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ABSTRACT

In this work we present results attained by noisy speech recognition experiments using
wavelet analysis schemes. It is shown that under white noisy signals the wavelet parameters
outperform the Mel-Frequency Cepstral Coefficients (MFCC). The main difference
between the wavelet derived coefficients and the traditional MFCC consists in the
computation of the spectrum, since the proposed parameters apply a wavelet packet
transform instead a discrete Fourier transform.

The filters in the wavelet packet transforms used in this work are Daubechies 20,
Beylkin 18 and Vaidyanathan 24. The Daubechies filters maximize the smoothness of the
associated scaling function by maximizing the rate of decay of its Fourier transform
[Daubechies]. The Beylkin's filter was designed by placing roots for the frequency response
polynomial close to the Nyquist frequency on the real axis, thus concentrating power
spectrum energy in the desired band. Vaidyanathan's filter was optimized for its length to
satisfy standard requirements for effective speech coding [Wikerhauser].

The experimental work show that under a noisy continuous spoken digits task the word
accuracy improves up to a 32% compared with the MFCC resulits.
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CHAPTER 1

INTRODUCTION

This work is about improving the overall word recognition accuracy (word error rate) of
the Carnegie Mellon University Sphinx 3 automatic recognition system (ASR). Our efforts
concentrate on extracting better features from speech signals using wavelet-based feature
schemes recently proposed in the literature and schemes we suggest based on our own
findings.

Although, the speech recognition problem is not a recent problem, improving accuracy
of robust speech recognition systems remains a challenge and an active field of intense
research [Acero]. Moreover, given the interdisciplinary nature of automatic speech
recognition, a large variety of different approaches to the problem is found in the literature.
This coalescing environment actually pervades ASR since the beginning; the merging of
fields like signal processing, acoustic modeling, and language modeling (to name a few) in
the same research framework has solved many of the quests thought lost more than twenty
years ago, and becomes better illustrated in the different components of the speech
recognizer we introduce in the next chapter.

On the other hand, a relatively recent merging of different areas, namely, subband
coding, multiresolution theory, and other engineering fields (originally, for example,
seismology) was brought by wavelet theory [Mallat] to support and impel contemporary
signal processing applications. The tools provided by this mnew time-frequency
(multiresolution) analysis has been shown very promising in the last two decades because
its not so complex practical implementation and potential to attain better results in many
engineering applications [Goswami] [Mallat] [Farooq].

As we had the opportunity to search and learn about wavelet theory in the application
reports found in the literature and books we had at hand, and because our interest resides in
the signal processing of speech signals (for ASR, now), we decided starting with the project




that motivated this work. First, we built a programming workbench that provided us with
the basic needs for a testing stage. Then, we adapted our scripts to fit the Sphinx 3
codebase. Indeed unfortunately, this work and so much time-consuming stage cannot be
seen in this report, but in the thousands of c- and perl-programming lines buried in our
workstations, although, only the preprocessor of Sphinx 3 was modified.

It is fair to say that the author is not an expert in the field (yet), neither wavelet theory
nor ASR, but as we have a global overview and research-avid intuition, we established the
basic guidelines to accomplish the project this work is all about. Our main goal (or
hypothesis) is to prove that a front end which transforms speech data into cunningly chosen
wavelet coefficients, for the training and decoding stage of Sphinx 3, will be as good as the
one providing the baseline coefficients (Mel-Frequency Cepstral Coefficients for ASR),
and even significantly better.

Without luck, completely proving this might take more time than the one scheduled for
this work. We propose a couple of classes of parameters or coefficients, and present the
structure and conditions of the experiments we were able to accomplish by the time this
report was required. With this, all components of the recognizer, but the front end are to
remain unchanged with a previously defined configuration throughout our experiments.
Even though, this self-imposed restriction might not be the best for all kind of speech
features, we just had to leave with it in sake of a baseline reference for analyzing and
discussing our results.

Beginning with chapter 2, as first framework, we give a brief description of speech
recognition tools which environment supports our experiments. We present a mathematical
formulation of the speech recognition problem and speech recognizer components as found
in [Jelinek]. Then we outline the main algorithms involved in training and decoding speech
recognition systems (explained in [Acero]), namely, Baum-Welch estimation process and
Viterbi search algorithm, respectively. Finally, the Sphinx 3 system configuration and
baseline environment are briefly mentioned.

Another framework dedicated to signal processing is in chapter 3; the speech processing
fundamentals of the baseline and our designed experiments are outlined, this is, the cepstral
analysis and wavelet transforms. Cepstral analysis is discussed following the approach by
[Harrington] and introducing necessary definitions found in [Deller]. Wavelet transforms
theory is explained more in an intuitive didactic way, rather then with a strict mathematical
development.

Then, our experiments implementation and practical definitions are presented in chapter
4. This chapter includes our proposed front end with its configuration explained. It consists
of three sections: the (MFCC) baseline coefficients, and the two different classes of
proposed wavelet-based features.

The results of our experiments are presented in chapter 5 of this report in an executive-
summary fashion, and a brief last conclusion and statement of future work is found in
chapter 6.

The author encourages the reader to search in the references for a better explanation of
the subjects presented. Furthermore, the experiments and results we provide are those that
were implemented and attained by the time this report was required. A thorough description
of our actual work can be found in the internet [http://juang.mty.itesm.mx].



CHAPTER 2

FRAMEWORK 1:
A ROUGH INTRODUCTION TO AUTOMATIC SPEECH RECOGNITION

In this chapter we give a brief description of the main structure of the automatic speech
recognition (ASR) environment which fully permeates the experiments of this work. There
are several good books that explain all the material shown here in a thorough and better
strictness than we do. Our purpose at this point is to fit the complacence of an outlined
framework for a better understanding (by the novice reader) of the speech recognition tasks
conveyed throughout this thesis.

As stated before, our work concentrates its efforts on improving the overall word
recognition accuracy of the Sphinx 3 system by proposing and experimenting different
wavelet-based front ends, but living the rest of the system configuration constant. These
front ends are intended to yield a bundle of parameters that would provide with better
information to the recognition system, and so improve the recognition task.

We begin with a mathematical formulation of the speech recognition problem which is
extracted from [Jelinek] and then give a rough outline of the most important algorithms to
solve the basic speech recognition modeling inquiries, as in [Acero]. The reader is referred
to these sources for a complete description of the statistical point of view of ASR which
pervades the most important tasks of the system we work with. Then, we describe the
Sphinx recognition system and the speech corpus we used to standardize our results.




2.1 A Mathematical Description of the Recognition Problem

Restating Jelinek's statistical approach, let D denote the acoustic evidence (data features)
from which the recognizer will somehow make its decision about which utterances were
spoken. As we practically have digital data (because of digital computers), then we may
thought that, in general, D is a sequence of symbols extracted from some m-length
alphabet A:

D=d,d, .. dndicA 1)

As indicates by the index i, the symbols d; may be thought of as generated in time
(which indeed they have). Let

W=w;, wy ..., w, wel (2)

denote a sequence of » uttered words, each belonging to a known vocabulary I" previously
arranged.

If P(W[D) defines the probability that the word sequence W was spoken, given that the
evidence data features D were extracted from it, then the recognizer should decide in favor
of a utterance W satisfying

W =arg max P(W | D) (3)

This means, the recognizer will choose the most likely word sequence given the
observed (acoustic) data features.

We can rewrite the right-hand side probability of (3) using Bayes' formula, as

P(W)P(D| W)

P(W|D)= D) 4)

where P(W) is the probability that the word sequence W will be spoken, P(D|W) is the
probability that when the speaker says W the data features D will be observed, and P(D) is
the average probability that D will be observed. Thit is,

P(D) = ZP(W')P(D | W) ()

As we can see in (3), the maximization is achieved with the data features variable D
fixed, that is there is no other acoustic features but the one we are given, it then follows

from (3) and (4) that the recognizer’s aim is to find the word sequence W that maximizes
the product P(W)P(D|W), i.e., it satisfies

W =arg max P(W)P(D| W) (6)



2.2 The Speech Recognizer

The different approaches to speech recognition [Rabiner] lead to different specific
implementations, but we may abstract the basic components of a speech recognizer and
present them as in [Jelinek]. The reader may refer to [Rabiner], [Acero] and [Jelinek] for a
thorough discussion on this subject.

2.2.1 Acoustic Processing

In the first place, we need to furnish the acoustic features D that will be observed by the
recognizer. This means we need to design the front end that will transform the sound's
waveform into the parameters d; the recognizer will deal with. To achieve this the front end
will need a microphone (which produces an electric signal), a means of sampling the
electric signal, and an algorithm for processing the (sampled) digital signal [Jelinek].

The signal processor converts the digital signal into feature vectors at hundred times per
second. This feature vectors could be energy values of a filter bank's output applied to the
sampled electric signal the microphone provided us.

We will discuss signal processing issues in chapter 3. By now, an intuitive approach to
this preprocessing (front end) stage is enough.

2.2.2 Acoustic Modeling

In formula (6), we see that the recognizer will need to compute the value P(D|W) of the
probability that when the speaker uttered the word sequence W the front end yielded the
features D. This probability must be calculated at real-time since it needs to be available for
all possible combinations of W and D.

As this later number of possible combinations is too large, we better compute this value
P(D|W) through a statistical acoustic model of the speaker's interaction with the front end
[Jelinek]. The complete process we are modeling here involves how the speaker
pronounces the words of W, the ambience (e.g. noise, reverberation), the microphone
placement, etc. and the speech signal processing achieved by the front end.

The acoustic model the Sphinx platform uses is the hidden Markov model (HMM), even
though others models based on artificial neural networks or dynamic time warping are also
possible. Let us first briefly define the Markov chain model and then present the HMM. We

will not explain the concept of HMM, but state the formal components of the HMM
definition as in [Acero].

The Markov Chain

The Markov chain models a class of random processes that incorporates a minimum
amount of memory without being completely memoryless. We focus on the discrete-time
Markov chain only, but the extension to the continuous case is also possible.

Let X = X, X3, ..., X be a sequence of random variables from a finite discrete alphabet
O = {o,, 0, ..., om}. Using Bayes rule, the probability of the sequence is




P(X,, X0 X,) = POXD] [PCX, | X )

i=2

where X" = X,,X,,...,X,,. The random variables X form a first-order Markov chain
provided that
P(X, | X[™) = P(X;| X,,) ®

which is known as the Markov assumption. This assumption is said to use very little
memory to model dynamic data sequences because the probability of the random variable
at a given time depends only on the value at the preceding time. In this manner, Equation
(7) becomes for the first-order Markov chain

P(X,, X, X,) = PX)] [ PCX, 1 X ) ©)

Expanding our point view, the Markov chain can be used to model time-invariant
(stationary) events if we discard the time index i, so that

P(X,=s5|X,_, =5)=P(s|s"). (10)

Furthermore, if we associate X; to a state, the Markov chain can be represented by a
finite state process with transition between states specified by the probability function
P(s|s’). Using this finite state representation, the Markov assumption (8) may be restated as
follows: the probability that the Markov chain will be in a particular state at a given time
depends only on the state of the Markov chain at the previous time [Acero].

Until now, we have described an observable Markov model because the output of the
process is the set of states at each time instance ¢, where each state corresponds to an
observable event X, i.e., there is one-to-one (deterministic) correspondence between the
observable event sequence X and the Markov chain state sequence S = {sy, 52, ..., Sx}.

The Hidden Markov Model

The hidden Markov model introduces a non-deterministic process that generates output
observation symbols in any given state, so it may be seen as a natural extension to the
Markov chain. In other words, a hidden Markov model is basically a Markov chain where
the output observation is a random variable X generated according to an output probabilistic
function associated with each state. To formally state the definition of the HMM we present
the one found in [Acero]. In this manner, the HMM is defined by:

¢ O={o0}, 0, ..., 0y}

An output observation alphabet. The observation symbols correspond to the physical output
of the system being modeled. Even though we refer to a discrete output observation, it
can be extended to the continuous case with a continuous probability density function.



¢ Q={1,2,.,N}

A set of states representing the state space. Here s, is denoted as the state at time .

¢ A= {ay}

A transition probability matrix, where aj; is the probability of taking a transition from

state 7 to state j, i.e.,
ajj =P(S, =j l S-1 = l)

¢ B={b(h)}

An output probability matrix, where b,(k) is the probability of emitting symbol o; when
state 7 is entered. Let X = X}, X3, ..., X; be the observed output of the HMM. The state
sequence S = sy, Sy, ..., S is not observed (hidden) and b,(k) can be rewritten as

b(k)=P(X;=or| s =1i)

o n={m}
An initial state distribution, where

m=Plsg=i} 1<i<N

The following properties must *

a;20,b(k)20, 20 Vi j k

", a:. b(k) because of being probabilities.

Summarizing, a complete specification of an HMM includes two constant-size

parameters, N and M, representing the total number of states and the size of observation

alphabets, observation alphabet O, and three sets (matrices) of probability measures A, B,
m. At last, there are two assumptions in the first order HMM, the Markov assumption and
the output independence assumption. The former was introduced in the previous

subsection, and is restated here as

P(St lslt-l)zp(st 'St—l)

(11)




where s, =5,,5,,..-,5, . The output independence assumption states that the probability

of generating a particular symbol at time ¢ depends only in state s,, but no other preceding
state or past observations. This is written as

P(X,| X/ ",s])=P(X,|s,) (12)

where X7 = X, X,,... X,

HMM-Based Phonetic Acoustic Model

The following are the basic steps for building HMMs as a phonetic acoustic model for
words (as presented in [Jelinek]).

1.

A phonetic dictionary for the vocabulary to be recognized must be provided, i.e. we
need to establish the correspondence between each word and a sequence of symbols
representing the phonetic parts of the word. Here we must choose the phonetic
alphabet to be used.

We assign a prototype HMM for each symbol of the phonetic alphabet. Figure 2.1
shows the transition structure of a HMM (without starting and ending states, which
might be needed) that could be appropriate for each symbol.

A concatenation of the prototype HMMs specified by the sequence of symbols
corresponding to a word is the HMM of that word. The final state of one HMM is
connected to the starting state of the next HMM by a null transition.

The composite model for an utterance of some given speech data D is the indiviual
words HMMs connected by the HMM of silence symbols and (possibly) end-of-
word symbols.

To estimate the HMM parameters we use the Baum-Welch algorithm [Jelinek]. This
process involves letting users read a prepared text W, observing the front end’s
output D and using the composite HMM corresponding to W as a model of the
production mechanism that resulted in the observed D [Jelinek].

0.0.0

oy o] aadl

by (k) b(k) by (k)

Figure 2.1. A typical hidden Markov model used to model phoneme. There are three states (0-2)
and each state has an associated output probability distribution [Acero et al.].




A further description of this models is out of the scope of this work. The reader might
found [Jelinek] an excellent book on this subject.

2.2.3 Language Modeling

The a priori probability P(W) that the speaker will utter W for every string W is also
needed by formula (6). As stated in [Jelinek], Bayes' formula allows many decompositions
of P(W), but because the recognizer "naturally" wishes to convey the text in the sequence
in which it was spoken, we use the next decomposition

P(W) = fIP(w,. | W W) (13)

As the number of arguments in the probability P(wi|wy,..., wi.) 1s too large, we use
equivalence classes ®(wj,...,w;.;) instead. And formula (13) becomes

P(W) = f[P(w,. |DOW, s W) (14)

Then language modeling consists of determining the equivalence classification ® and a
method of estimating the probabilities P(w;|®(w;,..., wi.))) [Jelinek].

Typically, speech recognizers are based on trigram and bigram language models, as
histories are the same if they end in the same two words or one word, respectively, as
explained in the next subsection.

2.2.4 Hypothesis Search

At last, the speech recognizer needs to find the best matching transcription W of the
acoustic features D by formula (6) searching over all possible strings W to find the
maximizing one [Jelinek]. As the number of words in W is extremely large, we cannot
search on all of them one by one, but a much frugal hypothesis search is performed.

The Most Likely Word Sequence

Let us consider first the (simplest) language model in which all histories wj,wy,...,w;.; are
equivalent. Then

POW) =TT POw) (15)

To find W in this case we need to search the most likely path through our model

schematically shown in Figure 2.2; it is not needed to know what happens inside the v;’s
HMMs.
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Figure 2.2. Composite model of speech generation when word generation is assumed to be memoryless

[Jelinek]

The bigram language model assigns probabilities by the formula [Jelinek]
(16)

P(W) = P(w, )ﬁ P(w; |w,_,)

Now W is given by the most likely path in a model where each word (HMM) depends
only on the identity of the preceding word, as the one shown in Figure 2.3. It is important to
note that in this case the number of acoustic models remains the same as in Figure 2.2 even
when the graph in Figure 2.3 appears to be more cumbersome. Actually, the total number
of states is proportional to the vocabulary size, which leads us to choose a bigram model

(due to accuracy [Jelinek]) whenever possible, except for the cases where the conditional

probabilities cannot be obtained.
Finally, for a trigram language model de probability is
(17)

P(W) = P(w,)P(w, | w)] [ POV | WiogW12)

i=3

Here the composite model is more complex; the number of states is proportional to im,

where m is the vocabulary size [Jelinek].
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Figure 2.3. Composite model of speech generation when the generated words are assumed to depend only
on the identity of the preceding word (bigram language model) [Jelinek].

As stated above, our language composite model is a huge HMM that ties together the
word HMMs, as could be seen if we replace the boxes in the figures above for their
corresponding HMMs. In this way, the Viterbi algorithm will find the most likely path
through such huge HMMSs. The recognized word string will be the specified by the
sequence of word models yielded by the path Viterbi search ends with.

We present next, as in [Acero], the Forward Algorithm to better introduce Viterbi’s, as
the latter may be seen as a modification of the former.

11




The Forward Algorithm

The Forward Algorithm solves the problem of evaluating how well a given HMM
matches a given observation sequence. Specifically, it aims to find the probability P(X|®),
given a model ® and a sequence of observations X = (X}, X, ..., X7). In this way, it could
be used in pattern recognition tasks, since this likelihood can be used to compute posterior
probability P(®/X), and the HMM with highest posterior probability can be chosen to be
the best pattern for the observation sequence.

Intuitively, the straightforward way of calculating P(X|®) of the observation sequence X

= (X}, X2 ..., X7), given the HMM @, is to add the probabilities of all possible state
sequences as

P(X|®) =) P(S|DP(X|S,D) (18)

all §

This means that we will need to list all state sequences S possible that produce
observation sequence X, then we find the probability of each path S as the product of the
likelihood of the state sequence (first factor in (18)) and the joint output probability (second
factor) up the path, and then add all path probabilities [Acero].

The first factor in (18), the state sequence probability, can be expanded for a sequence S
= (54, S2, ..., ST), where s; is the starting state, and T is the length of the sequence, as

T
P(S I(I)) = P(Sl I(I))HP(SI (st—l 9q)) = ﬂslas,sz "'aST_’lsT (19)

t=2

which applies the Markov assumption.

In the same manner, the second factor, the joint output probability up the path can be
expanded by applying the output independence probability as

P(X (S, @) =P(X]|S],®D)
= I:T'l[ P(X, |s,,®) (20)
=b, (X)b, (X,)..b, (X;)
Substituting (19) and (20) into (18), we have

P(X|®) =D PS|DP(X|S,D

all §

= Zﬂsl bs, (Xl )aslsz bsz (X2)"‘as7_lsr bs, (XT)

all §

21)

which means that, after enumerating all possible state sequences with length T+1, for any
given sequence, we start at state s; with probability 7, and step to the next state, in general,
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from s,; to s; generating observation X, with probability by(Xy) all up the path until the last
transition.

But according to the interpretation above, evaluation of (21) will require enumeration of
O(N) possible state sequences, which indeed results in exponential computational
complexity [Acero].

The artifice of the forward algorithm to avoid such an expense is to store intermediate
results and reuse them in subsequent state-sequence calculations. As the HMM assumption
involves only the actual observation X; and state s, and only one state before s.;, let us
define the forward probability as

a,(i) = P(X],s, =i |®) (22)

which is the probability that the HMM is in state i and has generated all partial observations
from the starting state up to state ¢ (namely, X;, X5, ..., Xp).

The following algorithm [Acero] shows how a(i) can be calculated inductively with a
time-synchronous recursive fashion often illustrated in a trellis (see [Acero] for a thorough
example and illustration). So, let us state the forward algorithm:

1. Initialization
ao(i) = mbi(X)) 1<i<N

2. Induction

a,(j)=|:ia,_,(i)ag:lbj(X,) 2<t<T1<j <N (23)

3. Termination

N
PX|®) = a,() P(X|®) = ar(sp) if a final state is required.
f=1

Now, the complexity of the calculations reduces to O(N°T), because of the partially
computed (forward) probabilities along the trellis.

The Viterbi Algorithm

In continuous speech recognition, as stated before, finding the best path or state
sequence is the fundamental problem in the (properly called) recognition or decoding stage.
This decoding problem [Acero][Jelinek] may be restated as follows: given a HMM model
® and a sequence of observations X = (X;, X, ..., X7), what is the most likely state
sequence S = (sg, §y, 52, ..., S7) in the model that caused the observations?

The forward algorithm, calculates the probability that an HMM generates an observation
sequence by adding the probabilities of all possible paths without providing the best state
sequence path. Solving the question above uncovers the hidden state sequence and is the
task of the Viterbi search.

Since the state sequence is hidden in the HMM structure, we ought to find the state

13




sequence that has the highest probability of being tracked while producing the
corresponding observations. This means that we are looking for the state sequence S = (s,
Sj, 82, ..., s7) that maximizes P(8,X|D).

Let us define the best path probability as

V.(i)= P(X!,8,s, =i|®D) (24)

where V(i) is the probability of the most likely state sequence at time t, which has produced
the observation X (namely, X;, X3, ..., X;) and ends in state i. Instead of summing up

probabilities from different paths coming to the same destination state, as in the forward
algorithm, the Viterbi algorithm chooses and remembers the best path. The Viterbi
algorithm states an inductive process similar to the forward algorithm that achieves this
best-sequence finding:

1. Initialization

Vi) = mhi X)) 1<i<N

B](i) =0

2. Induction

V() = MaxlV,., (Day Jp; (X)) 2<t<T1S/<N (25)

B,()) = Arg maxlV,_,(i)a,] 2<t<T 1</ <N (26)
ISisN

3. Termination
The best score = J,Wa,ff[V' )]
<i<

s; = Arg max{B, ()]

1SisN

4. Backtracking
s, =B,,,(s,,,) t=T-1,T-2,..,1

* * * * .
S =(s,,5,,...,8;) 1is the best sequence

The complexity of this Viterbi algorithm is the same as that of the forward algorithm,
O(N°T). The computations also have a time-synchronous recursive fashion from left to
right, that can be illustrated better in a trellis (see, also, [Acero] for an example and
illustration).

2.2.5 HMM Parameters Estimation

The Baum-Welch Algorithm

14



Finally we present a solution to the very important issue of estimating the HMM

parameters ® = (A,B,n) to accurately describe the observation sequences. We follow the
mathematical development found in [Acero], and refer the reader to the source for further
understanding of the algorithm schematically presented here.

Let us define the backward probability as

B.()=P(X/,|s, =i ® @7)

where f(i) is the probability, similar to the forward probability, of producing partial
observation X! =(X,,,X,.,,.,X;), from t+1 to the end, given that the HMM is in state
i at time ¢. This backward probability can be calculated inductively as follows.

1. Initialization

B, () = %\, 1<i<N
2. Induction ‘
N
ﬂt(i)=|:Zaijbj(Xt+l)ﬁt+l(j)i| t=T'1, T-2> srey 1; 1<is<N (28)
j=1
t-1 output = X, t output = X, | t+1

a, (i) a) B B,

Figure 2.4. The relationship between the backward and forward probabilities at three different adjacent
times in the Baum-Welch algorithm [Acero].

614253
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Figure 2.4 illustrates the relationship between the forward probability o and the

backward probability 8. « is calculated from left to right, and # from right to left, but both
recursively.

Now, the probability of taking the transition from state i to state j at time ¢, given the
model and observation sequence, is defined as

y.G)) = P(s,, =is, = j1 X{,®)
_ Pls,y =i, =, X7 |®)
P(X] D)
_ Gy (i)az_'jbj(Xt)ﬂt(j)

ZaT (k)

(29)

which can be better illustrated in Figure 2.5.

(-2 -1 ouput =X o (+1

(l-.b.(/Y i

e

a,(i) a, (i) ) R

Figure 2.5. Tllustration of the operations required for the computation of the probability of taking the
transition from state 7 to state j at time £,

The HMM parameters ® = (A,B,n) can be refined through iterations by maximizing the
probability P(X|®) for each iteration. Thus, ® will define the new HMM parameters
provided from the HMM @ in the previous iteration. In this way, the maximization process

is equivalent to maximizing the Q-function (according to the EM algorithm found in
[Acero]).
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o d) = ZP(XS“I’)l g P(X,S | ) (30)

all §

where P(X,S|®) and log P(X,S |®) can be expressed as

T
PX.S|®=]]a, . b, (X,) (31)
t=1

log P(X,S | D) = Zloga . +Zlogb (X)) (32)

=1

and with this, (30) can be restated as

o@D =0, @1)+0, @B (33)
where

_ P(X,s,, =i,s, = ] |®)
0, ®a,)= Z;Z PX| loga, (34)
0,@5)=3y ¥ PES=JID, 0 (35)

7T e, PX|D)

Thus, subject to probability constraints, the maximization procedure on Q(@,d) can be
achieved by maximizing the individual terms separately. The constraints are the following.

ia,.j =1 Vi (36)
So,)=1 vj (37)

Furthermore, the terms in (34) and (35) are of the form

F(x)= Zyi log x; (38)

where Zx,. =1
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Lagrange multipliers grant (38) to achieve maximum value at

(39)

Vi
X ———zyi

With all this, we use (38) and (39) to abstract the models estimates from (34) and (35) as

i o =18, =7 (D) i}’,(l.,j)
= P(Xl = Y (40)
P(X|(I))ZP(X SH—-II(I)) ;;7:(1’16)

ZP(Xs =jl®SX,0) D 27
6,() = P(X|<I>)l _ ko] @1
P(qu,)ZP(XS =Jjl® N ANS)

t=1 i

The re-estimation formula (40) can be thought as the ratio between the expected number
of transition from state i to state j and the expected number of transitions from state i. The
output probability re-estimation formula (41) is the expected number of times the
observation data emitted from state j with the observation symbol o4, and the denominator
is the expected number of times the observation data emitted from state j [Acero].

It 1s interesting to note that the initial probability #, can be computed as a special case
of the transition probability, even though is often fixed (to 1) for most speech recognition
tasks.

We now present the algorithmic description of the Baum-Welch re-estimation process as
found in [Acero].

1. Initialization: Choose an initial estimate ®.

2. E-step: Compute auxiliary function Q(@,®) based on @ (Egs. (33), (34), (35)).

3. M-step: Compute ® according to the re-estimation equations (40) and (41) to
maximize the auxiliary Q-function.

4. Iteration: Set ®=®, repeat from step 2 until convergence.

Even though, the forward-backward (Baum-Welch) algorithm described refers to only
one training sequence, it can be generalized to multiple training observations. See [Acero]
for further extension and illustration of this algorithm.
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2.2 Experimental Framework
2.2.1 The Carnegie Mellon University SPHINX-3 ASR System

CMU Sphinx is a large vocabulary, speaker independent speech recognition codebase
and suite of tools [CMU Sphinx FAQ)].

The language model describes the likelihood, probability, or penalty taken when a
sequence or collection of words is seen. Sphinx 3 uses N-gram models, and usually N is 3,
so they are trigram models, and these are sequences of three words. All the sequences of
three words, two words, and one word are combined together using back-off weights in
order to assign probabilities to sequences of words.

Acoustic models characterize how sound changes over time. Each phoneme or speech

sound is modeled by a sequence of states and signal observation probabilities; distributions
of sounds that you might hear (observe) in that state. Sphinx 3 is implemented using a 5-
state phonetic model; each phone model has exactly five states. At run-time, frames of the
input audio are compared to the distributions in the states to see which ones the sound
could have come from. Acoustic models which perform best are those that matched to the
conditions they will be used in. That is, for example, English acoustic models work best for
English, and telephone models work best on the telephone.
Context-independent phones (CI-phones) are modeled using data from many different
context, and triphones are phones that take into account left and right context in the
modeling. Sphinx 3 uses tied states to reduce the total number of states in the system. The
default English acoustic models contain 6,000 states, or senones in historic CMU
nomenclature, that are shared among all the 5-state phone models. These states share their
parameter weights with other states also. In our implementation we configured Sphinx to
use 500 senones.

2.2.2 The Speech Corpus

The different front end proposals presented in this work will be evaluated by performing
recognition experiments using two standard speech databases, namely TIMIT and CSDigit.
TIMIT was designed to provide speech data for the acquisition of acoustic-phonetic
knowledge and for the development and evaluation of English language automatic speech
recognition systems. It was prepared at the National Institute of Standards and Technology
(NIST) with sponsorship from the Defense Advanced Research Projects Agency -
Information Science and Technology Office (DARPA-ISTO). CSDigit is a continuous digit
database with utterances of more than 1500 Spanish language speakers. We explain briefly
the contents and general characteristics of these corpora:

TIMIT

TIMIT contains a total of 6300 sentences, 10 sentences spoken by each of 630 speakers
from 8 major dialect regions of the United States [TIMIT]. Appendix 1 provides a table
describing each of these regions. The corpus has microphone quality, phonetically
balanced, phonetically labeled, read utterances, and has been divided for training (4260

19



utterances) and testing (1680 utterances). Its lexicon adds to 6229 vocabulary words, and it
was sampled at a 16 kHz rate as used in our experiments.

Continuous Spontaneous Digit Utterances (CSDigit)

This is a continuous digit utterances database of more than 1500 Spanish language
speakers. It contains a small lexicon (about 75 vocabulary words) of numbers and
quantities spontaneously concatenated. It may be divided in about 6000 utterances for
training and 3000 utterances for testing, as we did. Its original sampling rate is 8 kHz which
we kept untouched for our experiments.
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CHAPTER 3

FRAMEWORK 2:
A FEATURE TOUR OF SPEECH SIGNAL PROCESSING

The most widely used features in speech recognition tasks are linear prediction
parameters and Mel-cepstral coefficients. Both provide information regarding the spectral
analysis of the speech signal and derive their features from a smooth representation of the
energy content of the signal [Rabiner]. Since Mel-cepstral coefficients have shown to be
superior to LPC coefficients {Quatieri], and because our baseline front-end consists of an
implementation for extracting such mel parameters, we will devote the first section of this
chapter to a not so thorough but sufficient explanation of cepstral analysis. On the other
hand, a linear prediction coding explanation is out of the scope of this work since it is not
related neither to our baseline nor to our proposed front-end. The reader is encouraged to
search further in the references. Actually, there are very good sources (see, for example,
[Harrington], [Deller]) that present a complete and strict treatment of both techniques.

The second section of this chapter introduces wavelet analysis. We do not present an
exhaustive treatment of all wavelet related issues, not even what may be considered
cardinal, but restrict ourselves to an introductory view of the tools used in this work.
[Quatieri] might be an excellent start for speech people, while [Wickerhauser] would be
better for implementation-avid readers. A strict mathematic development of the theory is
found in [Mallat], [Daubechies] and [Meyer]. A more signal processing point of view of the
subject would be [Vetterli] and [Rioul], and very good enlightening applications are
explained in [Goswami].

Finally, the last section restates the basic signal-to-noise theory (as introduced by
[Deller]), which is used in this work as explained in the next chapter.



3.1 Cepstral Analysis of Speech Signals
3.1.1 Source Filter Model

That speech sounds are produced by the action of a filter (the vocal tract) on a sound
source (either the glottis or some other constriction within the vocal tract) is the main idea
in the source filter model. Fundamental to the model is the assumption that the filter and the
source are independent, i.e. the properties of the filter can be modified without changing the
properties of the source and viceversa. This assumption may not be strictly true in all cases
but in practical terms provides us with a very useful and sufficiently accurate model of
speech production [Harrington].

In voiced speech, the vibration of the vocal folds in response to airflow from the lungs
corresponds to the source of the model. This vibration is periodic and would consist of a
series of broad spikes if it could be examined independently of the properties of the vocal
tract, which change it's spectral shape.

The spectrum of the glottal source is made up of a number of frequency spikes
corresponding to the harmonics of the fundamental frequency of vibration of the vocal
folds, which is inversely proportional to the pitch period. With increasing frequency, the
spectrum decreases in amplitude at a rate of -12dB per octave approximately. In other
words, for each doubling in frequency, the amplitude of the spectrum decreases by around
12dB.

When the frequency of vibration of the vocal folds is increased, the gap between the
frequency spikes in the glottal source spectrum is widened, since these spikes occur at
multiples of the fundamental frequency (or pitch).

The source frequency of an average male voice is around 100Hz, female and child
voices are typically higher in pitch; around 200 Hz for an average female voice and 200 to
300 Hz for children [Harrington].

The sound source in unvoiced speech is not a cuasi-periodic vibration but rather
vibrations are caused by turbulent airflow due to a constriction in the vocal tract. The
various shapes which may take the vocal tract is a matter of speech sounds classification
(which is presented in almost any speech book and not treated here).

The sound created via a constriction in the vocal tract may be described as a noise
source which contains no dominating periodic component. This leads to a relatively flat
spectrum meaning that every frequency component is represented (almost) equally.

In summary, the source filter model describes the process of speech production in terms
of two independent contributions, the sound source and the vocal tract filter. As a model of
production, this allows us to synthesize sounds, but the model can also be used to aid the
analysis of speech sounds. The key is to notice the importance of the independence of the
source and filter; this means that each makes a separate contribution to the characteristic
features of the resulting speech sounds. The source, in voiced speech, is responsible for the
pitch of the sound while the vocal tract filter is responsible for the location of the formants
and the overall spectral shape. In a real speech spectrum the overall filter shape and the
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location of the formants is often drowned out by the effects of the source spectrum. If it
were possible to remove the source effects then the two spectra could be studied separately
to give a more accurate picture of the precursors of the speech sound [Harrington].
Removing the effects of the source from a spectrum also has the effect of removing
many sources of variability from the signal since many of these are realized in the source
rather than in the filter. Hence removing the source can help make, for example, the vowel
sounds more distinct from one another and could make vowel sounds from different
speakers look more similar [Harrington]. An enlightening application example and
discussion can be found in [Sundberg] where the acoustics of singing voice are explained.

3.1.2 Cepstral Analysis

Cepstral analysis relies on the observation that a logarithmic speech spectrum is made up
from the source and filter spectra added together. To understand this, recall that filtering in
the frequency domain is achieved by multiplying spectra together. Multiplication
corresponds to adding logarithms and so a filtered spectrum can be derived by adding
logarithmic (or dB) spectra. The procedure for cepstral analysis is to take the inverse
Fourier transform of the dB spectrum, thus converting the signal back into the time domain.
This time domain signal is not a regular acoustic signal, since it was derived from the
logarithmic spectrum (somehow, for this reason it is called a cepstrum, kind of a backward
spectrum). The important property of the cepstrum is that since the log-spectrum is the sum
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Figure 3.1. Cepstrum from a 25 ms window corresponding to an /e/ vowel.
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of two spectra, so the cepstrum is the sum of two components corresponding to the source
and the filter. Usefully the two components are separated: the lower end of the cepstrum
corresponds to the filter while the higher end (or rather the middle of the reflected
cepstrum) cotresponds to the source. An illustration of the process of applying cepstral
analysis is shown in Figure 3.1.

A further operation on the cepstrum is to remove the central part of the reflected
cepstrum, the part that corresponds to the source, and perform a Fourier transform to again
generate a frequency domain version of the signal. Since the effect of the source has been
removed from this spectrum, it shows the characteristics of the vocal tract filter. This is
manifested as a much smoother spectrum than the original; the degree of smoothing
depends upon the number of cepstral coefficients removed prior to the final Fourier
transform.

The technique of cepstral analysis is described in more detail in [Harrington]. The
technique can be used to generate smoothed spectra which show the characteristics of the
filter as described above. The cepstrum can also be used as a means of determining the
fundamental frequency of voiced speech since the part of the cepstrum corresponding to the
source is often manifested as a single spike. The location of this spike gives a measure of
the frequency of the source signal.

This is just one of a family of techniques that seek to separate the source and filter in
speech analysis. These techniques are useful in that they enable us to remove variability
from the speech signal which is due to the source and concentrate our analysis on the vocal
tract filter as implemented for speech recognition.

3.1.3 The Mel-Cepstrum

After Davis and Mermelstein [Davis], the cepstrum or cepstral coefficients became a
better choice than linear prediction parameters because its ability to smooth the logarithmic
spectrum of speech signals and its improvement of recognition performance. In this section
we provide a sketch of the thorough explanation of the subject found in [Deller].

In studies of human auditory perception a mel is a unit of measure of perceived pitch or
frequency of a tone. Instead of linearly corresponding to the physical frequency of a tone, it
fits the human auditory system perception of that pitch. An approximation suggested by
Fant (1959) is

. 1000\, Fy | ®
log 2| 1000

in which Fr 1s the perceived frequency in mels and Fp;, is the real frequency in Hz.

As stated by Deller et al., it has been found that the perception of a particular frequency
by the human auditory system is influenced by energy in a critical band of frequencies
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around that particular frequency. The bandwidth of a critical band varies with frequency,
beginning approximately at 100 Hz for frequencies below 1 kHz, and then increasing
logarithmically above 1 kHz. So, instead of simply using the mel-distributed log magnitude
frequency components to compute the (short-time real) cepstrum, it has been suggested
using the log total energy in critical bands around the mel frequencies as inputs to the final

IDFT block. The process is illustrated in Figure 3.2, were ¥(i) denotes the log total energy
in the ith critical band.
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Figure 3.2. Use of critical band filters to compute the mel-cepstrum [Deller ez al.].

A thorough discussion and critical analysis of the cepstrum can be found in [Deller].
Another excellent explanation of homomorphic analysis is presented by [Quatieri]. The

specific structure and computation of the cepstral features used in our experiments is
sketched in chapter 4.
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3.2 Wavelets

3.2.1 An Intuitive Description of the Multiresolution Concept

The basic idea in multiresolution analysis is successive approximation. A signal may be
decomposed as a coarse approximation plus a prediction error (that might be thought as the
“detail” of the signal) which is the difference between the original signal and a prediction
based on the coarse version. If we add back the prediction error (detail) to the prediction
(approximation) immediate reconstruction of the signal is achieved. This scheme is
intimately related to wavelet decomposition and might be iterated on the coarse
approximation, as we will see, to perform a (dyadic tree) discrete wavelet transform.

3.2.2 The Uncertainty Principle

It is known that a limitation of the STFT is that of its window w(t) fixed duration. With a
particular window w(t) we cannot accurately observe impulse like events and closely
spaced long lasting tones [Quatieri]. The uncertainty principle limits time-frequency
resolution such that the product of duration D(x) and bandwidth B(x) of a signal x(t) must
exceed a constant value. This is,

D(x)B(x) 2+

This formula quantitatively states the tradeoff peculiarity of the spectrogram (and other
time-frequency transforms). And, if we deal with discriminating speech signal events, as
closely spaced harmonic frequencies with time occurrence glottal pulses and short duration
plosive bursts, this limitation gains particular importance [Quatieri). A thorough treatment
and definition of this principle can be found in [Mallat], [Quatieri], [Vetterli] and others.
The search for minimizing the limitations of the uncertainty principle is found in the signal
processing literature and many related papers (see, for example, [Mallat] or [Rioul]).

3.2.3 Wavelet Transform

Defining an “ideal” time-frequency transform has been a research subject since long ago
and lately with great enthusiasm as the recent development of wavelet transforms found to
be useful in many fields and practical applications.

In the remaining sections of this chapter we sketch the insightful approach presented by
[Quatieri] sticking to the terminology found in [Rioul]. As our purpose is not to present a
strict and thorough description of the subject, we refer the reader to [Mallat], [Rioul] and
[Vetterli] for a more extensive treatment on wavelets.

So to speak, a way of going around the limitations imposed by the uncertainty principle
is to compute many spectrograms with different analysis window durations. As illustrated
in Figure 3.3, the wavelet transform can be thought of as a collage of pieces of
spectrograms calculated using analysis windows of different duration and thus different
time-frequency resolutions [Quatieri].
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Figure 3.3. The wavelet transform as a collage of spectrograms. A short window at high frequency gives
good time resolution, while a long window at low frequency gives good frequency resolution. The lower
right panel is obtained by piecing together regions of the upper four panels [Quatieri].

As may be observed, short windows are used to calculate the (wide-band) spectrogram
and then the high frequency piece is extracted from it as to keep the good time localization
part yielded by it. In the same perspective, as we decrease in frequency longer windows are
used to calculate the spectrogram and then the lower frequency piece is extracted from it as
to keep the (better frequency resolution) part corresponding to this step. This ends when the
longer window is used to calculate the (narrow-band) spectrogram and then we extract the
good frequency resolution low frequency piece and put it all together as illustrated in
Figure 3.3. The frequency changing time-frequency resolution cell in contrast to the fixed
time-frequency resolution cell of the STFT is shown in Figure 3.4. From this approach, we
see that we don’t defeat the uncertainty principle because the area of the cell is fixed.
Instead, we benefit of its changing dimensions when moving around the time-frequency
plane. The mathematics of this concept are found in the multiresolution analysis literature

developed in the 1980’s by different fields including speech, image and seismic processing
[Quatieri].

Time-Frequency
Resolution Cell

Q-
O}

Figure 3.4. Adaptation of window size to frequency in the wavelet transform (left panel) in contrast to a
fixed window in the STFT (right panel) [Quatieri].

27



The notion of adapting time resolution to frequency is formalized by the continuous
wavelet transform (CWT). To present a brief mathematical approach, a set of functions that
yield the time-scaled and shifted versions of a prototype yAt), which can be thought of as a
band-pass function, is defined as

1 t-b
v = 2
ab (t) (l_a"l '/‘ ( a ) s ( )

where yAt) is the basic (or mother) wavelet, y,,(t) are the related wavelets, b is the time

shift, an a is the scaling factor, as illustrated in Figure 3.5. The factor |a|? is used to
ensure energy preservation [Rioul].

Basic
Wavelet
Large
Scale /_\
Wavelets
Small
Scale

Figure 3.5. Schematic of a basic wavelet and its associated wavelets at different scales [Quatieri]

The continuous wavelet transform (CWT), as introduced originally by Goupillaud,
Grossmann, and Morlet, is

CWT (x(t);a,5) =[x, ()ar ©)

where * stands for complex conjugation and the time t and the time-scale parameters (a, b)
vary continuously. Equation (3) is a measure of “similarity” of x(z) with yAt) at different
scales and time shifts [Quatieri]. We can see that with a scale factor @ < 1, the basic wavelet
is contracted and the resulting wavelet is convolved with x(?). So, we may also see the
wavelet transform CWT from a filtering point of view as

CHT (<0308} = = [x(0w ( )dt— ﬁx(b)*w'(—gj @

where * denotes convolutlon Here a smaller scale yields filters with a wider bandwidth.
The quantity |CWT}* is referred as the scalogram.
If we rewrite (3) as
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CWT{x(t);a,b} = 717 jx(at)y/'(t —g)dt (5)

where we keep the (wavelet) filter y(t) unscaled and scale x(z), we get another
interpretation of the wavelet transform. We may see (5) as a “zoom lens” at different time-
scales. The concept of scale is related to time-scale, but it also varies inversely with
frequency.

The wavelet transform, as the STFT, is also invertible under certain conditions. In fact,

for a large set of basic wavelets, y(t), x(t) may be recovered from a superposition of
wavelets. So, the inverse continuous wavelet transform (ICWT) is defined as

— | (6)
a a

x(t) = 'cl: IICWT{x(t);a,b}T/l,;w(t—b)éa—(Ié

if and only if the admissibility condition is satisfied, i.e.,
2
C, = jmdw < . ©

A basis function interpretation is implied in (6); the CWT measures the projection of x(?)
onto the basis (1), which means that the CWT is the inner product of x(?) and y,x(t). A
further explanation of this interpretation can be found in [Mallat] [Daubechies].

3.2.4 Wavelet Series (WS) and Discrete Wavelet Transform (DWT)

Wavelet series (WS) coefficients are sampled CWT coefficients. Time remains
continuous but time-scale parameters (b, a) are sampled in the time-scale plane (b, a)
[Rioul]. The WS coefficients (called discrete wavelet transform in [Quatieri] and other
publications) are defined as

Cpi =[x, (D)t , 8)

where

V() =— u{t‘b*J. ©)
la; | a,

The WS coefficients represent the inner product of x(z) with the discretized wavelet basis

¥;.(t), which are the original wavelets sampled in scale and in shift. A usual (and by this
time we could say “traditional” or even “standard”) sampling in scale and shift is that of
dyadic (or octave) sampling, where for each scale a;= 2 forj =1, 2, 3, ... we shift at b = k2
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for k=1, 2, 3... This may be considered a “natural” sampling because as the scale increases
by a factor of two (this means the bandwidth of the wavelet decreases by a factor of two),
the sampling rate of shift decreases by a factor of two (half the bandwidth requires half the
sampling rate) [Quatieri]. Figure 3.6 provides a pictorial description of the stated above.

ojelo|ole|elelo]e]ajefe]ojo]alolojelela]lele]ele] a=1
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. . .
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Figure 3.6. Sampling of scale and shift in a dyadic wavelet basis [Quatieri].

Indeed, a common definition of dyadic time-scale sampling WS coefficients is
Ciy =CWT{x(t);a=2",b=k2’}, jkelZ, (10)
in which case the wavelets are
Vi@ =27"y (27t~ k). (11)

A wavelet series decomposes a signal x(z) onto a basis of continuous-time wavelets
@, (#) as shown [Rioul].

x)=D2C.0,, 0. (12)

jeZ keZ

These reconstruction wavelets, as in (11), usually correspond to discretized parameters a
= 2’ (where J is called the “octave™) and b = k2.
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By several authors, the discrete wavelet transform (DWT) has been recognized as a
natural wavelet transform for discrete-time signals (see references in [Rioul]). Both time
and time-scale parameters (scale and shift) are discrete. The DWT is actually an octave-
band filter bank as far as the structure of computations is concerned [Rioul]. In fact, the
bandpass filters impulse response is 2™ y(2™t-n) [Quatieri]. In Figure 8.7, we can see a
comparison of the increasing filter bandwidths of dyadic wavelets and the uniform filter
bandwidths of the STFT, as well as the corresponding filter impulse responses.

STFT CWT
1 1 i
0 Qo 2Qo 3(10 400 e Q 0 % ZQO 4Qo 890 ;.
(@ (d)

44l

Frequency
Frequency

Time Time
(© 4y]
Figure 3.7. Comparison of the sampling requirements for the discrete STFT and the DWT from a filtering
perspective. Panels (a) and (d) show the required filters in frequency, while (b) and (e) show their
counterparts in time. The discrete STFT filters have constant bandwidth while the discrete dyadic wavelets

have constant-Q bandwidth. Panels (c) and (f) give the respective time-frequency “tiles” that represent the
essential concentration of the basis in the time-frequency plane [Quatieri].
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The (DWT) filter bank can be easily implemented by repeated application of identical
stages as shown in Figure 3.8. Each stage consists of a low-pass (by P(w)) and highpass (by
O(w)) decomposition of the signal followed by a downsampling by 2 . The sequences p{n]
and g[n] are obtained from the basic discrete-time wavelet y{n].

Several algorithms for computing the DWT have been known for some time, namely the

Mallat algorithm [Mallat], and the “4 trous” algorithm of Holschneider et al

[Holschneider]. For a proof of this algorithms and implementation we refer the reader to
[Mallat]. We conform our description to a frugal presentation of the DWT.

aln) (2 —L
Con
al = qln] (12—
C3n
> p[n] —»@—» > qln] ——>@—-—3—>
o0 }-@— :
P(a)) Qw > pln] F—({2—

(.0

y

Figure 3.8. Iterative filtering implementation of DWT. A similar iterative structure exists for the inverse
DWT [Quatieri].

The “standard” DWT whose coefficients are sampled over the dyadic grid a =2, b =k2
in the time-scale plane yields a multiresolution decomposition of x{n] on J octaves labeled
byj=1,...,Jgiven by

xn]= Zchkh [n—27k1+ D b,,8,[n-2"k]. (13)

Jj=1 keZ keZ

The # j[n—ZJk] are the synthesis wavelets, the discrete equivalents to

2772 @(27(t-27k)) [Rioul]. An additional low-pass term is used to ensure perfect
reconstruction; the corresponding basis functions g,[n—2"k] are called (synthesis)

“scaling sequences” (“scaling functions”, as stated by Rioul and Duhamel, can be defined
in a similar manner for wavelet series).

As explained in [Rioul], the DWT computes “wavelet coefficients” ¢;x forj =1, ..., J
and “scaling coefficients” by, given by

DWT{{n);2’ ,k2'} =c, Zx[n]h [n—27k] (14a)

and
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b,, =2 xnlg;[n-2"k], (14b)

where the h j[n—2’k] are the analysis discrete wavelets and the g,[n—27k] are the

analysis scaling sequences.

It should be noted that in the filtering implementation shown in Figure 3.8,
downsampling the highpass filter outputs at each stage (each stage representing different
scales) gives the wavelet coefficients at different scales of the continuous-time function x(2)
[Daubechies].

It can be proved that the inverse DWT reconstructs the signal from its coefficients by
(13), which is conveys a similar structure as that in Figure 3.8. The condition for
invertibility on the basic discrete-time wavelet y{n], when dyadically sampled in shift and
scale, is intimately related to the “perfect reconstruction™ constraint on quadrature mirror

and conjugate mirror digital filters [Quatieri]. A thorough discussion on this subject can be
found in [Vaidyanathan].

3.2.5 Wavelet Packets

In the previous section we presented the DWT as an octave-band, tree-structured filter
banks. Now we briefly generalize the concept to arbitrary tree structures beginning with a
single block of two-channel filter bank where each fiiter is followed by a two-to-one
downsampler, as in Figure 3.8. With this single blocks or stages a tree can be built up to a
depth J with different shapes (or branches). In Figure 3.9 all the possible tree structures of
depth less or equal to two are presented. ‘

SRR

Figure 3.9. All possible combinations of tree-structured filter banks of depth 2. Symbolically, a fork stands
for a two-channel filter bank with the lowpass on the bottom. From left to right is the full tree (STFT like),
the octave band tree (wavelet), the tree where only the highpass is split further, the two-band tree and
finally the nil-tree tree (not split at all) [Vetterli].

It is important to observe that the full tree (first from left to right), which yields a linear
division of the spectrum is similar to the STFT, and that the octave band tree (second from
left to right) actually performs a DWT as discussed in the previous section. All these
arbitrary tree structures are known as wavelet packets and were introduced as a family of
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orthonormal bases for discrete-time signals [Vetterli]. As might be intuitively perceived,
wavelet packets offer a full menu of decomposition (and reconstruction) structures from
which we can choose a particular tree depending on our requirements or based on a
particular criterion (whose discussion is out of the scope of this work. See, for example

[Mallat]).

To visualize the time-frequency analysis achieved by different wavelet packets filter
banks three different (binary) tree structures and its corresponding time-frequency tiling are
schematically sketched in Figure 3.10. It should be noted the time localization and
frequency resolution trade-offs for each one.
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Figure 3.10. Time-frequency analysis achieved by different binary subband trees. The trees are on bottom,
the time-frequency tilings on top. (a) Full tree or STFT. (b) Octave-band tree or wavelet series. (c)
Arbitrary tree or one possible wavelet packet [Vetterli].
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3.5 Noise issues

Finally, in this section we state the three most widely used (and treated in [Deller])
definitions of the Signal-to-Noise Ratio (SNR), which includes the classical SNR,
segmental SNR, and frequency-weighted segmental SNR.

Let us define three energy signals at time n: a noisy speech signal y(n), with a noise-free
equivalent s(n), and an enhanced processed signal $(n). Then we may express the error

signal relating them as
g(n) = s(i) - () (15)

thus, the error energy will be

E, =360 = Ylst)-s0)F (16)

n=-o

Furthermore, the energy contained in the speech signal s(n) is

E, = isz(n) (7)

n=--a0

and then, the resulting classical SNR measure in dB is

. S 5 ()
SNR =10log.. — =101lo 1 )
B T B S s - s

(18)

As is the case of this work, this quality measure could be used to evaluate the
recognition system, provided that the original speech signal s(n) is available, as in fact, it is.

Obviously, we are using this kind of measures in simulation.

Although, this measure represents an average error over time and frequency for a
processed signal, it is known [Deller] that classical SNR is a poor estimator of speech
quality for many different kinds of speech distortions.

Moreover, [Deller] explains that, the speech energy is time-variant, and if we are dealing
with broadband noise distortion with little energy fluctuation, the SNR measure should vary
on a frame-by-frame basis. In other words, for example, a deceptively high SNR can be
obtained if an utterance contains a high concentration of voiced segments, since noise has a
greater perceptual effect in low-energy segments, as unvoiced fricatives.

A much better improvement proposed for this kind of quality measures is an averaged
SNR measured over short frames. This frame-based measure is called the segmental SNR
(SNReg), and is defined as [Deller]
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m;
2.5 (n)
n=m;~N+1

1 M-
NR,,, =— ) 10log - 19)
g M Zo 10 m;

3 [sn) - s

‘_n=mj-N+l 4

where my, m;, ...my; are the end-times for the M frames, each of length N. This means that
a (classical) SNR is computed for each (typically 15 to 25 ms) frame over an utterance, and
then the SNR,, is obtained by averaging the SNRs of that utterance. This segmentation
allows an objective measure to assign equal weight to loud and soft portions of the speech
[Deller].

It is important to note that in some cases, problems arise with this segmental measure if
frames of silence are included (as in speech recognition), because (19) yields large negative
SNR¢,. However, there are several approaches to avoid this problem. A convenient
approach may be to identify silence frames and discard them regarding SNR, calculations.
But also, we can set a lower threshold and replace all frames with SNR;eg below it with the
threshold itself. A common reasonable lower threshold is 0-dB. On the other hand, frames
with SNR,, greater than 35 dB are not perceived by listeners as being significantly
different [Deller et al], and an upper threshold is needed to replace any unusually high
SNRgeg. Normally, a 35 dB upper threshold is used.

The last SNR variant or definition treated here is the frequency weighted segmental SNR
(SNRfyw-seg). This measure allows SNR (perceptual) weighting at different frequency bands,
which might be adapted to the human auditory system critical bands, and produce a SNR
closely related to a listener’s perceived notion of quality [Deller]. The definition is stated as

K
1 M ij,kl()loglO[Es,k(mj)/Es,k (m,]
SNR (5 = Zlmogm = < (20)
- ij,k

k=1

where M is the number of speech frames (indexed by my, ..., mp;), K is the number of
frequency bands, w;; are the noise-dependent perceptual weights, Esi(m;) the short-term
signal energy contained in the kth frequency band for the frame of noise-free speech
indexed by myj, and E the similar quantity for the noise sequence &(n).
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CHAPTER 4

A WAVELET-BASED FRONT END FOR ROBUST ASR

In this chapter we present the main structure, guidelines and basic implementation issues
of our experiments. We refer to the theory outlined in previous chapters and present some
new practical definitions.

As we do not present or refer to specific algorithmic and programming issues, we
consider that it should be noted that this report is and it should be treated as a brief
statement of theory and results attained in the most relevant (and only a very few) of our
experiments realized by a scheduled deadline.

The overall achievement of this work relies in months of self-learning wavelet and
multirate signal processing theory with extensive c-programming, scripting, debugging and
testing on the ITESM Speech Group Workstations. As the theory became clearly
understood we were able to build simple programs to test the basic concepts presented in
[Wickerhauser]. While reading recent literature that applied wavelet concepts to speech
recognition tasks we also introduced our selves to the Sphinx 3 codebase. When we were
able to decide which features to implement, we developed a set of C functions including a
wavelet packet library, and test it with single frame signals. The final step was to adapt the
waveZfeat Sphinx 3 preprocessor to work with wavelet packets using our libraries, carefully
devising it as to avoid further modification of the Sphinx 3 codebase.

Even though, all of this has been described in this last single paragraph it was the most
time-consuming task of our work; actually in the range of months of work. But, in the sake
brevity and to accomplish the intended purpose or this report we present the most relevant
theoretic issues in a small number of sections without treating any programming issues.

The first section describes the baseline implementation; this is the Mel-Frequency
Cepstral Coefficients (MFCC), which are the front end parameters Sphinx 3 was originally
engineered to work with. Then we cover the two types of experiments scheduled to be
included for this report, namely, extracting cepstral parameters from a wavelet-based
generated spectrum, and extracting wavelet transformed coefficients from a DFT generated
spectrum.

Results are presented in the next chapter in executive-summary fashion, but following
this chapter’s order.



4.1 The MFCC Baseline

4.1.1 Description

Mel-Frequency Cepstral Coefficients (MFCC) are the most common parameterization
algorithms used in current recognition tasks [Hansen]. To compute the MFCCs as presented
in [Davis] we must first window the speech waveform and STFT it. Then we compute the
energy in the STFT weighted by each mel-scale filter frequency response. Defining V(@)
as the frequency response of the /th mel-scale filter, the resulting energies for each speech
frame at time # and for the /th mel-scale filter, are yielded by

U,
E,,(nl)=— S|V, (@) X(n,0,) 1)

! k=L,

where L; and U, denote the lower and upper frequency indices over which each filter is
nonzero and where

4,= 31V, @) @)

k=L

which normalizes the filters according to their varying bandwidths so as to give equal
energy for a flat input spectrum [Quatieri].

With all this, the real cepstrum associated with E,e(m,l) is called the mel-cepstrum and,
as presented in [Davies] is computed for the speech frame at time » as

C,.ln,m]= %Rf" log{E, (n,D)} cosliz—Rﬂ— (l + %)m] 3)

1=0

where R is the number of filters. It should be noted that the even property of the real
cepstrum has been used to write the inverse transform in terms of the cosine basis, referred
to as the discrete cosine transform [Quatieri].

4.1.2 Experiments Specifications

In our experiments, we used a 40 filter mel-scale filter bank. Even though, other window
durations were used, only the 25 ms window results are reported due to the marginal
variability attained by the other experiments. Only the first 13 coefficients yielded by (3)
are kept as features. This includes the frame energy C,on, 0]. As kept the same
configuration for both databases, which means results are not to be compared between both
databases, but each database result against itself in different front end configurations. All
these because the different sampling rate of the databases.
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4.2 Subband-Based Cepstral Parameters
4.2.1 Description

To compute the SBC parameters we first compute the wavelet packet transform with the
(24-bands) tree shown in Figure 1. Then the wavelet coefficients at the end of each final
branch (or subband) of the tree are used to calculate the subband signal energies for each
frame as

. 1 &
E, . (ni)= —N—prj 4)

i J=1

where &; is the number of coefficients in each subband, and p;; is the jth wavelet packet
coefficient in the ith subband [Goswami].
This method proposed in [Erzin] yields the subband energies of the signal with

frequency bands similar to the Mel-frequency division, which exploits the properties of the
human auditory system.

At last, we compute the cepstral coefficients using energies yielded by (4). In fact, we
follow (3) and may rewrite it here for clarity as

Figure 4.1. Wavelet packet tree for computing mel-like subband energies presented in [Farooq].
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C, [nm]= Zlog{EW(n l)}cos|:2R (l+ :IJ :l

where R here is the number of bands.

Wavelet Filter Mel Filter
Filter Lower cut oft | Higher cut off Bandwidth Central Bandwidth
Number frequency (Hz) | frequency (Hz) (Hz) frequency (Hz) (Hz)

1 125 125 100 100
2 125 250 125 200 100
3 250 375 125 300 100
4 375 500 125 400 100
S 500 625 125 500 100
6 625 750 125 600 100
7 750 875 125 700 100
8 875 1000 125 800 100
9 1000 1125 125 900 100
10 1125 1250 125 1000 100
1i 1250 1375 125 1149 160
12 1375 1500 125 1320 184
13 1500 1750 250 1516 211
14 1750 2000 250 1741 242
15 2000 2250 250 2000 278
16 2250 2500 250 2297 320
17 2500 2750 250 2639 367
18 2750 3000 250 3031 422
19 3000 3500 500 3482 484
20 3500 4000 500 4000 556
21 4000 5000 1000 4595 639
22 5000 6000 1000 5278 734
23 6000 7000 1000 6063 843
24 7000 8000 1000 6954 969

Table 3. Frequency bands achieved by the 24-band wavelet packet decomposition and a 24 filter
mel-scale filter bank [Farooq].

4.2.2 Experiments Specifications

We experimented extracting SBC parameters using three different filters to compute the
wavelet packet coefficients. This are the Daubechies 20, Vaidyanathan 24, and Beylkin 18.
Daubechies 20 (tap) filters maximize the smoothness of the associated scaling function by
maximizing the rate of decay of its Fourier transform, and are a popular choice among the
literature [see Daubechies]. The Beylkin 18 filter coefficients was designed by placing
roots for the frequency response polynomial close to the Nyquist frequency on the real axis,
thus concentrating power spectrum energy in the desired band. The Vaidyanathan 24
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correspond to the filter sequence #24B constructed by [Vaidyanathan and Huong). This
filter has been optimized, for its length, to satisfy the standard requirements for effective
speech coding [Wikerhauser].

In summary, the front end computes de wavelet packet coefficients for each band using
the tree shown in Figure 4.1, then computes the log-energy of each one and extracts the
first 13 cepstral coefficients following equation (3). All this for each filter. Table 3 specifies
the frequency bands achieved by the wavelet packet decomposition versus those of a mel-
scale filter bank [Farooq]. We trained Sphinx 3 with noise-free data and decode with noise-
free data and five different signai-to-noise ratios noisy speech.
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4.3 Wavelet Transform Parameters
4.3.1 Description

Wavelet parameters have been used in different approaches in speech recognition tasks
[Hansen] [Farooq] [Goswami]. The most frequently used approach is to compute the log-
subband energies using a wavelet packet transform as for SBC parameters, and then apply a
wavelet packet or dyadic transform to the log-subband energies, and choose 12 or 13
coefficients from this last decomposition as features.

We propose to compute the DWT up to a 4th level to extract wavelet or approximation
coefficients from the STFT spectrum of the speech signal. We use the spectrum rather then
subband energies because we use the cepstrum (extracted from the IDFT applied to the log-
spectrum) of the speech signal to perceptually have a better intuition as to select which
wavelet coefficients carry vocal tract information without contributing to the pitch part of
the signal’s cepstrum.
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Figure 4.2. Daubechies 8 high-pass and low-pass filters and its respective spectrum.

With this intuitive approach, we decompose the log-spectrum of a speech frame with a
4-level DWT. Then we put to zero, say, the wavelet coefficients of the fourth level, and
reconstruct the log-spectrum through the corresponding inverse DWT. With the
reconstructed (and, obviously, modified) log-spectrum we compute the cepstrum to
perceptually account the changes in its shape. We do this with every wavelet space
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(coefficients) and several combinations of zeroed wavelet spaces. When we find that the
cepstrum has no pitch effect we define a feature vector from the wavelet coefficients that
yielded the reconstructed log-spectrum corresponding to the (“pitchless”) cepstrum.

In the proposal presented in this report we use a Daubechies 8 filter (shown in Figure
4.2) for the experiments. We show the case of a 25 ms speech frame of an /e/ sound
sampled at 8 kHz (200 samples). Figure 4.3 illustrates the hamming-windowed zero-padded
signal, its spectrum, log-spectrum and cepstrum. This is the same sound shown in Figure
3.1, but resampled at 8 kHz. The cepstrum in Figure 3.1 shows the pitch spike around the
50th sample, while in Figure 4.3 is around the 25th sample. Mainly, our goal in this part of
the experiment is getting a flat line rather than this (pitch) spike in the cepstrum.

The Figure 4.4 shows the different recovered log-spectrums calculated tagging the
wavelet spaces as wx where x is the level of the space, w stands for wavelet (or detail)
space, and v refers to the approximation space. It is interesting to note that until we start
combining zeroed wavelet spaces the recovered log-spectrum becomes smoother.

Obviously, as we zero lower-level approximation spaces we get a more shapeless noise-
like reconstructed signal as illustrated in Figure 4.5.

Finally, Figure 4.7 shows the different cepstrums for each one of the reconstructed log-
spectrums in Figure 4.4. It may be clear that we could even use the reconstructed log-
spectrums for taking a decision regarding which spaces carry better vocal tract information.

Figure 4.8 shows the wavelet and scaling coefficients of the four different spaces.
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Figure 4.3. Signal analysis of a 400 samples /e/ sound. The waveform was windowed with a hamming
window and zero-padded to last 256 samples.
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Figure 4.4. Different reconstructed log-spectrums. The iDWT is applied to the DWT of the original log-
spectrum (bottom-right), but with different options of zeroed spaces.
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Figure 4.5. Reconstructed log-spectra when approximation spaces have been put to zero.

4.3.2 Experiments Specifications

We realized experiments involving the design of features consisting in the energy of the
spaces V4, W4, and W3 (see Figure 4.6), and the 2th to 12th coefficients of the
approximation space V4 computed with the Daubechies 8 filters for a total of 13 feature
elements per speech frame.

We also experimented with a feature vector consisting in the energy of the space V4 and
the 2th to 14th coefficients of the approximation space V4.

w1

x

W2

X

w3 ————

w4 —

V4 Figure 4.6. DWT tree used for computing

wavelet transform parameters.
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original cepstrum is shown in the bottom-right.
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CHAPTER 5

RESULTS

This chapter is an executive summary of the results attained by the experiments
explained in the previous chapter. A brief description of each experiment (with references
were needed) precedes the tables of results. Not all the experiments described in the last
chapter are presented, but only those that provided relevant information by the time this
report was required. Other experiments are still in progress and we are engineering new
features to be tested on Sphinx 3. An actual description of our work and publications can be
found on the internet (http://juang.mty.itesm.mx).

Results could be better (and will be), although development of this experiments
didactically enlightened us to insight the knowledge of feature generation and wavelet
transform; it prepared us for future work.




Results are presented in the following tables. It should be noted that in all the
experiments we trained Sphinx 3 with noise free data.

Table 1 provides the word accuracy percentages (which will be referred simply as
accuracy in this chapter) attained with the experiments realized using the CSDigit database
with different signal-to-noise ratios in the utterances. Also the corresponding bar graphs are
illustrated in the top of each column of the table. The columns show the accuracy of each
front end against the different signal-to-noise ratios data utterances of CSDigit. The first
column corresponds to the baseline MFCC front end, which is configured to yield a feature
vector of 13 coefficients per frame using Equation (3) of chapter 4. The complete
specifications are explained in subsection 4.1.2. This MFCC front end attains the highest
accuracy over the others front ends when noise-free data utterances are used. Though, the
differences are marginal; all four front ends reach a 94% accuracy with CSDigit noise-free
data.

The second column displays the results for the subband based coefficients extracted with
the front end using a Daubechies 20 wavelet filter as explained in section 4.2.2 with the
wavelet packet tree shown in Figure 4.1. With noise-free and 20 dB SNR data Daubechies
20 is not better then the MFCC front end, but as the signal-to-noise ratio decreases in the
utterances Daubechies 20 clearly outperforms the baseline front end.

The third column displays the results of the front end with the Vaidyanathan 24 filter as
explained also in section 4.2.2. This filter has been optimized, for its length, to satisfy the
standard requirements for effective speech coding [Wikerhauser], and attains better results
than the baseline for all five different signal-to-noise ratios in the CSDigit utterances.

Finally, the fourth column refers to the front end with the Beylkin 18 filter, which attains
similar but better results than the Daubechies 20 front end. It also outperforms the baseline
front end for the 15 dB, 10 dB, 5 dB, 0 dB SNRs, while being as good as the MFCC front
end for the cases of noise-free and 20 dB SNR CSDigit utterances.

It can be observed in a global view of the graphs on Table 1, how the three proposed
front ends attain better results than the MFCC baseline front end as noise increases (i.e.
SNR decreases).

Another perspective of the same results is illustrated in Figure 5.1. Here we have groups
of four bar graphs, each group corresponding to each signal-to-noise ratio (or noise-free
data) and each bar corresponding to each front end, as specified in the label on the right of
the graph.

With this view it becomes clearer how the front ends attain almost the same (94%)
accuracy with noise free CSDigit data, and also in the 20 dB SNR case. The differences are
gradually more apparent as the signal-to-noise ratio in the utterances decreases; the baseline
MFCC front end is outperformed by all the proposed front ends.

Above 50% of accuracy, the most significant difference is found to be when 5 dB
CSDigit data is recognized by the Sphinx 3 platform. The best results in this case are
attained by the Vaidyanathan 24 filter front end, as it is in the rest of the experiments
presented in Figure 5.1. The actual difference between the Vaidyanathan 24 and the MFCC

front end for this case of 5 dB data is of 13.467%. under 50% of accuracy, namely the 0 dB
SNR case, this difference increases up to 17.356%.
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Word Accuracy with CSDigit for different SNR
100
90 H
80 44
s 70 H
@ 60 4
§ 50 H
¢ 40 1
% 30 H
20 1
10
0 Baseline (MFCC)| Daubechies 20 | Vaidyanathan 24 Beylkin 18
DNoise-Free 94.882 94.248 94.317 94.378
20dB 92.537 92.201 92.659 92.354
0 15dB 88.167 89.237 89.978 89.466
@ 10dB 78.397 81.842 83.936 82.515
B 5dB 58.109 65.686 71.576 66.825
W 0dB 26.01 35.467 43.366 38.263
Front End

Table 1. Word accuracy results of experiments with the CSDigit database. Quantities are
percentages. Graph on top shows different SNR word accuracy for each front end.

All this could be restated as shown in Figure 5.2, which is also a table, which illustrates
the percentage of improvement of accuracy of each proposed front end relative to the
baseline MFCC front end. The numbers plotted are calculated using the following formula:

FE,, -
p.r - ace BFEacc x 100
100 - BFE,,,

where Impr refers to improvement percentage, FE,. is the proposed front end accuracy
attained in a given (signal-to-noise ratio) experiment, and BFE,. is the baseline (MFCC)
front end accuracy attained for the same experiment conditions.

This last kind of graph we present shows the recognition improvement based in word
recognition accuracy for the three different front ends as the SNR goes from 20 dB to 0 dB,
1.e. as the signal is getting overwhelmed by the gaussian noise. The improvement
percentage presented is calculated for each SNR using the difference of accuracy between

the proposed and the baseline front end, over the baseline front end distance to achieving
perfect word recognition.
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Front ends word accuracy grouped for each SNR on CSDigit data.
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Wavelet transform parameters of section 4.3.2 are not reported here, as by this time we
have not been able to reach a significant level of accuracy. Nevertheless, design of a
collection of parameters using this scheme is still in progress. An actual state and
description of our work is found on the internet (http://juang.mty.itesm.mx).

Recognition accuracy with TIMIT data

70

61.9 50 3

60

58.6

59.5

50

40 -

30 -

Percentage

20

10 ~

0

Baseline (MFCC)| Daubechies 20 |Vaidyanathan 24

Beylkin 18

Noise-free 61.9 59.3

58.6

59.5

Front End

Table 2. Word accuracy results of experiments with the TIMIT database. Quantities are

percentages.

Finally, we present in Table 2 the results of the same experiments explained until now,
but with noise-free TIMIT data. As with CSDigit data, it can be noted that, although the
MFCC baseline front end is not outperformed when experimenting with noise free

utterances, the differences are also minimal, indeed.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work we present results of three different proposed front ends, which features
extraction techniques are based on cepstrum analysis of a wavelet generated spectrum. Now
we compare this results with the baseline front ends results, namely the Mel-Frequency
Cepstral Coefficients (MFCC).

First of all, we have enough information to conclude that all three proposed front ends
are as good as the MFCC baseline, regarding noise free speech recognition; the differences
of accuracy are minimal.

And, as can be seen for CSDigit data on Table 1 and Figure 5.1 of the previous chapter,
as we decrease the signal-to-noise ratio the wavelet-based front ends perform better than
MFCC. Figure 5.2 is very enlightening because it shows the prevalence of better



performance of Vaidyanathan 24 over all SNR experiments with a maximum of 32%
improvement for 5 dB SNR CSDigit utterances.

Therefore, our main conclusion is that wavelet-based parameters uphold their promise of
providing better features for speech recognition. Qur certainty increases as we deal with
greater SNR speech data.

Future Work

It is clear for us that a further understanding and fine tuning of the Sphinx 3 recognition
stages, modeling and overall system is needed before continuing.

On the other hand, though we were not able to show results on wavelet transform
parameters as explained in subsection 4.3.2, it has been stated [Hansen] that wavelet
features can be found to outperform the MFCC baseline for stressed speech. The insight as
the one presented in chapter 4 further expands the variety of experiments still to be realized.

Our future work will consist of further analysis of the features we presented and of those
not reported for a better consideration of the acoustic model. A start could be to use
principal-component analysis [Acero] to compute the optimum basis vector of first- and
second-order dynamic features Sphinx 3 implements for recognition.

Future work can be easily scheduled if we keep digging in the actual wavelet literature.
Different wavelet spaces can be proposed following compression and denoising wavelet
techniques. Moreover, a different wavelet mapping can be proposed similar to principal-
component-analysis to find efficiently discriminative wavelet-based features.
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