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RESUMEN 
 
 
 
La capacidad de canal en los canales inalámbricos se ha convertido en uno de los aspectos 
principales dentro de las comunicaciones inalámbricas. Mejoras significativas pueden 
lograrse con los canales MIMO (Múltiple Entrada -  Múltiple Salida) incrementando el 
numero de antenas en las dos partes, tanto en el transmisor como en el receptor. La 
recepción en este tipo de canales puede ser realizada a través de la codificación en espacio-
tiempo, donde la unión de los diseños de corrección de errores, modulación, diversidad en 
la transmisión y diversidad optima en la parte de recepción es realizada. Un importante 
incremento en el desempeño de los canales inalámbricos de banda limitada con esta técnica 
es posible. Uno de los primeros y mas importantes sistemas de codificaciones de canal para 
sistemas MIMO es la técnica de codificación en espacio-tiempo por capas creada por Bell 
Laboratorios (BLAST). Existen diferentes variantes de este algoritmo para tratar de obtener 
una reducción en la complejidad material que permita ser llevado a la realidad. Una de estas 
variantes es el algoritmo Vertical BLAST (VBLAST), mismo que fue escogido durante la 
realización de esta tesis debido a que presenta el mejor compromiso entre la complejidad y 
su desarrollo contra errores, adicionalmente es el único que no cuenta con codificación de 
canal, lo que hace posible la experimentación con él. La parte de procesamiento de la señal 
en la recepción puede realizarse de diferentes maneras. Uno de los objetivos de la tesis es el 
análisis de dichas variantes desde el punto de vista complejidad-desarrollo. Tres variantes 
del algoritmo son analizadas: Descomposición por Valores Singulares (SVD), 
Descomposición Ordenados QR (SQR) y mínimos cuadrado (LS). Una comparación con el 
algoritmo ML también es hecha. Se demuestra que el algoritmo LS contiene las mejores 
características para ser implementado físicamente. Por otro lado, una codificación de canal 
fue hecha para disminuir la probabilidad de error dentro de sistema, y se analiza también el 
incremento de complejidad dentro del sistema contra la versatilidad en cuanto a su forma de 
detectar los errores. Se presenta panorama del trabajo futuro donde se introduce la 
posibilidad de integrar técnicas de codificación modulada así como la implementación 
física del sistema en un DSP (Digital Signal Processor - Procesador de señales digitales). 
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ABSTRACT 
 
 
 
Channel capacity in wireless channels has become the prime aspect in mobile 
communications. Significant improvements can be achieved with MIMO (Multiple Input - 
Multiple Output) channels by increasing the number of antennas at both the transmitter and 
the receiver. Reception in this type of channels can be done with space-time coding where a 
joint design of forward error correction, modulation, transmit diversity and optional receive 
diversity is made. An important increase in the throughput of band-limited wireless 
channels with this technique is possible. One of the first and most important space-time 
coding systems for MIMO channels is the Bell Laboratories Layered Space-Time (BLAST) 
coding technique. Different variants of this algorithm exist in order to reduce the 
computational complexity to make it realizable. One of these variants is the Vertical 
BLAST algorithm, which was chosen because presents the best tradeoff between 
complexity and performance of all; otherwise, it has not real channel codification. 
VBLAST has different realizations depending on the way the signal processing at the 
receiver is performed. One of the aims of the thesis is to analyze these realizations from a 
performance-complexity standpoint. Three variants of this algorithm are analyzed, the 
Singular Value Decomposition (SVD), the Sorted QR Decomposition (SQR) and the Least 
Square (LS) VBLAST. Comparison with the ML (Maximum Likelihood) algorithm is also 
made. It is shown that the LS algorithm is the best suited for hardware implementation. On 
the other hand, additional channel codification is made in order to decrease the error 
probability, and the posterior analysis of the additional complexity. We will present future 
work which includes the introduction of coded-modulation techniques and the possibility of 
make a physical implementation in a DSP (Digital Signal Processor) system. 
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1. 

INTRODUCTION 
 
 
 
Communications services have experienced and exponential increase in the past fifty years. 
Starting with the invention of transistor in 1947, and soon after the creation of integrated 
circuits (IC), the development of high integration technology, with small power 
requirements, low weight and high response speed were possible. This way, the creation of 
satellite communications in 1965 was made a reality [1], beginning with the era of wireless 
communication services. 
 
At present time, wireless and mobile communication services are becoming a very 
important issue in information technology. We can highlight cellular and wireless networks 
(GSM – Global System for Mobile, CDMA – Code Division Multiple Access, 
IEEE802.11x and Hyperlan) as the main wireless and mobile communications means up to 
this day.  These wireless technologies arose thanks to the simultaneous development of 
both digital communications techniques and semiconductor devices, which allow high 
integration circuit design of complex signal processing functions encountered in modern 
communications systems. Thus, efficient mobile communications systems are available, 
allowing the transmission of information which was unimaginable only ten years ago, and 
giving rise to huge economic implications (e-commerce, e-business, etc). 
 
As a result, an explosion of new communication services came out, due to this important 
advance in wireless and mobile communications. Demands for capacity in wireless 
communications have been rapidly increasing worldwide in order to satisfy the 
requirements of these new services. Today, most fixed public communications services 
offer data, audio and multimedia communications. However, for mobile systems, things are 
not that easy since wireless channels present serious drawbacks of limited available 
spectrum, and capacity needs cannot be met without significant increase in the spectral 
efficiency (bit/sec/Hz) of these channels. The prime aspect in the further advance of 
wireless communications is inescapable: the development of new and efficient 
communications systems requires improved signaling schemes and a detailed and accurate 
measurement and characterization of the wireless channel [4].  
 
Today, the main Wireless Local Area Network standard (WLAN) is IEEE802.11b which 
can achieve 11Mbps. This data rate is enough for applications such as voice, audio and 
video downloading in real time; nevertheless, for the new envisaged multimedia 
applications, such as interactive 3D video games, biomedical imaging applications, etc, 
these data rates are not enough. In addition, mobility is not a characteristic feature of this 
system. On the other hand, the main mobile communications standards are GSM and GPRS 
(General Packet Radio Service) which are capable of sending information at bit rate 
connections ranging between 5.35Kb/s and 171Kb/s. Mobility is the prime feature of these 
systems, but the bit rate offered is not enough so as to support multimedia communications 
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in real time and with high quality [14]. As we can see, the trend of wireless systems is to 
converge in such a way that a communications system supporting both mobility and high 
data rates for multimedia services is to be available in the short term. This way, wireless 
systems will become an excellent alternative to the wired counterparts. 
 
As an example, the new IEEE802.16 standard, also known as WiMAX (World 
Interoperability for Microwave Access) has been created to try to fulfill this requirement. It 
is claimed that it will support transmission speeds of up to 30 – 130Mb/s in the IEEE802.16 
version, and up to 170Mb/s in the IEEE802.16a version. Moreover, it is expected that the 
coverage area will be of 2 kilometers in IEEE802.16 and up to 30 kilometers in 
IEEE802.16a, as opposed to the IEEE802.11b which can only offer coverage areas of 50 up 
to 150 m [15][16]. The considerable increase in bit rate in this new standard makes possible 
mobile systems with communications services similar to the wired counterpart, i.e. 
multimedia mobile communications. Nevertheless, it is evident that we need new 
technologies that make an efficient use of the spectrum, which derives in the need for 
transmission techniques offering high spectral efficiency. In this thesis, this need is 
addressed where new transmission techniques which are spectral efficient are investigated. 
 
At the moment, different alternatives exist trying to achieve the design of communications 
systems with high spectral efficiency. Among these techniques, we can distinguish one that 
is potentially important and which uses arrangements of antennas at both, transmitter and 
receiver end. It is known as MIMO systems (Multiple Input – Multiple Output) [5][6].   
   
The MIMO systems theory has demonstrated channel capacities that depend linearly on the 
number of antenna pairs utilized (in the transmitter and receiver side) [7]. Nevertheless, the 
detection procedure is very complex since this implies the knowledge of the channel’s 
spatial characteristics. Moreover, the omnidirectional multipath propagation and the 
Rayleigh fading models are no longer accurate in this kind of scenarios. This means that 
multiple antenna transmitters and receivers will not work properly if designed without a 
precise understanding of the spatial-temporal characteristics of the multipath channel.  
 
The detection procedure in MIMO systems is generally known as Space-Time Coding 
(STC) [8]. MIMO systems were possible when space-time coding algorithms appeared. The 
principal idea of this approach is to jointly design modulation, coding and equalization. 
Space-Time coding can be divided into three types: Space-Time Block Codes (STBC) [8], 
Space-Time Trellis Codes (STTC)[9] and the so-called Bell Labs Layered Space-Time 
Architecture (BLAST) [10]. Layered Architectures are also referred to as Spatial 
Multiplexing techniques. 
 
Among the different code techniques in space-time, the BLAST architecture is the one that 
has demonstrated the advantages of the MIMO systems in a practical way [17]. 
 
The BLAST system was proposed by Foschini at the end of the 80s [4]. This architecture 
approaches the theoretical limits and was called DBLAST (Diagonal Bell Labs Layered 
Space-Time) [11]. DBLAST architectures use multiantenna arrays and an elegant diagonal 
layered coding structure in which blocks of information are dispersed across diagonals in 
space–time. However, DBLAST suffers from computational complexity, making it 
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inappropriate for a hardware implementation. A simplified version of the DBLAST 
algorithm is the Vertical BLAST (VBLAST). This approach can reach tens of bits/s/Hz 
with multiple antennas and reduced complexity. In a VBLAST system, the uncoded data 
streams are demultiplexed into M substreams, each being transmitted simultaneously by 
one transmit antenna. At the receiver, the received signals from N received antennas are 
detected by a decision feedback algorithm. At present time, multiple realizations of the 
VBLAST exist whose aim is to reduce the computational complexity.  
 
As stated above, the aim of this thesis is to analyze the so-called space-time coding systems 
for high-rate mobile communications systems. Specifically, one of the goals of this thesis is 
to analyze the VBLAST architecture from a performance-complexity standpoint. Different 
approaches of this algorithm are considered namely, the Singular Value Decomposition, the 
Sorted QR Decomposition and the LS algorithm [12]. These variants are compared to the 
near optimum Maximum Likelihood (ML) algorithm proposed by Agrell in [13]. This 
algorithm will be used as a reference to assess the performance of the different VBLAST 
approaches. This way, a selection of the VBLAST approach presenting the best tradeoff 
performance-complexity can be made and justified. 
 
The second goal of this work is to envisage some improvements to the VBLAST algorithm 
without rendering it too complex. The main idea is to improve its performance, as 
compared to the conventional VBLAST and Agrell’s algorithms, while maintaining its 
complexity as reduced as possible, in order to consider a hardware implementation. This 
idea is carried out with the addition of a simple convolutional channel coder to the 
VBLAST architecture. At the receiver, this convolutional code is decoded by means of the 
Viterbi algorithm. 
 
The document presents simulation results which compare Agrell’s algorithm and the 
VBLAST variants from a complexity and performance point of view. It will be shown that 
the LS algorithm achieves the best tradeoff. In addition, a new space-time coding scheme is 
proposed which comprises a convolutional code at the transmitter together with the BLAST 
encoder, and the Viterbi algorithm concatenated with the VBLAST decoder is used at the 
receiver. It is shown that this system can achieve a 2dB gain in terms of Block Error Rate 
(BLER) performance. The computational complexity was estimated and it is shown that a 
hardware implementation of this system is still possible. 
 
The thesis is organized as follows. In this chapter, an introduction to the subject and a 
justification of this thesis is given. Chapter two presents an introduction to MIMO 
(Multiple Input – Multiple Output) systems and their performance in comparison to SISO 
(Single Input – Single Output) systems. It introduces some basic notations and 
mathematical tools. Also we present a brief introduction to space-time coding and its 
theoretical performance. Chapter three presents a near optimum algorithm based on 
Maximum Likelihood (ML) decoding/detection. This algorithm serves as a benchmark for 
the other VBLAST-based algorithms discussed here. The BLAST architecture for ST 
decoding is unveiled in chapter four. Its complexity is still quite important; as a result 
detailed descriptions of VBLAST variants with reduced computational effort are presented 
in chapter five. In this chapter we study the performance-complexity characteristics of each 
variant and discuss which algorithm is best suited for hardware implementations. In chapter 
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six, the design of a simple space-time coding scheme consisting of a conventional channel 
coding scheme and the VBLAST algorithm is proposed so as to reduce the BLER 
performance of the overall system. Finally, conclusions and future work/perspectives are 
discussed in chapter seven. 
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2 

CHARACTERIZATION AND PERFORMACE OF 
MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS 
COMMUNICATION SYSTEMS 
 
 
 
2.1 INTRODUCTION 
 
In this chapter concepts of multiple-input multiple-output (MIMO) versus single-input 
single-output communications systems (SISO) will be analyzed.  In MIMO systems, 
signaling goes beyond simple antenna diversity. Data streams of symbols are broken and 
separated into M new sub-streams (where M is the number of transmit antennas) which 
determine the lower number of multipaths in the free space.  
 
This chapter presents an introduction to MIMO concepts and signal processing, 
emphasizing the potential gains in channel capacity by increasing the spatial signals on the 
transmitter and receiver. The second part of the chapter presents a brief panorama of space-
time coding techniques as a preview to the near-optimum closest point (CP) decoder 
algorithm which will be described in the next chapter. We will see that simpler suboptimum 
decoding techniques such as the BLAST algorithm are needed in order to render MIMO 
systems feasible. The major topics discussed in this section are listed below: 
 

• Section 2.2: Characterization of MIMO channel 
• Section 2.3: Channel capacity for conventional antenna arrays 
• Section 2.4: Performance limits of MIMO systems 
• Section 2.5: Introduction to Space-Time coding 
• Section 2.6: Conclusions. 

 
2.2 CHARACTERIZATION OF MIMO CHANNELS 
 
MIMO systems are defined as an array of multiple antennas at both, receiver and 
transmitter. This kind of systems is also called MEA (Multiple Element Arrays) [4]. 
Systems with a single antenna at the transmitter and receiver can obtain excellent 
performance with conventional channel coding and optimized modulation techniques at the 
expense of increased bandwidth. Nevertheless, MIMO systems can obtain similar 
performance with a couple of antennas and simple modulation and without increasing 
bandwidth. This makes the system efficient and with low required transmit power. 
 
In MIMO systems, M antennas are used to transmit information signals and N antennas at 
the receiver detect them. The input data stream is divided into M sub-streams, each of 
which is transmitted by one of the M transmit antennas available. The M transmit antennas 
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are also synchronized, and use the same frequency band, which basically can be viewed as 
M virtual transmission channels with the same signal constellation. It is important to notice 
that in these systems the transmit power is divided into the M transmit antennas; therefore, 
the average symbol energy is the same. In a general MIMO system, any number of transmit 
and receive antennas can be used; however, in this thesis it is assumed that the number of 
received antennas is equal or greater than the number of transmit antennas, i.e. MN ≥ . 
 
The channel is assumed to be frequency-flat with block Rayleigh fading (some Rician and 
fast Rayleigh fading characteristics are discussed in appendix A). This means that the 
channel impulse response is random but it remains constant during the transmission of a 
block. This block comprises L information symbols. In addition, the channel is corrupted 
by AWGN noise. These assumptions are not unrealistic since this scenario is usually 
encountered in indoor applications such as WLAN environments. Mathematically, the 
channel can be represented by the channel matrix H whose elements hij represent the link 
between the i-th transmit antenna and the j-th receive antenna. 
 
Next section will show us all the fundamentals of MIMO systems and some of the 
mathematical aspects. We must consider that for any WLAN system, the normal 
supposition is that distances are short and the fading is constant. Also, in indoor 
environments, line of sign is very rare, so it is correct and very close to reality consider 
block Rayleigh fading with AWGN noise.  
 

2.2.1 BASIC DEFINITIONS AND FUNDAMENTALS 
 

2.2.1.1 Multipath Propagation 
 
In wireless communications, there are a lot of objects, such as houses, buildings, trees, 
which act as reflectors for the radio waves. They produce reflected waves with attenuated 
amplitudes and phases. As a modulated signal is transmitted, it could have reflections that 
create new waves with multiple directions and multiple propagation delays. These reflected 
waves are called multipath waves [7]. These multipath waves are collected by the receiver 
antenna at any point in space; they may be combined in a constructive or destructive form, 
depending on the random phases. The sum results in a spatially varying wave field. When 
the handset is moving, the receiver can get waves which vary widely in amplitude and 
phase, and when the handset is stationary, the amplitude variations are due to the movement 
of surrounding objects. This amplitude fluctuation of the received signal is called signal 
fading. 
 

2.2.1.2 Doppler Shift 
 
Doppler shift consist in a shift in frequency caused by the relative motion between 
transmitter and receiver. It is proportional to the speed of the mobile unit. Consider a single 
tone of frequency fc which is transmitted; the received signal consists of only one wave 
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coming with an angle θ with respect to the direction of the vehicle motion. The Doppler 
shift denoted by fd is given by [15] 
 

θcos
*
c

fv
f c

d =      2.1 

 
where v is the speed of the vehicle and c is the speed of light. In a multipath propagation 
environment, the maximum Doppler shift is 
 

c
fv

f c
d

*
max =      2.2 

 
This shift is referred to as maximum fade rate. As a result, the single tone transmitted gives 
rise to a received signal with a spectrum of nonzero width, which is called frequency 
dispersion of the channel. 
 

2.2.1.3 Diversity 
 
Diversity is used to reduce the multipath effects and improve the reliability of transmission 
without increasing the transmitted power or sacrificing bandwidth. This technique requires 
multiple replicas of the signal at the receiver.   
 
The basic idea is that two or more independent samples of a signal are transmitted. These 
will fade in an uncorrelated manner, in such a way that some samples are severely faded 
while others are less attenuated. The probability of all the samples being simultaneously 
below a given level is lower than the probability of a single individual sample. Thus, 
combinations of the various samples result in a greatly reduced fading and improved 
reliability of transmission [9][10]. 
 
Diversity techniques are used in mobile communications in a number of ways in order to 
improve performance. According to the domain where diversity is introduced, the 
techniques are classified into time, frequency and space diversity. The reader is referred to 
appendix B for a more detailed discussion.  
 
Now, we will discuss how these phenomenons are related to MIMO communications 
systems. 
 

2.2.2 MIMO CHANNEL MATRIX. 
 
In MIMO systems, it is useful to use a vector/matrix notation. A vector of received signals, 
y(t) (as seen at the input of the N received antennas), may be estimated from the transmitter 
vector, x(t). The output vector is related to the input vector by the channel transfer matrix 
H(τ,t), where τ is the channel dispersion and t is the time where transmission occurs 
according to the following equation [1] 
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Matrix Hij(τ,t) is the channel impulse response of the virtual channel from the ith transmit 
antenna to the jth receive antenna. For simplicity, as stated previously, if we assume block 
fading, the MIMO channel can be represented as a time invariant channel model. In this 
case, there is no frequency or time dependency in the channel; it results in a constant H 
matrix, which makes the estimation of the received signal as 
 

)(
2
1)( tt Hxy =      2.5 

 

2.2.3 PROCESSING THE MIMO SIGNAL. 
 
The MIMO system is a complicated structure, whose better representation is based on 
matrix/vector analysis. Processing at the transmitter and receiver is needed in order to 
produce the set of received signals with highest overall capacity. All this operations will be 
discussed in a basic form in this section, and taking as a reference the block diagram shown 
in figure 2.1. 
 

 
Figure 2.1: The matrix representation of signal processing operations in a MIMO system. 

 
In communications systems, the magnitude of a signal vector represents the total signal 
power. In figure 2.1, block V is the processing operation on the transmitted signal vector, 
x(t), to produce a new set of signals to be fed into the array of transmitter antennas, Vx(t). 
Matrix V is a MxM unitary matrix with the property VV’=I (where operator ‘ means the 
transpose matrix), which means that no change of the geometrical length of vectors is 
incurred, i.e., we are not adding any power to the total transmitted signal. In MIMO 
systems, transmit power does not depend on the number of transmit antennas. 
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After the channel operates on the transmitted signal to produce HVx(t), the receiver 
operates in the incoming signal with matrix U’, so we get the final output signal vector 
 

)(
2
1 txHVU'z(t)

D876
=      2.6 

 
It is very important to remember that operator U’ is an NxN unitary matrix with the 
property U’U=I. This condition, as we saw, assures that we have not added or subtracted 
any signal power.  
 
Now, let us propose an algorithm on the MIMO channel which makes that operation U’HV 
may be replaced by a diagonal matrix D. This new operation consists of diagonal elements, 
all of which are positive and constant. Matrices U and V are defined so that the 
transmission operation generates matrix D (recall that the number of transmit antennas must 
be lower or equal to the number of receive antennas MN ≥ ). This way, the estimation 
process at the receiver is greatly reduced. 
 
Mathematically, this means that the MIMO channel can be viewed as a set of M separate 
channels from transmitter to receiver with the condition MN ≥ .  If we have M > N the 
diagonal matrix would support a maximum of N separate channels. Thus, the number of 
separate channels with M transmit and N receive antennas is ),min( NM , which means that 
the number of separate channels is the minimum between M and N. 
 
The signal processing steps described above can be done in several ways. In this thesis, we 
present four detailed descriptions: Maximum Likelihood (ML) based in the closest point 
algorithm and three variants of Vertical Bells Labs Layered Space-Time Architecture 
(VBLAST) [16]. They will be described in following chapters. 
 

2.2.4 PHYSICAL INTERPRETATION OF MIMO CHANNELS 
 
As we saw, a MIMO channel has the particular characteristic of creating separate virtual 
channels that depend only on the number of transmit and receive antenna pairs, which 
obviously is reflected in the channel capacity obtained by the system [19] 
 







 +≈ 02 1log** SINR

M
NBMC     2.7 

 
Notice that equation 2.7 is different to SISO systems because even though the SINR 
increases by a factor N/M, the overall capacity is multiplied by M channels. The main idea 
here is to transmit data using many different low-powered channels rather than using one 
single high-powered channel.  
 
The physical interpretation of a MIMO channel is shown in figure 2.2. Matrix V operates 
on an input vector x(t). For example, if we have a frame with M bits of information, then 
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each bit in the frame will be transmitted by one transmit antenna. Each column in V 
contains the M amplitudes and phases for a symbol sent through the array of M transmit 
antennas. From matrix V is important to visualize that each antenna is defined by a unique 
spatial radiation pattern, so each of the columns have unique amplitudes and phase 
weightings. For instance, column 1 in V assigns a radiation pattern to x1(t), column 2 
assigns a radiation pattern to x2(t), and so on. 
 
Matrix U operates over the received signals from the N receiver antennas. Each column of 
U defines a radiation pattern that recognizes one of the original symbols sent by the 
transmitter (see Fig. 2.2). The weighting operation of V and U using unique antenna 
patterns to each separated data streams creates individual symbols from the others that 
come from the multipath channel allowing a correct estimation of each transmitted symbol 
by the corresponding receive antenna. 
 
Remember that multipath channel is very complicated in practice, and antenna patterns 
have finite resolution, so the MIMO processing can not be simplified with a few dominant 
scatters and get perfect separation of symbols; however the basic concept (which is the 
main propose of this sections) has been explained. 
 

 
Figure 2.2: Physically, MIMO spatial coding sends different symbol streams to and from different 

directions of space. 
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2.3 CHANNEL CAPACITY FOR CONVENTIONAL ANTENNA 
ARRAYS 
 
We have explained the fundamental concepts of MIMO systems and receive processing; 
however, the main question is the increase in the channel capacity achieved by these 
systems. This section discusses the performance of multiple antenna systems, starting from 
the SISO, SIMO and MISO systems, the ancestors of space-time block codes and MIMO 
architectures.  
 

2.3.1 SINGLE-INPUT SINGLE-OUTPUT (SISO). 
 
The simplest and the baseline for comparison will be SISO system, which is shown in 
figure 2.3. SISO systems use only one transmit antenna with PT input power. We can 
estimate the Shannon channel capacity for this system by the expression [11] 
 

( )02 1log SINRBC +⋅=     2.8 
 
Where B is the available bandwidth and SINR0 is the average signal to noise plus 
interference ratio. Note that from digital communications theory, the available bandwidth 
limits the symbol rate, but not necessarily the bit rate. It is very common to forget that we 
can transmit more that one bit on a single complex baseband symbol. While symbols with 
more than two states are more susceptible to noise and interference, higher SINR makes 
reliable transmission possible and helps to approach Shannon capacity limit in systems. 
 

 
Figure 2.3: A SISO antenna configuration. 

 

2.3.2 SINGLE-INPUT MULTIPLE-OUTPUT (SIMO). 
 
A SIMO system is shown in figure 2.4. N number of antennas are used at the receiver, 
producing N copies of the faded signal at the receiver. Although it is almost impossible, we 
must say that if N signals have the same amplitude, they can produce an N2 increase in 
signal power. Of course, there are not N sets of noise/interference that can add together as 
well. Noise and interference add incoherently (not with the same amplitude) to create an 
increase in noise power less that N. Therefore, the increase in SINR is [3] 
 

[ ]
[ ] 0

2

NSINR
ceInterferenNoiseN

werSignaltoPoNSINR =
+

=    2.9 
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So, channel capacity for this system is approximately: 
 

( )02 1log SINRNBC ⋅+⋅≈     2.10 
 
which is a little higher that SISO system. This difference at the receiver side implies an 
increase in the signal to noise interference ratio when multipath channels are used. As an 
example, when we are in open-space, the receiver antenna elements are phased together to 
form an array with maximum gain in the direction of signal arrival. This peak causes a 
subsequent increase in SINR and channel capacity. But if we are in a multipath channel, the 
direction of signal arrival may be dispersed throughout the azimuth. Figure 2.4 show the 
SIMO diagram. 
 

 
Figure 2.4: A SIMO antenna configuration. 

 

2.3.3 MULTIPLE-INPUT SINGLE-OUTPUT (MISO). 
 
In this system (see Fig. 2.5), M antennas are used at the transmitter. The total transmitted 
power is split into M transmitters. This way, although the power per antenna drops, signals 
are transmitted in such a way that they add coherently at the receiver, producing a net M-
fold increase in SINR, as compared to the SISO case. Since we have only one receiver, 
noise/interference power should be the same. The overall increase in SINR becomes [1]: 
 

[ ]
0

2 / MSINR
ceInterferenNoise

MPowerSignalMSINR ≡
+

−
≈    2.11 

 
The channel capacity for this system is [3]: 
 

( )02 1log SINRMBC ⋅+⋅≈      2.12 
 

This channel capacity is higher than the SISO case. The physical interpretation at open-
space is that the M transmitter antennas are phased and directed towards the receiver. The 
directivity created, causes an increase in the SINR and channel capacity. In a multipath 
scenario and with channel state information known at the transmitter, it is possible to 
change the phases and signal weighting on the antennas in order to maximize receiver 
SINR and channel capacity.  
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Figure 2.5: A MISO antenna configuration. 

 

2.3.4 MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO). 
 
Finally, the general structure of a MIMO system is presented in figure 2.6. It consists of M 
transmit and N receive antennas. Signals are to be transmitted and received with such 
phasing as to maximize the total signal power through the wireless channel. The result is 
(approximately) an M*N-fold increase in the SINR of the received signal. The channel 
capacity for this kind of systems is given by 
 







 +≈ 02 1log** SINR

M
NBMC     2.13 

 
From this equation we can observe that maximum channel capacity is given when multiple-
inputs and multiple-outputs are placed in the same system. A physical interpretation at 
open-space is that both transmitter and receiver use their multiple antennas in a phased 
array configuration, increasing the SINR substantially. When in a multipath scenario, in 
order to achieve the maximum channel capacity, transmit and receive diversity is used to 
achieve the highest possible SINR in the overall link. 
 

 
Figure 2.6: A MIMO antenna configuration. 

 
As a comparison between all systems, consider a system with M=2 transmit antennas and 
N=4 receive antennas. This implies that the SIMO system has one transmit and four receive 
antennas, the MISO system has two transmit and one receive antennas and the MIMO 
system has two transmit and four receive antennas. Figure 2.7 shows the channel spectral 
efficiency as a function of the SNR at the receiver for each one of the four systems. We can 
observe from the figure that MIMO systems can obtain much better performance. The 
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number of bits we can transmit is increased almost four times with respect to SISO 
systems. Also, the figure shows that when we introduce diversity at the receiver, the 
efficiency is increased faster that if the diversity is introduced at the transmitter. It must be 
noted that MIMO systems can be either square (same number of receive and transmit 
antennas) or not; but for this thesis, we assume that the number of transmit antennas is 
smaller or equal than the number of receive antennas.  
 

 
Figure 2.7: Comparison between different kinds of array system. 

 
2.4 FADING ASSUMPTIONS IN MIMO SYSTEMS 
 
As we saw in last section, MIMO systems set individual channels between pairs of transmit 
and receive antennas, which are modeled by an independent flat Rayleigh fading process. 
In this section, we limit our attention to the analysis of the narrowband channels, so that 
they can be described by frequency flat models. 
 
Rayleigh models are realistic for environments with a large number of scatterers. In 
channels with independent Rayleigh fading, a signal transmitted from every transmit 
antenna appears uncorrelated at each of the receive antennas. As a result, signals 
corresponding to every transmit antenna have a distinct spatial signature at the receive 
antenna [2]. 
 
The analysis of the performance of MIMO systems in more realistic situations where the 
channel matrix coefficients are random distributed can assume that channel coefficients are 
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estimated at the receiver but unknown at the transmitter. Furthermore, we assume that the 
elements of channel matrix are zero mean Gaussian complex random variables, each with 
variance of ½. So, each entry of the channel matrix has a Rayleigh distributed magnitude, 
uniform phase and expected magnitude square equal to unity, i.e. [ ] 1

2
=ijhE . The 

probability density function (PDF) for a Rayleigh channel with distributed random variable 
is 2

2
2
1 zzz += , where z1 and z2 are two statistically independent Gaussian random 

variables, each with zero mean and variance σr
2 [3] 

 

( ) 0,
2

2

2
2 ≥=

−

zezzp r

z

r

σ

σ
     2.14 

 
where σr

2 is usually normalized to ½. According to how frequently the channel coefficients 
change, three kinds of scenarios can be distinguished, namely 
 

1. Fast Fading Channel. The entries in the channel matrix change randomly at the 
beginning of every symbol interval T and are constant during one symbol interval.  

2. Block Fading Channel. The entries in the channel matrix are random and constant 
during a fixed number of symbol intervals, which is shorter than the total 
transmission. 

3. Slow or Quasi-Static Fading Channel. The matrix H is random but constant during 
transmission.  

 
As indicated above, we will consider only block fading channels. Appendix A gives a more 
general treatment of fading channels in situations other than block fading.  
 
2.5 INTRODUCTION TO SPACE-TIME CODING 
 
In previous section we saw that information capacity of wireless communications systems 
can be increased considerably by employing multiple antennas at the transmitter and 
receiver, where capacity grows linearly with the minimum number of antennas.  
 
One fact of wireless communications is inescapable: the development of new systems 
requires that the channel is measured and modeled to an increasingly higher degree of 
detail. We can no longer make approximations about the spatial channel, such as omni-
directionality in the multipath propagation and Rayleigh fading. Multiple antenna 
transmitters and receivers will not function properly if designed without an understanding 
of the spatio-temporal characteristics of the multipath channel. 
 
The multipath propagation has two unpredictable types of behavior: frequency selectivity 
and spatial selectivity. The first of them is caused by multipath components which arrives 
from multiple and different delays. The second is caused by multipath components arriving 
from different directions in space. Frequency selectivity is a well known phenomenon, as 
opposed to spatial selectivity. Spatial selectivity is an alternative against fading and has 
been used a lot with the new space-time applications. 
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Advances in channel coding make it possible to approach Shannon capacity limits [17] in 
systems with single antenna links (Single Input – Single Output) [19]. However, as we 
described in previous paragraphs, even more significant improvements can be achieved 
with MIMO channels. It has been demonstrated that cellular SISO systems can achieve 
spectral efficiencies between 1-2 bits/sec/Hz whereas MIMO systems with 8 antennas at 
each side can obtain 37 bits/sec/Hz at an SNR of 20 dB [20]. 
 
In order to approach those capacities, MIMO channels employ space-time coding [5][6]. 
Space-time coding techniques are used with multiple antenna arrays. Coding is performed 
in spatial and temporal domains, spatial domain means multiple antennas and temporal 
domain means various time slots or time periods. The spatial correlation is used to exploit 
the MIMO channel fading and minimize transmission errors at the receiver.  This kind of 
transmission can achieve transmit diversity and power gain over uncoded systems without 
sacrificing the bandwidth. There are basically three types of coding structures: space-time 
block codes (STBC)[18], space-time trellis code (STTC) [13] and space-time layered codes 
(LST) [16]. A general space-time coding system is shown in figure 2.8. The main process 
in all schemes is the exploitation of the multipath and to obtain performance gains [8].  
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2.8: General scheme of a space-time system 
 

2.5.1 SPACE-TIME BLOCK CODES (STBC) 
 
The first space-time coded system was created by Alamount [18] (figure 2.9). The general 
idea is to consider as input to the encoder a group of k symbols transmitted at different time 
slots. This can be seen as arranging the symbols into a code matrix, where columns 
represent the symbols transmitted by one of the transmit antennas and rows represent the 
time intervals of transmission (see figure 2.9). The code rate of the system is defined as 

pkr /= ; where p is the number of transmission intervals and k is the number of transmit 
antennas (number of columns in the code matrix). 

 
The construction of the transmission matrix consists of the original information symbols 
and their conjugates. This space-time coding has a unitary code rate (one symbol per 
transmission interval), that is, the code does not require any bandwidth expansion. 
Moreover, it is possible to obtain diversity gain and sometimes code gain which makes an 
efficient coded transmission. 
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Figure 2.9: Coding and Decoding Alamount System. 

 

2.5.2 SPACE-TIME TRELLIS CODES (STTC) 
 
The second type of space-time coding systems were proposed by Tarok et al. [11] and 
called STTC (see figure 2.10). STTC develop channel coding, modulation and transmit 
diversity simultaneously. The system can obtain important gains but with increased 
bandwidth; in addition, compared to STBC, its complexity is much higher [8]. 
 

 
Figure 2.10: Coding and Decoding Tarok system. 

 

2.5.3 LAYERED SPACE-TIME CODES (LST) 
 
LST codes were proposed by Foschini in the 80’s [16]. In order to increase the bit rate in 
the systems, LST introduced an array of MxN antennas, each one of them transmits a sub-
stream. Consider the example of a 3x3 antenna array. 
 

 
Figure 2.11: 3x3 MIMO system with Layered Architecture at the transmitter. 
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The 3x3 MIMO system is shown in Figure 2.11. In order to increase the bit rate, the input 
stream is introduced to the demultiplexer, which creates at its output three new data sub-
streams, each with equal number of bits. The data sub-streams are arbitrarily coded onto 
digital symbol streams. For sake of simplicity, the constellation used is BPSK (Binary 
Phase Sift Keying). 
 
It is possible to take these three data streams and modulate them directly to the carrier 
frequency and send them out through the transmit antennas, but the basic problem here is 
the presence of low-powered channels through one or more of the transmit antennas. The 
channels can not be separated with equal SINR at the receiver by simple inversion of the 
channel matrix H. We need a channel estimation feedback because the transmitter has no 
way to know which of the separate channels is able to support the data rate of the 
transmitted streams. 
 
In order to solve this problem, Foschini introduced a transmitter architecture that cycles the 
sub-streams [16]. Each transmitted stream takes turn through one of the transmit antennas, 
spending a time-slot at each antenna element and cycling back to its original antenna 
element every three time slots. After sufficiently large time slots, each transmitted data 
stream experiences the same average channel conditions, which can be viewed as being 
transmitted with equal power. 
 
When information has passed through the channel, each stream is detected from the receive 
antennas, one at a time. For antenna one, the algorithm extracts the first signal according to 
the expression [1]  
 

[ ] [ ] )(001)()()( 11 tttt xxHHHuyux 3211 =⋅=⋅=    2.14 
 
We apply this equation to the other two receive antennas. However, we can obtain signal 
gain through interference cancellation. Since we already know 1x , this value is subtracted 
from vector y(t) . Next expression shows how the process is affected with this 
 

[ ] [ ] )(010)(0)()( 22 tttt xxHHuyux 321 =⋅=⋅=   2.15 
 
We can note that the decision criterion is diminished in one less interferer. A simple point 
of view is that we are solving a linear equation system; thus, removal of the first estimated 
symbol provides an extra degree of freedom for constructing 1u . Since two independent 
estimates are available, the system can use combining algorithms to achieve diversity gain. 
The potential performance for this second data stream is equivalent to maximum ratio 
combining (MRC) diversity using two branches [12]. 
 
For the last signal it is clear that three independent estimates will exist. MCR diversity gain 
using three signal branches is possible. This interference cancellation algorithm strips away 
previously detected signals and in the process produces increasingly reliable estimates of 
the next detection with higher average SINR.  
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Figure 2.12 shows the signal extraction with interference cancellation at the receiver. As we 
can observe, the receiver buffers the incoming streams and extracts them in steps, each of 
them with duration of one time slot. At every step, the receiver detects a layer of data and 
spans other three time slots when the receiver has returned to detect the layer corresponding 
to stream 1. 
 
The layers are decoded and multiplexed onto a final stream of output data. When the 
receiver detects stream 1, each time slot has had a different interference removed from the 
data stream. In time slot 1, two other layers have been subtracted during previous time 
slots, so this layer contains the most reliable data for layer 1. In time slot 3, none of the 
other layers have been subtracted, so this layer is the least reliable layer. 
 

 
Figure 2.12: 3x3 MIMO system with Layered Architecture 

 
2.6 CONCLUSIONS 
 
In this chapter, MIMO systems have been defined as arrays of antennas in both transmitter 
and receiver, which can let us achieve performance improvements in both bit error rate and 
bit rates that other systems cannot obtain. The most important characteristic of these 
systems is diversity in space and time. Those techniques, applied together, let systems 
transmit information by multiple antennas and multiple slots of time. The diversity and 
multipath fading channel performance have been analyzed. 
 
In the next chapter, we turn our attention to a near optimal ML decoder based on the closest 
point algorithm proposed by Agrell. 
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3 

MAXIMUM LIKELIHOOD DETECTION OF SPACE-TIME 
CODING SYSTEMS 
 
 
 
3.1 INTRODUCTION 
 
In this chapter, we consider the mathematical framework for Maximum Likelihood (ML) 
decoding of space-time coded systems. Matrix computation concepts will be highlighted 
and used to search for the correct signal sent from the transmitter to the receiver in a ML 

criterion. ML decoding is the optimum procedure for computing the point 
−

x  in a lattice 
which is closest to the received symbol, x. Nevertheless, this procedure is extremely 
complex, giving rise to suboptimum algorithms among which we can find the BLAST 
algorithm for Layered Space-Time coding. Hence, the aim of this chapter is to introduce the 
Closest Point (CP) decoding algorithm proposed by Agrell [2] and analyze its performance 
and complexity in order to elucidate the reasons why BLAST algorithm is the preferred 
choice for decoding Layered Space-Time coded systems. It is important to notice that CP 
uses all the lattice points in the space and ML decoding uses only the lattice points that 
belong to the constellation points in use. ML decoding is extremely complex to implement 
when the number lattice points is high; that is the reason why CP algorithms are commonly 
used since they can be seen as a suboptimum but a very good approximation to ML 
decoding with much less computational effort. 
 
The outline of the chapter is the following 
 

• Section 3.2: Introduction to Lattice points. 
• Section 3.3: Preliminary of lattice calculations. 
• Section 3.4: Agrell algorithm 
• Section 3.5: Performance of CP algorithm. 
• Section 3.6: Conclusions. 

 
3.2 INTRODUCTION TO LATTICE POINTS 
 
As an introduction, we can say that a lattice code is a finite subset of points of a lattice set 
(or of a lattice translate) within a bounded region containing the origin, so that the energy 
of each signal is bounded [1].  The lattice points are used to create the constellations points 
in the modulation process and attain the Shannon capacity bound. 
 
Decoding a d-dimensional lattice consist basically in finding the lattice point closest to any 
given vector Z in the Euclidean space Rd. The main idea of this section is to understand 
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lattices, its meaning and importance in communications systems, and the decoding 
algorithm.  
 
The main application of lattice points in communications systems is decoding modulated 
symbols which are corrupted by additive white Gaussian noise (AWGN) noise and 
multipath. That is, given a d-dimensional lattice A and a point Z in the d-dimensional 
Euclidean space Rd, we must find the lattice point in A closest to Z and consider this point 
as the transmitted symbol we used. Before considering CP lattice decoding, let us review 
the basic lattice definitions. 
 

3.2.1 LATTICES 
 
Let mvvv ...21  be m linearly independent vectors of the d-dimensional Euclidean 
space Rd (where m ≤ d). A lattice is the set of vectors defined as follows 
 

Zvvv imm ∈+++=Λ λλλλ ;...2211     3.1 
 
where λi are integers. The set of vectors v is called basis of Λ and is defined as 

( ) mivvvv idiii ,...,1;,...,, 21 == . 
 
Lattice Λ can be written as { }mZbbGu ∈==Λ : , where G is the generator matrix defined 
as 
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From this equation we can see that generator matrix G has real entries whose rows are 
linearly independent over Rd. We can denote m and d as the number of rows and columns 
of G. 
 
The closest point problem consists in finding for a given received point dx ℜ∈ , the closest 

lattice point, 
−

x , such that for any given vector Λ∈
−

X  the distance between point 
−

x  and x 

is smaller than for any other lattice point 
−

x . Mathematically this is represented as 
 

−−

−≤− Xxxx      3.3 

 
where •  denotes the Euclidean norm [2]. In channel coding theory, we refer to equation 
3.3 as the ML decoding problem. In order to define the closest distance to the lattice point, 
we must define a concept called sphere packing. 
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3.2.2 THE PACKING OF SPHERES 
 
The general idea of the packing of n-dimensional spheres in mathematics is equivalent, in 
communications theory, to the design of a finite set of digitally encoded messages that do 
not waste power and do not cause confusion in transmission, that is, they can be received 
with low error probability. 
 
There are basically two concepts related to the packing of spheres: the kissing number (the 
number of spheres that can be arranged around a central sphere) and covering (the least 
dense arrangement of identical spheres with the property that any point is inside or on the 
boundary of at least one sphere).  
 
The detailed design and characteristics of packing of spheres are not reviewed here. The 
interested reader is referred to [3]. The principal idea of using high dimensional sphere 
packing is the construction of signals to be used on a noisy channel with minimum 
decoding error probability and high spectral efficiency. In digital communications, we can 
construct a list of distinct coded symbols that can be transmitted with maximum reliability 
and minimum power. Each of them can be represented as modulation symbols.  
 
These spheres packing will help us to find the closest lattice point and the corresponding 
symbol, making possible the minimization of errors. If a lattice is used as a code for the 
Gaussian channel, then maximum likelihood decoding in demodulation will help to find the 
closest point. 
 
In order to understand the problem, we will describe in the next section the principal idea of 
the decoding problem, which means, finding the closest lattice point. 
 

3.2.3 BASICS ON CLOSEST LATTICE POINT DECODING 
 
The decoding problem consists in finding the lattice point closest to the received symbol. A 
direct and “naive” process would consist in doing an exhaustive search over all the points 
that form the lattice and select the point with the smallest Euclidean distance from the 
received point.  
 
The problem of this direct search comes out when lattices are too big, which is usually the 
case, since the decoding procedure will be very complex and too long. As a result, more 
efficient search procedures have to be envisaged. One of these algorithms consists in 
restricting the search to a finite number of lattice points lying within a bounded region. The 
first chosen region is made large, and whenever a shorter vector is found, the search region 
is consequently reduced, and so on until only one dimension is explored. 
 
This problem can be stated mathematically as 
 

wuz
zWU Λ−∈Λ∈

=− minmin      3.4 
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where xGu =  with dZx∈ , Gz ξ=  with  ( )dξξξ ,...,1= , and Gw ζ=  ( )dζζζ ,...,1= , 
both vectors are real. The operation described in the equation can be rewritten as 

∑=
=

d

i iivw
1
ζ  where  iii x−= ξζ  with i=1 to d. From this, we chose the shortest non-zero 

vector of the translated lattice Λ−z .  
 
In words, what equation 3.4 indicates is that instead of searching all lattices points closest 
to the received vectors z, it is possible to translate the lattice by an amount Λ−z , since it is 
much easier to search for the lattice point closest to the origin. As a result, a ball or sphere 

of radius 
−

X  can be constructed, centered at z and then we can start the search in all 
lattice points inside this ball. This is the typical approach encountered in several closest 
point algorithms [1]. 
 
In practical applications, the radius of the searching region could be adaptively adjusted 
according to the noise level. That is, if no lattice point is detected inside the ball, the radius 
must be increased. On the contrary, if distance of the received point from lattice is small, 
then the radius can be decreased [4]. 
 

3.2.4 BASICS ON MAXIMUM LIKELIHOOD DECODING 
 
In communications theory, it is common practice to assume that the transmitted signal is 
corrupted with noise components which are independent and identically distributed with 
zero mean Gaussian random variables.  
 
The information signal x is uniformly distributed over a discrete and finite set dK ℜ∈  
which represent the codebook of modulation constellations. Under that conditions and 
assuming that we know perfectly H at the receiver, we can say that the optimum detector 

could minimize the average error probability ( ) 





 ≠≅
−

xxPkP  which is known as the 

maximum likelihood (ML) detector and is given by 
 

2minarg Hxyx
Kx

−=
∈

−

     3.5 

 
Notice that K is the set of all possible signals that exist in the transmission codebook, and it 
is possible that not all the closest points from the received point belong to this codebook. 
As a consequence, the decoding process not only has to detect and decide for the closest 
point but also it has to take into consideration the allowable lattice point that form the 
constellation and which are to be taken into account in the searching process. This issue is 
the principal difference between ML decoding and Closest Point decoding in lattices [5]. 
 
Although closest point implies extra work and in some cases, the closest point found is not 
a constellation point, the time used in the searching process is diminished considerably.  
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3.3 PRELIMINARY CALCULATIONS OF CLOSEST POINT 
 
Closest point is a suboptimal algorithm with exponential computational complexity. The 
matrix reductions used in the Agrell algorithm of closest point [3] make the time process 
faster. Roughly speaking, closest point decoding consists basically in performing changes 
in the coordinate system used to represent a lattice so as to considerably decrease the 
computational burden needed to decode the received symbols. 
 

3.3.1 BASIC CONCEPTS 
 
Two lattices are identical if and only if their lattice points are the same. Two generator 
matrices G1 and G2, generate identical lattices ( ) ( )21 GG Λ=Λ  if and only if 
 

WGG 21 =      3.6 
 
where W is a square matrix with integer entries satisfying the condition ( ) 1det =W . 
 
When a generator matrix G2 is rotated and reflected, then we have another representation of 
G1, which is the transformation of a coordinate system. If G2 is square and lower triangular, 
it is said to be a lower triangular representation of G1, i.e. 
 

QGG 21 =      3.7 
 

Two lattices are congruent or equivalent if one can be obtained from the other trough 
scaling, rotation and reflection, that is, 
 

QcWGG 21 =      3.8 
 
The constant term c must be real and positive, while W and Q obey the same conditions as 
in equation 3.6 and 3.7, respectively.  
 
There are several ways lattice basis vectors for the generator matrix can be defined. The 
process of selecting a good basis for a given lattices is called reduction. The aim is to find a 
generator matrix representation of a lattice with the smallest basis vectors so that 
computations can be reduced. Basically there are two types of reductions that are more 
widely used in practice: the Korkine-Zolotareff (KZ) reduction and the Lenstra-Lenstra-
Lovàsz (LLL) algorithm [6].  
 
The LLL reduction is used principally to reduce the time required in the search process. 
The general idea is to reduce the operations required by some transformations (or matrix 
operations) in the channel matrix estimation which allow decreasing the search in one less 
dimension (from an n-dimensional to a (n-1)-dimensional lattice representation). This 
implies important reductions in the number of lattice points we search.  
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The LLL algorithm basically suggests the corresponding reduction criteria with minimum 
time consumption. This algorithm needs that the generator matrix be given as a lower 
triangular matrix as below 
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   3.9 

 
In order to obtain an LLL reduced matrix, we must consider the following conditions: 
 

 21 3
2 vv ≤  

 
2
11

1

v
vk ≤  for k=2,…,n 

 Submatrix  
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 is LLL reduced. 

 
For a thorough description of the LLL reduction, refer to [6]. As indicated above, the KZ 
and the LLL reductions are the preferred lattice reduction algorithms. However, the LLL 
reduction is preferred since, even though the KZ implies a higher lattice reductions, when 
considering the decoding process as well, the LLL algorithm presents lower processing 
time. 
 
3.4 AGRELL ALGORITHM 
 
This section presents the Agrell algorithm based on Closest Point decoding [2]. The goal is 
to simplify the discussion in [2]. It is assumed that transmitted symbols are drawn from a 
16-QAM constellation. 
 

3.4.1 GENERAL DESCRIPTION 
 
The goal is to decompose a lattice generator matrix G in the form 
 









=

nv
G

G
*

      3.10 

 
where the top (n-1) rows of matrix G describe a new matrix G* and the new vector vn is 
defined as ||vvvn += ⊥  , with v|| in the row space of G* and v⊥ in the null space. When G is 
a lower triangular matrix, we can apply the QR decomposition in order to make the 
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decomposition of G into G* and vn simpler, i.e., we can make ( )0,,..., 1,1,|| −= nnn vvv  and 
( )nnvv ,,0,...,0=⊥ . 

 
From equation 3.10, we can say that any n-dimensional lattice can be decomposed as 
 

( ) ( ){ }U
∞

−∞=
⊥ Λ∈++=Λ

nu
nn GcvuvucG *:||    3.11 

 
We can notice that this equation contains (n-1) dimensional hyper planes that contain these 
sublattices. These are referred to as (n-1) dimensional layers. 
 
The index un denotes the layer to which the lattice point belongs. The vector v|| is the offset 
by which one sub lattice is translated within its layer, with respect to an adjacent sublattice. 
The vector v⊥ is normal to the layers, and the distance between two adjacent layers is ( ⊥v ). 

If the generator matrix is lower triangular, then nnvv =⊥ .  
 
Remember that all search algorithms for an n-dimensional lattice will be described 
recursively as a finite number of (n-1)-dimensional search operations. Let dx ℜ∈  be a 
vector to be decoded in the lattice. The orthogonal distance from x to the layer with index 
un is given by [3] 
 

⊥

−

⋅−= vuuy nn

def

n      3.12 

 
where  
 

2
⊥

⊥
−

=
v
xvu

tdef

n       3.13 

 

Let us denote 
−

x  as the closest lattice point to x, and suppose that an upper bound nρ  on 

xx−
−

 is known. Then, in order to ensure that the x point will be found, we must consider a 

finite number of layers 
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The layer with 





=

−

nn uqu  has the shortest orthogonal distance to x, where function ( )zq  

denotes the closest integer point to ℜ∈z  .  
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The search method to identify the closest lattice point is defined as the Schnorr-Euchner 

strategy [2]. From both we assume that 





≤

−−

nn uqu . Then the sequence orders the layers 

according to non-decreasing distance from x. A trivial counterpart holds when the distance 
we propose is bigger than previous calculations.  
 
The advantages of the layers are that the volume of a layer decreases with increasing ny , 
the chance of finding the correct layer soon is maximized. Other advantage is that the 
search can safely be terminated as soon as ny  exceeds the distance to the best lattice point 
found so far, that is 
 

,...2,1, −





−














=

−−−

nnnn uquququ    3.15 

 
which is the sequence order of the layers according to no decreasing distances from x. The 
very first lattice point found will be referred as the Babai point [5] and corresponds to the 
case where the radius of the searching ball is infinite. Furthermore, since the ordering in 
equation 3.15 does not dependent on nρ , no initial bound is needed.  Instead, the bound 
will be automatically updated during the search through the Babai point. 
 

3.4.2 DESCRIPTION OF THE DECODE FUNCTION 
 
The Agrell algorithm needs a last processing step referred to as DECODE, which finds the 
closest point in the lattice. The DECODE function is first explained since it is the core of 
the algorithm. Indeed, a preprocessing step in the Agrell algorithm is used only to modify 
the generator matrix so as to alleviate the DECODE function, rendering much faster its 
decoding process. 
 

The DECODE process uses the H and 
−

u  variables as input and output parameters 

respectively, we define 1−= HG  and Gux
−−

= . 
 
In the algorithm (figure 3.1), k is the dimension of the sub layer structure we are 
investigating. There are three possible cases while searching for the closest lattice point. In 
Case A, each time the algorithm finds a k-dimensional layer, the distance is less than the 
currently smallest distance. This layer is expanded into (k-1)-dimensional sublayers.  
 
In case C, as soon as the distance to the examined layer is greater than the lowest distance, 
the algorithm moves up one step in the hierarchy of layer. When Case B happens, the 
algorithm has successfully moved down all the way to the zero-dimensional layer (that is, a 
lattice point) without exceeding the lowest distance. Then, the lattice point is stored as a 
potential output point, the lowest distance is updated, and the algorithm moves back up 
again, without restarting. The conventions are: 
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 ( )nuuuu ,....,, 21=  
 ( )kkkkk cccc ,....,, 21=  for k=1,…,n 
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 ( )z=sgn  returns -1 if 0<z  and 1otherwise. 
 
 

 
Figure 3.1: DECODE algorithm. 

 
As stated above, this function is the most important part in the search algorithm. Next, we 
will present the other part of the Agrell closest point algorithm. 
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3.4.3 DESCRIPTION OF AGRELL ALGORITHM 
 
The DECODE algorithm described above needs the generator matrix to be presented in 
lower triangular matrix form, with positive diagonal elements. The closest point algorithm 
computes the received vector as fast as possible. However, the algorithm works in a 
different way and decoding speed depends on a pre-processing of the generator matrix. 
 
If we assume that generator matrix G and input vector x are given, we can make linear 
integer row operations in order to transform G into another matrix (G2), which generates an 
identical lattice. This transformation has the purpose of rendering the DECODE algorithm 
faster. Next we rotate and reflect G2 into a lower triangular form G3, so that 
 

( ) ( ) ( )GGG Λ=Λ≅Λ 23     3.16 
 

We must remark that vector x has to be rotated and reflected in same way as G2, so that we 
construct a vector x3, in same relation as in equation 3.16. Previous operations simulate a 
change of the coordinate system. Now, we have a form that makes easier and faster the 
DECODE algorithm, which is responsible of finding the closest lattice point x3 in this 
“new” coordinate system. Before we find the point, we must reverse the operations of 

rotation and reflection that produced
−

x , the lattice point closest to x in ( )GΛ . Following the 
steps, we have the complete algorithm shown in figure 3.2. 
 
The explanation of this “new” coordinated system is as follows: 
 

a) Is a basis reduction. This step is optional: it is possible to select W as a identity 
matrix, which basically gives as a result no reduction at all. The algorithm works 
better with a reduction of dimensional layers, the speed and the numerical stability 
can be improved significantly by an appropriate reduction. 

b) Implies rotation and reflection of G2 into a lower triangular form. The method we 
used is QR decomposition (refer to appendix A for a description of the QR 
decomposition). Basically, given an arbitrary MxN matrix M, its QR decomposition 
is a factorization of M of the form QRM = , where R is an NxN upper triangular 
matrix, and Q is an MxN orthonormal matrix, that satisfies Gram Matrix [3]. The 
transformation made above implies that the matrix can be seen as a coordinate 
system with square and lower triangular matrices. 

c) The DECODE algorithm requires all diagonal elements of G3 to be positive. QR 
decomposition sometimes does not make it automatically; if one element is 
negative, all the column is multiply by -1. 

d) In the remaining steps, input vectors are processed. The coordinate system is 
inverted in order to get the point in the old coordinate systems. 

 
An n-dimensional lattice consists of parallel (n-1)-dimensional sub lattices, translated and 
stacked in top of each other. The decomposition is controlled by the reduction method. The 
principal properties of that decomposition for a lattice are: 
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 The (n-1)-dimensional layers should be as far apart as possible, which minimizes 
the necessary number of layers and only the layers within a certain distance range 
need to be scanned. We can suppose that the spacing between (n-1)-dimensional 
layers is much larger than any other k-dimensional layer spacing in the lattice. Then 
the closest point will lie in the closest (n-1)-dimensional layer, and the 
dimensionality of the problem is essentially reduced by one. 

 The zero-dimensional layer (i.e., the lattice point) should be densely spaced as 
possible from the one-dimensional layer (line). The reason is that the denser they 
are, the higher is the probability that the closest point will belong to the lattice line. 
If the distance is smaller than the other distances, then the closest point will always 
be uncertain in the closest line, so the problem will now be in only one dimension. 

 
These two observations are highlighted because recursive methods can be applied, i.e., it 
makes the problem with high-dimensionality large, while low-dimensional should be small. 
So, the algorithm presented will have high priority in: a) sequentially maximizing the 
distance between k-dimensional layers, starting with k=n-1, and b) minimizing the same 
distances, starting with k=0. 
 

 
Figure 3.2: Closest Point algorithm. 

 
In order to explain the last points, we must see that they are very similar. Observe in figure 
3.2, that we can reduce the algorithm by choosing the numbers vkk in many ways for a given 
lattice, but their product will be invariant, which means that the product will always be the 
volume of the Voronoi region [4].  The smallest value of v11 can be obtained using the LLL 
procedure, which will be automatically the shorter vector in the lattice. However, we must 
know that the LLL method is only an approximated (making faster) solution because of its 
inherent sorting mechanism. 
 

3.4.4 CONVERSION FROM CLOSEST POINT TO CONSTELLATION POINT 
 
When we have the closest point, this point might not correspond to a codebook given by the 
modulation constellation we are using. As a result we have to search and find the closest 
point from the lattice point into the modulation codebook. The easier form to do this is by 
 



 32

knowing the modulation constellation. Then, we search and compare the closest point 
found with all constellation points.  
 
3.5 PERFORMANCE OF AGRELL ALGORITHM 
 
In this section we will analyze the performance of the Agrell decoding algorithm. This 
section will serve as a reference for assessing other suboptimal decoding algorithm such as 
the VBLAST algorithm. In this section, it will be shown that the computational complexity 
of the Agrell algorithm will make difficult a hardware implementation. The analysis will be 
done in two parts. First part is dedicated to analyze the computational complexity and 
storage requirements. The results obtained show that neither material complexity nor error 
probability will be affected if we use the LLL reduction method. 
 
Simulations were carried out on a Toshiba Satellite Laptop computer with Intel Pentium 4 
processor, 2.66MHz, 256 MB in Ram and Operator System Fedora Core 2 (Linux 11). 
Msim simulator was used [7]. 
 

3.5.1 PARAMETER USED IN SIMULATION. 
 
During simulation we can identify different important parameters. Among these, the block 
sizes, the number of transmit and receive antennas, and the use of the LLL reduction are the 
most important. In addition, simulations were done until 2000 block errors occur. Recall 
that a block error occurs when at least one bit in the block is in error.  
  
The LLL reduction method can be useful for the simulation performance, but first, we have 
to choose the correct number of bits per block. If the number of bits per block is too small, 
LLL reduction will make simulations slow; therefore, the first analysis we will be made so 
as to find the correct number of bits per block. We will limit our search only for block of 
length L equal to 1,5, 10 and 100 symbols per block. 
  

3.5.2 COMPLEXITY ANALYSIS 
 

3.5.2.1 Determination of Block Size 
 
We simulated all the possible antenna combinations. From results, we can see that block 
error probability (BLER) is not affected significantly when the number of symbols in a 
block increases or decreases. However, hardware complexity is affected when the number 
of symbols per block is varied (Figure 3.3a, 3.3b). 
 
From these figures we can observe that when the block size is one, complexity is the 
highest. On the other hand, when the block size is 100, complexity decreases in 
approximately ten arithmetic operations per decoded bit. This indicates that the block size 
is very important in order to make a hardware implementation feasible. If we compare the 
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Agrell algorithm with and without LLL reduction we can see a small difference between 
them, when the block size is 100, the number of operations with or without LLL reduction 
is almost the same, while for a block size of 10 increase only one operation. Hence, we will 
use a block size of 10 in order to keep the simulation time acceptable. 
 

     
Figure 3.3: Comparison Complexity vs. SNR with size of block. a) Without LLL Reduction and b) With 

LLL Reduction.  
 

3.5.2.2 Agrell Algorithm Without LLL Reduction. 
 
In this section, performance without LLL reduction is presented. In all future analysis, the 
number of operations required by each algorithm for estimating one bit of information is 
called Ob. In this analysis, every arithmetic operation is referenced to addition operations. 
This way, a multiplication and division operation is considered to be equivalent to two 
additions, and square root operation is equivalent to four addition operations. Once again, 
simulations were carried out with L = 10 symbols per block, 16-QAM constellations and 
they were run until 2000 block errors occurred.  
 
Figure 3.4 presents the total computational complexities with two transmit antennas and 2, 
4, 6 and 8 receive antennas. We can see that there is an increase of approximately twenty 
operations every time the receive array increases; for instance, in the 2x2 system, the 
number of operations (and the number of memory locations) equals 50, while the number 
of operations for the 2x4, 2x6 and 2x8 arrays is 66, 82 and 101 respectively. 
 

 
Figure 3.4: Ob vs. SNRavg M = 2; N = 2,4,6,8.  
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Figure 3.5: Ob vs. SNRavg M = 8; N = 8,10,12,14.  

 

 
Figure 3.6: Ob vs. SNRavg 2x2, 4x4, 6x6, 8x8.  

 
The closest point algorithm depends on the SNR. When we have a noisy channel, the 
number of operations increases considerably, and the reason is very simple; the search areas 
where the possible lattice point could be are larger. This is the reason why complexity in 
the previous figures are not constant. 
 
When the number of transmit antennas are larger, as in figure 3.5, the complexity increases 
significantly with the number of transmit antennas. Finally, systems with square arrays (i.e., 
equal number of transmit and receive antennas) increase considerably the number of 
operations and storage requirements. This is shown in figure 3.6. 

 

3.5.2.3 Agrell Algorithm with LLL Reduction. 
 
We now turn our attention to the LLL reduction method in order to determine if hardware 
complexity is affected. As indicated before, BLER is not modified, only the processing 
time is. From figures 3.7 through 3.9 we can see that computational complexity is not 
considerably increased with LLL reduction as compared to figures 3.4 through 3.6. 
However, simulation time is greatly reduced with this algorithm.  
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Figure 3.7: Ob vs. SNRavg M = 2; N = 2,4,6,8.  

 

 
Figure 3.8: Ob vs. SNRavg M = 8; N = 8,10,12,14.  

 

 
Figure 3.9: Ob vs. SNRavg 2x2, 4x4, 6x6, 8x8.  

 
As a conclusion, we can determine an approximation of the computational requirements as 
follows: 
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75)3211()95(2)22324(4)7212(2 2 −++++++−++++= LLNNLMLMMLNMNAdd
LLMLMMNNNLNMNMult +−−−++−++−+= )14()44640()686(2)124( 22

13)432(2)12( 2 −+++++= LNNNLNMDiv  
23 += NSqrt  

)1(10)134(2)5942(4)119(4)27(8 2 −+−+++++++++= LLMLMMLNNLNMNMem
 

Where Add represent the addition operation, Mult is multiplication, Div is division, Sqrt is 
square root and Mem is the memory required. L is the number of bits per block. These 
operations are only for one block, if we want the number of operations per bit, we have to 
divide the results by the number of bits per block (a block is defined as the number of bits 
per symbol – 4 bits/symbol –, multiplied by the number of bits per block, multiplied by the 
number of transmit antennas). 
  

  
Figure 3.10: a) Computational Complexity Simulation vs. SNRavg, b) Storage requirements vs SNRavg 

Approximation for a 8x10 array.  
 
Figure 3.10 shows a comparison between the approximation formula and the number of 
calculations obtained by simulation for a 8x10 array of antennas. As we can see, this 
approximation gives a good idea of how many calculations we need and the number storage 
requirements when channel is very noisy. Calculations and storage for the closest point are 
not very good approximation when noise in channel is greater than 13dB. The reason is 
very simple, the searching area is diminished. 
 

3.5.3 PERFORMANCE ANALYSIS 
 
Figures 3.11, 3.12 and 3.13, give the block error probability performance for different 
MIMO systems decoded with the Agrell algorithm. As we can see, BLER is reduced as we 
increase the number of receive antennas. In order to illustrate this, first we take two 
transmit antennas and increase the number of receiver antennas by two (see fig. 3.11). 
Results show that from two to four receive antennas, a gain of 10dB is achieved. For the 
2x6 array system, we have a 14dB in gain, while for a 2x8 arrangement, the coding gain is 
14dB. 
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Figure 3.11: BLER vs. SNRavg M = 2; N = 2,4,6,8.  

 

 
Figure 3.12: BLER vs. SNRavg M = 8; N = 8,10,12,14. 

 
Figure 3.13: BLER vs. SNRavg 2x2, 4x4, 6x6, 8x8.  
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Figure 3.12 presents the BLER performance for systems with M=8 transmit antennas and 
N=8,10, 12 and 14 receive antennas. We can see that for a BLER of 10-2, gains of 3 dB, 4 
dB and 5dB are obtained as the number of receive antennas is increased. From these figures 
we can see that the number of receive antennas is the most important parameter. 

 
Last comparison shows the performance of square MIMO systems. We can see that for 
high SNR, BLER is reduced as the array increases.  
 
3.6 CONCLUSIONS 
 
In this chapter near-optimal ML decoding based on Agrell Algorithm (closest point 
algorithm) with and without LLL reduction has been presented. The performance and 
complexity have been analyzed and compared.  
 
We already determined the correct number of bits used in future analysis. It was shown that 
closest point algorithm has a large computational complexity which makes its hardware 
implementation impossible. This obligates the designer to search a new decoding way 
where efficiencies will not be affected by the SNR and the number of operations required. 
BLAST system is presented in next chapter as an alternative. 
 
Next chapter makes an introduction to the BLAST system and all of its variants in order to 
find the one that makes possible an implementation with minimal hardware requirements.  
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4 

LAYERED SPACE-TIME CODING SYSTEMS 
 
 
 
4.1 INTRODUCTION 
 
In this chapter, a brief introduction to BLAST systems is done. The main goal of these 
systems is to achieve the best tradeoff complexity-performance [9]. Space-Time Trellis 
algorithms have the potential drawback that complexity grows exponentially with the 
number of bits per symbol. This limits the achievable data rates. In [1], Foschini proposed a 
layered Space-Time (LST) architecture that could attain the lowest tight bound on the 
MIMO channel capacity.  
 
The principal and most important difference between the BLAST algorithm with respect to 
others (STTB or STBC) is that BLAST allows processing of multidimensional signals in 
the space domain by one-dimensional processing steps, where one-dimensional refers to 
only one dimension in the space. The method gives us a powerful signal processing 
technique at the receiver and a conventional one-dimension channel code. 
 
In the original architecture, the information stream is divided into M transmit antennas and 
transmitted simultaneously, in the same frequency band.  
 
The receiver uses the same number of received antennas and detects the M transmitted 
symbols.  
 
The process used in the separation of symbols involves a combination of interference 
suppression and interference cancellation. This way signals are decoded (using simple 
decoding algorithm), leading to much lower complexity compared to maximum likelihood 
decoding. The most important characteristic is that complexity grows linearly bandwidth.  
 
This chapter presents an introduction to the BLAST systems. Then we review the received 
processing techniques used to decouple and detect the LST signals. These processing 
techniques are based on the Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) 
interference suppression methods [12][13][16]. 
 
Topics are considered as follows 
 

• Section 4.2: LST Transmitters 
• Section 4.3: LST Receivers 
• Section 4.4: Comparison between LST Architectures 
• Section 4.5: Conclusions. 
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4.2 LST TRANSMITTERS 
 
Four types of layered space-time architectures exist, and those depends on whether error 
control coding is used or not and the way the modulated symbols are assigned to transmit 
antennas. There are two kinds of layered architectures, with and without coding. In next 
sections, we will describe both. We must remark that coding structures will be considered 
in chapter six in order to improve the overall performance. 
 

4.2.1 HORIZONTAL LAYERED SPACE-TIME (HLST) 
 
The Horizontal Layered Space-Time is a coded form of transmitting information using 
multiple transmit and receive antennas [3]. As illustrated in figure 4.1, the process consists 
in separately encoding the signals transmitted by each antenna. The main drawback this 
technique presents is the difficulty in canceling interference. The process can be described 
as the sequence being first encoded by a channel code and subsequently demultiplexed into 
M sub-streams (figure 4.1a). Each substream is modulated, interleaved and assigned to a 
transmit antenna. Modulator output symbols are denoted by i

tx , where i represents the layer 
number (the number of transmit antenna) and the t is the time interval. The transmission 
matrix at the modulator outputs is given by equation 4.1 for a system consisting of three 
transmit antennas 
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From this matrix we can observe that sequence 1

4
1
3

1
2

1
1 xxxx … is transmitted from 

antenna 1, second row in the matrix represents the sequence transmitted from antenna 2, 
and the third row from antenna 3. We can found two main types of architectures for HLST, 
one with the encoder before the demultiplexer, and the other with M encoders after the 
demultiplexer, one for each antenna (see figure 4.2). 
 

 
Figure 4.1: A HLST Architecture. 
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4.2.2 DIAGONAL LAYERED SPACE-TIME (DLST) 
 
This is the original version of BLAST architecture. This structure used a cyclic association 
of data streams, called layers, thereby producing an “averaged” channel which is the same 
for all layers. DLST permits that a modulated codeword of each encoder is distributed 
among the M transmit antennas along the diagonal of the transmission array [1][10][11]. 
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In a three transmit antenna system, we can form the transmit matrix as indicated in equation 
4.2, where the i-th row is delayed (i-1) time units, so that the first entries are always zero 
from antenna two to M on a diagonal fashion in X. This way, the first diagonal is 
transmitted from the first antenna, the second diagonal from the second antenna and so on 
as indicated in the right hand side of equation 4.2. Hence the codeword symbols of each 
decoder are transmitted over different antennas. This operation can be represented by the 
introduction of a spatial interleaver (SI) after the modulators (Figure 4.2). The spatial 
operation for the DLST can be represented by equation 4.2. 
 
The rows of the matrix in the right side are obtained by concatenating the corresponding 
diagonals of the matrix on the left hand of the equation. The first row of this matrix is 
transmitted from the fist antenna, and so on. 
 
The diagonal layering introduces spatial diversity and a better performance than HLST. It is 
important to note that DLST has a loss in its spectral efficiency, since a portion of the 
transmit matrix is padded with zeros [4][5][6]. 
 

 
Figure 4.2: A DLST Architecture. 

 

4.2.3 VERTICAL LAYERED SPACE-TIME (VLST) 
 
This architecture was presented by Golden and Foschini in 1999 [2]. This is an uncoded 
LST structure and is illustrated in figure 4.1. The input information sequence is 
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demultiplexed into M sub-streams, each of them is modulated by an M-ary level 
modulation scheme and transmitted from the transmit antennas to the receive antennas. The 
signal processing for detecting the signals is made over the individual sub-streams (which 
are called layers). The modulated symbols are arranged into a transmission matrix, denoted 
by X, which consists of M rows of L columns, where L is the transmission block length.  
The column is the modulated symbols. At a given time t, the transmitter sends the column 
from the transmission matrix, one symbol from each antenna. So, the transmission process 
could be combined with conventional block or convolutional one-dimensional coding in 
order to improve the performance of the system.  
 

 
Figure 4.3: A VLST Architecture. 

 
The general description of the transmission matrix is shown in equation 4.3, where the 
super index is the number of transmit antenna and the sub index is the number of transmit 
element. The input is describe by the vector [ ]921 ... xxxx = . 
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Now let us focus on the signal processing steps for receiving LST coded signals. 
 
4.3 RECEPTION IN LST SCHEMES 
 
The main challenge in LST systems is the detection and decoding problem. For any of the 
types reviewed above, the decoding processing is different only in the transmit matrix 
arrangement. This means that the signal processing for reception is the same. In order to 
simplify the analysis, we will consider horizontal layering with binary channel codes and 
BPSK modulation. 
 
The transmit diversity always introduce spatial interference. As we saw in chapter two, the 
transmitted signals from various antennas propagate over independently scattered paths and 
interfere with each other upon reception at the receiver. The interference can be represented 
as 
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ttt nHxr +=       4.4 
 
 where rt is an N-component column matrix representing the received signals across the N 
receiver antennas, xt is the t-th element in the transmission matrix X and nt is an N-
component column matrix of the additive white Gaussian noise (AWGN) signals from the 
receive antennas, with variance σ2. In order to simplify the notation, we are going to 
eliminate the sub index. 
 
An uncoded LST architecture can be received and detected with ML multiuser detector 
[17], which computes ML statistics. The complexity of this detector is exponential in the 
number of the transmit antennas. For coded LST schemes, the optimum receiver performs 
joint detection and decoding obtaining the layered space-time coded and the channel code. 
The complexity of the receiver is an exponential function of the product of the number of 
antennas and the code memory order. 
 
It is important to understand that the exponential increase in implementation complexity 
may make the optimal receiver impractical even for a small number of antennas. In [2], it 
was shown that the best tradeoff between complexity and performance was presented by 
VLST. 
 

 
Figure 4.4: VLST detection based on combined interference suppression and successive cancellation. 

 
VLST is based on a combination of interference suppression and cancellation. The basic 
idea is that each transmitted sub-stream is considered in turn to be the desired symbol and 
the remainder substreams are treated as interferers. These interferers are suppressed by zero 
forcing (ZF) approach [2][14][15]. The algorithm produces ZF-based decision statistics for 
a desired sub stream from the receiver vector r (which contains the transmitted and the 
multipath signals with interference).  Subsequently, from top to bottom, a decision on the 
desired sub-stream is made from the decision statistic and its interference contribution is 
regenerated and subtracted out from the receiver vector r. This vector then, contains a lower 
level of interference and this will increase the probability of making the best detection.  
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The operation is illustrated in figure 4.4, where the first detected sub-stream is N. The 
detected symbol is subtracted from all other layers. The operation is repeated for the lower 
layers, finishing with layer 1. Assuming that all symbols at previous layers have been 
detected correctly, they will be free from interference.  
 
VBLAST systems always use soft decision statistics at the detector in each layer. When we 
have coded LST schemes, the decision statistics are passed to the channel decoder, which 
makes the hard decision on the transmitted symbol in this sub-stream. The hard symbol 
estimated is used to reconstruct the interference from this sub-stream, which is then fed 
back to cancel its contribution while decoding the next sub-layer. 
 
We must remark that ZF is only possible when the number of transmit antennas is equal or 
smaller that the number of receiver antennas. If the ZF is used in removing interference and 
if N received antennas are available, it is possible to remove interference with diversity 
order of d0.  
 

inNd −=0      4.5 
 
where ni is the number of transmit layers plus one. So, if the interference suppression starts 
at layer M, then, interference is needed to be suppressed until layer (M-1). If we say that the 
number of transmit and receive antennas are the same, then the diversity order is one. 
 
From the original BLAST we consider ZF and MMSE (maximum mean square error) 
detectors, which with a single architecture makes possible the best tradeoff between 
computational complexity and performance, because the complexity grows linearly with 
the number of transmit antennas and transmission rate [8]. 
 
In the next section, the decoding process with MMSE based on QR decomposition is 
presented. 
 

4.3.1 QR DECOMPOSITION INTERFERENCE SUPPRESSION COMBINED 
WITH INTERFERENCE CANCELLATION 
 
A channel matrix MxN, where M≤N, can be decomposed as 
 

RUH R=      4.6 
 
where UR is a MxN unitary matrix and R is an MxM upper triangular matrix of the form 
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The decomposition of matrix H in the form 4.6 is called QR factorization. BLAST systems 
use this factorization in order to get less complexity in its calculations and signal 
detections. QR Decomposition introduces an M-component matrix y obtained by 
multiplying from the left the receive vector r, given by equation 4.4, by 
 

rUy T
R=  or nUHxUy T

R
T
R +=     4.8 

 
Substituting the QR decomposition of H from 4.6 into 4.8, we get 
 

'nRxy +=       4.9 
 
where nUn T

R='  is an M-component column matrix of AWGN noise signals. Since R is an 
upper triangular matrix, the i-th component in y depends only on the i-th and higher layer of 
transmitted symbols at time t as follows 
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Considering i

tx  as the current desired detected signal, equation 4.10 shows that i
ty  contains 

a lower level of interference than in the original received signal rt, as the interference from 
l
tx , for l<I, has been suppressed. The third term represents the contribution from other 

interferers, which can be cancelled by using the available decisions assuming that they have 
been detected. The final decision statistics on i

tx  can be rewritten as 
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i.e., the estimate on the transmitted symbols is given by 
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where q(x) denotes the hard decision on x. As additional information, appendix A shows a 
brief introduction to the QR decomposition [18]. 
 
In the MMSE detection algorithm, the expected value between the transmitted vector x and 
the linear combination of the receiver vector rwH  is minimized 
 

( )[ ]2min rwxE H−      4.13 
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where w is an NxM matrix of linear combination coefficients given by 
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The variance is denoted by σ2, IM is an MxM identity matrix. The decision statistics for the 
transmitted symbol from antenna i at time t are obtained as 
 

rwy H
t

i
t =       4.15 

 
where i is the number of columns we are reviewing. The estimate of the symbol sent by 

antenna i, denoted as 
−

i
tx , is obtained by making a hard decision on i

ty  
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      4.16 
 
In detection algorithms with interference suppression only, the detector calculates the hard 
decisions estimates by using equations 4.15 and 4.16 for all transmit antennas. 
 
In the case where interference suppression and interference cancellation are used, the 
receiver starts from antenna M and computes its signal estimates by using equation 4.15 
and 4.16. The received signal, r, in level M is denoted by rM.  
 
For the next received signal, the calculation subtracts the interference contribution of the 
hard estimate of the previous layer and this modified received signal is used for the 
computation of the decision level corresponding to antenna (M-1).  
 
The interference from level M-1 is subtracted from the received signal and this signal is 
used to calculate the decision statistics in 4.15 for antenna (M-2). This process continues 
until the level one is reviewed (layer for the first antenna). After detection of level i, the 

hard estimate 
−

i
tx  is subtracted from the receiver signal to remove its interference 

contribution, giving rise to the received signal for level i-1 
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where h, is the i-th column in the channel matrix H, corresponding to the path attenuations 

from antenna i. The operation 
−

i
i
t hx   copies the interference contribution caused by 

−
i
tx in the 

received vector. The unique element with no interference is the ri-1. For estimation of the 
next antenna signal, the no interference element is used in equation 4.15 instead of r. 
Finally, a version of the channel matrix is calculated, denoted by 1−i

dH , by deleting column 
i from i

dH . The deflated matrix at the (M-i+1)-th cancellation step is given by 
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This deflation is needed as the interference associated with the current symbol has been 
removed. In real situations when channel coefficients are random, the deflation is used in 
equation 4.14 or when we are computing the MMSE coefficients and the signal estimate 
from antenna i-1. Once the symbols from each antenna have been estimated, the receiver 
repeats the process on the vector rt+1 received at time (t+1).  
 

 
Figure 4.5: VBLAST example with M=4 and N=3,4,5, with QR decomposition, MMSE interference. 

 
Figure 4.5 shows the interference free estimation at a singular layer. It can be described by 
the expression [19] 
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Finally, from figure 4.5, we can see that the coded system with multiple antennas have 
several improvements with respect to systems with only one receive antenna. We can also 
observe that, the higher the number of transmit and receive antennas, the better the 
performance in this kind of systems in terms of BER in environments where the SNR is 
degraded. 
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4.4 COMPARISON BETWEEN LST ARCHITECTURES 
 
In BLAST systems (LST), the most important characteristic is that transmitter does not 
need any channel information. It is the receiver that uses this information in order to 
estimate the received signals. The principal feature in LST systems is the transmission of 
different information simultaneously with different transmit and receive antennas pairs in 
the same frequency band. It has been shown that initial Diagonal BLAST architecture is 
theoretically capable of approaching the theoretical spectral efficiency, but at a high 
complexity cost [1][2]. DLST uses multielement antenna arrays, and an elegant diagonally 
layered coding structure, in which code blocks are dispersed across diagonals. The diagonal 
processing structure leads to theoretical rates which grow linearly with the number of 
transmit antennas, with these rates approaching 90% of Shannon capacity.  
 
This is the reason why Foschini developed Vertical BLAST, which still achieves a portion 
of that efficiency, where every transmit antenna radiates an equal-rate independently 
encoded stream of data. The independence enables the utilization, at the receiver, of 
interference rejection and cancellation techniques with the added advantage that the 
multiple streams are precisely synchronized. A VBLAST receiver can be regarded, 
therefore, as a multi-stage synchronous multiuser detector. This type of successive 
cancellation methods have already proved very effective in other context {referencias]. 
VBLAST, implemented by Bell Labs in real-time laboratory, have demonstrated spectral 
efficiencies as high as 40bits/s/Hz in an indoor slow fading environment at averages SNR’s 
ranging from 24 to 34 dB [13]. 
 
The bit-stream in BLAST systems is demultiplexed into different sub streams (one per each 
transmit antenna), encoded into symbols and fed to its respective transmit antenna. 
Depending on the type of LST system (V-BLAST or D-BLAST), the stream will either 
introduce redundancy or not. V-BLAST encodes each sub stream independently from the 
others without redundancy; hence each antenna transmits different bits independently from 
the others. On the contrary, DBLAST introduces redundancy between all sub streams 
through specific coding strategies. This characteristic offers higher spectral efficiencies that 
VBLAST, but increases the computational complexity [6]. 
 
Making a comparison with horizontal BLAST, we can see that this architecture encodes the 
signals transmitted by each antenna. The performance of HLST with interference 
cancellation using previously decoded symbols is limited by the weakest code [3]. 
 
4.5 CONCLUSIONS 
 
In this chapter it has been shown that VLST systems present the best tradeoff between 
performance and computational complexity as compared to other space-time coding 
schemes. We decided to work directly with this architecture because it allows us to evaluate 
improvements to this system. In this thesis, we are going to introduce some variations of 
the VLST in the decoding process in order to reduce computational complexity. In the next 
chapter, these variations will be compared from a performance and complexity point of 
view.  
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5 

VERTICAL BELL LABS LAYERED SPACE-TIME 
ARCHITECTURE VARIANTS: PERFORMANCE AND 
COMPLEXITY COMPARISON. 
 
 
 
5.1 INTRODUCTION 
 
As we have shown in last chapter, VBLAST has better tradeoff between performance and 
computational complexity. Its principal characteristic is the uncoded data stream, which is 
demultiplexed into M sub-streams, each being transmitted simultaneously by one transmit 
antenna. At the receiver, received signals from the N received antennas are detected by a 
decision feedback algorithm. At present time, several implementations of VBLAST have 
been presented in the literature since the original idea was published. These 
implementations aim to reduce the computational complexity of the VBLAST algorithm 
while maintaining the error probability performance [2].  
 
In this chapter, three variants of the VBLAST architecture are analyzed from a 
performance-complexity standpoint. The variants considered are the Singular Value 
Decomposition (V-SVD) [6], Sorted QR Decomposition (V-SQR) [8] and the Least-Square 
algorithm (V-LS) [9]. In addition, these variants are compared to the near-optimum 
Maximum Likelihood (CP) algorithm proposed by Agrell [12]. 
 
The computational complexity will be obtained empirically, by running each variant in a 
computer and keeping a record of the arithmetic operations and memory requirements 
needed to decode each information bit. Nevertheless, a general formula which 
mathematically approximates the simulated complexity will be obtained.  
 
Topics are considered as follows: 
 

• Section 5.2: System Description 
• Section 5.3: VBLAST with Singular Value Decomposition variant 
• Section 5.4: VBLAST using Shorter QR Decomposition variant 
• Section 5.5: VBLAST over Least Square variant 
• Section 5.6: Comparison between different variants with CP algorithm 
• Section 5.7: Conclusions 

 
5.2 System Description 
 
The V-BLAST system is shown in figure 5.1. In our case, the system consists of M 16-
QAM transmitters operating at the same frequency band and at a symbol rate of 1/T 
symbols/s with synchronized symbol timing. For simplicity, we assume that the 
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transmission is organized in bursts of L symbols. The block size is L=10 symbols. Power in 
each transmitter is proportional to 1/M and the total power is constant and independent of 
M [4]. 
 

 
Figure 5.1: VBLAST architecture. 

 
The receiver consists of N conventional QAM receivers. They receive the signals from all 
M transmit antennas. Flat fading is assumed, and the matrix channel transfer function is 
HMxN, where hi,j is the complex channel transfer function from transmit antenna i to receive 
antenna j (N≥M). The channel is Gaussian-distributed with zero mean and variance 0.5 [3].  

 
In the model, it is assumed that the detection process is symbol-synchronous. Letting 

T
Mxxx ),...,,( 21=x denote the vector of transmitted symbols, the corresponding received 

N-vector, r is 
 

vHxr +=      5.1 
 
where v is a white-noise Gaussian vector. In addition, the channel is quasi-stationary 
implying negligible variations over the L symbol periods, and it is estimated accurately by 
means of a training sequence embedded in each burst. Hence, we will not make distinction 
between H and its estimate. This assumption is referred to as block-fading channel [1]. 
Each set of L symbol vectors is known as a block. Next, the analysis of the different 
decoding approaches is discussed. Several variants of VBLAST are described, followed by 
an analysis of these and the CP decoding algorithm. 
  
5.3 VBLAST WITH SINGULAR VALUE DECOMPOSITION 
 
The Singular Value Decomposition (SVD) approach is formed by a QR Decomposition 
algorithm which is used to reduce the size of the channel matrix, simplifying in turn the 
complexity. The channel matrix must have more rows than columns ( MN≥ℜ ). Nevertheless, 
using QR decomposition may produce losses in the channel matrix representation which 
affect the detection process. An alternative method of computing the SVD is described by 
Golub and Kahan [11]. This alternative technique finds matrices U and V simultaneously 
by implicitly applying a symmetric QR algorithm to ATA, where A is any matrix in the 
system. This step reduces A into an upper bi-diagonal form using equation 5.2 as follow 
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The SVD algorithm uses the eigenvalues. The eigenvalues of a matrix A in a space are the n 
roots of its characteristic polynomial )det()( AzI −=zp . The set of these roots is called the 
spectrum and is denoted by { }nλλλ ...21=λ(A) . 
 
The problem here is to calculate the SVD of H (matrix B in equation 5.2). Applying an 
implicit shift to the triangular matrix T=BTB we can compute the eigenvalues with next 
expression, which is closer to 22
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The second step is to compute ( )11 φCosc =  and ( )11 sin φ=s  such that 
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and set ),2,1( φGG1 = . 
 
Third step consist in computing the Givens rotations [5] G2, … , Gn-1 so that if 

1n1 ...GGQ −=  then QTTQ is tri-diagonal and 111 eGQe = . Notice that these calculations 
require the explicit formation of BTB. 
 

 
Figure 5.2: V-SVD algorithm. 

 
Once an upper bi-diagonal matrix A is constructed, the V-BLAST algorithm can be carried 
out. The V-BLAST algorithm iterates over each symbol vector, estimating each symbol in 
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turn. It starts by choosing the symbol with best SNR, and then subtracts the estimated 
symbol from the remaining ones. Furthermore, at each step a whole column of matrix A is 
removed; thus, the pseudo-inverses are calculated on matrices of reduced size. These 
pseudo-inverses are calculated only once requiring thus a much lower computational 
complexity than that of the CP algorithm. The SVD approach is described in figure 5.2 [6]. 
 
Step b summarizes the calculations described before, and the VBLAST algorithm is 
described in figure 5.3. The input to the algorithm is the channel matrix after being 
processed by the SVD algorithm. 
 

 
Figure 5.3: VBLAST algorithm. 

 
In the figure, (G)j is row j of G, H+ is the Moore-Penrose pseudo-inverse of H [10], wH is 
the conjugate transpose of vector w, and fq(.) is the appropriate quantizing operation for the 
constellation in use (16-QAM). VBLAST algorithm, as we said, iterates over each symbol 
vector, estimating each symbol in turn. It starts by choosing the symbol with best SNR, and 
then subtracts the estimated symbol from the remaining ones. It can be seen that that only 
M pseudo-inverses are needed per block. 
 
One important point is that at each step, one whole column of matrix A is removed; thus, 
the pseudo-inverses are calculated on matrices of decreasing size, which makes the entire 
algorithm faster. Third part of the step b in figure 5.2 is needed to preserve the symbol 
ordering relative to the original channel matrix H and not to matrix A. 
 
The SVD-BLAST complexity can be divided into two parts: the block setup phase, which 
is computationally expensive but is performed only once per block, and the symbol 
estimation phase, which is simpler but is performed many times. Hence, if the number of 
transmit and receive antennas increase, computational complexity grows accordingly. The 
storage requirements and computational complexity of this algorithm can be approximated 
by the following expressions 
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MLMNLMem 2432 +=      5.5 
224 64801616 NMMNMNMNLAdd +++=    5.6 

222 4646018 MNMMNMNLMult +++=     5.7 
)(86 22 NMMNLDiv ++=      5.8 

MNLSrt 85.1 +=      5.9 
 

where Add, Mult, Div and Srt represent addition, multiplication, division and square root 
operations per decoded block, respectively, and Mem is the memory required per decoded 
block as well; L is the number of bits per block. If we want the number of operations per 
decoded bit, we have to divide these equations by the number of bits per block (i.e., a block 
is defined as the number of bits per symbol – 4 bits/symbol –, multiplied by the number of 
bits per block, multiplied by the number of transmit antennas). 
 
5.4 VBLAST USING SORTED QR DECOMPOSITION 
 
In this V-BLAST variant, instead of calculating the channel matrix pseudo-inverses, it 
estimates the length of the rows of a matrix H+, using the length of columns of matrix H 
(H+ is orthogonal to the vector space H). This algorithm is an extension of the modified 
Gram-Schmidt algorithm by ordering the columns of H in each orthogonalization step [7].  
 
The algorithm applies the Gram-Schmidt algorithm to compute matrix R line by line from 
top to bottom and matrix Q column by column from left to right. This is done by computing 
the elements of matrix Q so as to compute the elements of matrix R in a recursive manner.  
 
The algorithms works as follow [8]: 
 
For a given H, it calculates q1 of unit length and 11,1 hr =  to fulfill 11,11 qrh = . In the next 
step, the components of h2 in the direction of q2 are cancelled and q2 of unit length and r1,2 
and r2,2 are computed to fulfill 22,211,22 qrqrh += . The computation of the next step has the 
same form, thus the diagonal elements rk,k form the length of hk, orthogonal to vector q, and 
vector r describes the projection of H into the vector space spanned by vector q. 
Consequently the diagonal elements are calculated from r1,1 to rM,M, but it would be optimal 
to maximize the kkr ,  in every decoding step. To maximize the diagonal elements from M 
to 1 by applying only one QR decomposition, the idea of this algorithm is to find the 
permutation of H that minimizes each kkr ,  with k running from 1 to M, leaving all rj,j with 
j<k unchanged. 
 
This operation minimizes the diagonal elements in every decomposition step and thereby 
estimates maximal diagonal elements in the succeeding steps. The only change to the 
modified Gram-Schmidt algorithm consist in a reordering of the columns of H according to 
their minimum length, orthogonal to the vector space already spanned by vector q. This is 
performed in step d in figure 5.4. 
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Figure 5.4: Sorted QR Algorithm. 

 
In order to get a good approximation of the number of operations made in this algorithm, 
we found the following formulas 
 

)(1010724 22 NMMNLLMMLMNLMem +++++=    5.10 
NMLLMMNLAdd 22 10866 +++=     5.11 

LLMMNLMult 445 2 ++=      5.12 
MNMLDiv 23 +=      5.13 

MSrt =      5.14 
 
5.5 LEAST SQUARE VBLAST 
 
In comparison to SVD-VBLAST, this algorithm needs an extra QR decomposition 
(Orthogonal Matrix Triangulation); nevertheless, pseudo-inverses are performed on an 
MxM matrix, which renders the computational complexity smaller. The symbol estimation 
has an extra vector-matrix multiplication, but the size of all other operations depends 
exclusively on M instead of M and N. 
 
The estimation problem can be seen as solving a system of linear equations perturbed by 
noise, with the added constraint that the solution must be an element of the modulation 
constellation. To do this, the algorithm modifies the conventional QR decomposition to 
solve equation 5.1 as follows 
 

vQRar +=       5.15 
vQRarQ HH +=      5.16 

vRax +=       5.17 
 
where Q is an NxM matrix with orthonormal columns, R is an MxM upper-triangular 
matrix and v is a Gaussian-noise vector. It is important to note that some multiplications, 
divisions and square root operations are transformed into additions, reducing the overall 
complexity in a considerable manner as compared to the other algorithms [9]. The Least 
Square algorithm is described in figure 5.5. 
 



 56

 
Figure 5.5: V-Least-Square algorithm. 

 
The computational complexity of this algorithm is approximating made in follow equations  
 

21041435 MNLMLMNLMem +++=    5.18 
NMLMLMNLAdd 21041616 +++=    5.19 

MLMNLMult 1216 +=     5.20 
MNLDiv =      5.21 

MSrt =      5.22 
 

5.6 COMPARISON BETWEEN VBLAST VARIANTS AND CLOSEST 
POINT ALGORITHM 
 
In this section, a comparison between the VBLAST variants discussed above is made in 
terms of BLER performance and computational complexity. These approaches are also 
compared to the CP algorithm described in the last chapter. 
 

5.6.1 BLER PERFORMANCE 
 
Tables 5.1 through 5.3 present a performance comparison between the closest point 
algorithm and the VBLAST variants in terms of Bit Error Rate, Block Error Rate, storage 
requirements and computational complexity for SNRavg = 15dB and arrays of 2x4, 2x6 and 
2x8 antennas. From these tables we can observe that the best BLER performance is 
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obtained with the CP algorithm, while the VBLAST approaches all have the same 
performance. The difference between them is the computational complexity and storage 
requirements. We can see that the algorithm presenting the lowest complexity is the V-SQR 
approach followed by the V-LS algorithm.  
 

2x4 
Algorithm  BER BLER Storage Ob 

V-CP  5.22E-03 1.95E-01 61.77 63.71
V-SVD  5.70E-03 2.09E-01 39.35 62.29
V-LS  5.70E-03 2.09E-01 13.18 30.38

V-SQR  5.70E-03 2.09E-01 11.53 25.29
Table 5.1: Performance analysis for two transmit and four receive antennas. 

 
2x6 

Algorithm  BER BLER Storage Ob 
V-CP  4.45E-04 2.74E-02 76.16 81.49

V-SVD  5.17E-04 3.06E-02 56.80 88.46
V-LS  5.17E-04 3.06E-02 15.73 37.48

V-SQR  5.17E-04 3.06E-02 14.83 33.44
Table 5.2: Performance analysis for two transmit and six receive antennas. 

 
2x8 

Algorithm  BER BLER Storage Ob 
V-CP  4.95E-05 3.63E-03 90.65 99.43 

V-SVD  5.73E-05 4.00E-03 65.96 102.74
V-LS  5.73E-05 4.00E-03 18.28 44.58 

V-SQR  5.73E-05 4.00E-03 18.13 41.59 
Table 5.3: Performance analysis for two transmit and eight receive antennas. 

 
Figure 5.6 presents a BLER performance comparison between the CP algorithm and the 
VBLAST algorithm for the arrays discussed above (2x4, 2x6 and 2x8), as a function of 
received SNR. We can see that both algorithms present almost the same performance. 
Nevertheless, computational complexity is much higher with the CP algorithm. This means 
that VBLAST variants are excellent alternatives when computational complexity is at a 
prime. 

 
Figure 5.6: BLER vs SNRavg M = 2; N = 4, 6 and 8 
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Tables 5.4, 5.5 and 5.6 present simulation results when the number of transmit antennas is 
increased to eight. One again, a comparison is made between the CP algorithm and the 
VBLAST variants from a performance and complexity point of view. Results in these 
tables are taken for SNRavg = 17dB. 
 

8x10 
Algorithm  BER BLER Storage Ob 

V-CP  5.18E-03 3.87E-01 366.42 414.01 
V-SVD  1.46E-02 7.04E-01 828.35 1521.25 
V-LS  1.46E-02 7.04E-01 93.00 189.98 

V-SQR  1.61E-02 7.16E-01 35.08 81.50 
Table 5.4: Performance analysis for eight transmit and ten receive antennas. 

 
8x12 

Algorithm  BER BLER Storage Ob 
V-CP  6.16E-04 1.14E-01 360.94 409.97 

V-SVD  2.75E-03 2.98E-01 973.62 1751.86 
V-LS  2.75E-03 2.98E-01 97.05 200.68 

V-SQR  2.98E-03 3.06E-01 40.18 94.15 
Table 5.5: Performance analysis for eight transmit and twelve receive antennas. 

 
8x14 

Algorithm  BER BLER Storage Ob 
V-CP  1.28E-04 3.37E-02 388.65 445.97 

V-SVD  5.67E-04 9.20E-02 1118.51 1981.15 
V-LS  5.67E-04 9.20E-02 101.10 211.38 

V-SQR  5.99E-04 9.37E-02 45.28 106.80 
Table 5.6: Performance analysis for eight transmit and fourteen receive antennas. 

 
These tables show, as expected, that the best performance is obtained by CP algorithm; we 
also note that V-LS and V-SVD algorithms have the same performance but the former has 
lower complexity.  
 

 
Figure 5.7: BLER vs SNRavg M = 8; N = 10 

 
Figures 5.7 and 5.8 show a performance comparison between the CP algorithm and the V-
LS and V-SQR variants of the VBLAST algorithm. Notice that the V-LS approach has 
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better performance than the V-SQR approach. Also, the CP algorithm presents the best 
performance, but the V-LS approach is not that far from it. This means that the V-LS 
variant has a better tradeoff complexity-performance as compared to the CP algorithm. 
Finally, increasing the transmit antennas from 10 to 12, a performance gains of almost 4 dB 
are obtained. 
 

 
Figure 5.8: BLER vs SNRavg M = 8; N = 12 

 

 
Figure 5.9: BLER vs SNRavg M = 8; N = 14 

 
Finally, performance and complexity results are presented for square MIMO systems. 
Tables 5.7, 5.8, 5.9 and 5.10 show a comparison between square arrays of 2, 4, 6 and 8 
antenna pairs. From these tables we can observe that at a SNRavg of 20dB, BLER is 
increased almost in 1dB per antenna pair. 
 

2x2 
Algorithm  BER BLER Storage Ob 

V-CP  2.07E-02 2.95E-01 47.93 46.68
V-SVD  2.34E-02 3.21E-01 22.00 36.49
V-LS  2.34E-02 3.21E-01 10.63 23.28

V-SQR  2.34E-02 3.21E-01 8.23 17.14
Table 5.7: Performance analyses for two transmit and receive antennas. 
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4x4 
Algorithm  BER BLER Storage Ob 

V-CP  1.83E-02 3.33E-01 121.03 127.70
V-SVD  3.07E-02 4.75E-01 110.09 208.58
V-LS  3.07E-02 4.75E-01 26.50 55.08 

V-SQR  3.23E-02 4.89E-01 14.28 31.44 
Table 5.8: Performance analyses for four transmit and receive antennas. 

 
6x6 

Algorithm  BER BLER Storage Ob 
V-CP  1.37E-02 2.90E-01 283.61 318.30

V-SVD  4.00E-02 5.98E-01 314.41 598.44
V-LS  4.00E-02 5.98E-01 51.68 104.68

V-SQR  4.54E-02 7.00E-01 21.53 48.65 
Table 5.9: Performance analyses for six transmit and receive antennas. 

 
8x8 

Algorithm  BER BLER Storage Ob 
V-CP  9.69E-03 2.24E-01 749.47 867.26 

V-SVD  4.54E-02 7.00E-01 680.74 1283.27 
V-LS  4.54E-02 7.00E-01 88.95 179.28 

V-SQR  5.13E-02 7.20E-01 29.98 68.85 
Table 5.10: Performance analyses for eight transmit and receive antennas. 

 

 
Figure 5.10: BLER vs SNRavg M = 2; N = 2 

 

 
Figure 5.11: BLER vs SNRavg M = 4; N = 4 
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Finally, figures 5.10 through 5.13 show the BLER performance of square MIMO systems 
decoded with the CP, V-LS and V-SQR algorithms. First, it is important to note that a 
significant increase in performance is obtained when the number of antenna pairs is 
increased and decoded with the CP algorithm. Nevertheless, when the VBLAST variants 
are used, BLER performance is degraded as the antenna pairs is increased.  

 

 
Figure 5.12: BLER vs SNRavg M = 6; N = 6 

 

 
Figure 5.13: BLER vs SNRavg M = 8; N = 8 

 

5.6.2 COMPUTATIONAL COMPLEXITY 
 
As we did in past section, we will make a complexity analysis between the VBLAST 
variants and the CP algorithm. As complexity regards, table 5.11, 5.12 and 5.13 show the 
computational requirements of each algorithms. First column indicates the total storage 
requirements, and the following columns indicate the number of additions, multiplications, 
divisions and square root operations. All of these for each decoded bit.  
 

2x4 
Algorithm Storage Add Mul Div Srt Ob 

V-CP 61.77 26.58 15.74 2.63 0.10 63.71 
V-SVD 39.35 21.42 18.68 1.35 0.21 62.29 
V-LS 13.18 10.95 9.30 0.34 0.04 30.38 

V-SQR 11.53 9.09 7.35 0.70 0.03 25.29 
Table 5.11: Performance analyses for two transmit and four receive antennas. 
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2x6 
Algorithm Storage Add Mul Div Srt Ob 

V-CP 76.16 32.54 21.03 3.25 0.10 81.49 
V-SVD 56.80 29.80 27.27 1.65 0.21 88.46 
V-LS 15.73 13.25 11.60 0.44 0.04 37.48 

V-SQR 14.83 11.74 10.00 0.80 0.03 33.44 
Table 5.12: Performance analyses for two transmit and six receive antennas. 

 
2x8 

Algorithm Storage Add Mul Div Srt Ob 
V-CP 90.65 38.60 26.34 3.88 0.10 99.43 

V-SVD 65.96 34.61 31.67 1.91 0.24 102.74 
V-LS 18.28 15.55 13.90 0.54 0.04 44.58 

V-SQR 18.13 14.39 12.65 0.90 0.03 41.59 
Table 5.13: Performance analyses for two transmit and eight receive antennas. 

 
It is clear that the V-LS algorithm has the best tradeoff. It is important to note that in this 
algorithm, multiplications, division and square root operations are reduced and replaced by 
addition operations. 
 

 
Figure 5.14: Computational Complexity vs SNRavg M = 2; N = 4 

 

 
Figure 5.15: Computational Complexity vs SNRavg M = 2; N = 6 

 
Figures 5.14, 5.15 and 5.16 show the overall computational complexity, Ob, as a function of 
SNRavg for 2x4, 2x6 and 2x8 MIMO systems. As we can see, the V-SQR algorithm 
presents the lowest computational complexity. Nevertheless, its BLER behavior is not quite 
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efficient. The second smallest computational complexity is due to the V-LS algorithm 
which, added to its BLER performance, becomes the best algorithm from a complexity-
performance perspective.  

 

 
Figure 5.16: Computational Complexity vs SNRavg M = 2; N = 8 

 
Second analysis is made with same considerations in its architecture, so we will show that 
if we increase the number of transmit antennas, the V-LS algorithm is still our best option. 
 

8x10 
Algorithm Storage Add Mul Div Srt Ob 

V-CP 366.42 152.83 121.17 9.21 0.10 414.01 
V-SVD 828.35 405.71 530.35 17.78 4.82 1521.25 
V-LS 93.00 63.40 59.65 3.41 0.11 189.98 

V-SQR 35.08 27.80 25.80 1.00 0.03 81.50 
Table 5.14: Performance analyses for eight transmit and ten receive antennas. 

 
8x12 

Algorithm Storage Add Mul Div Srt Ob 
V-CP 360.94 145.44 124.32 7.75 0.10 409.97 

V-SVD 973.62 469.75 612.55 18.76 4.87 1751.86 
V-LS 97.05 66.90 63.15 3.51 0.11 200.68 

V-SQR 40.18 31.95 29.95 1.10 0.03 94.15 
Table 5.15: Performance analyses for eight transmit and twelve receive antennas. 

 
8x14 

Algorithm Storage Add Mul Div Srt Ob 
V-CP 388.65 156.16 136.73 7.98 0.10 445.97 

V-SVD 1118.51 533.48 694.30 19.72 4.90 1981.15 
V-LS 101.10 70.40 66.65 3.61 0.11 211.38 

V-SQR 45.28 36.10 34.10 1.20 0.03 106.80 
Table 5.16: Performance analyses for eight transmit and fourteen receive antennas. 

 
Analyzing tables 5.14, 5.15 and 5.16, we can observe that V-CP has the highest arithmetic 
complexity; nevertheless, V-SVD needs more memory requirements, which basically 
means that for a high number of transmit antennas, the algorithm increase the complexity 
logarithmically, rendering its implementation practically impossible. The V-LS approach is 
still our better option as we can see in figures 5.17, 5.18 and 5.19. 
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Figure 5.17: Computational Complexity vs SNRavg M = 8; N = 10 

 

 
Figure 5.18: Computational Complexity vs SNRavg M = 8; N = 12 

 
It is interesting to observe that if we increase the number of transmit antennas, the 
computational complexity increases logarithmically. If the number of transmit antennas is 
small, the computational complexity is almost linear. 

 

 
Figure 5.19: Computational Complexity vs SNRavg M = 8; N = 14 
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2x2 
Algorithm Storage Add Mul Div Srt Ob 

V-CP 47.93 21.03 10.56 2.06 0.10 46.68 
V-SVD 22.00 13.14 10.20 1.05 0.21 36.49 
V-LS 10.63 8.65 7.00 0.24 0.04 23.28 

V-SQR 8.23 6.44 4.70 0.60 0.03 17.14 
Table 5.17: Performance analyses for two transmit and receive antennas. 

 
4x4 

Algorithm Storage Add Mul Div Srt Ob 
V-CP 121.03 52.08 33.17 4.43 0.10 127.70 

V-SVD 110.09 59.98 67.43 4.46 1.21 208.58 
V-LS 26.50 19.00 17.05 0.86 0.06 55.08 

V-SQR 14.28 11.24 9.35 0.70 0.03 31.44 
Table 5.18: Performance analyses for four transmit and receive antennas. 

 
6x6 

Algorithm Storage Add Mul Div Srt Ob 
V-CP 283.61 129.14 83.92 10.46 0.10 318.30

V-SVD 314.41 162.26 202.90 9.72 2.73 598.44
V-LS 51.68 35.28 32.63 1.89 0.09 104.68

V-SQR 21.53 16.95 15.00 0.80 0.03 48.65 
Table 5.19: Performance analyses for six transmit and receive antennas. 

 
8x8 

Algorithm Storage Add Mul Div Srt Ob 
V-CP 749.47 358.29 225.52 28.77 0.10 867.26 

V-SVD 680.74 340.05 445.46 16.72 4.71 1283.27
V-LS 88.95 59.90 56.15 3.31 0.11 179.28 

V-SQR 29.98 23.65 21.65 0.90 0.03 68.85 
Table 5.20: Performance analyses for eight transmit and receive antennas. 

 
Finally, we show in tables 5.17, 5.18, 5.19 and 5.20 results obtained for square antenna 
arrays with a SNRavg equal to 20dB. These tables show that the CP algorithm is still higher 
in complexity than the V-LS and V-SQR algorithms.  
 

 
Figure 5.20: Computational Complexity vs SNRavg M = 2; N = 2 
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Figure 5.21: Computational Complexity vs SNRavg M = 4; N = 4 

 

 
Figure 5.22: Computational Complexity vs SNRavg M = 6; N = 6 

 

 
Figure 5.23: Computational Complexity vs SNRavg M = 8; N = 8 
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5.7 CONCLUSIONS 
 
In this chapter, three MIMO receiver procedures based on the V-BLAST algorithm and one 
based on the near-optimal CP algorithm have been presented. The performance and 
complexity of each algorithm have been analyzed and compared in order to determine the 
algorithm that is best suited for hardware implementation. It has been shown that MIMO 
systems can achieve much higher data rates than conventional SISO systems. This explains 
why space-time coding has been considered for standardization purposes in the third 
generation mobile communication systems (3G) where high rate multimedia services are 
required. It has also been shown that implementing an algorithm not only has to do with its 
overall performance but also with its computational burden.  

 
Next chapter is focused on one aspect, additional channel coding in order to improve BLER 
performance and observe what happens with the computational complexity in a MIMO 
system. 
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6 

IMPROVING VBLAST PERFORMANCE WITH 
CONVENTIONAL CHANNEL CODING 
 
 
 
6.1 INTRODUCTION 
 
In the last chapter an analysis of different realizations of the VBLAST architecture was 
performed in order to select that realization presenting the best complexity-performance 
tradeoff. We saw that the V-LS approach has this best tradeoff. In the purpose of improving 
the performance of these VBLAST approaches, while keeping its computational 
complexity as feasible as possible, a first attempt to concatenate the VBLAST architecture 
with conventional channel coding techniques is presented in this chapter. Indeed, the aim of 
this chapter is to analyze the performance improvement of the VBLAST algorithm when a 
channel codec (coder/decoder) is introduced in the transmission chain.  
 
The channel coder utilized is a convolutional code [2] with hard-input Viterbi decoding 
[10]. This codec is concatenated to two approaches of the VBLAST architecture, namely 
the V-LS algorithm and the V-SQR approach, and compared to the CP algorithm. As in the 
case of chapter 5, BLER performance and computational complexity is analyzed in order to 
propose the MIMO system with the best trade off. 
 
The analysis presented in this chapter consists in a description of the overall system 
followed by a presentation of performance and complexity results obtained by computer 
simulations. Then, a comparison with the near-optimum CP algorithm is done in order to 
determine which approach is best suited for a hardware implementation. 
 
Topics are considered as follows 
 

• Section 6.2: System Description 
• Section 6.3: Performance Results 
• Section 6.4: CP comparison 
• Section 6.5: Conclusions 

 
 
6.2 SYSTEM DESCRIPTION 
 
The system analyzed in this chapter is illustrated in figure 6.1. It consists of a convolutional 
channel coder concatenated to the vertical BLAST system with M 16-QAM modulators 
which operate at the same frequency band and with symbol rate of 1/T symbols/s with 
synchronized symbol timing. As in previous chapter, transmission is organized into burst of 
L symbols from each antenna. 
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The receiver consists of N conventional 16-QAM receivers (one for each receive antenna). 
They receive signals from the M transmit antennas. Flat fading is assumed, and the matrix 
channel function is HMxN. The channel is perturbed with Gaussian-distributed noise with 
zero mean and variance 0.5. 
 
We can observe that in the transmitter side, the convolutional coder creates dependence 
between the coded bits; however, in order to detect correctly, VBLAST needs 
independence between the transmitted bits. Assuming MIMO systems with L=10 symbols 
per block and convolutional coders with small constraint lengths (3<K<7), the 
demultiplexer of the VBLAST encoder can be seen as an interleaver. In other words, in 
cases where the length of the channel code is sufficiently small, as compared to the block 
size and the number of the transmit antennas, the demultiplexer plays the additional role of 
an interleaver. In other cases where this condition is not fulfilled, the MIMO system 
demands the use of an interleaver between the convolutional coder and the demultiplexer 
shown in figure 6.1.  
 

 
Figure 6.1: MIMO transmitter with convolutional coding. 

 
At the receiver end, the channel matrix is estimated and transmitted symbols are detected 
and demodulated in the usual way by the VBLAST system. In addition, the detected 
symbols are further decoded by a convolutional decoder so as to refine/correct further 
errors that VBLAST decoder was not able to correct. The convolutional decoder used in 
this chapter is the Viterbi decoder [8]. The output of the Viterbi decoder is the information 
sequence. 
 

Decoder
Viterbi

VBLAST
System

OUTPUT
INFORMATION

 
Figure 6.2: MIMO receiver with convolutional decoding. 

 
Convolutional codes are usually described into two parameters: the code rate and the 
constraint length. The code rate is defined as 
 

n
kCodeRate = Code     6.1 

 
it is the ratio of the information bits at the input of the convolutional encoder (k) to the 
coded bits (n) at its output. The constraint length of a convolutional code, K, denotes the 
“length” of the convolutional encoder, i.e. how many k-bit stages are available to feed the 
combinatorial logic that produces the coded symbols. The other important parameter is 
m=kK, which indicates how many information bits are retained and used for producing the 
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n output bits. Parameter m can be thought of as the memory length of the encoder. In this 
chapter, we will use convolutional coders with code rates of ½ and 1/3 [14]. 
 
In this thesis, Viterbi decoding is used because of its simplicity. It is well suited for 
hardware implementation; nevertheless, its computational complexity grows exponentially 
with the constraint length. In practice, it is usually limited to constraint lengths smaller than  
K = 9 [12]. For a thorough discussion on Viterbi decoding, refer to [8, 9, 12, 13]. In 
addition, appendix B gives a brief description of its functioning. 
 
6.3: PERFORMANCE RESULTS 
 
In this section, performance results of the concatenated convolutional coding and VBLAST 
system is presented together with the increase in computational complexity that this system 
may require. Performance is measured in terms of BLER. 
 
BLER performance is analyzed for MIMO systems with 2 transmit antennas and 4, 6 and 8 
receive antennas; systems with 8 transmit antennas and 10, 12 and 14 receive antennas; and 
square arrays with 2, 4, 6 and 8 antenna pairs. Convolutional codes with code rate of ½ and 
1/3, and constraint lengths of K=3, 4, 5, 6 and 7 are explored. 
 

6.3.1 BLER PERFORMANCE 
 

6.3.1.1 Code Rate 1/2 
 
This section presents the BLER performance of multiple antenna arrays for the system in 
figure 6.1 where the convolutional code has a code rate of ½. It is well known that the 
generator polynomials of a convolutional code are usually selected based on the code’s free 
distance properties. The first criterion is to select a code that does not have catastrophic 
error propagation and that has the maximum free distance for the given rate and constraint 
length. [14]. The convolutional codes used in this chapter are listed table 6.1. As can be 
seen, constraint length from K=3 to K=7 are used. The generator polynomials of each code 
is indicated in the table 
 

Rate Constraint Length Free Distance Generator 
Polynomial 

½ 3 5 111 , 101 
½ 4 6 1111 , 1011 
½ 5 7 10111 , 11001 
½ 6 8 101111 , 110101 
½ 7 10 1001111 , 1101101 

Table 6.1: Optimum Short Constraint Length Convolutional Codes for Rate ½. 
 
In the first part of the analysis, the following MIMO systems are used: 2x4, 2x6 and 2x8. 
Tables 6.2, 6.3 and 6.4 illustrate the performance/complexity of the V-LS systems with and 
without convolutional coding for a SNRavg =12dB. In the case where convolutional coding 
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is in use, constraint lengths of K=3 up to 7 are considered. As can be seen from the tables, a 
performance gain is achieved when channel coding is concatenated to the V-LS system. 
Even the simple K=3 convolutional code achieves an important gain in BLER performance 
over the V-LS system. In addition, as usually expected, increasing the constraint length of 
the convolutional code entails an increase in the performance of the communication system. 
Finally, from these tables we can see that the price to pay for obtaining a performance 
improvement is an increase in computational load and storage requirements. This will be 
analyzed more deeply in the next section. 
 

2x4 
Algorithm K BER BLER Storage Ob 

V-LS - 2.25E-02 6.08E-01 13.18 30.38 
CC+VB 3 8.63E-03 1.01E-01 30.35 72.75 
CC+VB 4 8.63E-03 8.74E-02 34.35 84.75 
CC+VB 5 1.04E-02 8.41E-02 42.35 108.75
CC+VB 6 1.20E-02 8.86E-02 58.35 156.75
CC+VB 7 1.10E-02 8.03E-02 90.35 252.75

Table 6.2: Performance analyses for two transmit and four receive antennas. 
 

2x6 
Algorithm K BER BLER Storage Ob 

V-LS - 5.00E-03 2.39E-01 15.73 37.48 
CC+VB 3 7.32E-04 1.32E-02 35.45 86.95 
CC+VB 4 7.53E-04 1.07E-02 39.45 98.95 
CC+VB 5 7.74E-04 1.03E-02 47.45 122.95
CC+VB 6 7.00E-04 9.91E-03 63.45 170.95
CC+VB 7 6.69E-04 9.68E-03 95.45 266.95

Table 6.3: Performance analyses for two transmit and six receive antennas. 
 

2x8 
Algorithm K BER BLER Storage Ob 

V-LS - 1.29E-03 8.08E-02 18.28 44.58 
CC+VB 3 8.89E-05 2.02E-03 40.55 101.15
CC+VB 4 8.64E-05 1.99E-03 44.55 113.15
CC+VB 5 8.48E-05 1.87E-03 52.55 137.15
CC+VB 6 8.30E-05 1.72E-03 68.55 185.15
CC+VB 7 7.56E-05 1.65E-03 100.55 281.15

Table 6.4: Performance analyses for two transmit and eight receive antennas. 
 
Figures 6.3, 6.4 and 6.5 show the BLER performance of the V-LS system alone and the V-
LS system with convolutional coding with K=3 and 7.  
 
From these figures we can observe two situations. First, the addition of the convolutional 
code in the transmission chain improves the BLER performance of the MIMO system, and 
increasing the constraint length of the convolutional code further improves its performance. 
 
For instance, figure 6.3 shows that for a BLER of 10-2, a gain of almost 5 dB is achieved by 
the K=3 convolutional code concatenated to the VBLAST system; and a further increase in 
0.5 dB is attained when constraint length is increased from K=3 to K=7. Second, the 
performance features of the VBLAST system is preserved, i.e. the BLER performance is 
increased as the number of receive antennas is increased. 
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Figure 6.3: BLER vs SNRavg M = 2; N = 4 

 

 
Figure 6.4: BLER vs SNRavg M = 2; N = 6 

 

 
Figure 6.5: BLER vs SNRavg M = 2; N = 8 

 
The following part of the analysis is when the transmitter array is increased to eight 
transmit antennas, and the receive array has ten, twelve and fourteen receive antennas. In 
tables 6.5, 6.6 and 6.7, we will present a comparison between these systems for a SNRavg 
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equal to 15dB. Clearly, as the constraint length is increased, the BLER performance is 
improved. Then, we can observe in figures 6.6, 6.7 and 6.8 that an increase in 1.5dB is 
obtained with a constraint length K=7. With a constraint length of five we can obtain a 
coding gain of almost 1 dB. 
 

8x10 
Algorithm K BER BLER Storage Ob 

V-LS - 4.26E-02 9.75E-01 93.00 189.98
CC+VB 3 3.17E-02 6.46E-01 190.01 391.95
CC+VB 4 3.07E-02 5.82E-01 194.01 403.95
CC+VB 5 3.30E-02 5.40E-01 202.01 427.96
CC+VB 6 3.08E-02 4.82E-01 218.01 475.96
CC+VB 7 3.28E-02 4.49E-01 250.01 571.96

Table 6.5: Performance analyses for eight transmit and ten receive antennas. 
 

8x12 
Algorithm K BER BLER Storage Ob 

V-LS - 1.39E-02 8.23E-01 97.05 200.68 
CC+VB 3 6.06E-03 2.35E-01 198.10 413.35 
CC+VB 4 5.61E-03 1.89E-01 202.10 425.35 
CC+VB 5 5.15E-03 1.56E-01 210.10 449.35 
CC+VB 6 4.30E-03 1.24E-01 226.10 497.35 
CC+VB 7 4.05E-03 1.07E-01 258.10 593.35 

Table 6.6: Performance analyses for eight transmit and twelve receive antennas. 
 

8x14 
Algorithm K BER BLER Storage Ob 

V-LS - 4.74E-03 5.45E-01 101.10 211.38 
CC+VB 3 1.23E-03 6.53E-02 206.20 434.75 
CC+VB 4 1.07E-03 4.95E-02 210.20 446.75 
CC+VB 5 8.74E-04 3.56E-02 218.20 470.75 
CC+VB 6 7.50E-04 2.74E-02 234.20 518.75 
CC+VB 7 6.07E-04 2.19E-02 266.20 614.75 

Table 6.7: Performance analyses for eight transmit and fourteen receive antennas. 
 

 
Figure 6.6: BLER vs SNRavg M = 8; N = 10 
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Figure 6.7: BLER vs SNRavg M = 8; N = 12 

 

 
Figure 6.8: BLER vs SNRavg M = 8; N = 14 

 
Finally, the third part of the analysis includes a series of square antenna arrays. Table 6.8, 
6.9, 6.10 and 6.11 shows comparison between algorithms with 2, 4, 6 and 8 pairs of 
antennas (both, transmit and receive) with a SNRavg of 30dB. 
 

2x2 
Algorithm K BER BLER Storage Ob 

V-LS - 2.19E-03 2.47E-02 10.63 23.28 
CC+VB 3 2.00E-03 1.42E-02 25.25 58.55 
CC+VB 4 1.99E-03 1.21E-02 29.25 70.55 
CC+VB 5 2.31E-03 1.14E-02 37.25 94.55 
CC+VB 6 2.50E-03 1.18E-02 53.25 142.55
CC+VB 7 2.62E-03 1.07E-02 85.25 238.55

Table 6.8: Performance analyses for two transmit and receive antennas. 
 

4x4 
Algorithm K BER BLER Storage Ob 

V-LS - 2.14E-03 2.46E-02 26.50 55.08 
CC+VB 3 2.15E-03 2.12E-02 57.00 122.15
CC+VB 4 2.08E-03 1.96E-02 61.00 134.15
CC+VB 5 2.14E-03 1.86E-02 69.00 158.15
CC+VB 6 2.24E-03 1.73E-02 85.00 206.15
CC+VB 7 2.49E-03 1.57E-02 117.00 302.15

Table 6.9: Performance analyses for four transmit and receive antennas. 
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6x6 
Algorithm K BER BLER Storage Ob 

V-LS - 2.31E-03 2.69E-02 51.68 104.68
CC+VB 3 2.38E-03 2.41E-02 107.35 221.35
CC+VB 4 2.46E-03 2.35E-02 111.35 233.35
CC+VB 5 2.30E-03 2.25E-02 119.35 257.35
CC+VB 6 2.33E-03 2.17E-02 135.35 305.35
CC+VB 7 2.56E-03 2.11E-02 167.35 401.35

Table 6.10: Performance analyses for six transmit and receive antennas. 
 

8x8 
Algorithm K BER BLER Storage Ob 

V-LS - 2.17E-03 2.77E-02 88.95 179.28
CC+VB 3 2.36E-03 2.56E-02 181.90 370.55
CC+VB 4 2.36E-03 2.52E-02 185.90 382.55
CC+VB 5 2.40E-03 2.48E-02 193.90 406.55
CC+VB 6 2.31E-03 2.40E-02 209.90 454.55
CC+VB 7 2.39E-03 2.34E-02 241.90 550.55

Table 6.11: Performance analyses for eight transmit and receive antennas. 
 
From these tables we can observe that for the same SNRavg (30dB), we have that BLER is 
increased almost in 0.5dB when the constraint length in the channel coding is seven, when 
constraint is three, the channel gain is closer to 0.2dB for a square array system with two 
antennas. In figures 6.9, 6.10, 6.11 and 6.12 we can observe this phenomenon clearly. If we 
have a square system, we cannot obtained significant increasing in the BLER or the BER 
performance, basically, this phenomenon indicates that the convolutional coder will not 
bring us any advantage. 
 
From figure 6.9 we can observe that the concatenated system with constraint length K=7 
presents a code gain of 4dB with respect to V-LS system; however, if we increase a pair of 
antennas, the BLER will not increase, as compared to the non-concatenated system, i.e. no 
coding gain is obtained from the concatenated system. 
 

 
Figure 6.9: BLER vs SNRavg M = 2; N = 2 
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Figure 6.10: BLER vs SNRavg M = 4; N = 4 

 

 
Figure 6.11: BLER vs SNRavg M = 6; N = 6 

 

 
Figure 6.12: BLER vs SNRavg M = 8; N = 8 

 

6.3.1.2 Code Rate 1/3 
 
In this section, the concatenated system consists of rate 1/3 convoltuional code and 
VBLAST ST coder with 2x4, 2x6 and 2x8 antenna arrays. Afterwards, the system will use 
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8x10, 8x12 and 8x14 antenna arrays. Table 6.12 illustrates the rate 1/3 convolutional codes 
used together with their generator polynomials for different constraint lengths. 
 

Rate Constraint 
Length 

Free 
Distance 

Code Vector 

1/3 3 8 111 , 111, 101 
1/3 4 10 1111, 1011, 1101 
1/3 5 12 11111, 11011, 10101 
1/3 6 13 101111, 110101, 111001 
1/3 7 15 1001111, 1101101, 1010111 

Table 6.12: Optimum Short Constraint Length Convolutional Codes for Rate 1/3. 
 
Tables 6.13, 6.14 and 6.15 show us the first part of the analysis. From these tables we can 
observe the BLER performance for a SNRavg of 7dB, and the best performance gain is 
given when K=7, as expected. 
 

2x4 
Algorithm K BER BLER Storage Ob 

V-LS - 9.93E-02 9.93E-01 13.18 30.38 
CC+VB 3 3.09E-02 2.23E-01 44.54 105.47
CC+VB 4 2.03E-02 1.77E-01 48.54 117.47
CC+VB 5 2.30E-02 1.66E-01 56.54 141.47
CC+VB 6 2.58E-02 1.57E-01 72.54 189.47
CC+VB 7 2.35E-02 1.53E-01 104.55 285.48

Table 6.13: Performance analyses for two transmit and four receive antennas. 
 

2x6 
Algorithm K BER BLER Storage Ob 

V-LS - 5.31E-02 9.37E-01 15.73 37.48 
CC+VB 3 4.74E-03 4.56E-02 52.39 127.31
CC+VB 4 2.39E-03 2.40E-02 56.39 139.31
CC+VB 5 2.43E-03 2.38E-02 64.39 163.31
CC+VB 6 2.92E-03 2.37E-02 80.39 211.31
CC+VB 7 2.35E-03 2.16E-02 112.39 307.31

Table 6.14: Performance analyses for two transmit and six receive antennas. 
 

2x8 
Algorithm K BER BLER Storage Ob 

V-LS - 2.92E-02 8.16E-01 18.28 44.58 
CC+VB 3 8.22E-04 9.37E-03 60.23 149.15
CC+VB 4 2.94E-04 3.60E-03 64.23 161.15
CC+VB 5 2.89E-04 6.19E-03 72.23 185.15
CC+VB 6 3.66E-04 3.62E-03 88.23 233.15
CC+VB 7 2.68E-04 3.31E-03 120.23 329.15

Table 6.15: Performance analyses for two transmit and eight receive antennas. 
 
Figures 6.13 through 6.15 compare the V-LS system with and without convolutional 
coding. When convolutional coding is used, constraint length K=3 and K=7 are considered. 
In figure 6.13 we can see that a performance gain of 7 dB is attained with a constraint 
length of K=3, as compared to the V-LS system. Nevertheless, an increase in complexity by 
a factor of 5 has to be paid for this performance improvement. In figures 6.14 and 6.15, an 
improvement of 3.5 dB is attained for a complexity increase in a factor of 6 
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Figure 6.13: BLER vs SNRavg M = 2; N = 4 

 

 
Figure 6.14: BLER vs SNRavg M = 2; N = 6 

 

 
Figure 6.15: BLER vs SNRavg M = 2; N = 8 

 
Tables 6.16 through 6.18 present performance results for MIMO systems with 8x10, 8x12 
and 8x14 antenna arrays. The signal to noise ratio considered is 14 dB. As expected, the 
BLER decreases as the constraint length of the convolutional code increases. Nevertheless, 
a penalty in computational complexity has to be accounted for. 
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8x10 
Algorithm K BER BLER Storage Ob 

V-LS - 6.29E-02 9.97E-01 93.00 189.98
CC+VB 3 2.03E-02 4.56E-01 284.76 585.51
CC+VB 4 1.40E-02 3.23E-01 288.76 597.51
CC+VB 5 1.17E-02 2.41E-01 296.76 621.51
CC+VB 6 9.32E-03 1.70E-01 312.76 669.51
CC+VB 7 8.33E-03 1.36E-01 344.76 765.51

Table 6.16: Performance analyses for eight transmit and ten receive antennas. 
 

8x12 
Algorithm K BER BLER Storage Ob 

V-LS - 2.55E-02 9.63E-01 97.05 200.68
CC+VB 3 3.66E-03 1.37E-01 296.98 617.81
CC+VB 4 1.99E-03 7.22E-02 300.98 629.81
CC+VB 5 1.25E-03 4.24E-02 308.98 653.81
CC+VB 6 7.25E-04 2.21E-02 324.98 701.81
CC+VB 7 4.98E-04 1.29E-02 356.98 797.81

Table 6.17: Performance analyses for eight transmit and twelve receive antennas. 
 

8x14 
Algorithm K BER BLER Storage Ob 

V-LS - 1.04E-02 8.15E-01 101.10 211.38
CC+VB 3 6.60E-04 3.11E-02 309.21 650.11
CC+VB 4 3.02E-04 1.38E-02 313.21 662.11
CC+VB 5 1.47E-04 6.23E-03 321.21 686.11
CC+VB 6 6.55E-05 2.59E-03 337.21 734.11
CC+VB 7 3.45E-05 1.18E-03 369.21 830.11

Table 6.18: Performance analyses for eight transmit and fourteen receive antennas. 
 

Figures 6.16, 6.17 and 6.18 illustrate the performance in terms of BLER of the V-LS 
system and the proposed system as a function of the received SNR. We can see in figure 
6.16 that for a BLER of 10-2, a gain of almost 2 dB is achieved with the K=3 V-LS+CC and 
4 dB with K=7. Nevertheless, a complexity is increased of a factor of three for a constraint 
length of 3. 
  

 
Figure 6.16: BLER vs SNRavg M = 8; N = 10 
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Figure 6.17: BLER vs SNRavg M = 8; N = 12 

 

 
Figure 6.18: BLER vs SNRavg M = 8; N = 14 

 
Finally, a comparison of MIMO system for a 8x14 array reveals that a coding gain of 6 dB 
can be achieved with the V-LS+CC system with K=7 but with a cost size of complexity.  

 

6.3.2 COMPUTATIONAL COMPLEXITY 
 
Additional computational complexity is introduced when a channel coding (convolutional) 
is incorporated to the LS-VBLAST algorithm. As we showed, BLER performance can 
obtain better advantages, but the real question is how much complexity are we willing to 
accept.  
 
Independent to the number of transmit and receive antennas, computational complexity of 
the Viterbi algorithm is dependent on the constraint length of the code. However, the 
overall complexity depends on both the number of transmit and receive antennas and the 
complexity of the Viterbi decoder. 
 
As an example, we will take a system consisting of two transmit antennas and four receive 
antennas. The computational complexity is described below [16]. 
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For Viterbi decoder, the storage requirements are mostly due to the survivor memory 
management. A rough estimation of the storage requirement is 
 

12* −= KLStorage     6.2 
 
This is the storage requirement for register-exchange-like decoders [16]. Parameter L 
represents the number of bits that have to be stored in order to be able to make a correct 
decision on one decoded bit. Parameter K is the constraint length of the code. 
 
In previous section it was shown that the best performance was obtained for K=7 coders. 
For this constraint length, 72  addition operations, 62  comparisons 72  memory addresses 
are needed. In addition, K2  operations are needed for the branch metric calculation. This 
way, the Viterbi algorithm needs 384 additions per processing cycle to update the path 
metrics. 
 
Table 6.19 and figure 6.19 shows how convolutional channel coding affects the 
computational complexity of the V-LS algorithm. For a constraint length of three and seven 
and for a code rate equal to 1/2, we have the lowest and the highest computational 
complexities, respectively. 
 

 
Figure 6.19: Computational Complexity vs SNRavg M = 2; N = 4 

 
2x4 

Algorithm K Storage Add Mul Div Srt Ob 
V-LS - 13.18 10.95 9.30 0.34 0.04 30.38 

CC+VB 3 30.35 33.90 18.60 0.68 0.08 72.75 
CC+VB 4 34.35 45.90 18.60 0.68 0.08 84.75 
CC+VB 5 42.35 69.90 18.60 0.68 0.08 108.75
CC+VB 6 58.35 117.90 18.60 0.68 0.08 156.75
CC+VB 7 90.35 213.90 18.60 0.68 0.08 252.75

Table 6.19: Performance analyses for two transmit and four receive antennas. 
 

Figure 6.19 presents the computational complexity (arithmetic operations) as a function of 
the SNRavg, for a 2x4 array. As we can see, computational complexity is strongly related to 
the constraint length of the convolutional code. In general, the computational complexity 
 



 82

depends on the number of transmit and receive antennas, on the number of symbols per 
block and on number of trellis states in the Viterbi algorithm until table is the complexity 
and storage requirements for a one bit. 

 
6.4 COMPARISON WITH CP ALGORITHM 
 
From past chapter we know that the best BLER performance was obtained with the CP 
algorithm; however, computational complexity was its main drawback when thinking of a 
hardware implementation. In this section, the proposed system (V-LS+CC) is compared to 
the CP algorithm from both performance and complexity point of views. 
  

2x4 
Algorithm K BER BLER Storage Ob 

V-CP   5.22E-03 1.95E-01 61.77 63.71 
V-LS - 2.25E-02 6.08E-01 13.18 30.38 

CC+VB 3 8.63E-03 1.01E-01 30.35 72.75 
CC+VB 7 1.10E-02 8.03E-02 90.35 252.75
CC+VB 3 2.18E-03 2.02E-02 44.54 105.46
CC+VB 7 1.29E-03 9.95E-03 104.54 285.46

Table 6.20: Performance comparison: CP algorithm and new system for a 2x4 array. 
 

2x4 
Algorithm K Storage Add Mul Div Srt Ob 

V-CP   61.77 26.58 15.74 2.63 0.10 63.71 
V-LS - 13.18 10.95 9.30 0.34 0.04 30.38 

CC+VB 3 30.35 33.90 18.60 0.68 0.08 72.75 
CC+VB 7 90.35 213.90 18.60 0.68 0.08 252.75 
CC+VB 3 44.54 45.69 28.62 1.04 0.12 105.46 
CC+VB 7 104.54 225.69 28.62 1.04 0.12 285.46 

Table 6.21: Computational Complexity comparison: CP algorithm and new system for a 2x4 array. 
 
Table 6.20 and 6.21 present the BLER performance and the computational complexity for a 
2x4 array of antennas with SNR equal to 15dB and 14dB respectively. From tables we can 
observe that storage requirements are similar for CP and V-LS+CC algorithms with 
constraint equal K=7 (R=1/2) and K=3 (R=1/3), but the BLER performance obtained by the 
proposed system is better. Table 6.21 shows that the storage requirements and the 
computational complexity increases considerably for constraint lengths K=7 (either R=1/2 
or R=1/3). In these cases, the computational complexity (arithmetic) of the proposed 
system is 2 and 4 times that of the CP algorithm. 
 
Figures 6.20 and 6.21 present the results obtained by the comparison between the two 
algorithms (CP and V-LS+CC). The V-LS+CC system is shown with code rate of ½ and a 
constraint length of 3 and with a code rate of 1/3 and a constraint length of seven, i.e., the 
worst performance obtained by the new system and the best performance. This is done in 
order to visualize the BLER performance but also the increase in computational 
complexity. 
 
From figures 6.20 and 6.21 we can observe that BLER performance is greatly improved for 
an acceptable increase in computational complexity. As a result, the proposed system can 
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be seen as a good tradeoff between performance and complexity as compared to the CP 
algorithm considering that the increase with respect a CP is more less only 10 percent.  
 

 
Figure 6.20: BLER vs SNRavg  Comparison: CP Algorithm and new system for M = 2; N = 4 

 

 
Figure 6.21: Computational Complexity vs SNRavg: CP Algorithm and new system for M = 2; N = 4 

 
In order to have a better idea of this comparison, we will analyze a 8x14 MIMO system. 
Tables 6.22 and 6.23 compare the proposed system and the systems analyzed in chapter 5 
with a SNR of 14dB. 
 

8x14 
Algorithm K BER BLER Storage Ob 

V-CP   1.28E-04 3.37E-02 414.21 476.45
V-LS - 4.74E-03 5.45E-01 93.00 189.98

CC+VB 3 1.23E-03 6.53E-02 206.20 434.75
CC+VB 7 6.07E-04 2.19E-02 266.20 614.75
CC+VB 3 6.60E-04 3.11E-02 309.21 650.11
CC+VB 7 3.45E-05 1.18E-03 369.21 830.11

Table 6.22: Performance comparison: CP algorithm and new system for a 8x14 array. 
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8x14 
Algorithm K Storage Add Mul Div Srt Ob 

V-CP   414.21 169.84 143.78 9.33 0.10 476.45 
V-LS - 93.00 63.40 59.65 3.41 0.11 189.98 

CC+VB 3 206.20 152.80 133.30 7.23 0.23 434.75 
CC+VB 7 266.20 332.80 133.30 7.23 0.23 614.75 
CC+VB 3 309.21 224.53 201.21 10.91 0.34 650.11 
CC+VB 7 369.21 404.53 201.21 10.91 0.34 830.11 

Table 6.23: Computational Complexity comparison: CP algorithm and new system for a 8x14 array. 
 
We can see from figures 6.22 and 6.23 that either BLER performance is better with any of 
the V-LS with the Viterbi algorithm. However, the computational complexity is very 
similar when the code rate is ½, but is larger when the code rate is increased, no matter the 
constraint length. Do not forget that storage requirements and arithmetic operations needed 
for the CP algorithm decrease with increasing the SNR, but in the proposed system, the 
number of operations and storage requirements are independent of the SNR.  
 

 
Figure 6.22: BLER vs SNRavg : CP Algorithm and new system for M = 8; N = 14 

 

 
Figure 6.23: Computational Complexity vs SNRavg: CP Algorithm and new system for M = 8; N = 14 
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6.5 CONCLUSIONS 
 
In this chapter, convolutional channel coding is introduced to the LS-VBLAST algorithm. 
The performance and complexity have been analyzed and compared with different antenna 
arrangements in order to determine the algorithm best suited for a hardware 
implementation. From results we can observe several things. First, we can obtain 
improvements in the BLER performance when the constraint length of the convolutional 
code is increasing; however, the BER performance does not present the same pattern. An 
example of this situation can be seen in table 6.2, where we can observe that encoder with 
constraint lengths of three and four present better performance than encoders with 
constraint lengths equal to five, six and seven. We believe that this is due to the fact that no 
interleaving is used prior to demultiplexing the information stream coming out of the 
convolutional encoder. That may be the reason why small constraint length encoders 
exhibit better BER performance.  
 
Another observation is the behavior of the system with respect to the constrain length. 
From theory, increasing the constraint length of the code in one increases the performance 
in ½ dB [17]. However, simulations results indicate that the unique systems which respects 
this is the code rate equal to ½ and eight transmit antennas systems. 
 
The two previous statements take us to conclude that we need the introduction of an 
interleaver in the system. It is very probably that the independence needed by the VBLAST 
system is not complete only with the transmit matrix definition. Further research is to be 
done regarding this observation. 
 
In addition, this chapter has been shown that the best BLER performance is obtained with a 
constraint length equal to seven, however, computational complexity grows exponentially 
with the number of states of the trellis. 
 
Another results highlighted in this chapter is a detailed comparison between the CP 
algorithm and the conventional channel coding with VBLAST. We observe that BLER 
performance is always increased in the new system as compared to the CP algorithm; 
however, the complexity of the former grows exponentially with respect of the trellis states. 
Nevertheless, simulation results showed that computational complexity of the new system 
with a code rate of ½ essentially the same as the CP algorithm, for the same number for 
antenna arrangements, but the proposed system outperforms the CP algorithm in BLER 
performance.  
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7 

CONCLUSIONS AND PERSPECTIVES 
 
 
 
CONCLUSIONS 
 
In this thesis, the potentials of MIMO systems in the context of high data rate wireless 
communications systems have been investigated. We saw that MIMO systems have the 
potential of increasing drastically the channel capacity and the data rates, as opposed to 
conventional SISO systems. This explains why space-time coding has been considered for 
standardization in the third generation mobile communications systems (3G) where the 
demand of high rate multimedia services is continuously increasing. 
 
An important drawback of MIMO systems has to do with its computational complexity, 
which makes these systems very difficult to implement in hardware. In other words, 
implementing an algorithm not only has to do with its overall performance but also with its 
computational burden.  
 
Of special interest, the Vertical Bell-Labs Space-Time Coding Architecture has proven its 
excellent complexity-performance tradeoff. That is, among the MIMO decoding procedures 
that exist, VBLAST is the algorithm that shortens the gap between theory and practice, i.e., 
the hardware implementation of these promising systems. 
 
The VBLAST architecture has been analyzed with three different approaches which are 
related to the way the Moore Penrose pseudo inverse of the channel matrix H is performed. 
These approaches are Singular Value Decomposition VBLAST, Sorted QR Decomposition 
VBLAST and Least-Squares VBLAST. The analysis has been made from a performance 
and computational complexity point of view. In addition, these systems were compared to 
the closest point-based detection algorithm proposed by Agrell. It was shown that even 
though the CP algorithm presents the best performance in terms of block error rate, its 
complexity is considerably high as to be considered for a hardware implementation. From 
all the considered systems, the Least-Squares approach presents the best tradeoff. That is, 
this approach implies a performance degradation as compared to the CP algorithm; 
nevertheless, the computational complexity of the latter is much more important than the 
former. 
 
In the last part of this work, and once the approach with the best tradeoff has been 
identified, a new MIMO system consisting in the concatenation of a conventional channel 
coder and this MIMO system (LS-VBLAST) is proposed. Using an off-the-shelf 
convolutional code with Viterbi decoding and with acceptable complexity (constraint 
lengths between K=3 and K=7), performance improvements of up to 7 dB were achieved. 
Hence, conventional channel coding techniques and V-LS algorithm may lead to the design 
of MIMO system with a very good tradeoff performance-complexity load.  
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In a more specific way, we studied the VBLAST algorithm with three variants; one of 
them, the V-LS presents the following characteristics: 
 

 A BLER performance closer to the quasi-optimal CP algorithm with lower 
computational complexity for specific scenarios 

 Reduction in the number of complex mathematical operations and a lower increase 
in the addition operations, which basically makes the algorithm easier to implement 

 This algorithm allows a greater number of transmit and receive antennas 
 Additional convolutional coding to the systems leads performance gains of 2dB 

with small antenna arrays and channel codes with R= ½ and up to 7dB for a R=1/3 
code rate 

 Computational complexity with the additional channel coding is still acceptable, 
specially for current technology target such as FPGA and/or DSPs 

 
 
FUTURE WORK 
 
There are a number of areas considered in this thesis where further work could be pursued: 
 

 Hardware Implementation 
 

1. Obviously, a perspective for thesis is the hardware implementation in DSP 
(Digital Signal Processing) or Programmable Logic Device (PLD) platforms 
of the algorithm used here. 

2. A good idea for this thesis was to introduce another VBLAST variant in 
order to makes major number of complex mathematical computations into 
additions, which makes algorithm better for implementations. 

 
 Improvement of the overall performance 

 
1. The improvement of the overall performance by introducing a channel 

space-time coding techniques, either trellis [1] of block [2] codes to the 
MIMO systems. 

2. Also, it can be introduced a coded-modulation technique [3] directly to the 
LS-VBLAST algorithm 

3. Adding the turbo principle to the detection process of  the VBLAST 
algorithm 

 
 Wireless standardization 

 
1. Introduce the VBLAST system to the wireless standardization IEEE802.16 

or IEEE802.11n. 
2. Introduce to the CDMA systems as a fast search technique. 
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APPENDIX A 

OTHER MIMO CHANNEL CHARACTERISTICS 
 
 
 
A.1 PERFORMANCE LIMITS OF MIMO SYSTEMS 
 

A.1.1 CAPACITY MIMO FAST AND BLOCK RAYLEIGH FADING CHANNEL 
 
In order to get an expression for capacity in MIMO fast and block Rayleigh fading channels 
[1], we have to define the coefficient 2h as squared distributed random variable, with two 

degrees of freedom, denoted by x2
2. This variable can be expressed as 2

2
2
1

2
2 zzxy +== , 

which was defined in past section. Therefore, the PDF is given by 
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The channel capacity can be obtained by estimating the mean value as follow 
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Where E[ . ] denotes the expectation with respect to the random variable x.  
 
To approximate capacity in MIMO with singular value decomposition, with the channel 
matrix H, we can represented by an equivalent channel, which consist in r ≤ min(N,M) 
decoupled parallel sub channels, where r is the rank of H. So, capacity is giving for the 
overall capacity 
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where iλ  are the singular values of the channel matrix. Alternatively, by using an 
approximation, we can write for the mean MIMO capacity on fast fading channels 
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Where Q is defined as 
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The channel capacity curve for receive diversity with maximum ratio combining (equation 
A.2) is shown in figure A.1. 
 

 
Figure A.1: Channel capacity curve for receive diversity on a fast and block Rayleigh fading channel 

with maximum ratio diversity combining. 
 
Notice that, the diversity in the transmitter can remove the effect of fading for a large 
number of antennas, which is very important and the main objective of MIMO channels. It 
is important to remark that the capacity showed is for coordinated transmission, which 
means that all transmitter signals are the same and synchronous, wherever, for 
uncoordinated transmission, we can define the channel capacity by 
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A.1.2 Capacity of MIMO Slow Rayleigh Fading channels 
 
According to the channel, we will have Rayleigh distribution at the beginning of the 
transmission and held constant for a transmission block.  This channel is the representation 
of LAN systems with high rates and low fade rates. The capacity estimated is random 
variable. For transmit diversity, the capacity has been defined by equation A.6, while 
receive diversity is given by 
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In a system with M transmitter and N receiver antennas, assuming that M ≥ N, we have that 
capacity can found with the lower and upper bound of the capacity, respectively, as follow 
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where x is the squared random variable with 2N degrees of freedom. This system 
corresponds to an uncoupled parallel transmission system, which each of M antennas is 
received by a separated set of N antennas. When we have a squared system (means that 
receiver antennas is the same than transmitter), we can found capacity as lower bound 
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Figure A.2: Achievable capacity for a MIMO slow Rayleigh fading channel versus SNR for a variable 

number of transmit/receive antennas. 
 

Where the random variable has a Gaussian distribution with mean 
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In Figure A.2 is plotted for various numbers of antennas and a constant SNR. We can 
demonstrate that capacity achieves a given level improves markedly when the number of 
antennas increased. It shows that even with relative small number of antennas, large 
capacities can be available. As an example, at an SNR of 20dB and with 8 number of 
transmit/receive antennas, about 34 bits/s/Hz could be achieved while with only one 
antenna each side could achieve 4 bits/s/Hz. 
 
A.2 EFFECT OF SYSTEM PARAMETERS AND ANTENNA 
CORRELATION 
 
MIMO channels have been calculated its capacity under the idealistic assumption that the 
channel matrix entries are independent complex Gaussian variables, but in reality there is 
no true, so gain channel is diminished when the signals arriving are correlated. Correlated 
means that receiver antennas have a relationship between them, and it can be reduced by 
separating antennas spatially. In real channels, another degenerate propagation condition is 
the “keyholes”, which decrease channel capacity. The keyholes reduce the rank of the 
channel matrix and thus, lower the capacity. 
 
In this section, we will introduce the correlation matrix models in MIMO systems in order 
to make them real. First able to define the correlation coefficients and introduce the 
correlation channels with a line of sight (LOS) path and in the absence of scattering. It is 
followed by a model for Rician fading channel. Subsequently, we will discuss about the 
keyhole effect and its influence on the channel matrix and capacity. Then, a quickly view in 
channel model for an outdoor channel with scattering, described by the system parameter 
such as the angular spread, scattering radio and the distance between the transmitter and 
receiver.  
 
As we know, channel matrix can be represented by a vector h as follow 
 

[ ]TNi hhhhH ,....,,...,, 21=     A.12 
 
where each one of the hx elements are vector from the receiver antenna. From here, we can 
define an NMxNM correlation matrix Θ given by 
 

[ ]hhE H=Θ      A.13 
 
where hH denotes the Hermitian of h[3]. 
 
When entries of matrix H are independent identically distributed variables, then correlation 
matrix can generates a maximum capacity. From here, we assume that the correlation 
between receiver antenna elements do not depend on the transmitted antennas and vice 
versa. Which is real if we consider that immediate antenna surroundings causes the 
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correlation between array elements and have no impact on correlation observed between the 
elements of the array at the other end.  
 
A correlated MIMO channel matrix can be resented as 
 

TR HKKHc =      A.14 
 
where H is the matrix with uncorrelated complex Gaussian entries, KR is an NxN matrix 
and KT is an MxM matrix, given by their correlation matrices respectively which can be 
obtained by Cholesky Decomposition [2]. 
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A.2.1 Correlation Model for a Rayleigh MIMO Fading channel 
 
Considering a linear array of M receiver antennas, spaced at a distance dr, surrounded by 
clutter, similar to figure C.3. In figure, transmit antennas radiating signals which are 
reflected by the scatterers surrounding the receiver. The plane wave directions of arrival 
signals from the scatterers is α. The correlation coefficients can be calculated by the 
equation C.16 
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where p(α) is the probability of the direction of arrival and αr is the receiver antenna 
angular spread. For small values of the angle, we can obtain spread very large antenna 
separations to obtain low correlation. On the other hand, if the angle spread is reasonably 
large, low correlation can be obtained for antenna not higher than two wavelengths. For low 
element separation, the correlation coefficient is high even for large angle spreads. If there 
are pdf for the zero mean Gaussian distributed direction of arrival, then, we can denote this 
probability as  
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Figure A.3: Propagation model for a MIMO fading channel. 

 
The standard deviation for the Gaussian distributed direction of arrival is calculated for a 
given angle spread αr, and the expression is krασ = , where 32/1=k . 
 
The capacity for a MIMO channel with this kind of correlation is given in equation C.18, 
where the correlation coefficients can be calculated by expression A.17, assuming a 
uniform distribution of the direction of arrival.  
 

 
Figure A.4: Correlation coefficients in a fading MIMO channel with a uniformly distributed direction 

of arrival α. 
 

Assuming that N = M, the capacity of a correlated MIMO fading channel can be expressed 
as 
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From expression we can say that the number of transmit and receive antennas must be the 
same, which means that equation only can be applying in square systems. The correlation 
coefficients for a Gaussian distribution of the direction of arrival for the same spread as for 
the uniform distribution, denoted by expression A.16, is given in figure A.4. 
 

A.2.2 Correlation Model for a Rician MIMO Channel 
 
In order to understand the meaning of the expression, we must define the Rician model of 
channel as a system with LOS propagation and scattering. The model is characterized by 
the Rician factor, k, and it is the ratio of the line of sight and the scatter power component.  
The pdf for a Rician random variable x is given by 
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where 2

2

2 r

Dk
σ

= , which superior and inferior level of equation are the powers of the LOS 

and scatterers components, respectively.  
 
The matrix of the channel can be decomposed as equation A.20, where HLOS is the channel 
matrix for the LOS propagation with no scattering and HRAYl is the channel matrix for the 
scattering only. 
 

RAYlrLOS HDHH σ2+=      A.20 
 
The equation can be interpreted as follow. For the Rician factor of zero the capacity is 
equal to the Rayleigh fading channel. As the Rician factor increase, the capacity reaches 
with the logarithmic expression. In LOS extreme case, the capacity is equal to the capacity 
of an uncorrelated Rayleigh fading channel. As Rician increase, then the capacity 
approaches the linear expression and increase. 
 
A.3 SPACE-TIME CODING PERFORMANCE ANALYSIS AND CODE 
DESIGN 
  

A.3.1 STATISTICAL MODELS FOR FADING CHANNELS 
 
Statistical techniques are used to describe signal variations in a cellular mobile 
environment. It is important to say that all spectral components of the transmitted signal are 
subject to the same fading attenuation and occupy bandwidth smaller that the channel’s 
coherent bandwidth, is called as frequency nonselective or frequency flat. On the other 
hand, if bandwidth is grater than the channel coherence, the spectral components of signal 
with a frequency separation larger that the coherence bandwidth are faded independently. 
The received signal becomes distorted, this phenomenon is known as frequency selective 
fading.   
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In this section, Rayleigh and Rician fading models are introduced to describe signal 
variations in narrowband multipath environment.  
 
For a fast Rayleigh fading channel we consider a transmission of a single tone with 
constant amplitude, and assuming that direct wave is obstructed and the mobile unit 
received only reflected waves. When the number of waves is large, two quadrature 
components of the received signal are uncorrelated Gaussian random processes with a zero 
mean and variance σs

2. As a result, the envelope of the received signal at any time has a 
Rayleigh probability distribution and the phase has a uniform distribution between -π and 
π. The probability density function (pdf) of the Rayleigh distribution is given by 
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The mean value, denoted by ma, and the variance, denoted by σa

2, of the Rayleigh 
distributed random variable are given by 
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If the probability density function in A.21 is normalized so that the average signal power 

[ ]( )2aE  is unity, then the normalized Rayleigh distribution becomes 
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The mean value and the variance are 8862.0=am  and variance 2146.02 =sσ . The pdf for 
a normalized Rayleigh distribution is shown in figure A.5 
 

 
Figure A.5: The pdf of Rayleigh distribution normalized. 
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A.3.1.1 Rician Fading 
 
In some scenarios, there are no obstacles on the line of sigh, but the received signal consists 
of a direct wave and a number of reflected waves. The direct one is a stationary nonfading 
signal with constant amplitude. The others one reflected are independent random signals. 
Their sum is called the scattered component of the received signal. 
 
When number of reflected signal is large, the quadrature components of the scattered signal 
can be characterized as a Gaussian random process with a zero mean and variance σa

2. The 
envelope of the scattered component has a Rayleigh probably distribution.  
 

 
Figure A.6: The pdf of Rician normalized distributions with various K. 

 
The sum of the constant amplitude direct signal and a Rayleigh distributed scattered signal 
results in a signal with a Rician envelope distribution. The pdf of the Rician distribution is 
given by 
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where D is the direct signal power and I0( ) is the modified Bessel function of the first kind 
and zero-order. Assuming that the average power ratio is normalized to unity, the pdf 
becomes 
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where K is the Rician factor, denoting the power ratio of the direct and scattered signal 
components. The Rician factor, the mean and the variance of the Rician distributed random 
variable are given by A.24 and represented in figure A.6 
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where I1( ) is the first order modified Bessel function of the first kind.  
 
These two models can be applied to describe received signal amplitude when the signal 
bandwidth is much smaller than the coherence bandwidth. 
 

A.3.2 PERFORMANCE IN FADING CHANNELS 
 
In order to illustrate the effects of multipath fading channels on error performance, we 
consider an uncoded system BPSK with and without multipath fading. The error probability 
of BPSK on AWGN channels with coherent detection is given by [3] 
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where Eb/N0 is the ratio of the bit energy to the noise power spectral density. In fading 
channels, for a given fading attenuation a, which we consider that is constant each signal 
interval so that coherent detection can be achieved, the conditional bit error probability is 
given by 
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Figure A.7: BER performance comparison of coherent BPSK on AWGN and Rayleigh fading channels. 
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where 
0

2

N
E

ay b
b =  is the received SNR per bit. 

In order to compare the performance of the BPSK signaling, let plot the error probability of 
both (figure A.7). From figure we can observe that error rate decreases exponentially with 
the increasing SNR for a non-fading channel. However, for a fading channel, the error rate 
decreases inversely with the SNR. It is important to remark that, in order to appreciate the 
performance of the diversity techniques in combating the multipath fading, we consider a 
uncoded BPSK system with receive diversity. 
 

A.3.3 TRANSMIT DIVERSITY 
 
In contrast to receiver diversity, transmit diversity has received little attention, and the 
consequence is more difficult to exploit. The difficulties include that transmit signals from 
multiple antennas are mixed spatially before they arrive at the receiver, some additional 
signal processing is required at both, the transmitter and receiver, in order to separate the 
received signal and exploit diversity. And additional, transmitter does not posses any 
channel information.  
 
However, transmit diversity can increase the channel capacity considerably. There are two 
transmit diversity schemes: with and without feedback. The principal difference between 
them is that the former relies on the channel information at the transmitter, which is 
obtained via feedback channels, while the latter does not require any channel information. 
 
For transmit diversity with feedback, modulated signals are transmitted from multiple 
transmit antennas with different weighting factors, this factor are chosen adaptively so that 
the received signal power is maximized. In practical cellular mobile systems, mobility and 
environment changes quickly, making channel estimation and tracking difficult. The 
imperfect channel variations and mismatch between the channel state and current condition 
will decrease the received signal SNR and affect the system performance. 
 

 
FigureA.8: Delay transmit diversity scheme. 

 
For transmit diversity without feedback, messages are usually processed and then sent from 
multiples antennas. The signal processing is designed to enable the receiver exploiting the 
diversity from the received signals. At the receiver, the messages are recovered by using 
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signal detection technique. An example of this system is shown in figure A.8, which 
information is transmitted by multiple antennas. At the receiver side, the delays of the 
second up to the N transmit antennas introduce a multipath distortion for the signal 
transmitted from the first antenna. The distortion can be resolved at the receiver using 
maximum likelihood (ML) to obtain a diversity gain.  
 
In order to show the performance, we consider a N transmit diversity system with a single 
receive antenna and no feedback. The average bit error probability of this scheme with 
BPSK modulation on Rayleigh fading channel is given by 
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where 
0

1
N
E

N
y b⋅= . 

 
In figure A.9, bit error rate performance of the scheme against noise ratio for various 
numbers of antennas. We can observe that when transmit diversity order is increased from 
one to two, the performance curve suggest that transmit diversity can improve only by less 
than 1 dB. For a large number of diversity branches, fading channel converges towards an 
AWGN channel, and curve almost approaches the one for the AWGN channel.  
 

 
Figure A.9: BER performance of BPSK on Rayleigh fading channels with transmit diversity and 

various numbers of antennas. 
 

A.3.4 ERROR PROBABILITY ON SLOW FADING CHANNELS 
 
On slow fading channels, fading coefficients are constant. Let us define a codeword 
difference as the difference between one codeword to other. We can construct an NxN 
codeword distance matrix as 
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),(),(),( YXBYXBYXA H⋅=     A.30 
 
where H denotes the Hermitian (transpose conjugate) of a matrix. It is clear that the matrix 
A is a non-negative real numbers [4]. Therefore, there existing a unitary matrix V and a real 
diagonal matrix ∆ such that 
 

∆=HVYXVA ),(      A.31 
 
The rows of V are the eigenvectors of A, forming a complete orthonormal basis of a N 
vector space. The diagonal elements of matrix ∆ are the eigenvalues of A, so the matrix can 
be represented by equation A.32, remembering that for simplicity, all arguments in 
diagonal matrix are major than zero. 
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So, equation A.31 can be rewritten as 
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where ijij vh ⋅=,β  and . denotes the inner product of complex vectors. We can define 

upper bound on the conditional pairwise error probability expressed as a function of ij ,β . 
 









−≤ ∑∑

= =

N

j

N

i

s
iji N

E
HYXP

1 1 0

2

, 4
exp

2
1)|,( βλ    A.34 

 
 
 
REFERENCES 
 
 
[1] G. D. Durgin, ”Space-Time Wireless Channels”, Prentice Hall PTR. 2003, pp. 234 – 
255. 
[2] B. Vucetic, J. Yuan, “Space-Time Coding”. WILEY. 2004, pp. 1 – 90. 
[3] V. Tarokh, N. Seshadri and A.R. Calderbank, “Space-time codes for high data rate 
wireless communications: performance criterion and code construction”. IEEE Trans. 
Inform. Theory, vol. 44, no. 2, pp. 744-765. Mar. 1998. 
[4] J. G. Proakis, “Digital Communications”, 4th Ed., Mc. Graw-Hill, New York, 2001. 
[5] www.mathcad.com 
 



 103

APPENDIXE B 

DIVERSITY 
 
 
 
B.1 Diversity Techniques 
 
Diversity is used to reduce the multipath effects and improve the reliability of transmission 
without increasing the transmitted power or sacrificing the bandwidth. This technique 
requires multiples replicas of the signal at the receiver, same information but with small 
correlation.  The basic idea is that two or more independent samples of a signal are taken, 
these will fade in a uncorrelated manner, in the way that some samples are severely faded 
while other are less attenuated, which will make that the probability of all the samples 
being simultaneously below a given level is lower than the probability of any individual 
sample. Thus, combinations of the various samples results in greatly reduced severity of 
fading and improved reliability of transmission. 
 
Diversity techniques are used in mobile communications with a diversity of methods in 
order to get better performance. According to the domain where diversity is introduced, the 
techniques are classified into time, frequency and space. 
 

B.1.1 TIME DIVERSITY 
 
Time diversity can be achieved by transmitting identical messages in different time slots, 
which results in uncorrelated fading signals at the receiver. The time separation required is 
at least the coherence time of the channel, which is the same that the reciprocal of the fade 
rate cd vfcf =1 . Definition of coherence time is the statistical measure of the period of 
time over which the channel fading if correlated. It is important to remark that in wireless 
communications, time diversity can be achieved by interleaving techniques, which means 
that the replicas of the transmitted signals are provided to the receiver in the form of 
redundancy in the time domain, the time separation between replicas is provided by the 
interleaving to obtain independent fades at the input of the receiver. This technique is very 
useful in fast fading environments where coherence time is small. 
 

B.1.2 FREQUENCY DIVERSITY 
 
A number of different frequencies are used to transmit the same message in frequency 
diversity. The separation must be enough to ensure independence fading associated with 
each frequency, this separation will guarantee that the fading statistics for different 
frequencies are essentially uncorrelated. The coherence bandwidth is different for different 
propagation environments. In mobile communications, the replicas of the transmitted 
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signals are usually provided to the receiver in form of redundancy in the frequency domain 
introduced by spread spectrum. Like time diversity, frequency diversity introduces a loss of 
bandwidth efficiency due to a redundancy introduced in the frequency domain.  
 

B.1.3 SPACE DIVERSITY 
 
This technique is also called as antenna diversity. It is implemented using multiple antennas 
arrays in both, transmitter and receiver. The multiple antennas are separated physically by a 
proper distance so that the individual signals are uncorrelated. The separations requirements 
vary with antenna height, propagation environment and frequency. The separation must be 
enough with a few wavelengths to obtain uncorrelated signals. Space diversity does not 
introduce any loss in bandwidth efficiency, which makes them very attractive for wireless 
communications. In this work, we will not make any difference with the physical 
implementations, because all study will be oriented to the channel coding and the 
performance of this technique. However, polarization and angle diversity are two examples 
of space diversity. In polarization diversity signals are transmitted by two different 
polarized antennas and received by two different polarized antennas, which ensure that the 
two signals are uncorrelated without having to place the two antennas far apart. Angle 
diversity is applied for transmission with carrier frequency larger than 10GHz. The receiver 
signals from different directions are independent to each other. 
 
We can classify multiple antennas in two categories: receiver diversity and transmit 
diversity. First one is used at the receiver site to pick up independent copies of the transmit 
signal, which is used to obtain the replicas properly combined in order to increase the 
overall received SNR and mitigate multipath fading. In transmit diversity, messages are 
processed at the transmitter and then spread across multiples antennas. 
 
B.2 DIVERSITY COMBINING METHODS 
 
In general, the diversity techniques depends of how multiples signals are combined at the 
receiver, therefore, diversity schemes can also be classified into combined methods. 
According to the implementation complexity and the channel state information required, 
there are four main types of combining techniques: selection combining, switched 
combining, equal-gain combining (EGC) and maximal ratio combining (MRC), which will 
be explain as follow. 
 

B.2.1 SELECTION COMBINING 
 
It is a simple technique, which consider a receiver diversity system with N receive 
antennas. The signal with the largest instantaneous signal to noise ratio (SNR) at every 
symbol interval is selected as the output, so that the output SNR is equal to best incoming 
signal (figure B.1). In practice, the signal with the highest sum of the signal and noise 
power is usually used. 
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Figure B.1: Selection Combining Method. 

 

B.2.2 SWITCHED COMBINING 
 
The receiver scans all the diversity branches and selects a particular one with the SNR 
above a certain predetermined threshold. The signal is selected as the output, until SNR 
drops below the threshold. When this happens, the receiver stars scanning again and 
switches to another branch. It is also called scanning diversity. 
 
Compared to selection diversity, this method is inferior because is not continually pick up 
the best instantaneous signal. Figure B.2 shows diagram of switched combining diversity. 
 

 
Figure B.2: Switched Combining Method. 

 

B.2.3 Maximal Ratio Combining (MCR) 
 
This method is linear, which means that various signal inputs are individually weighted and 
added together in order to get an output signal. The weighting factors can be chosen in 
different ways. The figure D.3 shows us a diagram of this method. The output signal is a 
linear (add) of a weighted replica of all the received signals. The output is given by 
equation D.1 
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where ri is the received signal at antenna I, and the other element, αI is the weight factor for 
the antenna. In maximal ratio combining, the weighting factor is chosen in proportion to its 
own signal voltage to noise power ratio (SNR). The weighting factor when each antenna 
has same average to noise power can be described in equation D.2 
 

ij
ii eA φα −=      B.2 

 
where Ai and φi are the amplitude and phase of the received signal respectively. The 
method is called optimum combining since it can maximize the output SNR. In this 
scheme, each individual signal must be co-phased, weighted with its corresponding 
amplitude and then summed. Of course, the method needs to know channel’s fading 
amplitude and signal phases. 
 

 
Figure B.3: Maximum Ratio Combining Method. 

 

B.2.4 Equal Gain Combining 
 
Equal gain combining is a suboptimal linear method, which does not require estimation of 
the fading amplitude for each individual branch. Instead, the receiver can calculate the 
weighting factor to be unity as follow 
 

ij
i e φα −=      B.3 

 
All the receiver signals are co-phased and added together with equal gain. The performance 
of this method is marginally inferior to maximum ratio combining. Its implementation is 
significantly less than any other method. 
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APPENDIX C 

INTRODUCTION TO MATRIX COMPUTATIONS. 
 
 
 
All the analysis done in this and next chapter are based in array processing area utilizes 
vectors and matrices extensively. In this section, we have summarized most important 
definitions and properties that will be helpful to the next analysis [31]. In general, all 
vectors and matrix are assumed to be complex, because in communications systems, all 
systems which provided of channel are complex. The labeling of the matrices: A, B, C, …, 
and vectors a, b, c, …, and there is not any physical significance unless specifically 
indicated. 
 
C.1 Basic Definitions 
 
We define an NxM matrix A by defining its elements as ai,k, i=1, 2, …, N, k=1, 2, …, M. 
We write it in matrix form with N rows and M columns, but we can refer to matrix as [ ] jiA ,  
for the ij-th element. 
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The notation used to define a vector is given by equation C.2, and is an Nx1 matrix. We can 
also refer to it as a column vector.  
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The product of two matrices, A and B, which need dimensions NxM and MxL respectively, 
give as a result a new matrix C with dimensions NxL, whose elements are given by 
 

∑
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1
,,,      C.3 

 
However, it is important to remark that matrix product is only defined if and only if the 
number of columns in the first matrix is equal to the number of rows in the second. 
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Transpose of a matrix A is denoted by the superscript T, and consist in reordering rows to 
columns as follow 
 

[ ] [ ] ijijji
T aAA ,,, ==      C.4 

 
The transpose has the property of ( ) TTT ABAB = . 
 
Hermitian matrix is a square matrix A with elements that have complex conjugate 
symmetry AAH =  which implies that *

jiij aa = . The diagonal elements are real. Four 
elements matrix example is given by 
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The inner product of two vectors is defined by equation yx H=α , when yx = , α 
corresponds to the square of the Euclidean norm of the vector xx H=α . 
 
The outer product of complex vector x and a complex vector y is a matrix A with 
dimension NxM, HxyA = . When yx = , A is a square matrix with is call the Hermitian of 
arbitrary vector x, HxxA = . 
 
The trace of a square matrix is denoted by tr(A) and is the sum of the diagonal elements, 
denoted by equation A.6, and has the distributive and associative properties.  
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The rank of a matrix is the number of linearly independent columns of rows. The rank of a 
matrix has the following properties 
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    C.7 

 
 
C.2 Toeplitz Matrices 
 
A Toeplitz matrix has the property that all the elements along each diagonal are identical, 
an example of this type of matrix is given in equation A.8. If A is a square matrix, then it is 
a special case of the persymmetric matrix. If A is also Hermitian, then is centrohermitian. 
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The inverse of this matrix is persymmetric. Persymmetric, centrohermitian and inverse of a 
matrix will not be described here, but it can be found in [31]. 
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C.3 Triangular Matrices 
 
A lower triangular matrix is defined as a square matrix whose elements above the main 
diagonal are zero, and the inverse is also lower triangular matrix. The determinant of the 

matrix is ∏
=

=
N

i
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Upper triangular matrix is called when a matrix whose elements below the main diagonal 
are zero. As below, the inverse of matrix must be an upper triangular matrix. The 

determinant is  ∏
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N
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We can define that LT and LH are upper triangular matrix and UT and UH are lower 
triangular matrix. If A is a square Hermitian positive definite matrix, there are two 
factorizations of interest. The first factorization is called the LDLH factorization, where D is 
a diagonal matrix with positive entries [14]. 
 
The second factorization is called Cholesky decomposition A=GGH, where G is a lower 
triangular matrix 
 

[ ]NddddiagLG ,...,, 21⋅=     C.11 
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C.4 QR Decomposition 
 
The key of the decomposition of the KxN matrix Am into a KxN matrix that is partitioned 
into a NxN upper triangular matrix R and a (K-N)xN null matrix. There exist a KxK unitary 
matrix Q such that  
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where R has the form upper triangular matrix. With equation C.12 we suppressed the K 
dependence and 0 is a (K-N)xN matrix with zero elements. Note that in equation C.13, the 
R matrix element is the Cholesky factor of the weighted sample covariance matrix. 
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The decomposition has other properties: 
 

a. Each row of the triangular matrix R is unique up to a complex scale factor with unit 
magnitude. Hence if R1 and R2 are two different R-factors in a QR decomposition of 
the Am, we can always find a complex-valued diagonal matrix β whose complex 
valued diagonal elements have unit magnitude, so that R1=βR2. 

b. For any matrix Am there exists a unique R whose diagonal elements are all real and 
non-negative. 

c. If K > N, the unitary matrix Q in a QR decomposition of Am is not unique for the 
same R-factor. 

d. Since the condition number of the unitary matrix Q is unity, it follows that the 
condition number of R is equal to the condition number of Xm. 

 
In order to solve equation A.13, we substitute equation number A.12, and obtain 
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Now partition dm as equation A.15, where p is a vector with dimension Nx1. 
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Using the equation A.15 in A.14, we obtain two relations below; where second one can be 
solved due R is a upper triangular matrix 
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From upper, we can find two important things 
 

a. We do not need an explicit expression for Q. 
b. The condition number of R is the square root of the condition number of Φ. 

 
 
C.5 Givens Rotation 
 
The givens rotation is a method to implement the QR decomposition by a sequence of plane 
rotations. To introduce the technique, we consider a complex vector v, 
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The givens matrix G is a 2x2 elements with unitary matrix 
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We select the elements of G such that 
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The zero mean located in A.19 requires 21 cvsv =  and the unitary condition requires 

122 =+ sc . Therefore, we can say that the final values can be described by 
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Thus, v’ has the same length as v, but difference between them is the only one non-zero 
component in v. Similarly, if we have a row vector [ ]21 uuu = , we can write 

[ ]0'
1uuG H = , where G is given by equation A.20, with v1 and v2 replaced by u1 and u2. 

This result become directly from equation A.19 by letting Hvu = . We must remember that 
the operation described by equation A.18 is called a plane rotation because, if v1 and v2 are 
real, φcos=c  and φsens =  where the angle is distance v is rotated. 
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Now, we consider a complex vector with dimensions Kx1 
[ ]knm vvvvv ...,,...,,...,,2= . Operating on v with Givens rotations G and leave 

all the elements of v unchanged except for vm and vn. Then, we can create the unitary matrix 
of the form 
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G(m,n) is a identity matrix except for four elements. The two c elements are on the 
diagonal 
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and the two a elements off the diagonal, with 
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Then, we have made the n-th element zero and rotated into the m-th element.  
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It have been demonstrated that applying a sequence of Givens rotations to accomplish QR 
decomposition of Am, performance is much better and time of execution too. 
 
C.6 Householder Transformation 
 
Givens rotation technique obtains a triangular matrix R by eliminating one element with 
each rotation. With Householder transformation, elements will be eliminates except one 
element in a column in each step. The transformation can be written as 
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where u is a vector whose norm is u . The transformation can be written as  
 

uPIH 2−=       C.27 
 
where [ ] HH

u uuuuP 1−
=  and is the projection matrix into subspace u. If we pre-multiply the 

complex vector v by H, we have ( ) vPvvPIHv uu 22 −=−= . From equation C.26, we 
observe that H is a Hermitian unitary matrix, so that the transformation preserves length 

vHv = . Now, considering the same vector that equation 

[ ]TNi vvvvv ......, 21= . It is important to say that H matrix is used to eliminate 
all of the elements except vi. So, defining 
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Using equation C.26 we can obtain 
 

iin evvvu +=       C.29 
 
where 
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where vector has only one element non-zero. Then, if we use equation C.28 though C.30, 
we find 
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Then, we can observe that 
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T
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Therefore, the desired result is shown in equation C.33. The procedure to do a QR 
decomposition using the Household transformation is analogous to the givens rotation 
technique. 
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C.7 Pseudo-Inverse (Moore-Penrose Algorithm) 
 
The pseudo-inverse is represented by A+, where elements matrix are real, and the definition 
is given by 
 

TUVA ++ Σ=       C.34 
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. A+ is referred to as the pseudo-inverse of A. It 

is the unique minimal F-form solution to the problem 
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If nrank(A) = , then TT AAAA 1)( −+ = , while )(Aranknm == . Then, pseudo-inverse of A 
is the inverse of A. Typically, A+ is defined to be the unique matrix nxmX ℜ∈ , that satisfies 
the four Moore-Penrose conditions as follow 
 

a. AAXA =  
b. XXAX =  
c. AXAX T =)(  
d. XAXA T =)(  

 
Past conditions amount to the requirement that AA+ and A+A be orthogonal projections 
onto range(A) and range(A+), respectively.  
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APPENDIX D 

INTRODUCTION TO CONVOLUTIONAL CODING 
 
 
 
Steps involved in simulating a communication channel using convolutional encoding and 
Viterbi decoding are basically the generation of data information, the convolutionally 
encode, modulations (which include the map channel symbols), additional noise, quantizes 
and the perform Viterbi decoding. However, as a tutorial, this appendix is dedicated to give 
us a brief explanation of this code [48], also the Viterbi algorithm principle [40].  
 
D.1 CONVOLUTIONALLY ENCODING THE DATA 
 
Convolutionally encoding the data is accomplished using a shift register and associated 
combinatorial logic that performs modulo-two addition. (A shift register is merely a chain 
of flip-flops wherein the output of the n-th flip-flop is tied to the input of the (n+1)th flip-
flop. Every time the active edge of the clock occurs, the input to the flip-flop is clocked 
through to the output, and thus the data are shifted over one stage.) The combinatorial logic 
is often in the form of cascaded exclusive-or gates. As a reminder, exclusive-or gates are 
two-input, one-output gates often represented by the logic symbol shown below (figure 
D.1), that implement the following truth-table (Table D.1):  
 

 
Figure D.1: Exclusive OR Gate Symbol. 

   
Input A Input B Output (A xor B) 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table D.1: Truth Table Exclusive OR gate. 
 
The exclusive-or gate performs modulo-two addition of its inputs. When you cascade q 
two-input exclusive-or gates, with the output of the first one feeding one of the inputs of the 
second one, the output of the second one feeding one of the inputs of the third one, etc., the 
output of the last one in the chain is the modulo-two sum of the q + 1 inputs.  
 
Another way to illustrate the modulo-two adder, and the way that is most commonly used 
in textbooks, is as a circle with a + symbol inside, thus:  

 
Figure D.2: Adder modulo symbol. 
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Now that we have the two basic components of the convolutional encoder (flip-flops 
comprising the shift register and exclusive-or gates comprising the associated modulo-two 
adders) defined, let's look at a picture of a convolutional encoder for a rate 1/2, K = 3, m = 2 
code:  
 

 
Figure D.3: Convolutional Encoder Diagram. 

 
In this encoder, data bits are provided at a rate of k bits per second. Channel symbols are 
output at a rate of n = 2k symbols per second. The input bit is stable during the encoder 
cycle. The encoder cycle starts when an input clock edge occurs. When the input clock 
edge occurs, the output of the left-hand flip-flop is clocked into the right-hand flip-flop, the 
previous input bit is clocked into the left-hand flip-flop, and a new input bit becomes 
available. Then the outputs of the upper and lower modulo-two adders become stable. The 
output selector (SEL A/B block) cycles through two states-in the first state, it selects and 
outputs the output of the upper modulo-two adder; in the second state, it selects and outputs 
the output of the lower modulo-two adder.  
 
The encoder shown in figure D.3 encodes the K = 3, (7, 5) convolutional code. The octal 
numbers 7 and 5 represent the code generator polynomials, which when read in binary 
(1112 and 1012) correspond to the shift register connections to the upper and lower modulo-
two adders, respectively. This code has been determined to be the "best" code for rate 1/2, 
K = 3.  
 
Let's look at an example input data stream, and the corresponding output data stream. Let 
the input sequence be 0101110010100012. Assume that the outputs of both of the flip-flops 
in the shift register are initially cleared, i.e. their outputs are zeroes. The first clock cycle 
makes the first input bit, a zero, available to the encoder. The flip-flop outputs are both 
zeroes. The inputs to the modulo-two adders are all zeroes, so the output of the encoder is 
002.  
 
The second clock cycle makes the second input bit available to the encoder. The left-hand 
flip-flop clocks in the previous bit, which was a zero, and the right-hand flip-flop clocks in 
the zero output by the left-hand flip-flop. The inputs to the top modulo-two adder are 1002, 
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so the output is a one. The inputs to the bottom modulo-two adder are 102, so the output is 
also a one. So the encoder outputs 112 for the channel symbols.  
 
The third clock cycle makes the third input bit, a zero, available to the encoder. The left-
hand flip-flop clocks in the previous bit, which was a one, and the right-hand flip-flop 
clocks in the zero from two bit-times ago. The inputs to the top modulo-two adder are 0102, 
so the output is a one. The inputs to the bottom modulo-two adder are 002, so the output is 
zero. So the encoder outputs 102 for the channel symbols.  
 
And so on. The timing diagram shown below illustrates the process:  
   

 
Figure D.4: Timing Diagram. 

 
After all of the inputs have been presented to the encoder, the output sequence will be:  
 

00 11 10 00 01 10 01 11 11 10 00 10 11 00 112. 
 
Notice that the encoder paired the outputs, the first bit in each pair is the output of the upper 
modulo-two adder; the second bit in each pair is the output of the lower modulo-two adder.  
 
You can see from the structure of the rate 1/2 K = 3 convolutional encoder and from the 
example given above that each input bit has an effect on three successive pairs of output 
symbols. That is an extremely important point and that is what gives the convolutional code 
its error-correcting power. The reason why will become evident when we get into the 
Viterbi decoder algorithm.  
 
Now if we are only going to send the 15 data bits given above, in order for the last bit to 
affect three pairs of output symbols, we need to output two more pairs of symbols. This is 
accomplished in our example encoder by clocking the convolutional encoder flip-flops two 
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(equal to m) more times, while holding the input at zero. This is called "flushing" the 
encoder, and results in two more pairs of output symbols. The final binary output of the 
encoder is thus 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10 112. If we don't perform 
the flushing operation, the last m bits of the message have less error-correction capability 
than the first through (m - 1)th bits had.  
 
This is a pretty important thing to remember if you're going to use this FEC technique in a 
burst-mode environment. So is the step of clearing the shift register at the beginning of each 
burst. The encoder must start in a known state and end in a known state for the decoder to 
be able to reconstruct the input data sequence properly.  
 
Now, let's look at the encoder from another perspective. You can think of the encoder as a 
simple state machine. The example encoder has two bits of memory, so there are four 
possible states. Let's give the left-hand flip-flop a binary weight of 21, and the right-hand 
flip-flop a binary weight of 20. Initially, the encoder is in the all-zeroes state. If the first 
input bit is a zero, the encoder stays in the all zeroes state at the next clock edge.  
 
But if the input bit is a one, the encoder transitions to the 102 state at the next clock edge. 
Then, if the next input bit is zero, the encoder transitions to the 012 state, otherwise, it 
transitions to the 112 state. The following table gives the next state given the current state 
and the input, with the states given in binary: 
  

 Next State, if 
Current State Input = 0: Input = 1: 

00 00 10 
01 00 10 
10 01 11 
11 01 11 

Table D.2: Transition table of the encoder. 
 
The above table is often called a state transition table. We'll refer to it as the next state 
table. Now let us look at a table that lists the channel output symbols, given the current 
state and the input data, which we'll refer to as the output table (table D.3).  
   
You should now see that with these two tables, you can completely describe the behavior of 
the example rate 1/2, K = 3 convolutional encoder. Note that both of these tables have 2(K - 

1) rows, and 2k columns, where K is the constraint length and k is the number of bits input 
to the encoder for each cycle. These two tables will come in handy when we start 
discussing the Viterbi decoder algorithm.  
 

 Output Symbols, if 
Current State Input = 0: Input = 1: 

00 00 11 
01 11 00 
10 10 01 
11 01 10 

Table D.3: Channel output symbols. 
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D.2 PERFORMING VITERBI DECODING 
 
The Viterbi decoder itself is the primary focus of this sectionl. Perhaps the single most 
important concept to aid in understanding the Viterbi algorithm is the trellis diagram. The 
figure D.5 below shows the trellis diagram for our example rate 1/2 K = 3 convolutional 
encoder, for a 15-bit message:  
 

 
Figure D.5: Trellis diagram for a convolutional encoder. 

 
The four possible states of the encoder are depicted as four rows of horizontal dots. There is 
one column of four dots for the initial state of the encoder and one for each time instant 
during the message.  
 
For a 15-bit message with two encoder memory flushing bits, there are 17 time instants in 
addition to t = 0, which represents the initial condition of the encoder. The solid lines 
connecting dots in the diagram represent state transitions when the input bit is a one. The 
dotted lines represent state transitions when the input bit is a zero.  
 
Notice the correspondence between the arrows in the trellis diagram and the state transition 
table (table D.2) discussed above. Also notice that since the initial condition of the encoder 
is State 002, and the two memory flushing bits are zeroes, the arrows start out at State 002 
and end up at the same state.  
 
The following diagram shows the states of the trellis that are actually reached during the 
encoding of our example 15-bit message:  
 

 
Figure D.6: Status of the trellis that are searching. 

 
The encoder input bits and output symbols are shown at the bottom of the diagram. Notice 
the correspondence between the encoder output symbols and the output table (Table D.3) 
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discussed above. Let's look at that in more detail, using the expanded version of the 
transition between one time instant to the next shown below:  
 

 
Figure D.7: Changes between one state to another. 

 
The two-bit numbers labeling the lines are the corresponding convolutional encoder 
channel symbol outputs. Remember that dotted lines represent cases where the encoder 
input is a zero, and solid lines represent cases where the encoder input is a one. (In the 
figure D.7, the two-bit binary numbers labeling dotted lines are on the left, and the two-bit 
binary numbers labeling solid lines are on the right.)  
 

 
Figure D.8: Trellis message with a couple of errors. 

 
For our example, we're going to use hard-decision symbol inputs to keep things simple. 
(The example source code uses soft-decision inputs to achieve better performance.) 
Suppose we receive the above encoded message with a couple of bit errors (Figure D.8).  
 
Each time we receive a pair of channel symbols, we're going to compute a metric to 
measure the "distance" between what we received and all of the possible channel symbol 
pairs we could have received. Going from t = 0 to t = 1, there are only two possible channel 
symbol pairs we could have received: 002, and 112. That's because we know the 
convolutional encoder was initialized to the all-zeroes state, and given one input bit = one 
or zero, there are only two states we could transition to and two possible outputs of the 
encoder. These possible outputs of the encoder are 00 2 and 112. The metric we're going to 
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use for now is the Hamming distance between the received channel symbol pair and the 
possible channel symbol pairs.  
 
The Hamming distance is computed by simply counting how many bits are different 
between the received channel symbol pair and the possible channel symbol pairs. The 
results can only be zero, one, or two. The Hamming distance (or other metric) values we 
compute at each time instant for the paths between the states at the previous time instant 
and the states at the current time instant are called branch metrics. For the first time instant, 
we're going to save these results as "accumulated error metric" values, associated with 
states. For the second time instant on, the accumulated error metrics will be computed by 
adding the previous accumulated error metrics to the current branch metrics.  
 
At t = 1, we received 002. The only possible channel symbol pairs we could have received 
are 002 and 112. The Hamming distance between 002 and 002 is zero. The Hamming 
distance between 002 and 112 is two. Therefore, the branch metric value for the branch from 
State 002 to State 002 is zero, and for the branch from State 002 to State 102 it's two. Since 
the previous accumulated error metric values are equal to zero, the accumulated metric 
values for State 002 and for State 102 are equal to the branch metric values. The 
accumulated error metric values for the other two states are undefined. The figure D.9 
illustrates the results at t = 1:  
 

 
Figure D9: Trellis diagram in time T = 1. 

 
Note that the solid lines between states at t = 1 and the state at t = 0 illustrate the 
predecessor-successor relationship between the states at t = 1 and the state at t = 0 
respectively. This information is shown graphically in the figure, but is stored numerically 
in the actual implementation. To be more specific, or maybe clear is a better word, at each 
time instant t, we will store the number of the predecessor state that led to each of the 
current states at t.  
 
Now let's look what happens at t = 2. We received a 112 channel symbol pair. The possible 
channel symbol pairs we could have received in going from t = 1 to t = 2 are 002 going 
from State 002 to State 002, 112 going from State 002 to State 102, 102 going from State 102 
to State 01 2, and 012 going from State 102 to State 11 2. The Hamming distance between 
002 and 112 is two, between 112 and 112 is zero, and between 10 2 or 012 and 112 is one. We 
add these branch metric values to the previous accumulated error metric values associated 
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with each state that we came from to get to the current states. At t = 1, we could only be at 
State 002 or State 102. The accumulated error metric values associated with those states 
were 0 and 2 respectively. The figure below shows the calculation of the accumulated error 
metric associated with each state, at t = 2.  
 

 
Figure D.10: Trellis diagram in time T = 2. 

 
That's all the computation for t = 2. What we carry forward to t = 3 will be the accumulated 
error metrics for each state, and the predecessor states for each of the four states at t = 2, 
corresponding to the state relationships shown by the solid lines in the illustration of the 
trellis. Now look at the figure for t = 3. Things get a bit more complicated here, since there 
are now two different ways that we could get from each of the four states that were valid at 
t = 2 to the four states that are valid at t = 3.  
 
The accumulated error metrics associated with each branch, and discard the larger one of 
each pair of branches leading into a given state. If the members of a pair of accumulated 
error metrics going into a particular state are equal, we just save that value.  
 

 
Figure D.11: Trellis diagram in time T = 3. 

 
The other thing that's affected is the predecessor-successor history we're keeping. For each 
state, the predecessor that survives is the one with the lower branch metric. If the two 
accumulated error metrics are equal, some people use a fair coin toss to choose the 
surviving predecessor state. Others simply pick one of them consistently, i.e. the upper 
branch or the lower branch. It probably doesn't matter which method you use. The 
operation of adding the previous accumulated error metrics to the new branch metrics, 
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comparing the results, and selecting the smaller (smallest) accumulated error metric to be 
retained for the next time instant is called the add-compare-select operation. The figure 
D.11 shows the results of processing t = 3. Note that the third channel symbol pair we 
received had a one-symbol error. The smallest accumulated error metric is a one, and there 
are two of these. Let's see what happens now at t = 4. The processing is the same as it was 
for t = 3. The results are shown in the figure:  
 

 
Figure D.12: Trellis diagram in time T = 4. 

 
Notice that at t = 4, the path through the trellis of the actual transmitted message, shown in 
bold, is again associated with the smallest accumulated error metric. Let's look at t = 5:  
 

 
Figure D.13: Trellis diagram in time T = 5. 

 
At t = 5, the path through the trellis corresponding to the actual message, shown in bold, is 
still associated with the smallest accumulated error metric. This is the thing that the Viterbi 
decoder exploits to recover the original message.  
 
At t = 17, the trellis looks like this, with the clutter of the intermediate state history 
removed (figure D.14).  
 
The decoding process begins with building the accumulated error metric for some number 
of received channel symbol pairs, and the history of what states preceded the states at each 
time instant t with the smallest accumulated error metric. Once this information is built up, 
the Viterbi decoder is ready to recreate the sequence of bits that were input to the 
convolutional encoder when the message was encoded for transmission.  
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Figure D.14: Trellis diagram in time T = 17. 

 
This is accomplished by the following steps: First, select the state having the smallest 
accumulated error metric and save the state number of that state. Iteratively perform the 
following step until the beginning of the trellis is reached: Working backward through the 
state history table, for the selected state, select a new state which is listed in the state 
history table as being the predecessor to that state. Save the state number of each selected 
state. This step is called traceback. Now work forward through the list of selected states 
saved in the previous steps. Look up what input bit corresponds to a transition from each 
predecessor state to its successor state. That is the bit that must have been encoded by the 
convolutional encoder.  
 
The following table (table D.4) shows the accumulated metric for the full 15-bit (plus two 
flushing bits) example message at each time t:  
   

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
State 002   0 2 3 3 3 3 4 1 3 4 3 3 2 2 4 5 2 
State 012     3 1 2 2 3 1 4 4 1 4 2 3 4 4 2   
State 102   2 0 2 1 3 3 4 3 1 4 1 4 3 3 2     
State 112     3 1 2 1 1 3 4 4 3 4 2 3 4 4     

Table D.4: Accumulated metric for the full 15 bits. 
 
It is interesting to note that for this hard-decision-input Viterbi decoder example, the 
smallest accumulated error metric in the final state indicates how many channel symbol 
errors occurred.  
 
The following state history table shows the surviving predecessor states for each state at 
each time t:  
   

 t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
State 002 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 
State 012 0 0 2 2 3 3 2 3 3 2 2 3 2 3 2 2 2 0 
State 102 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 
State 112 0 0 2 2 3 2 3 2 3 2 2 3 2 3 2 2 0 0 

Table D.5: Surviving predecessor states for each time. 
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The following table shows the states selected when tracing the path back through the 
survivor state table shown above:  
   

 t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
  0 0 2 1 2 3 3 1 0 2 1 2 1 0 0 2 1 0 

Table D.6: Accumulated metric for the full 15 bits. 
 
Using a table that maps state transitions to the inputs that caused them, we can now recreate 
the original message. Here is what this table looks like for our example rate 1/2 K = 3 
convolutional codes:  
   

 Input was, Given Next State = 

Current State 002 = 0 012 = 1 102 = 2 112 = 3 
002 = 0 0 x 1 x 
012 = 1 0 x 1 x 
102 = 2 x 0 x 1 
112 = 3 x 0 x 1 

Table D.7: Map state transitions to the inputs. 
 
Note: In the above table, x denotes an impossible transition from one state to another state. 
So now we have all the tools required to recreate the original message from the message we 
received:  
   

 t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
  0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 

Table D.8: Original message recreation. 
 
The two flushing bits are discarded. Here's an insight into how the trace back algorithm 
eventually finds its way onto the right path even if it started out choosing the wrong initial 
state. This could happen if more than one state had the smallest accumulated error metric, 
for example. I'll use the figure for the trellis at t = 3 again to illustrate this point:  
 

 
Figure D.15: Error accumulation in trellis diagram 

 
See how at t = 3, both States 012 and 112 had an accumulated error metric of 1. The correct 
path goes to State 012 -notice that the bold line showing the actual message path goes into 
this state. But suppose we choose State 112 to start our trace back. The predecessor state for 
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State 112 , which is State 102 , is the same as the predecessor state for State 012! This is 
because at t = 2, State 102 had the smallest accumulated error metric. So after a false start, 
we are almost immediately back on the correct path.  
 
For the example 15-bit message, we built the trellis up for the entire message before 
starting traceback. For longer messages, or continuous data, this is neither practical nor 
desirable, due to memory constraints and decoder delay. Research has shown that a 
traceback depth of K x 5 is sufficient for Viterbi decoding with the type of codes we have 
been discussing. Any deeper traceback increases decoding delay and decoder memory 
requirements, while not significantly improving the performance of the decoder. The 
exception is punctured codes, which I'll describe later. They require deeper traceback to 
reach their final performance limits.  
 
To implement a Viterbi decoder in software, the first step is to build some data structures 
around which the decoder algorithm will be implemented. These data structures are best 
implemented as arrays. The primary six arrays that we need for the Viterbi decoder are as 
follows:  
 

1. A copy of the convolutional encoder next state table, the state transition table of 
the encoder. The dimensions of this table (rows x columns) are 2(K - 1) x 2k. This 
array needs to be initialized before starting the decoding process.  

2. A copy of the convolutional encoder output table. The dimensions of this table are 
2(K - 1) x 2k. This array needs to be initialized before starting the decoding process.  

3. An array (table) showing for each convolutional encoder current state and next 
state, what input value (0 or 1) would produce the next state, given the current state. 
We'll call this array the input table. Its dimensions are 2(K - 1) x 2(K - 1). This array 
needs to be initialized before starting the decoding process.  

4. An array to store state predecessor history for each encoder state for up to K x 5 + 1 
received channel symbol pairs. We'll call this table the state history table. The 
dimensions of this array are 2 (K - 1) x (K x 5 + 1). This array does not need to be 
initialized before starting the decoding process.  

5. An array to store the accumulated error metrics for each state computed using the 
add-compare-select operation. This array will be called the accumulated error 
metric array. The dimensions of this array are 2 (K - 1) x 2. This array does not need 
to be initialized before starting the decoding process.  

6. An array to store a list of states determined during traceback (term to be explained 
below). It is called the state sequence array. The dimensions of this array are (K 
x 5) + 1. This array does not need to be initialized before starting the decoding 
process.  

 
Before getting into the example source code, for purposes of completeness, I want to talk 
briefly about other rates of convolutional codes that can be decoded with Viterbi decoders. 
Earlier, I mentioned punctured codes, which are a common way of achieving higher code 
rates, i.e. larger ratios of k to n. Punctured codes are created by first encoding data using a 
rate 1/n encoder such as the example encoder described in this tutorial, and then deleting 
some of the channel symbols at the output of the encoder. The process of deleting some of 
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the channel output symbols is called puncturing. For example, to create a rate 3/4 code 
from the rate 1/2 code described in this tutorial, one would simply delete channel symbols 
in accordance with the following puncturing pattern:  
   

1 0 1 
1 1 0 

Table D.9: Puncturing patter table with three columns. 
 
where a one indicates that a channel symbol is to be transmitted, and a zero indicates that a 
channel symbol is to be deleted. To see how this make the rate be 3/4, think of each column 
of the above table as corresponding to a bit input to the encoder, and each one in the table 
as corresponding to an output channel symbol. There are three columns in the table, and 
four ones. You can even create a rate 2/3 code using a rate 1/2 encoder with the following 
puncturing pattern which has two columns and three ones.  
   

1 1 
1 0 

Table D.10: Puncturing patter table with two columns. 
 
To decode a punctured code, one must substitute null symbols for the deleted symbols at 
the input to the Viterbi decoder. Null symbols can be symbols quantized to levels 
corresponding to weak ones or weak zeroes, or better, can be special flag symbols that 
when processed by the ACS circuits in the decoder, result in no change to the accumulated 
error metric from the previous state.  
 
Of course, n does not have to be equal to two. For example, a rate 1/3, K = 3, (7, 7, 5) code 
can be encoded using the encoder shown below:  
 

 
Figure D.16: Encoder with rate 1/3 and K = 3. 

 
This encoder has three modulo-two adders, so for each input bit, it can produce three 
channel symbol outputs. Of course, with suitable puncturing patterns, you can create 
higher-rate codes using this encoder as well.  
 


