stress is related with the force required to reach the 
point of break and the force needed to actually break the junction. It is thought that 
the forces required to break the junctions are the determinant issue in the 
viscoelastic stress. It is also thought that to break a junction, is needed to beat van 
der Waals forces (interaction between the chains). Consequently, the viscoelastic 
stress must be related to the van der Waals forces. 
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Now then, the number of junctions becomes very important in the development of 

this new constitutive equation. Actually, the important feature is the change in the 
number of junctions. However, the junctions can be inderectly related to the empty 
spaces in the network, and it is thought that a quantitave relation could be found 
between this two features. In addition, according to the box counting method, 
described in section D of Chapter II, the empty spaces in the network give the 
fractal dimension of the object. Then, the number of junctions is actually related to 
the fractal dimension of the network. Therefore, the determinant element in this 
new model would be the fractal dimension of the polymer network. 

Even though the fractal dimension is silent on the detailed structure and absolute 
size of the object (Rothschild, 1998), it is a characteristic feature and it seems to be 
a good way to describe the polymer melt. It is important to mention, that this fractal 
dimension is not a constant. Since the number of junctions changes through time, 
the fractal dimension is also a function of time. 

Another important thing to mention is that fundamental aspects must be involved in 
the model in order to make this equation more useful. It was found that Me and Mz 
are closely related to the parameters in mPTT model. This suggests that this 
molecular features influence significantly the viscoselastic response of the material; 
then, it is thought that this features could be involved in the new model too. 

In any case, a lot of work has to be done in this subject. Further study of 
polymerization mechanisms and catalysis systems as well as of fractals theory is 
required. However, a general procedure, shown in Figure XII. 15, to develop the 
new constitutive equation based on fractals theory is proposed. 
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Molecular 
Aspects 

Improve the program 
for the simulation of 
chain's growth using 
SAW's. 

Catalysis 
System Data 

Using the improved 
SAW's simulation, 
create networks with 
different number and 
lenght of chains. 

Evaluate the number 
of junctions. 

Rheological 
Data 

Using the Box-
Counting Method, 
evaluate their fractal 
dimensions. 

New Constitutive 
Equation 

Relate this fuction to fundamental 
aspects such as MWD, free volume, 
van der Waals volume, molar volume, 
and compressibility. 

Find a quantitative 
relationship between 
the number of junction 
and the catalysis data. 

Find a quantitative 
relationship between 
the fractal dimension 
(D) and the number of 
junctions. 

Find a relationship 
between the strain 
and the number of 
junctions (D). 

Find the transient 
behavior of the 
number of juntions 
(D). 

Find a quantitative 
relation similar to: 

T a (Deforces) 

Figure XII. 15. Procedure proposed to attain a new constitutive equation. 
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Appendix A. Calculations to Transform Capillary 
Rheometer Raw Data into Shear and Elongational Viscosity 

A. Equipment Description 

> Rosand Double Bore Capillary Rheometer 
Model RH7-2 
Barrel Diameter (Db): 15 mm 

Table A.1. Long dies used in the capillary analysis 

Diameter Lenght L/D Entrance 
0.5 mm 8 mm 16 90° 
1 mm 16 mm 16 90° 

1.5 mm 24 mm 16 90° 

Table A.2. Short dies used in the capillary analysis 

Diameter Lenght L/D Entrance 
0.5 mm 0.25 mm 0.5 90° 
1 mm 0.25 mm 0.25 90° 

1.5 mm 0.25 mm 0.1667 90° 

B. Raw Data 

Rosand software calculates the shear and extensional viscosity, but as explained 
in chapter III, it gives different results to the Bagley and Rabinowitch correction and 
the Cogswell (1972a, 1972b) analysis for shear and elongational viscosity 
respectably. Therefore, the piston velocity (v) and the pressure drop in the short 
(APS) and long die (APL) are the only data needed as raw data, in addition to the 
barrel and die dimensions, to calculate the shear and elongational viscosity. 
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C. Steady Shear Viscosity 

1. Calculate the volumetric flow Q (mm3/s) for each piston velocity. 

Q^UTt (A.1) 

(A.2) 

(A.3) 

, 2 . 

2. Calculate the apparent shear rate fa. 

3. The apparent shear stress ta, is determined by: 

r - D 

4 LL 

4. Then the apparent shear viscosity rja is obtained by: 

T l « = ^ . ( A . 4 ) 

la 

5. The pressure drop for a polymer melt flowing through a die is due to viscous 
deformation and elastic deformation. The elastic deformation occurs due to the 
contraction of the flow in going from the bigger diameter of the reservoir 
(barrel) into the smaller diameter of the die. Therefore, it is important to 
subtract the elastic pressure drop from the total pressure drop. The pressure 
drop due to the elongation of the melt APE, can be taken as the total pressure 
registered in the transducer above the short die (APS) minus the pressure due 
to viscous resistance in the small length of the short die. 

APE = WS-^^LLS (A.5) 

6. Determine the viscous pressure drop APViS (Pa) for each apparent shear rate. 

APvis=APT-APE (A.6) 

7. For every apparent shear rate, the true shear stress 1 1 is determined by: 

f A F . - A P g 

(A.7) 
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8. The true shear rate is determined by using the Rabinowitch technique, in which 

the parameter "n" is obtained from the point slope of the curve of the log T T 

versus log yA, Tadmor et al. (1979) noticed that "n" is constant if the polymer 

melt is a power law fluid. For other non-Newtonian fluids, "n" will vary with the 

apparent shear rate or true shear stress. 

d{logxt) 
n • 

r, = 

d{logya) 

3n + l 
An Ya 

(A.8) 

(A.9) 

9. Determine the true shear viscosity m. 

nt = — (A. 10) 

D. Transient Shear Viscosity 

1. Calculate the volumetric flow, the apparent shear rate, the power law index and 
the corrected shear rate from steady state values (see section C). 

2. Calculate the elastic pressure drop APE (equation A.5) using the transient 
pressure data. 

3. Similarly, calculate the true shear stress x t (equation A.7) for each recorded 
time. 

4. Then, calculate the transient true shear viscosity nt (equation A. 10) for each 
time. 

E. Steady Elongational Viscosity 

The steady elongational viscosity can be determined from steady shear viscosity 
capillary data by means of the Cogswell analysis as an extension of the procedure 
follow in section C to calculate the steady shear viscosity. 
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10. Calculate the elongational stress aE by: 

_ 3(w + l) 
8 

Ge = — - • A P £ (A. 11) 

11. Determine the elongational viscosity tje using the corresponding equation. 

3(AP£) 
7. = • 

1 -Tan(0l2) 

9(« + l ) 2 (AP £ ) 

(for die with entrance angle 8 ) (A. 12) 

Ya 

12. Calculate the elongational rate s. 

(for 180° entrance angle die) (A. 13) 

F. Transient Elongational Viscosity 

The procedure to obtain the transient elongational viscosity from transient capillary 
test is a continuation of the procedure followed in section D to calculate the 
transient shear viscosity. 

5. Calculate the transient elongational stress <yE at each recorded time by 

equation A. 11. 

6. Similarly, calculate the transient elongational viscosity ?je using equation A. 12 

or A. 13 at each time. 
7. Determine the elongational rate e (equation A. 14). 
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Appendix B. Software Developed 

It was needed to develop some programs (coded in Fortran-language) in order to 
make easier and faster some calculations along this research. There were 
developed programs to solve the modified PTT model and XPP model in shear 
flow, as well as in elongational flow. In addition, there were created other 
programs to generate random walks and self-avoiding walks as well as to obtain 
the number of junctions. It worth to mention that programs (coded in C-languege) 
created by Mier (2000) were also used in this thesis. 

A. Modified PTT Model 

Chapter IX presents the modified PTT model as well as its rheological functions 
predictions. The shear flow behavior is described by equations 9.9 to 9.12, which 
form a system of ordinary differential equations that must be solved numerically. In 
the same way, equations 9.19 to 9.21 describe the shear free flow. The fouth 
order Runge Kutta method was applied to solve these systems of ordinary 
differential equations. This method states that for a system of ordinary differential 
equations of the form 

ax (B.1) 

the next step 

= xn + h (B.2) 

has for solution 

(B.3) 
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where 

h-f{x„,y„) (B.4) 

(B.6) 

(B.5) 

h-f(xn+h,yn+k3) (B.7) 

Next are presented the Fortran-language code developed to solve these systems 
easier and faster. 

1. Shear Flow 

! MPTT_SHEAR.f90 

! FUNCTIONS: 
! This program finds the shear viscosity using the modified PTT model. 
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

INPUT: Relaxation spectrum, fitting parameter C, shear rate, step (h) 
and tolerance. 

OUTPUT: Transient shear viscosity. The data is printed in an ASCI file 
called svisc.dat 

|************************^*****#********************* 

PROGRAM mPTT shear 

IMPLICIT NONE 

'""'VARIABLES' 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
R E A L 

REAL 

C, srate, lamda(4), eta(4), svis, svisn, erate 
txx(4), tzz(4), tyy(4), txy(4) 
txxn(4), tzzn(4), tyyn(4), txyn(4) 
k1xx(4), k2xx(4), k3xx(4), k4xx{4) 
k1yy(4), k2yy(4), k3yy(4), k4yy(4) 
k1zz(4), k2zz(4), k3zz(4), k4zz(4) 
k1xy(4), k2xy(4), k3xy(4), k4xy(4) 
t, h, tn 

INTEGER 
tol, error 
i, j , no 
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CHARACTER*20 out1 

r . . . 0 P E N I N G OUPUT FILE***** 
out1 = 'sviscdat' 
OPEN (1, FILE=out1) 

| * * . . * | | ^ | p ^ j y * * * * * 

! Fitting Parameter 
WRITE(*,*) 'Fitting parameter C 
READ(*,*) C 

! Shear rate 
WRITE(*,*) 'Shear rate' 
READ(*,*) srate 

[Relaxation Spectrum 
WRiTE(*,*) 'Number of elements of de relaxation spectrum' 
READ(*,*) no 

DO i=1, no 
WRITE(*,*) 'Relaxation time', i 
READ(Y) lamda(i) 
WRITE(*,*) 'Relaxation spectrum viscosty', i 
READ(Y) eta(i) 

END DO 

! Step 
WRiTE(Y) 'Step size h' 
READ(*,*) h 

! Tolerance 
tol=0.000000000001 

!*****SOLVING SIMULTANEOUS DIFF EQNS SYSTEM***** 
! Runge-Kutta Method (Fourth Order) 
DO i=1, no 

txxn(i)=0 
tyyn(i)=0 
tzzn(i)=0 
txyn(i)=0 

END DO 
svisn=0 
tn=0 
error=tol+1 

DO WHILE (error>tol) !(1) 
t=tn 
DO j=1, no 

txx(j)=txxn(j) 
tyy(j)=tyyn(j) 
tzz(j)=tzzn(j) 
txy(j)=txyn(j) 

END DO 
svis=svisn 
WRITE(1,*) t, svis, error 
tn=t+h 
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DOi=1,no !(2) 
!txx 
k1 xx(i)=h*( 1 /Iamda(i))*((2*lamda(i)*srate*txy (i))-(EXP(-

(C)*lamda(i)*(txx(i)+tyy(i)+tzz(i))/eta(i))*txx(i))) 
k2xx(i)=h*(1/lamda(i))*((2*iamda(i)*srate*txy(i))-(EXP(-

(C)*lamda(i)*((txx(i)+(k1xx(i)/2))+tyy(i)+ta(i))/eta(i))*(txx(i)+(k1xx(i)/2)))) 
k3xx(i)=h*(1/lamda(i))*((2*lamda(i)*srate*txy(i))-(EXP(-

(C)*lamda(i)*((txx(i)+(l<2xx(i)/2))+tyy(i)+tzz(i))/eta(i))*(txx(i)+(k2xx(i)/2)))) 
k4xx(i)=h*(1/lamda(i))*((2*lamda(i)*srate*txy(i))-(EXP(-

(C)*lamda(i)*((txx(i)+(k3xx(i)))+tyy(i)+tzz(i))/eta(i))*(txx(i)+(k3xx(i))))) 
txxn(i)=txx(i)+(k1xx(i)+2*k2xx(i)+2*k3xx(i)+k4xx(i))/6 
!tyy 
k1yy(i)=h*(1/lamda(i))*(-(EXP(-

(C)*lamda(i)*(txx(i)+tyy(i)+tzz(i))/eta(i))*tyy(i))) 
k2yy(i)=h*(1/lamda(i))*(-(EXP(-

(C)*lamda(i)*((tyy(i)+(k1yy(i)/2))+txx(i)+tzz(i))/eta(i))*(tyy(i)+(k1yy(i)/2)))) 
k3yy(i)=h*(1/lamda(i))*(-{EXP(-

(C)*lamda(i)*((tyy(i)+(k2yy(i)/2))+txx(i)+tzz(i))/eta(i))*(tyy(i)+(k2yy(i)/2)))) 
k4yy(i)=h*(1/lamda(i))*(-(EXP(-

(C)*lamda(i)*((tyy(i)+(k3yy(i)))+txx(i)+tzz(i))/eta(i))*(tyy(i)+(k3yy(i))))) 
tyyn(i)=tyy(i)+(k1yy(i)+2*k2yy(i)+2*k3yy(i)+k4yy(i))/6 
!tzz 
k1 zz(i)=h*( 1 /lamda(i))*(-(EXP(-

(C)*lamda(i)*(txx(i)+tyy(i)+tzz(i))/eta(i))*tzz(i))) 
k2zz(i)=h*(1/lamda(i))*(-(EXP(-

(C)*lamda(i)*((tzz(i)+(k1zz(i)/2))+txx(i)+tyy(i))/eta(i))*(tzz(i)+(k1zz(i)/2)))) 
k3zz(i)=h*(1/lamda(i))*(-(EXP(-

(C)*lamda(i)*((tzz(i)+(k2zz(i)/2))+txx(i)+tyy(i))/eta(i))*(tzz(i)+(k2zz(i)/2)))) 
k4zz(i)=h*( 1 /lamda(i))*(-(EXP(-

(C)*lamda(i)*((tzz(i)+(k3zz(i)))+txx(i)+tyy(i))/eta(i))*(tzz(i)+(k3zz(i))))) 
tzzn(i)=tzz(i)+(k1zz(i)+2*k2zz(i)+2*k3zz(i)+k4zz(i))/6 
!txy 
k1xy(i)=h*(1/lamda(i))*((-eta(i)*srate)+(lamda(i)*srate*tyy(i)HEXP( 

(C)*lamda(i)*(txx(i)+tyy(i)+tzz(i))/eta(i))*txy(i))) 
k2xy(i)=h*(1/lamda(i))*((-eta(i)*srate)+(lamda(i)*srate*tyy(i))-(EXP( 

(C)*lamda(i)*(tyy(i)+txx(i)+tzz(i))/eta(i))*(txy(i)+(k1xy(i)/2)))) 
k3xy(i)=h*(1/lamda(i))*((-eta(i)*srate)+(lamda(i)*srate*tyy(i))-(EXP( 

(C)*lamda(i)*(tyy(i)+txx(i)+tzz(i))/eta(i))*(txy(i)+(k2xy(i)/2)))) 
k4xy(i)=h*( 1 /lamda(i))*((-eta(i)*srate)+(lamda(i)*srate*tyy(i))-( EX P( 

(C)*lamda(i)*(tyy(i)+txx(i)+tzz(i))/eta(i))*(txy(i)+(k3xy(i))))) 
txyn(i)=txy(i)+(k1xy(i)+2*k2xy(i)+2*k3xy(i)+k4xy(i))/6 

END DO !(2) 
svisn=-(txyn(1)+txyn(2)+txyn(3)+txyn(4))/srate 
error=ABS(svisn-svis) 
WRITE(*,*) tn, svisn, error 

END DO !(1) 

!*****CLOSING OUTPUT FILE***** 
CLOSE ( 1 , STATUS='KEEP') 

END PROGRAM mPTT shear 
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2. Shear Free Flow 
MPTT_ELONGATION.f90 

FUNCTIONS: 

This program finds the elongational viscosity using the modified PTT model, 

i********************************************^ 

INPUT: Relaxation spectrum, fitting parameters A and B, extension rate, 
step (h) and tolerance. 

OUTPUT: Transient elongational viscosity. The data is printed in an ASCI 
file called evisc.dat 

| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

PROGRAM mPTT_ELONGATION 

IMPLICIT NONE 

!*****VARIABLES***** 
REAL A, B, erate, lamda(4), eta(4), evis, evisn 
REAL txx(4), tzz(4), t, h, tn, txxn(4), tzzn(4) 
REAL k1xx(4), k2xx(4), k3xx(4), k4xx(4) 
REAL k1zz(4), k2zz(4), k3zz(4), k4zz(4) 
REAL tol, error 
INTEGER i, j , no 
CHARACTER O U t 1 

!*****OPENING OUTPUT FILE* 

out1 = 'evisc.dat' 
OPEN (1, FILE=out1) 

! Fitting Parameters 
WRiTE(Y) 'Fitting parameter A' 
READ(*,*) A 
WRITE(Y) 'Fitting parameter B' 
READ(*,*) B 

! Extension rate 
WRITE(Y) 'Extension rate' 
READ(*,*) erate 

Relaxation Spectrum 
WRITE(Y) 'Number of elements of de relaxation spectrum' 
READ(*,*) no 

DO i = 1 , no 
WRITE(Y) 'Relaxation time', i 
READ(*,*) lamda(i) 
WRITE(*,*) 'Relaxation spectrum viscosty', i 



READ(*,*) eta(i) 
E N D D O 

IStep 
WRITE(*,*) 'Step size IY 
READ(*,*) h 

! Tolerance 
tol=0.000000001 

!***"SOLVING DIFF EQNS SYSTEM""* 
! Runge-Kutta Method (Fourth Order) 
error=tol+1 
tn=0 
txxn(1)=0 
txxn(2)=0 
txxn(3)=0 
txxn(4)=0 
tzzn(1)=0 
tzzn(2)=0 
tzzn(3)=0 
tzzn(4)=0 
evisn=0 
DO WHILE (error>tol) !(1) 

t=tn 
txx(1)=txxn(1) 
txx(2)=txxn(2) 
txx(3)=txxn(3) 
txx(4)=txxn(4) 
tzz(1)=tzzn(1) 
tzz(2)=tzzn(2) 
tzz(3)=tzzn(3) 
tzz(4)=tzzn(4) 
evis=evisn 
W R ! T E ( 1 , * ) t, evis, error 
tn=t+h 
DOi=1,no !(2) 

!txx 
k1 xx(i)=h*( 1 /lamda(i))*((eta(i)*erate)-(exp(-

(A*LOG(erate)+B)*lamda(i)*(2*b«(i)+tzz(i))/eta(i))*tjc<(i))-(lamda(i)*erate*txx(i))) 
k2xx(i)=h*( 1 /lamda(i))*((eta(i)*erate)-(exp(-

(A*LOG(erate)+B)*lamda(i)*(2*(txx(i)+(k1xx(i)/2))+tzz(i))/eta(i))*(txx(i)+(k1xx(i)/2)))-
(lamda(i)*erate*(txx(i)+(k1xx(i)/2)))) 

k3xx(i)=h*(1/lamda(i))*((eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*(txx(i)+(l^xx(i)/2))+tzz(i))/eta(i))*(bc<(i)+(k2xx(i)/2)))-
(lamda(i)*erate*(txx(i)+(k2xx(i)/2)))) 

k4xx(i)=h*(1/lamda(i))*((eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*(txx(i)+(k3xx(i)))+tzz(i))/eta(i))*(txx(i)+(k3xx(i))))-
(Iamda(i)*erate*(txx(i)+(k3xx(i))))) 

txxn(i)=txx(i)+(k1xx(i)+2*k2xx(i)+2*k3xx(i)+k4xx(i))/6 
!tzz 
k1zz(i)=h*(1/lamda(i))*((-2*eta(i)*erate)-(exp(-

(A*LOG(erate)+B)*lamda(i)*(2*txx(i)+tzz(i))/eta(i))*tzz(i))+(2*lamda(i)*erate*tzz(i))) 
k2zz(i)=h*(1/lamda(i))*((-2*eta(i)*erate)-(exp(-

(A*LOG(erate)+B)*lamda(i)*(2*txx(i)+(to(i)+(k1zz(i)/2)))/eta(i))*(tzz(i)+(k1zz(i)/2)))+(2*lamda(i)*erat 
e*(tzz(i)+(k1zz(i)/2)))) 
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k3zz(i)=h*(1/lamda(i))*((-2*eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*txx(i)+(tzz(i)+(k2zz(i)/2)))/eta(i))*(tzz(i)+(k2zz(i)/2)))+(2*lamda(^ 
e*(tzz(i)+(k2zz(i)/2)))) 

k4zz(i)=h*(1/lamda(i))*((-2*eta(i)*erate)-(exp(-
(A*LOG(erate)+B)*lamda(i)*(2*txx(i)+(tzz(i)+(k3zz(i))))/eta(i))*(to(i)+(k3zz(i))))+(2*lamda 
z(i)+(k3zz(i))))) 

tzzn(i)=tzz(i)+(k1zz(i)+2*k2zz(i)+2*k3zz(i)+k4zz(i))/6 
END DO !(2) 
evisn=(txxn(1)+ton(2)+ton(3)+txx^ 
error=ABS(evisn-evis) 
WRITE(*,*) tn, evisn, error 

END DO !(1) 

!**"*CLOSING OUPUT FILE***** 

CLOSE (1, STATUS='KEEP') 

END PROGRAM mPTT ELONGATION 

B. XPP Model 

On the other hand, Chapter X presents the XPP model. The shear flow behavior 
using this model is described by equations 10.24 to 10.28, while the shear-free 
flow is governed by equation 10.12 to 10.14. Each of these two sets of equations 
form a system of ordinary differential equations that must be solved numerically. 
As well as with the modified PTT model, the fouth order Runge Kutta method was 
applied. This method is presented in section A. 

Next are presented the Fortran-language code developed to solve these systems 
of equations. 

1. Shear Flow 

! XPPSHEAR.f90 

! PROGRAM: XPPSHEAR 

! PURPOSE: To obtain shear viscosity using XPP model. 
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PROGRAM XPPSHEAR 

IMPLICIT NONE 

!*****VARIABLES' 
REAL t, tn Itime 
REAL Sxx(8), Syy(8), Sxy(8), Szz(8) IS tensor components 
REAL Sxxn(8), Syyn(8), Sxyn(8), Szzn(8) 
REAL txx(8), tyy(8), txy(8), tzz(8) IStress tensor components 
REAL txxn(8), tyyn(8), txyn(8), tzzn(8) 
REAL SRB(8), SRBn(8) IStrech ratio of the backbone 
REAL Is Hamdas: stretch relaxation time 
REAL I0s(8) llamdaOs: stretch relaxation time 0 
REAL v(8) Imeasure of the influence of the surroundings polymer chains 
REAL a(8) lalpha: Material parameter defining the amount of anisotropy 
REAL lamda(8), eta(8) idiscrite relaxation spectrum 
INTEGER no (Number of elements in the discrete relaxation spectrum 
INTEGER q(8) INumber of dangling arms in the pom-pom molecule 
REAL h, tol, error, srate, svis, svisn, sumxy 
REAL k1xx(8), k2xx(8), k3xx(8), k4xx(8) 
REAL k1yy(8), k2yy(8), k3yy(8), k4yy(8) 
REAL k1xy(8), k2xy(8), k3xy(8), k4xy(8) 
REAL k1zz(8), k2zz(8), k3zz(8), k4zz(8) 
REAL k1SRB(8), k2SRB(8), k3SRB(8), k4SRB(8) 
REAL svisc(8), sviscn(8), r(8) 
INTEGER i,j, k, I, m, n 
CHARACTER*20 out1 

!"*"OPENING OUTPUT FILE""* 
out1 = 'svisc.dat' 
OPEN(1, FILE=out1) 

!*•***! I>gpij-p***** 
! Relaxation Spectrum and fitting parameters 
WRITE(*,*) 'Number of relaxation elements: ' 
READ(*,*) no 

DO k=1, no 
WRITE(*,*) 'Relaxation time' 
READ(*,*) lamda(k) 
WRITE(*,*) 'Relaxation spectrum viscosity' 
READ(Y) eta(i) 
WRiTE(Y) 'Number of dangling arms in the pom-pom molecule q', k 
READ(*,*) q(k) 
WRITE(*,*) 'Ratio between relaxation time and stretch relaxation time 0', k 
READ(*,*) r(k) 
WRITE(*,*) 'Material parameter defining the amount of anisotropy a', k 
READ(*,*) a(k) 

Imeasure of the influence of the surroundings polymer chains on thebackbone tube stretch 
v(k)=2/q(k) 

Istretch relaxation time 0 
I0s(k)=lamda(k)/r(k) 

END DO 

! Shear rate 
WRITE(*,*)'Shear rate' 
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READ(*,*) srate 

! Step 
WRITE(*,*) 'Step size' 
READ(*,*) h 

! Tolerance 
tol=1E-12 

!*****SOLVING DIFFERENTIAL EQUATIONS***** 
! Runge-Kutta Method (Fourth Order) 
error=tol+1 
tn=0 
svisn=0 
SRBn(1)=1.12998 
SRBn(2)=1.53499 
SRBn(3)=2.63701 
SRBn(4)=7.41824 
SRBn(5)=15.24720 
SRBn(6)=72.01033 
DOi=1,no !(a) 

Sxxn(i)=1/(3*SRBn(i)*SRBn(i)) 
Syyn(i)=1/(3*SRBn(i)*SRBn(i)) 
Sxyn(i)=1/(3*SRBn(i)*SRBn(i)) 
Szzn(i)=1/(3*SRBn(i)*SRBn(i)) 

END DO !(a) 
DO WHILE (error>tol) !(2) 

t=tn 
svis=svisn 
DOj=1,no !(b) 

Sxx(j)=Sxxn(j) 
Syy(j)=Syyn(j) 
Sxy(j)=Sxyn(j) 
Szz(j)=Szzn(j) 
SRB(j)=SRBn(j) 
txx(j)=txxn(j) 
tyyG)=tyynG) 
txy(j)=txyn(j) 
tzz(j)=tzznG) 
svisc(j)=sviscn(j) 

END DO !(b) 
tn=t+h 
DO i=1, no !(c) 

k1xx(i)=h*((2*srate*Sxy(i))-(4*srate*Sxx(i)*Sxy(i))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)*Sxx(i)+Sxy(i)*Sxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+(Szz(i)*Szz(i)))))*(Sxx(i)))/(lam 
da(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k2xx(i)=h*((2*srate*Sxy(i))-(4*srate*(Sxx(i)+(k1xx(i)/2))*Sxy(i))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k1xx(i)/2))*(Sxx(i)+(k1xx(i)/2))+Sxy(i)*Sxy(i))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)*(((Sxx(i)+(k1xx(i)/2))*(Sxx(i)+(k1xx(i)/2)))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+(Szz 
(i)*Szz(i)))))*((Sxx(i)+(k1xx(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k3xx(i)=h*((2*srate*Sxy(i))-(4*srate*(Sxx(i)+(k2xx(i)/2))*Sxy(i))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k2>a(i)/2))*(Sxx(i)+(k2xx(i)/2))+Sxy(i)*Sxy(i))/(lamda(i))H((1-a(i)-
((3*a(i)*(SRB(i))**4)*(((Sxx(i)+(k2xx(i)/2))*(Sxx(i)+(k2xx(i)/2)))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+(Szz 
(i)*Szz(i)))))*((Sxx(i)+(k2xx(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 
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k4xx(i)=h*((2*srate*Sxy(i))-(4*srate*(Sxx(i)+(k3xx(i)/1))*Sxy(i))-

((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k3xx(i)/1))*(Sxx(i)+(k3xx(i)/1))+Sxy(i)*Sxy(i))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))*M)*(((Sxx(i)+(k3)o<(i)/1))*(Sxx(i)+(k3xx(i)/1)))+(Syy(irSyy(i))+(2*Sxy(irSxy(i))+(Szz 
(irSzz(i))))r((Sxx(i)+(k3xx(i)/1))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

Sxxn(i)=Sxx(i)+(k1xx(i)+2*k2xx(i)+2*k3xx(i)+k4xx(i))/6 

k1yy(i)=h*(-(4*srate*Sxy(i)*Syy(i))-
((3*a(i)*SRB(i)*SRB(ir(Syy(i)*Syy(i)+Sxy(i)*Sxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))*M)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+(Szz(i)*Szz(i)))))*(Syy(i)))/(lam 
da(i)*SRB(irSRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k2yy(i)=h*(-(4*srate*Sxy(i)*(Syy(i)+(k1yy(i)/2)))-
((3*a(i)*SRB(irSRB(ir((Syy(i)+(k1yy(i)/2)r(Syy(i)+(k1yy(i)/2))+Sxy(irSxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*{SRB(i))**4)*(((Syy(i)+(k1yy(i)/2)r(Syy(i)+(k1yy(i)/2)))+(Sxx(i)*Sxx(i))+(2*Sxy(i)*Sxy(i))+(Szz 
(i)*Szz(i)))))*((Sxx(i)+(k1xx(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k3yy(i)=h*(-(4*srate*Sxy(i)*(Syy{i)+(k2yy(i)/2)))-
((3*a(irSRB(irSRB(ir((Syy(i)+(k2yy(i)/2)r(Syy(i)+(k2yy(i)/2))+Sxy(irSxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))*M)*(((Syy(i)+(k2yy(i)/2)r(Syy(i)+(k2yy(i)/2)))+(Sxx(irSxx(i))+(2*Sxy(i)*Sxy(i))+(Szz 
(i)*Szz(i)))))*((Sxx(i)+(l<2xx(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*larnda(i)*SRB(i)*SRB(i)))) 

k4yy(i)=h*(-(4*srate*Sxy(i)*(Syy(i)+(k3yy(i)/1)))-
((3*a(irSRB(i)*SRB(i)*((Syy(i)+(k3yy(i)/1)r(Syy(i)+(k3yy(i)/1))+Sxy(i)*Sxy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(ir(SRB(i))**4)*(((Syy(i)+(k3yy(i)/1))*(Syy(i)+(k3yy(i)/1)))+(Sxx(i)*Sxx(i))+(2*Sxy(i)*Sxy(i))+(Szz 
(i)*Szz(i)))))*((Sxx(i)+(k3xx(i)/1))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

Syyn(i)=Syy(i)+(k1yy(i)+2*k2yy(i)+2*k3yy(i)+k4yy(i))/6 

k1xy(i)=h*((srate*Syy(i))-(4*srate*(Sxy(i)**2))-
((3*a(i)*SRB(i)*SRB(i)*Sxy(i)*(Sxx(i)+Syy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(ir(SRB(i)rM)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+(Szz(i)*Szz(i)))))*(Sxy(i)))/(lam 
da(i)*SRB(i)*SRB(i)))) 

k2xy(i)=h*((srate*Syy(i))-(4*srate*((Sxy(i)+(k1xy(i)/2))**2))-
((3*a(i)*SRB(i)*SRB(i)*(Sxy(i)+(k1xy(i)/2))*(Sxx(i)+Syy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)*((2*(Sxy(i)+(k1xy(i)/2))*(Sxy(i)+(k1xy(i)/2)))+(Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(Szz 
(irSzz(i)))))*((Sxy(i)+(k1xy(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))) 

k3xy(i)=h*((srate*Syy(i))-(4*srate*((Sxy(i)+(k2xy(i)/2))**2))-
((3*a(i)*SRB(i)*SRB(i)*(Sxy(i)+(k2xy(i)/2))*(Sxx(i)+Syy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)*((2*(Sxy(i)+(k2xy(i)/2))*(Sxy(i)+(k2xy(i)/2)))+(Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(Szz 
(i)*Szz(i)))))*((Sxy(i)+(k2xy(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))) 

k4xy(i)=h*((srate*Syy(i))-(4*srate*((Sxy(i)+(k3xy(i)/1))**2))-
((3*a(i)*SRB(i)*SRB(i)*(Sxy(i)+(k3xy(i)/1))*(Sxx(i)+Syy(i)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i)r4)*((2*(Sxy(i)+(k3xy(i)/1))*(Sxy(i)+(k3xy(i)/1)))+(Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(Szz 
(i)*Szz(i))))r((Sxy(i)+(k3xy(i)/1))))/(lamda(i)*SRB(i)*SRB(i)))) 

Sxyn(i)=Sxy(i)+(k1xy(i)+2*k2xy(i)+2*k3xy(i)+k4xy(i))/6 

k1zz(i)=h*(-(4*srate*Sxy(i)*Szz(i))-
((3*a(i)*SRB(i)*SRB(i)*Szz(i)*Szz(i))/(lamda(i)))-(({1-a(i)-
((3*a(ir(SRB(i))*M)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+(Szz(i)*Szz(i)))))*(Szz(i)))/(lam 
da(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k2zz(i)=h*(-(4*srate*Sxy(i)*(Szz(i)+(k1zz(i)/2)))-
((3*a(i)*SRB(i)*SRB(i)*(Szz(i)+(k1zz(i)/2)r(Szz(i)+(k1zz(i)/2)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))**4)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(irSxy(i))+((Szz(i)+(k1zz(i)/2)r(Szz(i)+(k 
l2Z(i)/2))))))*((Szz(i)+(k1zz(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k3zz(i)=h*(-(4*srate*Sxy(i)*(Szz(i)+(k2zz(i)/2)))-
((3*a(i)*SRB(i)*SRB(i)*(Szz(i)+(k2zz(i)/2)r(Szz(i)+(k2zz(i)/2)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i)r*4)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(irSxy(i))+((Szz(i)+(k2zz(i)/2))*(Szz(i)+(k 
2zz(i)/2))))))*((Szz(i)+(k2zz(i)/2))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

. k4zz(i)=h*(-(4*srate*Sxy(i)*(Szz(i)+(k3zz(i)/1 )))-
((3*a(i)*SRB(i)* SRB(i)*(Szz(i)+(k3zz(i)/1 ))*(Szz(i)+(k3zz(i)/1 )))/(lamda(i)))-(((1 -a(i)-
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((3*a(i)*(SRB(i))**4)*((Sxx(i)*Sxx(i))+(Syy(i)*Syy(i))+(2*Sxy(i)*Sxy(i))+((Szz(i)+(k3zz(i)/1))*(Szz(i)+(k 
3zz(i)/1))))))*((Szz(i)+(k3zz(i)/1))))/(lamda(i)*SRB(irSRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i 

Szzn(i)=Szz(i)+(k1zz(i)+2*k2zz(i)+2*k3zz(i)+k4zz(i))/6 

k1SRB(i)=h*((srate*SRB(i)*(2*Sxy(i)))-((SRB(i)-1)/(IOs(i)*exp(-v(i)*(SRB(i)-
1))))) 

k2SRB(i)=h*((srate*(SRB(i)+(k1SRB(i)/2))*(2*Sxy(i)))-
(((SRB(i)+(k1SRB(i)/2))-1)/(IOs(i)*exp(-v(i)*((SRB(i)+(k1SRB(i)/2))-1))))) 

k3SRB(i)=h*((srate*(SRB(i)+(k2SRB(i)/2))*(2*Sxy(i)))-
(((SRB(i)+(k2SRB(i)/2))-1)/(IOs(i)*exp(-v(i)*((SRB(i)+(k2SRB(i)/2))-1))))) 

k4SRB(i)=h*((srate*(SRB(i)+(k3SRB(i)/1))*(2*Sxy(i)))-
(((SRB(i)+(k3SRB(i)/1))-1)/(IOs(i)*exp(-v(i)*((SRB(i)+(k3SRB(i)/1))-1))))) 

SRBn(i)=SRB(i)+(k1SRB(i)+2*k2SRB(i)+2*k3SRB(i)+k4SRB(i))/6 

txxn(i)=(3*(eta(i)/lamda(i))*SRBn(i)*SRBn(i)*Sxx(i))-(eta(i)*lamda(i)) 
tyyn(i)=(3*(eta(i)/lamda(i))*SRBn(i)*SRBn(i)*Syy(i))-(eta(i)*lamda(i)) 
tayn(i)=(3*(eta(i)/lamda(i))*SRBn(i)*SRBn(i)*Sxy(i))-(eta(i)*lamda(i)) 
tzzn(i)=(3*(eta(i)/lamda(i))*SRBn(i)*SRBn(i)*Szz(i))-(eta(i)*lamda(i)) 

sviscn(i)=(txyn(i))/srate 
END DO !(c) 

svisn=0 
DOk=1,no !(d) 

svisn=svisn+sviscn(k) 
END DO !(d) 
error=ABS(svisn-svis) 
WRITE(*,*) tn, svisn, error 
WR!TE(1,*)tn, svisn, error 

END DO !(2) 

r**CLOSING OUTPUT FILE***** 
CLOSE (1, STATUS='KEEP') 
END PROGRAM XPPSHEAR 

2. Shear Free Flow 

XPPELONGATION.f90 

PROGRAM: XPPELONGATION 

PURPOSE: To obtain elongational viscosity using XPP model. 
*************************************** 

PROGRAM XPPELONGATION 

IMPLICIT NONE 

!*****VARIABLES***** 
REAL t, tn Itime 
REAL Sxx(8), Szz(8), Sxxn(8), Szzn(8) !S tensor components 
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REAL txx(8), tzz(8), txxn(8), tzzn(8) IStress tensor components 
REAL SRB(8), SRBn(8) IStrech ratio of the backbone 
REAL Is llamdas: stretch relaxation time 
REAL I0s(8) llamdaOs: stretch relaxation time 0 
REAL v(8) .'measure of the influence of the surroundings polymer chains 
REAL a(8) (alpha: Material parameter defining the amount of anisotropy 
REAL lamda(8), eta(8) Idiscrite relaxation spectrum 
INTEGER no (Number of elements in the discrete relaxation spectrum 
INTEGER q(8) INumber of dangling arms in the pom-pom molecule 
REAL h, tol, error, erate, evis, evisn, sumxx, sumzz 
REAL k1xx(8), k2xx(8), k3xx(8), k4xx(8) 
REAL k1zz(8), k2zz(8), k3zz(8), k4zz(8) 
REAL k1SRB(8), k2SRB(8), k3SRB(8), k4SRB(8) 
REAL evisc(8), eviscn(8) 
REAL r(4) 
INTEGER i,j, k, I, m, n 
CHARACTER*20 out1 

!""*OPENING OUTPUT FILE"*** 
out1 = 'evisc.dat' 
OPEN(1, FILE=out1) 

l^jpU"j~***** 

! Relaxation Spectrum and fitting parameters 
WRITE(*,*) 'Number of relaxation elements: ' 
READ(*,*) no 

DO k=1, no 
WRITE(*,*) 'Relaxation time' 
READ(*,*) lamda(k) 
WRITE(*,*) 'Relaxation spectrum viscosity' 
READ(*,*) eta(i) 
WRITE(*,*) 'Number of dangling arms in the pom-pom molecule q', k 
READ(*,*) q(k) 
WRITE(*,*) 'Ratio between relaxation time and stretch relaxation time 0', k 
READ(*,*) r(k) 
WRITE(*,*) 'Material parameter defining the amount of anisotropy a', k 
READ(*,*) a(k) 

'measure of the influence of the surroundings polymer chains on thebackbone tube stretch 
v(k)=2/q(k) 

Istretch relaxation time 0 
IOs(k)=lamda(k)/r(k) 

END DO 

! Extension rate 
WRITE(*,*) 'Extension rate' 
READ(*,*) erate 

! Step 
vVRiTEf,*) 'Step size' 
READ(*,*) h 

! Tolerance 
tol=0.0000001 

!""*SOLVING DIFFERENTIAL EQUATIONS""* 
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! Runge-Kutta Method (Fourth Order) 

error=tol+1 
tn=0 
evisn=0 
DOi=1,no !(a) 

Sxxn(i)=0.333333 
Szzn(i)=0.33333333 
SRBn(i)=1 
txxn(i)=0 
tzzn(i)=0 
eviscn(i)=0 

END DO !(a) 
DO WHILE (error>tol) !(2) 

t=tn 
evis=evisn 
DOj=1,no !(b) 

Sxx(j)=SxxnG) 
Szz(j)=Szzn(J) 
SRB(j)=SRBn(j) 
txx(j)=txxn(j) 
tzz(j)=tzzn(j) 
evisc(j)=eviscn(j) 

END DO !(b) 

tn=t+h 
DOi=1,no !(c) 

k1xx(i)=h*(-(erate*Sxx(i))+(4*erate*Sxx(i)*(Sxx(i)-Szz(i)))-
((3*a(i)*SRB(i)*SRB(i)*Sxx(i)*Sxx(i))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))*M)*((2*Sxx(i)*Sxx(i))+(Szz(i)*Szz(i)))))*(Sxx(i)))/(lamda(i)*SRB(i)*SRB(i)))+((1-
a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k2xx(i)=h*(-
(erate*(Sxx(i)+(k1xx(i)/2)))+(4*erate*(Sxx(i)+(k1xx(i)/2))*((Sxx(i)+(k1xx(i)/2))-Szz(i)))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k1xx(i)/2))*(Sxx(i)+(k1xx(i)/2)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))M4)*((2*(Sxx(i)+(k1xx(i)/2))*(Sxx(i)+(k1xx(i)/2)))+(Szz(i)*Szz(i)))))*((S>a(i)+(k1xx^ 
))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k3xx(i)=h*(-
(erate*(Sxx(i)+(k2xx(i)/2)))+(4*erate*(Sxx(i)+(k2xx(i)/2))*((Sxx(i)+(k2xx(i)/2))-Szz(i)))-
((3*a(i)*SRB(i)*SRB(i)*(Sxx(i)+(k2xx(i)/2))*(Sxx(i)+(k2xx(i)/2)))/(lamda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i))*M)*((2*(Sxx(i)+(k2xx(i)/2))*(^^ 
))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k4xx(i)=h*(-
(erate*(Sxx(i)+(k3xx(i)/1 )))+(4*erate*(Sxx(i)+(k3xx(i)/1 ))*((Sxx(i)+(k3xx(i)/1 ))-Szz(i)))-
((3*a(i)*SRB(i)*SRB(i)*(S>(x(i)+(k3xx(i)/1))*(Sxx(i)+(k3xx(i)/1)))/(larnda(i)))-(((1-a(i)-
((3*a(i)*(SRB(i)r4)*((2*(S>a(i)+(k3>a(i)/1^ 
))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

Sxxn(i)=Sxx(i)+(k1xx(i)+2*k2xx(i)+2*k3xx(i)+k4xx(i))/6 

k1zz(i)=h*((2*erate*Szz(i))+(4*erate*Szz(i)*(Sxx(i)-Szz(i)))-
((3*a(i)*SRB(i)*SRB(i)*Szz(i)*Szz(i))/(lamda(i))H((1-a(i)-
((3*a(i)*(SRB(i))**4)*((2*Sxx(i)*Sxx(i))+(Szz(i)*Szz(i)))))*(Szz(i)))/(lamda(i)*SRB(i)*SRB(i)))+((1-
a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k2zz(i)=h*((2*erate*(Szz(i)+(k1zz(i)/2)))+(4*erate*(Szz(i)+(k1zz(i)/2))*(Sxx(i)-
(Szz(i)+(k1zz(i)/2))))-((3*a(i)*SRB(i)*SRB(i)*(Szz(i)+(k1zz(i)/2))*(Szz(i)+(k1zz(i)/2)))/(lamda(i)))-(((1-
a(i)-
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((3*a(i)*(SRB(i))*M)*((2*Sxx(i)*Sxx(^ 

))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))y(3*lamda(i)*SRB(i)*SRB(i)))) 

k3zz(i)=h*((2*erate*(Szz(i)+(k22z(i)/2)))+(4*erate*(Szz(i)+(k22z(i)/2))*(Sxx(i)-
(Szz(i)+(k2zz(i)/2))))-((3*a(i)*SRB(i)*SRB(ir(Szz(i)+(k2zz(i)/2))*(Szz(i)+(k2zz(i)/2)))/(lamda(i)))-(((1-
a(i)-
((3*a(i)*(SRB(i))**4)*((2*Sxx(i)*Sxx(i))+((Szz(i)+(k2zz(i)/2))*(Szz(i)+(k2zz(i)/2))))))*((Szz(i)+(k2zz(i)/2 
))))/(iamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

k4zz(i)=h*((2*erate*(Szz(i)+(k3zz(i)/1)))+(4*erate*(Szz(i)+(k3zz(i)/1))*(Sxx(i)-
(Szz(i)+(k3zz(i)/1))))-((3*a(i)*SRB(i)*SRB(ir(Szz(i)+(k3zz(i)/1)r(Szz(i)+(k3zz(i)/1)))/(lamda(i)))-(({1-
a(i)-
((3*a(i)*(SRB(i))**4)*((2*Sxx(i)*Sxx(i))+((Szz(i)+(k3zz(i)/1))*(Szz(i)+(k3zz(i)/1))))))*((Szz(i)+(k3zz(i)/1 
))))/(lamda(i)*SRB(i)*SRB(i)))+((1-a(i))/(3*lamda(i)*SRB(i)*SRB(i)))) 

Szzn(i)=Szz(i)+(k1zz(i)+2*k2zz(i)+2*k3zz(i)+k4zz(i))/6 

k1SRB(i)=h*(-(2*erate*SRB(i)*(Sxx(i)-Szz(i)))-((SRB(i)-1)/(IOs(i)*exp(-
v(ir(SRB(i)-1))))) 

k2SRB(i)=h*(-(2*erate*(SRB(i)+(k1SRB(i)/2))*(Sxx(i)-Szz(i)))-
(((SRB(i)+(k1 SRB(i)/2))-1 )/(IOs(i)*exp(-v(i)*((SRB(i)+(k1 SRB(i)/2))-1))))) 

k3SRB(i)=h*(-(2*erate*(SRB(i)+(k2SRB(i)/2))*(Sxx(i)-Szz(i)))-
(((SRB(i)+(k2SRB(i)/2))-1)/(IOs(i)*exp(-v(i)*((SRB(i)+(k2SRB(i)/2))-1))))) 

k4SRB(i)=h*(-(2*erate*(SRB(i)+(k3SRB(i)/1))*(Sxx(i)-Szz(i)))-
(((SRB(i)+(k3SRB(i)/1 ))-1 )/(IOs(i)*exp(-v(ir((SRB(i)+(k3SRB(i)/1 ))-1))))) 

SRBn(i)=SRB(i)+(k1SRB(i)+2*k2SRB(i)+2*k3SRB(i)+k4SRB(i))/6 

txxn(i)=(3*(eta(i)/lamda(i))*SRBn(irSRBn(i)*Sxx(i))-(eta(i)*lamda(i)) 
tzzn(i)=(3*(eta(i)/lamda(i))*SRBn(i)*SRBn(i)*Szz(i))-(eta(i)*lamda(i)) 
eviscn(i)=(tzzn(i)-txxn(i))/erate 

END DO !(c) 

evisn=0 
DOk=1,no !(d) 

evisn=evisn+eviscn(k) 
END DO !(d) 
error=ABS(evisn-evis) 
WRITEf,*) tn, evisn, error 
WRITE(1,*) tn, evisn, error 

END DO !(2) 

r " C L O S I N G OUTPUT FILE***** 
CLOSE (1, STATUS='KEEP') 
END PROGRAM XPPELONGATION 

C. Random Walks 

Random walk theory is described in Chapters II and XII. Chapter XII presents 
some simulations of the random growth of polymer chains, where the starting 
points were considered as the active sites in the catalyst surface. Here are 
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presented the codes developed to generate the random walks in one (1-D) and two 

(2-D) dimensions. 

1 . 1-D 

1DRW.f90 

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

PROGRAM: 1DRW 

PURPOSE: To obtain the number of junctions between "two chains" ( one 
random walks). The number of steps in the random walks is 
given by the user, as well as the number of iterations and the 
distance between the starting points of the chains. 

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

PROGRAM RW1D 

IMPLICIT NONE 

'VARIABLES* 

REAL 
REAL 
REAL 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
CHARACTER 

rA, rB, RAND 
jun(1500) 
avejun 
d 
n 
it 
x(500) 
yA(500) 
yB(500) 
i, j , k, cont, res, leo 
archrs6, archrs7 

(random numbers 
[junctions 
(average of junctions 
[distance between starting points 
[number of steps 
[number of iterations 
[step 
[position of chain A 
[position of chain B 
[auxiliary variables 
(output files 

!*****OPEN OUTPUT FILES* 

archrs6 = 'junctions.dat' 
archrs7 ='1DRW.dat' 

OPEN (6, FILE=archrs6) 
OPEN (7, FILE=archrs7) 

I***** | fsj p y j * * * * * 

WRITE(*,*) 'Distance between starting points' 
READ(*,*) d 
WR!TE(*,*) 'number of steps' 
READ(*,*) n 
WRITE(*,*) 'number of iterations' 
READ(*,*) it 
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DO j=1, it iterations loop (1) 
cont=0 
leo=0 
x(1)=0 [initial position 
yA(1)=0 linitial position 
yB(1)=d linitial position 
WRITE(Y) x(1), yA(1), yB(1) 
WRITE(7,*)x(1), yA(1), yB(1) 
DO i=2, n INumber of steps loop (2) 

x(i)=x(i-1)+1 
rA=rand() Irandom number between 0 and 1 
rB=rand() Irandom number between 0 and 1 
IF (rA<0.3333) THEN ! Chain A new position (A) 

yA(i)=yA(i-1)-1 
ELSE 

IF (rA<0.6666) THEN 
yA(i)=yA(i-1) 

ELSE 
yA(i)=yA(i-1)+1 

END IF 
END IF ! Chain A new position (A) 
IF (rB<0.3333) THEN ! Chain B new position (B) 

yB(i)=yB(i-1)-1 
ELSE 

IF (rB<0.6666) THEN 
yB(i)=yB(i-1) 

ELSE 
yB(i)=yB(i-1)+1 

END IF 
END iF (Chain B new position (B) 
WRITE(*,*)x(i),yA(i), yB(i) 
WRITE(7,*)x(i), yA(i), yB(i) 
res=yA(i)-yB(i) 
IF (res.EQ.O) THEN 

leo=1 
ELSE 

leo=0 
END IF 
cont=cont+leo 

END DO ! Number of steps loop (2) 
jun(j)=cont 

END DO INumber of iterations loop (1) 

avejun=cont/it 

DO k=1, it 
WRITE(6,*) jun(k) 

END DO 

!*****CLOSING OUTPUT FILES***** 

CLOSE (6, STATUS='KEEP") 
CLOSE (7, STATUS='KEEP') 

END PROGRAM RW1D 
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The program was used with different distance between starting points (d). Some 
results are presented in Figure B.1 through Figure B.3. 
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Figure B.1. Number of junctions distribution using d = 0. 
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Figure B.2. Number of junctions distribution using d = 3. 

203 



2. 2-D 

! 2DRW.f90 

! FUNCTIONS'. 
! 2DRW - Entry point of console application. 
|************************************************ 

PROGRAM: 2DRW 

PURPOSE: To obtain the number of junctions between "two chains" (two 
dimension random walks). The number of steps in the random walks 
is given by the user, as well as the number of iterations and the 
distance between the starting points of the chains. 

PROGRAM RW2D 

IMPLICIT NONE 

('""VARIABLES***** 

REAL raA, rbA, raB, rbB, RAND 
REAL jun(1500) 
REAL avejun 
INTEGER d 
INTEGER n 
INTEGER it 
INTEGER xA(500) 
INTEGER xB(500) 

Irandom numbers 
(junctions 
(average of junctions 
(distance between strating point 
(number of steps 
(number of iterations 
(X position in chain A 
(X position in chain B 
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INTEGER yA(500) !Y position in chain A 
INTEGER yB(500) !Y position in chain B 
INTEGER ABx(500,500) 'junctions in X 
INTEGER ABy(500,500) functions in Y 
INTEGER AB(500,500) ljunctions 
INTEGER i, j , k, h, cont, res, leoA, leoB, kjA, kjB 
CHARACTER*20 archrs6, archrs7 

|..... 0PENING OUTPUT FILES***** 

archrs6 = 'jun2D.dat' 
archrs7 = '2DRW.dat' 

OPEN (6, FILE=archrs6) 
OPEN (7, FILE=archrs7) 

WRITE(*,*) 'Distance between starting points' 
READ(*,*) d 
WR!TE(*,*) 'Number of steps' 
READ(*,*) n 
WRITE(*,*)'Number of iterations' 
READ(*,*) it 

!*****CHAIN GROWTH***** 

DOj=1,it 'Iteration loop (1) 

cont=0 
xA(1)=0 linitial position 
yA(1)=0 
xB(1)=0 
yB(1)=d 
!WRITE(*,*) xA(1), xB(1), yA(1), yB(1) 
WRITE(7,*) xA(1), xB(1), yA(1), yB(1) 
DO i=2, n INumber of steps loop (2) 

r a A = r a n d ( ) 'Random number to decide the direction of growth in A 
r a B = r a n d ( ) 'Random number to decide the direction of growth in B 
r b A = r a n d ( ) (Random number to decide the sense of growth in A 
r b B = r a n d ( ) IRandom number to decide the sense of growth in B 
IF (raA>0.5) THEN ! (A) 

kjA=1 
ELSE 

kjA=0 
END IF ! (A) 
IF (raB>0.5) THEN ! (B) 

kjB=1 
ELSE 

kjB=0 
END IF ! (B) 
! kj = 0, movement in X 
! kj = 1, movement in Y 

INEWxA 
iF (kjA==0) THEN ! (2A) 
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END IF 

INEWxB 
IF (kjB==0) 

END IF 

END iF 

INEWyB 
IF(kjB==1) 

ELSE 

THEN 

ELSE 

INEWyA 
IF (kjA==1) THEN 

ELSE 

THEN 

ELSE 

IF (rbA>0.5) THEN ! (3A) 
xA(i)=xA(i-1)+1 

ELSE 
xA(i)=xA(i-1)-1 

!(3A) END IF 

xA(i)=xA(i-1) 
!(2A) 

!(2B) 
F (rbB>0.5) THEN ! (3B) 

xB(i)=xB(i-1)+1 
ELSE 

xB(i)=xB(i-1)-1 
!(3B) END IF 

xB(i)=xB(i-1) 
(2B) 

!(2A) 
IF (rbA>0.5) THEN ! (3A) 

yA(i)=yA(i-1)+1 
ELSE 

yA(i)=yA(i-1)-1 
!(3A) END IF 

yA(i)=yA(i-i) 
!(2A) 

!(2B) 
F (rbB>0.5) THEN ! (3B) 

yB(i)=yB(i-1)+1 
ELSE 

yB(i)=yB(i-1)-1 
!(3B) END IF 

yB(i)=yB(i-1) 
END IF 
WRITE(7,*) xA(i), yA(i), xB(i), yB(i) 

END DO 

!*****NUMBER OF JUNCTIONS**' 
DO k=1, n 

DO h=1, n 
IF (xA(k)==xB(h)) 

END IF 
IF ( y A(k)==yB(h)) 

THEN 

ELSE 

THEN 

ELSE 

!(2B) 

INumber of steps loop (2) 

!(1) 
!(2) 
!X 

ABx(k,h)=1 

ABx(k,h)=0 

ABy(k,h)=1 

ABy(k,h)=0 

I X 

! Y 



END IF 
AB(k,h)=ABx(k, h)*ABy (k, h) 
cont=cont+AB(k,h) 

END DO 
END DO 
WRITE(Y) cont 
jun(j)=cont 

END DO 
DO k=1, it 

WRITE(6,*)jun(k) 
END DO 

!*****CLOSING OUPUT FILE***** 

CLOSE (6, STATUS^KEEP') 
CLOSE (7, STATUS='KEEP') 

END PROGRAM RW2D 

Some results obtained with this program are presented next. 

O O O C O ^ C M O O O C D ^ - C M O O O C D - S f c N O O O C D T r C N O 
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Number of junctions 

Figure B.4. Number of junctions distribution using d = 0. 
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llterations loop (1) 
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Figure B.5. Relationship between the average of junctions and distance (d) for different number of 
steps (t). 

D. Self-avoiding Random Walks 

Self-avoiding random walks are introduced in Chapter II and are used to simulate 
the random growth of polymer chains in Chapter XII. In this case, as well as in 
random walks, the starting points were considered as the active sites in the 
catalyst surface. Here are presented the codes developed to generate the self-
avoiding random walks (SAWs) in two (2-D) and three (3-D) dimensions. 

1. 2-D 

! SARW2D.f90 

! FUNCTIONS: 
! SARW2D - Entry point of console application. 
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

! PROGRAM: SARW2D 

! PURPOSE: To obtain the number of junctions between "two chains" (two 
! dimension SAWs). The number of steps in the random walks 
! is given by the user, as well as the number of iterations and the 
! distance between the starting points of the chains.. 

j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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PROGRAM SARW2D 

IMPLICIT NONE 

l * 'VARIABLES* 

REAL 
REAL 
REAL 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
CHARACTER' 

raA, rbA, raB, rbB, RAND 
maxX, maxY, minX, minY 

'random numbers 

jun(1500) 
d 
n 
it 
xA(500), nxA(500) 
xB(500), nxB(500) 
yA(500), nyA(500) 
yB(500), nyB(500) 
ABx(500,500) 
ABy(500,500) 

functions 
(distance between strating points 
Inumber of steps 
'number of iterations 
!X position in chain A 
!X position in chain B 
!Y position in chain A 
!Y position in chain B 
'.junctions in X 
(junctions in Y 
(junctions AB(500,500) 

leoxa(500,500), leoxb(500,500) 
leoya(500,500), leoyb(500,500) 
ca(1500), cb(1500) 

conta, contb, i, j , k, h, cont, res, kjA, kjB 
20 archrs5, archrs6, archrs7 

i * 'OPENING OUTPUT FILES* 

archrs6 = 'junSAW(2).dat' 
archrs7 = 'SAW(2).daf 

OPEN (6, FILE=archrs6) 
OPEN (7, FILE=archrs7) 

j*****ll^ipij-j-***** 

WRITE(Y) 'Distancia entre los puntos de origen' 
READ(*,*) d 
WRITE(*,*) 'numero de pasos (maximo 499)' 
READ(*,*) n 
WRITE(*,*) 'numero de iteraciones (maximo 1499)' 
READ(*,*) it 

!***"LIMITS FOR X AND Y**"* 

maxX=n/5 
maxY=n/5 
minX=-n/5 
minY=-n/5 

i * *CHAIN GROWTH* 

DO j=1, it 
cont=0 
xA(1)=0 
yA(1)=0 

(Iteration loop (1) 

(initial position 
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xB(1)=0 

yB(1)=d 
nxA(1)=0 
nyA(1)=0 
nxB(1)=0 
nyB(1)=d 
DO i=2, n 

r a A = r a n d ( ) 

r a B = r a n d ( ) 

r b A = r a n d ( ) 

r b B = r a n d ( ) 

IF (raA>0.5) 

END IF 
IF (raB>0.5) 

! Number of steps loop (2) 
IRandom number to decide the direction of growth in A 
IRandom number to decide the direction of growth in B 
IRandom number to decide the sense of growth in A 
IRandom number to decide the sense of growth in B 

THEN 

ELSE 

THEN 

ELSE 

END IF 
I kj = 0, movement in X 
! kj = 1, movement in Y 

kjA=1 

kjA=0 

kjB=1 

kjB=0 

(A) 

!(A) 
!(B) 

!(B) 

INEWxA 
iF (kjA==0) i HEN 

IF (rbA>0.5) THEN 

END IF 
ELSE 

xA(i)=xA(i-1) 
END IF 
IF (xA(i)>maxX .OR. xA(i)<minX) 

END IF 

ELSE 
xA(i)=xA(i-1)+1 

xA(i)=xA(i-1)-1 

!(2A) 
!(3A) 

THEN 
xA(i)=xA(i-1) 

!(3A) 

!(2A) 

INEWxB 
IF (kjB=0) THEN 

IF (rbB>0.5) THEN 

END IF 
ELSE 

xB(i)=xB(i-1) 
END IF 
IF (xB(i)>maxX .OR. xB(i)<minX) 

END IF 

ELSE 
xB(i)=xB(i-1)+1 

xB(i)=xB(i-1)-1 

i(2B) 
(3B) 

THEN 
xB(i)=xB(i-1) 

!(3B) 

! (2B) 

INEWyA 
IF (kjA==1) THEN 

IF (rbA>0.5) THEN 
yA(i)=yA(i-1)+1 

!(2A) 
!(3A) 



!*
ELSE 

END IF 
ELSE 

yA(i)=yA(i-1) 
END IF 

IF (yA(i)>maxY .OR. yA(i)<minY) 

END IF 

INEWyB 
IF (kjB=1) THEN 

yA(i)=yA(i-1)-1 
!(3A) 

!(2A) 
THEN 

yA(i)=yA(i-1) 

!(2B) 
IF (rbB>0.5) THEN ! (3B) 

yB(i)=yB(i-1)+1 
ELSE 

yB(i)=yB(i-1)-1 
END IF ! (3B) 

ELSE 
yB(i)=yB(i-1) 

END IF ! (2B) 
IF (yB(i)>maxY .OR. yB(i)<minY) THEN 

yB(i)=yB(i-1) 
END IF 

****SAW RESTRICTIONS***** 

conta=0 
contb=0 
DOk=1, i-1 

IF (xA(i)==xA(k)) 

END IF 
IF (yA(i)==yA(k)) 

END IF 
IF (xB(i)==xB(k)) 

END IF 
IF (yB(i)==yB(k)) 

THEN 

ELSE 

THEN 

ELSE 

THEN 

ELSE 

THEN 

ELSE 

leoxa(i,k)=1 

leoxa(i,k)=0 

leoya(i,k)=1 

leoya(i,k)=0 

leoxb(i,k)=1 

leoxb(i,k)=0 

leoyb(i,k)=1 

leoyb(i,k)=0 
END IF 
conta=conta+leoxa(i, k)*leoy a(i, k) 
contb=contb+leoxb(i, k)*leoyb(i, k) 

END DO 

IF (conta>0) THEN 
xA(i)=xA(i-1) 
yA(i)=yA(i-1) 

1(1) 

1(1) 
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END IF 
IF (contb>0) 

END IF 
END DO 

ELSE 

THEN 

ELSE 

xA(i)=xA(i) 
yA(i)=yA(i) 

xB(i)=xB(i-1) 
yB(i)=yB(i-1) 

xA(i)=xA(i) 
yB(i)=yB(i) 

! Number of steps loop (2) 

!*****ELIMINATING REPEATED POINTS***** 

h=1 
k=1 
DO WHILE (h<=n) !(2) 

h=h+1 
k=k+1 
IF (xA(h)==nxA(k-1) AND. yA(h)==nyA(k-1)) THEN 

k=k-1 

END IF 
END DO 
caG)=k-1 

ELSE 
nxA(k)=xA(h) 
nyA(k)=yA(h) 

!(2) 

h=1 
k=1 
DO WHILE (h<=n) !(2) 

h=h+1 
k=k+1 
IF (xB(h)==nxB(k-1) .AND. yB(h)==nyB(k-1)) THEN 

k=k-1 

END IF 
END DO 
cb(j)=k-1 

i*****FINAL SAW***** 

DO i=1, caO) 
WRITE(7,*) nxA(i), nyA(i), j , 'A' 

END DO 
DO i=1, cb(j) 

WRITE(7,*) nxB(i), nyB(i), j , 'B' 
END DO 
!*****NUMBER OF JUNCTIONS***** 
DO k=1, caO) 

DO h=1,cb(j) 
IF (nxA(k)==nxB(h)) THEN 

ELSE 
nxB(k)=xB(h) 
nyB(k)=yB(h) 

!(2) 

1(1) 
!(2) 
!X 
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END IF 
IF (nyA(k)==nyB(h)) 

END IF 
AB(k,h)=ABx(k,h)*ABy(k,h) 
cont=cont+AB(k,h) 

END DO 
END DO 
WRITE(Y) cont, ca(j), cb{j) 
jun(j)=cont 

END DO 

ABx(k,h)=1 

!(2) 
1(1) 

! Iterations loop (1) 

DO k=1, it 
WRITE(6,*) jun(k), ca(k), cb(k) 

END DO 

!*****CLOSING OUPUT FILE***** 

CLOSE (6, STATUS='KEEP') 
CLOSE (7, STATUS='KEEP') 

END PROGRAM SARW2D 

Figures B.6 to B.8 show results from this program. 
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Figure B.6. Chains' length distribution. 
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ABx(k,h)=0 
!X 

THEN !Y 
ABy(k,h)=1 

ELSE 
ABy(k,h)=0 

!Y 

ELSE 
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Figure B.7. Number of junctions distribution using d = 0. 
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Figure B.8. Number of junctions distribution using d = 3. 
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2. 3-D 

SAW3DV2.f90 

FUNCTIONS: 
SAW3DV2 - Entry point of console application. 

********************************************** 

PROGRAM: SAW3DV2 

PURPOSE: To obtain the number of junctions between "two chains" (three 
dimension self-avoiding random walks). The number of steps 
in the SAWs is given by the user, as well as the number of iterations 
and the distance between the starting points of the chains. 

************************************************************************************************** 

PROGRAM SAW3Dv2 

IMPLICIT NONE 

[""'VARIABLES* 

REAL 
REAL 
REAL 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
CHARACTER' 

raA, rbA, raB, rbB, RAND 
maxX, maxY, minX, minY, maxZ, minZ 
jun(1501) [junctions 
d [distance between strating points 
n [number of steps 
it [number of iterations 
xA(1501), nxA(1501) !X position in chain A 

[random numbers 

xB(1501), nxB(1501) 
yA(1501), nyA(1501) 
yB(1501), nyB(1501) 
zA(1501), nzA(1501) 
zB(1501), nzB(1501) 
ABx(1501,1501) 
ABy(1501,1501) 
ABz(1501,1501) 

!X position in chain B 
!Y position in chain A 
!Y position in chain B 
!Z position in chain A 
!Z position in chian B 
[junctions in X 
[junctions in Y 
[junctions in Z 
[junctions AB(1501,1501) 

leoxa(1501,1501), leoxb(1501,1501) 
leoya( 1501,1501), leoyb(1501,1501) 
leoza(1501,1501), leozb(1501,1501) 
ca(1501), cb(1501) 

conta, contb, i, j , k, h, cont, res, kjA, kjB 
20 archrs6, archrs7 

["•"OPENING OUTPUT FILES* 

archrs6 = ,junSAW3D(2).daf 
archrs? = 'SAW3D(2).dat' 

OPEN (6, FILE=archrs6) 
OPEN (7, FILE=archrs7) 

!*****! NPUT** 
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WRITE(*,*) 'Distance between starting points' 
READ(Y) d 
WRITE(Y) 'Number of steps' 
READ(Y)n 
WRITE(*,*) 'Number of iterations' 
READ(Y) it 

i * 'LIMITS FOR X, Y AND Z* 

maxX=n/5 
maxY=n/5 
maxZ=n/5 
minX=-n/5 
minY=-n/5 
minZ=-n/5 

i * 'CHAIN GROWTH* 

DO j=1, it 
cont=0 
xA(1)=0 
yA(1)=0 
zA(1)=0 
xB(1)=0 
yB(1)=d 
zB(1)=0 
nxA(1)=0 
nyA(1)=0 
nzA(1)=0 
nxB(1)=0 
nyB(1)=d 
nzB(1)=0 
DO i=2, n 

raA=rand() 
raB=rand{) 
rbA=rand() 
rbB=rand() 
IF (raA>0.6666) 

llteration loop (1) 

linitial position 

INumber of steps loop (2) 
(Random number to decide the direction of growth in A 
IRandom number to decide the direction of growth in B 
IRandom number to decide the sense of growth in A 
IRandom number to decide the sense of growth in B 

THEN 

ELSE 

END IF 
IF (raB>0.6666) THEN 

ELSE 

kjA=2 

IF (raA>0.3333) 

END IF 

kjB=2 

IF (raB>0.3333) 

END IF 
END IF 

!(A) 

THEN 

ELSE 

! (A ) 
!(B) 

THEN 

ELSE 

!(B) 

kjA=1 

kjA=0 

kjB=1 

kjB=0 
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! kj = 0, movement in X 
! kj = 1, movement in Y 
! kj = 2, movement in Z 

!NEWxA 
IF (kjA==0) THEN ! (2A) 

IF (rbA>0.5) THEN ! (3A) 
xA(i)=xA(i-1)+1 

ELSE 
xA(i)=xA(i-1)-1 

END IF ! (3A) 
ELSE 

xA(i)=xA(i-1) 
END IF ! (2A) 
IF (xA(i)>maxX .OR. xA(i)<minX) THEN 

END IF 
xA(i)=xA(i-1) 

INEWxB 
IF (kjB==0) THEN ! (2B) 

IF (rbB>0.5) THEN ! (3B) 
xB(i)=xB(i-1)+1 

ELSE 
xB(i)=xB(i-1)-1 

END IF ! (3B) 
ELSE 

xB(i)=xB(i-1) 
END IF ! (2B) 
IF (xB(i)>maxX .OR. xB(i)<minX) THEN 

END IF 
xB(i)=xB(i-1) 

INEWyA 
IF(kjA==1) THEN !(2A) 

IF (rbA>0.5) THEN ! (3A) 
yA(i)=yA(i-1)+1 

ELSE 
yA(i)=yA(i-1)-1 

END IF ! (3A) 
ELSE 

yA(i)=yA(i-1) 
END IF ! (2A) 
IF (yA(i)>maxY .OR. yA(i)<minY) THEN 

END IF 
yA(i)=yA(i-1) 

INEWyB 
IF (kjB==1) THEN ! (2B) 

IF (rbB>0.5) THEN ! (3B) 
yB(i)=yB(i-1)+1 

ELSE 
yB(i)=yB(i-1)-1 

END IF ! (3B) 
ELSE 

yB(i)=yB(i-1) 
END IF ! (2B) 



IF (yB(i)>maxY .OR. yB(i)<minY) 

END IF 

THEN 

INEWzA 
IF (kjA=2) THEN 

IF (rbA>0.5) 

END IF 
ELSE 

zA(i)=zA(i-1) 
END IF 
IF (zA(i)>maxZ .OR. zA(i)<minZ) 

END IF 

INEWzB 
IF (kjB==2) THEN 

IF (rbB>0.5) 

END IF 
ELSE 

zB(i)=zB(i-1) 
END IF 
IF (zB(i)>maxZ .OR. zB(i)<minZ) 

END IF 

!*****SAW RESTRICTIONS***** 

conta=0 
contb=0 
DO k=1, i-1 

IF (xA(i)==xA(k)) 

END IF 
IF (yA(i)==yA(k)) 

END IF 
IF (zA(i)==zA(k)) 

END IF 
IF (xB(i)=xB(k)) 

THEN 

ELSE 

THEN 

ELSE 

THEN 

ELSE 

THEN 

ELSE 

yB(i)=yB(i-1) 

!(2A) 
THEN ! (3A) 

zA(i)=zA(i-1)+1 
ELSE 

zA(i)=zA(i-1)-1 
!(3A) 

THEN 
(2A) 

zA(i)=zA(i-1) 

!(2B) 
THEN ! (3B) 

zB(i)=zB(i-1)+1 
ELSE 

zB(i)=zB(i-1)-1 
!(3B) 

THEN 
!(2B) 

zB(i)=zB(i-1) 

!(1) 

leoxa(i,k)=1 

leoxa(i,k)=0 

leoya(i,k)=1 

leoya(i,k)=0 

leoza(i,k)=1 

leoza(i,k)=0 

leoxb(i,k)=1 

leoxb(i,k)=0 
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END IF 

IF (yB(i)==yB(k)) 

END IF 
IF (zB(i)==zB(k)) 

THEN 

ELSE 

THEN 

leoyb(i,k)=1 

leoyb(i,k)=0 

ELSE 
leozb(i,k)=1 

leozb(i,k)=0 
END IF 
conta=conta+leoxa(i, k)*leoya(i, k)*leoza(i, k) 
contb=contb+leoxb(i,k)*leoyb(i,k)*leozb(i,k) 

END DO 

IF (conta>0) 

END IF 
IF (contb>0) 

END IF 

THEN 

ELSE 

THEN 

ELSE 

!(1) 

END DO 

xA(i)=xA(i-1) 
yA(i)=yA(i-1) 
zA(i)=zA(i-1) 

xA(i)=xA(i) 
yA(i)=yA(i) 
zA(i)=zA(i) 

xB(i)=xB(i-1) 
yB(i)=yB(i-1) 
zB(i)=zB(i-1) 

xA(i)=xA(i) 
yB(i)=yB(i) 
zB(i)=zB(i) 

INumber of steps loop (2) 

'""'ELIMINATING REPEATED POINTS*"" 

h=1 
k=1 
DO WHILE (h<=n) !(2) 

h=h+1 
k=k+1 

IF (xA(h)==nxA(k-1) .AND. yA(h)==nyA(k-1) .AND. zA(h)==nzA(k-1)) THEN 
k=k-1 

ELSE 
nxA(k)=xA(h) 
nyA(k)=yA(h) 
nzA(k)=zA(h) 

!(2) 
END IF 
END DO 
ca(j)=k-1 
h=1 
k=1 
DO WHILE (h<=n) 

h=h+1 
!(2) 
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k=k+1 
iF (xB(h)==nxB(k-1) .AND. yB(h)==nyB(k-1) .AND. zB(h)==nzB(k-1)) THEN 

k=k-1 
ELSE 

nxB(k)=xB(h) 
nyB(k)=yB(h) 
nzB(k)=zB(h) 

END IF 
END DO !(2) 
cb(j)=k-1 

!*****FINAL SAW***** 

DO i=1, caQ) 
WRITE(7,*) nxA(i), nyA(i), nzA(i), j , 'A' 

END DO 
DO i=1, cbG) 

WRITE(7,*) nxB(i), nyB(i), nzB(i), j , 'B' 
END DO 

!*****NUMBER OF JUNCTIONS***** 
DO k=1, caG) 

DO h=1, cbG) 

I F (nxA(k)==nxB(h)) THEN 

ELSE 

END I F 

I F (nyA(k)==nyB(h)) THEN 

END I F 

I F (nzA(k)==nzB(h)) THEN 
ELSE 

ABx(k,h)=1 

ABx(k,h)=0 

ABy(k,h)=1 

ABy(k,h)=0 

ABz(k,h)=1 

ABz(k,h)=0 

!(1) 
!(2) 
!X 

!X 
!Y 

!Y 
!Z 

END I F 

AB(k,h)=ABx(k, h)*ABy(k, h)*ABz(k, h) 
cont=cont+AB(k,h) 

END DO 
END DO 
WRITE(*,*) cont, caG), cbG) 
junG)=cont 

END DO 

DO k=1, it 
WRITE(6,*) jun(k), ca(k), cb(k) 

END DO 

!Z 

!(2) 
!(1) 

(Iterations loop (1) 

!*****CLOSING OUPUT FILE* 

CLOSE (6, STATUS='KEEP') 
CLOSE (7, STATUS='KEEP) 

END PROGRAM SAW3Dv2 
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Figure B.9. Chains' length distribution. 
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Figure B.10. Number of junctions distribution using d = 0. 
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Figure B.11. Number of junctions distribution using d = 1. 
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Figure B.12. Percentage of probability of a number of junctions for different distance between 
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Figure B.13. Relationship between the average of junctions and distance (d) for different number of 
steps (t). 
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Appendix C. Rheometers Procedures 

A. Parallel Plate Rheometer 

1. Equipment description 

Constant Strain Rheometer RDA II Rheometrics Dynamics Analyzet. 
Rheometrics Scientific (RSI) software. 
Configuration: Parallel plates. 
Geometry: 25 mm in diameter. 

2. Safety precautions 

^ The use of heat resistant gloves is recommended, since the oven and test 
fixtures are hot when testing at elevated temperatures. 

^ A cryogenic hazard exists, since sub-ambient temperature testing involves the 
use of liquid nitrogen. Transfer lines, oven chamber and its contents may be 
extremely cold. Use appropriate gloves when working around these areas. 

^ The torque transducer is sensitive to axial and normal forces and can be 
damaged if overloaded. Pay close attention to torque and normal force 
indicators when performing the following: 

1. Turning on motor drive; if a sample is loaded when energizing the motor 
drive, the torque transducer will be damaged. 

2. Attaching or removing test fixtures. 
3. Loading or unloading test specimens. 
4. Cleaning test fixtures. 

3. Sample preparation 

a. Weight 30.0 grams of polymer pellets and 0.03 grams of 2-6 di-tert-butyl-p-
cresol (BHT) on analytical balance. BHT concentration can be 1000 ppm up 
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to 2% in weight. Polypropylene fluff samples first need to be stabilized with 
irganox 1076 in a ratio of 15 grams of fluff to 7 mil of Irganox. 

b. Pour polymer pellets and BHT on grinder (coffee mill). 
c. Cut two sheets of Mylar and place them over the metal plates. 
d. Press mixer bottom for 1 second and then interrupt the mixing by 

depressing it. Do this 5 times. 
e. Place the appropriate (1 or 2 mm) thickness sample plate (mold plate) over 

one of the metal plates with Mylar over it. 
f. Place the mixed pellets over the sample plate holes and square. 
g. Place the Mylar sheet and the other metal plate over the mould plate (with 

polymer pellets poured on it). 
h. Mold press 25 mm diameter disks with minimum thickness of 2.5 mm by 

leaving 2 minutes of pre-heating at 5,000 psi and 375 - 400 °F in mold, then 
2 minutes of compression by increasing mold pressure up to 25,000 psi. 

i. Using gloves, take away steel plates from the mold press and leave them to 
bench cooling for 15 minutes. 

j . Separate the plates, and take away sampling material from the mold. Cut 
off sample material, 

k. Take away Mylar from the steel plates and clean them using spatula. 

4. System start-up 

a. Clean parallel plates. 
b. Install lower tool thermocouple (sample temperature is monitored by lower 

tool thermocouple). 
c. At the front panel of the rheometer, set thermocouple jumper to 

"Computer/Tool". 
d. Tight upper and bottom fixtures with 25 mm plates correctly (with motor 

power off). Ensure normal force not to exceed ±10%. 
e. Lower plates until contact is made and inspect visually to ensure 

concentricity (how parallel plates are). 
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f. Turn the motor off, and freely turn the lower fixture plate to see if gap is 

changing (no change in gap ensures concentricity). 

g. Separate the plates. 
h. At the back of the rheometer, check nitrogen pressure settings for the oven 

(while closed) is at 40 psi and transducer pressure is at 35 psi. 
i. Turn main power of the system control on. 
j . Turn main power of the control computer on. 
k. Checking that no sample is loaded, turn motor power on. Make sure that 

there is no sample loaded in the fixtures prior to energizing the motor, 
otherwise damage to transducer will occur. 

I. Verify that both, torque and normal indicators are at cero. 
m. Being in the RSI software environment, in user login choose the RAA or the 

RDA II equipment. 
n. Configure instrument to control temperature by the oven by selecting in 

utilities window: service, instrument configuration, temperature control loop, 
and oven air temperature, 

o. Verify status to be ok and in dynamic mode. Otherwise, set motor mode to 
"dynamic" in control Window (verifying that no sample is loaded and that the 
parallel plates aren't together), 

p. Raise top plate approximately 1 mm to allow for fixture expansion during the 
heating process. 

q. Close the oven, making sure that both upper and lower baffles are in the 
right position (so that insulation is ensured). Make sure that the upper baffle 
is not touching the oven, since this would cause a normal force that can 
damage the equipment. 

r. Set temperature in panel icon. At the start of the heating process, the 
setpoint should be 50 °C more than the test temperature. Once temperature 
has achieved 5 °C less than the test temperature, the actual setpoint is set to 
a slightly higher temperature (5°C more) than the desired test temperature. 
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s. Once temperature has equilibrated (1/2 hour), adjust plates to zero gap by 
turning knob slowly until parallel plates touch each other (identified by the 
last zero normal force while approaching parallel plates). 

t. Reset gap indicator. 
u. In start icon save the test file following the test conditions, 
v. Press exit test bottom (do not begin test). 

Table C.1. Frequency sweep test conditions 

VARIABLE TEST CONDITIONS 

Test type Frequency Sweep (dynamic 
mode) 

Test name Frequency Sweep for all 
Polymers 

Location C:\RSIOrche600\Data\Polymers 
Geometry 25 mm Parallel Plate 

Gap 1 mm 

Strain 10% (standard) 

Sweep type logarithmic 

Sweep range 500 to 0.01 rad/sec 

Points per decade 4 

Correlation Delay 0.5 cycles 

Temperature Loop 
Control 

Oven air temperature 

Temperature monitor Lower tool thermocouple 
(set jumper to Computer/Tool) 

5. Specimen loading 

a. Open oven, raise upper plate enough so that specimen can be inserted (3 
mm maximum). 
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b. Place the specimen between the plates. Safety precautions should be 

taken, since oven is hot). 

c. Close the oven. 

d. Lower upper plate until contact is made with specimen and close oven. 

50% of normal force will ensure full contact. 

e. Allow 5 minutes for specimen preheating, then lower upper plate to 1.05 or 

2.05 mm gap (depending on the specimen thickness). 

f. Allow normal force to diminish to 30% or less before trimming specimen. 

g. Open oven and trim excess material away from plates. 

h. Lower upper plate to 1.0 or 2.0 mm final gap (final gap should be a little 

less than the specimen thickness), close oven. 

i. Allow additional 5 minutes for temperature equilibrium prior to testing (± 0.2 

°C from setpoint). 

j . Ensure that the normal force is less than 10% before beginning test. 

Note: each time oven is opened, setpoint should be raised 50 °C more than the 

actual temperature, to achieve testing temperature again. Once the 

temperature has returned to its setpoint temperature, re-adjust the 

setpoint to this desired value. 

6. Begin test 

a. In start icon, verify that the testing conditions are the desired ones. Then 

press begin test bottom. The start icon (in green) should change to stop 

icon (in red). 

b. The view icon is for choosing between results in graph format or in table 

format. Display results in a table that shows frequency, G', G", G*, Eta*, 

Tan Delta, Temperature, and Torque. 

c. The torque resolution is more than 2 gr cm, but leave resulting data with 

torque greater than 0.8 gr cm. Eliminate data with a lower torque. 
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d. Once test is finished, calculate the point at which G' (storage modulus) and 
G" (loss modulus) intersect by selecting analysis, then G7G" crossover, 
and finally, stamp crossover modulus and frequency on graph option. 

e. Once test is finished, fit viscosity data by selecting viscosity curve by 
double clicking on curve itself, then select curve fit window, followed by fit 
data to model, viscosity models, carreau model, fit, save fit, and stamp fit 
on graph. 

To save the results file in an ASC II format (*.txt), choose the export option in 
the file window. 

7. Equipment clean up 

a. Separate the gap slowly up to 3 mm (check normal force). 
b. Open oven, separate still more the plates, and clean plates using a spatula 

and a brass brush. 
c. Clean plates by wiping them with isopropyl alcohol. 
d. Close gap to 3 mm and close oven again. 

e. If no more tests are to be done, lower the temperature setpoint to 25 °C, then 
wait until the rheometer cools down. Finally, turn off the system control, the 
motor, the gap gage, and the control computer. 

8. Emergency shut down procedure 

a. Turn off the test station motor, system control, and the control computer of 
the rheometer. 

b. Determine if a test specimen is loaded (open oven chamber and visually 
determine it). 

c. Remove test specimen. 
d. Open oven chamber. 
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e. Loosen the top (transducer) and bottom (motor actuator) test fixture clamps 
(thumbs screws located on the right side of the motor actuator and 
transducer clamps). 

f. Raise the torque transducer platform up with the hand crank located on the 
right side of the test station and remove the test fixtures. Monitor the normal 
force meter while raising the torque transducer platform. The control 
computer should be turned back on to monitor the normal force. If the top 
fixture clamp is not lose enough to allow the fixture to slide out of the clamp, 
transducer overloading may occur. 

g. Turn off the gas chiller if applicable. 
h. Turn off the computer, the nitrogen filters, the printer and plotter. 
i. Unplug all electrical cards. 
j . Block in the nitrogen supply. 
k. Block in liquid nitrogen if applicable. 

S . Capillary Rheometer 

1. Equipment description 

Rosand Capillary Rheometer 

Model RH7-2 

Double Bore 
Barrel Diameter: 15 mm 
Available Pair of Capillary Dies: 

0.5 mm 
90° 
0.25 mm 
8 mm 

Diameter: 
Entrance Type: 
Short Die Lenght: 
Long Die Lenght: 
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Diameter: 1.0 mm 
Entrance Type: 90 0 

Short Die Length: 0.25 mm 
Long Die Lenght: 16 mm 

Diameter: 1.0 mm 
Entrance Type: 180 0 (Flat) 
Short Die Lenght: 0.25 mm 
Long Die Lenght: 16 mm 

Diameter: 0.5 mm 
Entrance Type: 90 0 

Short Die Lenght: 0.25 mm 
Long Die Lenght: 24 mm 

2. Safety precautions 

The use of heat resistant gloves is necessary, especially while changing dies 
and cleaning the barrel and pistons. 
Keep hands clear of crosshead while operating the equipment. 

«=> Care must be taken when initially lowering pistons into barrels so as not to bend 
the pistons or overload the transducer. Monitor transducer load and ensure 
that the pistons are properly inserted into the barrels. 

3. Test Setup 

a. Open the Dr. Rheology software in the computer. 
b. Ensure that the proper dies and tranducer are assigned in the software. 
c. Indicate the desire temperature and allow enough time to temperature 

equilibrium. 
d. Go to the pretest section, and introduce a preheat-compression-preheat-

compression stage to ensure the accuracy of the test. 
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e. Indicate the velocity range of testing by creating a shear rate schedule. 

4. Running tests 

a. Ensure that the appropriate transducers are properly installed. 
b. Place the short and long dies in the bottom of the barrels. 
c. Calibrate and re-zero, using Dr. Rheology software, the pressure transducers. 
d. Load the polymer sample into the barrel. Add material in small increments and 

tamp with the compressing rod. 
e. Place the pistons on the crosshead. Lower the crosshead with the pistons until 

plungers contact the material. 
f. Close the crosshead door. 
g. Start test. 

5. Equipment cleanup 

a. Unscrew (turning clockwise) the die fixtures using the iron made plain screw. 
The fixture will come down, but the capillary die will still be attached to the 
barrel, since the residual melt holds it to the barrel's walls. 

b. Introduce the compressing or tamping brass rod to the barrel's feeding opening 
and push downwards until the residual melt and capillary die are expunged 
from the barrel. Care must be taken, since the residual melt and capillary die 
are extremely hot and can touch your feet when they are expunged. After 
expunging is done, take away the compressing rod from the barrel. Notice that 
you can see now through the barrel. 

c. In order to clean the barrel as much as possible, introduce the cleaning tube to 
the barrel's feeding opening using a folded cleaning pad on its tip. After 
cleaning, take away the cleaning tube from the barrel. 

d. See if the barrel is completely clean; if not, repeat previous step as necessary. 
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C. Controlled Stress Rheometer 

1. Equipment description 

Constant Stress Rheometer SR5000 Rheometrics. 
Rheometrics Scientific (RSI) software. 
Configuration: Cone and Plate. 
Geometry: 25 mm in diameter. 
Cone Angle: 0.0996 radians 
Gap: 0.048 mm 
Stress limits: 0.239736 to 11,986.77 Pa. 

2. Safety precaution 

•=> The use of heat resistant gloves is recommended, since the oven and test 
fixtures are hot when testing at elevated temperatures. 

<=c> A cryogenic hazard exists, since sub-ambient temperature testing involves the 
use of liquid nitrogen. Transfer lines, oven chamber and its contents may be 
extremely cold. Use appropriate gloves when working around these areas. 

<=> The torque transducer is sensitive to axial and normal forces and can be 
damaged if overloaded. Pay close attention to torque and normal force 
indicators when performing the following: 

1. Attaching or removing test fixtures. 
2. Loading or unloading test specimens. 
3. Cleaning test fixtures. 

3. Sample preparation 

a. Weight 30.0 grams of polymer pellets and 0.03 grams of 2-6 di-tert-butyl-p-
cresol (BHT) on analytical balance. BHT concentration can be 1000 ppm up 
to 2% in weight. 

b. Pour polymer pellets and BHT on grinder (coffee mill). 
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c. Cut two sheets of Mylar and place them over the metal plates. 
d. Press mixer bottom for 1 second and then interrupt the mixing by 

depressing it. Do this 5 times. 
e. Place the appropriate (1 or 2 mm) thickness sample plate (mold plate) over 

one of the metal plates with Mylar over it. 
f. Place the mixed pellets over the sample plate holes and square. 
g. Place the Mylar sheet and the other metal plate over the mould plate (with 

polymer pellets poured on it). 
h. Mold press 25 mm diameter disks with minimum thickness of 2.5 mm by 

leaving 2 minutes of pre-heating at 5,000 psi and 375 - 400 °F in mold, then 
2 minutes of compression by increasing mold pressure up to 25,000 psi. 

i. Using gloves, take away steel plates from the mold press and leave them to 
bench cooling for 15 minutes. 

j . Separate the plates, and take away sampling material from the mold. Cut 
off sample material, 

k. Take away Mylar from the steel plates and clean them using spatula. 

4. System start-up 

a. Insure proper nitrogen pressure to air bearing and flow to oven purge. Air 
bearing regulator should be 80 psi minimum and oven flow meter 20 psi, inlet 
pressure to filter should be 60 psi. 

b. Load Rheometric's Orchestrator Software vis RSI Orchestrator Icon. 
c. Turn on heater on rheometer. 
d. Set operating temperature on software. 
e. Allow 30 minutes for temperature equilibration. 
f. Set up desired test conditions at start buttom icon in Rheometrics Software 

5. Zeroing the gap 

a. Unlock shaft mechanism in the rheometer. 
b. Press gap icon in rheometrics software, introduce 0.048 mm of gap. 
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c. Press zero fixture buttom. 
d. Verify that the gap reader in the rheometer indicates 0.048. 
e. Press exit buttom in the zeroing gap window. 

6. Specimen loading 

a. Insure that the drive shaft is locked; turn carfuly shaft clockwise until flat 
face faces the locking mechanism. 

b. Move to 1.5 mm gap to load sample. 
c. Raise measuring geometry and oven cover, and using tweezers insert 

specimen on lower plate. 
d. Lower measuring geometry until contact with specimen is made, then lower 

oven cover back into place; lower gap if necessary to about 1.5 mm). 
e. Pre-heat specimen for 2 minutes. 
f. Lower measuring geometry to specified gap (0.052 mm). 
g. Raise oven cover and trim excess polymer away from plates. Use 

aluminum trimming tool. 
h. Lower oven cover back into place. 
i. Reduce gap to 0.048 mm if necessary, 
j . Unlock drive shaft. 
k. Equilibrate temperature for 2 minutes. 
I. Start test. 

7. Equipment cleanup 

a. Separate the gap slowly up to 1.5 mm (check normal force). 
b. Insure that the drive shaft is locked. 
c. Raise gap to about 0.5 mm 
d. Raise oven and measuring geometry. 
e. Clean cone and plate using aluminum spatula and special metal brush 
f. Clean plates by wiping them with isopropyl alcohol. 
g. Close oven again. 
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h. If no more tests are to be done, lower the temperature setpoint to 25 °C, 
then wait until the rheometer cools down. 
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