
Instituto Tecnológico y de Estudios Superiores de

Monterrey

Monterrey Campus

GRADUATE PROGRAM IN MECHATRONICS AND
INFORMATION TECHNOLOGIES

A Unified Software Security Enhancement Proposal
Based on a Thorough Software Security

Compendium.

THESIS

PRESENTED AS A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF:

Master of Science in Information Technology

BY:

Armando de Anda González

Monterrey, N.L., November 2007

Instituto Tecnológico y de Estudios Superiores de

Monterrey

Monterrey Campus

DIVISION OF MECHATRONICS AND INFORMATION
TECHNOLOGIES

GRADUATE PROGRAM IN MECHATRONICS AND
INFORMATION TECHNOLOGIES

The members of the thesis committee hereby approve the thesis of Armando de Anda
González to be accepted as partial fulfillment of the requirements for the Degree of

Master of Science, in:

Information Technology

Thesis Committee:

Arturo Galván Rodŕıguez, Ph. D.

Thesis advisor

Suku Nair, Ph. D.

Synodal

MSc Alejandro Parra Briones

Synodal

Graciano Dieck Assad, Ph. D.

Director of the Graduate Programs in

Mechatronics and Information

Technologies

November 2007

A Unified Software Security Enhancement Proposal
Based on a Thorough Software Security

Compendium.

BY:

Armando de Anda González

THESIS

Presented to the Graduate Program in Mechatronics
and Information Technologies

This Thesis is a partial requirement for the degree of
Master of Science in:

Information Technology

Instituto Tecnológico y de Estudios Superiores de Monterrey

Monterrey Campus

November 2007

To God, for the wonderful gift of life and
with whom anything is possible.

To the love of my life, Paola,
for being my inspiration,

my strength, my everything.

To my parents, Armando and Layda,
the greatest example of love and sacrifice.

To my aunt Martha,
for believing in me and

keeping this dream alive.

To my aunt Sayde,
my second mother,

for your prayers and guidance.

To my brother Juan, and to
my sisters Layda and Diana,

no matter the distance always
united.

To my many relatives and
friends who are such an

important part of my life.

vii

ix

Acknowledgements

First of all, I want to thank the members of my dissertation committee. Thanks
to my principal advisor, Dr. Arturo Galván for his time, guidance, advice, and for
believing in my proposal. While at Southern Methodist University, I worked under the
supervision of Dr. Suku Nair, and I thank him for introducing me to me this fascinating
subject and giving me the freedom to explore it. And to professor Alejandro Parra,
whose technical competence is admirable, thank you for being so kind in accepting my
invitation to review this work.

I must thank Dr. David Garza and Dr. Hesham El-Rewini for making my time
at SMU possible; it was such a gratifying and growing experience.

Special thanks to Ana Isabel Cerda, whose advice on the little things made a huge
difference.

Finally, I must thank all the support I have received from professors and fellow
students during all these years of graduate and undergraduate school at UAC, SMU,
and ITESM. They all contributed to the preparation and development of my skills and
values to face all challenges.

xi

Abstract

The research presented is to fulfill the requirements of master degree in Science of
Information Technologies of ITESM (Instituto Tecnoĺıgico y de Estudios Superiores de
Monterrey). The use of information systems has augmented enormously. Computers
have become a widely used tool in all disciplines and a medium to facilitate many
aspects of our lives, but at the same time, vulnerabilities that endanger the personal
data, reputation of organizations and lives of users are being discovered regularly. This
dissertation is a fusion of knowledge which aims to provide a panoramic view at the
problem and main countermeasures to developers, testers and end users. It will also
serve as a break down of the problem, so the dissertation may be employed as a starting
point for interested entities, whether research individuals or organizations, to facilitate
the communication, exchange of data, combination and evaluation of information in
the subject. This research will be useful in the avoidance of overlapping work and
assist in the development of parallel efforts that could easily converge to bring us closer
to making software behave. Several techniques and strategies have been proposed to
mitigate the threats, but it has been a disseminated effort which makes more difficult the
tasks of gathering, exchange and comparison of information, hence making it difficult to
identify where we stand. This work is motivated by the current importance of security
in software, and the work pretends to be a guide of Software Security Topics being its
main contributions a proposed Questionnaire for Security Enhancement in the Software
Life-Cycle, the coherent fusion of knowledge in the field, and at the same time break
down of the problem of security.

Contents

1 Introduction 1
1.1 Problems Behind Software Security . 1

1.1.1 Software Security Difficulties . 2
1.1.2 The Trinity of Trouble . 4
1.1.3 The Thirteen Security Snares 4

1.2 Problem Definition . 6
1.3 Objectives . 7
1.4 Hypothesis . 8
1.5 Methodology . 8

2 The Software Security Context 9
2.1 Fundamental Concepts . 9

2.1.1 Security Services . 10
2.1.2 STRIDE . 11

2.2 What software is vulnerable? . 12
2.3 Why is software vulnerable? . 13

3 Attackers and Motives 15
3.1 Law enforcement Entity . 15
3.2 Security Auditors . 16
3.3 Unethical Hackers . 17
3.4 Script Kiddies . 18
3.5 Industrial Spies . 18
3.6 Insider . 19
3.7 Cyberterrorist . 20

4 Top Vulnerabilities 21
4.1 Buffer Overflows . 21

4.1.1 Consequences . 23
4.1.2 Buffer Overflow Taxonomy . 24
4.1.3 Attacks . 26

4.2 Cross-Site Scripting (XSS) . 28
4.2.1 Consequences . 28
4.2.2 Attacks . 29

xiii

xiv CONTENTS

4.2.3 Conclusion . 33
4.3 SQL Injection . 34

4.3.1 Consequences . 35
4.3.2 Attacks . 35
4.3.3 Conclusion . 39

4.4 Race Conditions . 40
4.4.1 Attacks . 42
4.4.2 Conclusion . 45

4.5 Design Vulnerabilities . 45
4.6 Deployment Vulnerabilities . 46
4.7 Authentication and Password Vulnerabilities 47
4.8 Encryption Vulnerabilities . 48

5 Security in the Software Development Process 51
5.1 Secure Software Development Lifecycle 52
5.2 Microsoft SDL . 56
5.3 CLASP . 59
5.4 iCMM and CMMI security . 61
5.5 Correctness by Construction . 67

6 Standards and Best Practices 71
6.1 ISO/IEC 27002 . 71
6.2 Common Criteria (ISO 15408) . 77
6.3 The Standard of Good Practice . 81
6.4 Misuse and Abuse cases . 85
6.5 Reducing Attack Surface . 87
6.6 Shades of Analysis . 89

6.6.1 White Box Analysis . 89
6.6.2 Black Box Analysis . 90
6.6.3 Gray Box Analysis. 90

6.7 Penetration Testing . 91
6.8 Other Practices and Recommendations 91

6.8.1 Keep it Simple . 91
6.8.2 Acknowledge human imperfection 92
6.8.3 Validated all Input . 92
6.8.4 Initialize Memory . 92
6.8.5 Design Safe Default Configurations 92
6.8.6 Ensure that the Bounds of No Memory Region Are Violated . . 92
6.8.7 Use Correct Authentication . 92
6.8.8 Remember it is hard to keep secrets 93
6.8.9 Least Privilege . 93
6.8.10 Securing the Weakest Link . 93
6.8.11 Fail Securely . 93
6.8.12 Separation of Privilege . 93

CONTENTS xv

6.8.13 Keep System logs . 94

6.8.14 Coding Practices . 94

6.8.15 Firewalls . 94

6.8.16 Intrusion Detection Systems . 95

6.8.17 Antivirus and Malware detectors 95

6.8.18 Detecting and preventing Buffer Overflows 95

7 Tools for Software Security 97

7.1 NIST Tool Taxonomy . 97

7.2 Static Analysis . 100

7.2.1 Lexical Tools . 100

7.2.2 Semantic Tools . 101

7.3 Dynamic Analysis . 103

7.4 Library and Compiler Approaches . 104

7.5 Packet Manipulation and Password Cracking Tools 105

7.6 Personal Firewalls (software implementations) 107

7.7 Antivirus and Malware detection Tools 108

7.8 Intrusion Detection Tools: . 108

7.9 Cryptography . 109

7.9.1 Symmetric Cryptography . 110

7.9.2 Asymmetric or Public Key Cryptography 110

7.9.3 Hash and MAC . 110

7.10 Protocols . 111

7.11 Application . 111

7.12 email . 112

8 Security Metrics 113

8.1 At Inception Phase . 114

8.1.1 Application Insecurity Index . 114

8.1.2 Legislation and Compliance . 114

8.1.3 How much Security? . 117

8.2 At the Development . 118

8.2.1 During Development . 118

8.2.2 After the Development . 119

8.3 At Operation -Maintenance & Support 120

8.3.1 Availability . 120

8.3.2 Recovery . 120

8.3.3 Patching . 120

8.4 Looking Back . 122

8.4.1 Scorecards . 122

xvi CONTENTS

9 Proposed Questionnaire 127
9.1 What is needed? . 127
9.2 Who are the stakeholders? . 127
9.3 What needs protection? . 128
9.4 From Whom Should I Protect? . 128
9.5 What are my threats? . 128
9.6 How will I Protect? . 129
9.7 How much security is needed? . 129
9.8 Is the development secure? . 129
9.9 Is it Secure Enough? . 129
9.10 Was the configuration secure? . 130
9.11 Is there Security During Operation? . 130
9.12 How did we do after all? . 130
9.13 What can we do better next time? . 130

10 Conclusion 131

Appendices 135

A Vulnerability Taxonomies, Classifications and Lists 135

B Buffer Overflow Taxonomy 149

C Structure of the Standard of Good Practice 165

Chapter 1

Introduction

Today, information systems are indispensable; they are a part of our every day lives.
From space exploration to medical interventions, whether used for shopping or to pay
your bills, to play games or talk to friends, there almost isn’t a science, profession, or
person that doesn’t use or is affected by them in some way. Technology makes our
lives easier because it decreases work times, hence, increases productivity. The arrival
of the Internet became the “big bang” for computer-related business. It opened doors
of opportunity by providing an infinite source of clients, but it also left a window open
for criminals. In a world with exponential development of faster computers, faster
networks, larger hard disk capacity, larger volumes of information, and larger amount
software, is security catching up?

1.1 Problems Behind Software Security

System Security is not a new subject. However, enterprise security is currently viewed
as a commodity, the implementation of password schemes and integration of devices
such as firewalls are providing a bad sense of security; the problem is not properly
addressed. The fact is that software security is the genesis of network security, since a
correct design of the protocols and algorithms and of the way our systems communicate
would prevent the occurrence of unexpected malign events.

The wire protocol guys don’t worry about security because that’s really a
network protocol problem. The network protocol guys won’t worry about
it because, really, it’s an application problem. The application guys won’t
worry about it because, after all, they can just use the IP address and trust
the network. -Marcus J. Ranum

Developers already know that one can not magically make software secure, and
they also have known about vulnerabilities and their consequences for some time now.
So, if there is awareness of the need for security, why are the number of incidents and
vulnerabilities increasing exponentially? We can not solve what we can’t understand.
But why can’t we fully understand software security?

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Software Security Difficulties

1. Lack of common basic terminology. The essential terms such as bug, flaw,
vulnerability, weakness, exploit, attack, and security are not standardized and
are being applied at the convenience of researchers (rfc2828 [153], X.800, IEEE
1990. Glossary of Software Engineering Terminology [41],...). This makes it
difficult to compare and combine results. The development of such standard way
of communication is very important for the fusion of knowledge, understanding
of the field, and development of tools and procedures that can be used for the
coherent, comprehensive and systematic analysis.

2. There is not a standard Taxonomy, Collection or Classification of Vul-
nerabilities or Weaknesses. There exist many different taxonomies, classifica-
tions, enumerations, or different ways of organizing the software security problem
space (see appendix A), but no standard has been adopted. The complexity pro-
voked by the large variety of threats is what truly makes security weaknesses
difficult to catalog and understand.

For example:

• There are some who divide the problem in terms of malicious software
(viruses, worms and spy-ware) and bad implemented software. However,
malicious software usually takes advantage of software bugs, so this classifi-
cation is not mutually excluding.

• There are some others others who classify the vulnerabilities in terms of
where, during the software life cycle, the vulnerability appears, such as de-
sign, implementation or configuration. The disadvantage in this case is that
it is often unclear the single place it came from.

• Some incidents are sometimes triggered by rare, non-intentional specific situ-
ations (such as the y2k bug), and there are others purposely taken advantage
of by evil doers (such as SQL injection).

• Some platforms and languages are more responsible for a great deal of vul-
nerabilities reported such as PHP, C, C++ and SQL.

• There are many vulnerability collections.

There are different organizations that serve as a database for vulnerabilities
and bug reporting, each of these with their own formats.

There are private and commercial databases such as the CMET database
at the Air Force Information Warfare (AFIW); the collection of Mike Neu-
man(1995); the database of the Australian Computer Emergency Response
Team (AUSCERT); the internal vulnerability database at Netscape and the
one at Sun. Others, such as iDefense and Tipping Point, handle a vulnerabil-
ity market. They buy vulnerabilities users find (the prices are not published)
and maybe resulting in knowledge that would not otherwise be found.

1.1. PROBLEMS BEHIND SOFTWARE SECURITY 3

There are also public databases such as the one of Internet Security Systems
(ISS), the Common Weakness Enumeration, Common Vulnerabilities and
Exposures, Kao’s Unix Security Library, NegativeZero and academic publi-
cations. There are also computer security mailing lists, such as BUGTRAQ,
NTBUGTRAQ, IDS, Best of Security. Moreover, there are advisories like
CERT, CIAC, UNAM-CERT, AUSCERT, L0pht Security Advisories and
Vendor Security Bulletins.

• Software trends affect vulnerability trends. The massive emergence of web
applications has placed web vulnerabilities as the leading causers of advi-
sories in the last 2 years. The evolution of software has also reached new
types of devices, and with this several new threats (such as in cell phones
and game consoles). Software security is a moving target.

3. It is difficult to measure the impact of vulnerabilities. There does not
exist a universal ruler to measure and compare the impact of all types of incidents.
How does one evaluate the impact of a security threat? There are small bugs
that affect millions of computers but cause no considerate amount of harm (for
example freezing instant messaging software). And there are large bugs that may
affect just one organization, but produce stratospheric economic damages or ruin
the organization’s reputation. How can one measure a damaged reputation and
accurately calculate the number of users affected by a flaw?. More importantly,
how can one calculate the time and money to invest in a given system before and
during it’s development and deployment, in order to guarantee secure software,
or at least greater profits than losses?.

4. There is not complete information disclosure. History tends to repeat itself.
This is why prompt and complete information has to be deployed in order to learn
from past mistakes. The historical data of failures will aid in making them less
common since this may be used to generalize, compare and communicate findings
within the software security individuals and organizations.

It could be useful to look at the economic loss by companies in proportion to their
investments in order to understand the real impact of lack of computer security.
However, security breach events are not something organizations want to advertise
to their clients. This makes it possible for the same incident to happen to several
organizations, maybe even by the same criminal.

5. There is a disseminated effort. Divide and conquer is suggested between
software engineers for system organization, but in terms of security we are too
divided. As mentioned above, even though there are several research institutions
and individuals working on mitigation of software security problems, the lack of a
standard way of communicating the achievements in the field has been the cause
of disseminated work, sometimes redundant and overlapping research that has
made the software security field a complex one to approach. Sure, there is no
silver bullet for software, but software security is making the werewolf scarier.

4 CHAPTER 1. INTRODUCTION

6. All for One and One for All. It takes everyone in a project to cooperate for
the system to be secure, however it only takes one person to make it insecure.

1.1.2 The Trinity of Trouble

Greg Hoglund and Gary McGraw identified three factors that work together to make
software risk management a greater challenge. These factors are the “Trinity of
Trouble” [85] .

Connectivity

Growing Internet connectivity has increased the number of attack vectors as well as
the ease of exploiting software. As people, businesses, and governments become more
dependent on communication that information systems provide, they become vulner-
able to exploitation from remote sources. From cell-phones to cars and refrigerators,
new devices are getting on-line implementing new features and bringing along new
vulnerabilities.

Extensibility

Extensible systems make security harder. Analyzing the security of an extensible sys-
tem is a much more complicated task than focusing in an unchangeable system. Sun
Microsystems’ Java platform and Microsoft’s .NET Framework are designed to accept
mobile code updates and extensions that let system functionality evolve incrementally.
Applications such as word processors, spreadsheets, and Web browsers allow extension
through scripting, controls, components, and applets. Preventing software vulnerabili-
ties from slipping in as unwanted extensions is a major challenge. Understanding how
a system may be extended in the future is essential to getting a handle on system risks.

Complexity

The size of programs used to be only a couple of kilobytes, where you could distribute
them in diskettes. Now a days, software installation takes one or more CD’s or DVDs.
The more code, the greater the complexity and the more opportunity to make mistakes.
The complexity of operating systems has increased dramatically during the past decade.
For example, as we can see in Figure 1.1, Microsoft’s Windows XP has 40 million lines
of code compared to the 3 million in Windows 3.1, and windows vista is estimated to
have over 50 million lines of code [11].

1.1.3 The Thirteen Security Snares

Even though the Security Snares [64] are described in the Service Oriented Architecture
security context, their knowledge in Software Security in general is of great importance.

1.1. PROBLEMS BEHIND SOFTWARE SECURITY 5

0

5

10

15

20

25

30

35

40

45

Windows Complexity

M
il

li
o

n
s

 o
f

L
in

e
s

Win NT
(1995)

Win 3.1
(1990)

Win 95
(1997)

NT 4.0
(1998)

NT 5.0
(2000)

Win 98
(1999)

Win 2k
(2001)

XP
(2002)

Figure 1.1: Windows Complexity

1. Assuming the vendor will take care of security. Buildings and cars go
through thorough security inspections and are not put to use until these are
passed. There isn’t such examination of software and many vendors wills “check
off the security box” by throwing in some crypto features and calling it a day.

2. Not asking about security at all. It is common to find IT organizations and
large companies without a dedicated internal security staff.

3. Asking about the wrong kinds of security things. Firewall is not absolute
security. There are also companies who just invest in reactive approaches rather
than integrating the security from the start.

4. Allowing discomfort with the technology to overcome the need for soft-
ware security. Familiarity with firewalls, SSL and operating systems is of great
importance, but one should not avoid questions like, “How can you demonstrate
to us that this product is secure?” Getting outside your technology comfort zone
is often elucidating and educational.

5. Relying on a cursory risk assessment. Smart organizations know how to
manage risks, and they make conscious decisions about where to focus their lim-
ited resources. However evil people’s choice of attack shifts quickly and the des-
tination of the mitigation resources and effort needs to keep up.

6. Believing you’re secure for no apparent reason or for the wrong reasons.
The lack of evidence of being insecure does not mean you are secure.

7. Misapplying vulnerability metrics. Rather than asking the vendor directly
about, some security engineers incorrectly rely on public metrics such as the

6 CHAPTER 1. INTRODUCTION

number and severity of publicly reported bugs to determine the product’s quality.
Whether these metrics are correlated with actual product security remains an
open research question.

8. Trusting the vendors (too much). Vendors might intentionally or uninten-
tionally give inaccurate results. A vendor who performs penetration testing, for
example, might not have tested the product or version being considered, thus the
testing’s value might be reduced.

9. Building a proof of concept that ignores security “for now.” This concept
is common in prototypes that evolve into systems, postponing security. Don’t
leave security for later-ever.

10. Believing security is somebody else’s job. This could be a variant of “as-
suming that the vendor will take care of security,” or it could be a symptom of
an organization in which security specialists aren’t responsible for the security of
the development systems in use. Software security is everybody’s job.

11. Giving up hope. The security specialist only has a limited amount of influence
over purchasing decisions. Why spend the time questioning a boss or vendor or
analyzing security when his or her actions are unlikely to impact the procurement
or deployment decision?

12. Putting too much weight on security standards and security features.
Standards such as SSL (for Web servers), and S/MIME (for email) are widely
perceived to provide security. Too many organizations fail to understand that
although these standards are important, they don’t actually do anything to secure
a system. An implementation bug or an architectural flaw in a product can leave
a system that’s completely standards- compliant completely insecure as well.

13. Doing it all yourself. Organizations don’t ask the security question because
they plan to come to their own conclusions by performing their own hard-core
analysis and testing.

This dissertation aims to provide a understanding in the current status of soft-
ware security by presenting the information regarding the justification for the field, by
identifying the threats and their root causes and by presenting the current main stream
work of countermeasures.

1.2 Problem Definition

The importance of security in software is already known; however this effort has not
yet been reflected or concentrated in one single place. People in the field have their
own definitions, taxonomies, strategies and opinions that have served them to work on
a part of the problem. This approach has made it difficult to understand the global

1.3. OBJECTIVES 7

status of the progress in solving the problem. Many definitions are not universal within
the software security domain, fact which causes work to be overlooked by some, and
maybe guide others to a dead end path that someone else had previously encountered.
Without a standard way of communication between those in the software security effort,
we are dividing without conquering our dilemma.

1.3 Objectives

The main objective of this dissertation is to bring understanding of the software security
field through a fusion of knowledge of the main topics.

Particular objectives:

1. To explain and justify why security is important (Health, reputation, money,
information loss).

2. To explain why Software Security is difficult.

3. To explain why software is insecure.

• It inherits from the fact that there is no silver bullet for software.

• Vulnerabilities brought into the system through the design, implementation
and configuration.

• Complexity leads to insecurity.

• Features VS Security.

• Identify which software is vulnerable: COTS, Open source, legacy, in-house
development, PDA’s, Hand held Cell phones Game Consoles, Medical appli-
cations, military applications, bank systems, scientific, etc..

• Describe what is under software? Hardware, OS, libraries, components,
insecure environments.

4. To present a catalog of attackers and describe their skills, motives and objectives.

5. To expose and describe the leading threats and trends. [78, 176]

6. To present the principal mitigation tools, practices and strategies.

• To present the practices, techniques, and procedures [32, 179], and describe
when in the development process these should be applied.

• To present a catalog of tools for software security [120, 121, 57, 96], along
with different available tool evaluation results [197, 103, 155, 24, 109, 201].

7. Describe the current Software Security Metrics and the need for them.

8 CHAPTER 1. INTRODUCTION

1.4 Hypothesis

This fusion of knowledge will provide a starting point for anyone interested in the
topic, and a comprehensive descriptions of the problem and main countermeasures. It
will provide a clear, non-redundant, break down of the problem and coherent integra-
tion of the information which will aid interested people, whether research individuals
or organizations, to facilitate the communication, exchange of data, combination and
evaluation of information within the subject. This research will aid in the avoidance
of overlapping work and help to develop parallel efforts that could easily converge to
bring us closer to making software behave.

1.5 Methodology

The research parted from a bibliographic revision of the state of the art and a study of
Tools, methodologies, practices and recommendations widely respected. The primary
source of reference for the research will be the information presented in vulnerability
Databases such as the Computer Emergency Response Team (CERT’s) web sites, since
they provide the historically important information concerning vulnerabilities and their
effects, and they also point to the relevant documentation of the advances in the topic.
Important incidents of breaches and computer crimes are obtained from news sources
to identify the tendencies, along with the legislative and technical countermeasures
adopted to mitigate them. From there, this work analyzes the secondary sources of
this documentation.

Chapter 2

The Software Security Context

Information systems have become a pillar for the function of organization’s daily ac-
tivities and many individual’s day to day routines. Information is obtained, services
are provided, and communication is established with clients, providers, partners, and
sadly with evil-doers as well. A criminal act is an event that usually occurs when
one man has and another wants. Unfortunately, this has always been part of human
history, and it will most likely always be, for we have seen how criminals evolved and
adjusted themselves to the information age in no time. We must remember that the
main functions of computer systems are storage, manipulation, transformation, and
control of information; any unwanted alterations to the system will bring unwanted
consequences.

How does software fit in the information security scene? Mark Stamp pointed out
that “Software implements practically all information security and serves as foundation
on which all the other measures sit” [169]. Schneier went further when he said that if
we didn’t have as bad software security, the time, money, and effort spent on network
security wouldn’t be as much as today [186].

The revolutionary waves of technological advances, have also brought along a wide
variety of gadgets or devices; all of which are run by software. We have game consoles,
cars, medical instruments, cell phones, PDA’s, digital cameras, military systems to
name a few, and most of these with some type of inter-connectivity. This results in the
endangerment of our information, money, health, etc...

2.1 Fundamental Concepts

Software Security can be summarized as follows:

Definition 1. Software Security: The ability a system has to prevent failure and to
achieve its design objectives in spite of failure, to resist or withstand anticipated attacks
and to recover rapidly, with minimum damage, from attacks that cannot be resisted or
withstood.

Other important concepts within the software security scope are listed below:

9

10 CHAPTER 2. THE SOFTWARE SECURITY CONTEXT

Definition 2. Security Policy: Set of guidelines that indicate what and how resources
should be protected by explicitly specifying all the valid ways in which the components
of a system are allowed to interact.

Definition 3. Security Mechanism: A process (or a device incorporating such a
process) that is designed to detect, prevent or recover from a security attack.

2.1.1 Security Services

Definition 4. Security Service: A processing or communication service that en-
hances the security of the data processing systems and the information transfers of an
organization. The services are intended to counter security attacks, and they make use
of one or more security mechanisms to provide the service.

The Security Services are the following:

Definition 5. Confidentiality: The property that information is not made available
or disclosed to unauthorized individuals, entities, or processes [i.e., to any unauthorized
system entity].

Definition 6. Integrity: The assurance that data received is trustworthy; exactly
as sent by an authorized entity (i.e., contain no modification, insertion, deletion, or
replay).

Definition 7. Availability: To ensure that a resource is accessible at the time it is
required, Denial of service, or DoS, attacks try to reduce or impede information access
or any system resource.

Definition 8. Non Repudiation: Service which Provides protection against denial
by one of the entities involved in a communication of having participated in all or part
of the communication.

There are two types of Non-repudiation:

1. Non-repudiation, Origin: Proof that the message was sent by the specified party.

2. Non-repudiation, Destination: Proof that the message was received by the spec-
ified party.

Definition 9. Authentication: The assurance that the communicating entity is the
one that it claims to be.

This service concentrates in the assurance of authenticity of both the source and
destination entities participating in the communication.

In the context of software, what is a vulnerability? From the RFC 2828 [153]
we get the following (“I” identifies a recommended Internet definition, “C” identifies
commentary or additional usage guidance.):

2.1. FUNDAMENTAL CONCEPTS 11

2.1.2 STRIDE

After describing the security services, it is important to describe the threats faced by
the application that interrupt the services. STRIDE is the acronym used at Microsoft
[88] to categorize different threat types. STRIDE stands for Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service and Elevation of privilege:

• Spoofing. Spoofing is gain access to a system by using a false identity. This
can be accomplished using stolen user credentials or a false IP address. After
the attacker successfully gains access as a legitimate user or host, elevation of
privileges or abuse using authorization can begin.

• Tampering. Tampering is the unauthorized modification of data, for example as
it flows over a network between two computers.

• Repudiation. Repudiation is the ability of users (legitimate or otherwise) to deny
that they performed specific actions or transactions. Without adequate auditing,
repudiation attacks are difficult to prove.

• Information disclosure. Information disclosure is the unwanted exposure of pri-
vate data. For example, a user views the contents of a table or file he or she
is not authorized to open, or monitors data passed in plaintext over a network.
Some examples of information disclosure vulnerabilities include the use of hidden
form fields, comments embedded in Web pages that contain database connection
strings and connection details, and weak exception handling that can lead to in-
ternal system level details being revealed to the client. Any of this information
can be very useful to the attacker.

• Denial of service. Denial of service is the process of making a system or application
unavailable. For example, a denial of service attack might be accomplished by
bombarding a server with requests to consume all available system resources or
by passing malformed input data that can crash an application process.

• Elevation of privilege. This occurs when a user, program, or process with limited
privileges assumes the identity of a privileged user to gain privileged access. For
example, an attacker with limited privileges might elevate his or her privilege
level to compromise and take control of a highly privileged and trusted process
or account.

Definition 10. Vulnerability: (I) A flaw or weakness in a system’s design, imple-
mentation, or operation and management that could be exploited to violate the system’s
security policy. (C) Most systems have vulnerabilities of some sort, but this does not
mean that the systems are too flawed to use. Not every threat results in an attack, and
not every attack succeeds. Success depends on the degree of vulnerability, the strength
of attacks, and the effectiveness of any countermeasures in use. If the attacks needed
to exploit a vulnerability are very difficult to carry out, then the vulnerability may be

12 CHAPTER 2. THE SOFTWARE SECURITY CONTEXT

tolerable. If the perceived benefit to an attacker is small, then even an easily exploited
vulnerability may be tolerable. However, if the attacks are well understood and easily
made, and if the vulnerable system is employed by a wide range of users, then it is likely
that there will be enough benefit for someone to make an attack. [153]

Furthermore, a threat is described as follows:

Definition 11. Threat: A potential for violation of security, which exists when there is
a circumstance, capability, action, or event that could breach security and cause harm.
That is, a threat is a possible danger that might exploit a vulnerability.

Finally, the concept of attack is described below:

Definition 12. Attack: An assault on system security that derives from an intelligent
threat; that is, an intelligent act that is a deliberate attempt (especially in the sense of
a method or technique) to evade security services and violate the security policy of a
system.

2.2 What software is vulnerable?

“Not Mine!!!” come to mind? The real answer is all. As Cheswick and Bellovin put it
[34]: “Any program no matter how small can harbor security holes.”

• Web Applications.-Web applications have become a widely used form of interac-
tion in our daily lives. E-commerce systems are the most affected.

• Operating systems.- These are fundamental pieces of software and their complex-
ity is increasing at gigantic steps (the more complex the software is, the more
insecure it is).

• Legacy systems.- These are the black boxes of organizations. We use and depend
on what we do not understand.

• COTS (commercial of the shelf).- This is another enigmatic black box which,
unless the software counts with some type of certification, you have no warranty
that the system is error free but to test it yourself.

• Open and Closed Source.- Neither of them is free of bugs. Security through
obscurity has never been successful, however liberating the intestines of the system
has not been proved to decrement vulnerability occurrence [116].

• PDA, Hand held, Cell phones and similar.- It is now common to find advisories
for software running on these devices.

• Network Devices.- Routers, Switches, and other similar devices may run vulner-
able code.

2.3. WHY IS SOFTWARE VULNERABLE? 13

• Game Consoles.- These is a multimillion industry with connectivity where treats
have been discovered.

• Medical applications.- Critical systems, but not free of bugs.

• In house development, military and bank applications, cars, appliances... in a
near future, many more...

2.3 Why is software vulnerable?

We have already mentioned the “Trinity of Trouble”. Complexity, Connectivity and
Extensibility are definitely great vulnerability magnets. Here are some more factors
that explain why software is still insecure:

• Security is not a switch that one turns on an everything is fixed.

• Software development. The lack of complete security in software is inherited from
the fact that there is no Silver Bullet for software in general[25] for software.
Software development is a complex creative process prone to errors by being
human made.

• Developers are humans, and as such, make errors in during design, implementa-
tion, and deployment.

• Can’t afford Security. Sure, security implies different types of investments, but
what one can’t afford is maintenance costs, legal disputes, damaged reputation.

• “Don’t need it” mentality (denial). Developers are artists, and telling them that
they are doing something wrong has to be done carefully.

• Pressure to compete in the market (ship it Tuesday and get it right in the next
version!!)

• Ignorance of insecurity.

“Ignorance is Bliss”

- Thomas Gray.

• No Validation.

• Lack of exception handling.

• The use of obscure legacy systems. We should fear what we do not understand.

• Incorrect testing. My computer is a controlled environment, uncontrolled envi-
ronment: the real world.

14 CHAPTER 2. THE SOFTWARE SECURITY CONTEXT

• Featuritis!!. KISS (Keep it small and simple, or Keep it simple stupid!!). As the
Trinity of trouble indicates, Complexity leads to insecurity. People buy features,
not security, but the more the features the greater the chance of having bugs.

• Is all code ours? How can we be sure that libraries, platforms, operating systems,
frameworks, compilers, components, protocols, algorithms are secure? Figure 2.1
shows the code under applications that represents areas where control is out of
our hands, making it difficult to assure quality and security.

HW

Components

Software

Operating

Libraries

System

Net−
work

Figure 2.1: What is Under Software?

Chapter 3

Attackers and Motives

Technological advances and interconnectivity implementations have brought along a
new type of sophisticated delinquents who are able to terrorize cities with the press of
a button and rob enormous amounts of money. They can do this from the opposite
side of the world; maybe places where their activities are not illegal. Adding the
fact that organizations being attacked do not consider it worthwhile to pursue these
individuals, and are probably not willing to risk the adverse publicity of admitting the
success of an attack once arrests are made, the evil-doers realize that there is little
chance of getting caught or convicted.

An attacker is defined as follows:

Definition 13. Attacker: Individual who exploits the vulnerabilities of systems in
order to make them behave in an unexpected way, to provoke the violation of one or
more of the security services in order to reach their goals.

It is very important to comprehend who the attackers are, undestand their incen-
tives, and be aware of their skills in order to be prepared against them. Understanding
an attacker’s motivations can aid in the identification and protection of the modules
of a system most likely to be exploited while the knowledge of skills and techniques
of attackers allows one to test systems as an attacker would, but before him. This
chapters describes the attackers and the motives behind their actions.

From the novice to the expert adversaries, there are variety of skill levels and mo-
tivations [140, 72], where particular kinds of attackers tend to have certain motivations
[87]. Figure 3.1 shows the trends in attack sophistication and the skills of attackers.

3.1 Law enforcement Entity

We start with the good guys, although some might have a different point of view in the
adjective employed. These are organizations who have motives of political influence,
blocking illegal (violation of Availability) or subversive content. They also perform
“Eavesdropping for our protection” (violation of Confidentiality) in search for threats.

15

16 CHAPTER 3. ATTACKERS AND MOTIVES

Figure 3.1: Trends in Attack Sophistication and Intruder Knowledge [29]

These organizations do not worry about non-traceability, have a high skill level, and will
use maximal stealthiness. Due to their expertize, they have a high-expected success.

The NSA, for example, is considered by some the largest spy agency [130, 63]
(larger than the CIA and FBI, for example), but it possesses the most advanced tech-
nology for intercepting communications. There is a current scandal which has indicated
two new and significant elements of the agency’s eavesdropping[182]:

1. The NSA has gained direct access to the telecommunications infrastructure
through some of America’s largest companies.

2. The agency appears to be not only targeting individuals, but also using broad
“data mining” systems that allow them to intercept and evaluate the communi-
cations of millions of people within the United States.

This type of agencies have the advantage of being able to tap directly into the
major communications switches, routing stations, or access points of the telecommuni-
cations system.

3.2 Security Auditors

This is a highly skilled individual who’s goal is to improve security. This person who
uses advanced computer skills to attack computers but not with a malicious intent.
They use their skills to expose security flaws with the final goal correcting and protect-
ing. The auditors do not worry about non-traceability but may require stealthiness.

3.3. UNETHICAL HACKERS 17

The Indian Computer Emergency Response Team defined a set of expectations
from an Auditor [175], here are some of them:

• Verifying possible vulnerable services only with explicit written permission from
the auditee.

• Refrain from security testing of obviously very insecure and unstable systems,
locations, and processes until the security has been put in place.

• With or without a Non-Disclosure Agreement contract, the security auditor is
ethically bound to confidentiality, non-disclosure of customer information, and
security-testing results.

• Clarity in explaining the limits and dangers of the security test.

• Seek specific permissions for tests involving survivability failures, denial of service,
process testing, or social engineering.

• The scope clearly explains the limits of the security test.

• The test plan includes both calendar time and man-hours and schedule of testing.

• The security auditors know their tools, where these come from, how they work,
and have them tested in a restricted test area before using the tools on the
customer organization.

• High risk vulnerabilities such as discovered breaches, vulnerabilities with known,
high exploitation rates, vulnerabilities which are exploitable for full, unmonitored
or untraceable access, or which may put immediate lives at risk, discovered during
testing are reported immediately to the customer with a practical solution as soon
as they are found.

• Reports state clearly all states of security found and not only failed security
measures.

• Reports use only qualitative metrics for gauging risks based on industry-accepted
methods. These metrics are based on a mathematical formula and not on feelings
of the auditor.

• All communication channels for delivery of report are end to end confidential.

3.3 Unethical Hackers

The definition of hacker varies. Some people use the term to generalize for all the
cybercriminals [170], other experts define the term as technologically skilled good guys
who perform harmless acts with the objective of learning. The Unethical descriptor is
employed in this description in order to describe the highly-skilled individual who looks

18 CHAPTER 3. ATTACKERS AND MOTIVES

to Harm Systems. They are people who violate system security with a malicious intent
and are characterized for having advanced knowledge of computers and networks and
the skills to exploit them. This attackers look to destroy data, deny legitimate users of
service, or otherwise cause serious problems on computers and networks. They may also
target you to show off their skills and expertise to their peers and maintain a certain
reputation. Other motivations for these attackers is recreation, sense of belonging,
economic gain, intellectual gain, and malevolence. Even if they have little malicious
intentions, they can cause extreme damage to your systems.

In March 1997, one teenage hacker penetrated and disabled a telephone company
computer that serviced the Worcester Airport in Massachusetts. As a result, telephone
service to the Federal Aviation Administration control tower, the airport fire depart-
ment, airport security, the weather service, and various private airfreight companies,
was cut off for six hours. Later in the day, the juvenile disabled another telephone
company computer, this time causing an outage in the Rutland area. The lost service
caused financial damages and threatened public health and public safety. On a sep-
arate occasion, the hacker allegedly broke into a pharmacist’s computer and accessed
files containing prescriptions[142].

3.4 Script Kiddies

It is important to distinguish between the sophistication of the attacker and the sophis-
tication of the attack. Persons with very limited technical ability can now launch very
sophisticated attacks thanks to the availability of highly sophisticated tools. Script
Kiddies are considered the most prevalent but the least dangerous of the attackers.
They are unskilled users who must rely on downloading automated hacking software
from web sites and use it to break into computers, but they lack the knowledge to de-
velop the tools themselves or understand how the attacks work. They tend to be young
computer users with almost unlimited amounts of leisure time, which they can use to
attack systems. This group represent the lower-end of a continuum of attackers with a
variety of skill levels, resources, and organization. A script kiddie will not worry about
stealthiness or non-traceability. The motive of these cyber vandals is more often than
not curiosity. Other incentives might include economical gain, recreation, reputation,
sense of belonging, malevolence, damage, or recognition.

3.5 Industrial Spies

These are the corporate raiders who look for competitive intelligence through industrial
espionage. Their intentions may be recruitment, subversion, commercial advantage or
damage, tacit collusion, and misinformation. A person is hired to break into a specific
network or computer and steal information, aiming to increment their market shares.

In June 1, 2007, Oracle filed the latest amended complaint, claiming that
individuals from SAP stole a large ration of software code. Oracle sued SAP for breach
of contract and copyright infringement, alleging that SAP’s TomorrowNow business

3.6. INSIDER 19

unit violated copyright law by distributing Oracle material to its customers.

In the complaint Oracle alleged[67]:

“Oracle brings this lawsuit after discovering that SAP is engaged in systematic,
illegal access to – and taking from – Oracle’s computerized customer support systems.
Through this scheme, SAP has stolen thousands of proprietary, copyrighted software
products and other confidential materials that Oracle developed to service its own
support customers. SAP gained repeated and unauthorized access, in many cases by use
of pretextual customer log-in credentials, to Oracle’s proprietary, password-protected
customer support website. From that website, SAP has copied and swept thousands of
Oracle software products and other proprietary and confidential materials onto its own
servers. As a result, SAP has compiled an illegal library of Oracle’s copyrighted software
code and other materials. This storehouse of stolen Oracle intellectual property enables
SAP to offer cut rate support services to customers who use Oracle software, and to
attempt to lure them to SAP’s applications software platform and away from Oracle’s.”

3.6 Insider

Unlike the rest of the types of attackers, Insiders attack you from the inner corporate
territory boundaries. One of the largest information security threats to business come
from the people closest to you. The skills of this group of attackers may vary, however,
it is likely there is much knowledge of the system with which less technical knowledge
is needed in order to attack. They know what your most valuable information assets
are, where they are stored, and how to access them. But not all inside enemies are
full-time employees of your company. Contractors, temporary workers, and former
employees may have privileged access to your systems with little control over or
oversight of their activities.

In 1992, a fired employee of Chevron’s emergency alert network disabled the
firm’s alert system by hacking into computers in New York and San Jose, California,
and reconfiguring them so they’d crash. The vandalism was not discovered until an
emergency arose at the Chevron refinery in Richmond, California, and the system
could not be used to notify the adjacent community of a noxious release. During the
10- hour period in which the system was down, thousands of people in 22 states and 6
unspecified areas of Canada were put at risk[53].

A study by the secret service in 2005 [105] revealed:

• A negative work-related event triggered most of the insiders’ actions.

• Sixty-two percent of incidents were planned in advance.

• Eighty percent of the insiders exhibited unusual behavior in the workplace prior
to carrying out their activities.

20 CHAPTER 3. ATTACKERS AND MOTIVES

• Fifty-seven percent of insiders exploited systemic vulnerabilities in applications,
processes and/or procedures.

• Thirty-nine percent used relatively sophisticated attack tools.

• Sixty percent of insiders compromised computer accounts, created unauthorized
backdoor accounts or used shared accounts in their attacks.

• Most incidents were carried out via remote access.

• Less than half of the insiders (43%) had authorized access at the time of the
incident.

• Insider activities caused financial losses (81%), negative impacts to business op-
erations (75%) and damage to the organizations’ reputations (28%).

• 78% – Secret Service/Computer Emergency Readiness Team (CERT) Study

3.7 Cyberterrorist

Dorothy Denning described cyberterrorism as “... the convergence of cyberspace and
terrorism” [53]. She continues “it refers to unlawful attacks and threats of attack against
computers, networks, and the information stored therein when done to intimidate or
coerce a government or its people in furtherance of political or social objectives”. Cy-
berterrorists motivation may be defined as ideology, or attacking for the sake of their
principles or beliefs. One of the targets highest on the list of cyberterrorists is the
Internet itself identity theft Social protesters (hactivists) publicity, hindering and dis-
ruption, patriotism, and social or political change. They may want to deface your
public Web site and use it as a venue for their political messages. Such political events
occur relatively frequent, numbering in the hundreds per year.

Their objectives are identification and information, publicity and propaganda, re-
cruiting, political action, disruption, intimidation, economic espionage, training, prepa-
ration for information warfare, misinformation, and sabotage.

In 1997, ethnic Tamil guerrillas swamped Sri Lankan embassies with 800 e-mails a
day over a two-week period. The messages read “We are the Internet Black Tigers and
we’re doing this to disrupt your communications.” Intelligence authorities characterized
it as the first known attack by terrorists against a country’s computer systems[14]. In
the same year, Spanish protestors bombarded the Institute for Global Communications
(IGC) with thousands of bogus e-mails. These affected the San Francisco based ISP’s
users and support lines were tied up with people who couldn’t get their mail. The
protestors also spammed IGC staff and member accounts, clogged their Web page
with bogus credit card orders, and threatened to employ the same tactics against
organizations using IGC services. They demanded that IGC stop hosting the Webs
site for the Euskal Herria Journal, a New York-based publication supporting Basque
independence[53].

Chapter 4

Top Vulnerabilities

There exist thousands of vulnerabilities identified, some of these very specific for a par-
ticular software or platform, and it only takes one vulnerability in your system in order
to be insecure and have drastic consequences. Trying to describe the whole population
of vulnerabilities would be a marathonic task, and even if such thing was attempted,
new vulnerabilities are constantly discovered, so it would be virtually impossible to
ever be done describing them all. In learning about vulnerabilities one should focus
in those related to the system to be implemented, or those similar to the one we will
adopt or develop. Nevertheless, a few vulnerabilities account for more than 60% of the
total of errors reported, so it is very important to become familiar with them. This
chapter aims to describe these top vulnerabilities that represent the majority in the
last 5 years.

4.1 Buffer Overflows

Buffer Overflows are one of the most important and frequent types of software vulner-
abilities. According to [37], in 2005 this vulnerability was overthrown as the leading
type of vulnerability reported, even though the number of advisories for this type is
still growing at a fast pace. The connectivity that the Internet brings has stimulated
other types of threats, such as Cross-site Scripting and SQL Injection, to grow rapidly
and surpass the number of incidents reported by buffer overflows. The circumstances
and strategies that trigger a buffer overflow are many and entire books are dedicated
to explaining them, however, this section aims to provide a clear understanding of the
characteristics of the vulnerability and ways it is exploited.

As mentioned in [70], buffer overflows originate from poorly constructed software
programs, however they originate from malicious software as well. Such was the case
first reported and widely publicized instance, which arrived in 1988 as part of Robert
T. Morris’ Internet Worm. From then on, buffer overflow vulnerabilities accounted for
a large portion of the vulnerabilities. A buffer is a contiguous block of memory where
a program stores different types of data. A buffer overflow occurs when data is written
or read beyond the upper or lower limits of the buffer (this is why it is also referred to

21

22 CHAPTER 4. TOP VULNERABILITIES

0

100

200

300

400

500

600

Buffer Overflows

2001 2002 2003 2004 2005 2006

279

436

268

392

445

541

Figure 4.1: Buffer Overflow vulnerabilities reported by year (CWE)

as buffer overrun or underrun). Buffer overflows may occur on the stack, on the heap,
in the data segment, or the BSS segment (used for uninitialized global data), and may
overwrite from one byte to an unlimited number of bytes of memory outside the buffer,
which allows an attacker to overwrite information such as return address on the stack,
a function pointer, or a data pointer. The result is a change in the program’s control
flow.

Basic Example of a Buffer Overflow [199]:

char check_login(char *name)

{

char isAdmin = ‘‘N’’;

char usr_buff[10];

if (strcmp(name, ‘‘admin’’) == 0)

isAdmin=‘‘Y’’;

strcpy(usr_buff,name);

return isAdmin;

}

In this example, the user previously inputs the login name without validation of
the size of the string. Then the check login function is called and the variables isAdmin
and usr buff are created on the stack from high memory values to low ones as shown

4.1. BUFFER OVERFLOWS 23

Figure 4.2: Logic Change Example

in the figure 4.2 (a). A user input of “YYYYYYYYYYY” made up of 11 characters
causes the usr buff variable to overflow when the strcpy function is called, thus also
changing the value of isAdmin (it also modifies the next value of the stack with a 0 that
indicates the end of the string; the next value is most likely the EBP register which
typically holds the memory address of the current stack frame). Figure 4.2 (b) shows
the result of the input received.

4.1.1 Consequences

Buffer Overflows have evolved over the years. Part of the great importance and contin-
uous discussion of the topic is the wide variety of consequences these errors may lead
to.

The exploitation of these can result in a simple Denial of Service through a system
crash (mitigation of availability). In the worst case scenario, an attacker is able to inject
his own code and open a shell, enabling him to execute arbitrary commands and achieve
completely control the victim’s machine, have access to critical information (break the
confidentiality), and change passwords or delete data (mitigate the integrity of the
information).

Most serious buffer overflow exploits occur in programs written in languages which
provide the programmers a lot of power and liberty in the manipulation of memory such
as C or C++. Other languages, such as Java and Python, are considered safer because
they provide automatic bounds checking of buffer and pointer access during run-time.
The disadvantages of the latter is that they are considerably slower than C and C++.
Therefore, C and C++ are the popular choice for many speed-critical applications
(Linux OS, Apache and BIND for example), not to mention legacy code.

24 CHAPTER 4. TOP VULNERABILITIES

4.1.2 Buffer Overflow Taxonomy

In order to solve a problem, it is important to comprehend it completely. Taxonomies
aid in the understanding of topics, by breaking it down and providing a clear classi-
fication. In [201] Zitser presents a taxonomy made up of thirteen attributes of buffer
overflows, which was later modified and expanded by Kratkiewicz in [109] from which
we get the following attributes (the complete list of the values of the attributes is
presented in Appendix A along with examples):

1. Write/Read: This attribute poses the question “Is the buffer access an illegal
write or an illegal read?”

2. Upper/Lower Bound: This attribute describes which buffer bound gets violated,
the upper or the lower.

3. Data Type: Describes the type of data stored in the buffer. The values may be
Character, Integer, Floating point, Wide Character, Pointer, Unsigned Integer
and Unsigned Character.

4. Memory Location: The Memory Location attribute describes where the over-
flowed buffer resides (Stack, Heap, Data region, BSS or shared Memory).

5. Scope: Describes the difference between where the buffer is allocated and where is
it overrun. It is “same” if the buffer is allocated and overrun within the same func-
tion. Other values are Inter-procedural, Global scope, inter-file/inter-procedural,
and Inter-file/global.

6. Container: “Is the buffer inside of a container?” Buffers may stand alone, or may
be contained in arrays, structures, or unions.

7. Pointer: Indicates whether or not the buffer access uses a pointer dereference.

8. Index Complexity: Describes the complexity of the array index, if any, of the
buffer access causing the overflow.

9. Address Complexity: “How complex is the address or pointer computation, if
any, of the buffer being overflowed?”

10. Length Complexity: The Length Complexity attribute describes the complexity
of the length or limit passed to the C library function, if any, that overflows the
buffer.

11. Alias of Buffer Address: Indicates if the buffer is accessed directly or through one
or two levels of aliasing.

12. Alias of Buffer Index: This attribute indicates whether or not the index used in
the buffer access is aliased.

4.1. BUFFER OVERFLOWS 25

13. Local Control Flow: Describes what kind of program control flow, if any, most
immediately surrounds or affects the overflow (such as “if”, “switch” and “cond”).

14. Secondary Control Flow: The values of this attribute are the same as the types
described by the Local Control Flow; the difference is the location of the buffer
overflow with respect to the control flow construct. Only control flow that affects
whether or not the overflow occurs is classified.

15. Loop Structure: Describes the type of loop construct, if any, in which the overflow
occurs. Values include the do-while, for, and other.

16. Loop Complexity: The Loop Complexity attribute, indicates how many of the
three loop components described under Loop Structure (i.e., init, test, and incre-
ment) are more complex than the following baseline:
init: initializes to a constant.
test: tests against a constant.
increment: increments or decrements by one if the overflow does not occur within
a loop.
If none of the three loop components exceeds baseline complexity, the value as-
signed is “none.” If one of the components is more complex, the appropriate
value is “one,” and so on.

17. Asynchrony: The Asynchrony attribute asks if the buffer overflow is potentially
obfuscated by an asynchronous program construct. These functions are often
operating system specific (i.e. threads, forks, and signal handlers).

18. Taint: This attribute describes how a buffer overflow may be influenced externally.
These functions may be operating system specific, depend on command line or
stdin input from a user, or on the value of environment variables, file contents,
data received through a socket or service, or properties of the process environment,
such as the current working directory.

19. Run-time Environment Dependence: This attribute indicates whether or not the
occurrence of the overrun depends on something determined at runtime.

20. Magnitude: The Magnitude attribute indicates the size of the overflow. Values
range from none, 1, 8 or 4096 bytes.

21. Continuous/Discrete: This attribute indicates whether the buffer overflow is con-
tinuous or discrete (access of consecutive elements or jumps directly out of the
buffer).

22. Signed/Unsigned Mismatch: This attribute indicates if the buffer overflow is
caused by a signed vs. unsigned type mismatch.

26 CHAPTER 4. TOP VULNERABILITIES

4.1.3 Attacks

Overwriting Code Pointers

Pointers corrupted by buffer overflows commonly are function pointers, longjmp buffers
or pointers in the stack (such as a return address). These overflow attacks modify a
pointer to some other code that gets executed later. This classic buffer overflow attack
is known as “stack-smashing” [3]. An attacker overwrites the return address with
the address of the attack code, and when the function returns it executes the attack
code instead of the normal return point (figure 4.3). Such attack code may contain
instructions to start a shell, thus gaining complete access to the victim’s machine (at
the level of privilege in which the process was running). An attacker can then gain root
privileges through other techniques and steal user’s passwords, read, delete, or modify
important information, set up back-doors, or cause other damage to the victim’s system.

Figure 4.3: Return Address Modification

4.1. BUFFER OVERFLOWS 27

An alternative to overwriting the return address of the function, an attacker can
overwrite the saved frame pointer (stored right before the return). A frame pointer is
used to keep track of the stack frames corresponding to the different function calls, and
it points to the first local variable in the current stack frame. This way, an attacker
would construct an equivalent malicious stack frame somewhere in memory with the
return address pointing to the attack code.
It is also possible to change the execution flow of a program by overwriting a function
pointer. To carry out this attack, an attacker needs to find a function pointer that is
stored adjacent to a buffer. This buffer can be located in any of the four regions of
process memory, the stack, the heap, the bss region or the data region. The attacker
overflows the buffer and overwrites the function pointer, it ends up jumping to the at-
tacker’s desired location. This type of attack was used against the superprobe program
for Linux [47].

Logic-based Attacks

It is possible to for the attacker to change the logic of the program by overwriting a
program variable. Figure Stack Variables is an example of this type of attack. Also,
the Morris Worm used a logic-based buffer overflow attack that corrupted the name of
a file that would then get executed. These attacks can involve variables on the stack,
the heap, the data or the bss regions of memory. Even though these attacks are not as
common as some of the others, they are just as dangerous.

Code Injection

An attacker may inject code via the string that is used to overflow a buffer. If this
is the case, in stack-based attacks, the attacker usually overwrites the return address
with a pointer back to the buffer. This attack may be used when the unchecked,
overflowable buffer is not large enough to have bound checking, but the bound check
is done incorrectly. In other words, it may be possible to overflow the buffer by a few
bytes, but not enough to insert the attack code. The two used buffers may be located
in different regions of memory. For example, the buffer containing the attack code
may be on the stack, but the overflowed buffer and the code pointer may be stored on
the heap. If the buffer containing the code is on the stack, it is possible to prevent
this type of an attack by making the stack non-executable, as was done with Open
Wall’a Linux kernel patch[38]. Finally, an attacker may be able to use an environment
variable, it may be possible to write the attack code into the environment variable, and
then overflow some buffer on the stack, overwriting a function’s return address with
the address of the environment variable. Alternatively, it may also be possible for an
attacker to overwrite some function pointer and point to the environment variable.

Attacker Use Existing Code

An attacker can circumvent a non-executable stack defense by overwriting the return
address of the vulnerable function with the address of another function in the program,

28 CHAPTER 4. TOP VULNERABILITIES

or even a shared library function. Such attacks do not involve code stored in the overflow
string. The attacks that cause a jump into a standard libc function are commonly
known as return-into-libc attacks. The basic idea of the classical return-into-libc attack
is to overwrite a function’s return address with the address of a standard C library
routine, such as system(). By also cleverly placing the arguments to this C routine on
the stack, it is possible to execute function calls such as system(“\bin\sh”), i.e. start a
shell. When the attackers do not know the exact location of the return address on the
stack, they overwrite the return address by repeating the desired address many times
in the buffer until it hits the desired location.

Heap-based Buffer Overflows

Heap-based buffer overflows are becoming more common because of non-executable
stacks. Although it is possible to have non-executable heaps, heaps are more likely to
be executable than stacks. Other major reason to unfavor stack-based buffer overflows
are dynamic tools such as StackGuard, StackShield, and Propolice. Unfortunately, a
similar method for protecting heaps is much more complex and does not yet exist. A
fairly recent attack involving a heap-based buffer overflow was the infamous Code Red
Worm of 2001[19]. Heap based attacks are usually more complex and are more difficult
to mount than stack-based attacks mainly because of the more complex operation of
the heap.

4.2 Cross-Site Scripting (XSS)

Due to the exponential growth in website emergence, in 2006 cross-site surpassed buffer
overflows as the leading reported vulnerability. The cross-site scripting vulnerability has
been found in websites such as fbi.gov, yahoo.com, ebay.com and many other popular
and important websites. Little attention is given to XSS attacks by some, because they
either don’t know much about them or they do not see them as a threat. An XSS
vulnerability can result in a very powerful attack, which can be exploited by a skilled
attacker or even a novice. The acronym XSS is used instead of CSS, since the latter
could cause confusion with the “Cascading Style Sheets”.

This attack occurs when web pages such as Forums, Email, Web-Stores or other
trusted by the user, dynamically generate contents without proper sanitation or input
validation. This allows attackers to embed malicious code into the page (could be
JavaScript, VBScript, ActiveX, HTML or similar) and then execute the script on the
client side. Web page structure is very flexible, and it allows different types of content
to be presented. Therefore, once the web browser encounters the [script] tags, it triggers
the corresponding interpreter and runs it [73].

4.2.1 Consequences

An important factor to mention with XSS is that the direct impact of the attack is
suffered more often by the clients who execute scripts in their web browsers, rather than

4.2. CROSS-SITE SCRIPTING (XSS) 29

0

200

400

600

800

1000

1200

XSS

2001 2002 2003 2004 2005 2006

1400

31

187

89

278

728

1282

Figure 4.4: Cros-Site Scripting vulnerabilities reported by year (CWE)

the vendors or providers of the trusted service (these get affected in their reputation).
An XSS vulnerability may result in the mitigation of one or several of the following
Security Services:

• Confidentiality: This involves the disclosure of information stored such as cre-
dentials, and monitoring of your actions (digital stalking).

• Access control: It may be possible to run arbitrary code on a victim’s computer
to enable an attacker to impersonate the victim and jump access control.

• Integrity: Creation of phony user interface to provoke misinformation from a
trusted site or modification of the information users post.

• Availability: This is done with code that results in a Denial of service.

4.2.2 Attacks

Reflective Attacks

This is one of the most popular presentations of XSS. Reflective attacks occur when
an attacker causes a user to supply dangerous content to a vulnerable web application,
which is then reflected back to the user and executed by the web browser. The most
common mechanism for delivering malicious content is to include it as a parameter in a
URL that is posted publicly or e-mailed directly to victims. URLs constructed in this
manner constitute the core of many phishing schemes, whereby an attacker convinces
victims to visit a URL that refers to a vulnerable site. After the site reflects the

30 CHAPTER 4. TOP VULNERABILITIES

attacker’s content back to the user, the content is executed and proceeds to transfer
private information, such as cookies that may include session information, from the
user’s machine to the attacker or perform other activities. In 2000 Microsoft was
forced to shut down Hotmail since a script that intercepted Hotmail authentication
cookies and took over users’ accounts was detected. It is important to point out that
for a reflected XSS attack to work, it is the victim who must submit the attack to the
server. Here is an example of how this might take place:

Stealing the Cookie Example.
So you visit MyFavoriteShoppingSite.com, which uses cookies to remember cre-

dentials, in order to maintain state when one moves from page to page on the site
without re-entering the password. These cookies are files stored locally in the client
side, which contain secrets like a SessionID or nonce to achieve their goal. This way,
anybody else who is able to get my cookie and provide it to the site, will be believed
to be me.

Figure 4.5: Stealing the Cookie

Then the attacker finds that there is an XSS vulnerability in the web application
software that the site uses, he sends the victim an email with the following HTML:

<A HREF="http://myfavoriteshoppingsite.com/greatdealsofthemonth/?

tw=<script>document.location.replace(’http//evilsite.com/ph4r/

steal.cgi?’+document.cookie);</script>">Check Out Our Labor Day

Specials!

The user would click the link and they would be lead to the offers, but at the same
time be directed to the specially crafted URL, where the attacker obtains the user’s

4.2. CROSS-SITE SCRIPTING (XSS) 31

cookie. Using a cookie editor the attacker copies the cookie, and impersonating the
user buys all he can and having it sent to him. The end of the month arrives, and with
it the $6,000 credit card bill; and the items bought already delivered.

This is just one of the many scenarios that are constantly presented.

Inline Frame / Script Include

It is also possible for a web page with malicious code, to modify a frame in another
open window containing a trusted site.

Figure 4.6: MSN

The attacker can take advantage of this situation in several ways. Javascript
forwarded cookies to another site, for example, the following Phishing Scenario:

32 CHAPTER 4. TOP VULNERABILITIES

Figure 4.7: MSN

1. Victim Logs into a web site.

2. The Attacker has set up "mines" using an XSS vulnerability.

3. The victim stumbles upon an XSS mine.

4. The victim gets a message saying that his session has expired and

he needs to authenticate again.

5. The victim’s username and password are sent to the attacker.

Stored Attacks

Stored attacks are those where the injected code is permanently stored on the target
servers in a database, message forum, visitor log, and so forth. The data stored is later

4.2. CROSS-SITE SCRIPTING (XSS) 33

read and included in dynamic content. From an attacker’s perspective, the optimal
place to inject malicious content is in an area that is displayed to either many users or
particularly interesting users. Interesting users typically have elevated privileges in the
application or interact with sensitive data that is valuable to the attacker. If one of
these users executes malicious content, the attacker may be able to perform privileged
operations on behalf of the user or gain access to sensitive data belonging to the user.

Other Media

The XSS problem is not restricted only to websites. There are many types of media
files that contain URLs, such as MP3s, video files, PDFs and Flash animations. The
programs used to manage this type of content may interpret the embedded URL data
directly or transfer the HTML to a Web Browser. Once this happens, the same type
of problems are exploited here (see figure 4.8).

Figure 4.8: XSS in Quicktime

4.2.3 Conclusion

XSS attacks are discovered on a daily basis in practically every form of web software
there is. If people don’t educate themselves about XSS attacks attackers are going to
continue to exploit XSS vulnerabilities, and this could lead to some very dangerous
and powerful attacks. Combining XSS with social engineering or phishing what makes
these extremely dangerous. The variety of attacks based on XSS is almost limitless,
but they all include transmitting private data like cookies or other session information

34 CHAPTER 4. TOP VULNERABILITIES

to the attacker, redirecting the victim to web content controlled by the attacker, or
performing other malicious operations on the user’s machine under hiding behind a
vulnerable site.

4.3 SQL Injection

Structured Query Language (SQL) is a textual language used to interact with relational
databases[193]. The typical unit of execution of SQL is the ‘query’, which is a collection
of statements that typically return a single ‘result set’. SQL statements can modify
the structure of databases (using Data Definition Language statements, or ‘DDL’) and
manipulate the contents of databases (using Data Manipulation Language statements,
or ‘DML’). There are many implementations SQL and database applications are very
common.

0

100

200

300

400

500

600

700

800

900

SQL - inject

1000

2001 2002 2003 2004 2005 2006

6 38 36

142

944

588

Figure 4.9: SQL Injection vulnerabilities by year (CWE)

SQL Injection is a technique which consists in passing SQL code into an application
in a way not intended by the developer, to either gain unauthorized access to a database
or to retrieve information directly from the database. The technique takes advantage
of bugs or non-validated inputs to “inject” the SQL commands for the execution by
the database. Attackers take advantage of incorrectly filtered strings, and can therefore
embed the code inside these parameters. The principles behind a SQL injection are
simple and these types of attacks are easy to execute and master. Web applications
with data access are the most commonly affected.

SQL Injection can be present in platforms such as C, C++, Java, and .NET.

4.3. SQL INJECTION 35

4.3.1 Consequences

SQL Injection can result in the violation of one or several of the following Security
Services:

• Confidentiality: Since SQL databases generally hold sensitive data, loss of confi-
dentiality is a frequent problem with SQL injection vulnerabilities.

• Authentication: If poor SQL commands are used to check user names and pass-
words, it may be possible to connect to a system as another user with no previous
knowledge of the password. You want to make sure people don’t get access to
what they are not supposed to. It could be to restrict them to only their account,
or prevent them from getting Company secrets.

You want to make sure people don’t get access to what they are not supposed to.
It could be to restrict them to only their account, or prevent them from getting
Company secrets.

If authorization information is held in a SQL database, it may be possible to
change this information through the successful exploitation of a SQL injection
vulnerability.

• Integrity: Just as it may be possible to read sensitive information, it is also
possible to make changes or even delete this information with a SQL injection
attack. Assign the right permissions to each user, for example unauthorized
access might only allow Read-only access but no modification of the data (like
catalogs). You wouldn’t want to find yourself selling illegal or politically incorrect
items on an eCommerce site. It could be very costly to have an expensive item
suddenly be extremely discounted.

Corvettes for $ 100 in our going out of business
sale!!!

• Availability: It can generate a DoS with the elimination of data and shutting
down the data server.

Some secondary consecuences can be the control over the database host, and other
machines. Once inside the network, there is no stopping to what the attacker can do.
He can get the privileges of any other user through the other users passwords and this
way get unlimited access. It could be the case where the database itself is not the main
target but rather the means of getting control of the rest of the network.

4.3.2 Attacks

Access through Login Page

This type of access is the most common and the easiest one to bypass since is usually
the first thing we see, but it does not necessarily have to be through the username and

36 CHAPTER 4. TOP VULNERABILITIES

password fields. This can practically be done through any field where one in allowed
to input a string of information. There are several commands that may be run in
order to get access hand learn about the structure of the database. The following are
examples of code that is often maliciously executed:

Using ‘or’ condition.

Let’s think of the login case, where we have the username and password fields to
be validated for access to a specific account. With this in mind, we would probably
have a validation string that looks as the following:

"select * from store.guest.clients where username = ‘ " + username + " ’

and password = ‘ " + password + " ’ ";

What an attacker could do, is write anything for the username field, for example:
John, and for the password field he would write: ’ or 1=1 –
This combination would map into the validation string the following way:

select * from clients where username=‘John’ and password= ‘’ or 1=1 --’

With the ’ , the attacker has closed the string expected for password, and has added
an or condition that is always true. The final - - are being used to ignore the rest of
the code that could be in the command (other validations maybe). The always true
1=1 allows access to the attacker positioning him on the first record of the user table
and giving him access to the whole account of such user.

Figure 4.10: Bypassing the Login

Using ‘having’ clause
The last example demonstrated how the attacker could get access to the account. So
far we have an undetectable passive attack. But what stops the attacker from trying
something like this:

4.3. SQL INJECTION 37

John’; DROP TABLE clients; --

In order to do this he would need to know the name of the tables. Still, the attacker
could make an educated guess (which is why some people recommend Security through
Obscurity to use table and field names harder to guess). Developers are not too fond
of this Idea, since they probably already have dozens or even hundreds of things to
remember when coding, and they want to make the project as clear and agile as possible.
However, the hacker could learn about the structure of the database, by entering strings
rejected by the SQL parser, such as:

’ having 1=1--

This command will cause an error because the keyword “having” needs the “group
by” operator.

Error:

[Microsoft][ODBC SQL Server Driver][SQL Server]

Column ‘store.guest.clients.id’ is invalid in

the select list because it is not contained

in an aggregate function and there is no GROUP

BY clause.

This error provides important information to the attacker:
Name of the database store, Name of the main user guest, Name of the table clients,
and name of the field of the primary identifier id.

Using multiple queries.

Several Database Systems delimit queries with a semi-colon. The use of a semi-
colon allows multiple queries to be submitted at once and be executed sequentially, for
example:

Username: ’ or 1=1;

drop table users;

drop table debits;

-- Password: password

Another very dangerous alternative is to shut down the SQL service. This is one
of the most powerful commands done, and the SQL Server’s function to do this is:

38 CHAPTER 4. TOP VULNERABILITIES

SHUTDOWN WITH NOWAIT

Where the query would look like this:

Username: ’; shutdown with nowait; --Password: John

This would create a very effective and interesting form of Denial of Service Attack.
This attack is difficult to detect since there probably isn’t any high traffic detected,
hence making it more difficult to find the source of the problem for a network admin-
istrator.

Using Remote Execution of extended stored procedures
There is a whole set of hazardous stored procedures [193] that come by default in
many of the Database systems. For example, with the remote execution of:

exec master.xp_cmdshell ‘net stop sqlserver’

We can also turn down the service and cause a Denial of Service Attack as described
before. Of course, you would the necessary privileges to run such procedures.

Access by manipulating the query string in URL

Basically, the same commands can be executed through the query string in URL.
The URL may look like this:

www.sqlproduct.com/sqlproducts.asp?p_id=7

In order to know the field name of products table attacker can write:

http://sqlproduct/sqlproducts.asp?p_id=0\%20having\%201=1

Where the %20 represents the space character.

Using the obtained field products.prodName, we now call up the following URL
in the browser:

http://localhost/products.asp?productId=0;

insert\%20into\%20products(prodName)\%20values(left(@@version,50))

This performs an INSERT query on the products table, adding the first 50 char-
acters of the SQL Server’s version in the products table as its last record. The attacker
could now get the version of SQL server by writing:

http://localhost/products.asp?productId=

(select\%20max(id)\%20from\%20products)

Now he can perform a specific set of commands for the particular version of the SQL
server.

4.3. SQL INJECTION 39

Figure 4.11: URL SQL Injection

4.3.3 Conclusion

SQL injection has become a common issue with database-driven web sites. The flaw
is easily detected, and easily exploited, and as such, any site or software package with
even a minimal user base is likely to be subject to an attempted attack of this kind.
Essentially, the attack is accomplished by placing a meta character into data input to
then place SQL commands in the control plane, which did not exist there before. This
flaw depends on the fact that SQL makes no real distinction between the control and
data planes. Usually data destruction is not very common since there is low economic
motivation for this.

If successful, SQL Injection attacks can give an attacker access to backend database
contents, the ability to remotely execute system commands, or in some circumstances
the means to take control of the Windows server hosting the database. Dynamically
generating queries that include user input can lead to SQL injection attacks. An
attacker can insert SQL commands or modifiers in the user input that can cause the
query to behave in an unsafe manner. Constructing a dynamic SQL statement with
user input may allow an attacker to modify the statement’s meaning or to execute
arbitrary SQL commands.

SQL Injection is one of the most important problems in web application security
because it can, with a small amount of access, put at risk the knowledge and control
of multiple servers and consequently very important information of the company and

40 CHAPTER 4. TOP VULNERABILITIES

the customers.

4.4 Race Conditions

Race conditions are vulnerabilities that originate when concurrent processes or threads
interfere with each other. This interference is usually provoked from access to a shared
resource (variables, files, memory, devices, etc...) without the implementation of the
proper mutual exclusion protection mechanisms. Many developers pay little attention
to this issue, since they consider highly unlikely for the situation to emerge and do not
consider the consequences to be severe. Attackers take advantage of the developer’s
assumptions and race with their programs to try to invalidate a particular resource,
hence the name of the vulnerability.

0

5

10

15

20

25

30

Race Conditions

2001 2002 2003 2004 2005 2006

7
8 8

10

26

22

Figure 4.12: Race Conditions by Year (CWE)

Distributed computing is achieved through efficient control of time and state.
Computers execute a great amount of instructions very quickly, and they won’t often
complete their execution before another process or thread gets assigned some time. In
fact, in multi-core, multi-CPU, or distributed systems there can be two events taking
place at the same time, thus making race conditions easily available in such systems
[89]. The difference between the programmer’s mental model and the reality of the
execution gives place to unexpected interactions between threads, processes, time, and
information[44].

Race condition are tied to the timing of events within a piece of software. They are
usually associated with synchronization errors that provide a window of opportunity

4.4. RACE CONDITIONS 41

during which one process can interfere with another, possibly introducing a security
vulnerability.

Consider the situation illustrated in figure 4.13:

Figure 4.13: Race Condition Example

Let’s consider we only have one element in our list. Trouble arrives as one thread
passes the check as to whether the list is empty just before another calls pop front
on the remaining element. The unexpected situation will certainly bring unexpected
results. As you can see in the example, when more than one thread or process access
a same resource in an uncontrolled manner, there are diverse conflicts. The resource
could be shared memory, global variables, the file system (for example, by multiple
web applications that manipulate data in a shared directory), other data stores like the
Windows registry, or even a database.

Now consider the example in figure 4.14. The image describes a specific scenario
in a bank application, where there are different tasks being done at the same time over
the stored information. We have a process A calculating the total savings of all the
clients in the bank and at the same time we have a process B in charge of a transfer
between two clients. However, process B starts executing when process A is in the
middle of its operation. Process A gets to Paul and eventually to the end and counts
$300 less than what there really is, therefore mitigating the integrity of the information.

Race conditions are well studied threats and there exist different ways to exploit
them. They are not restricted to a particular language or platform. In fact, even
though some high-level languages are not vulnerable to some kinds of race conditions
due to their lack support for threads or forked processes, their slower performance often
makes them more susceptible to other types.

In the following section are described some of the most important types of race
condition, as well as the impact each of these have on the security services.

42 CHAPTER 4. TOP VULNERABILITIES

Figure 4.14: Conflicting Transactions

4.4.1 Attacks

Signal Handler

Signal handling race conditions started to be exploited relatively recently [200]. These
issues occur when non-reentrant functions, or state-sensitive actions occur in the signal
handler, which is expected to receive calls one at a time. Many applications implement
signal handlers, and sometimes they just map the same handler to more than one signal.
When the attacker sends a rapid-fire pair of signals the program becomes multithreaded.
If it is complicated to write multithreaded code, imagine the problems that arrive when
you’re not expecting concurrency problems.

Figure 4.15: Nonreentrant to Threaded (image edited from [135])

Example:

#include <signal.h>

#include <syslog.h>

4.4. RACE CONDITIONS 43

#include <string.h>

#include <stdlib.h>

void *global1, *global2;

char *what;

void sh(int dummy) {

syslog(LOG_NOTICE,"\%s\n",what);

free(global2);

free(global1);

sleep(10);

exit(0);

}

int main(int argc,char* argv[]) {

what=argv[1];

global1=strdup(argv[2]);

global2=malloc(340);

signal(SIGHUP,sh);

signal(SIGTERM,sh);

sleep(10);

exit(0);

}

In this case, a massive amount of calls to the signal handling function results in
a multiple call of free. Race conditions occur frequently in signal handlers, since they
are asynchronous actions. These race conditions may have any number of root-causes
and symptoms.

Common Consequences:

• Authorization: With the combination of other techniques, it may be possible to
execute arbitrary code.

• Integrity: Signal race conditions often result in data corruption.

Time-of-check Time-of-use race condition

This type of exploit emerges when a program checks for a particular property of an
object, and later executes instructions assuming that the property still holds when in
fact it does not. TOCTOU race conditions are usually presented when a program needs
to have access to files, checking first if the file already exists, and if not, then creating
it. The attack starts when the attacker figures out how you name the files and starts
creating links back to something important. The application opens a link that’s really
the file chosen by the attacker, provoking corruption of important files or achieving
escalation of privilege through other techniques.

Common Consequences:

44 CHAPTER 4. TOP VULNERABILITIES

• Access control: The attacker can gain access to otherwise unauthorized resources.

• Authorization: race conditions such as this kind may be employed to gain read
or write access to resources which are not normally readable or writable by the
user in question.

• Integrity: The resource in question, or other resources (through the corrupted
one), may be changed in undesirable ways by a malicious user.

• Accountability: The concurrency of the activities might prevent logging to occur.

• Non-repudiation: In some cases it may be possible to delete files a malicious user
might not otherwise have access to, such as log files.

Consider a port scan detector application which writes a log in “/tmp/log” of the
activity perceived. Such program would need root permission in order to be able to
read from the network device. Let’s analyze the following code:

if(!access(filename,W_OK)){

monitorNet();

...

f = fopen(filename,"w+");

/*write to file*/

}

This code segment first checks if the file is accessible by the user, then opens it for
writing, monitors the network, and finally writes to it. The first access check is passed
successfully, but between the time that the first access check is made and the time that
the file descriptor f is created, an attacker can delete the file “/tmp/log” and create
a hard link named “/tmp/log” referencing a configuration file such as “/etc/shadow”.
Now, when the file “/tmp/log” is opened for writing, the shadow file containing the
passwords will be opened instead and the attacker will be able to write arbitrary data
to it. The program uses its root privileges to write the file even though the attacker
does not count with such permissions. TOCTOU is not restricted to programs with
super user permission; as long as the program counts with any privilege above those of
the attacker, then it is probably of interest to him.

It is important to point out that TOCTOU vulnerabilities not always involve
symbolic links, and not every symbolic link issue is a TOCTOU problem. Another
important aspect to consider is that symbolic links are not restricted to UNIX sys-
tems, but are implemented in Windows systems as well. Windows has a large number
of different named objects-files, pipes, shared memory sections, desktops, and other
vulnerable resources that could be exploited.

4.5. DESIGN VULNERABILITIES 45

Context Switching Race Condition

These vulnerabilities usually present themselves when a product performs a series of
non-atomic actions to switch between contexts with different security schemes or levels,
but a race condition allows an attacker to alter the product’s behavior during the
transition. This is more often found in web browsers, in which the attacker can perform
certain actions while the browser is transitioning from a trusted to an untrusted domain,
or the opposite, and the browser performs the actions on one domain using the trust
level and resources of the other domain.

An Example of such case is the one registered in the Common Vulnerabilities and
Exposures database under the following ID:

CVE-2004-2260 - Browser updates address bar as soon as the user clicks on a link,
instead of updating it when the page has loaded, allowing spoofing by redirecting to
another page using onUnload method.

4.4.2 Conclusion

Race conditions represent a small but constant percentage of the vulnerabilities re-
ported. However, we must remember that it only takes one vulnerability in your soft-
ware to impact the security in a severe way, and race conditions have the potential of
creating such malicious consequences.

4.5 Design Vulnerabilities

In the previous sections we described the Buffer Overflows, SQL Injection, XSS, and
Race Condition Vulnerabilities. They are vulnerabilities that originate during the im-
plementation of systems. However, vulnerabilities may also come from Software design.
A design vulnerability is a problem that arises from an error or oversight in the soft-
ware’s design [58]. In this case, software isn’t secure because it does what it was
designed to do; only it was designed to do the wrong thing. These types of flaws often
originate from assumptions made about the environment in which a program will run.
Design flaws are also referred to as high-level vulnerabilities.

The design specifies the architecture and the interaction between components, and
reflects the requirements previously established. This includes the system’s security
mechanisms and how they work. For example in multiuser systems, the authentication
and authorization of users should be reflected in the design [199]. According to Michael
Howard [85], 50% of the problems discovered during Microsoft’s “Security Push” of 2002
were in the design-level.

Design vulnerabilities are hard to detect, since they can range from restraining
from doing something, or incorrect way of doing it. These can be access control, logging,
timing, encryption, and many more.

The Y2K bug, for example, could be considered a design flaw. The decisions
behind the two-digit date format were of efficiency in memory when this was scarce.

46 CHAPTER 4. TOP VULNERABILITIES

The use the abbreviated form of the year does not represent any problem for humans,
but it is not this way for computers. The Y2K last minute correction effort is estimated
in the billions [15], should we start thinking about Y10K?.

The TELNET protocol allows users to connect to a remote machine as though
it were connected to a local terminal. From a design perspective, TELNET has a
vulnerability in that it uses unencrypted communication. This enables attackers to
monitor and hijack TELNET sessions. If an administrator connects via TELNET and
enters a username and password to log in, a sniffer could monitor and obtain this
information.

If design does not include security considerations, it is very difficult, or maybe
impossible, to “add on” the security later in the development.

4.6 Deployment Vulnerabilities

Deployment consists in the installation and configuration of systems. Usually, the
person responsible for this activity was not involved in the development process and
requires guidance to perform his task [199]. A deployment error usually comes from
assumptions made about how the deployment will occur (for example assumptions with
configuration files and high privileges during installation).

User Supplied Configuration File.

A setuid utility program accepts command-line arguments. One of these arguments
allows a user to supply the path to a configuration file. The configuration file allows
shell commands to be inserted. This way, when the utility starts up, it runs the given
commands. The utility program may not have root access, but may belong to a group
or user context that is more privileged than that of the attacker.

Insecure Defaults

Insecure defaults are predefined options that create a risk in a deployed application.
This problem occurs when a software vendor attempts to make the deployment as simple
as possible; usability ends up conflicting with security. Requiring a configuration change
out of the box is often forgotten, leaving the window open for attackers.

Commercial Wireless access point devices are a known case of insecure defaults.
They come preconfigured without security. The companies try to facilitate the process
to the users, and they achieve it, but end up exposing their communication to anyone
within a few hundred yards.

Default Site Installations

Some Web servers include a variety of predefined sites and applications as part of a
default installation. The goal is to provide guidance and reference for configuring the
server and developing modules. The problem is that these sample sites are unnecessary

4.7. AUTHENTICATION AND PASSWORD VULNERABILITIES 47

services and insecure defaults. For example, ColdFusion’s Web-scripting technologies
installed some applications by default that allowed files to be uploaded and executed
on the system.

4.7 Authentication and Password Vulnerabilities

People dislike passwords, specially if they’re asked to choose them with size and charac-
ter restrictions, and told to use a different one for each account they might have. There
is a great dilemma in balancing between a hard enough password an attacker can’t
guess and easy enough a user would not write it down on a post-it on the computer.

Authentication systems can fail in several ways. We want to prevent attackers
from being able to log into an account that isn’t theirs and they have no right to use.
This may be achieved without the password, for example, in a replay attack, someone
might be able to thwart the password protocol and log in just by sending a duplicate
of some encrypted data.

Another problem presented with frequency is leaving around default accounts with
default passwords. This is common in public places such as libraries, where computers
are shared by a wide range of users. The particularity of this problem is that it makes
the average joe an attacker. The next person in the computer is motivated by the
effortlessness of the attack combined with the curiosity the opportunity brings.

Attackers can also get passwords, and other critical information, through the
use of key logging software or hardware, or otherwise eavesdrop on password entry;
for example with cameras. In 2005, thieves masquerading as cleaning staff managed
to break into Sumitomo Mitsui Bank’s branch in London and installed hardware key
loggers and attempted to transfer $440 million to accounts in other countries [171]. This
types of loggers are difficult to detect since there’s no process running in the background,
just an artifact connected between your keyboard and computer. The criminals were
able to capture URL’s accounts, passwords, and other sensitive information but were
captured before they were able to cause any real harm. It is interesting to point out that
the bank’s strategy against future attempts of this type, was attaching with superglue
the keyboards to the PC’s.

Another very important aspect in password security is password storage. To avoid
a server-side capture of a password, it is a common practice not to store passwords
directly, either on a server or in a database; why should a user trust a system admin?
One-way hash of the password is the common solution to the problem. The hash is
used to validate that the user knows the password by comparing the value stored to
the one provided at the input after it has gone through the irreversible process.

Brute-force attacks are usually the last choice of attackers, where they simply try
to log in as the user numerous times, each time with a different guess. If users are
allowed to have weak passwords, then this strategy is worthwhile.

Paris Hilton Hacked? [126]. In 2005, it was reported that someone got access to
Paris Hilton’s T-Mobile Sidekick cell phone, making public it’s contents in the Internet
(including contact information for a number of celebrities). The fact is the phone had

48 CHAPTER 4. TOP VULNERABILITIES

little to do with the breach. The Sidekick architecture stores copies of data so it can
be accessed by the subscriber over the Internet and via phone. The attacker managed
to get her username and claimed be the legitimate client and to have forgotten the
password to the account. The password reset personal question established by the
heiress was “What is the name of your favorite pet?”. Her dog Tinkerbell is somewhat
of a public figure, the attacker knew this, got access to the account, and the rest is
history.

4.8 Encryption Vulnerabilities

Cryptography is an essential technique to secure certain aspects of systems. Encryption
algorithms are commonly used to provide confidentiality of transactions and as methods
to authenticate users. However, cryptography is a complex technology and there are
ways it can make systems vulnerable.

Storing Sensitive Data Unnecessarily

Often, a systems are designed to maintain sensitive data without any real cause, typi-
cally because of a misunderstanding of the system requirements. Passwords are one of
the most typical cases of storing data unnecessarily, but not the only case. Application
often have designs that fail to classify sensitive information or just store it for no reason.

Lack of Necessary Encryption

Generally, a system doesn’t provide adequate confidentiality if it’s designed to transfer
clear-text information across untrusted environments (TELNET is the case). Com-
munication containing sensitive information should be encrypted when it travels over
public networks. Sensitive information should be encrypted as it’s stored in a database
or on disk. In some situations, such as password storage, hashed values of sensitive
data can be stored in place of the actual sensitive data.

Insufficient Encryption

It’s also possible to use encryption that isn’t strong enough to provide the level of
security required. If the data is valuable enough, attackers will be willing to wait
exhaustive or timely attacks. For example, 56-bit single Digital Encryption Standard
(DES) encryption is a bad choice in the current era of inexpensive multigigahertz
computers. The security of the information should be established in proportion to
the value of the information. It is often the case that information is needed to be
confidential for a specific period of time, and afterwards loose its value and be of no
use to attackers. For the last case one may settle for an encryption that can be broken
in days or weeks, as long as is greater than the period of value.

4.8. ENCRYPTION VULNERABILITIES 49

It’s also important to remember that encryption implementations do age over
time. Computers get faster, holes are found in the encryption algorithms. Key sizes
eventually become inadequate for the data they protect.

Security by Obscurity

Security by obscurity (or obfuscation) has earned a bad reputation in the past several
years, but it has always been a tempting strategy for programmers. Encryption algo-
rithms undergo exhaustive testing by large audiences, therefore are being reinforced.
With obscurity, if the attacker spends enough effort and time he will most likely break
the code. Obfuscation it’s an insufficient technique for protecting data from attackers,
however, it is a commonly employed strategy to deter casual snoopers and slow down
dedicated attackers.

50 CHAPTER 4. TOP VULNERABILITIES

Chapter 5

Security in the Software
Development Process

Security is not really contemplated during most softwares’ development lifecycles,
but is rather considered an afterthought, where security verification and testing
efforts are done until the software has been developed. We have already seen in
previous chapters how the inception of vulnerabilities may originate throughout the
design, implementation, and deployment phases, so the natural step is to implement
security measures at all these stages. Security is definitely not an add-on one can
easily integrate after the software has been developed. It has been demonstrated
that the earlier a defect is unveiled, the cheaper it is to fix. Chris Wysopal said in [199]:

“A full lifecycle approach is the only way to achieve secure software.”

In [52], Noopur Davis presented a Technology Scouting Report1 where he
described a collection of development processes, frameworks and standards. Here
Davis points out how:

“There is no guarantee that even when organizations conform to a partic-
ular process model, the software they build is free of unintentional security
vulnerabilities or intentional malicious code. However, there is probably
a better likelihood of building secure software when an organization fol-
lows solid software engineering practices with an emphasis on good design,
quality practices such as inspections and reviews, use of thorough testing
methods, appropriate use of tools, risk management, project management,
and people management.”

Noopur’s work starts off with the definition of some essential concepts for the
context of Software Development Process, and they are:

1Copyright 2005 Carnegie Mellon University.

51

52 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Definition 14. Process: “a sequence of steps performed for a given purpose”[41] .

Davis takes it a step further and defines:

Definition 15. Secure Software Process: The set of activities performed to de-
velop, maintain, and deliver a secure software solution. Activities may not necessarily
be sequential; they could be concurrent or iterative.

Definition 16. Process model: A process model provides a reference set of best prac-
tices that can be used for both process improvement and process assessment. Process
models do not define processes; rather, they define the characteristics of processes. Pro-
cess models usually have an architecture or a structure. Groups of best practices that
lead to achieving common goals are grouped into process areas and similar process areas
may further be grouped into categories. Most process models also have a capability or
maturity dimension that can be used for assessment and evaluation purposes.

The following sections describe strategies that are based in the ideology of working
in securing software during the development process. The processes mentioned in these
sections have several important practices in common (and they will be discussed in
more detail later in this dissertation).

5.1 Secure Software Development Lifecycle

In [199] Symmantec proposes the SSDL, which represents a structured approach to-
ward implementing secure software development. This is an incremental approach
which integrates the stakeholders at an early stage of the process, and maintains their
involvement in the following stages. Security issues are considered and addressed early
in the system’s lifecycle, during business analysis, the requirements phase, design and
development of each software build. This early involvement allows the security team
to provide a quality review of the security requirements specification, attack use cases,
and software design. This will also enable the team to more thoroughly understand
business needs and requirements (and the risks associated with them), this way, de-
veloping the most appropriate system environment using secure development methods,
threat-modeling efforts, and so on to generate a more secure design.

The SSDL puts emphasis on early involvement, since the requirements comprise
reference point from which success is measured. The security team needs to review the
system or application’s functional specification. The security test strategies are also to
be determined during the specification/requirements phase.

In the SSDL the vulnerabilities are identified, and once it’s been determined that
it has a high level of exploitability, the respective mitigation strategies need to be eval-
uated, designed and implemented. Further in the process, it is important to ensure
a secure deployment, which means that the software is installed with secure defaults.
Afterwards, its security needs to be maintained throughout its existence. This is accom-
plished with an all-encompassing software patch management process, where emerging

5.1. SECURE SOFTWARE DEVELOPMENT LIFECYCLE 53

threats are evaluated, and vulnerabilities prioritized and managed. Finally, since it is
often unclear whose job security is, Roles and responsibilities need to be defined.

The SSDL has the following six primary components:

SSDL Phase 1: Security Guidelines, Rules, and Regulations

Security guidelines, rules, and regulations must be considered during the project’s in-
ception phase. This is described or considered as the “umbrella requirement.” Due to
the nature of the system, it might have to comply to specific government regulations or
legislations, so a system-wide specification is created defining the security requirements
that apply to the system. One example could be the Sarbanes-Oxley Act of 2002, which
contains specific security requirements.

Not all systems fall under the of these types of guidelines. However, a security
policy still should be developed. It is important not only to document the security
policy but also to continuously enforce it by tracking and evaluating it on an ongoing
basis.

SSDL Phase 2: Security Requirements: Attack Use Cases

Attack Use Cases (a.k.a. Misuse Cases and Abuse Cases) are an important instrument
for security requirement documentation and are discussed in more depth later on this
dissertation. As mentioned before, it is important not to omit security requirements
from any type of requirements documentation. This are the platform on which the
software design, implementation, and test case development sit.

Even though security requirements are cataloged as nonfunctional requirements,
the SSDL suggests the security engineer should insist that associated security require-
ments be described and documented along with each functional requirement. They
propose that each functional requirement description should contain a “security require-
ments” section documenting any specific security needs of that particular requirement.
Attack use cases can lead to more thorough secure system designs and test procedures.

It is important that these requirements are unambiguous and specific. The authors
in [199] give the example that everyone would agree with a statement such as “The
system must be highly secure,” but each person may have a different interpretation of
“highly secure.” Security requirements are more commonly described in the form of
constraints as to “the system should not” do something ... Attack use cases can be
developed that show behavioral flows that are not allowed or are unauthorized.

This phase is also involved with Security defect prevention and requirements trace-
ability. Defect prevention is described as “the use of techniques and processes that
can help detect and avoid security errors before they propagate to later development
phases”. Defect prevention is most effective during the requirements phase, when the
impact of a change required to fix a defect is low. If security is in everyone’s mind
from the beginning of the development lifecycle, they can help recognize omissions,
discrepancies, ambiguities, and other problems that may affect the project’s security.

54 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Requirements traceability is in charge of the association between each security require-
ment with all parts of the system where it is used.

SSDL Phase 3: Architectural and Design Reviews/Threat
Modeling

Architectural and design reviews and threat modeling represent the third phase of the
SSDL. This phase enables developers to comprehend the structure or architecture of
the system, in order to implement the adequate security strategies, plans, designs,
procedures, and techniques. Having a clear picture of the interacting parts of the
system and a clearly defined project, will aid in a construction of a security conscious
design, and help eliminate confusion about the application’s behavior in later stages of
the project lifecycle. This will also help in the identification of the areas of the system
that are the most critical or of highest risk. This knowledge enables to give priority on
the critical parts of the application first and helps testers to avoid over-testing low-risk
areas and under-testing the high-risk ones.

SSDL Phase 4: Secure Coding Guidelines

Secure Coding Guidelines is the fourth phase of the SSDL. This phase has the main
purpose of minimizing (or eliminating if possible,) vulnerabilities in the implementation.
Developers need to understand how vulnerabilities get into software so they can learn
how to prevent them. As mentioned in a previous chapter, a design vulnerability
is a flaw in the design that keeps the program from operating securely no matter
how perfectly it is implemented by the coders. On the other hand, implementation
vulnerabilities are caused by security bugs in the actual coding of the software.

Software developers and testers go through training on how to develop secure
code by adhering to these secure coding standards and guidelines. The same coding
guidelines aid testers to develop test cases and verify that the standard is in fact being
followed.

SSDL Phase 5: Black/Gray/White Box Testing

The fifth phase of the SSDL is Black/gray/white box testing (this topic is later de-
scribed in more detail.) Testing is not a new activity in software development lifecycle.
However, all its aspects need to be correctly planned. The environment, the plan, re-
sources, databases, and the setup of scripts are some of the aspects to keep in mind in
the testing.

It is important to conduct evaluation activities to avoid false positives and/or false
negatives, and to document security problems via system problem reports.

5.1. SECURE SOFTWARE DEVELOPMENT LIFECYCLE 55

SSDL Phase 6: Determining Exploitability

Determining exploitability is the sixth phase of the SSDL. The ideal scenario is to
have every vulnerability discovered in the testing phase of the SSDL, be easily fixed. A
vulnerability’s exploitability is an important factor in the risk evaluation. This informa-
tion is then used to prioritize the vulnerability’s remediation among other development
requirements, such as implementing new features.

The following five factors are described by the authors in order determine a vul-
nerability’s exploitability:

• The access or positioning required by the attacker to attempt exploitation

• The level of access or privilege yielded by successful exploitation

• The time or work factor required to exploit the vulnerability

• The exploit’s potential reliability

• The repeatability of exploit attempts

Exploitability needs to be constantly re-evaluated because it tends to get easier
over time.

After the Development

The SSDL considers the following activities that are to be done outside the development
process period.

Deploying Applications Securely

The process of deploying and maintaining the application securely occurs at the end of
the lifecycle, but designing the application for secure deployment needs to start early.

Additionally, the secure deployment has to be monitored constantly, and vulner-
abilities have to be managed.

Patch Management: Managing Vulnerabilities

After you develop the software using the SSDL, it is important to put a patch manage-
ment process in place to allow for managing vulnerabilities. To accomplish this objec-
tive, services maintain comprehensive databases of vulnerabilities, malicious code, secu-
rity risks, exposures, malicious IP addresses, and other relevant information. Whenever
a user is alerted about a potential vulnerability, the exploitability is analyzed and then
it is important to determine whether a patch is required.

56 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Roles and Responsibilities

As mentioned before, it is often unclear whose responsibility security really is. If it is
the responsibility of the people in charge of the network or the software architect and
designer, or anyone else. In order for effective security testing to take place, roles and
responsibilities have clear.

The book proposes the following distribution of tasks:
The program or product manager is responsible for establishing the security policies.
They can be based on standards or other security practices. The product or project
manager also is responsible for handling a security certification process if no specific
security role is defined. Architects and developers are responsible for providing design
and implementation specifications, determining threats, and performing code reviews.
Testers drive critical analyses of the system, take part in threat-modeling efforts, de-
termine and investigate threats, and build white box and black box tests. Program
managers manage the schedule and own individual documents and dates. Security
process managers can oversee threat modeling, security assessments, and secure coding
training.

If security issues are suspected during development, you should just fix the code
to remove any doubt that there could be a security issue. But if the software is already
deployed, a fix becomes very expensive, so the techniques of determining exploitability
should be used so as not to generate additional costs and work for your customers
unless absolutely necessary.

5.2 Microsoft SDL

Microsoft also believed that in order to secure software it is important to detect and
remove those vulnerabilities early in the development lifecycle, so they proposed the
“Trustworthy Security Development Lifecycle”[90]. They believe that this process will
not only help them reduce the number and severity of defects, but also withstand
security attacks.

The SDL implements several secure practices throughout the development process,
but also include other activities outside of it, for example the mandatory security
training for its software development personnel. It has been reported that Microsoft
has had good results from products developed using the SDL [143], so this section will
briefly describe the proposed process.

SDL uses Microsoft’s experience by adding specific checks and measures during
the development process. Below are described the SDL stages:

Stage 0: Education and Awareness

Microsoft describes that a key part of their success with the SDL has been the executive
support, education, and awareness. They make strong emphasis on getting everyone
committed to the process, from the workers to the boss, which can be a difficult task.

5.2. MICROSOFT SDL 57

Leadership is highly encouraged, as is staying updated in security developments
and training. Monitoring of vulnerability databases, staying up to date in coding defects
and secure design and similar rapidly changing knowledge, are important activities
considered by the SDL.

Stage 1: Project Inception

Great attention is paid to security from the start of the project, this stage includes
important steps such as:

• Assign the Security Advisor (The security person who guides the development
team through the SDL process.)

• Make sure the bug-tracking process includes security and privacy bug fields.

Stage 2: Define and Follow Design Best Practices

This phase consists in developing design specifications that describe how to implement
security features. The SDL takes into account some common secure design practices
such as the following:

• Reduction of the attack surface.

• Fail-safe defaults.

• Separation of privilege.

• Least privilege.

Stage 3: Product Risk Assessment

The main purpose of this stage is to determine the best way to spend resources when
developing the software. The highest-risk components are identified in order to estimate
level of effort and priority of the different modules.

Stage 4: Risk Analysis

Here risk is mainly evaluated through threat modeling, which is a way to understand the
potential security threats , determine risk, and establish appropriate measures. This
technique enables awareness of security dependencies and assumptions and provides an
understanding on the assets the product is trying to protect.

58 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Stage 5: Creating Security Documents, Tools, and Best Prac-
tices for Customers

The SDL considers important to provide detailed security information to customers.
This is mainly concerned with aiding the end user in securely deploying the systems and
so that they can understand the security implications of the configurations decisions
they make. This stage is also concerned with informing customers on both the threats
that exist and the tradeoffs between risk and product functionality. This is of great
impact to the user, since they cover their needs of installing, maintaining and using the
system in a secure fashion.

Stage 6: Secure Coding Policies

Secure coding best practices are defined in order to have a secure implementation.
Some good practices encouraged by the SDL are the following:

• Use the latest compiler and supporting tool versions.

• Use defenses added by the compiler.

• Use Source-code analysis tools.

• Do not use banned functions.

Along with the restriction of certain functions, secure alternatives must be pro-
vided. It is important to give good guidance and education to the developers so they
can stick to the policies without much trouble.

Stage 7: Secure Testing Policies

Testing is always an important part of development, since it provides validation of a
secure implementation. The SDL testing phase requires the following steps:

1. Fuzz testing.

2. Penetration testing.

3. Run-time verification.

4. Re-reviewing threat models.

5. Reevaluating the attack surface.

5.3. CLASP 59

Stage 8: The Security Push

A security push is about integrating everyone into the secure mentality. It consists of
a team-wide focus on threat model updates, code review, testing, and documentation.
This is not a process of defined duration, but it is rather defined by the amount of code
that needs to be reviewed throughout the development process, until the code is fairly
stable and obtains a certain level of quality. The push itself has a focus on legacy code,
but it is not a quick fix to this. Bugs are filed but not fixed at this stage; this is done
afterwards.

Stage 9: The Final Security Review

The goal of this stage is to determine if the software is ready to be shipped, from a
security point of view. This is mainly performed by the central security team, and
commonly a few months before the software is complete. The review verifies that the
followed the SDL was followed correctly by the development team during the product’s
entire development lifecycle.

Stage 10: Security Response Planning

This stage is mainly concerned with responding correctly to the discovery of security
vulnerabilities in your software. The SDL takes into consideration the possibility of
making mistakes in the development and the likely emergence of new kinds of vulnera-
bilities. The reality is that one can not be sure that the system is 100% secure, so the
team should be prepared for the discovery and elimination of insecurities.

Stage 11: Product Release

The SDL assumes the existence of a formal “sign off” process for releasing software to
users. The process should be concerned with a satisfactory agreement that the SDL
was followed correctly, the requirement that no bugs of a specific severity exist and
that the software is in compliance with the corresponding legal requirements.

Stage 12: Security Response Execution

This phase of the SDL reinforces the concern to protect the customers. The Security
Response execution consists of two major parts: To respond to security defects and
work with people who find security issues in your code, and to learn from mistakes.
This knowledge is then used to adjust SDL (it is updated twice a year).

5.3 CLASP

The Comprehensive, Lightweight Application Security Process is an initiative based on
the field work by Secure Software employees from decomposing many development life

60 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

cycles. It is an application security process and plugin to the Rational Unified Process
(RUP) [185].

CLASP is an activity-driven, role centric process that proposes a set of best prac-
tices to integrate security into your software development lifecycles.

Practices

CLASP proposes the following practices:

1. Institute awareness programs

2. Perform application assessment

3. Capture security requirements

4. Implement secure development practices

5. Build vulnerability remediation procedures

6. Define and monitor metrics

7. Publish operational security guidelines

Activities

Table 5.1 shows in the Activities of CLASP in chronological order along with the
people associated with the activity. These are the activities to integrate during the
development of the system, however it is not always necessary to do all of them. It
is best to integrate them one at a time, giving priority to those that are the most
appropriate to the team or project. It is also possible that some activities are only
applicable to certain applications (for instance one that will use a back-end database.)

Implementation Guide

CLASP provides an implementation guide to aid project managers in the evaluation
of activities to determine whether or not to adopt them. The following information is
provided of each activity:

• Activity applicability.

• A discussion of the risks associated with not performing the activity.

• An indication of implementation cost in terms of frequency of activity, calendar
time, and man-hours per iteration.

• A discussion of dependencies between the various process pieces.

As an additional aid, CLASP provides several “example roadmaps”, focusing on
common organizational requirements.

5.4. ICMM AND CMMI SECURITY 61

Supporting Artifacts

In order to perform the activities in an efficient manner, CLASP provides a complete
glossary describing important concepts, principles and standards, and a knowledge base
of dozens of classes of vulnerability.

The vulnerability information is in the form of a Root-cause database and it
provides comprehensive background information on several kinds of problems with il-
lustrative examples and detailed information to avoiding, detect, and fix the problem.

Some other artifacts CLASP provides include the following:

• A list of common security requirements and a checklist of security concerns to
consider when building new requirements.

• A guide to building supplementary specifications surrounding security (with sam-
ple business rules and common constraints.)

• A guide for performing architectural security assessments (or threat models).

• A security testing checklist.

• A guide for visually expressing security properties of a system (such as a set of
extensions to many UML 2.0 diagram types to accommodate security concerns.)

5.4 iCMM and CMMI security

In order to evaluate the software capability of contractors, in 1986 Watts Humphrey,
the SEI, and the Mitre Corporation created a software maturity framework (based on
IBM’s concepts). By 1991, the SEI published the Capability Maturity Model version
1.0, which described principles and practices which define software process maturity
[2]. The CMM2 helps software organizations improve along an evolutionary path into a
disciplined software processes. As result of several revisions, and with the sponsorship
of the U.S. Department of Defense teamed up with the National Defense Industrial
Association (NDIA), the Capability Maturity Model Integration, and the FAA-iCMM
(Federal Aviation Administration Integrated Capability Maturity Model) were eventu-
ally released. The figures 5.1 and 5.2 presented in [52] describe the Areas of Focus of
these.

While both the CMMI and iCMM provide a framework in which safety and secu-
rity activities may take place, some specific security practices not addressed. Security
concepts are mentioned in descriptions but not in the inherent components of the mod-
els [92]. The models lacked an emphasis in vulnerability reduction, this is why in 2002
an initiative to extend the CMMI and the iCMM for Safety and Security was developed.

2CMM, Capability Maturity Model, and CMMI are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University. Team Software Process and TSP are service marks of Carnegie
Mellon University.

62 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Source Documents for the Extension

As part of the effort to integrate security and safety to the Maturity Models, a process
of identification of “best practices” was involved, and the following source documents
were used with this purpose:

Source Documents for security:

• ISO 17799: Information Technology - Code of practice for information security
management (discussed later in more detail.)

• ISO 15408: The Common Criteria (v 2.1) (discussed later in more detail.)

• Systems Security Engineering CMM (v2.0.)

• NIST 800-30: Risk Management Guide for Information Technology Systems.

Source Documents for safety:

• MIL-STD-882C: System Safety Program Requirements.

• IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic
Systems.

• DEF STAN 00-56: Safety Management Requirements for Defence Systems.

Most of these documents deal with concepts out of the scope of this dissertation,
and for this reason are not covered in more detail.

Goals and practices of the application area

The purpose of the Safety and Security areas is to establish and maintain a safety and
security capability, define and manage requirements based on risks. The Goals and
practices of the application area are [93]:

Goal 1 - An infrastructure for safety and security is established and
maintained.

• Ensure safety and security awareness, guidance, and competency.

• Establish and maintain a qualified work environment that meets safety and secu-
rity needs.

• Ensure integrity of information by providing for its storage and protection and
controlling access and distribution of information.

• Monitor, report, and analyze safety and security incidents and identify potential
corrective actions.

• Plan and provide for continuity of activities with contingencies for threats and
hazards to operations and the infrastructure.

5.4. ICMM AND CMMI SECURITY 63

Goal 2 - Safety and security risks are identified and managed.

• Identify risks and sources of risks attributable to vulnerabilities, security threats,
and safety hazards.

• For each risk associated with safety or security, determine the causal factors,
estimate the consequence and likelihood of an occurrence, and determine relative
priority.

• For each risk associated with safety or security, determine, implement, and mon-
itor the risk mitigation plan to achieve an acceptable level of risk.

Goal 3 - Safety and security requirements are satisfied.

• Identify and document applicable regulatory requirements, laws, standards, poli-
cies, and acceptable levels of safety and security.

• Establish and maintain safety and security requirements, including integrity lev-
els, and design the product or service to meet them.

• Verify and validate work products, delivered products, and services to assure that
safety and security requirements have been achieved.

• Establish and maintain safety and security assurance arguments and supporting
evidence throughout the life cycle.

Goal 4 - Activities and products are managed to achieve safety and
security requirements and objectives.

• Establish and maintain independent reporting of safety and security status and
issues.

• Establish and maintain a plan to achieve safety and security requirements and
objectives.

• Select and manage products and suppliers using safety and security criteria.

• Measure, monitor, and review safety and security activities against plans, control
products, take corrective action, and improve processes.

64 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

CLASP Activities Related Project Roles
Institute security awareness program Project Manager
Monitor security metrics Project Manager
Specify operational environment Owner: Requirements Specifier, Key

Contributor: Architect
Identify global security policy Requirements Specifier
Identify resources and trust boundaries Owner: Architect, Key Contributor:

Requirements Specifier
Identify user roles and resource capa-
bilities

Owner: Architect, Key Contributor:
Requirements Specifier

Document security-relevant require-
ments

Owner: Requirements Specifier, Key
Contributor: Architect

Detail misuse cases Owner: Requirements Specifier, Key
Contributor: Stakeholder

Identify attack surface Designer
Apply security principles to design Designer
Research and assess security posture of
technology solutions

Owner: Designer, Key Contributor:
Component Vendor

Annotate class designs with security
properties

Designer

Specify database security configuration Database Designer
Perform security analysis of system re-
quirements and design (threat model-
ing)

Security Auditor

Integrate security analysis into source
management process

Integrator

Implement interface contracts Implementer
Implement and elaborate resource poli-
cies and security technologies

Implementer

Address reported security issues Owner: Designer, Fault Reporter
Perform source-level security review Owner: Security Auditor, Key Con-

tributor: Implementer; Designer
Identify, implement and perform secu-
rity tests

Test Analyst

Verify security attributes of resources Tester
Perform code signing Integrator
Build operational security guide Owner: Integrator, Key Contrib-

utor: Designer; Architect; Imple-
menter

Manage security issue disclosure pro-
cess

Owner: Project Manager, key Con-
tributor: Designer

Table 5.1: The CLASP Activities with their associated Roles [30]

5.4. ICMM AND CMMI SECURITY 65

Figure 5.1: CMMI Process Areas [52]

66 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Figure 5.2: iCMM Process Areas [52]

5.5. CORRECTNESS BY CONSTRUCTION 67

5.5 Correctness by Construction

Correctness by Construction was developed by Praxis Critical Systems as a strategy to
produce high-integrity software and extremely low defect rates (fewer than 0.1 defects
per thousand lines of code according to [80]). This method is governed by two main
principles:

1. Don’t introduce errors in the first place.

2. Remove any errors as close as possible to the point that they are introduced.

These principles enable one to eliminate defects at the earliest possible stage of
the process. In support to this 2 essential principles, there are seven more presented in
[48], and they are:

1. Expect requirements to change.

2. Know why you’re testing.

3. Eliminate errors before testing.

4. Write software that is easy to verify.

5. Develop incrementally.

6. There is no silver bullet, focus on the difficult problems first.

7. Software is not useful by itself (user manuals, business processes, design docu-
mentation, well-commented source code, and test cases are needed as well.)

Strategies

In order to achieve the Principles, the following strategies are employed:

1. Use a sound, formal notation for all deliverables (unambiguous specification).

2. Use strong, tool-supported methods to validate each deliverable (i.e. static anal-
ysis.)

3. Carry out small steps and validate the deliverable from each step.

4. Saying things only once (eliminate redundancy in specification.)

5. Design software that is easy to validate.

6. Do the hard things first.

68 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Process

The process of Correctness consists of the following steps:

1. Requirements

2. Specification

3. High Level Design

4. Detailed Design

5. Test Specifications

6. Module Specifications

7. Code

8. Building

9. Commissioning

The Core process is depicted in figure figure 5.3:

5.5. CORRECTNESS BY CONSTRUCTION 69

Figure 5.3: The Correctness by Construction Core Process

70 CHAPTER 5. SECURITY IN THE SOFTWARE DEVELOPMENT PROCESS

Chapter 6

Standards and Best Practices

This chapter describes very important standards that, even though they are not nec-
essarily focused at the development process, they cover practices that can be applied
during the process or enhance the security through other activities or principles. In
addition to describing several important strategies and activities, some security aspects
of management and compliance are covered by these standards.

In this chapter we can also find some very important, effective and generally
accepted practices. Several of these have already been mentioned as part of the Software
Development models in the previous chapter.

6.1 ISO/IEC 27002

The ISO/IEC 27002 (a.k.a. Code of practice for information security management) was
first issued in 1995 to provide a set of controls comprising best practices in information
security. It is an internationally-accepted standard meant to be a single reference point
for good practices of information security.

The standard has evolved throughout the years, and this has been reflected in
several name changes. The British Standards Institute, or BSI, first released it as the
British Standard 7799. It consisted of 2 parts the “Information Technology - Code
of practice for information security management” and the “Information Security Man-
agement Systems - Specification with guidance for use.” After a period of review,
in December 2000, BS 7799 was adopted by ISO/IEC and was released as ISO/IEC
17799. By 2005, several updates were made and was renamed accordingly as ISO/IEC
17799:2005. The current ISO/IEC 27002:2005 is simply a number change from ISO/IEC
17799:2005 made in July 2007, in order to bring it into the same numbering sequence
as other information security standards.

An important particularity of the standard worth noticing, is that it is concerned
with the security of information assets, not just IT systems. In practice, however,
a large percentage of the information is processed, stored, and managed by the IT
systems, so the security incidents of information are more common here.

The standard contains hundreds of best-practice information security control mea-

71

72 CHAPTER 6. STANDARDS AND BEST PRACTICES

sures that organizations should consider to satisfy their objectives. These practices are
not mandatory, but the decisions are left up to the users to select as to implementing
those that best suit them. Liberty is also given to adopt controls not listed in the
standard, as long as their objectives are satisfied.

Not mandating controls makes the standard very flexible to implement, but it also
makes it difficult to assess whether an organization is fully compliant to it, hence there
are no formal compliance certificates against ISO/IEC 27002.

Critical Success Factors

The standard describes a set of factors important to the successful implementation of
information security within an organization:

• Security policy, objectives and activities that reflect business objectives;

• An approach to implementing security that is consistent with the organizational
culture;

• Visible support and commitment from management;

• A good understanding of the security requirements, risk assessment and risk man-
agement;

• Effective marketing of security to all managers and employees;

• Distribution of guidance on information security policy and standards to all em-
ployees and contractors;

• Providing appropriate training and education;

• A comprehensive and balanced system of measurement which is used to evaluate
performance in information security management and feedback suggestions for
improvement.

The mind map in figure 6.1 summarizes structure of the standard. The main
sections of the ISO/IEC 27002 are listed below:

The Sections of ISO/IEC 27002

Section 0: Introduction

This section introduces the concepts surrounding information security. It also serves
as a guide to using the standard.

Section 1: Scope

Section 1 presents recommendations for the distribution of responsibility concerned
with initiating, implementing, or maintaining security.

6.1. ISO/IEC 27002 73

Section 2: Terms and definitions

Here “Information security” is defined as the security services we mentioned early in this
dissertation. “Preservation of confidentiality, integrity and availability of information.”
Other key terms are further defined in this section.

Section 3: Structure of this standard

Section 3 explains the contents of the standard. It is focused on control objectives,
suggested controls, and implementation guidance.

Section 4: Risk assessment and treatment

ISO/IEC 27002 covers a brief description of the topic of risk management.

Section 5: Security policy

In this section, management is motivated to define a policy and support information
security.

Section 6: Organization of information security

This section deals with handling the security of information within the organization. It
emphasizes the need for the Senior management to provide direction and commit their
support. The section also describes the importance of how the definition of Roles and
responsibilities should take place and the important links that should be established
with the authorities and stakeholders.

Section 7: Asset management

The organization understands what information assets it has, and to manage their
security accordingly. All assets should have a defined owner, and inventory should be
elaborated and maintained describing the assets and their location.

Section 8: Human resources security

Suitable security awareness, training, and educational activities should be taken under
consideration. Not only are the roles necessary, but the security responsibilities should
be taken into account at recruitment. Employees and IT users should be made aware,
educated and trained in security procedures. Another important concern is the security
aspects of a person’s exit from the organization, for example, the return of assets and
removal of access rights.

74 CHAPTER 6. STANDARDS AND BEST PRACTICES

Section 9: Physical and environmental security

This section covers the physical aspects of security. The protection of the equipment
and cabling against intentional or accidental damage or loss, and maintenance aspects.
This section also describes the need for controls to protect sensitive IT facilities from
unauthorized access.

Section 10: Communications and operations management

The standard covers aspects related to the documentation of responsibilities and pro-
cedures and changes to IT facilities. It also describes the importance of security re-
quirements when outsourcing or considering other third party service. Other important
topics of anti-malware controls and user awareness are described. The importance of
back-ups of information and appropriate network management (including activities re-
garding private networks and managed firewalls etc..)

Security in communication procedures should be in place to protect information
in transit, including mediums such as electronic messaging and business information
systems. Finally, other practices such as audits and fault logging and system monitoring
should be implemented.

Section 11: Access control

Section 11 presents several recommendations to prevent unauthorized access to IT sys-
tems, networks, and data. Access should be in harmony with access control policy,
which establishes permissions according to the job necessities (rights of access defined
profiles). Appropriate documentation should be done regarding the allocation of priv-
ileges and management of passwords. Users should be made responsible for choosing
strong passwords (that they can remember) and keep them confidential.

Access to network services is also restricted and controlled inside the organization
and between organizations. Policy for secure, remote access to systems should be
established and reviewed periodically. Correct authentication through unique user IDs
should be used and inactivity timeouts should be applied. There should also be formal
policies about the secure use of portable PCs, PDAs, and similar devices.

Section 12: Information systems acquisition, development and maintenance

This section is focused in paying attention in the security aspects in the development,
acquisition testing, and implementation of the systems. Activities range from the early
stages of the systems development, to the data entry, processing and output validation
controls. Cryptography necessities should be defined, such as digital signatures, non-
repudiation, management of keys, digital certificates, and adequate algorithms. It is
also important to stay up to date in vulnerabilities in systems used to apply relevant
patches promptly.

6.1. ISO/IEC 27002 75

Section 13: Information security incident management

This section exposes the importance of having an incident reporting/alarm procedure,
along with the response procedures. This is an activity that should achieve continuous
improvement with a correct administration of knowledge and collection of forensic
evidence.

Section 14: Business continuity management

The purpose of this section is to educate on disaster recovery planning, business conti-
nuity management, and contingency planning. Plans are documented and tested with
continuity in order to minimize the impact of security incidents that happen (despite
the preventive controls having been in place.)

Section 15: Compliance

It is important to have compliance with corresponding legislation such as copyright,
data protection, protection of financial data and other vital records, cryptography
restrictions, etc. This is achieved with the correct definition of policies, security reviews,
testing, and other practices of the standard.

76 CHAPTER 6. STANDARDS AND BEST PRACTICES

Figure 6.1: ISO/IEC 27002 Mind Map [68]

6.2. COMMON CRITERIA (ISO 15408) 77

6.2 Common Criteria (ISO 15408)

The Common Criteria (CC) is a publicly available international standard (ISO/IEC
15408 [99]) that provides an assurance framework of computer security. This standard
assists in the specification of security requirements, it helps vendors implement and/or
make claims about the security of their products, and enables testing laboratories to
evaluate the products in order to determine if they actually meet the claims. The
CC documentation is presented in three documents. The first one is introductory and
describes key concepts and principles of security evaluation and describes the model of
evaluation. The second section describes the security functional requirements to serve
users of products in the specification and provides templates for security functional
requirements. The third and final document includes security assurance requirements,
and defines the seven Evaluation Assurance Levels (EALs).

Participating Organizations

The following organizations contributed to the development of the Common Criteria
[100]:

• Australia/New Zealand: The Defence Signals Directorate and the Government
Communications Security Bureau respectively;

• Canada: Communications Security Establishment;

• France: Direction Centrale de la Sécurité des Systèmes d’Information;

• Germany: Bundesamt für Sicherheit in der Informationstechnik;

• Japan: Information Technology Promotion Agency

• Netherlands: Netherlands National Communications Security Agency;

• Spain: Ministerio de Administraciones Públicas and Centro Criptológico Na-
cional;

• United Kingdom: Communications-Electronics Security Group;

• United States: The National Security Agency and the National Institute of Stan-
dards and Technology.

Source Standards

The CC originated from the unification of the following three standards:

• ITSEC - Developed in the early 1990s by France, Germany, the Netherlands, the
UK, and others.

• CTCPEC - The Canadian standard first published in May of 1993.

78 CHAPTER 6. STANDARDS AND BEST PRACTICES

• TCSEC - The United States Department of Defense DoD 5200.28 Std developed
in the late 1970s and early 1980s.

Below is a list of key artifacts and concepts of the standard:

Target Of Evaluation (TOE)

This is the product in the form of software, firmware and/or hardware (accompanied
by guidance) that is to be evaluated. Such evaluation is to validate the target’s security
features.

Protection Profile (PP)

This is an artifact that identifies security requirements desired for a particular product
type (for example, smart cards used to provide digital signatures, or network firewalls).
Section two of the CC provides a set of requirements for specific types of products,
from which users may choose to form their Protection Profile (to use as templates
if such product type is defined.) PP’s can include both the functional and assurance
requirements. On the other hand, customers may choose to acquire only those products
certified against the PP.

Security Target (ST)

This artifact defines the security properties and capabilities of the target of evaluation.
For instance a network firewall will not have the same functional requirements as a
smart cards. The ST is commonly made public in so the potential customers analyze
the security features that have been certified by the evaluation.

Security Assurance Requirements

The Security Assurance requirements consists of descriptions of the metrics used and
the evaluation made during development and evaluation of the system in order to assure
compliance. A standardised language is used to assist in creating an exact description
and avoid ambiguity. The Common Criteria provides a catalogue of these requirements,
and they may be different from one evaluation to the next.

Evaluation Assurance Levels

The Evaluation assurance level represents the numerical rating assigned to the target
to describe the assurance requirements fulfilled. Each EAL represents a “level of strict-
ness” verified by the assurance requirements for a product. Common Criteria defined
seven levels, EAL1 being the most basic (and easiest to achieve and evaluate) and EAL7
being the most strict, but not necessarily more secure. This only means the TOE has
been more extensively validated.

The seven evaluation levels are:

6.2. COMMON CRITERIA (ISO 15408) 79

• EAL1: Functionally Tested. Applies when you require confidence in a product’s
correct operation, but do not view threats to security as serious. An evaluation
at this level should provide evidence that the target of evaluation functions in a
manner consistent with its documentation and that it provides useful protection
against identified threats.

• EAL2: Structurally Tested. Applies when developers or users require low to
moderate independently-assured security but the complete development record is
not readily available. This situation may arise when there is limited developer
access or when there is an effort to secure legacy systems.

• EAL3: Methodically Tested and Checked. Applies when developers or users
require a moderate level of independently-assured security and require a thorough
investigation of the target of evaluation and its development, without substantial
reengineering.

• EAL4: Methodically Designed, Tested, and Reviewed. Applies when developers
or users require moderate to high independently-assured security in conventional
commodity products and are prepared to incur additional security-specific engi-
neering costs.

• EAL5: Semi-Formally Designed and Tested. Applies when developers or users
require high, independently-assured security in a planned development and re-
quire a rigorous development approach that does not incur unreasonable costs
from specialist security engineering techniques.

• EAL6: Semi-Formally Verified Design and Tested. Applies when developing se-
curity targets of evaluation for application in high-risk situations where the value
of the protected assets justifies the additional costs.

• EAL7: Formally Verified Design and Tested. Applies to the development of
security targets of evaluation for application in extremely high-risk situations, as
well as when the high value of the assets justifies the higher costs.

The main goal of the CC was to reduce the evaluation of computer products
for defence or intelligence to be done only against one set of standards. Figure 6.2
depicts the specification framework for the TOE or product/system. Common Criteria
evaluations are performed on computer security products and systems, for instance, the
Sun Java System Identity Manager, Microsoft Internet Security and Acceleration Server
2004, 3Com Embedded Firewall V1.5.1,Cisco Firewall Services Module (FWSM), and
many more [23].

80 CHAPTER 6. STANDARDS AND BEST PRACTICES

Figure 6.2: PP/ST specification Framework [117].

6.3. THE STANDARD OF GOOD PRACTICE 81

6.3 The Standard of Good Practice

The Standard of Good Practice for Information Security was developed by the Infor-
mation Security Forum, with the purpose of producing an international standard. It is
mainly based on ISF knowledge and international and national standards (such as ISO
17799). It contains practices that not only involve the development of secure systems,
but go further in other important areas where security needs to be contemplated. The
standard was made publicly available for the following effects:

• To promote good practice in information security in all organizations worldwide.

• To help organizations which are not Members of the ISF to improve their level of
security and to reduce their information risk to an acceptable level.

• To assist in the development of standards that are practical, focused on the right
areas, and effective in reducing information risk.

The Standard of Good Practice covers several areas of security. They are resumed
in table 6.1

The information of each aspect of security covered by the standard is divided into
areas, and these are the divided into a set of sections. The aspects are briefly described
below. The complete structure of the standard is described in the appendix.

Security Management

This aspect deals with keeping risks under control through management commitment,
allocation of resources, and promotion of good practices. The areas of involved are:

• SM1 High-level direction

• SM2 Security organization

• SM3 Security requirements

• SM4 Secure environment

• SM5 Malicious attack

• SM6 Special topics

• SM7 Management review

82 CHAPTER 6. STANDARDS AND BEST PRACTICES

Aspect of
Security

Issues Probed Scope and Coverage

Security
Management

The commitment

by top management

to promoting good

information security

practices and alloca-

tion of appropriate

resources.

Security management within:

• a group of companies (or equivalent)

• part of a group (eg a business unit)

• an individual organization (eg a company or a government de-
partment).

Critical
Business
Applications
(to the success of

the enterprise)

Security requirements

of the application

and the arrangements

made for identifying

risks and keeping them

within acceptable

levels.

Critical business applications of any:

• type (including transaction processing, process control, funds
transfer, customer service and desktop applications)

• size (eg applications of thousands of users or just a few).

Computer
Installations

Identification of

requirements for

computer services

and requirements of

how the computers

are set up and run in

order to meet those

requirements.

Computer installations:

• of all sizes (including the largest mainframe, server-based systems
and groups of PCs)

• running in specialised environments (eg a purpose-built data cen-
tre) or in ordinary working environments (eg offices, factories and
warehouses)

• driven by any kind of OS (eg IBM MVS, Windows 2000 or UNIX).

Networks How requirements for

network services are

identified and how the

networks are set up and

run in order to meet

those requirements.

Any type of communications network including:

• WANs or LANs

• large scale (eg enterprise-wide) or scriptsize scale (eg an individual
department)

• based on Internet technology (eg intranets or extranets)

• voice, data or integrated.

Systems
Development

How business require-

ments (including in-

formation security re-

quirements) are identi-

fied and how systems

are designed and built

to meet those require-

ments.

The status of developments of all types, including:

• projects of all sizes

• conducted by any type of developer (eg specialist unit/ depart-
ments, outsourced or business users)

• based on tailor-made software or application packages.

Table 6.1: Summary of The Standard of Good Practice

6.3. THE STANDARD OF GOOD PRACTICE 83

Critical Business Applications

In this security aspect, the main concern is to give priority to those applications critical
for the operation of business. The level of criticality makes possible the identification
of business risks and the level of protection required to keep the given risks within
acceptable limits. This aspect is made up of the following areas:

• CB1 Security requirements

• CB2 Application management

• CB3 User environment

• CB4 System management

• CB5 Local security management

• CB6 Special topics

Computer Installations

With this security aspect, the Standard provides support to computer installations.
The areas of this security aspect are more focused in the post-development phase. The
areas in which Computer Installations is divided are the following:

• CI1 Installation management

• CI2 Live environment

• CI3 System operation

• CI4 Access control

• CI5 Local security management

• CI6 Service continuity

Networks

The Networks aspect covers the security of the channel that provides the access to the
information and the systems. It demands robust network design, well-defined network
services, and the practices are to be applied equally to local and wide area networks,
and to data and voice communications.

• NW1 Network management

• NW2 Traffic management

• NW3 Network operations

• NW4 Local security management

• NW5 Voice networks

84 CHAPTER 6. STANDARDS AND BEST PRACTICES

Systems Development

This security aspect of the standard is closely related to the concepts described in the
last chapter. It deals with building security into systems during their development
process with the use of defined disciplines to be observed throughout the stages of the
cycle. The main areas are the following:

• SD1 Development management

• SD2 Local security management

• SD3 Business requirements

• SD4 Design and build

• SD5 Testing

• SD6 Implementation

6.4. MISUSE AND ABUSE CASES 85

6.4 Misuse and Abuse cases

Misuse case is a technique to elicit security requirements. This artifact serves as com-
plement to the Use cases, which are more focused in functional aspects of the system.
The Misuse cases model the possibilities of someone breaking the system. A misuse
case is a type of use case which describes what the system owner does not want to
occur [156] and how software should react to such illegitimate use [86].

A simple example of a Misuse diagram is shown in 6.3.

Figure 6.3: Use/misuse-case diagram of car security requirements [4].

The diagram shows the use cases and main actor on the left, and the misuse cases
and attacker on the right (although not always will have the malicious actor). The
figure also presents the countermeasure to the threat. This is of great use to evaluate
priorities from requirements and constraints. These models might be broken down into
more detailed documents in order to have a better understanding of the system and
evaluate the treats.

Use cases may also serve to describe exception-handling mechanisms that respond
to failures and prevent chaos. The response can lead to the resumption of normal
operations or to a safe shutdown, as when a train stops after it passes a danger signal.
The scenario description can also be useful in defining test cases. Figure 6.4 illustrates
an example for web portal security. Misuse cases are a strong system design artifact
that should be integrated during the software lifecycle.

86 CHAPTER 6. STANDARDS AND BEST PRACTICES

Figure 6.4: Use and Misuse cases for Web portal security

6.5. REDUCING ATTACK SURFACE 87

6.5 Reducing Attack Surface

The attack surface of a system is the set of all areas where an attacker can enter a system
and possibly mitigate a security service. Therefore, the less “doors and windows” in
the system, the smaller the possibility of an attacker to get in. Big Attack Surface =
Big Security Work.

The areas of an attack surface are defined through the following three dimensions
[91]:

• Targets and enablers. An attack target is a specific process or data resource
on System. On the other hand, enabler is any accessed process or data resource
that is used as part of the means of the attack (and not the main target of it).

• Channels and protocols. Communication channels refers to the means the
adversary uses to access to the targets on System.

• Access rights. These rights are associated with each process and data resource
of a state machine.

The attack surface is made up of code, interfaces, services, protocols, and practices
available to all users, with a strong focus on what is accessible to unauthenticated users.
So reducing the surface implies reducing the amount of code executing by default,
reducing the volume of code that is accessible to untrusted users by default and limiting
the damage if the code is exploited.

88 CHAPTER 6. STANDARDS AND BEST PRACTICES

20 RASQ attack Vectors Formal
Open sockets channels
Open RPC endpoints channels
Open named pipes channels
Services process targets
Services running by default process targets, constrained by

access rights
Services running as SYSTEM process targets, constrained by

access rights
Active Web handlers process targets
Active ISAPI Filters process targets
Dynamic Web pages process targets
Executable vdirs data targets
Enabled accounts data targets
Enabled accounts in admin group data targets, constrained by ac-

cess rights
Null sessions to pipes and shares channels
Guest account enabled data targets, constrained by ac-

cess rights
Weak ACLs in FS data targets, constrained by ac-

cess rights
Weak ACLs in Registry data targets, constrained by ac-

cess rights
Weak ACLs on shares data targets, constrained by ac-

cess rights
VBScript enabled process enabler
Jscript enabled process enabler
ActiveX enabled process enabler

Table 6.2: Mapping Attack Vectors into dimensions [91]

6.6. SHADES OF ANALYSIS 89

Waiting to reduce your attack surface late in product development is often very
difficult because changing functionality late guarantees regression errors. Other features
probably depend on the functionality to work in a specific way, and you just changed
it.

The debugger song (to the tune of 99 bottles of beer in the wall):

99 little bugs on the code, 99 little bugs. You fix one bug, compile it again,
100 little bugs in the code.

As each week in the development cycle passes by, you should measure the attack
surface of your product. Start with a baseline, and then each week count all the items
identified in the previous section using various scanning tools. In some cases, you may
need to write your own tools if you have entry points specific to your application. If the
attack surface count goes up, determine why it went up, and see if you can drive it back
down. When engineers know you are measuring the attack surface, they will try not to
stand out by increasing the attack surface in the first place. Define your minimal attack
surface early in development, and measure it during development. After all of this, if
you decide that you must ship an application with a large attack surface, obviously,
that’s bad. Not only does it mean your customers may be attacked by default, but it
means you have a lot of code to review.

6.6 Shades of Analysis

Testers should bit limit themselves to only test functionality. There are other important
tests that can be done to validate the security of systems. Some of these approaches
require source code availability and others don’t. This section describes White box and
black box testing and analysis methods both attempt to understand the software, but
they use different approaches depending on whether the analyst has access to source
code.

6.6.1 White Box Analysis

White box analysis (also called clear box, and static analysis) consists in analyzing
source code. Such analysis may be done by manually reviewing code. However, this is
not convenient for most projects because of the large quantities of code being produced
[32]. This strategy is normally very effective in finding programming errors early. The
main disadvantage of this approach is the need of source code availability, which is
not at all common when acquiring commercial software of even free or tailor made
software. Sometimes it is possible to obtain source code by decompiling binary code.
White box analysis is commonly automated with tools that look for specific patterns.
Another disadvantage of white box testing is that it is common to have a high rate of
false alarms due to the lack of understanding the tools have of the code. Finally, static
analysis tools are usually aimed at a specific programming language, such as C++ or
Java, so the choice of tool to adopt depends first on the support for the language, and
then on the detection rates and minimization of false positives.

90 CHAPTER 6. STANDARDS AND BEST PRACTICES

6.6.2 Black Box Analysis

Black Box Analysis (or fault injection) consists on supplying improperly formatted
input to a target software to cause failure in order to analyze and determine if there
are errors [85]. The key to this method is to find input unexpected by developers that
would make the system behave in unexpected ways. Not all failures may have security
consequences, but others may allow attackers to have access to the system. In observing
the failure of software is important to determine if it fails insecurely (for example if
attackers may gain access, or if error messages display too much information.) This
testing modality does not need the source or binary code.

Black box testing is characterized for being the choice of strategy of many attack-
ers. Even though it is not as effective as white box testing, black box testing is much
easier to accomplish since it commonly requires less tester skills than white box [85].
It is often impossible to test a real program’s input space, but it is important to test
as much as possible because black box tests assimilate more closely a real attack on
software.

6.6.3 Gray Box Analysis.

As it can be guessed, gray box analysis consists of combining the previous 2 by com-
bining several tools. The common goal of testing methods is to reveal possible risks
and the use of gray box techniques combines both methods in an effective way. Figure
6.5 graphically depicts the testing domains.

Invariant Checking

Formal verification

Model Cheking

Code style/Methodology

Analysis

Software error

detection:

File sys race

conditions

Memory Management

Return value

handling

Simulated hardware faults

Production/on-line use

Automated �Black Box testing�

Recovery method

triggering/verification

Figure 6.5: The overlapping verification domains of static analysis and software fault
injection (black box) [24].

6.7. PENETRATION TESTING 91

6.7 Penetration Testing

Along with the different shades of testing described in the previous section, penetration
testing is of the most important and effective testing strategies (according to [7] it is the
most commonly applied mechanism used to gauge software security, but most commonly
misapplied). The importance of this technique resides in the fact that it is done from
the point of view of the attacker (which is why black box analysis is also considered
part of penetration testing).

As Kolodgy described Penetration testing [107] as a “localized, time-constrained,
and authorized attempt to breach the security of a system using attacker techniques.”
It is important to point out that this effort is done without knowledge that an attacker
will probably not have, like source code, passwords or others.

During a penetration test, organizations actually try to replicate in a controlled
manner the kinds of access an intruder or worm could achieve. With a penetration
test, network managers can identify what resources are exposed and determine if their
current security investments are detecting and preventing attacks.

Main reasons to perform penetration testing [107, 132]:

• To find vulnerabilities and fix them before an attacker does.

• To verify Secure Configurations (in firewalls, IDS, etc..).

• To discover Gaps In Compliance.

• To test New Technology.

• Tells companies whether critical business information is exposed.

• Helps companies allocate IT security resources more efficiently and effectively.

• To view their network through the eyes of an attacker to prevent attack

6.8 Other Practices and Recommendations

This section presents a group of effective techniques to enhance security. These are com-
monly accepted practices that several standards and organization include. Build secu-
rity in present several of these as principles or guidelines (at https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles.html).

6.8.1 Keep it Simple

As it has already been mentioned, complexity leads to insecurity. The design, imple-
mentation, or security mechanisms should be easy to understand and nothing complex.
Problems become harder to find in complex systems, especially with enormous amounts
of code.

92 CHAPTER 6. STANDARDS AND BEST PRACTICES

6.8.2 Acknowledge human imperfection

You should keep in mind that people will introduce Vulnerabilities into Your System.

6.8.3 Validated all Input

Using unvalidated input as part of a command to a subsystem can bring problems (for
example SQL Injection.)

6.8.4 Initialize Memory

Failing to initialize storage can result in unexpected system behavior. It is better not
to assume null values but to make sure memory is null or with adequate starting values.

6.8.5 Design Safe Default Configurations

Correct configuration procedures and recommendations should be designed to aid a
secure deployment.

6.8.6 Ensure that the Bounds of No Memory Region Are Vi-

olated

As it has already been mentioned, the violation of memory bounds can introduce vul-
nerabilities. Conscience of this is a first step, but mechanisms to monitor the bounds
should be employed.

6.8.7 Use Correct Authentication

Incorrect use of authorization techniques may introduce vulnerabilities. A software
system that requires access checks to an object each time a subject requests access
decreases the chances of mistakenly giving elevated permissions to that subject. Re-
member that caching permissions can speed up systems, but you are storing critical
information in vulnerable places. Good password practices should also be enforced. For
example, it is not wise to use words from the dictionary and to avoid easily guessable
passwords. List of the most commonly used (and cracked) passwords are easy to find
and we should make sure these are avoided. Clifford Stoll gave a great recommendation
when he said:

“Treat your password like your toothbrush. Don’t let anybody else use it,
and get a new one every six months.”

6.8. OTHER PRACTICES AND RECOMMENDATIONS 93

6.8.8 Remember it is hard to keep secrets

Relying on an obscure design or implementation does not guarantee that a system is
secured. You should always assume that an attacker can obtain enough information
about your system to launch an attack. Tools such as decompilers and disassemblers
allow attackers to obtain sensitive information that may be stored in binary files.

6.8.9 Least Privilege

In [51] it is advised to assign only the minimum necessary rights to a subject that
requests access to a resource and this should be restricted to the shortest duration
necessary. It is important that all processes, users, and programs be given only the
access to system resources that they need, and no more. “If a process does not need to
run as root, then it shouldn’t.” Keep the information on a need-to-know basis.

6.8.10 Securing the Weakest Link

A system is only as strong as its weakest link. Attackers concentrate on finding weak
spots in a software system and exploiting them, than to try to break a strong compo-
nent. For example, some cryptographic algorithms can take many years to break, so
attackers are not likely to attack encrypted information communicated in a network.
They probably would use some social engineering or other alternative ways to get what
they want.

6.8.11 Fail Securely

When a system fails, it should do so securely. An important example is the rollback
transaction operation in databases. The confidentiality and integrity of a system de-
pend on a secure way of failing. It is important not to reveal sensitive information about
the system upon failing. As mentioned in the SQL injection discussion, attackers could
use the information provided in error messages to elaborate attacks.

6.8.12 Separation of Privilege

A system should ensure that multiple conditions are met before granting permissions
to an object. Checking access on only one condition may not be adequate for strong
security. If an attacker is able to obtain one privilege but not a second, he or she may
not be able to launch a successful attack. If a software system largely consists of one
component, the idea of having multiple checks to access different components cannot
be implemented. Compartmentalizing software into separate components that require
multiple checks for access can inhibit an attack or potentially prevent an attacker from
taking over an entire system.

94 CHAPTER 6. STANDARDS AND BEST PRACTICES

6.8.13 Keep System logs

Logs are the surveillance mechanisms to keep a system secure. Changes in logs is often
the first sign that a system has been compromised. There are some programs that help
automate the tasks of checking logs and other key files. Without this automation, the
tasks turns very difficult since one ends up with too much data and no information.

6.8.14 Coding Practices

A list of important coding practices is presented in [139]. Here are some of them:

• Code with reuse and sustainability in mind.

• Use a consistent coding style throughout the system.

• Make security a criterion when selecting programming languages to be used.

• Avoid common, well known logic errors: use input validation, compiler checks to
verify correct language usage and perform code review to ensure conformance to
specification.

• Use correct encapsulation.

• Ensure asynchronous consistency (to avoid problems like timing and sequence er-
rors, race conditions, deadlocks, order dependencies, and synchronization errors).

• Use multitasking and multithreading safely.

• Implement exception handling.

• Use information hiding.

6.8.15 Firewalls

Firewalls are today one of the most implemented security measures by companies and
individuals. Just because we mention that they do not give complete security does
not mean one should stop using them. These devices are effective for what they were
designed to do, screen network traffic allowing or blocking it based on a set of rules
[106]. There are a wide variety of firewalls; hardware and software, packet-filtering,
stateful-inspection and proxy-based are some examples and now a days most operating
systems come with one included. While this device is very effective, it does not work
by itself. The golden rule is to have a “Block everything, allow only what you need”,
instead of “Allow everything, block only what harms.”

6.8. OTHER PRACTICES AND RECOMMENDATIONS 95

6.8.16 Intrusion Detection Systems

The goal of these systems is to identify activities with intention of compromising the
security of resources[114]. The IDS is a critical element of system security. IDS perform
real-time monitoring, logging and auditing by analyzing different types of traffic, for
example, port scans.

6.8.17 Antivirus and Malware detectors

We must remember that wrongly designed and implemented software presents a dan-
gerous threat. However, there also exists well designed and implemented software for
bad purposes, such as viruses, worms and trojan horses. For the purpose of mitigating
these malicious software the following solutions were developed:

Antivirus software is the most commonly known threat countermeasure. It’s main
goal is to prohibit a virus to get into the system, but this is hard to do. The “next best
approach” [168] is to detect the infection, identify the specific virus, and remove it.

Malware detection is done mainly through the following three methods [169]:

• Signature Detection (of software).

• Change Detection (of files).

• Anomaly Detection (in behavior of software.)

6.8.18 Detecting and preventing Buffer Overflows

As we have already mentioned, buffer overflows are one of the most important threats.
Misha Zitser [201] presented table 6.3, to describe a group of strategies to detect or
prevent buffer overflows.

96 CHAPTER 6. STANDARDS AND BEST PRACTICES

Approach PROS CONS
Dynamic Test-

ing

Program Values Known at a run-

time. If an error occurs at run-

time, tracking it is easy. Source

code is not always required. Lan-

guage independent.

Coming up with test cases to exer-

cise all execution paths is very difficult.

Not only that, one must come up with

test cases that trigger a buffer overflow.

Program execution during testing slows

down a great deal, and memory usage

goes up. Being able to run the program

is not always convenient. (testing de-

vice driver code requires the device)

Compiler-

based dynamic

Prevention

tools (Ca-

naries)

Can stop specific types of buffer

overflows from causing damage

during run-time.

Buffer overflows are transformed into

a DoS by terminating the program.

Source code needs to be recompiled

with special compiler. Compiler

patches usually slow down program ex-

ecution significantly.

Language ap-

proach

Stop buffer overflows by using

safe libraries or string modules.

Many of these approaches transform

buffer overflows into denial of service.

Interfacing with old libraries is difficult.

Not ideal for securing legacy code.

Static-

Dynamic

Hybrids

Safer dialects such as Cyclone

minimize the chance of buffer

overflows. Porting from C to

CCured or Cyclone is more real-

istic than porting to Java. Cy-

clone and CCured can stop buffer

overflow attacks at runtime.

Porting from C to Cyclone is not triv-

ial and requires one to modify 10 % of

the code. Cyclone and CCured turn a

buffer overflow into a denial of service.

Operating

Systems

Approach

Can prevent many buffer over-

flow attacks (esp., stacksmash-

ing)

Linux kernel patch does not prevent

heap-based overflows. Making the

stack non-executable still leaves room

for certain stack-based buffer overflows,

i.e. in signal handlers. Porting a legacy

program to a new operating system

migh not be trivial.

Static Source

Code Analysis

All execution paths can be ana-

lyzed without running the pro-

gram. Discover the root of the

problem, so that it can be elimi-

nated.

Source code is always required. Impre-

cision due to analysis heuristics exists.

Sometimes there are many false posi-

tives. 100% detection rate is theoret-

ically impossible. Sometimes require

users to annotate code.

Table 6.3: Pros and Cons of different approaches to detecting/preventing buffer over-
flows

Chapter 7

Tools for Software Security

Hundreds of tools have been developed by organizations and individuals to aid in the
mission of securing systems. These tools cover a wide variety of threats, are made for
different platforms, and there are many commercial options as well as free alternatives.
There are some tools that serve as preventive measures, and others that are reactive
approaches and even some that can serve as both. In [98], insecure.org presents a
complete list of the top network security tools, nevertheless, these type of utilities
are not the only ones that enhance security. It is impossible to mention them all, so
this chapter presents several of the most relevant and important Linux OS products
[106, 98]. It is complicated to evaluate the tools in the different categories for several
reasons. Most tools don’t fit into only one.

The correct use of tools can help us identify vulnerable parts of our system and
to automatically detect and mitigate threats [32]. On the other hand, we must keep in
mind that correct configuration, maintenance, and use of these tools is needed in order
to use them to their full potential. Furthermore, we must be smart when we acquire
the utilities and evaluate certain characteristics [195] :

• We must objectively analyze the claims made by the tool supplier.

• Be aware of the extent to which a tool reports false positives.

• Consider aspects of usability of the tool.

We should always remember to use the right tool for the right task, and consider
the fact that many tools complement each other.

7.1 NIST Tool Taxonomy

NIST proposes the following tool taxonomy [57] :

Life Cycle Process or Activity

97

98 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

This refers to the phase of the Life Cycle process in which the tool is used. It can
take one of the following values:

• Requirements.

• Design.

• Implementation.

• Maintenance.

• Testing.

• Operation.

Automation Level

This classification aims to describe how much human interaction is needed.

1. Manual procedure e.g., code review

2. Analysis aid e.g., call graph extractor

3. Semi-automated automated results, manual interpretation, e.g., static analyzer
for potential flaws or Intrusion Detectors.

4. Automated e.g., firewall

Approach

This attribute defines what the goal of the tool is.

• Preclude.

• Proactively make flaws impossible, e.g., correct by creation.

• Detect.

• Find flaws, e.g., checkers, testers.

• Mitigate.

• Reduce or eliminate flaw impact, e.g., security kernel, MLS.

• React. Take actions upon an event.

• Appraise. Report information, e.g., complexity metrics or call graphs.

7.1. NIST TOOL TAXONOMY 99

Viewpoint

Can we see or “poke at” the internals? External tools do not have access to
application software code or configuration and audit data. Internal tools do.

• External e.g., acceptance of COTS packages or Web site penetration tester

• Internal (white box) Static e.g. code scanners, Dynamic e.g execution monitoring

Assessment vs. Development

“DO-178B differentiates between verification tools that cannot introduce errors
but may fail to detect them and development tools whose output is part of airborne
software and thus can introduce errors.”

Sponsor

Who fixes it? Can I get it?

• Academic

• Commercial

• Open

• Proprietary

• Used within a company, either as a service or on their own products.

Price

• 0

• $ (nomial, e.g., up to about $17)

• $$ (up to a few hundred dollars)

• $$$ (significant, thousands of dollars)

Platforms

What does it run on? Linux, Windows, Solaris, ...

Languages/Formats

What is the target language or format? C++, Java, bytecode, UML, ...

Assessment/Quality

100 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

How well does it work? Number of bugs. Number of false alarms. Tool pedigree.
Maturity of tool. Performance on benchmarks.

Run time

How long does it run or do per unit (LOC, module, requirement)? Is it quick
enough to run after every edit? every night? every month? For manual methods, how
often are, say, reviews? Is it scalable?

Computational complexity might be separate or a way of quantifying run time.

• Simple

• Decidable

– P (polynomial time)

– NP (Non-deterministic polynomial time)

• Undecidable

The following sections briefly describe several of the most important software
tools relevant in enhancing security. New tools are developed, and many academic and
commercial solutions emerge constantly, which makes it impossible to include them
all. It would be ideal to categorize the tools according to the taxonomy just described,
but unfortunately most of the information required to define each of the criteria is not
available.

7.2 Static Analysis

Code review for security is one of the most common software security practices [32].
These are tools mainly focused in finding bugs early in the development, but may be
used later on as well (way later on in the case of legacy code for example). As already
mentioned previously, this category of tools is language specific.

7.2.1 Lexical Tools

Within the static analysis tools there are some that only employ lexical analysis tech-
niques, which tend to produce high false alarm rates because of the limited under-
standing of the program flow. Despite this, these tools are typically fast and easy to
integrate with the development process. Some examples of these are:

• Flawfinder is an open source Security scanner for C/C++ code written by David
A. Wheeler [194] for use in Linux systems. It works with a database of functions
with potential risks.

7.2. STATIC ANALYSIS 101

• ITS4 is a freely available program that checks for potentially dangerous function
calls in C code [184, 38]. This software was developed by Cigital and it works
across Windows and Unix.

• RATS stands for Rough Auditing Tool for Security. It is an open source tool that
checks for potentially dangerous function calls in C code and was developed by
Secure Software [162]. It scans C, C++, Perl, PHP and Python source code and
works in Windows and Unix systems.

7.2.2 Semantic Tools

A more thorough analysis and a better understanding of programs is needed, and this
is achieved with the semantic tools. These type of tools are commonly a lot slower
than the static analysis ones, but are more effective in finding bugs. The tools listed
below use this approach:

C Verifier: This is Commercial tool developed by Polyspace that finds vulnera-
bilities in C/C++ code. It supports Windows and Unix operating systems [201].

Archer: Archer, or Array Checker, [35] is a research proprietary software focused
in detecting out-of-bounds errors and race conditions in C/C++ by following program
paths.

UNO: This is an open source tool from AT&T that works under Linux and is
designed to analyze C code to detect the following three common types of software
defects [16]:

• Use of uninitialized variable,

• Nil-pointer references.

• Out-of-bounds array indexing.

IDA-Pro: This is a commercial, white box analysis tool from DataRescue [60],
and it does not require source code. It works for Windows PE, Mac OS X Mach-O,
and Linux ELF executables.

BOON: This is a tool that aims to detect buffer overflow vulnerabilities in C
source and was developed by David Wagner [187]. It works on Linux OS.

CQual: CQual [71] detects format string vulnerabilities in C programs
(there is also jqual for java), but a programmer needs to identify a few variables as ei-
ther tainted or untainted. It is academic and is freely available for Windows and Linux.

102 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

Eau Claire: Eau Claire [33] is a freely available tool for Linux OS made by Brian
Chess, and it checks C programs to find problems like buffer overflows, file access race
conditions, and format string threats.

MOPS: MOPS was written by Hao Chen [31] to look for violations of temporal
safety properties in C code on Linux systems. The programmers model their safety
properties, and then employ MOPS to look for privilege management errors, incorrect
construction of chroot jails, file access race conditions, and dangerous temporary file
schemes.

Splint: Splint is a free and open source application which analyses C programs
for security vulnerabilities. It works on Unix, Linux, OS/2 and FreeBSD systems [112].

PREfast: Microsoft propriety light way c scanner[43]. It uses syntactic and
semantic analysis to find vulnerabilities and works on Windows.

Blast: The Lazy Abstraction Software Verification is a Linux OS, c code analyzer
tool developed at UC Berkeley [19] and it is freely available.

C++ Test: Commercial tool by Parasoft [137] which analyzes c++ code. There
are Windows and Linux versions.

CodeAssure: Commercial static analysis tool for windows and Linux developed
by Secure Software that analyzes java and c/c++ [192].

CodeSonar: This is a commercial source code analysis tool by Gramma Tech for
detecting vulnerabilities and other defects in C and C++ and Ada. Linux, Windows
and Solaris platforms are supported. [145].

Coverity Prevent: This tool is also commercial, and it was developed by
Coverity. It is a C/C++ and java bug checker and security scanner. Available for
Apple Mac OS X 10.4, Cygwin, FreeBSD, HPUX, Linux, Mac OS X, NetBSD (2.0),
Solaris Sparc, Solaris X86, Windows [46].

DevPartner Security Checker: -This checker was developed by Compuware,
and it is a commercial solution to scan .Net framework code in Windows OS[83].

McCabe IQ: Commercial, static analysis tool which works for C, C++, C#,
Java, Fortran, VB, COBOL, and other languages in Unix and windows platforms [62].

Prexis Engine: Commercial vulnerability scanner for C/C++ and Java/JSP
developed by Ounce Labs for both Windows and Linux platforms.[110].

Pixy: Freely available, static analysis tool for Windows and Linux, aimed at the

7.3. DYNAMIC ANALYSIS 103

detection of Cross-site scripting in php code[102].

PMD: This is an open source tool to scan Java source code [167] in Windows
and Unix systems.

Pscan: A Linux, open source tool by Alan Dekok that checks for dangerous
function calls, detecting format string vulnerabilities in C code [40].

7.3 Dynamic Analysis

As it has already been mentioned, dynamic analysis tools have the advantage of not
requiring source code, which may sometimes be the case (COTS). Below are listed
some tools of this group.

Chaperon: Chaperon [196] is a commercial tool from Parasoft which works
with binary executables in order to detect certain types of defects. This software is
available for Windows and Linux.

Valgrind: Valgrind is an open-source suite of tools originally developed by
Julian Seward [152] that simulates code execution on a virtual x86 processor, this way
detecting bugs.

Hailstorm: This is a Windows OS commercial solution developed by Cenzic
[118] to find vulnerabilities in web applications.

Holodeck: Holodeck was developed in Florida tech and is a commercially
available test tool for Windows Applications and Services using fault simulation.

NTOSpider, ntoinsight, and ntoweb:. The commercial NTOSpider, and free-
ware ntoinsight and ntoweb, are tools developed by the company NT Objectives aimed
to scan for known vulnerabilities in web applications in MS Windows systems [134, 133].

Appscan: A commercial tool developed by Sanctum (acquired by Watchfire in
2004) to audit web applications[188] in Windows and Linux systems.

WebInspect SPI Dynamics (now part of HP) developed this commercially
available web application security assessment tool [59] for Windows Operating system.

Achilles Windows web application security assessment tool developed by Robert
Cardona. Achilles is freely available, and it acts as a HTTP/HTTPS proxy.[27].

Nikto Open Source web server scanner for Unix and Windows systems created

104 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

by Chris Sullo [39].

Odysseus A freely available Windows tool that acts as a Proxy server for testing
the security of web applications [20].

WebScarab Tool for performing all types of security testing on web applications
and web services developed by OWASP [138]. It is free to download and there are
versions for Linux, Windows and MAC OS X.

SPIKE Spike is a freeware tool designed to analyze protocols through the
creation of random tests in a simulated network environment in Linux OS [95].

Paros Free tool written in Java to evaluate the security of web applications [177].
It is available for Windows and Linux.

7.4 Library and Compiler Approaches

There are several solutions to make verification at compilation time. They are listed
below:

ProPolice: ProPolice is a tool for stack smashing protection developed by IBM,
and it works by inserting a “canary” value in different parts of the memory used, along
with runtime checks to make sure the values are unaltered [66]. This program runs on
Linux.

StackGuard: It is a patch for gcc compiler which also uses Canary values to
check for memory corruption. It was developed by Crispin Cowan for use in Linux
systems [198].

Tiny C: Tiny C compiler (TinyCC) [17] is a C compiler developed by Fabrice
Bellard, which works by inserting code to check buffer accesses at compile time. It is
available for download for Linux and Windows Platforms.

Stack Shield: This is a compiler patch for GCC compiler made by Vendicator
for Linux systems [183]. It protects against overwriting of the return address and
overwriting function pointers

Libsafe and Libverify: These tools employ both static and dynamic intrusion
prevention to enhance security in Windows and Linux systems. They patch C functions
that are known to constitute potential buffer overflow vulnerabilities. A range check
is made before the actual function call which ensures that the return address and the
base pointer cannot be overwritten [12].

Prefix: Prefix is a compile-time tool to detect defects in C and C++ source code

7.5. PACKET MANIPULATION AND PASSWORD CRACKING TOOLS 105

through execution simulation [26] (Microsoft proprietary).

CCured: CCured [127] relies on developer annotations c code in order to
perform static analysis and classify pointers as SAFE, SEQ, or WILD. After this,
checks are inserted into the executable and the program is analyzed at runtime.
The work was supported in part by the National Science Foundation and was
developed primarily by George Necula, Scott McPeak, Westley Weimer, Matthew Har-
ren and Jeremy Condit. It is designed for Linux but can work in Windows with cygwin.

7.5 Packet Manipulation and Password Cracking

Tools

For Network applications it is very important to have tools to check how a hacker would
do, remotely. Other important tools to have are Password cracking tools, since they
enhance the security by auditing the strength of those already used.

Wireshark (a.k.a. Ethereal: This is an open source network protocol analyzer
for Unix and Windows designed to examine data from a live network or from a capture
file on disk. It was developed by Gerald Combs, and it supports hundreds of protocols
and media types.

John the Ripper: This is a popular and effective open source password cracker
developed by Solar Designer, available for Unix, Windows, DOS, BeOS, Mac OS and
OpenVMS [136]. Its purpose is to detect weak passwords.

Cain & Abel: This is a password recovery tool developed by Massimiliano
Montoro for the Windows platform. This freeware can recover passwords by sniffing the
network, cracking encrypted passwords using Dictionary, Brute-Force and Cryptanal-
ysis attacks, recording VoIP conversations, decoding scrambled passwords, revealing
password boxes, uncovering cached passwords and analyzing routing protocols. [124]

L0phtCrack: This is a password auditing and recovery application (now called
LC5) [147], developed by Mudge from L0pht Heavy Industries. It is used to test
password strength and for recovery of lost Microsoft Windows passwords, by using dic-
tionary, brute-force, and hybrid attacks. The application was produced by @stake after
the L0pht merged with @stake in 2000, and @stake was acquired by Symmantec in 2004.

pwdump: Free software by Jeremy Allison which dumps the password database
of an NT machine that is held in the NT registry into a valid smbpasswd format file
[50]. New versions have been developed by other individuals.

ShowPass: Is freeware developed by Octavian Merches to show the cached
Windows passwords, without having to crack them [165].

106 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

THC Hydra: This is a network authentication cracker that uses brute force to
crack a remote authentication service. It can perform rapid dictionary attacks against
more then 30 protocols, including telnet, ftp, http, https, smb, several databases, and
much more[82]. It is freely available for Unix and Windows (with cygwin) platforms.

Aircrack: Aircrack is a WEP/WPA cracking tool written by Christophe Devine
freely available for Linux and Windows systems. It can recover keys once enough
encrypted packets have been gathered. It can attack WPA 1 or 2 networks using
advanced cryptographic methods or by brute force.[123]

Airsnort: AirSnort is a wireless LAN (WLAN) tool that recovers encryption keys.
It was developed by the Shmoo Group and operates by passively monitoring trans-
missions, computing the encryption key when enough packets have been gathered [131].

RainbowCrack: RainbowCrack tool is an open source hash cracker for windows
developed by Philippe Oechslin. It works with a time-memory trade-off strategy that
consists in doing all cracking time computation in advance and store the result in files
so called “rainbow table.” It does take a long time to precompute the tables, but
once the one time precomputation is finished, it is said that it can break any windows
password up to 14 characters in a few minutes[154].

Nmap: Nmap is a free and open source port scanning tool written Fyodor. Nmap
can also determine the operating system of the target computer. Many operating
systems are supported, including Linux, Microsoft Windows, FreeBSD, OpenBSD,
Solaris, IRIX, Mac OS X, HP-UX, NetBSD, Sun OS, Amiga, and more [97].

Metasploit: Metasploit is a tool, whose objective is to get to a command
prompt on the target computer, and if this happens it is quite possible that the target
computer will be under total control in a short time. It provides attack libraries and
attack payloads that can be put together in a modular manner [125]. The first version
was written by H D Moore, using the Perl scripting language and it is freely available
for Linux, BSD, Mac OS X, Windows Cygwin.

SecurityForest Exploitation Framework: This is another open-source
software to perform penetration testing [113] developed for Oindows and Unix
operating systems. This framework leverages a collection of exploit code known as the
ExploitTree, and the Exploitation Framework is a front-end GUI that allows testers to
launch attacks through a Web browser.

CORE IMPACT: CORE IMPACT is a commercial penetration testing tool for
Windows OS [148] aimed at identifying vulnerabilities in a program, exploit them,
and clearly document every step. The software has the ability to install an agent on
a compromised computer and then launch additional attacks from that computer. It

7.6. PERSONAL FIREWALLS (SOFTWARE IMPLEMENTATIONS) 107

was developed by Core Security Technologies.

LANguard: A commercial network security scanner for Windows by GFI [163].
LANguard scans IP networks to detect programs that the machines are running and
identify the host OS. It also tries to collect Windows machine’s service pack level,
missing security patches, wireless access points, USB devices, open shares, open ports,
services active on the computer, key registry entries, weak passwords, users and
groups, and more. It also includes a patch manager which detects and installs missing
patches.

Retina: Commercial vulnerability assessment scanner by eEye for auditing
Windows and Linux systems [61]. Retina’s scans all the hosts on a network and report
on any vulnerabilities found.

7.6 Personal Firewalls (software implementations)

We have mentioned that firewalls should never be the only security measure, but it
should definitely be there. A few options are listed below:

Zone Alarm: Freely available (for individual and not-for-profit charitable entity
use) and very popular firewall developed by Check Point for Windows operating
systems [202]. Advanced features are available in a commercial version.

Netfilter: Netfilter is a packet filter implemented in the standard Linux kernel
[81, 128]. Iptables tool is used for configuration and it supports packet filtering
(stateless or stateful), all kinds of network address and port translation (NAT/NAPT),
and multiple API layers for 3rd party extensions. It includes many different modules
for handling unruly protocols such as FTP.

Openbsd PF: The OpenBSD Packet Filter [18] is the firewall tool in OpenBSD.
It handles network address translation, normalizes TCP/IP traffic, provides bandwidth
control, and packet prioritization.

IP Filter: IP Filter is a software package that can be used to provide network
address translation (NAT) or firewall services [141]. It can either be used as a loadable
kernel module or incorporated into the UNIX kernel and is distributed with FreeBSD,
NetBSD, and Solaris.

Other Firewalls:

• CA Personal Firewall [191].

• Comodo [158].

108 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

• Core force [148].

• Lavasoft Personal Firewall [129].

• Kaspersky Internet Security [56].

• Kerio Personal Firewall [178].

• Look ’n’ Stop Firewall [161].

• KPTools Skeet for Windows, Linux, Macintosh [108].

• Outpost Firewall and Outpost Firewall Pro [74].

• PCTools [180].

• Routix NetCom for Windows [159].

• Sunbelt Personal Firewall [22].

• Tiny Personal Firewall [166].

• TuxGuardian [28].

• Windows Firewall [122].

7.7 Antivirus and Malware detection Tools

Antivirus is the main countermeasure against malicious software, those programs and
scripts meant to do harm.

Norton AntiVirus: Commercial antivirus software by Symmantec available for
Windows OS and MAC OS X[173].
Panda: Commercial antivirus Software by Panda Software International for Windows
systems [160].
McAfee VirusScan: This is a commercial antivirus and IDS by McAfee for Windows
OS[115].
Nod32: Commercial antivirus program developed by Eset for Windows Systems [65].
Ashampoo AntiVirus: Commercial antivirus software by Ashlampoo for windows
Systems [8].

7.8 Intrusion Detection Tools:

The following tools are meant to detect
Cybercop: Commercial tool by Network Associates which works on Windows

NT, Netware, Solaris, AIX, HP-UX. [106, 49]

7.9. CRYPTOGRAPHY 109

Internet security systems Internet scanner Commercial: Commercial
software by Network Associates which runs in Windows NT, Solaris, AIX, HP-UX,
AS/400 [144].

Nessus: Nessus [151] is a popular and FREE tool for configuration auditing, asset
profiling, and sensitive data discovery, but vulnerability updates are delayed 7 days (the
commercial version is direct and immediate). It supports the following Operating sys-
tems: Windows NT, XP, Netware, Solaris, AIX, HP-UX, AS/400, Mac OS X, FreeBSD.

Snort: This is network intrusion detection and prevention system [157] special-
ized in traffic analysis and packet logging on IP networks. Through protocol analysis,
content searching, and various pre-processors, Snort detects thousands of worms,
vulnerability exploit attempts, port scans, and other suspicious behavior. Snort uses
a flexible rule-based language to describe traffic that it should collect or pass, and a
modular detection engine. It is a commercial tool but there is also an open source
version.

OSSEC HIDS: An Open Source Host-based Intrusion Detection System [10]
which performs log analysis, integrity checking, rootkit detection, time-based alerting
and active response.

Fragroute/Fragrouter: A network intrusion detection evasion toolkit [146]
that takes advantage of the lack of reconstruction of packets for a coherent view of
the network data (via IP fragmentation and TCP stream reassembly). Fragrouter
helps an attacker launch IP-based attacks while avoiding detection. It is part of the
NIDSbench suite of tools by Dug Song.

BASE: The Basic Analysis and Security Engine [13] is a PHP-based analysis
engine to search and process a database of security events generated by various IDSs,
firewalls, and network monitoring tools. Its features include a query-builder and search
interface for finding alerts matching different patterns, a packet viewer/decoder, and
charts and statistics based on time, sensor, signature, protocol, IP address, and others.

Sguil: Sguil is aimed at network security analysis [172]. It provides real-time
events from Snort/barnyard and facilitates Network Security Monitoring and event
driven analysis of IDS alerts.

7.9 Cryptography

It is important to include the following programs and algorithms that enhance the
security services in different ways.

110 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

7.9.1 Symmetric Cryptography

Symmetric cryptography consists in using the same key to encrypt and decrypt the
information. Below are described the 2 main algorithms.

DES/3DES: DES stands for Data Encryption Standard (DES) and it is an
encryption algorithm adopted as an official Federal Information Processing Standard
(FIPS) for the US in 1976. DES is now considered to be insecure for many appli-
cations. 3DES, or Triple DES, is the modality of the algorithm where DES is run
3 times to elevate the complexity and eliminate possibilities for statistical analysis [168].

AES: The Advanced Encryption Standard is a block cipher developed by Vincent
Rijmen and Joan Daemen, with 128-bit block size and key size of 128, 192, or 256.
Published by NIST, who issued a call for proposals for an algorithm to replace DES
[169].

7.9.2 Asymmetric or Public Key Cryptography

Asymmetric encryption basically consists in using 2 different keys, one for encryption
and one for decryption.

Diffie Hellman: The first public-key algorithm with the main goal of exchanging
the keys for symmetric cryptography algorithms. [54].

RSA: Public Key Algorithm developed by Ron Rivest, Adi Shamir, and Len
Adleman [149].

7.9.3 Hash and MAC

Hash algorithms are widely used to authenticate information and provide integrity of
such information. Below are listed some of the most important algorithms:

MAC: This an algorithm that outputs is a short piece of information used to au-
thenticate a message. A MAC algorithm accepts as input a secret key and an arbitrary-
length message to be authenticated. MAC protects both a message’s integrity as well
as its authenticity [168].

MD5: Message-Digest algorithm was designed by Ronald Rivest as an integrity
validation tool based on checksums [168].

SHA: Cryptographic hash algorithms designed by the National Security Agency
(NSA) [168].

HMAC: Hash Message Authentication Code is a type of MAC calculated with a
secret key [168]. The algorithm was first published by by Mihir Bellare, Ran Canetti,

7.10. PROTOCOLS 111

and Hugo Krawczyk.

RC4: RC4 is the most widely-used software stream cipher and is used in popular
protocols such as Secure Sockets Layer (SSL) and WEP. It was designed by Ron Rivest
[84].

7.10 Protocols

There are several protocols to enhance security in different types of networks and dif-
ferent types of applications. Below are listed some of the most important of these:

WEP: Wired Equivalency Protocol is a scheme to secure IEEE 802.11 wireless
networks. Several serious weaknesses were identified in WEP, so it was superseded by
WPA [168].

WPA: Wi-Fi Protected Access is a protocol to secure wireless WPA and it
implements the majority of the IEEE 802.11i standard [168]. It was created by the
Wi-Fi Alliance.

IPSec: This is a suite of protocols for securing Internet Protocol (IP) com-
munications by authenticating and/or encrypting each IP packet in a data stream [168].

Secure Shell: A network protocol that allows data to be exchanged over a
secure channel between two computers [150].

7.11 Application

There are several other ways to enhance security in services and applications. Some of
them are listed below:

SSL: Security protocol that provides privacy over the Internet [84] and it was
originally developed by Netscape..

Kerberos: It is an authentication service based on session tickets, developed as
part of Project Athena at MIT [168].

X.509 Authentication: Standard for public key infrastructure that provides
public key certificates and a certification path validation algorithm [42].

112 CHAPTER 7. TOOLS FOR SOFTWARE SECURITY

7.12 email

Finally, to enhance the privacy and integrity of the now necessity email application, we
have the following options:

PGP: PGP stands for Pretty Good Privacy and was developed by Philip
Zimmermann. It is a widely used scheme that provides cryptographic privacy and
authentication using public key cryptography [45].

S/MIME: The Secure/Multipurpose Internet Mail Extension is a security
enhancement for public-key encryption and signing of email encapsulated in MIME
[94].

Chapter 8

Security Metrics

William Thompson, Lord Kelvin, said:

“When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind: it may be the beginning of knowledge, but you have
scarcely, in your thoughts, advanced to the state of science.”

Wat do we need to understand about software? What do we need to measure?
How do we determine how much security is enough? It is obviously a wrong approach
to skip the security considerations, but it is also definitely inconvenient to overdue it.
The goal of developers is to produce software that does what it is supposed to do and
nothing else, and to have such solution be economically and operationally feasible (to
have optimal Return on Investment). It is important to reduce costs, increase revenue
and productivity, and at the same time minimize risk. Being software development
such a complex multistage process, there are many things to understand, and therefore
measure, about it in order to meet the goal. Security mechanisms, need to be adequate
to the characteristics of the system and they need to be justified. After all, no one is
happy of spending time or money unless there is evidence that it is absolutely necessary
to do so; The quantification of security trade-offs must be done.

Metrics aid in the evaluation and understanding of systems in many ways. In
essence, quantifiers in software development projects should provide us with information
relating the “before, during, and after” of a system:

• Before: What will we need? What can happen? Define the requirements and
resources in terms of a level of quality and predict the outcome.

• During: How are we doing? How should we be doing? Define the current state
and make adjustments.

• After: How did we do after all? What can we do better next time? How did it
compare with other similar products? What metrics were reliable and which ones
were not?

113

114 CHAPTER 8. SECURITY METRICS

Metrics should be easy to gather, and clearly expressed. Number and percentages
are the best way to define scales that meet our needs for evaluation, understanding and
quantification. Mark Graff and Kenneth Van Wyk point out [75] that without reliable
security metrics “consumers will lack the means to reward manufacturers who produce
good code and punish those whose products reek with vulnerabilities.”

8.1 At Inception Phase

The resources one can employ to enhance security are money, time, people, tools, and
knowledge. When a software project is identified, how do we estimate how much of
each resource are we to invest? The answer to this depends on the answer to another
important question, what is at stake?

If we are thinking about security, it is because we want to protect something. It
may be money, services, information or knowledge, reputation, health, time, market
share and anything of value that may be put in danger with information systems.
Prioritizing the assets according to their value to the organization is then very useful,
but not always that easy to do, since there could be political and procedural difficulties
in large enterprises [119]. If you wish to prioritize your testing based on the top areas
of risk, how do you identify these top areas of risk?

8.1.1 Application Insecurity Index

Andrew Jaquith proposes the Application Insecurity Index [101] (AII) as a scoring
method to identify critical business functions. AII is designed to be quickly obtained
as a lightweight interview process or questionnaire.

AII covers the following areas:

• Business importance scores consider the application’s importance to the orga-
nization.

• Technology outlier scores put a number on the degree to which the application
follows prescribed organizational guidelines for certain security topics.

• Assessed risk scores highlight the application’s relative riskiness based on
whether the application might be considered subject to regulatory inspection
or review. It also scores whether the application carries any risks associated with
third-party code development or data storage, and whether the application has
received a technical security assessment.

Table 8.1 displays the AII scoring questionnaire:

8.1.2 Legislation and Compliance

Should software developers be sued for negligence in malfunction of software? Excellent
doctors often get in trouble for making mistakes, but when something goes wrong with

8.1. AT INCEPTION PHASE 115

Business Importance Score Technology Outlier Score Assessment Risk Score

Business function (1-4 points)

• 4 Customer account process-
ing

• 3 Transactional/core busi-
ness or unknown processing

• 2 Personnel, public-facing

• 1 Departmental/back office

Access scope (1-4 points)

• 4 External public-facing

• 3 External partner-facing

• 2 Internal enterprise

• 1 Internal departmental

Data sensitivity (1-4 points)

• 4 Customer data/subject to
regulator fines

• 3 Company proprietary &
confidential

• 2 Company non-public

• 1 Public

Availability impact (1-4 points)

• 4 > $10m loss, serious dam-
age to reputation

• 3 > $2m loss, minor damage
to reputation

• 2 < $2m loss, minimal dam-
age to reputation

• 1 Limited or no losses

Authentication (0-2 pts)

• 2 Does not meet requirements or
unknown

• 1 Partially meets baseline

• 0 Fully meets baseline require-
ment

Data classification (0-2 pts)

Input/output
validation (0-2 pts)

Role-based access
control (0-2 pts)

Security requirements
documentation (0-2 pts)

Sensitive data
handling (0-2 pts)

User identity
management (0-2 pts)

Network/firewall
architecture (0-2 pts)

Technical assessment

• 8 Not assessed

• 6 High-risk vulnerabili-
ties found

• 4 Medium-risk vulnera-
bilities found

• 2 Low-risk vulnerabilities
found

Regulatory exposure

• 4 Unknown/no regula-
tory review

• 3 Subject to Sarbanes-
Oxley, EU Privacy Direc-
tive, California On line
Privacy Protection Act
(SB 68)

• 2 Subject to other regu-
lations

• 1 Not subject to regula-
tion

Third-party risks

• 4 Code and data offshore

• 3 Code offshore

• 2 Outsourced develop-
ment (US)

• 1 In-house development

Total (4-16 points): Total (0-16 points): Total (4-16 points):

Table 8.1: Application Insecurity Index

software, who should we point the finger at? Compliance to certain regulations is a great
approach to assuring specific security requirements for different types of systems. The
difficult part is to decide what requirements to demand, and to enforce such compliance.
There currently are no global agreements to any type of technological laws, so criminals
the other side of the world often get away with their felonies.

How do we prove software is good? If we can guarantee compliance to official

116 CHAPTER 8. SECURITY METRICS

regulation standards, security in software would be better valued and appreciated.
Mandatory emphasis on security in the development at an early stage could be effec-
tive, but what specifically should we mandate? The authors of [79] describe approaches
like considering all software insecure unless it is somehow proven that is secure, make
software makers liable for damages, and define mandatory performance standards. In
September 2007, after years of attorneys trying to discover the code behind the breath-
alyzer responsible for determining a suspect’s guilt or innocence, judges finally ordered
the release of it [174]. After analysis, the algorithm revealed a lack of compliance to
any standard, lack of error detection and no quality check for calibration.

Below is a list of some of the most important and current regulation approaches.

Federal Information Security Management Act (FISMA).

This legislation was implemented in the United States and it establishes that federal
agencies must maintain an incident response capability, periodic assessments of risk.

California SB 1386

This is a state law in California, US, which addresses how a company responds to a
breach, and describes the requirement of cooperation with law enforcement and prompt
notification to affected customers.

Sarbanes-Oxley Act (SOx)

Section 404 of the act requires publicly traded companies to assess the effectiveness of
their internal controls for financial reporting in annual reports they submit at the end
of each fiscal year. Chief information officers are responsible for the security, accuracy
and the reliability of the systems that manage and report the financial data. The
act also requires publicly traded companies to engage independent auditors who must
attest to, and report on, the validity of their assessments.

It requires companies to implement extensive corporate governance policies, pro-
cedures, and tools to prevent, respond and report fraudulent activity within the com-
pany. Effective self-policing requires companies to have the ability to acquire, search
and preserve electronic data relating to fraudulent activity within the organization.

Health Insurance Portability and Accountability Act (HIPAA)

Health Insurance Portability and Accountability Act (HIPAA) requires the adoption
of national standards for electronic health care transactions and national identifiers
for providers, health insurance plans, and employers. And, it requires health care
providers, insurance providers and employers to safeguard the security and privacy of
health data.

8.1. AT INCEPTION PHASE 117

Gramm-Leach-Bliley Act

Gramm-Leach-Bliley Act of 1999(GLBA), also know as the Financial Services Modern-
ization Act of 1999, protects the privacy and security of private financial information
that financial institutions collect, hold, and process, as well as detect, prevent and
respond to information security incidents.

UK Data Protection Act 1998

This legislation regulates processing of information relating to individuals, including
the obtaining, holding, use or disclosure of such information.

The Computer Misuse Act 1990

This is an Act of the UK Parliament making computer crime an offence. The Act has
become a model upon which several other countries have drafted their own information
security laws.

The Family Educational Rights and Privacy Act (FERPA)

This is a USA Federal law that protects the privacy of student education records. The
law applies to all schools that receive funds under an applicable program of the U.S.
Department of Education. Generally, schools must have written permission from the
parent or eligible student in order to release any information from a student’s education
record.

Payment Card Industry Data Security Standard (PCI DSS)

This standard establishes requirements for enhancing payment account data security. It
was developed by the founding payment brands of the PCI Security Standards Council,
including American Express, Discover Financial Services, JCB, MasterCard Worldwide
and Visa International, to help facilitate the broad adoption of consistent data security
measures on a global basis. The PCI DSS is a multifaceted security standard that
includes requirements for security management, policies, procedures, network architec-
ture, software design and other critical protective measures.

Personal Information Protection and Electronics Document Act (PIPEDA)

This act supports and promotes electronic commerce by protecting personal information
that is collected, used or disclosed in certain circumstances, by providing for the use of
electronic means to communicate or record information or transactions.

8.1.3 How much Security?

The resources employed to enhance security should be those estimated to cover the
threats identified. Having well defined the security demands, helps to estimate the time,

118 CHAPTER 8. SECURITY METRICS

knowledge, and people required to cover these needs. The risks have been identified,
and scoring systems like the AII serve to prioritize in the attention of critical areas.
The different mechanisms and tools are choice of development teams.

A key step of security metrics is the definition of a value scale with a corresponding
threshold to indicate what constitutes “good enough” security.

In figure 8.1, a block diagram presented in [101] is shown, depicting the logical
model of security controls. The diagram clarifies the role of metrics in the security
scope.

Figure 8.1: Logical Model of IT Security Controls [101]

8.2 At the Development

8.2.1 During Development

The important questions to answer during the development are:
How are we doing? If not very good, can we adjust to needs? Adjustment to the

security plan may arise from the revisions during the development. Change can always
happen, but it gets more expensive as time passes.

Having insider knowledge about the system provides an advantage to auditing.
Table 8.2 presents some metrics to gain knowledge about the system and its current
state.

8.2. AT THE DEVELOPMENT 119

Metric Purpose

Assessment frequency for developed ap-
plications

• % with design reviews

• % with application assessments

• % with code reviews of sensitive
functions

• % with go-live penetration tests

Measures how often security quality assurance “gates”
are applied to the software development lifecycle for
custom-developed applications.

Thousand lines of code (KLOC) Shows the aggregate size of a developed application.

Defects per KLOC Characterizes the incidence rate of security defects in
developed code.

Vulnerability density (vulnerabilities per
unit of code)

Characterizes the incidence rate of security defects in
developed code.

Known vulnerability density (weighted
sum of all known vulnerabilities per unit
of code)

Characterizes the incidence rate of security defects in
developed code, taking into account the seriousness of
flaws.

Tool soundness Estimates the degree of error intrinsic to code analysis
tools.

Cyclomatic Complexity Shows the relative complexity of developed code. In-
dicates potential maintainability issues and security
trouble spots. Cyclomatic complexity for a code mod-
ule is defined as the minimum number of paths that in
linear combination generate all possible paths through
the module.

Table 8.2: Code Security Metrics [101]

Attack Surface

The extent of the Attack surface is also a considered a good security metric. As
mentioned in a previous chapter, it aids to quantify the number and kinds of vectors
available to an attacker by modeling the potential targets and channels facilitating the
attack [91].

8.2.2 After the Development

Is it good enough to release? If not, can we fix it? Measuring the extent of bugs and
vulnerabilities through final tests provides understanding of the final product state. As
the authors describe it in [6], it is common to find the attitude:

“Ship it Tuesday and get it right by version 3”

It is important to evaluate that the system has met the security requirements, and
there are different ways to find out. The metrics in table 8.3 and those that we saw in
table 8.2 are some of the common approaches.

120 CHAPTER 8. SECURITY METRICS

Metric Purpose

Defect Counting Shows externally identified defects due to implemen-
tation or design flaws.

Vulnerabilities per application

• By business unit

• By criticality

• By proximity

Measures the number of vulnerabilities that a poten-
tial attacker without prior knowledge might find.

Table 8.3: Black-Box Defect Metrics [101]

8.3 At Operation -Maintenance & Support

Performance, response, time, capacity, availability and other quality factors could be af-
fected but arising vulnerabilities and exploits. This is why once deployed, an evaluation
and support system should be in place to always have the desired quality.

8.3.1 Availability

Security, availability, and reliability are closely related since security incidents com-
monly lead to downtime. The classic metrics used to measure these factors are uptime
and downtime, where downtime can be thought of as being either planned (mainte-
nance, backup, etc..) or unplanned.

8.3.2 Recovery

Table 8.5 lists important Recovery Metrics.

8.3.3 Patching

Many vulnerabilities could be reported in very short periods of time, but how many
are really dangerous? Criticality, likelihood, and impact of the threats should be mea-
sured in order to prioritize the support effort. Patching is an essential part of system
maintenance and keeping software up-to-date, which translates in security assurance
[77]. However, the point is to minimize Maintenance costs, and like Mary Ann Pavison
expressed, “an ounce of creative destruction is worth a pound of patching.”

Business-Adjusted Risk

BAR is a technique presented in [101] invented by Andrew Jaquith and the people in
@stake. It is a scoring formula that assigns an overall risk number to vulnerabilities,
the higher the score, the higher the risk. BAR classifies security defects by vulnerability

8.3. AT OPERATION -MAINTENANCE & SUPPORT 121

Metric Purpose

Host uptime (percent, hours)

• For critical hosts

• For all hosts

Availability measure for critical hosts and other sys-
tems.

Unplanned downtime (%) Shows the amount of change control process variance.
Larger numbers indicate a less “controlled” environ-
ment.

Unplanned downtime due to security in-
cidents (Percent, hours)

Shows the amount of change control process variance
that can be pinned on security issues.

Mean/median unplanned outage (time)

• Due to security incidents

Characterizes the seriousness of a “typical” unplanned
outage.

System revenue generation (cost per
hour)

• For critical hosts

Shows business value associated with systems. Can
be co-graphed with downtime incidents to show the
explicit relationship between incidents and revenue.

Unplanned downtime impact ($) Quantifies foregone revenue due to the impact of inci-
dents.

Mean time between failures (time) Characterizes how long systems are “typically” up be-
tween failures.

Table 8.4: Uptime Metrics [101]

Metric Purpose

Support response time (avg) Average time from outage to response.

Mean time to recovery (time) Characterizes how long it takes to recover from inci-
dents.

Elapsed time since last disaster recovery
walk-through (days).

• For nominated business-critical
systems.

Shows relative readiness of disaster recovery programs.

Table 8.5: System Recovery Metrics [101]

type, degree of risk, and potential business impact. When assessing an application, for
each security defect we calculated a BAR score as follows:

BAR (1 to 25) = business impact (1 to 5) x risk of exploit (1 to 5, depending
on business context)

Risk of exploit indicates how easily an attacker can exploit a given defect. A score
of 5 denotes high-risk, well-known defects an attacker can exploit with off-the-shelf

122 CHAPTER 8. SECURITY METRICS

tools or canned attack scripts. A score of 3 indicates that exploiting the defect requires
intermediate skills and knowledge, such as the ability to write simple scripts. Finally,
only a professional-caliber malicious attacker can exploit certain classes of defects; these
receive a score of 1.

Business impact indicates the damage that would result if the defect were ex-
ploited. An impact score of 5 represents a flaw that could cause significant financial
impact, negative media exposure, and damage to reputation. A score of 3 indicates that
a successful exploit could cause limited or quantifiable financial impact, and possible
negative media exposure. Defects that would have no significant impact (monetary or
otherwise) receive a score of 1.

V-Density

V-Density (vulnerability density) is the key metric of Ounce labs solutions. It is a nu-
merical expression that enables a way to evaluate the vulnerability of your applications.
V-Density is calculated by relating the number and criticality of vulnerabilities to the
size of application or project being analyzed.

8.4 Looking Back

When maintaining the system requires too much effort and becomes too expensive,
the time comes to cut the umbilical cord, and finish supporting it, and maybe make a
new version. At the end of the software lifecycle there are several important aspects to
evaluate, and lessons to be learned. How did the system compare with similar products?
What can we do better next time to optimize ROI? Did we evaluate correctly? Were
the metrics reliable? Were the thresholds reliable?.

Developing software is a maturity process guided by experience, although differ-
ent projects behave differently. It is important to point out that existing and proposed
software security metrics focus almost exclusively on counting and comparing vulnera-
bilities in implemented software, measuring the attack surface, or measuring complexity.
No one has yet determined whether the comparison of numbers of vulnerabilities in ear-
lier vs. later versions of software programs or the average number of vulnerabilities per
x lines of code are, in fact, meaningful metrics in terms of indicating whether efforts
to produce more secure software have succeeded, or for predicting the likelihood that
software that appears to be secure in the development environment will, in fact, prove
to be secure.

8.4.1 Scorecards

Metrics scorecards [104] require enterprises to adopt new processes for measurement.
The goal of a security scorecard is to communicate two things: security effectiveness,
and the ability to help the business understand and respond to new threats and oppor-
tunities in the future. They provide insight into whether a company is making money,
using assets appropriately, or returning value to shareholders.

8.4. LOOKING BACK 123

Four primary perspectives:

Financial

Traditional measures such as profit and loss, return on invested capital, earnings before
interest and taxes (EBIT), earnings per share (EPS), and others.

Sample Measures:

• Order or transaction rate

• Number of orders or transactions (total, authorized, unauthorized)

• Number of revenue-generating sessions (total, authorized, unauthorized)

• System uptime

• Downtime cost associated with denial-of-service attacks

• Number of revenue- and cost-accounting events (total, authorized, unauthorized)

• Data flow (customers, vendors, partners)

• Cost of security for revenue-generating systems

• Cost of security for revenue-accounting systems

• Cost of security incidents

• Budget allocations for security (new programs, maintenance)

• Risk indices for revenue-generating systems

• Risk indices for revenue-accounting systems

• Risk indices for cost-accounting systems

Customer

Measures that indicate how effectively the organization serves its customer base, such
as customer retention, market share, customer complaints, order fill rate, average deal
size, and profit per customer. Sample Measures:

• Percentage of customer wins and losses

• Number of company deals won in which security played a contributing role

• Number (and percent) of customer losses due to security reasons

• Number (and percent) of integrity controls for data exchanged with cus-
tomers/partners

124 CHAPTER 8. SECURITY METRICS

• Number (and percent) of confidentiality controls for data exchanged with cus-
tomers/partners

• Quantified losses from accidentally disclosed customer/partner data

• Customer/partner ratings of company security effectiveness

• Percentage of security incidents involving third-party personnel

• Number of data privacy escalations per thousand/million customers, and esti-
mated time/cost to fix

Internal Process

Measures that indicate how effective the organization’s internal processes are at satis-
fying customers and achieving financial objectives. Typical measures include order-to-
cash ratios, product development cycle times, labor utilization, days of sales outstand-
ing, and technology support metrics.

Sample Measures:

• Patch latency (mean)

• Password strength (time to break)

• Percentage of security incidents that did not cause damage beyond policy thresh-
olds

• Estimated damage ($) from all security incidents

• Percentage of security compliance reviews with no violations

• Percentage of critical assets/functions with documented risk assessment

• Percentage of critical assets/functions with cost of compromise estimated

• Percentage of critical assets/functions with a documented risk mitigation plan

• Percentage of systems implementing approved configurations

• Percentage of systems in compliance with approved configurations

• Percentage of systems monitored for deviations against approved configurations

• Percentage of systems with the latest patches installed

• Percentage of downtime of critical services due to security incidents

• Percentage of systems affected by incidents exploiting known solu-
tions/patches/workarounds

8.4. LOOKING BACK 125

• Percentage of systems with critical assets assessed for vulnerabilities

• Mean time between failures (MTBF) due to security-related incidents

• Mean time to recover (MTTR) from failures due to security related incidents.

Learning and Growth

Measures that show how well the organization’s people are equipped to succeed in the
workplace, such as training investment per employee, staff turnover rates, knowledge
management metrics, and participation in professional associations.

Sample Measures:

• Ratio of business unit (shadow) security teams to security team staff

• Percentage of staff with security responsibilities

• Percentage of new employees completing security awareness training

• Percentage of users who have undergone background checks

• Fulfillment rate of target external security training workshops and classroom sem-
inars

• Percentage of security staff with professional security certifications

• Number of security skills mastered, average per employee and per security team
member

126 CHAPTER 8. SECURITY METRICS

Chapter 9

Proposed Questionnaire for
Security Enhancement in the
Software Life-Cycle

This chapter is the culmination of this work. After identifying and analyzing the
available work in the software security field, the following important questions are
proposed that describe the areas of focus for security enhancement. The closer we get
to answering the following questions in both research and industry, the closer we are
to understanding the security problem, thus be secure.

9.1 What is needed?

The answer to this question identifies the scope of the project. What are the necessities
faced? Whether entertainment, business related, or other, the scope defines not only
what is needed of a solution, but what is definitely not needed. The feasibility of a
system is evaluated in terms of the available technology, budget, and knowledge. The
problem to solve should be clear and it must be determined that a software system is
the best way to go.

9.2 Who are the stakeholders?

It is of high importance to be clear of who is benefited by the implementation of the
systems, since they are the ones who could also be negatively affected by them. When
developing the systems, the worries of the stakeholders should be contemplated, as well
as the many threats that they might not know about. Some examples of stakehold-
ers are: Owners, government, bank clients, teenagers, medical patients, economists,
employees, children, etc.

127

128 CHAPTER 9. PROPOSED QUESTIONNAIRE

9.3 What can be lost, how can the stakeholders be

affected, or what needs protection?

This question aims to find the Assets relevant to the system and to estimate the value
of these. The system might sell products, provide a service, control finance, serve as
medical instrumentation and endless more possibilities, so vulnerabilities can put at risk
things like health, money, time, reputation, market-share and confidential information.
It could be very difficult to identify the impact of security vulnerabilities. As Anderson
explains it in [5], the value and revenue of a technological product can vary a great deal
and be complicated to estimate, since it depends in user adoption, marketing, and many
other factors. How much will a new on-line store loose for an hour of unavailability?

The environment of deployment and the end users of the system can also be of
great influence to the general risk of getting attacked. It is not the same to develop a
system for banks or military organizations, as it it for non-profit organizations. Different
security requirements should be identified accordingly.

9.4 From Whom Should I Protect?

The type of system and end users gives much information of who could cause harm.
While government entities could probably be more threatened by cyber terrorists, cor-
porations are more likely to be attacked by competitors or unethical hackers, and so
on. The attackers should be identified according to the system to be developed. The
attacker profile is useful to determine their technical expertise and probability of being
successful in an attack. In chapter 3, a classification and description of the attackers
has been presented.

9.5 What do I have to be protected against, what

are my threats?

After identifying the assets to protect, it is important to know what to protect the
assets from. In chapter 1, section 1.1 several vulnerability databases are listed. It is
important to consult them to learn of new vulnerabilities and to gain knowledge of
common threats for similar systems to that being developed. It is also important to
consult this pages to learn of any bugs or insecurity holes that the platforms, tools and
technologies to be employed in the development might have, and to find the fixes and
patches for them. The vulnerabilities presented in chapter 4 make up a great percentage
of the vulnerability population, and are relatively common in many different types of
systems, thus a knowledge of these represents a minimum essential set.

9.6. HOW WILL I PROTECT? 129

9.6 How will I get protection from the threats at

the different stages of the project life?

The mitigation strategies to be used in analysis, design, implementation, testing, con-
figuration, operation should correspond to the vulnerabilities identified and to the type
of system to be developed. Chapter 5 presented the different ways to integrate security
in the development of the project, and chapter 6 described many mitigation practices
and standards for security. Chapter 7 presented a catalog of useful free and commercial
tools of security to be used in different stages of the lifecycle. Configuration instruc-
tions should be documented in order to avoid insecure defaults. The response plan for
operation should also be defined, have patching plans, support line, and a prioritization
process for emerging vulnerabilities should be in place.

9.7 How much security is needed?

As is already obvious, no security at all can never be good, and overdoing it would be
too expensive, time consuming, and unlikely to ever be 100% secure. The effort should
be focused in maximizing ROI. The security effort takes money, time, people and many
other resources, but the designation of these for security enhancement should balance
the cost of finding a vulnerability VS cost of not finding. Cullinane exposes that there
are consequences beyond the economic loss, a damage to the image of the organization.
“The reputation risk can literally put you out of business. Twenty percent to 45% of
your customers will leave you if you report a system breach”[76]. Chapter 8 presents
important metrics that help to evaluate the need for security.

9.8 Is the development secure?

We should have established earlier the security strategies to use in the analysis, design,
implementation, and testing phases; but, how do we evaluate if it is in fact secure?
Chapter 8 describes several metrics to evaluate the state of the development compared
to what was expected of the mitigation strategies adopted. Such measurements should
provide insight as to how secure the system is so far, this helps to adjust to adopt
different design, tools, or strategies to keep the expected level of security, or in case the
project is too far off track, abort it as soon as possible.

9.9 Is the Final Product Secure Enough to Release?

The system is done, but, is it as secure as we expected? Will it cost us more to respond
to vulnerabilities? Developers are responsible for the security of the assets, so a final
thorough evaluation should be implemented. Different approaches to testing systems
are presented in chapter 6, and the metrics to evaluate them were discussed in chapter
8.

130 CHAPTER 9. PROPOSED QUESTIONNAIRE

9.10 Was the configuration secure?

In systems such as COTS, it is impossible be next to the end users to ensure a secure
configuration. This is why the system should provide the adequate mechanisms to make
sure the system is deployed securely. Developers should provide manuals, support, and
alert the client of the risks of keeping secure defaults.

9.11 Are there Security Incidents in the Operation?

Can we do something about it?

Are our security response Plans working? An evaluation of the support provided should
be constantly monitored to adjust to needs, as long as it is possible. Chapter 8 describes
some metrics to evaluate the final product during operation, in order to prioritize the
assistance to clients and correction of emerging bugs in order of criticality.

9.12 How did we do after all?

Time comes to stop supporting the system and look back to the overall success or
failure of it. There are several things to take into consideration such as revenue, repu-
tation, comparison with similar products, success of competitors, stakeholder satisfac-
tion, client retention, client complaints, market-share and many more. Chapter 8 lists
several metrics that can be used to evaluate the overall success of the system.

9.13 What can we do better next time?

Experience plays an important role in software development organizations. Not all
practices are for everyone, and different systems have different threats, attackers, and
mitigation strategies. Every project, successful or not, has its learned lessons of suc-
cessful metrics and strategies, and those that failed. The goal is to be evolutionary and
set up a security maturity process.

Chapter 10

Conclusion

This dissertation has exposed the complexities and difficulties behind securing software,
which is the Genesis of the other technological securities. The most relevant and im-
portant topics of software security have been mapped to show the relationship between
each other, and their place has been identified within the whole scope of the problem.

According to [55], Science is “a body of knowledge and a set of processes for
advancing that knowledge.” The definition continues describing that “It is mankind’s
interconnected, internally consistent, growing body of knowledge about natural and
man-made objects and phenomena of the past, present, and future; a body of knowledge
that is based on repeatable experimentation with, or observation of, these natural and
man-made objects and phenomena, that is organized and extended using logic and
mathematics, and that is validated by the testing of hypotheses.”

Unlike Computer Science, and despite of more than 4 decades of studying the
problem, software security has not yet become a science. As argued by the authors in
[77], better experimental techniques, metrics of security, and predictive models should
be established, and security research should be placed on a foundation of science in
order to make real progress in the field. While Knowledge management serves to walk
towards a software security science, there is still a long way to go.

The proposed Questionnaire for Security Enhancement in the Life-Cycle in the last
chapter, identifies areas of opportunity for researchers and walked roads for developers.
The better we can answer the questions, the closer we get to Software Security Utopia;
making software behave and protect users from systems, other users, and themselves.

131

132 CHAPTER 10. CONCLUSION

Appendices

133

Appendix A

Vulnerability Taxonomies,
Classifications and Lists

This appendix presents different taxonomies and classifications proposed by different
researchers and organizations. The tables represent hierarchical classifications, being
the highest level the leftmost columns, and the lower levels the rightmost.

Nature of Flaw Improper Protection
Improper choice of initial
protection domain
Improper isolation of im-
plementation detail
Improper change
Improper naming
Improper deallocation or
deletion

Improper Validation
Improper Synchronization Improper Indivisibility

Improper Sequencing

Improper choice of operand or operation
Time of Induction During Development Requirements

/Specification
/Design
Source Code
Object Code

During Maintenance
During Operation

Exploitation Domain
Effect Domain
Minimum Number of components needed to exploit
Source of Vulnerability Identification

Table A.1: UNIX System and Network Vulnerabilities [21]

135

136APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

Buffer overruns
Format string problems
Integer overflows
SQL Injection
Command injection
Failure to handle errors
Cross-site scripting
Failure to protect network traffic
Use of magic URLs and hidden forms
Use of weak password-based systems
Improper use of SSL
Failure to store and protect data securely
Information leakage
Trusting network address resolution
Improper file accesses
Race conditions
Unauthenticated key exchange
Failure to use cryptographically strong ran-
dom numbers
Poor usability

Table A.2: 19 Deadly Sins of Software Security[89]

Operational Fault Configuration Error
Object installed with incorrect permissions
Utility installed in the wrong place
Utility installed with incorrect setup parameters

Environment Fault
Coding Fault Condition Valida-

tion Error
Failure to Handle Exceptions

Input Validation
Error

Field value Correla-
tion Error
Syntax Error
Type and Number
of Input Fields
Missing Input
Extraneous Input

Origin Validation Error
Access Rights Validation Error
Boundary Condition Error

Synchronization
Error

Improper or Inadequate Serialization Error

Race Condition Error

Table A.3: Security Faults in UNIX [9]

137

Range and Type Errors Buffer overflow
Write-what-where condition
Stack overflow
Heap overflow
Buffer underwrite
Wrap-around error
Integer overflow
Integer coerdon error
Truncation error
Sign extension error
Signed to unsigned conversion error
Unsigned to signed conversion error
Unchecked array indexing
Miscalculated null termination
Improper string length checking
Covert storage channel
Failure to account for default case in switch
Null-pointer deference
Using freed memory
Doubly freeing memory
Invoking untrusted mobile code
Cross-site scripting
Format string problem
Injection problem (data used as)
Command injection
SQL Injection
Deserlalization of untrusted data

Table A.4: CLASP Classification, attribute 1, Range and Type Errors [164]

Environmental Problems Rellance on data layout
Rellance on data layout
Relative path library search
Relying on package-level scope
Insufficient entropy in PRING
Failure of PRING
Publidzing of private data when using inner classes
Trust of system event data
Resource extraustion(file descriptor, disk space, sockets...)
Information leak through class cloning
Information leak through serialization
Overflow of static internal buffer

Table A.5: CLASP Classification, attribute 2, Environmental Problems [164]

138APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

Synchronization and Tim-
ing Errors

State synchronization error

Covert timing channel
Symbolic name not mapping to correct object
Time of check, time of use race condition
Comparing classes by name
Race condition in switch
Race condition in signal handler
Unsafe function call from a signal handler
Failure to drop privileges when reasonable
Race condition in checking for certificate revocation
Mutable objects passed by reference
Passing mutable objects to an untrusted method
Accidental leaking of sensitive information through error
messages
Accidental leaking of sensitive information through sent
data
Accidental leaking of sensitive information through data
queries
Race condition within a thread
Reflection attack in an auth protocol
Capture-replay

Table A.6: CLASP Classification, attribute 3, Synchronization and Timing Errors [164]

Protocol Errors Failure to follow chain of trust in certificate validation
Key exchange without entity authentication
Failure to validate host-specific certificate data
Failure to validate certificate expiration
Failure to check for certificate revocation
Failure to encrypt data
Failure to add integrity check value
Failure to check integrity check value
Use of hard-coded password
Use of hard-coded cryptographic key
Storing passwords in a recoverable format
Trusting self-reported IP address
Trusting self-reported DNS name
Using referrer field for authentication
Using a broken or risky cryptographic algorithm
Using password systems
Using single-factor authentication
Not allowing password aging
Allowing password aging
Reusing a nonce key pair in encryption
Using a key past its expiration date
Not using a random IV with CBC mode
Failure to protect stored data from modification
Failure to provide confidentiality for stored data

Table A.7: CLASP Classification, attribute 4, Protocol Errors [164]

139

General Logic Errors Ignored function return value
Ignored function return value
Missing parameter
Misinterpreted function return value
Uninitialized variable
Duplicate key in associative list (alist)
Deletion of data-structure sentinel
Addition of data-structure sentinel
Use of sizeof() on a pointer type
Unintentional pointer scaling
Improper pointer subtraction
Using the wrong operator
Assigning instead of comparing
Comparing instead of assigning
Incorrect black delimitation
Omitted break statement
Improper cleanup on thrown exception
Uncaught exception
Improper error handing
Improper temp file opening
Guessed or visible temporary file
Failure to deallocate data
Non-cryptographic PRING
Failure to check whether privileges were dropped success-
fully

Table A.8: CLASP Classification, attribute 5, General Logic Errors [164]

140APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

Genesis Intentional
Inadvertent

Time of Introduction During Development
During Maintenance
During Operation

Location Software
Hardware

Table A.9: Taxonomy of Computer Program Security Flaws [111]

Improper protection (initializa-
tion and enforcement)

Improper choice of initial protection domain

Improper isolation of implementation detail
Improper change
Improper naming
Improper deallocation or deletion

Improper validation
Improper synchronization Improper indivisibility

Improper sequencing
Improper choice of operand or operation

Table A.10: PLOVER Taxonomy (Preliminary List of Vulnerability Examples for Re-
searchers) [36]

Incomplete Parameter Validation
Inconsistent Parameter Validation
Implicit Sharing of Privileged/Confidential Data
Asynchronous Validation/Inadequate Serialization
Inadequate Identification/Authentication/Authorization
Violable Prohibition/Limit
Exploitable Logic Error

Table A.11: RISOS Taxonomy [1]

141

Input Validation and rep-
resentation

Buffer Overflow

Command Injection
Cross-site Scripting
Format String
HTTP Response Splitting
Illegal Pointer Value
Integer Overflow
Log Forging
Path Manipulation
Process Control
Resource Injection
Setting Manipulation
SQL Injection
String Termination Error
Struts:Duplicate Validation Forms
Struts:Erroneous validate() Method
Struts:Form Bean Does Not Extend Validation Class
Struts:Form Field Without Validator
Struts:Plug-in Framework Not In Use
Struts:Unused Validation Form
Struts:Unvalidated Action Form
Struts:Validator Turned Off
Struts:Validator Without Form Field
Unsafe JNI
Unsafe Reflection
XML Validation

Table A.12: Seven Pernicious Kingdoms, attribute 1, input validation and representa-
tion [181]

142APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

API abuse Often Misused:Privilege
Management

CWEC:Often Mis-
used:Privilege Man-
agement

Often Misused:String
Management

CWEC:Often Mis-
used:String Management

Unchecked Return Value CWEC:Unchecked Return
Value

CWEC:API Abuse
Dangerous Functions CWEC:Dangerous Func-

tions
Directory Restriction CWEC:Directory Restric-

tion
Heap Inspection CWEC:Heap Inspection
J2EE Bad Prac-
tices:getConnection()

CWEC:J2EE Bad Prac-
tices:getConnection()

J2EE Bad Prac-
tices:Sockets

CWEC:J2EE Bad Prac-
tices:Sockets

Often Mis-
used:Authentication

CWEC:Often Mis-
used:Authentication

Often Misused:Exception
Handling

CWEC:Often Mis-
used:Exception Handling

Often Misused:Path Ma-
nipulation

CWEC:Often Mis-
used:Path Manipulation

Table A.13: Seven Pernicious Kingdoms, attribute 2, API abuse [181]

143

Security features CWEC:Security Features
OWASP:Insecure Storage
Insecure Randomness CWEC :(RAND) Ran-

domness and Predictabil-
ity

Least privilege Violation CWEC:Least Privilege
Violation

Missing Access Control OWASP:Broken Access
Control
CWEC:Missing Access
Control

Password Management CWEC:Plaintext Storage
Password Manage-
ment:Empty Password in
Configuration File

CWEC:Empty Password
in Configuration File

Password
Management:Hard-Coded
Password

CWEC:Hard-Coded Pass-
word

Password Manage-
ment:Password in Config-
uration File

CWEC:Password in Con-
figuration File

Password Manage-
ment:Weak Cryptography

CWEC:Weak Cryptogra-
phy for Passwords

Privacy Violation CWEC:Privacy Violation

Table A.14: Seven Pernicious Kingdoms, attribute 3, Security features [181]

Time and State J2EE Bad Practices:System exit()
J2EE Bad Practices:Threads
Signal Handling Race Conditions
CWEC:Time and State
Deadlock
Failure to Begin a New Session upon
Authentication
File Access Race Conditions:TOCTOU
Insecure Temporary File

Table A.15: Seven Pernicious Kingdoms, attribute 4, Time and State [181]

144APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

Error Handling Empty Catch Block CWEC:UNCH-Unchecked
Error Condition

Overly-Broad Catch
Block

CWEC:Overly-Broad
Catch Block

Overly-Broad Throws
Declaration

CWEC:Overly-Broad
Throws Declaration

CWEC:Error Handling
OWASP:Improper Error Handling
Catch Null Pointer Excep-
tion

CWEC:Catch Null
Pointer Exception

Table A.16: Seven Pernicious Kingdoms, attribute 5, Error Handling [181]

Code Quality CWEC:Code Quality
OWASP:Denial of Service
Double Free CWEC:Double Free
Inconsistent Implementa-
tions

CWEC:Inconsistent
Implementations

Memory Leak CWEC:MEMLEAK-
Memory Leak

Null Dereference CWEC:Null Dereference
Obsolete CWEC:Obsolete
Undefined Behavior CWEC:Undefined Behav-

ior
Uninitialized Variable CWEC:Uninitialized

Variable
Unreleased Resource CWEC:RELEASE-

Improper resource shu-
down or release

Use After Free CWEC:Use After Free

Table A.17: Seven Pernicious Kingdoms, attribute 6, Code Quality [181]

145

Encapsulation CWEC:Encapsulation
Comparing Classes by
Name

CWEC:Comparing
Classes by Name

Data Leaking Between
Users

CWEC Data Leaking Be-
tween Users

Leftover Debug Code CWEC:Leftover Debug
Code

Mobile Code:Object Hi-
jack

CWEC:Mobile
Code:Object Hijack

Mobile Code:Use of Inner
Class

CWEC:Mobile Code:Use
of Inner Class

Mobile Code:Non-Final
Public Field

CWEC:Mobile Code:Non-
Final Public Field

Private Array-Type Field
Returned from a Public
Method

CWEC:Private Array-
Type Field Returned
from a Public Method

Public Data Assigned
to Private Array-Typed
Field

CWEC:Public Data As-
signed to Private Array-
Typed Field

System Information Leak CWEC:System Informa-
tion Leak

Trust Boundary Violation CWEC:Trust Boundary
Violation

Table A.18: Seven Pernicious Kingdoms, attribute 7,Encapsulation [181]

146APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

Environment CWEC:Environment
OWASP:Insecure Configuration Management
ASP.NET Misconfigu-
ration:Creating Debug
Binary

CWEC:ASP.NET Mis-
configuration:Creating
Debug Binary

ASP.NET Misconfigu-
ration:Missing Custom
Error Handling

CWEC:ASP.NET Mis-
configuration:Missing
Custom Error Handling

ASP.NET Misconfig-
uration:Password in
Configuration File

CWEC:ASP.NET Mis-
configuration:Password in
Configuration File

Insecure Compiler Opti-
mization

CWEC:Insecure Compiler
Optimization

J2EE Misconfigura-
tion:Insecure Transport

CWEC:J2EE Misconfigu-
ration:Insecure Transport

J2EE Misconfiguration:
Insufficient Session-ID
Length

CWEC:J2EE Miscon-
figuration: Insufficient
Session-ID Length

J2EE Misconfigura-
tion:Missing Error Han-
dling

CWEC:J2EE Misconfigu-
ration:Missing Error Han-
dling

J2EE Misconfigura-
tion:Unsafe Bean Decla-
ration

CWEC:J2EE Misconfigu-
ration:Unsafe Bean Decla-
ration

J2EE Misconfigura-
tion:Weak Access Permis-
sions

CWEC:J2EE Misconfigu-
ration:Weak Access Per-
missions

Table A.19: Seven Pernicious Kingdoms, attribute 7,Environment [181]

147

Authentication Brute Force
Insufficient Authentication
Weak Password Recovery Validation

Authorization Credential/Session Prediction
Insufficient Authorization
Insufficient Session Expiration
Session Fixation

Client-side Attacks Content Spoofing
Cross-site Scripting

Command Execution Buffer Overflow
Format String Attack
LDAP Injection
OS Commanding
SQL Injection
SSI Injection
XPath Injection

Information Disclosure Directory Indexing
Information Leakage
Path Traversal
Predictable Resource Location

Logical Attacks Abuse of Functionality
Denial of Service
Insufficient Anti-automation
Insufficient Process Validation

Table A.20: WASC Threat Classification [189]

Intentional Malicious Trapdoor
Logic/Time Bomb

Non-malicious Covert Channel Storage
Timing

Inconsistent access paths
Inadvertent Validation Error Addressing Error

Poor parameter value check
Incorrect check positioning

Identification/Authentication Inadequate
Abstraction Error Object reuse

Exposed Internal Representation
Asynchronous Flaws Concurrency(including TOCTOU)

Aliasing
Subcomponent mis-
use/failure

Resource Leak

Responsibility Misunderstanding
Functionality Error Error handling failure

Other security flaw

Table A.21: Software Flaw Taxonomy [190]

148APPENDIX A. VULNERABILITY TAXONOMIES, CLASSIFICATIONS AND LISTS

Appendix B

Buffer Overflow Taxonomy

Write/Read

This attribute poses the question “Is the buffer access an illegal write or an illegal read?”
While detecting illegal writes is probably of more interest in preventing buffer overflow
exploits, it is possible that illegal reads could allow eavesdropping of information or
could constitute one operation in a multi-step exploit. The possible values for the
Write/Read attribute and examples are shown below:

Value Description Example
0 write buf[10] = ’A’
1 read c = buf[10]

Table B.1: Write/Read Attribute Values

Upper/Lower Bound

This attribute describes which buffer bound gets violated, the upper or the lower. While
the term “buffer overflow” leads one to envision accessing beyond the upper bound of
a buffer, it is equally possible to underflow a buffer, or access below its lower bound.
Bellow, the values for the Upper/Lower Bound attribute and examples assuming a
ten-byte buffer are listed.

Value Description Example
0 upper buf[10]
1 lower buf[-1]

Table B.2: Upper/Lower bound attribute values.

149

150 APPENDIX B. BUFFER OVERFLOW TAXONOMY

Data Type

The Data Type attribute, whose possible values and examples of which are shown
below, describes the type of data stored in the buffer. Character buffers are often
manipulated with unsafe string functions in C, and some tools may focus on detecting
overflows of those buffers; buffers of all types may be overflowed, however, and should
be analyzed.

Value Description Example
0 character char buf[10];
1 integer int buf[10];
2 floating point float buf[10];
3 wide charac-

ter
wchar t buf[10];

4 pointer char * buf[10];
5 unsigned inte-

ger
unsigned int buf[10];

6 unsigned
character

unsigned char buf[10];

Table B.3: Data Type Attribute Values

Memory Location

The Memory Location attribute describes where the overflowed buffer resides. Non-
static variables defined locally to a function are on the stack, while dynamically allo-
cated buffers (e.g., those allocated by calling a malloc function) are on the heap. The
data region holds initialized global or static variables, while the BSS region contains
uninitialized global or static variables. Shared memory is typically allocated, mapped
into and out of a program’s address space, and released via operating system specific
functions (e.g., shmget, shmat, shmdt, and shmctl on Linux). While a typical buffer
overflow exploit may strive to overwrite a function return value on the stack, buffers in
other locations have been exploited and should be considered as well. The stack is used
to store local, fixed-size buffers, other local variables, function arguments, as well as the
return addresses of functions, and some other state, including environment variables.
The function calls rely on the stack. The heap stores dynammically allocated buffers
(malloc(), calloc(), or realloc()).

Scope

The Scope attribute describes the difference between where the buffer is allocated and
where is it overrun. The scope is the same if the buffer is allocated and overrun within
the same function. Inter-procedural scope describes a buffer that is allocated in one

151

Value Description Example
0 on the stack void function1() {

char buf[10];
...}

1 on the heap void function1() {
char * buf;
buf = (char *)mal-
loc(10*sizeof(char));
...}

2 in data region void function1() {
static char buf[10] = “0123456789”;
...}

3 in BSS data void function1() {
static char buf[10];
...}

4 in shared memory -

Table B.4: Memory Location Attribute Values

function and overrun in another function within the same file. Global scope indicates
that the buffer is allocated as a global variable, and is overrun in a function within the
same file. The scope is inter-file/inter-procedural if the buffer is allocated in a function
in one file, and overrun in a function in another file. Inter-file/global scope describes a
buffer that is allocated as a global in one file, and overrun in a function in another file.
Any scope other than the same may involve passing the buffer address as an argument
to another function; in this case, the Alias of Buffer Address attribute must also be set
accordingly.

Container

The Container attribute asks, “Is the buffer inside of a container?”. Buffers may stand
alone, or may be contained in arrays, structures, or unions. The buffer-containing
structures and unions may be further contained in arrays. The ability of static analysis
tools to detect overflows within containers (e.g., overrunning one array element into
the next, or one structure field into the next) and beyond container boundaries (i.e.,
beyond the memory allocated for the container as a whole) may vary according to how
the tools model these containers and their contents.

Pointer

The Pointer attribute indicates whether or not the buffer access uses a pointer deref-
erence. Note that it is possible to use a pointer dereference with or without an array
index; the Index Complexity attribute must be set accordingly. In order to know if

152 APPENDIX B. BUFFER OVERFLOW TAXONOMY

Value Description Example
0 same void function1() {

char buf[10];
buf[10] = ‘A’; }

1 inter-
procedural

void function1() {
char buf[10];
function2(buf); }
void function2(char * arg1)
{
arg1[10] = ‘A’; }

2 global static char buf[10];
void function1() {
buf[10] = ‘A’; }

3 inter-
file/inter-
procedural

File 1:
void function1() {
char buf[10];
function2(buf); }
File 2:
void function2(char * arg1)
{
arg1[10] = ‘A’; }

4 inter-
file/global

File1:
static char buf[10];
File 2:
extern char buf[];
void function1() {
buf[10] = ‘A’; }

Table B.5: Scope Attribute Values

the memory location referred to by a dereferenced pointer is within buffer bounds, a
code analysis tool must keep track of what pointers point to; this points-to analysis is
a significant challenge (Landi, 1992).

Index Complexity

This attribute describes the complexity of the array index, if any, of the buffer access
causing the overflow. Note that this attribute applies only to the user program, and is
not used to describe how buffer accesses are performed inside C library functions (for
which the source may not be readily available). Handling the variety of expressions
that may be used for array indices is yet another challenge faced by code analysis tools.

153

Value Description Example
0 no char buf[10];
1 array char buf[5][10];
2 struct typedef struct {

char buf[10];
} my struct;

3 union typedef union {
char buf[10];
int intval;
} my union;

4 array of
structs

my struct array buf[5];

5 array of
unions

my union array buf[5];

Table B.6: Container Attribute Values

Value Description Example
0 no buf[10]
1 yes *pBuf or (*pBuf)[10]

Table B.7: Pointer Attribute Values

Value Description Example
0 constant buf[10]
1 variable buf[i]
2 linear expres-

sion
buf[5*i + 2]

3 non-linear ex-
pression

buf[i%3] or buf[i*i]

4 function
return value

buf[strlen(buf)]

5 array con-
tents

buf[array[i]]

6 not applica-
ble

*pbuf = ‘A’

Table B.8: Index Complexity Attribute Values

Address Complexity

The Address Complexity attribute poses the question, “How complex is the address
or pointer computation, if any, of the buffer being overflowed?” Again, this attribute

154 APPENDIX B. BUFFER OVERFLOW TAXONOMY

is used to describe the user program only, and is not applied to C library function
internals. Just as with array indices, code analysis tools must be able to handle a
wide variety of expressions with varying degrees of complexity in order to accurately
determine if the address accessed is beyond allocated buffer boundaries.

Value Description Example
0 constant buf[x], (buf+2)[x], (0x80097E34)[x],

*(pBuf+2), strcpy(buf+2, src)
1 variable (buf+i)[x], (bufAddrVar)[x],

*(pBuf+i), strcpy(buf+i, src)
2 linear expres-

sion
(buf+(5*i + 2))[x], *(pBuf+(5*i + 2)),
strcpy(buf+(5*i + 2), src)

3 non-linear ex-
pression

(buf+(i%3))[x], *(pBuf+(i*i)),
strcpy(buf+(i%3), src)

4 function
return value

(buf+f())[x], (getBufAddr())[x],
*(pBuf+f()), *(getBufPtr()),
strcpy(buf+f(), src), strcpy(getBufAddr(),
src)

5 array con-
tents

(buf+array[i])[x], (array[i])[x],
*(pBuf+ array[i]), strcpy(buf+ array[i], src)

Table B.9: Address Complexity Attribute Values

Length Complexity

The Length Complexity attribute describes the complexity of the length or limit passed
to the C library function, if any, that overflows the buffer. Note that if a C library
function overflows the buffer, the overflow is by definition inter-file/inter-procedural in
scope, and involves at least one alias of the buffer address. In this case, the Scope
and Alias of Buffer Address attributes must be set accordingly. As with array index
and buffer addresses, C programs may contain arbitrarily complex expressions for the
lengths or limits passed in C library function calls. Code analysis tools must be able
to handle these in order to accurately detect buffer overflows. In addition, the code
analysis tools may need to provide their own wrappers for or models of C library
functions in order to perform a complete analysis .

Alias of Buffer Address

This attribute indicates if the buffer is accessed directly or through one or two levels
of aliasing. Assigning the original buffer address to a second variable and subsequently
using the second variable to access the buffer constitutes one level of aliasing, as does
passing the original buffer address to a second function. Similarly, assigning the second
variable to a third and accessing the buffer through the third variable would be classified

155

Value Description Example
0 not applicable buf[10] (no library function

called)
1 none strcpy(buf, src)
2 constant strncpy(buf, src, 10)
3 variable strncpy(buf, src, i)
4 linear expression strncpy(buf, src, 5*i + 2)
5 non-linear expression strncpy(buf, src, i%3)
6 function return value strncpy(buf, src, getSize())
7 array contents strncpy(buf, src, array[i])

Table B.10: Length Complexity Attribute Values

as two levels of aliasing, as would passing the buffer address to a third function from
the second.

Value Description Example
0 no char buf[10];

buf[10] = ‘A’;
1 one alias char buf[10];

char * alias one;
alias one = buf;
alias one[10] = ‘A’;

2 two aliases char buf[10];
char * alias one;
char * alias two;
alias one = buf;
alias two = alias one;
alias two[10] = ‘A’;

Table B.11: Alias of Buffer Address Attribute Values

Alias of Buffer Index

The Alias of Index attribute is similar to the Alias of Address attribute, but applies to
the index, if any, used in the buffer access rather than the buffer address itself. This
attribute indicates whether or not the index is aliased. If the index is a constant or the
results of a computation or function call, or if the index is a variable to which is directly
assigned a constant value or the results of a computation or function call, then there
is no aliasing of the index. If, however, the index is a variable to which the value of a
second variable is assigned, then there is one level of aliasing. Adding a third variable

156 APPENDIX B. BUFFER OVERFLOW TAXONOMY

assignment increases the level of aliasing to two. If no index is used in the buffer access,
then this attribute is not applicable.

Value Description Example
0 no int i = 10;

buf[10] = ‘A’;
buf[i] = ‘A’;

1 one alias int i, j;
i = 10; j = i;
buf[j] = ‘A’;

2 two aliases int i, j, k;
i = 10; j = i; k = j;
buf[k] = ‘A’;

3 not applica-
ble

char * ptr;
ptr = buf + 10;
*ptr = ‘A’;

Table B.12: Alias of Buffer Index

Local Control Flow

This attribute describes what kind of program control flow, if any, most immedi-
ately surrounds or affects the overflow. For the values “if”, “switch”, and “cond”,
the buffer overflow is located within the conditional construct. “Goto/label” signifies
that the overflow occurs at or after the target label of a goto statement. Similarly,
“setjmp/longjmp” means that the overflow is at or after a longjmp address. Buffer
overflows that occur within functions reached via function pointers are assigned the
“function pointer” value, and those within recursive functions receive the value “re-
cursion”. The values “function pointer” and “recursion” necessarily imply a global
or interprocedural scope, and may involve an address alias. The Scope and Alias of
Address attributes should be set accordingly. Control flow involves either branching or
jumping to another context within the program; hence, only path-sensitive code anal-
ysis can determine whether or not the overflow is actually reachable (Xie et al., 2003).
A code analysis tool must be able to follow function pointers and have techniques for
handling recursive functions in order to detect buffer overflows with the last two values
for this attribute.

Secondary Control Flow

The types of control flow described by the Secondary Control Flow attribute are the
same as the types described by the Local Control Flow; the difference is the location
of the buffer overflow with respect to the control flow construct. Secondary control
flow either precedes the overflow, or contains nested local control flow that affects the

157

Value Description Example
0 none buf[10] = ‘A’;
1 if if (flag) {

buf[10] = ‘A’; }
2 switch switch (value) {

case 1:
buf[10] = ‘A’;
break;
...}

3 cond flag ? buf[10] = ‘A’ : 0;
4 goto/label goto my label;

my label:
buf[10] = ‘A’;

5 setjmp/longjmpif (setjmp(env) != 0) {
...}
buf[4105] = ’A’;
longjmp(env, 1);

6 function
pointer

In main:
void (*fptr)(char *);
char buf[10];
fptr = function1;
fptr(buf);
void function1(char * arg1)
{
arg1[10] = ’A’; }

7 recursion In main:
function1(buf);
void function1(char *arg1,
int counter) {
if (counter > 0) {
function1(arg1, counter - 1);
}
arg1[10] = ‘A’;
...}

Table B.13: Local Control Flow Attribute Values

overflow (e.g., nested if statements, or an if statement within a case of a switch). Only
control flow that affects whether or not the overflow occurs is classified. In other words,
a preceding if statement that has no bearing on the overflow is not labeled as any kind
of secondary control flow. Some types of secondary control flow may occur without any
local control flow, but some may not. If not, the Local Control Flow attribute should
be set accordingly. Some code analysis tools perform path-sensitive analyses, and some

158 APPENDIX B. BUFFER OVERFLOW TAXONOMY

do not. Even those that do often must make simplifying approximations in order to
keep the problem tractable and the solution scalable. This may mean throwing away
some information, and thereby sacrificing precision, at points in the program where
previous branches rejoin.

Loop Structure

The Loop Structure attribute describes the type of loop construct, if any, within which
the overflow occurs. This taxonomy defines a “standard” loop as one that has an
initialization, a loop exit test, and an increment or decrement of a loop variable, all in
typical format and locations. A “non-standard” loop deviates from the standard loop
in one or more of these three areas. Omitting the initialization and/or the increment
when they’re not applicable does not constitute a deviation from the standard. Non-
standard loops may necessitate the introduction of secondary control flow (such as
additional if statements). In these cases, the Secondary Control Flow attribute should
be set accordingly. Any value other than “none” for this attribute requires that the
Loop Complexity attribute be set to something other than “not applicable.” Loops
may execute for a large number or even an infinite number of iterations, or may have
exit criteria that depend on runtime conditions; therefore, it may be impossible or
impractical for static analysis tools to simulate or analyze loops to completion. Different
tools have different methods for handling loops; for example, some may attempt to
simulate a loop for a fixed number of iterations, while others may employ heuristics to
recognize and handle common loop constructs. The approach taken will likely affect a
tool’s capabilities to detect overflows that occur within various loop structures.

Loop Complexity

The Loop Complexity attribute, indicates how many of the three loop components
described under Loop Structure (i.e., init, test, and increment) are more complex than
the following baseline: init: initializes to a constant test: tests against a constant
increment: increments or decrements by one If the overflow does not occur within a
loop, this attribute is not applicable. If none of the three loop components exceeds
baseline complexity, the value assigned is “none.” If one of the components is more
complex, the appropriate value is “one,” and so on. Of interest here is whether or not
the tools handle loops with varying complexity in general, rather than which particular
loop components are handled or not. For any value other than “not applicable,” the
Loop Structure attribute must be set to one of the standard or non-standard loop
values.

Asynchrony

The Asynchrony attribute asks if the buffer overflow is potentially obfuscated by an
asynchronous program construct. These functions are often operating system specific.
A code analysis tool may need detailed, embedded knowledge of these constructs and

159

Value Description Example
0 none if (feel like it) {

do something unrelated();
}
buf[10] = ‘A’;

1 if if (flag1) {
flag2 ? buf[10] = ‘A’ : 0; }

2 switch switch (value) {
case 1:
flag ? buf[10] = ‘A’ : 0;
break;
...}

3 cond i = (j > 10) ? 10 : j;
buf[i] = ’A’;

4 goto/label goto my label;
my label:
flag ? buf[10] = ‘A’ : 0;

5 setjmp/longmp if (setjmp(env) != 0) {
...}
flag ? buf[10] = ‘A’ : 0;
longjmp(env, 1);

6 function
pointer

In main:
void (*fptr)(char *);
char buf[10];
fptr = function1;
fptr(buf);
void function1(char * arg1)
{
flag ? arg1[10] = ‘A’ : 0; }

7 recursion In main:
function1(buf);
void function1(char *arg1,
int counter) {
if (counter > 0) {
function1(arg1, counter - 1);
}
flag ? arg1[10] = ‘A’ : 0;
...}

Table B.14: Secondary Control Flow Attribute Values

the O/S-specific functions in order to properly detect overflows that occur only under
these special circumstances.

160 APPENDIX B. BUFFER OVERFLOW TAXONOMY

Value Description Example
0 none buf[10] = ‘A’;
1 standard for for (i=0; i<11; i++) {

buf[i] = ‘A’; }
2 standard do-

while
i=0;
do {
buf[i] = ‘A’;
i++;
} while (i<11);

3 standard
while

i=0;
while (i<11) {
buf[i] = ‘A’;
i++; }

4 non-standard
for

i=0
for (; i<11; i++) {
buf[i] = ‘A’; }

5 non-standard
do-while

i=0;
do {
buf[i] = ‘A’;
i++;
if (i>10) break;
} while (1);

6 non-standard
while

i=0;
while (++i) {
buf[i] = ‘A’;
if (i>10) break; }

Table B.15: Loop Structure Attribute Values

Taint

The Taint attribute describes how a buffer overflow may be influenced externally. These
functions may be operating system specific. The occurrence of a buffer overflow may
depend on command line or stdin input from a user, the value of environment variables,
file contents, data received through a socket or service, or properties of the process
environment, such as the current working directory. All of these can be influenced by
users external to the program, and are therefore considered “taintable.” These may be
the most crucial overflows to detect, as it is ultimately the ability of the external user
to influence program operation that makes exploits possible. As with asynchronous
constructs, code analysis tools may require detailed modeling of these functions in
order to properly detect related overflows.

161

Value Description Example
0 not applica-

ble
buf[10] = ‘A’;

1 none for (i=0; i<11; i++) {
buf[i] = ‘A’; }

2 one init = 0;
for (i=init; i<11; i++) {
buf[i] = ‘A’; }

3 two init = 0;
test = 11;
for (i=init; i<test; i++) {
buf[i] = ‘A’; }

4 three init = 0;
test = 11;
inc = k - 10;
for (i=init; i<test; i += inc)
{
buf[i] = ‘A’; }

Table B.16: Loop Complexity Attribute Values

Value Description Example
0 no n/a
1 threads pthread create,

pthread exit
2 forked pro-

cess
fork, wait, exit

3 signal handler signal

Table B.17: Asynchrony Attribute Values

Run-time Environment Dependence

This attribute indicates whether or not the occurrence of the overrun depends on some-
thing determined at runtime. If the overrun is certain to occur on every execution of
the program, it is not dependent on the runtime environment; otherwise, it is. The
examples discussed under the Taint attribute are examples of overflows that may be
runtime dependent. Another example would be an overflow that may or may not oc-
cur, depending on the value of randomly generated number. Intuition suggests that it
should be easier to detect overflows and avoid false alarms when runtime behavior is
guaranteed to be the same for each execution.

162 APPENDIX B. BUFFER OVERFLOW TAXONOMY

Value Description Example
0 no n/a
1 argc/argv using values from argv
2 environment

variables
getenv

3 file read (or
stdin)

fgets, fread, read

4 socket/service recv
5 process envi-

ronment
getcwd

Table B.18: Taint Attribute Values

Value Description
0 no
1 yes

Table B.19: Runtime Environment Dependence Attribute Values

Magnitude

The Magnitude attribute indicates the size of the overflow. “None” indicates that
there is no overflow; it is used when classifying patched programs that correspond to
bad programs containing overflows. The remaining values indicate how many bytes of
memory the program will attempt to write outside the allocated buffer. One would
expect static analysis tools to detect buffer overflows without regard to the size of the
overflow, unless they contain an off-by-one error in their modeling of library functions.
The same is not true of dynamic analysis tools that use runtime instrumentation to
detect memory violations; different methods may be sensitive to different sizes of over-
flows, which may or may not breach page boundaries, etc. The various overflow sizes
were chosen with future dynamic tool evaluations in mind. Overflows of one byte test
both the accuracy of static analysis modeling, and the sensitivity of dynamic instru-
mentation. Eight and 4096 byte overflows are aimed more exclusively at dynamic tool
testing, and are designed to cross word-aligned and page boundaries.

Value Description Example
0 none buf[9] = ‘A’;
1 1 byte buf[10] = ‘A’;
2 8 bytes buf[17] = ‘A’;
3 4096 bytes buf[4105] = ‘A’;

Table B.20: Magnitude Attribute Values

163

Continuous/Discrete

This attribute indicates whether the buffer overflow is continuous or discrete. A contin-
uous overflow accesses consecutive elements within the buffer before overflowing past
the bounds, whereas a discrete overflow jumps directly out of the buffer. Loop con-
structs are likely candidates for containing continuous overflows. C library functions
that overflow a buffer while copying memory or string contents into it demonstrate
continuous overflows. An overflow labeled as continuous should have the loop-related
attributes or the Length Complexity attribute (indicating the complexity of the length
or limit passed to a C library function) set accordingly. Some dynamic techniques rely
on “canaries” at buffer boundaries to detect continuous overflows; tools that rely on
such techniques may miss discrete overflows.

Value Description Example
0 discrete buf[10] = ‘A’;
1 continuous for (i=0; i<11; i++) {

buf[i] = ‘A’; }

Table B.21: Continuous/Discrete Attribute Values

Signed/Unsigned Mismatch

This attribute indicates if the buffer overflow is caused by a signed vs. unsigned type
mismatch. Typically, a signed value is used where an unsigned value is expected, and
gets interpreted as a very large unsigned or positive value. For instance, the second
example below shows a size being calculated and passed to the memcpy function. Since
the buffer is ten bytes long, the size calculated and passed to memcpy is negative one.
The memcpy function, however, expects an unsigned value for the size parameter, and
interprets the negative one as a huge positive number, causing an enormous buffer
overflow. Several real exploits have been based on this type of overflow.

Value Description Example
0 no memcpy(buf, src, 11);
1 yes signed int size = 9 -

sizeof(buf);
memcpy(buf, src, size);

Table B.22: Signed/Unsigned Mismatch Attribute Values

164 APPENDIX B. BUFFER OVERFLOW TAXONOMY

Appendix C

Structure of the Standard of Good
Practice

The complete structure of the Standard of Good Practice [69].

• NW1 Network management

– NW1.1 Roles and responsibilities

– NW1.2 Network design

– NW1.3 Network resilience

– NW1.4 Network documentation

– NW1.5 Service providers

• NW2 Traffic management

– NW2.1 Configuring network devices

– NW2.2 Firewalls

– NW2.3 External access

– NW2.4 Wireless access

• NW3 Network operations

– NW3.1 Network monitoring

– NW3.2 Change management

– NW3.3 Incident management

– NW3.4 Physical security

– NW3.5 Back-up

– NW3.6 Service continuity

– NW3.7 Remote maintenance

165

166 APPENDIX C. STRUCTURE OF THE STANDARD OF GOOD PRACTICE

• NW4 Local security management

– NW4.1 Local security co-ordination

– NW4.2 Security awareness

– NW4.3 Security classification

– NW4.4 Information risk analysis

– NW4.5 Security audit/review

• NW5 Voice networks

– NW5.1 Voice network documentation

– NW5.2 Resilience of voice networks

– NW5.3 Special voice network controls

• SD1 Development management

– SD1.1 Roles and responsibilities

– SD1.2 Development methodology

– SD1.3 Quality assurance

– SD1.4 Development environments

• SD2 Local security management

– SD2.1 Local security co-ordination

– SD2.2 Security awareness

– SD2.3 Security audit/review

• SD3 Business requirements

– SD3.1 Specification of requirements

– SD3.2 Confidentiality requirements

– SD3.3 Integrity requirements

– SD3.4 Availability requirements

– SD3.5 Information risk analysis

• SD4 Design and build

– SD4.1 System design

– SD4.2 Application controls

– SD4.3 General security controls

– SD4.4 Acquisition

167

– SD4.5 System build

– SD4.6 Web-enabled development

• SD5 Testing

– SD5.1 Testing process

– SD5.2 Acceptance testing

• SD6 Implementation

– SD6.1 System promotion criteria

– SD6.2 Installation process

– SD6.3 Post-implementation review

168 APPENDIX C. STRUCTURE OF THE STANDARD OF GOOD PRACTICE

Bibliography

[1] R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S. Tokubo, and D. Webb.
Security analysis and enhancements of computer operating systems. Technical
Report 20050809 335, April 1976 1976.

[2] Dennis M. Ahern, Aaron Clouse, and Richard Turner. CMMI distilled : a practical
introduction to integrated process improvement. Addison-Wesley, Boston, 2001.

[3] One Aleph. Smashing the stack for fun and profit.
http://www.phrack.org/archives/49/P49-14.

[4] Ian Alexander. Misuse cases: Use cases with hostile intent., 2003.

[5] Ross Anderson. Why information security is hard - an economic perspective.
http://www.acsac.org/2001/abstracts/thu-1530-b-anderson.html;
http://www.acsac.org/2001/papers/110.pdf, December 2001 2001.

[6] Ross Anderson and Tyler Moore. The economics of information security: A sur-
vey and open questions.
http://www.cl.cam.ac.uk/ rja14/Papers/toulouse-summary.pdf, January 2007
2007.

[7] B. Arkin, S. Stender, and G. McGraw. Software penetration testing. Security &
Privacy Magazine, IEEE, 3(1):84–87, 2005.

[8] Ashampoo. Ashampoo product categories.
http://www2.ashampoo.com/webcache/html/1/prod overview 2.htm, 2007.

[9] Taimur Aslam. A taxonomy of security faults in the unix operating system.
http://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-taxonomy-
msthesis.pdf;, August 1995 1995.

[10] Daniel B. Welcome to the home to ossec.
http://www.ossec.net/, August 2007 2007.

[11] Steve Ballmer, Craig Mundie, and Kevin Turner. Msft financial analyst meet-
ing:executive.
http://www.microsoft.com/msft/speech/FY06/ExecQAFAM2006.mspx, July
2006 2006.

169

170 BIBLIOGRAPHY

[12] Arash Baratloo, Navjot Singh, and Timothy Tsai. Libsafe and libverify:
Transparent run-time defense against stack smashing attacks.
http://www.mirrors.au.wiretapped.net/security/host-
security/libsafe/paper.html.

[13] BASE. Basic analysis and security engine (base).
http://base.secureideas.net/, May 2007 2007.

[14] Terrorism Knowledge Base. Group profile, internet black tigers.
http://www.tkb.org/Group.jsp?groupID=4062, 2007.

[15] BBC. Y2k: Overhyped and oversold?
http://news.bbc.co.uk/2/hi/talking point/586938.stm, January, 2000 2000.

[16] Labs Bell. Uno tool synopsis.
http://spinroot.com/uno/, August 2007 2007.

[17] Fabrice Bellard. Tiny c compiler 0.9.23.
http://webscripts.softpedia.com/script/Development-Scripts-
js/Compilers/Tiny-C-Compiler-26892.html, 2007.

[18] benzedrine. Openbsd packet filter.
http://www.benzedrine.cx/pf.html, May 2007 2007.

[19] Dirk Beyer, Thomas Hezinger, Rupak Majundar, and Ranjit Jhala. Mtc (models
and theory of computation):blast project.
http://mtc.epfl.ch/software-tools/blast/, August 2007 2007.

[20] Bindshell. Odysseus.
http://www.bindshell.net/tools/odysseus, December 2006 2006.

[21] Matt Bishop. A taxonomy of unix system and network vulnerabilities.
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-10.pdf,
May 1995 1995.

[22] Jakub Brecka and David Matousek. Sunbelt kerio personal firewall.
http://www.sunbelt-software.com/Home-Home-Office/Sunbelt-Personal-
Firewall/, 2007.

[23] Brightsight. List of evaluated products.
http://www.commoncriteriaportal.org/public/consumer/index.php?menu=5,
2007.

[24] Pete Broadwell and Emil Ong. A comparison of static analysis and fault injection
techniques for developing robust system services.
www.cs.berkeley.edu/ emilong/research/saswifi.pdf.

BIBLIOGRAPHY 171

[25] Frederick P. Brooks. No silver bullet-essence and accidents of software engineer-
ing.
http://www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html,
April 1987 1987.

[26] William Bush, Jonathan Pincus, and David Sielaff. A static analyzer for finding
dynamic programming errors (prefix).
http://www.cs.umd.edu/class/fall2002/cmsc631/notes/Pincus.txt, November
2002 2002.

[27] Robert Cardona. Achilles-maven security consulting inc.
http://www.mavensecurity.com/achilles, 2006.

[28] Bruno Castro da Silva. Tuxguardian-an application based firewall.
http://tuxguardian.sourceforge.net/documentation.php, April 2006 2006.

[29] CERT. Overview of attack trends.
http://www.cert.org/archive/pdf/attack trends.pdf;, 2002.

[30] Pravir Chandra, Jeremy Feragamo, Dan Graham, John Viega, Jeff Williams, and
Alex Newman. Owasp clasp project v1.2.
http://www.owasp.org/index.php/OWASP CLASP Project.

[31] Hao Chen and David Wagner. Mops.
http://www.cs.berkeley.edu/ daw/mops/.

[32] B. Chess and G. McGraw. Static analysis for security. Security & Privacy Mag-
azine, IEEE, 2:76–79, 2004. 6.

[33] Brian Chess. Eau claire.
http://www.vantuyl.com/chess/EauClaire/;
http://www.vantuyl.com/chess/;.

[34] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet security
: repelling the wily hacker. Addison-Wesley, Reading, Mass., 1994. William R.
Cheswick, Steven M. Bellovin.; Includes bibliographical references (p. 257-276)
and index.

[35] Andy C. Chou and Stanford University. Computer Science Dept. Static analysis
for bug finding in systems software. 2003. Andy C. Chou.; xviii,169 leaves, bound;
Submitted to the Department of Computer Science.; Copyright by the author.;
Thesis (Ph. D.)–Stanford University, 2003.; Engler, Dawson.

[36] Steve Christey. Plover-preliminary list of vulnerability examples for researchers.
http://cve.mitre.org/docs/plover/plover.html, March 2006 2006.

[37] Steve Christey and Robert A. Martin. Vulnerability type distributions in cve,
May 22, 2007 2007.

172 BIBLIOGRAPHY

[38] Cigital. Its4:software security tool.
http://www.cigital.com/its4/, 2007.

[39] CIRT. Nikto.
http://www.cirt.net/code/nikto.shtml, February 2007 2007.

[40] Aleksandar Colovic. Pscan - linux process monitoring tool.
http://developer.novell.com/wiki/index.php/PScan -
Linux process monitoring tool.

[41] IEEE Computer Society. Software Engineering Technical Committee. IEEE stan-
dard glossary of software engineering terminology. Institute of Electrical and
Electronics Engineers, 1983.

[42] Condor. Using x.509 certificates for authentication.
http://www.cs.wisc.edu/condor/manual/v6.2/3 9Using X 509.html, 2007.

[43] Microsoft Corporation. Prefast for drivers.
http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx, 2007.

[44] MITRE Corporation. Time and state.
http://cwe.mitre.org/data/definitions/361.html, May 2007 2007.

[45] PGP Corporation. Pgp corporation - hard disk encription.
http://www.pgp.com/, 2007.

[46] Coverity. Coverity incorporated: Products: Coverirty prevent sqs.
http://www.coverity.com/html/prod prevent.html, 2007.

[47] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole.
Buffer overflows:attacks and defenses for the vulnerability of the decade.
http://www.ece.cmu.edu/ adrian/630-f04/readings/cowan-vulnerability.pdf;
http://www.cse.ogi.edu/DISC/projects/immunix;, 2000.

[48] Martin Croxford and Roderick Chapman. Correctness by construction: A
manifesto for high-integrity software.
http://www.stsc.hill.af.mil/crossTalk/2005/12/0512CroxfordChapman.html,
December 2005.

[49] CyberCop. Cybercop.
http://www.cybercopportal.org/.

[50] Darknet. Pwdump.
http://www.darknet.org.uk/2006/10/download-pwdump-142-and-fgdump-134-
windows-password-dumping/, 2007.

[51] N. Davis, W. Humphrey, S. T. Redwine Jr., G. Zibulski, and G. McGraw.
Processes for producing secure software. Security & Privacy Magazine, IEEE,
02(3):18–25, 2004.

BIBLIOGRAPHY 173

[52] Noopur Davis. Secure software development life cycle processes: A technology
scouting report. Technical Report CMU/SEI-2005-TN-024, December 2005 2005.
sponsored by the U.S. Department of Defense.

[53] DOROTHY E. DENNING. Cyberterrorism. In Global Dialogue. Global Dialogue,
August 24, 2000 2000.

[54] Jack Dennon. Exploring diffie-hellman encryption.
http://www.linuxjournal.com/article/6131, August 2002 2002.

[55] Public Education Department. Lites-science standars glossary.
http://www.nmlites.org/standards/science/glossary 5.htm, 2007.

[56] descargar.mp3. Kaspersky internet security 6.0.
http://descargar.mp3.es/lv/group/view/kl32371/Kaspersky Internet Security.htm.

[57] Information Technology Laboratory Software Diagnostics and Conformance Test-
ing Division. Tool taxonomy, 25 Apr 2007. 2007.

[58] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Addison Wesley
Professional, 2006.

[59] SPI Dynamics. Web application and website security from spi dynamics.
http://www.spidynamics.com/products/index.html, 2007.

[60] Freeware edition. Ida pro - freeware edition.
http://www.securityfocus.com/tools/1923;
http://www.softpedia.com/get/Programming/Debuggers-Decompilers-
Dissasemblers/IDA-PRO.shtml, 2007.

[61] eEye Digital. Retina- vulnerability assessment, vulnerability scanner, security
assessment, network security scann.
http://www.eeye.com/html/Products/Retina/index.html, 2007.

[62] Dawson Engler. Meta-level compilation.
http://metacomp.stanford.edu/.

[63] David Ensor. Biggest u.s. spy agency choking on too much information.
http://www.cnn.com/US/9911/25/nsa.woes/index.htmlB, November 25, 1999
1999.

[64] J. Epstein, S. Matsumoto, and G. McGraw. Software security and soa: danger,
will robinson! Security & Privacy Magazine, IEEE, 4(1):80–83, 2006.

[65] eset. Nod32-antivirus software.
http://www.eset.com/, 2007.

174 BIBLIOGRAPHY

[66] Hiroaki Etoh. Propolice-gcc extension for protecting applications from stack-
smashing attacks.
http://www.research.ibm.com/trl/projects/security/ssp/, August 2005 2005.

[67] Dan Farber. Sap acknowledges inappropriate downloads by tomorrownow in re-
sponse to oracle suit.
http://blogs.zdnet.com/BTL/?p=5569&tag=nl.e622, July 2nd, 2007 2007.

[68] International Organization for Standardization (ISO). Iso/iec 27002:2005 infor-
mation technology – security techniques – code of practice for information security
management.
http://www.iso27001security.com/html/27002.html, 2007.

[69] Information Security Forum. About the standard. Technical report, January
2005 2005.

[70] James Foster, Vitaly Osipov, Nish Bhalla, and Niels Heinen. Buffer Overflow
Attacks. Detect, Exploit, Prevent. Syngress Publishing, Inc., Hingham Street
Rockland, MA 02370 United States of America., 2005.

[71] Jeff Foster. Cqual.
http://www.cs.umd.edu/ jfoster/cqual/;
http://sourceforge.net/projects/cqual/;, November 2004 2004.

[72] Ariel Futoransky, Luciano Notarfrancesco, Gerardo Richarte, and Carlos Sar-
raute. Building computer network attacks, March 31st, 2003 2003.

[73] Steve Gibson and Leo Laporte. Cross-site scripting.
http://www.grc.com/sn/SN-086.pdf, 2006.

[74] GoldSofts. Outpost firewall pro.
http://www.goldsofts.com/soft/821/41739/Outpost Firewall Pro.html.

[75] Mark G. Graff and Kenneth R. Van Wyk. Secure Coding. Principles and Prac-
tices. O’REILLY, 2003.

[76] Tim Greene. Businesses should pay more attention to software security.
http://www.networkworld.com/news/2006/022006-rsa-secure.html, February
2006 2006.

[77] Michael Greenwald, Carl A. Gunter, Bjorn Knutsson, Andre Scedrov,
Jonathan M. Smith, and Steve Zdancewic. Computer security is not a science
(but it should be).

[78] Roger Gustavsson. Buffer overflows. Technical Report 1, 2006-04-02 2006.

[79] Robert W. Hahn and Anne Layne-Farrar. The law and economics of software
security.
http://aei-brookings.org/admin/authorpdfs/page.php?id=1266, 2006.

BIBLIOGRAPHY 175

[80] Anthony Hall and Rod Chapman. Software engineering correctness by construc-
tion, 13th January 2004 2004.

[81] Welfe. Harald. Netfilter/iptables project.
http://www.netfilter.org/, 2007.

[82] Van Hauser. Thc-hydra-fast and flexible network login hacker.
http://freeworld.thc.org/thc-hydra/, May 2006 2006.

[83] Compuware Corporation Corporate Headquarters. Compuware devpartner secu-
ritychecker, an expert application security advisor.
http://www.compuware.com/;
www.compuware.com/products/devpartner/securitychecker.htm.

[84] Kipp E. B. Hickman. Ssl 2.0 protocol specification.
http://wp.netscape.com/eng/security/SSL 2.html, 1995.

[85] Greg Hoglund and Gary McGraw. Exploiting Software How to Break Code.
Addison-Wesley, 2004.

[86] P. Hope, G. McGraw, and A. I. Anton. Misuse and abuse cases: getting past the
positive. Security & Privacy Magazine, IEEE, 02(3):90–92, 2004.

[87] John D. Howard and Thomas A. Longstaff. A common language for computer
security incidents. Technical Report SAND98-8667, 1998.

[88] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Corpora-
tion, 2002.

[89] Michael Howard, David LeBlanc, and John Viega. 19 Deadly Sins of Software
Security: Programming Flaws and How to Fix Them. McGraw-Hill/Osborne,
2005.

[90] Michael Howard, Steve Lipner, and Inc Books24x7. The security development
lifecycle, 2006.

[91] Michael Howard, Jon Pincus, and Jeanette M. Wing. Measuring Relative Attacks
Surfaces., chapter 8, page 110. 2003.

[92] Linda Ibrahim, Joe Jarzombek, and Matt Ashford. Integrity assurance: Extend-
ing the cmmi sm & icmm for safety and security. In 2nd Annual CMMI Technology
Conference and User Group, November 2002 2002.

[93] Linda Ibrahim, Joe Jarzombek, Matt Ashford, Roger Bate, Paul Croll, Mary
Horn, Larry LaBruyere, and Curt Wells. Safety and security extensions for inte-
grated capability maturity models. September 2004 2004.

[94] IETF. S/mime mail security (smime).
http://www.ietf.org/html.charters/smime-charter.html, May 2007 2007.

176 BIBLIOGRAPHY

[95] Immunity. Spike.
http://www.immunitysec.com/resources-freesoftware.shtml, 2004.

[96] Security Innovation. Static analysis tools. December 2004, 2004.

[97] Insecure. Nmap-free security scanner for network exploration & security audits.
http://insecure.org/nmap/.

[98] Insecure.org. Top 100 network security tools.
http://sectools.org/index.html;, 2006.

[99] ISO. Freely available standards.
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf Home/
PubliclyAvailableStandards.htm, 09-14-2007 2007.

[100] ISO/IEC. Common criteria, common methodology for information technology
security evaluation, iso/iec 15408, September 2006 2006.

[101] Andrew Jaquith. Security Metrics: Replacing Fear, Uncertainty, and Doubt.
March 2007 2007.

[102] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities.
http://www.auto.tuwien.ac.at/ chris/research/doc/oakland06 pixy.pdf, 2006.

[103] Mariam Kamkar and John Wilander. A Comparison of Publicly Available Tools
for Static Intrusion Prevention, pages 68–84. Proceedings of the 7th Nordic
Workshop on Secure IT Systems. Karlstad, Sweden, 2002.

[104] Robert Kaplan and David Norton. The balanced scorecard- measures that drive
performance, 1992.

[105] Michelle Keeneym, Dawn Cappelli, Eileen Kowalski, Andrew Moore, Timothy
Shimeall, and Stephanie Rogers. Secret service and cert release report analyzing
acts of insider sabotage via computer systems in critical infrastructure sectors.
Technical report, United States Secret Service, May 16, 2005 2005.

[106] T. J. Klevinsky, Scott Laliberte, and Ajay Gupta. Hack IT Security through
penetration testing. Addison Wesley, February 2002.

[107] Charles J. Kolodgy. Penetration testing: Taking the guesswork out of vulnera-
bility management, Jan 2007 2007.

[108] KP-Tools. Kp-tools-security group.
http://skeet.kp-tools.com/english.htm, 2007.

[109] Kendra June Kratkiewicz. Evaluating static analysis tools for detecting buffer
overflows in c code.
www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf, 2005.

BIBLIOGRAPHY 177

[110] Ounce Labs. Software risk analysis: Know where your software is vulnerable.
http://www.ouncelabs.com/solutions/solutions-software-portfolio-security.asp.

[111] Carl Landwehr, Alan Bull, Jhon Mcdermott, and Williams Choi. A taxonomy
of computer program security flaws, with examples.
http://chacs.nrl.navy.mil/publications/CHACS/1994/1994landwehr-acmcs.pdf;,
September 1994 1994.

[112] Secure Programming Lint. Splint home page.
http://splint.org/.

[113] Cheers Loni. Securityforest exploitation framework beta has been released!
http://osdir.com/ml/security.penetration/2005-03/msg00115.html.

[114] Salvador Mandujano. A multiagent approach to outbound intrusion detection.,
December 2004 2004.

[115] McAfee. Mcafee:software antivirus.
http://mcafee.com/, 2007.

[116] G. McGraw. Will openish source really improve security? pages 128–129, 2000.

[117] Nancy R. Mead. The common criteria.
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/requirements/239.html?layoutType=plain, 2005.

[118] Phoram Mehta. Hailstorm - application security.
http://searchsecurity.techtarget.com/magazineFeature/0,296894,sid14
gci1257211,00.html, 2007.

[119] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system.
Security & Privacy Magazine, IEEE, 4:85–89, 2006. 6.

[120] C. C. Michael and Will Radosevich. Black box security testing tools, December
2005 2005.

[121] Christoph Michael and Steven R. Lavenhar. Source code analysis tools - overview,
January 2006 2006.

[122] Microsoft. Introduction to windows firewall with advanced security.
http://www.microsoft.com/downloads/details.aspx?familyid=DF192E1B-A92A-
4075-9F69-C12B7C54B52B&displaylang=en, August 2006 2006.

[123] mister x. Main[aircrack-ng].
http://www.aircrack-ng.org/doku.php, October 2007 2007.

[124] Massimiliano Montoro. Cain & abel.
http://www.oxid.it/cain.html, 2006.

178 BIBLIOGRAPHY

[125] msfdev. The metasploit project.
http://www.metasploit.com/, 2007.

[126] Steven Musil. Paris hilton’s cell phone hacked?
http://news.com.com/Paris+Hiltons+cell+phone+hacked/2100-7349 3-
5584691.html, February 21, 2005 2005.

[127] George Necula, Scott McPeak, Westley Weimer, Matthew Harren, and Jeremy
Condit. Ccured documentation.
http://manju.cs.berkeley.edu/ccured/, January 2007 2007.

[128] netfilter. netfilter/iptables project homepage.
http://www.netfilter.org/projects/iptables/index.html, 2007.

[129] CNET Networks. Lavasoft personal firewall 2 - security and spyware.
http://www.cnet.com.au/downloads/0,239030384,10620347s,00.htm, 2007.

[130] CBS News. National security meltdown the largest spy agency falls behind.,
August 8, 2007 9:37am 2007.

[131] InfoSec News. Airsnort decryption tool.
http://seclists.org/isn/2001/Aug/0129.html, August 2001 2001.

[132] Stephen Northcutt, Jerry Shenk, Dave Shackleford, Tim Rosenberg, Raul Siles,
and Steve Mancini. Penetration testing: Assessing your overall security before
attackers do.
http://whitepapers.zdnet.com/whitepaper.aspx?&docid=278661&promo=100511,
Jun 2006 2006.

[133] NT Objectives. Ntoinsight 2.0 - application security software.
http://www.ntobjectives.com/freeware/index.php.

[134] NT Objectives. Ntospider - application security software;.
http://www.ntobjectives.com/products/ntospider.php.

[135] Commuter Rail Division of the Regional Transportation Authority. Metra, north-
ern league baseball, 2003.

[136] Openwall. John the ripper password cracker.
http://www.openwall.com/john/.

[137] Parasoft. C++ unit testing & code compliance: C++test-parasoft.
http://www.parasoft.com/jsp/products/home.jsp?product=CppTest&itemId=40,
2007.

[138] OWASP Project. Owasp webscarab project.
http://www.owasp.org/index.php/Category:OWASP WebScarab Project, Octo-
ber 2007 2007.

BIBLIOGRAPHY 179

[139] Samuel T. Redwine, Rusty O. Baldwin, Mary L. Polydys, Daniel P. Shoemaker,
Jeffrey A. Ingalsbe, and Larry D. Wagoner. Software assurance: A guide to the
common body of knowledge to produce, acquire, and sustain secure software.
https://buildsecurityin.us-cert.gov/daisy/bsi/96/version/1/part/4/data/Secure,
July 2006 2006.

[140] Samuel T. Redwine, Rusty O. Baldwin, Mary L. Polydys, Daniel P. Shoemaker,
Jeffrey A. Ingalsbe, and Larry D. Wagoner. Software Assurance: A Guide to the
Common Body of Knowledge to Produce, Acquire, and Sustain Secure Software
Version 1.0. US Department of Homeland Security, Harrisonburg, Va., May 2006
2006.

[141] Darren Reed. Ip filter - tcp/ip firewall/nat software.
http://coombs.anu.edu.au/ avalon/.

[142] Amy Rindskopf. Juvenile computer hacker cuts off faa tower at regional airport,
first federal charges brought against a juvenile for computer crime.
http://www.cybercrime.gov/juvenilepld.htm, March 18, 1998 1998.

[143] Paula Rooney. Is windows safer?
http://www.crn.com/software/179103240, Feb. 10, 2006 2006.

[144] Joseph Roth and Victor Garza. Product guide: Internet security systems internet
scanner 7.0.
http://akamai.infoworld.com/Internet Security Systems Internet Scanner 7.0
/product 46438.html?view=1&curNodeId=0, 2007.

[145] Corporation Sandisk. Gramma tech: Products: Codesonar.
http://www.grammatech.com/products/codesonar/overview.html, 2007.

[146] SecTools. Sectools-fragroute/fragrouter.
http://secure2s.net/tools/2006/06/23/fragroutefragrouter/, June 2006 2006.

[147] SecuriTeam. L0phtcrack, the integrated password cracker for nt.
http://www.securiteam.com/tools/2PUPRR5Q0K.html, January 1999 1999.

[148] Core Security. Core security.
http://www.coresecurity.com/index.php5, 2007.

[149] RSA Security. Home-rsa, the security division of emc.
http://www.rsa.com/, 2007.

[150] SSH Communications Security. Ssh comunications security.
http://www.ssh.com/, 2007.

[151] Tenable Network Security. Nessus vulnerability scanner.
http://www.nessus.org/nessus/;, 2007.

180 BIBLIOGRAPHY

[152] Julian Seward. Valgrind 3.2.3.
http://webscripts.softpedia.com/script/Development-Scripts-js/Valgrind-
26957.html, 2007.

[153] R. Shirey. Internet security glossary.
http://www.ietf.org/rfc/rfc2828.txt, May 2000 2000.

[154] Zhu Shuanglei. Project rainbowcrack.
http://www.antsight.com/zsl/rainbowcrack/, 2007.

[155] Peter Silberman and Richard Johnson. A comparison of buffer overflow preven-
tion implementations and weaknesses.
www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-
silberman-paper.pdf ;www.idefense.com, 2004.

[156] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements by mis-
use cases. In Proc. 37th Int. Conf. Technology of Object-Oriented Languages and
Systems, 2000.

[157] SNORT. Snort-the facto standard for intrusion detection/prevention.
http://www.snort.org/, 2007.

[158] Sofpedia. Comodo firewall pro 3.0.9.229 beta.
http://www.softpedia.com/get/Security/Firewall/Comodo-Personal-
Firewall.shtml, 2007.

[159] SOFTgo. Routix netcom 1.8-misc networking tools.
http://www.soft-go.com/view/Routix-NetCom 20490.html, 2006.

[160] Softonic. Panda internet security.
http://panda-internet-security.softonic.com/, September 2006 2006.

[161] Softpedia. Look n stop firewall download.
http://www.softpedia.com/progDownload/Look-n-Stop-Firewall-Download-
1252.html, 2007.

[162] Fortify Software. Rats-rough auditing tool for security.
http://www.fortifysoftware.com/security-resources/rats.jsp, 2007.

[163] GFI Software. Gfi languard-vulnerability.
http://www.gfi.com/lannetscan/, 2007.

[164] Secure Software. Clasp-comprehensive lightweight application security process.
searchsoftwarequality.techtarget.com/searchAppSecurity/downloads/clasp v20.pdf
;, 2006.

[165] Sunbelt Software. Showpass.
http://research.sunbelt-software.com/threatdisplay.aspx?name=ShowPass&
threatid=29362, 2007.

BIBLIOGRAPHY 181

[166] Tiny Software. Tiny personal firewall 2.14.
http://www.brothersoft.com/Utilities Security Tiny Personal Firewall 81.html.

[167] SourceForge. Pmd.
http://pmd.sourceforge.net/.

[168] William Stallings. Cryptography and Network Security : principles and practice.
Prentice Hall, Upper Saddle River, N.J., 2006.

[169] Mark Stamp. Information security : principles and practice. Wiley, Hoboken,
N.J., 2005. Mark Stamp.

[170] James Michael Steward. Ten ways hackers breach security.
http://images.globalknowledge.com/wwwimages/whitepaperpdf/WP Steward
Hackers.pdf, 2007.

[171] Richard Stiennon. Lessons learned from biggest bank heist in history.
http://www.cioupdate.com/trends/article.php/3600126, 2006.

[172] SWiK. sguil-swik.
http://swik.net/sguil.

[173] Symactec. Norton-best computer protection.
http://www.symantec.com/norton/products/index.jsp, 2007.

[174] Lawrance Taylor. Dui blog: Bad drunk driving laws, false evidence and a fading
constitution.
http://www.duiblog.com/2007/09/04/secret-breathalyzer-software-finally-
revealed/, September 2007 2007.

[175] Indian Computer Emergency Response Team. Empanelment of it security audit-
ing organisations, terms and conditions for empanelment.
www.cert-in.org.in/emp-terms-conditions.pdf, March 26, 2006 2006.

[176] Armorize Technologies. Vulnerability database, 2007.

[177] Chinotec Technologies. Parosproxy.org - web application security.
http://www.parosproxy.org/index.shtml, 2004.

[178] Kerio Technologies. Kerio technologies.
http://www.kerio.com/, 2007.

[179] Jay-Evan J. Tevis and John A. Hamilton Jr. Methods for the prevention, detec-
tion and removal of software security vulnerabilities, Apr 2004 2004.

[180] PC Tools. Pc tools-essential tools for your pc.
http://www.pctools.com, 2007.

182 BIBLIOGRAPHY

[181] K. Tsipenyuk, B. Chess, and G. McGraw. Seven pernicious kingdoms: a taxon-
omy of software security errors. Security & Privacy Magazine, IEEE, 3(6):81–84,
2005.

[182] American Civil Liberties Union. Eavesdropping 101: What can the nsa do?
www.aclu.org, 1/31/2006 2006.

[183] Vendicator. Stack shield.
http://www.angelfire.com/sk/stackshield/.

[184] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: a static vulnerability
scanner for c and c++ code. pages 257–267, 2000.

[185] John Viega. Security in the software development lifecycle, 15 Oct 2004 2004.

[186] John Viega and Gary McGraw. Building secure software how to avoid security
problems the right way. Addison-Wesley, Boston, 2002. John Viega, Gary Mc-
Graw.; Includes bibliographical references and index.

[187] David Wagner. Boon-buffer overrun detection.
http://www.cs.berkeley.edu/ daw/boon/;.

[188] watchfire. Appscan suite for web application security testing.
http://www.watchfire.com/products/appscan/default.aspx, 2007.

[189] webappsec. Web application security consortium: Threat classification.
http://www.webappsec.org/projects/threat/v1/WASC-TC-v1 0.pdf;, 2004.

[190] Sam Weber, Paul Karger, and Amit Paradkar. A software flaw taxonomy:
Aiming tools at security.
http://cwe.mitre.org/documents/sources/ASoftwareFlawTaxonomy-
AimingToolsatSecurity

[191] WebmasterFree. Ca personal firewall.
http://www.webmasterfree.com/CA Personal Firewall d7637.html, 2007.

[192] WebSnapr. Codeassure.
http://javatoolbox.com/tools/codeassure, 2007.

[193] K. Wei, M. Muthuprasanna, and Suraj Kothari. Preventing sql injection attacks
in stored procedures. page 8, 2006. IS:.

[194] David Wheeler. Flawinder home page.
http://www.dwheeler.com/flawfinder/.

[195] Brian Wichmann. Tool assurance for predictable execution.
www.aitcnet.org/isai/ NextMeeting/ Last22 November 2006 2006.

BIBLIOGRAPHY 183

[196] Wiki-Based. Chaperon - iterating.
http://www.iterating.com/products/Chaperon#datasheet.

[197] John Wilander and Mariam Kamkar. A Comparison of Publicly Available Tools
for Dynamic Buffer Overflow Prevention, pages 149–162. Proceedings of the 10th
Network and Distributed System Security Symposium. San Diego, CA, 2003.

[198] Mariusz Woloszyn. Immunix stakguard: Emsi’s vulnerability.
http://community.corest.com/ juliano/emsi vuln.html.

[199] Chris Wysopal, Lucas Nelson, Dino Dai Zovi, and Elfriede Dustin. The art of
software security testing. 2007.

[200] Michal Zalewski. Delivering signals for fun and profit.
http://www.zone-h.org/files/22/signals.txt, 2001.

[201] Misha Zitser. Securing software: An evaluation of static source code analyzers.
www.dspace.mit.edu/bitstream/1721.1/18025/1/57225430.pdf, 2003.

[202] Zonelabs. Zonealarm.
http://zonealarm-pro-7.softonic.com/, March 2007 2007.

