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Abstract 
 

Structural optimization has achieved a level of development that makes it possible to go beyond 
the current limits for optimizing shapes of parts. This kind of optimization also allows designers 
to improve the traditional design process, helping them to make decisions regarding new 
inventive shapes and solutions that arise during the shape variation and simulation process. 
Designers can now take advantage of not only using parametric CAD models to analyze the 
influence of geometric parameters variations, but also the effect of shape variations on the 
required performance of their designs. This thesis presents a strategy that allows the designer to 
perform an automatic search process for crankshaft design objectives based on genetic 
algorithms, integrated with the simulation of crankshaft behavior, with respect to its balancing 
and torsion vibrations. At the same time, it looks for an optimal forging process, improved with 
respect to the design methods used until now.  An important characteristic of the strategy 
presented in this thesis is the automation of the search process, as genetic algorithms through 
crossbreeding and mutations of the counterweight profile, control the variation of shapes in 
search for the target balance. At the same time, seek to achieve a target position of the 
crankshaft’s center of gravity and achieving an optimally forgeable shape.  
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Chapter 1 Introduction 
 

 

The development of products using simulation with computer-aided design and engineering, 
contributes to the enhancement of an enterprise’s inventive abilities. Even when the newest 
modeling systems are capable of representing complex physical situations, the optimization 
algorithms play an important role in the generation of significant improvements. Recently, 
computers have taken over large parts of the simulation in all fields where prediction of the 
performance is necessary. As explained by Dawkins [1], simulation is used when there is a 
difficult decision to make involving unknown quantities in the future.   

This dissertation deals with the development of a strategy for the optimization and invention of 
products using evolutionary design strategies, CAD representation, CAE simulation and 
automated integration of all these elements. A significant part of this research work starts with 
the parametric shape optimization of products and then continues with the application of 
elements related to the concept of computer-aided innovation. In this introduction, an 
explanation is given of the context in which the tasks to optimize designs are formulated and the 
foundations of the strategy are established. There is a description of how current design 
optimization techniques are used and how they can be further developed by making use of 
geometric splines, in combination with genetic algorithms, to achieve a strategy that allows 
computers to modify the CAD model automatically and provide inventive results.  The case study 
selected to carry out the proposed strategy is an engine crankshaft, manufactured in a closed 
forge process.  

Crankshafts are used as case study because: they are one of the most difficult mechanical 
elements to design due to the complex dynamic relationships among its features. Crankshafts 
have a relevant impact in the performance of internal combustion engines and its manufacturing 
is a challenging task. The heart of a crankshaft geometry traditionally consisted on arc-shaped 
counterweight profiles. These counterweights have to balance the dynamic loads of the whole 
piston-rod-crank assembly. Additionally the forging process demands that the shape of the 
counterweights are designed for a better flow of the metal into die cavity and robustness in the 
balance and dynamic behavior of the crankshaft. The crankshaft is an element with different 
functionalities (transform movement into rotation, manufacturing) and physical behaviors (natural 
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frequencies, imbalance); as all these characteristics conflict among each other, it is especially 
suitable to be the case study. 

During the development of the dissertation, different software tools were used in order to 
execute the different tasks involved: CAD modeling, genetic algorithms, CAE simulation and 
programming in Java. The intended strategy is based on the simulation of different 
characteristics of a product. Automation of the process is also pursued, through the integration 
of the different software, in order to evaluate the emerging design alternatives. The aim of the 
strategy is to find a new way of performing the design process that can reduce the product 
development cycle and achieve superior performance compared to traditional trial and error 
strategies.   

The next section is a sequential introduction of the methods and techniques deployed during the 
optimization/invention strategy for the development of the engine crankshaft. First, there is an 
explanation of evolutionary design, which is a defined group of techniques with similarities that 
can be seen as the starting point for the construction of the proposed method. The general kinds 
of mechanical optimization, from which the shape optimization approach is selected to be 
employed in conjunction with geometric splines, are also presented. Next, the state-of-the-art for 
engine crankshafts design via the analysis of patents is given. At the end of the section, the 
hypothesis and the objectives of the research in both the development of the strategy, and the 
solutions for the crankshaft per se are presented.  

 

1.1 Evolutionary Design 
A relatively new area of development called evolutionary design [2] has become an object of 
intensive research. Peter Bentley describes evolutionary design as a process capable of 
generating designs by changing topologies and shapes. In this way, an intricate design can arise 
through a slow, gradual improvement process.  

Evolutionary design has its roots in computer science, design and evolutionary biology. It 
extends and combines CAD and analysis software, and borrows ideas from natural evolution. 
Evolutionary Computation to optimize existing designs (i.e. perform detailed design or 
parametric design) was the first type of evolutionary design to be tackled [3]. Although the exact 
approach used by developers of such systems varies, typically practitioners of evolutionary 
optimization usually begin the process with an existing design, and parameterize those parts of 
the design they feel need improvement.  

To give a general context of earlier related approaches, a description of the different categories 
of evolutionary design that have been classified by Bentley: evolutionary optimization, creative 
evolutionary design and conceptual evolutionary design, will be helpful. Evolutionary 
optimization places great emphasis on finding solutions as close to the global optimal as 
possible [4]. Creative evolutionary design is concerned with the generation of novel designs [5]. 
In conceptual evolutionary design the relationships and arrangements of high-level design 
concepts are evolved by trying to generate novel preliminary designs. At the conceptual design 
stage, designers want to know if the lines of thought they follow are worth pursuing. This 
understanding can be in the form of underlying trends, existing solutions, trade-offs, etc. that 
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have been addressed by different approaches [6]. Generative (or conceptual) evolutionary 
designs using computers to generate the designs form and not only a collection of predefined 
high-level concepts have the advantage of giving greater freedom to the computer. Typically, 
such systems are free to evolve any form capable of being represented, and the evolution of 
such forms may well result in the emergence of implicit design concepts. The concept of 
emergence related to conceptual design is related to the perceptual processes of interpretation 
and representation that can evolve into a novel design [7]. 

Evolutionary design mimics the way nature behaves by using evolutionary algorithms that 
change the forms and topologies of the design object. The biological analogy of such 
computational methods is based on some elemental rules of the evolution of species. Such rules 
of evolution state three vital factors for the existence of an evolutionary process: 

• A reproductive process or replication ability. 
• A selection process based on performance under given life conditions. 
• Capacity of incurring on reproductive errors (replication with variations). 

These factors can be used to simulate the biological evolution on a computer. In doing so, the 
solution set is represented by data in the computer. The algorithms that manipulate data 
structures use the biological analogy for selection, mutation and recombination. Although the 
term "simulated evolution" deliberately suggests an analogy with biological evolution, it is 
understood that the real biological processes are far more complex than any computer 
simulation, the simulated evolution is only an idealization of certain aspects of a biological 
system. Biological systems serve as an inspiration, but computers are not able to implement all 
biological phenomena, that even today has not been completely understood, such as the 
existence of parasites, which also have served as inspiration for optimization problems [8]. 

One of the components of evolutionary computation, the genetic algorithm, has shown a great 
potential for working on several real-world problems to the point of optimization; in reality, 
however, it is still quite far from realizing a system of matching the human performance, 
especially in creative applications such as architecture, art, music, and design [9]. The 
optimization of existing designs is relatively common, with the creation of artistic images and 
artificial life growing rapidly. Nevertheless, the development of evolutionary design tools is still at 
an early stage. So far, many genetic algorithms have been used and tested only in design 
problem solution with small scope. The research and development of design support tools using 
evolutionary computing technology are still ongoing and have potential for the development of 
new design technology. 

The use of evolutionary computation to generate designs has taken place in many fields since 
the late 1980s. Designers have optimized selected parts of their designs using evolutionary 
computation. John Holland presented the pioneering formulation of genetic algorithms and 
described how the evolutionary process in nature can be applied to artificial systems using the 
genetic algorithm operating on fixed length character strings in Adaptation in Natural and 
Artificial Systems [10]. In this work, Holland demonstrated that a wide variety of 
different problems in adaptive systems (including problems from economics, game theory, 
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pattern recognition, optimization, and artificial intelligence) are susceptible to reformation in 
genetic terms so that they can potentially be solved by parallel computation. 

The use of genetic algorithms combined with 3D CAD packages and CAE simulation tools has 
proven to be useful for searching the design space for better solutions, but implementing it 
consumes a great amount of time and computational resources [11]. Current CAD/CAE 
packages are originally conceived as to mainly facilitate parametric variations of the parts. In 
cases where shape and/or topological changes of parts or assemblies are required, such 
changes have to be manually performed. Activities in the design process that are still performed 
manually instead of with the use of computers include preliminary design [12], the planning of 
assembly sequences of mechanical parts [13], and others.  

 

 

1.2 Optimization of Mechanical Systems 
 

The evolution of product development tools has been characterized by various trends, and the 
analysis of these trends offers useful hints for predicting next generation systems. In mechanical 
design, optimization tasks are used for structural optimization, which deals with the development 
of mechanical structures [14]. Optimization of continuous mechanical structures is much 
employed in industry, for shape and topology and a combination of the two [15]. The 
optimization of products and processes has been studied since the spread of computers as an 
aid for seeking “optimal” forms and shapes of product geometry. For example, when minimizing 
the weight of a mechanical component, restrictions have to be included to guarantee the stability 
of the structure (ex. stresses or natural frequencies). The objectives of structural optimization are 
as follows: (a) minimizing stress or weight; maximizing lifespan, stiffness or first natural 
frequency; (b) any of these under different constrains, such as: maximum deflection, maximum 
stress, target weight (volume), target stiffness (displacement) and durability. The choice of 
design variables ranges from geometrical parameters, control points of spline functions [16], 
position of nodes [17], shell thickness [18], and beam cross-section [19], to angle of fibers from 
compound materials, etc. As design variable restrictions a designer can have: upper and lower 
limit of the design variables (fixations, limitations), discrete and continuous. Also symmetrical 
conditions and constraints for manufacturing conditions (drilling, casting or forging) are also 
possible. Particularly, two kinds of structural optimization are often used: topology optimization 
and shape optimization [20]. 

Topology optimization is used to find the optimal topology of a part by describing an available 
space for the part using a FE model, while the optimization algorithm helps find an optimal 
material distribution. Element properties such as density and Young’s modulus from the FE 
model are changed during the optimization process until an optimal shape is achieved. After 
defining a topology for a shape optimization problem, a common practice is to use a fixed set of 
shape variables to describe the design boundaries [21]. The values of the shape variables are 
then optimized to provide the lightest possible structural member. Topology optimization is used 
to reach the highest ratio between volume and some geometrical parameters. It determines the 
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optimal material distribution within a given design space. For example, it takes out the elements 
under low stress in geometry by modifying the apparent material density, considered as a design 
variable in a FEM model.  A basic FE model is created and analyzed in a design area with given 
boundary conditions. Commonly, the aims are to maximize stiffness or maximize the natural 
frequency of a product. The constraints of the design are the following: the fixations, material 
volume and largest displacement allowed. The design variables are the material density of the 
elements, which are counted commonly in hundreds of thousands, which means a huge number 
of design variables. The goal is, given a predefined design domain in the 2D/3D space with 
structural boundary conditions and load definitions, is to distribute a given mass, which is a given 
percentage of the initial mass in the domain determined, in such a way that a global measure 
takes a minimum (maximum) value. This type of topology variation is being analyzed only as a 
reference and basis for the kind of optimization that is going to be derived in this dissertation. 

Shape Optimization consists of changing the external borders of a mechanical part [22]. The 
geometry of the product is defined in terms of surfaces and curve parameters that define the 
outer boundary of the product, and allows more freedom for manipulation. Here, the topology 
remains unchanged. The shape of the structure is modified by the node locations of a product 
modeled with the finite element method (FEM). The aims are to decrease the stress or the 
volume or maximize the natural frequency. Constrains to the design include fixations and 
restrictions for displacement of part borders. The design variables of the product for geometric 
models are length, angle and radii measurements; and for the FE model, node coordinates. After 
defining a topology for a shape optimization problem, a common practice is to use a fixed set of 
shape variables to describe the design boundaries [23]. The values of the shape variables are 
then optimized to provide the lightest possible structural member. Specification of the initial set 
of shape variables is done while maintaining accurate structural analysis predictions by 
automating the variable selection process.  

Another kind of optimization is an advanced form of shape optimization is known as topography, 
in which, e.g., a distribution of ribs and pattern reinforcements is generated in a specific design 
region. The approach in topography optimization is similar to the approach used in topology 
optimization, but shape variables (node coordinates of a FEM model) are used instead of density 
variables [24]. 

Other approaches for structural topology optimization present a method based on level set 
models for optimizing linearly elastic structures which satisfy a design objective and certain 
constraints. In this method, the structure under optimization is implicitly represented by a moving 
boundary embedded in a scalar function (the level set function) of a higher dimensionality [25]. 
Other cases of topology generation—that is, establishing a feasible configuration to meet given 
functional requirements and size and shape optimization—to meet the prescribed quantitative 
performance can be found in micromechanics as well [26] 

Each optimization method uses a strategy to get the optimum of the objective function. The 
choice of the optimization method and the strategy depends mainly on the properties and 
number of the variables, the objective functions and constrains, and how these are used in the 
optimization. Specific criteria for optimization problems include: the number of variables (often 
many of them); characteristics of the objective function (continuous, discontinuous, linear/ 
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quadratic/arbitrary, etc.); restrictions characteristics (none, several, etc). Moreover, the external 
conditions for choosing an optimization method rely on the required accuracy (improvement or 
exact optimum); efficiency of the algorithm; computing time and memory space; user friendliness 
and complexity of the problem formulation. 

Current CAD/CAE packages are conceived to help parametric variations of the parts. In recent 
years, shape and topological optimization have been introduced into CAD/CAE environments 
[27]. However, the shapes obtained this way are not structured CAD models and need manual 
post processing or even redesign to convert them from mesh or neutral geometric models to full 
CAD models.  

One of the aims of this research is to further develop the optimization systems mentioned above 
by adding new concepts to the previous paradigms. In doing so, a different kind of optimization 
is inferred by taking the characteristics of the last three FEM based types just mentioned. To get 
a similar behavior (shape, topology and topography) within a CAD model, the geometry of the 
product is described in terms of splines.  The “splining” approach extends these features, 
allowing the introduction of innovative concepts [28]. This approach is explained further in the 
next sections. Evolutionary design takes both CAD and CAE, and extends the analysis and 
detailed design capabilities for which they have been used until now. Moreover, the processing 
capabilities of computers continue to grow, which makes the resolution of more complex FEM 
models possible.  

The possibility of achieving changes of geometric shapes of whole parts and features directly in 
the context of representation with commercial CAD packages needs new concepts. Tools for 
facilitating automatic shape variations in parametric 3D CAD environments with the purpose of 
using genetic and evolutionary algorithms for the shape and topological optimization are 
presented in this work. The central idea here is that generating creative designs would only be 
possible by going beyond the bounds of a representation, and by finding novel solutions, which 
simply could not have been defined by that representation. The concept of Generative CAI 
Process is derived. 

 

1.3 Shape Optimization Based on Genetic Algorithms 
 

The shape optimization of engineering objects is an important part of the design process [29]. 
Many different approaches have been adopted in this area, from the homogenization method 
[30] to the topological derivative method [31]. Shape optimization based on genetic algorithms 
(GA), or based on evolutionary algorithms (EA) in general, is a relatively new area of research. 
The foundations of GAs can be found in a few articles published before 1990 [32]. After 1995 
many articles on investigation and applications have been published, including a great number 
of GA-based geometrical boundary shape optimization cases. The interest in research in 
evolutionary shape optimization techniques has only recently started to grow, including one of 
the most promising areas for EA-based shape optimization applications: mechanical 
engineering. Genetic algorithms are a computational tool for the search for optimal design 
solutions based on the selection of the “fittest”, even when the internal mechanism of the system 
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under optimization is not well known. Genetic algorithms have been used in different 
applications; one is the optimization of geometrical shapes, a relatively new area with high 
potential for research.  

There are applications for shape determination during the design of machine components and 
for optimization of functional performance of these components, e.g. antennas [33] [34], turbine 
blades [35], aircraft geometries [36], etc. Difficult shape optimization problems are common in 
many other areas as well. In the future, one of the areas with the most potential for EA-based 
shape optimization applications is mechanical engineering, as designing machine components 
typically includes shape determination and optimization for functional surfaces of the 
components. In the field of mechanical engineering, methods for structural and topological 
optimization based on evolutionary algorithms are used to obtain optimal geometric solutions 
that were commonly approached only by costly, time consuming iterative processes. For 
example, a paper published in 2004, reported that an efficient optimum design process was 
developed and applied to systematically design a lock-up clutch system for a torque converter 
used in an automatic transmission [37]. A simulated annealing algorithm was applied to find the 
parameters of the compressive helical damper springs in the clutch. Next, FE-based shape 
optimization was coded to find the shape of the clutch disk that would satisfy the strength, noise 
and vibration requirements. Using the optimization algorithm, parametric studies were performed 
to see how spring diameters and frequencies of clutch systems changed as the damper spring 
traveling angles and the torques were varied. A genetic algorithm for spring optimization and an 
FEM-based algorithm for optimizing disk shape were utilized in the project reported in that 
paper.  

The shape optimization approach has been also employed to optimize forging preforms using 
the reverse simulation method. Bramley developed a reverse method in which a preform shape 
was obtained by reversing the direction of the velocity field to give a minimum value for the 
overall rate of energy dissipation and which was optimized by the current boundary contact 
conditions [38]. The approach employs a criterion based on the concept of the material 
distribution to determine the boundary condition and to evaluate the complexity of the deformed 
shapes resulting from reverse simulations [39]. 

Genetic algorithms to optimize existing designs by parameterization was the first type of 
evolutionary design to be widely used. GAs integrated into CAD and CAE systems are used in 
parametric and structural optimization to find optimal topologies and shapes of given parts under 
certain conditions. Advanced CAD and CAE software have their own optimization capabilities, 
but are often limited to some local search algorithms, so for this dissertation the decision was 
made to use genetic algorithms. To make such integration, it is necessary to develop an 
interface to link the GAs to the CAD models and to the CAE analysis. This dissertation presents 
an approach to this task and some approaches that can be used to construct a strategy on 
crankshaft design and development. The approach of evolutionary design with splines [20] has 
the potential to be generative. 
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1.4 The Splining Approach 
 

In the mechanical field, geometric parameterization is used to define the kind of changes 
described by design variables. The geometry of a product keeps its topology but changes in 
terms of its dimension values or some properties of the structural elements, such as thickness, 
width and height. Parameterization of the dimensions that describe the product allows 
optimization based on measures, and is performed through CAD geometric variations. Shape 
optimization determines the optimal boundaries of a structure for the given fixed topology. 
Design variables are typically spline control points defining the shape of a structure in 2D or 3D 
[4].  

An efficient way of creating and controlling the form parameters of a given geometry is to convert 
them into spline models. The spline curve entity is a non-uniform cubic spline, defined by a 
series of three-dimensional points, tangent vectors at each point, and an array of un-normalized 
spline parameters at each point. A spline curve is a sequence of curve segments interconnected 
to form a single continuous curve. Curvature continuity is an important requirement for many 
applications, and most shapes are simply too complicated to define using a single curve. A B-
spline (the most popular spline) is a series of Bezier curves. A Bezier curve always passes 
through the first and last control points and lies within the convex hull of the control points. A B-
spline of degree ݊ can be defined with a knot vector. A knot vector is a list of parameter values, 
or knots, that specify the parameter intervals for the individual Bezier curves that make up a B-
spline. A B-spline curve with an evenly spaced knot vector is known as a uniform B-spline. If the 
knot vector is not evenly spaced, the curve is called a non-uniform B-spline. B-splines are said to 
have the property of local control, since any given control point can exert influence at most ݊ 
curve segments [40].  

A spline is commonly used to define complex geometries that cannot be modeled, or are difficult 
to model using lines, curves, circles, etc. Shape parameterization is based on different kinds of 
curves. B-splines [41] are used to define curved profiles. The advantage of these spline 
geometries is that they have a shape that is easily controllable through control points. Control 
points are points in space through which a curve must be adjusted. Another characteristic of 
these curves is the possibility of making special adjustments (like sharp angles), depending on 
the relative position of the control points. The splines can be applied to define geometry of 
complex shapes, such as fan wings [42] and also can be used in mesh representation for FEM 
models [43]. In other words, the parameters of a spline control its shape, so any kind of 
transformation can be executed. 

The design of parts in 3D parametric CAD packages is based on sketches of the features that 
determine the topology of the model´s parts, which are related to each other through different 
Boolean operations. In the parametric sketches, common basic geometric elements such as 
lines, polylines, arcs and circles are used. As splines are geometric entities that are very well 
suited for shape variations, for more complex geometries, splines will be used. The main idea of 
this approach consists of converting all the basic geometric elements of the sketches that 
constitute a part, into spline features, whose shape is controllable by manipulating the 
coordinates of its control points. Splines are used to define curved bodies and profiles. A circle, 
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for instance, could be easily defined by a spline by placing all of its control points on the circle 
perimeter. Arcs and straight lines are also easily replaceable for splines. To obtain higher levels 
of freedom in shape variations, basic geometric features that only allow parametric variations are 
converted into geometrically equivalent spline models. This operation has been named “splining” 
[28]. 

The increased flexibility derived from the splining approach [44] could suggest a very high 
number of variation possibilities for a given part, including different shapes for features; even 
though genetic algorithms are being studied for their ability to decide automatically the best-
suited modification for a given purpose, there are many initial possibilities. 

The “splining” approach for optimizing designs using GAs is relatively new. It has been used, for 
example, for data fitting using genetic algorithms [45]. Practitioners of evolutionary optimization 
using splines commonly start the process with an existing design, substitute the current 
construction with splines, as the number of degrees of freedom can be increased at will by 
adding control points, and then parameterize the control points of the splines that embody those 
parts of the design they feel need improvement. The control points are encoded as genes, and 
the alleles (values) from which the parameters are described are evolved by an evolutionary 
search algorithm, e.g. Genetic Algorithms. In the field of mechanical engineering, this approach 
has been applied to the computer design and optimization of the profile shape of a cam for a 
diesel engine [16]. 

The goal of the cam optimization was to optimize the movement of the system. That article 
describes a genetic algorithm with a computer-aided approach for preliminary design and shape 
optimization of cam splined profiles for cam-operated mechanisms. The primary aim of the 
project was to create a complete systematic approach for preliminary cam shape design 
including design automation and true cam shape optimization with respect to the simulated 
computer models of cam mechanisms. Shape optimization of a cam cross-section is a multi-
objective optimization problem of a two-dimensional geometric splined shape in a constrained 
environment. The conclusions of the article are that with genetic algorithms it is not only possible 
to design and optimize geometric shapes, but also to develop procedures and tools to automate 
the design process and get the best form simulation software better and more effectively than 
what an experienced person could do by trial and error. 

Splining may constitute a basis for allowing crossbreeding of different geometries, as the points 
of the splines may be used as “genes” from the parents that transmit their properties to their 
offspring. Geometric crossbreeding should be done at the sketch level of the construction 
features of the parts’ geometry. The possibility of crossbreeding two or more parts or assemblies 
perhaps would need to first, recognize when two different parts are able to generate an 
offspring, or when two different assemblies generate a new assembly. At feature level, the 
crossbreeding is possible between two different geometries of sketched features, see Figure 
1-1. However, at the part level some similitude inside the tree of the parts’ features should be 
present to allow two different parts to crossbreed. The same may be true for crossbreeding two 
different assemblies; i.e., some similitude of the assembled structure could be required for 
achieving a “successful” crossbreed of two assemblies or subassemblies. 
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Sketches are controlled through its parametric structure, which changes during the splining 
approach. A solution is found for substituting the initial parametric structure with a new 
controlling structure that allows parametric similar control of the size of parts and features being 
analyzed. This solution is accomplished through the control points of the spline.  

Even though the focus on the splining technique is about shape variations that allow the 
persistence of CAD models, there are other interesting ways of obtaining these same 
advantages by developing special shape variations at mesh level and then translating them into 
direct change for a previously “splinized” CAD feature. For this purpose mesh morphing in 
existing commercial finite element meshing software exists, which allow shape variations to be 
made in a mesh model without remeshing it. 

 

 

Figure 1-1 Splining of a circle for better geometry manipulation. 

 

The designs are often judged by making an interface of the system to simulation software or 
analysis software, which is used to obtain a fitness measure for each design. These tools result 
in an extended optimization method, achieved by representing shapes with splined curves [11]. 
This eliminates non-parametric dependency on FEM and allows a concept variation of forms. 
Automatic variations in shapes are produced by the computer and concept variations are 
evaluated by analysis software. 
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1.5 Justification, Hypothesis and Objectives 
 

Structural optimization has achieved a level of development that makes it possible to go beyond 
the current limits of optimizing shapes of parts. This kind of optimization also allows designers to 
improve the traditional design process, helping them to make decisions regarding new 
innovative shapes and solutions that arise during the shape variation and simulation process. 
Designers can now take advantage of not only using parametric CAD models to analyze the 
influence of geometric parameters variations, but also the effect of shape variations on the 
required performance of their designs. This thesis presents a strategy that allows the designer to 
perform an automatic search process for crankshaft design objectives based on genetic 
algorithms, integrated with the simulation of crankshaft behavior with respect to its balancing and 
torsion vibrations. At the same time, it looks for an optimal forging process, one that allows 
improve the crankshaft design process, compared to the design approaches used until now.  An 
important characteristic of the strategy presented in this thesis is the automation of the search 
process, as genetic algorithms through crossbreeding and mutations of the counterweight profile 
control the variation of shapes in search for the target balance. At the same time, seek to 
achieve a target position of the crankshaft’s center of gravity and achieving an optimally 
forgeable shape.  

 

1.5.1 Justification of the research 
 

The motivation for the development of this effort is to contribute to the forging industry by the use 
of the breakthrough optimization techniques, which improves the design of new products. The 
intention is also to bring to the world of technology research on the use of evolutionary 
techniques in a mechanical design problem as the forging design of a crankshaft is. An 
opportunity has been detected to carry out the research using an industry-academia approach. 
Eight years of experience in Forja de Monterrey have made the author acknowledge needs that 
can only be addressed by this kind of project to achieve improvement benefitting the country, the 
industry and the academy research. The next following two quotes express the perceived trend 
in the industry motivating this research dissertation: 

“In the year 2020, forging will be the cost-effective, preferred process by which metal 
components of superior quality, integrity, and performance are produced for critical and 
demanding applications.” (Technology Initiative, Forging Industry Association, 2002. 
http://www.forging.org/ techno/Vision.htm#execsum) 

“To maintain the main development thrusts of the forging user industries, forging companies 
need to enhance their take-up of new technology and in particular the use of modeling 
techniques for part and process design”. (Modeling tools for the forging industry - FORGE-NET. 
The European Commission. http://europa.eu.int/comm/research/brite-eu/thematic/html/1-1-
07.html) 
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Optimization is a design activity where the mean is shifted to target and reduce the variability for 
all the responses [46]. Optimization is used to take a particular design and improve it to a level of 
superior performance, but once this level has been achieved, further improvement is impossible 
through the use of the same optimization tools because the best combination of parameters in 
the design has been found. In some cases, the way designers formulate their problems can lead 
to excessive assumptions, engineering approximations, and restrictions, with which an optimum 
design is created, but in a sense that it is the only feasible design, not the best solution. To 
overcome this apparent contradiction, this research proposes a process that integrates shape 
variations and supports the use of interesting optimization approaches, e.g. genetic algorithms. 
All of this takes place in an automated environment with the ultimate goal of using computers to 
help designers to overcome design fixation when developing a product. And then, due to this 
combination of factors, inventive solutions may arise by the emergence of ideas from the 
stimulated mind of the designer, which can be then regarded as generative computer aided 
invention. From the last, the research is intended to prove the next: 

 

1.5.2 Hypothesis 
 

The integration of 3D-CAD parametric models, adaptive splinization, CAE analysis and genetic 
algorithms, by means of the deployment of tasks that automate the design process, improves 
the performance and manufacturability of engine crankshafts. The achievement of novel 
responses that emerge during the genetic evolution process can lead to new generative 
computer aided inventive solutions that help overcome design fixation. 

The optimization capabilities of computers can be extended, when introducing elements of 
inventive methodologies, in a way that makes them an innovation tool for designers.  This will 
allow them to get the best from simulation software, and reach novel solutions during product 
development of crankshafts more efficiently than by the trial and error method. 

 

For the demonstration of the hypothesis, the research was conducted within the following: 

 

1.5.3 Objectives  
 

a) The development of a strategy that combines the activities of concept generation and 
evaluation; and merges them in a loop inside the product development process, in order 
to improve the design of a crankshaft. The strategy aims to integrate the loop into a 
computer aided invention framework, and by doing so, extend the optimization 
capabilities of computers to provide inventive results. 
 

b) The generation of novel designs of the case study of an engine crankshaft, in order to 
obtain an inventive solution that represents an improvement of the crankshaft, in terms of 
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imbalance, dynamic response and manufacturability. By using the genetic algorithms for 
spline manipulation, it is possible to monitor the progresses of the shape construction as 
real-time identification of design trends and make changes to the definition of the shapes. 
 

Under those objectives, the research is aimed to improve the traditional design process to 
become a computer aided invention process. Designers can take advantage of the methods and 
make use of parametric CAD models available during the product development process to 
analyze the influence of geometrical variations. An important characteristic of the tasks 
presented in this thesis is the automation of the optimization/innovation process. From the 
geometric model modifications to the evaluation of the analyses, modern CAD software and 
optimization tools meet all the requirements for such evolution. 

 

1.6 Conducted methodology for the completion of the research 
 

The methodology conducted in order to reach the objectives and for instance, demonstrate the 
hypothesis, consisted of the following steps. 

A) Problem statement. It is analyzed the functioning of crankshafts and its geometrical 
construction. The shapes that are going to be converted to splines are selected and it is 
decided over the set of parameters to be controlled.  

B) Literature review. It is conducted a literature review of the methods and tools that have 
been used in previous approaches. The elements of those methods that have the 
necessary conditions for integration are selected to be used in the research. 

C) Development of the strategy. The computer aided invention strategy is development with 
the elements selected but integrated by a set of tasks. Those tasks are defined by the 
kind of optimization that is pursued. 

D) Deployment of the implementation. The strategy and particularly the set of tasks are 
implemented into the case study of the crankshafts. The results of the improvement of 
the crankshaft in terms of performance are obtained. 

E) Construction of the theoretical foundations. The basis of a computer aided invention 
strategy are presented. The fundamentals of a framework to extend the product 
development cycle into an innovation approach are explaided. 

The previous steps of the methodology for the completion of the dissertation are presented and 
explained in the following order of chapters. 

Chapter 2 states and explains the problem of optimizing an engine crankshaft. The case study 
selected and how the CAD modeling of the crankshaft is made using splines are presented. A 
brief introduction to the dynamics of a crankshaft, and the imbalance and its importance during 
the manufacturing process are included. The chapter describes the equations of imbalance and 
the initial measurement to be used as reference for the improvement during the development of 
solutions. 
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Chapter 3 offers a review of the literature, focusing on general optimization methods and, 
particularly, on genetic algorithms. It is explained why a stochastic technique as the geometric 
algorithms are necessary in the research. The multi-objective optimization strategies and why 
the case study was considered suitable for multi-objective analysis are also discussed. The 
concept of Pareto frontier is explained and how the Pareto graph can be used to reveal conflicts 
in performance parameters of a system. A description is given of the optimization software 
DAKOTA and its code structure. 

Chapter 4 present the overall strategy developed for extending the optimization paradigm into an 
innovation framework, and a description of the different tasks that are integrate. The first task 
consists of the optimization of the imbalance of the crankshaft, taking into consideration only 
geometric modifications of the CAD model. The second task extends the use of CAE tools to 
analyze the dynamic behavior of the crankshaft by measuring, together with the imbalance, the 
eigen-frequencies of the crankshaft. 

Chapter 5 describes the deployment of the tasks, with the case study of the crankshaft, 
introduced in chapter 4 and presents the results obtained from each. It is made a detailed 
description of the geometry substitution by spline curves of the counterweights. It is explained 
the construction of the CAD model and the introduction of the imbalance formulas inside the 
CAD model thanks to the software functionality. It is described how the optimization loops are 
built to have the different software integrated via programming in Java. The results of the tasks 
are presented in the form of modified crankshaft geometries. 

Chapter 6 gives a general description of the optimization/innovation approach. A proof of 
concept of the results from chapter 5 is performed using simulation of the forging process. It is 
presented a reflection of how the strategies are more than an optimization approach and extend 
the optimization capabilities of computers. It is explained how the combination of tools allow to 
conduct an innovative solution by overcoming conflicts in a multiobjective problem. It is also 
presented the ideas relating the TRIZ integration with Genetic Algorithms. 

Chapter 7 contains the conclusions and future work that can be derived from the research that is 
developed in this dissertation. 

 

 

  



33 
 

 

Chapter 2 Problem Statement 
 

The case study was selected in view of the importance of motor crankshafts in the automotive 
industry [47] and the increased performance requirements for engines, which have raised the 
production of forged steel crankshafts worldwide. The auto industry will continue to move toward 
forged crankshafts, as engines become more fuel-efficient, producing more horsepower per liter. 
During the late 1970s, designers recognized that the need for greater fuel economy would be 
driving up the engine horsepower per liter through greater compression ratios and much higher 
rpms. Since roughly the mid-1980s it has been recognized that to achieve those goals, designs 
would have to be changed to achieve stronger crankshafts. Particularly, the development of 
engine crankshafts is subject to a continuous evolution due to market pressures. Fast market 
developments push the increase of power, fuel economy, durability and reliability of combustion 
engines, and call for reduction of size, weight, vibration and noise, cost, etc. Optimized engine 
components are, therefore, required if competitive designs are to be attained. Given these 
conditions, crankshafts, which are one of the most analyzed engine components, must be 
improved [47]. For crankshaft material, the choices were largely between austempered ductile 
iron (ADI) and forged steel. Since the low-cost nodular iron would now have to change to a heat-
treated product cast from a special grade, the economics of castings were not as positive in 
comparison with forgings. Furthermore, the advent of micro alloy steels allowed forge shops to 
compete effectively with ADI because micro alloys can be used to eliminate the heat treating 
cycles for forgings [48]. 

An important direction in improvement trends is the optimization of its geometrical 
characteristics. In particular for this paper, imbalance, first Eigen-frequency and the forge-ability 
are the optimization objectives. Analytical tools can greatly enhance an understanding of the 
physical phenomena associated with the above mentioned characteristics and can be 
automated to do programmed tasks that an engineer requires for optimizing a design [2]. 
Imbalance, one of the quality parameters of crankshafts, has a significant impact on the life of 
the entire system. In the forging process, given the variations of material composition, 
temperature, etc., the imbalance dispersion increases compared to the casting of crankshafts. It 
is of particular importance to reduce this variation right from the conceptual design of the 
crankshaft [49] [50]. As the crankshaft is an element with different functionalities (transform 
linear movement into rotation, manufacturing) and physical behaviors (natural frequencies, 
imbalance) it is especially suitable to be case study for an optimization problem. Crankshafts 
have performance parameters and restrictions that are commonly analyzed and studied, with 
software tools, during the design and development process of an engine.  These performance 
parameters are to be optimized (minimized or maximized) by making variations in the geometry. 

The selected goal of the crankshaft design study for this research is to reach the imbalance 
target and reduce its weight and/or increase its first Eigen-frequency. The design of the 
crankshaft is inherently a multi-objective optimization (MO) problem. The imbalance is measured 
in both sides of the crankshaft so the problem is to optimize the components of a vector-valued 
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objective function consisting of both imbalances [51]. Unlike the single-objective optimization, 
the solution to this problem is not a single point, but a family of points known as the Pareto-
optimal set. Each point in this set is optimal in the sense that no improvement can be achieved 
in one objective component that does not lead to degradation in any of the remaining 
components [36].  

The objective functions of imbalance are also non-linear. Auxiliary information, like the 
derivatives of the objective function, is not available. The fitness-function is available only in the 
form of a computer model of the crankshaft, not in analytical form. Since the approach required 
taking the objective function as a black box, and only the availability of the objective function 
value could be guaranteed, no further assumptions were considered. Thus, the only realistic 
alternative was applying a stochastic global optimization approach. Since GAs have 
already widely demonstrated capabilities for effective, efficient and robust global optimization in 
cases for many black-box type computer models, including many shape optimization models, 
GAs were considered the most attractive alternative for the research purposes. The Pareto-
based optimization method, known as the Multiple Objective Genetic Algorithm (MOGA) [52], is 
used in the present MO problem, to find the Pareto front between these two fitness functions. 

2.1 State-of-the-Art in Crankshafts 
A crankshaft used in a V-type six-cylinder engine is equipped with six crank pins (numbered P1 
to P6, see Figure 2-1), four crank journals (numbered J1 to J4), and nine arms (numbered A1 to 
A9) for connecting the crank pins and the crank journals to each other. Some of these arms are 
each equipped with a counterweight (numbered W1 to W9) to reduce the rotational force of 
inertia generated in each arm and the unbalance couple generated in the crankshaft. 
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Figure 2-1 Perspective view of an engine crankshaft 

In a conventional crankshaft, the counterweights are situated in a direction completely opposite 
the crank pins connected to the arms with respect to the central axis of the crankshaft. That is, in 
the case of an arm to which only one crank pin is connected, the counterweight is situated in a 
direction completely opposite that crank pin (see Figure 2-2). In the case of an arm to which two 
crank pins are connected, the counterweight is situated in a direction completely opposite the 
midpoint of the two crank pins. 

 

 

Figure 2-2 Front view of an engine crankshaft 

In a review of the history of the development of V6 type crankshafts, an exhaustive patent 
search was conducted. The original V-6 Engine can be found in a patent [53] from the former 
General Motors Corporation. The text of the patent is very descriptive with respect to the 
intention and goals of the research: 

“The present invention relates to internal combustion engines, and more particularly relates to 
the crankpin arrangement and balancing means for a 60° V-6 engine. 

“Modern automotive internal combustion engines are required to operate at high speed with a 
minimum of vibration. This requirement necessitates accurate and complete balancing of the 
inertia forces and couples set up by rotating and reciprocating masses within the engine.  

“V-6 engines are rigid and compact and are therefore desirable as automotive power plants. The 
lack of a suitable crankshaft design and balancing means for these engines has delayed their 
adoption by the automotive industry. It is well-known that if the forces and couples of an engine 
are not balanced, excessive vibration will result. This vibration greatly increases the wear on 
engine parts, and passenger discomfort and reduces the life of the engine. For these reasons, it 
is necessary to reduce engine unbalance to a minimum. 
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“Engines may be out of balance, with resulting vibration and excessive wear, due to either 
unbalanced forces or unbalanced couples. The unbalance forces may be "primary" or those 
operating at engine speed or may be higher order forces which are classified as a "secondary," 
"tertiary," etc. corresponding to the harmonic of engine speed at which they are effective. The 
term "unbalance couple" as applied here, is the product of the force times the distance the force 
acts from a preselected datum line. These couples may be either so-called "shaking" couples 
which are manifest by forces acting in a single plane lying in the longitudinal axis of the engine 
or they may be rotating couples which change their direction of application with respect to the 
line of center of the engine either at engine speed or at some harmonic thereof. The design of 
the present engine eliminates all shaking couples. The unbalance, due to rotating forces 
resulting in rotating couples of higher order than secondary, are negligible in the present engine. 
The primary unbalance forces and rotating couples are counterbalanced by the use of weights 
located on the engine crankshaft and fly-wheel.” See Figure 2-3. 

 

 

Figure 2-3 Crankshaft from Original V-Six Engine General Motors Corporation. 

 

In the patent databases, the older the patent, the simpler the counterweight’s profiles; 
crankshafts are modeled with the use of arcs and particularly the use of symmetry. It means that 
newer crankshafts are less symmetric, in order to adapt to the balance, but still use simple arcs. 

A patent from 1985 [54] provides the crankshaft with two more counterweighs than the original 
crankshaft, which consisted of counterweighs in the extreme sides. The crankshafts then have 
counterweights in the first, second, eighth and ninth arms. A patent from 1988 [55] claims to 
provide an excellent engine crankshaft structure which is useful in the drive system field in the 
automotive industry. It uses the conventional crankshaft structure that it can well afford to bear 
large surface pressure and to resist a large bending and shearing stress and by minimizing the 
number of counterweights. Patent from 1996 [56] presents a crankshaft of a V-type 6-cylinder 
internal combustion engine which claims to ensure a decrease of the engine vibration and 
surface pressure affecting each crank journal by achieving effectively dynamic balance of a 
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whole crankshaft and dynamic balance couple between inner main bearings with an optimum 
size of balance weight. A patent from 1998 [57] involves a crankshaft in which counterweights 
are provided respectively on only the first, second, fifth, eighth and ninth arms, with the weight 
and thickness of the first to fifth counterweights being set to predetermined values respectively. 

The next two patents are the newer regarding V-type 6 cylinder engines. A 2007 patent [58] is 
an invention to provide a crankshaft for a V-type internal combustion engine of the type with a 
pair of counterweights arranged outwardly of the axially outermost journals. The crankshaft 
includes a first to a sixth crank pin, a first to a fourth main journal and a first to a ninth crank arm. 
At least the first, the second, the eighth and the ninth crank arms have respective integral 
counterweights for balancing the crankshaft. To reduce bending stress on the areas where the 
second and the eighth crank arms are connected to the respective pairs of adjacent crank pins 
(bending problems particularly present in the forging dies during the manufacturing process), the 
axial dimensions of the first and the ninth crank arms are reduced. Being substantially the same 
as those of the adjacent crank arms (second and eight); in order that the axial length of the two 
end spans of the crankshaft is the same as that of the intermediate span. In order to set the 
balance of the crankshaft back to the original value, two additional counterweights are arranged 
outwardly of the end journals and their axial dimensions are comparable to those of the end 
crank arms, see Figure 2-4. 

 

Figure 2-4  Patent US 7,210,373 B2, May 1, 2007 

 

Another patent granted in 2007 [59] is for an invention to provide a crankshaft for a V-type six-
cylinder engine capable of reducing the generated unbalance couple to a sufficient degree. 
Thus, in the crankshaft the arm A5 has no counterweight, which makes it possible to achieve a 
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reduction in weight. Without counterweight 5 the effect of reducing the bearing load generated in 
the crank journals J2 and J3 through the rotational force of inertia of the crank pins P3 and P4 is 
lower than that in a case of a crankshaft in which the arm A5 has a counterweight. Accordingly, 
in the crankshaft 1, which is for use in a diesel engine, there is practically no disadvantage in 
increasing the bearing load due to the fact that the arm A5 has no counterweight, making it 
possible to attain, substantially and exclusively, compatibility between a reduction in weight and 
a reduction in unbalance couple. Furthermore, arms A1 through A3 and the arms A7 through A9 
respectively with counterweights, are concentrated on both ends of the crankshaft. So that if the 
total weight is the same as that of a construction in which counterweights are provided on arms 
near the center (e.g., a construction in which each of the arms A1, A2, A4, A6, A8, and A9 has a 
counterweight), a moment generated is larger. Whereby it is possible to more efficiently achieve 
a reduction in unbalance couple. See Figure 2-5. 

 

Figure 2-5 Patent US 7,234,432 B2 June 26, 2007 

A patent from 2001 [60] describes a crankshaft not for a V6 engine, but rather for a forged 
crankshaft for an internal combustion engine, and more particularly to a crankshaft with larger 
counter weights, but which does not cause interference between the counter weights and 
neighboring parts of the engine. According to one aspect of the invention, an engine crankshaft 
with at least one counter weight made by forging is provided. As the forging being performed by 
pressing two dies to each other, it is characterized by the fact that the counterweight has a 
plurality of inclinations to facilitate removal of the dies from the crankshaft after the forging 
process is completed. The degree of inclination of the plurality of inclinations is reduced since 
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the plurality of inclinations is away from a die-mating surface. However, the plurality of 
inclinations refers to the width of the counterweights, not to the profile, which is not claimed. 

From the point of view of the particular crankshaft part under this study (V-type 6 cylinder), the 
geometry has commonly consisted on arc-shaped counterweight profiles. The forging process 
demands a better flow of the metal into die cavity and robustness in the balance and dynamic 
behavior of the crankshaft. To solve this task, therefore, not only expertise is needed, but also 
new strategies. In this research, the aim is to develop a method that brings the designers new 
alternatives. In this thesis, the shape optimization of a crankshaft is discussed, with focus on the 
geometrical development of the counterweights. 

 

2.2 Crankshaft Dynamics 
The case study presented here involves the development of an engine crankshaft, with 
emphasis on its imbalance and dynamic behaviour (i.e. Eigen values). The goal of a balance 
analysis of engine crankshaft is to develop the geometry so that a specified previous imbalance 
is obtained on two correction planes [61]. These two planes lie where the outermost 
counterweights are located, and so the imbalance could be corrected at the manufacturing shop 
by performing specific drilling on those counterweights. 

 

2.2.1 Balance basic concepts 
The crankshafts are special cases of the asymmetrical rotor, since more than two 
counterbalances are needed to correct balancing [51]. The configuration of a crankshaft with 
multi-counterbalance can be used for the purpose, and each counterbalance has a limit where 
material cannot be removed. However, any two counterbalances can be taken in combination as 
a set of balancing planes. Thus, a complete correction in balancing crankshafts is usually not 
finalized by using only two counterbalances; and all possible combinations of counterbalances 
may be needed. 

In other words, such previous imbalance represents a value of mass by radial position the effect 
of which will be eliminated by drilled holes around such counterbalances (at the correction 
planes, for instance) to values near zero, taking into account the effect of piston and rod weights 
(the later commonly replaced by equivalent “fictitious” weights). This intentional previous 
imbalance is designed just for the drilling phase, to take out mass (unbalance mass) from the 
external profile surface of the counterweight in a limited zone, restricted because of the engine 
geometry and manufacturing process. Figure 2-6 shows a schematic sketch of a crankshaft. 

A crankshaft-block subsystem consists of the crankshaft and the engine block coupled by the 
main bearings. The cylinder pressure applied on the piston crown is transmitted to the crankpin 
through the piston-connecting rod assembly. The inertia of the piston-connecting rod provides a 
load on the crankpin as well. The loads of the crankpin deform the crankshaft and are 
transmitted to the engine block at the main bearing locations. 
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Figure 2-6 Combustion Engine Crankshaft 

 

In general terms, imbalance is a condition in which the mass axis of a part does not coincide 
with the rotating axis. Imbalance is an expression of unequal distribution of mass around the 
rotating center (Imbalance =mass x radius). In a rotating part, unbalance causes vibration, which 
results in increased bearing loads, increased noise and vibration. Next, some terms and 
concepts are explained [61]. 

Rotating axis: Also known as shaft axis, rotating axis is a line about which a given body revolves. 
Two or more bearings usually determine it. In a crankshaft, all the mains define a cylinder that 
identifies it. 

Center of gravity: The point where all the mass of a body can be considered concentrated. If 
hung from this point the body will be in equilibrium in all directions. Normally, any CAD software 
gives the mass properties of a part, including the location of the center of gravity related to any 
geometrical coordinate system. 

Mass axis: It is an axis that goes through the center of gravity, about which a body will rotate if 
freely suspended, under no restriction. When the mass axis is not aligned to the axis of rotation, 
there is an imbalance. The imbalance can be created by attaching an external mass (balance 
weight) to the part. The same weight gives a different measure of unbalance if attached at 
different radii from the axis of rotation of the part. The effect of a balance weight increases as the 
radii (or correction diameter) increases. 

Static unbalance: Static unbalance (also known as single plane unbalance) occurs when the 
mass axis is displaced parallel to the rotation axis. The amount and angle (location) of 
unbalance is the same at both ends of the shaft. As an explanatory example, if the part is 
allowed to rotate freely, it will rotate due to its own weight until the unbalance weight is at the 
bottom side. Static unbalance can be measured by either non-rotating equipment, or by rotating 
equipment, even with the mass properties if in CAD software, because it is manifested without 
part rotation. When rotating, static unbalance causes a radial motion described as a “hop”. 

Couple unbalance: Couple unbalance arises when two equal unbalance masses are located at 
opposite ends of a rotating part, 180o degrees apart so, even when the resulting center of gravity 
is at the axis of rotation, the mass axis is not parallel to the rotating axis. Couple unbalance is 
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only observable during part rotation, and is manifested in “two planes” see Figure 2-7. A 
crankshaft displaying a pure Couple Unbalance tends to “wobble”. 

Dynamic unbalance: Dynamic unbalance is a combination of both couple and static unbalance. 
This occurs commonly in parts that are at least twice as long as their diameter. To cause a 
dynamic unbalance, couple and static unbalance can be combined in different ways: a) The 
static and couple are in the same plane, and the geometric axis and mass axis intersect but the 
center of gravity is displaced; b) The unbalances are not equal and are opposite. The geometric 
axis and mass axis do not intersect.  Dynamic unbalance can only be measured by rotating the 
part, and is manifested in two or more planes. It also causes the part also to wobble. 

 

 

Figure 2-7 Types of unbalance: a) static, b) couple unbalance 

 

When some parts are not symmetric by design, they are inherently imbalanced. Typical causes 
of imbalance in forging crankshafts are the distortion during stamping and cooling or handling 
fixture inaccuracies. During machining, causes are cutting tools wearing and tolerances. There 
are three correction methods to reduce unbalance: a) Add material (move mass center): 
welding, riveting, epoxing; b) Remove material (move mass center): Drilling, milling, punching, 
and nibbling; Mass center (move center of rotation). 

 

Principal 
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2.2.2 Descr ipt ion of the balance equations 

In a pivoted crankshaft turning with constant angular velocity, the sum of the moments produced 
by its mass differentials times their locations, is equal to the bending moment acting on the 
crankshaft. The bending moment is equal to the result of the moment caused by the centrifugal 
force due to the crankshaft mass at the centre of gravity, and the moment caused by the 
imbalance masses on the correction planes. Correction planes are located in both longitudinal 
sides of the crankshaft, where the external counterweights are located. These two 
counterweights are named CW1 and CW9, because correspond to the first and the ninth 
counterweigh. A design practice is to take the sum of moments around the left correction plane 
(into the counterweight close to the flange) to drop the moment caused by the left imbalance 
mass and find the imbalance on the right plane: 

(2) 

Where I is the distance between the two correction planes, mg is the mass of the crankshaft; 
rgy and rgz are coordinates y and z of the centre of gravity and lxy and lxz the inertia products. In 
the same way, moments around the right correction plane are taken to find the imbalance on the 
left plane: 

(4) 

The mass properties required to calculate the imbalance (mg, rgy, rgz and the inertia products 
lxy and lxz) of the crankshaft models can be obtained from parametric C A D software, which has 
special commands in its advanced modules for calculating the imbalance as a response for 
fitness evaluation. The fitness function selected as the response is an equally weighted function 
of the differences between the specified target for imbalance and the current imbalance (mLrL y 
mRrR) on the correction planes. 

This method is called "goal programming", in which the designer has to assign targets or goals 
to be achieved for each objective function [62]. These values are incorporated into the problem 
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(1) 

(3) 



as additional constraints. The algorithm will then try to decrease the absolute deviations from the 
targets to the objective functions. The simplest form of this method may be formulated as 
follows: 

where Ti denotes the target or goal set by the designer for the i-th objective function fi(x) and X 

represents the feasible region. The criterion, then, is to minimize the sum of the absolute values 
of the differences between the target values and the actually achieved values of imbalance on 
the two external counterweights by making modifications to the crankshaft geometry. 

A convenient way to represent the imbalance of a crankshaft is by the use of correction 
polygons. Correction polygons are vector constructions that define the correction ability for a 
range of imbalances, of a set of holes (each represented by a vector) made upon the external 
side of some counterweights. Correction polygons can be created graphically: from the part 
print, determine the place and size of possible holes, each represented by a vector. From the 
geometric center of the crankshaft to the gravity center of the hole: U = Dm x Vd x Rcg, where Dm 

represent the density of the material, Vd is the volume of the hole and Rcg is the radial distance 
from the center axis of the crankshaft to the center of the hole. When the vectors are drawn on 
polar paper, the length of the vectors represents the most unbalance that can be corrected by 
each hole at each vector angle. Ad vectors graphically from left and also from right. Any 
unbalance point inside the area covered can be reached by adding portions of vectors (that is, 
choosing the right number and size of holes). 

The unbalance value of a crankshaft at each measuring plane can be plotted as a point showing 
amount and location. If a collection of values is plotted a balance scatter diagram can be 
constructed. The mean value of the unbalance can be used to correct the design to move the 
unbalance into the middle of the correction envelope. 

As reference for the final results of the case study, Figure 2-8 shows the imbalance vector from 
the original crankshaft design to be optimized. It can be observed that the imbalance of both 
correction planes, even when inside the correction area, is not close to the target defined as 400 
g-cm. 

Balance is highly nonlinear with respect to the configuration of the crankshaft. The surfaces 
representing the performance metric being optimized can be complex. Gradient search 
techniques are prone to getting trapped in local minima. Thus, heuristic techniques such as 
genetic algorithms, which are all better at handling nonlinear objective spaces, need to be used, 
though these all require greater computational resources. 

k 

min lfi (x) - Ti | subject to x e X (5) 

i=1 

43 



44 
 

 
 

Figure 2-8 Imbalance graph from the original crankshaft design 

2.3 Chapter conclusions 
 

In this chapter the reasons for selecting a crankshaft as the case study are explained. The ever 
increasing requirements of an automotive engine aim for the use of forged steel in crankshafts. 
A good balancing design is a characteristic that has been required since the invention of the 
engine. It is explained that the goal of the design study is to reach the imbalance target and/or 
increase its dynamic response. All of this is performed in the context of a multi-objective 
problem. A general description of the structure of a crankshaft is presented. The development of 
the crankshaft according to the patents granted in the world, from the original patent from 
General Motors to the newer crankshafts, is chronologically described, including the only one 
which description is related to a forging.   

The second section of the chapter relates to basic concepts of crankshaft dynamics. It is 
explained that the goal of the balance analysis of engine crankshaft in this research is to develop 
the geometry of the counterweights until the targets are reached. Traditionally, imbalance is 
corrected in the last step of the manufacturing via some drilling performed in the counterweight. 
Some definitions are provided and the different unbalance concepts are explained. Next an 
explanation of the imbalance functions and their derivation is developed. These equations are 
going to be introduced in the analysis of the CAD model in the next chapters. Finally, a graph in 
which the imbalance vector from the original crankshaft design can be seen is presented as 
reference for future improvements comparison. 
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Chapter 3 Optimization Methods and Software 
 

In this chapter is presented a bibliographic review of optimization methods and genetic 
algorithms. It is explained why a stochastic technique as the geometric algorithms is necessary 
for the kind of problems involved in the work. The multi-objective optimization strategies and why 
the case study was considered suitable for multi-objective analysis are also discussed.  

3.1 Optimization Model 
An optimization model is the base for every optimization and consists of variables, restrictions 
and targets within a system. In the system, all variables are defined by parameters, while during 
the optimizing process, the conditions of the restrictions can’t be altered. The conditions of the 
restriction are set by the parameter´s limits. The optimization software chooses values for the 
variables from which these conditions are met. Among the conditions in the target system, the 
parameters are evaluated on their fitness. The target system is supported by a fitness function, 
which embodies what is either maximized or minimized, depending on the setting of the 
optimization software. 

3.2 Optimization Methods 
The choice of an optimization algorithm has to be made according to the problem. Figure 3-1 is 
a classification of different optimization methods taken from [63]. In the design process, one 
common problem is that they are typically nonlinear and, therefore, can be poorly optimized with 
analytical procedures. So an optimization algorithm for a nonlinear optimization and static 
parameters is needed. Genetic algorithms belong to a classification of global optimization 
algorithms. Gradient methods are suitable only when the solution to a problem implies the 
calculation of the partial derivatives and are used for local optimization. Under deterministic 
methods, the variation of parameters is used in certain logical strategies. They are characterized 
to progress in defined steps through the solution space in length and direction. In the stochastic 
process, the parameters are chosen purely at random and are not logically moved by a 
predetermined strategy. A special case of stochastic methods, the evolutionary algorithms, can 
generate completely new solution variants. 

Parametric optimization using the different algorithms is perhaps the most effective approach for 
many industrial solutions, as commonly parametric changes in products and process are easier 
to achieve and to implement than innovative concepts, where shape, topology, or physical 
principles are changed. However, parametric optimization alone could lead to stagnation in 
product or process development, as compromise is inherent in parametric optimization, 
especially when multiple optimization objectives are targeted. Multi-objective optimization 
requires definition of “priorities” from among conflicting performance objectives, therefore leading 
to compromises in conflicting goals. These conflicting performance goals appear in any product 
or process development process, and consequently achievement of further enhancements 
through parametric multi-objective optimization. 
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Figure 3-1 Probabilistic global optimization algorithms 

 

Products and processes optimization has been studied by many authors, especially since the 
widespread use of computers as an aid for looking for an “optimal” combination of product and 
process parameters. The introduction of new techniques for design of experiments (DOE) in 
product or process improvement made it possible to reduce the number of experiments needed 
to identify the influence of different parameters in the performance objectives. DOE also 
facilitated obtaining empirical mathematical models of the products and/or processes leading to 
the application of multi-objective optimization methods. Furthermore, evolutionary and genetic 
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algorithms in engineering optimization have contributed to the achievement of higher 
performance goals with multi-objective optimization. Nevertheless, these techniques had been 
restricted to the search for product or process performance enhancement through the variation 
of numerical product or process parameters.  

One of the first applications of genetic algorithms was the learning classifier system (LCS) 
developed by Holland. Even when it is not strictly an optimization algorithm, it consisted of a 
population of binary rules on which a genetic algorithm altered and selected the best rules. A 
complete bibliography of books related to LCS can be found in [64]. An original patent describing 
of the use of genetic algorithms in computer systems was granted to Holland in 1987 [65]. The 
invention relates to electronic data processing systems and, more specifically, to adaptive, 
parallel, rule-based computing systems called "classifier systems". Classifier systems adapt to 
the computing task by selecting useful processes from a collection of available alternatives, and 
by further experimentation with new candidate processes, which are added to the pool of 
alternatives in a quasi-random manner. An adaptive classifier system selects and further 
improves the computational processes it uses in much the same way that nature adapts 
biological species to their environment: by producing new candidates, nurturing the successful, 
and discarding those which perform poorly. 

The patent explains that, as in biological evolution, means are employed both to insure the 
survival of those processes exhibiting superior performance, and to form new processes which 
are composed of elements copied from pairs of successful but differing parent processes. 
Whenever a classifier generates a message which is carried over into the next major cycle, it 
rewards the classifier(s) which supplied the input message by increasing the strength of the 
supplying classifiers (which share the reward equally) and decreasing the strength of the 
supplied classifier (which will itself be rewarded if its message is used in a subsequent cycle). In 
this way, the strength of each classifier producing useful messages is enhanced over time, while 
the strength of those that are unable to produce useful messages deteriorates. 

According to another feature of the invention, the number of messages passed on to a 
subsequent cycle is limited to a number less than the total number of messages that would be 
generated by classifiers whose condition(s) are satisfied. Thus, means are employed for 
discarding messages generated by weaker and more general classifiers in favor of messages 
produced by classifiers having greater associated strength values and which are more specific 
(that is, which respond to a more limited number of messages). Pairs of classifiers having high 
relative strength values are employed to form new combination classifiers using random genetic 
operators, the most important of which, called "crossover", involves the selection of a string 
position at random, splitting both parent classifiers at that position, and exchanging parts to form 
two new offspring classifiers which replace the weakest (lowest strength) classifiers. 

From the classifier systems, Holland derived that the genetic algorithms are a procedure for 
increasing the adaptive scope of classifier systems. These algorithms periodically select the best 
or fittest classifiers, produce new classifiers from them, and substitute these new classifiers for 
some of the poorest classifiers. 
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3.3 Use of Genetic Algorithms  
 

Genetic algorithms, an evolutionary computational tool, are selected to be integrated as part of 
the strategy. Genetic algorithms (GAs) are adaptive heuristic search algorithms (stochastic 
search techniques) based on the ideas of evolutionary natural selection and genetics [66]. The 
basic concept of GAs is aimed at simulating processes in natural systems that are necessary for 
the mechanics of evolution, specifically, those processes that follow the principles proposed by 
Charles Darwin: the “law of the strongest” or the “survival of the fittest”. 

They combine survival of the fittest among string structures with a structured yet randomized 
information exchange to form a search algorithm with some of the innovative flair of human 
search. In every generation, a new set of artificial creatures (strings) or individuals is created 
using the fittest as parents. While randomized, GAs are no simple random stroll. They efficiently 
exploit historical information to speculate on new search points with expected improved 
performance [66].  

3.3.1 Darwin’s theory of natural selection in brief 
Darwin’s theory of natural selection [67] has had the most important consequences for our 
perception of change. His view of evolution refers to a continuous, gradual adaptation of species 
to changes in the environment. The idea of ‘survival of the fittest’ means that the most adaptive 
organisms in a population will survive. This occurs through a process of ‘natural selection’ in 
which the most adaptive ‘species’ (organisms) will survive. The process is gradual, taking place 
in a relatively stable environment, working slowly over long periods of time necessary for the  
distinctive characteristics of species to show their superiority in the ‘survival contest’. This year 
(2009) is the 200th anniversary of Darwin’s birth and his ideas are crossing frontiers into the 
computer world. This research thesis is a small contribution dedicated to his memory.  

Three basic concepts derived from Darwin’s evolutionary biology are what the computer 
geneticists are trying to extend to the algorithms [68]. These three concepts are the unit of 
variation, unit of selection and unit of evolution. 

The unit of variation concerns the entity which contains the genetic information and which 
mutates following specific rules, namely the genes. Genes contain the hereditary information 
which is preserved in the DNA. This is not altered throughout the reproductive lifetime of an 
organism. Genes are passed on from an organism to its successors. The gene pool, i.e., the 
total stock of genetic structures of a species, only changes in the reproduction process as 
individuals die and are born. Particular genes contribute to distinctive characteristics and 
behavior of species which are more or less conducive to survival. The gene pool constitutes the 
mechanism to transmit the characteristics of surviving organisms from one generation to the 
next.  
 
The unit of selection is the expression of those genes in the entities which live and die as 
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individual specimens, namely (individual) organisms. These organisms, in turn, are subjected to 
a process of natural selection in the environment. ‘Fit’ organisms endowed with a relatively 
‘successful’ gene pool, are more likely to pass it on to their progeny. As genes contain 
information to form and program the organisms, it can be expected that in a stable environment 
genes aiding survival will tend to become more prominent in succeeding generations. 

Finally, there is the unit of evolution, the concept that refers to changes over time as the gene 
pool changes, namely populations. Natural selection produces changes at population level by 
‘trimming’ the set of genetic structures in a population. ‘Natural selection’, thus, is a gradual 
process selecting the ‘fittest’ organisms. 

3.3.2 Introduction to Genetic  Algorithms 
Genetic algorithms are typically used in computer simulation, normally used for function 
optimization, in which a population of abstract representations (called chromosomes) of possible 
solutions (called individuals) A gene is defined as any portion of chromosomal material that 
potentially lasts for enough generations to serve as a unit of natural selection [1]. Traditionally, 
the solutions are represented in binary code as strings of 0s and 1s, but other codes are also 
possible. The population evolves in discrete generations. At the beginning of each generation, 
the computer starts by constructing a phenotype for each individual, using the set of number 
strings corresponding to an individual (the "genome") as a specification. The function used for 
the interpretation is dependent upon the experiment, but typically a fixed region within the 
chromosomes is used to determine each phenotypic trait of the individual. The following 
explanation of optimization with an evolutionary algorithm is shown in Figure 3-2. 

 

Figure 3-2 Standard loop of genetic algorithms 

 

A GA is an iterative procedure, which maintains a constant-size population ܲሺݐሻ of candidate 
solutions, each individual in the population represents a point in the search space of the problem 
to be solved. During each iteration step, called a generation, the structures in the current 
population are evaluated, and, because of those evaluations, a new population of candidate 
solutions is formed. The initial population ܲሺܱሻ can be chosen heuristically or at random. The 
structures of the population ܲሺݐ ൅  1ሻ  are chosen from ܲሺݐሻ  by a randomized selection 
procedure that ensures that the expected number of times a structure is chosen is approximately 
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proportional to that structure's performance relative to the rest of the population.To simulate 
selection, the phenotypes are scored according to a set of fitness criteria. When the system is 
being used to solve an optimization problem, the traits are interpreted as solution parameters 
and the individuals are scored according to the function being optimized. This score is then 
used to cull the population in a way that gives higher scoring individuals a greater chance of 
survival. The aptitude of an individual is closely related to the value of the function in the point 
being represented by the individual. After the selection step, the surviving gene pool is used to 
produce the next generation by a process analogous to mating. Mating pairs are selected by 
either random mating from the entire population, some form of inbred mating, or assertive 
mating in which individuals with similar traits are more likely to mate. The pairs are used to 
produce genetic material for the next generation by a process analogous to sexual reproduction. 

In a simple GA, the whole population is replaced by a new set of individuals each generation. 
The new set of individuals is produced in pairs. In order to produce two new individuals, a pair of 
parents is selected from the current population. Those individuals with a better aptitude have 
more chances of being selected. Once a pair of individuals is selected, crossover and mutation 
are applied. The crossover consists of constructing a pair of new individuals by taking parts of 
the genetic material from both parents. The expected effect is the combination of the 
characteristics present in both parents. In the simplest case, the genetic material of an individual 
consists of the string and the crossover consists of randomly taking a point in which both 
parents can simultaneously be divided and then joining the first part of the first parent with the 
second part of the second parent. The second individual can be constructed with the remaining 
parts of the parents’ genetic material.  

The chance coming together, through crossing-over, of previously existing sub-units is the usual 
way for a new genetic unit to be formed. Another way—of great evolutionary importance even 
though it is rare—is called point mutation. A point mutation is an error corresponding to a single 
misprinted letter in a book. It is rare, but clearly the longer a genetic unit, the more likely it is to 
be altered by a mutation somewhere along its length. Another rare kind of mistake or mutation 
which has important long-term consequences is called inversion. A piece of chromosome 
detaches itself at both ends, turns head over heels, and reattaches itself in the inverted position. 
In terms of the earlier analogy, this would require some renumbering of pages. Sometimes 
portions of chromosomes do not simply invert, but become reattached in a completely different 
part of the chromosome, or even join with a different chromosome altogether. 

However, like other classes of algorithms, GAs differ from one another with respect to several 
parameters and strategies. The following are the main concepts related to genetic algorithms 
that are commonly used:  

Population Size (N): The population size affects both the ultimate performance and the 
efficiency of GAs. GAs generally do poorly with very small populations, because the population 
provides an insufficient sample size for most representations. 

Crossover Rate (ܥ): The crossover rate controls the frequency with which the crossover 
operator is applied. In each new population, C *  N structures undergo crossover. The higher 
the crossover rate, the more quickly new structures are introduced into the population. 



Mutation Rate (M): Mutation is a secondary search operator which increases the variability of the 
population. After selection, each bit position of each structure in the new population undergoes a 
random change with a probability equal to the mutation rate M. 

Generation Gap (G): The generation gap controls the percentage of the population to be 
replaced during each generation. That is N * (G) structures of P(t) are chosen (at random) to 
survive intact in P(t + 1). 

Scaling Window (W): When a numerical function f(x) is being maximized with a GA, it is 
common to define the performance value u(x) of a structure x as u(x) = f(x) - fmin, where 
fmin is the minimum value that f(x) can assume in the given search space. 

Selection Strategy (S): A good strategy assures that the structure with the best performance 
always survives intact into the next generation. In the absence of such a strategy, it is possible 
for the best structure to disappear, due to sampling error, crossover, or mutation. 

There are some fundamental differences between evolutionary algorithms and other 
deterministic or stochastic optimization procedures: 

a) The search starts from several points simultaneously, not just one. 
b) There are no discharges of objective function. 
c) There are probability rules, not deterministic rules. 
d) There is a range of possible solutions. 
e) The user makes the final selection of the best draft by decision. 
f) Continuous and discrete variables can be used. 
g) A choice can be made between continuous, discontinuous and multi-function space. 
h) They are easy and flexible to apply, since the objective function is not subject to 

restrictions 
i) They have the advantage of producing many configurations in a single run, giving a 

"Pareto front" of many optimal solutions at once. 

Genetic algorithms are a population-based technique. This means that they will produce many 
optimized configurations simultaneously, which is very beneficial for multi-objective optimization 
where a Pareto front of solutions is desired. They also allow many different initial guesses for the 
configurations to be considered at once [33]. This cycle continues until a certain criterion is 
reached. Experimental studies indicate that GAs exhibit extremely high efficiency, consistently 
outperforming both gradient techniques and various forms of random search [69]. Eventually, the 
population converges to a single solution which is likely the best found and hopefully the best 
that could ever be found. A GA 's stochastic operators allow the algorithm to search intractable 
spaces with some hope of finding optimal solutions within a computationally reasonable time 
frame. The G A cycle can be summarized as follows: 

a) [Start] Generate random population of n chromosomes (suitable solutions for the problem) 
b) [Fitness] Evaluate the fitness f(x) of each chromosome x in the population. 
c) [New population] Create a new population by repeating following steps: 

i. [Selection] Select two parent chromosomes from a population according to their fitness 
(the better the fitness, the greater the chance to be selected). 
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ii. [Crossover] With a certain probability, cross the parents over to form new offspring 
(children). If no crossover was performed, offspring are an exact copy of the parents.  

iii. [Mutation] With a certain probability, mutate new offspring at each position in the 
chromosome.  

iv. [Accepting] Place new offspring in a new population.  
d) [Replace] Use the new generated population for another run of the algorithm.  
e) [Test] If the end condition is satisfied, stop and return to the best solution so far. 
f) [Loop] Return to b) 
 

Some of the conditions preferable for a good evolutionary development include: 

a) A good genetic representation of the individuals 
b) A varied initial population 
c) Selection of good parents for crossover to produce good offspring 
d) Selection of the best offspring to be parents in the next generation 
e) Correct refinement of the genetic algorithm.  

Next is a detailed description of terms that are part of the vocabulary of genetic algorithms. 

3.3.3 Start population 
The startup population is a set of individuals usually generated at random. However, it is also 
possible to start a population from an existing or a predefined file. The boundaries of the 
generation of individuals are defined by the restriction system. The quality of a startup population 
can be positively affected by seeding “good" individuals into it. However, there is still the risk of 
achieving a premature convergence and not finding the global optimum. From a startup 
population randomly generated, every optimization gives different results, whereas at a specified 
optimization seed, different algorithms produce exactly the same result.  

3.3.4 Fitness function 
The fitness function corresponds to the objective function used in the optimization and is crucial 
for calculating the probability of survival. The optimization software, depending on its 
configuration, can be used for minimizing or maximizing. 

3.3.5 Selection 
The selection procedure used also contributes to the optimization solution. The selection of 
individuals for the generation of offspring is what delivers the solution. Many methods have been 
developed. A choice can be made between static and dynamic selection: in dynamic selection 
the probability of selection in each generation is calculated and in static selection only the first 
generation will be assessed for future generations. A distinction can also be made between 
discriminatory and non-discriminatory selection. In discriminatory selection, poor individuals are 
deleted, making the differences in quality of the remaining individuals much stronger. When an 
individual is rated as poor, it must be reported to the algorithm. Non-discriminatory procedures 
have the advantage of applying a thorough search in the solution space before a promising area 
is chosen. The most common procedures for selection are presented next. 
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3.3.5.1 Roulette  selection 
Each individual section is a slide in a circle on a roulette wheel allocated in proportion to its 
fitness. A random number draws the selection of individuals. The random number is the turning 
of the roulette wheel. The individual referred to by the pointer is then being chosen. The 
probability of being selected is particularly high in a larger section on the roulette wheel. There 
are two different manifestations of the method. In the normal roulette wheel selection, the 
individuals remain, even after the selection on the roulette wheel and can thus be selected 
again. In the unique roulette wheel selection, the individual is removed from the roulette wheel 
and the sections are recalculated. This process is repeated as long as individuals are required. 

3.3.5.2 Roulette wheel with multiple selection. 
This procedure is a modified roulette wheel selection. Around the roulette wheel there are so 
many pointer distributed, with the individuals that should be selected evenly positioned. The 
allocation of the section is proportional to the fitness of the individuals. The even distribution and 
the proportional allocation of the sections in this process ensures that the best individual 
selection survives in any case. 

3.3.5.3 Linear Ranking 
This procedure will try to get a convergence against a premature suboptimum in order to prevent 
it. The individuals will be arranged and ranked on the basis of their fitness levels, starting with 
one value assigned. The selection will have a probability of rank-dependent linear function. 
Here, poor individuals get a higher chance of selection, and the dominance of very good 
individuals will be reduced. The idea is straightforward. Sort the population from best to worst, 
assign the number of copies that each individual should receive according to a non-increasing 
assignment function, and then perform proportionate selection according to that assignment [70]. 

3.3.5.4 Tournament selection 
The tournament idea is simple. Choose some number of individuals randomly from a  population 
(with or without replacement), select the best individual from this group for further genetic 
processing, and repeat as often as desired (usually until the mating pool is filled). Tournaments 
are often held between pairs of individuals (tournament size s = 2), although larger tournaments 
can be used and may be analyzed.  

 

3.3.6 Recombination 
Recombination is the creation of new individuals from parts of several existing individuals by the 
crossing (crossover) of chromosomes. It will be carried out in accordance with the selection 
process: individuals selected from the population and crossed with each other. This is repeated 
until the percentage of crossings carried out is reached. In an odd number of crossings the last 
individual receives no opportunity to cross. The main procedures are as follows: 

3.3.6.1 Two-point crossover 
In a two-point recombination, two parts are exchanged between individuals and there are two 
new individuals. The crossing points are two random numbers and, therefore, can vary at each 
recombination.  
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3.3.6.2 Multi-point crossover 
The recombination is regarded as analogous to the two-point crossover, but with more than two 
crossing points. 

3.3.6.3 Parametric uniform crossover 
The recombination in this process takes place by the crossing points. For each parameter a 
separate decision is made as to whether it will be exchanged or not. The exchange is likely to be 
in general between 50% and 80%. The special case with the exchange probability of 50%  is 
called uniform crossover. 

3.3.6.4 Random crossover 
The purpose of this procedure lies in the elimination of the dependence on the parameters 
during recombination. This is achieved through a random substitution of the parameters before 
the recombination. After applying the operator, the parameters return to the original position. The 
actual operation in this procedure is a single point crossover, i.e. recombination using a single 
crossing point. 

3.3.6.5 Linear recombination 
In this process, the parameter values of two individuals are represented by imaginary lines. In 
the normal line recombination, these parameter values are in the middle of the line; in the 
advanced recombination the parameters can be anywhere in these connection lines 

Another concept related to Crossover is Hybridization, which acts as a combination at the 
phenotypical level and is a strong and useful concept in the context of evolutionary computation. 
Hybridization for individuals of any species depends a great deal upon the characteristics of 
each species. In the case of geometric design, it is necessary to think in term of the basic 
geometries that define each of the features that compose a 3D solid model within a CAD 
program. These geometries must be interpreted as generic individual representing each 
geometric feature of the real model. An abstract representation allows a genetic codification 
capable of taking part in crossover and mutation processes. The result of the alteration of the 
genetic material by crossover or mutation, must then be reinterpreted and converted back into a 
phenotypic geometric form. This produces a new geometry with different features and 
characteristics that must be evaluated. Its performance under given conditions determines its 
fitness and its probability of surviving as a better design. 

3.3.7 Mutation 
Some types of mutation include: 

3.3.7.1 Adaptive mutation 
In adaptive mutation is defined the adaptation of the mutation step in the quality of the 
generation and the progress of the optimization is defined. During the optimization the mutation 
step is reduced to local for better results. If the algorithm only finds a local optimum, leading to 
stagnation of the optimization, it is possibly because the mutation step is not enough to bring it to 
reach optimum 
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3.3.7.2 Sense of mutation 
In evolutionary algorithms there is often the problem that they can converge in a local optimum. 
This occurs when individuals early and randomly are enforced to reach the local optima. This 
increases the likelihood that they increasingly dominate the population and, in extreme cases, at 
the end all individuals in a population are identical. In such a case, new individuals can no longer 
be generated by crossings, as the existing individuals are identical. Here the mutation helps. 

There is the notion that a mutation in a particularly small population is beneficial. In the case of a 
large population, it is precisely the opposite, because there is a much greater diversity in the 
population and due to mutations, good parameter values can be destroyed. In the case of rapidly 
changing fitness values, the mutation is also important, as new variants quickly appear in the 
population. 

3.3.8 Replacement strategy 
After the execution of the genetic operations, there must be a transition from the old generation 
to the newly created individuals that formed a new generation. There are different strategies for 
this. 

3.3.8.1 Random replacement 
Individuals are randomly select until a new generation is created. This can be done by choosing 
how many individuals from the old generation will be taken over. The remaining seats in the new 
generation will be newly drawn individuals. In this method, there is a high risk of losing good 
individuals. 

3.3.8.2 Elitist replacement 
Here, the best of the individuals (number one) of the current generation is chosen, and the 
remaining individuals are added randomly from the newly created individuals. This also has the 
risk of losing good solutions. 

3.3.8.3 Roulette wheel replacement 
Each individual represented on a section of a roulette wheel is allocated in proportion to its 
fitness. The selection of individuals is drawn by a random number; the larger the section on the 
roulette wheel, the higher the probability to be selected. After the selection is made, an individual 
from the roulette wheel is removed and the probabilities for the remaining individuals are 
recalculated. This process is repeated until enough individuals for the new generation have been 
selected. 

3.3.9 Termination criteria 
Ending the optimization can be based on different criteria. The most important refer to the 
following: 

a) Reaching a maximum number of calculations 
b) Reaching a maximum number of generations  
c) Finding a solution with a specified minimum  
d) In excess of a given medium improvement in the last few generations 
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3.3.10 Genetic algorithms in simulation 
 

Genetic algorithms have been studied extensively and have been applied in many fields of 
engineering. Many real-world problems involving a search for optimal parameters may be hard 
to solve with traditional methods, but when GAs are used the solution is more easily found. 
However, due to their outstanding performance in optimization, GAs have been wrongly 
regarded as a tool only for optimization. Genetic algorithms also show impressive results 
compared to other search engines, and for this reason the authors perceive them as a potential 
tool for creativity enhancement. Genetic algorithms, by being global optimization techniques, 
avoid many of the shortcomings exhibited by local search techniques on difficult search spaces 
[66].  

The power of GAs derives largely from their ability to exploit efficiently this vast amount of 
accumulating knowledge by relatively simple selection mechanisms. Termination of the GA may 
be triggered by finding an acceptable approximate solution, by fixing the total number of 
structure evaluations, or some other application dependent criterion. In addition, a number of 
experimental studies show that GAs exhibit impressive efficiency in practice [71]. While classical 
gradient search techniques are more efficient for problems which satisfy tight constraints, GAs 
consistently outperform both gradient techniques and various forms of random search on more 
difficult (and more common) problems, such as optimizations involving discontinuous, noisy, 
high-dimensional, and multimodal objective functions. 

Recent studies have developed approaches close to the research line that this work is pursuing. 
For example, a patent from 2009 [72] is related to a computer-aided design method, and more 
specifically, to designing concept sketches, such as for automobile profiles, using a genetic 
algorithm. The patent explains the problems confronted with these kinds of approaches:  

“The conventional design process which involves a "proof of concept" has been accomplished 
with drawings and subsequent refinements done by hand or with computer assistance. A 
designer creates concept sketches or profiles, such as for a new automobile, by hand or with a 
suitable CAD/CAM program. The process may take up to one or two months, or longer, to create 
acceptable concepts. An average designer may create about twelve sketches a day. Renderings 
in one-fifth scale may be achieved in less than two days. 

“Such conventional techniques are time consuming and tedious. In addition, traditional 
CAD/CAM programs are, for the most part, enhanced drawing tools which merely reflect the 
designer's creativity but do not generate creative contributions. The conventional approach does 
not dramatically reduce the cycle time to generate acceptable proofs of concept, such as for a 
new automobile” 

The patent claims that an objective of the invention is to shorten design development time and 
allow a designer to quickly generate high quality concepts or profiles. Another objective is to 
increase design productivity and quality with a program that learns the designer's preferences 
and incorporates the designer's preferences into the generation of new offspring profiles. These 
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objectives are achieved by generating a family tree identifying successive generations of the 
parent and offspring profiles.  

 

3.3.11 Example of a topology optimization  
The next example is presented to show how a simple mechanical problem can benefit from the 
genetic algorithms and the ever increasing capacity of computers to perform FEM analysis in a 
short time. 

A bridge is submitted for analysis and weight optimization (see Figure 3-3) with the following 
design restrictions:  

a) The bridge can not bend more than current design 
b) Internal stress of elements cannot be higher than 30, the current yield point 

The Genetic Algorithm used was vgGA [73]. The virtual gene genetic algorithm (vgGA) is a 
generalization of traditional genetic algorithms that use binary linear chromosomes. This 
implementation allows the generalization to virtual chromosomes of alphabets of any cardinality. 
VgGa is an algorithm that implements crossover and mutation as arithmetic functions of the 
phenotype of the individuals. 

 

Figure 3-3 Example bridge characteristics. 

 

The attempt considered only bending restriction. Ranges of each area section the GA are limited 
as follows: 

Bottom longerons= .5-2.5 m2 

Top longerons= 5-11 m2 

Battens: 1-3.5 m2 



The genet ic algor i thm used was vgGA 

Mutat ion probabil i ty: Pm = .01 

Crossover probabil i ty: Pc = .9 

individuals (n) /generat ion: n = 300 

generat ions (g): g = 200 

Object ive funct ion: f(x) = 1/w where w is the weight of br idge structure 

The objective is to minimize Weight g iven a deformat ion limit (umax), that is, max d isp lacement 
of each node to be less than a f ixed limit. The program performs a "sudden death" to individuals 
t respassing the bending limit and assigns a value of f (x) = 0. 

umax < 2.55 

Minimize W 

The Figure 3-4 shows the weight of the bridge as the algor i thm evolves. A n increase in the 
weight of the populat ion at the beginning of the evolut ion is fo l lowed by an asymptot ic reduct ion. 

Figure 3-4 Evolution of br idge opt imizat ion 
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The optimal Area for each longeron is given: 

Bottom longerons: 2.5,2.5,2.5,2.5,2.5,2.5 

Top longerons: 5,5.94,5.94,5.75,5.56,5.18 

Battens: 1,1,1.15,1,1 

Diagonals: 0.356,0.73,0.79,0.42 

Total Weight (not considering yield stress restriction): =4422.5kg (vs original 7124.2Kg it 
is a reduction of 38%) 

The example gives the general description of the proposed method for application of the GAs to 
mechanical design and a promising example of such an application. The results with the bridge 
demonstrate an interesting way to design based on optimization using GAs. 

 

3.4 Multi-objective Optimization 
 

Evolutionary and genetic algorithms in engineering optimization have contributed to the 
achievement of higher performance goals with multi-objective optimization. Nevertheless, these 
techniques have been restricted to the search for product or process performance enhancement 
through the variation of numerical product or process parameters. Parametric optimization is 
perhaps the most effective approach for many industrial solutions, as commonly parametric 
changes in products and process are easier to achieve and to implement than innovative 
concepts, where shape, topology or physical principles are changed. However, parametric 
optimization alone could lead to stagnation in product or process development as compromise is 
inherent in parametric optimization; especially when multiple optimization objectives are 
targeted. An exhaustive survey of Multi-objective optimization techniques can be found in [32]. A 
state-of-the art analysis of multi-objective evolutionary algorithms is found in [74]. 

Genetic algorithms, are well suited to searching intractably large, poorly understood problem 
spaces, but have mostly been used to optimize a single objective. They all describe a scalar 
value to be maximized or minimized. However, a careful look at many, if not most, of the real-
world GA applications reveals that the objective functions are really multi-attribute. Many 
optimization problems have multiple objectives. Historically, multiple objectives have been 
combined ad hoc to form a scalar objective function, usually through a linear combination 
(weighted sum) of the multiple attributes, or by turning objectives into constraints. Often-seen 
tools for combining multiple attributes are constraints, with associated thresholds and penalty 
functions, and weights for linear combinations of attribute values. Some authors propose 
performing a set of mono-objective optimization tasks to reveal conflicts [75], which would give 
the values of all the objective functions an “acceptable trade off” to the designer [62].  

The following two features are desired to solve multi-objective problems successfully: 1) the 
solutions obtained are Pareto-optimal and 2) they are uniformly sampled from the Pareto-optimal 



set. John Koza [76], leader in genetic programming, pointed out: "Representation is a key issue 
in genetic algorithm work because genetic algorithms directly manipulate the coded 
representation of the problem and because the representation scheme can severely limit the 
window by which the system observes its world". Coello has developed a multi-objective 
optimization tool called M O S E S (Multi-objective Optimization of Systems in the Engineering 
Sciences) [77]. The results produced by M O S E S are compared to those produced with other 
mathematical programming techniques and GA-based approaches and show the new 
techniques' capability to generate better trade-offs than the approaches previously reported in 
the literature. 

An analysis of multi-objective optimization with genetic algorithms can be seen in [78]. In a 
typical multi-objective optimization problem, there is a set of solutions that are superior to the 
rest of the solutions in the search space when all objectives are considered but are inferior to 
other solutions in the space in one or more objectives. Designers are commonly interested in a 
set of Pareto-optimal points when solving multi-objective problems. Since generic algorithms 
work with a population of points, it seems natural to use GAs in multi-objective optimization 
problems to capture a number of solutions simultaneously. One solution chosen by a designer 
may not be acceptable to another designer or in a changed environment. Therefore, in multi-
objective optimization problems, it may be useful to have knowledge about alternative Pareto-
optimal solutions [79]. Studies on multi-objective GAs started with the pioneering work by 
Schaffer in 1984 [52] and, since then, there has been a number of different types of multi-
objective genetic algorithms. A fundamental motivation behind these studies is the population-
based search ability of GAs in which a population of individuals captures multiple Pareto optimal 
solutions in a single run. Moreover, if available, a decision maker may be interested in knowing 
alternate solutions. As genetic algorithms work with a population of points, a number of Pareto-
optimal solutions may be captured using GAs. 

A general multi-objective optimization problem consists of a number of objectives and is 
associated with a number of inequality and equality constraints. Mathematically, the problem can 
be written as follows: 

Find Find 

x 

In order to Minimize/Maximize 

fi(x) | i= 1,2 N 

subjected to 

gj (x) = 0; j = 1,2,...,J 

hk (x) = 0; k= 1,2 K 

The parameter x is a p dimensional vector having p design or decision variables. A few studies 
have tried a different approach to multi-criteria optimization with GAs : using the GA to find all 
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possible trade-offs among the multiple, conflicting objectives. These solutions (trade-offs) are 
non-dominated, in that there are no other solutions superior in all attributes. In attribute space, 
the set of non-dominated solutions lies on a surface known as the Pareto optimal frontier [80]. 
The goal of a Pareto GA is to find and maintain a representative sampling of solutions on the 
Pareto front. Solutions to a multi-objective optimization problem are mathematically expressed in 
terms of non-dominated or superior points. In a minimization problem, a vector x( l) is partially 
less than another vector x(2);(x(1) < x(2)), when no value of x(2) is less than x ( l )and at least 
one value of x(2) is strictly greater than x( l) . If x( l ) is partially less than x(2), one says that the 
solution x ( l ) dominates x(2) or the solution x(2) is inferior to x( l) . Any member of such vectors 
that is not dominated by any other member is said to be non-dominated or non-inferior. Similarly, 
if the objective is to maximize a function a dominated point is defined, if the corresponding 
component is not greater than that of a non-dominated point. The optimal solutions to a multi-
objective optimization problem are non-dominated solutions. They are also known as Pareto-
optimal solutions. Mathematically, an optimization algorithm should be terminated if any one of 
the Pareto-optimal solutions is obtained. However, in practice, since there could be a number of 
Pareto-optimal solutions and the suitability of one solution depends on a number of factors 
including designer's choice and problem environment, finding the entire set of Pareto-optimal 
solutions may be desired. Next, a description of a number of classical approaches to the solution 
of multi-objective optimization problems will be discussed. 

A common difficulty with multi-objective optimization is the appearance of an objective conflict. 
None of the feasible solutions allows simultaneous optimal solutions for all objectives. In other 
words, individual optimal solutions for each objective are usually different [81]. Thus, a 
mathematically most favorable Pareto-optimum is that which offers the least objective conflict. 
Such solutions can be viewed as points in the search space that are optimally placed from the 
individual optimum of each objective. However, such solutions may not satisfy a decision maker 
because he or she may want a solution that satisfies some associated priorities of the 
objectives. To find such points all classical methods scalarize the objective vector into one 
objective. As mentioned, many classical algorithms for nonlinear vector optimization techniques 
define a substitute problem, reducing the vector optimization to a scalar optimization problem. 
Using such a substitute, a designer can find a compromise solution, subjected to specified 
constraints. 

However, multi objective optimization requires that "priorities" be defined among conflicting 
performance objectives, therefore leading to compromises in conflicting goals. Nevertheless, as 
in some cases conflicting performance goals may be achieved through parametric multi-
objective optimization, innovative changes such as shape or topological variations, or such as 
the change of physical principles, perhaps may not be strictly necessary. Conversely, in many 
cases shape or topological variations or changes in physical principles often lead to better 
solutions that overcome conflicting performance goals (technical contradictions). The next three 
methods are the most commonly used: method of objective weighting, method of distance 
functions, and method of min-max formulation. 

Method of Objective Weighting. This is probably the simplest of all classical techniques. Multiple-
objective functions are combined into one overall objective function. 
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Method of Distance Functions. In this method, the scalar izal ion is ach ieved by using a demand-
level vector y which has to be specif ied by the decision maker. Here, a single object ive funct ion 
is der ived f rom mult iple object ives. 

Min-Max Formulation. This method is different in principle f rom the above two methods . It 
a t tempts to minimize the relative deviat ions of the single objective funct ions f rom the individual 
op t imum. That is, it tr ies to minimize the objective conflict. 

The most profound drawback of these algor i thms is their sensit ivity toward weights or demand 
levels. The decis ion maker must have a thorough knowledge of the priority of each objective 
before forming the single object ive f rom a set of object ives. T h e solut ions obta ined largely 
depend on the underlying weight vector or demand level. 

3.5 Optimization Package: DAKOTA 

The opt imizat ion used in this method is made with the program package D A K O T A (Design 
Analysis Kit for Opt imizat ion and Tera Scale Appl icat ions) [82] . Deve loped at Sandia 
Laborator ies, DAKOTA is an optimizat ion f ramework with the original goal of providing a 
c o m m o n set of opt imizat ion algor i thms for engineers who need to solve structural and design 
problems. DAKOTA offers a f lexible and extensible interface between analysis p rograms and 
opt imizat ion algor i thms. In DAKOTA there are many different a lgor i thms, wi th emphas is on non-
gradient based opt imizat ion procedures. Since this package is a central componen t of the 
method, the fol lowing is an overv iew of DAKOTA. The DAKOTA toolkit is des igned to help with 
technical prob lems and to offer support for product design opt imizat ion. Part icularly in the area 
of structural mechanics , heat transfer and f low simulat ion, a better understanding of the complex 
physical connect ion is possible. It can be used for a reduction in weight ; cost and the probabil i ty 
of fai lure of products. 

3.5.1 H o w D A K O T A f u n c t i o n s 
There is a close binding between the simulat ion and DAKOTA. The data is loaded by simple 
Read and Wri te exchange operat ions of smal l data fi les. There is no needed to access the 
source code of the program. The opt imizat ion is per formed by a DAKOTA input f i le, in wh ich all 
the necessary information is entered. The pre-and post-processing is a separate process, which 
starts and f in ishes with DAKOTA. The creation of the opt imizat ion loop of the part, pre­
processing to post-processing has to be done by the user. The simulat ion can be very f lexibly 
designed by the user. DAKOTA is a parameter file, and ends the s imulat ion results in the results 
f i le. This loop cont inues, until an ending condit ion of opt imizat ion sof tware is reached. 

3.5.2 T h e i n p u t f i le format 
D A K O T A will have an input fi le, with opt imizat ion sett ings. This file is read when the user starts 
D A K O T A f rom the command line as a parameter. The input file must be in a def ined format. The 
file is div ided into several blocks; each block contains certain sett ings for the opt imizat ion's 
implementat ion, see Table 1. 
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Table 1 Structure of a DAKOTA input file 

block parameters 
strategy,  
 single 

graphics 
tabular_graphics_data 
 

method,  
 moga 

output silent 
seed = 10983 
max_function_evaluations = 2500 
initialization_type unique_random 
crossover_type shuffle_random 
num_offspring = 2 num_parents = 2 
crossover_rate = 0.8 
mutation_type replace_uniform 
mutation_rate = 0.1 
fitness_type domination_count 
replacement_type below_limit = 6 
shrinkage_percentage = 0.9 
convergence_type metric_tracker 
percent_change = 0.05 num_generations = 40 
 

variables,  
 continuous_design = 24 

# cdv_initial_point 0 0 0 
cdv_lower_bounds 52 60 35 43 58 33 31 57 42 33 18 19 33 63 45 39 37 29 
62 60 45 60 57 32 
cdv_upper_bounds 72 80 55 63 78 53 51 76 62 53 38 39 53 83 65 59 67 49 
82 80 65 80 77 52 
cdv_descriptors = 'Y1' 'Y2' 'Y3' 'Y4' 'Y5' 'Y6' 'Y21' 'Y22' 'Y23' 'Y24' 'Y25' 'Y26' 
'Y81' 'Y82' 'Y83' 'Y84' 'Y85' 'Y86' 'Y91' 'Y92' 'Y93' 'Y94' 'Y95' 'Y96' 
 

interface,  
 fork 

analysis_drivers = './module2-3-4_run.bat' 
parameters_file = 'params.in' 
results_file = 'results.out' 
aprepro 

responses,  
 num_objective_functions = 2 

response_descriptors = 'obj_fn_1' 'obj_fn_2' 
no_gradients 
no_hessians 
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3.5.3 Strategy description 
The strategy section in a DAKOTA input file specifies the top level technique which will govern 
the management of iterators and models in the solution of the problem of interest. In this block, 
the optimization strategy can be defined. It is possible to combine a global search algorithm, 
through the use of multiple algorithms, one for global optima with an algorithm for subsequent 
local search. The algorithms must be nested. Mutli-level uncoupled method list a number of 
optimization algorithms in use, required in the entered order of processing. If a single algorithm 
is used, the names of the algorithms are no necessary and the entry can be omitted.  

3.5.4 Method description 
The method section in a DAKOTA input file specifies the name and controls of an iterator. The 
terms "method" and "iterator" can be used interchangeably, although method often refers to an 
input specification whereas iterator usually refers to an object within the iterator hierarchy. A 
method specification, then, is used to select an iterator from the iterator hierarchy, which 
includes optimization, uncertainty quantification, least squares, design of experiments, and 
parameter study iterators. In other words, the method is a model with no further need for a 
definition of an optimization strategy. The block is for such a model is defined by the expression 
“Single”. 

3.5.5 Model description 
The model specification in a DAKOTA input file specifies the components to be used in 
constructing a particular model instance. The model provides the logical unit for determining how 
a set of variables is mapped into a set of responses in support of an iterative method 

3.5.6 Description of variables 
The variables section in a DAKOTA input file specifies the parameter set to be iterated by a 
particular method. This parameter set is made up of design, uncertain, and state variables. 
Design variables can be continuous or discrete and consist of those variables which an optimizer 
adjusts in order to locate an optimal design. Each of the design parameters can have an initial 
point, a lower bound, an upper bound, and a descriptive tag. 

The entries for a continuous design are the type and number of variables used. The name 
continuous defines the variables as real numbers, and the definition of integers relates to 
discrete design. The entries cdv-initiaI point, cdv-lower_bounds, cdv-upper_bounds give the start 
value and the lower and upper limit of the variable value. The variable must be complemented 
by the entry cdv-descriptor, the name of the variable. 

3.5.7 Interface description 
The interface section in a DAKOTA input file specifies how function evaluations will be 
performed to map a set of parameters into a set of responses. Function evaluations are 
performed using either algebraic mappings, interfaces to simulation codes, or a combination of 
the two. The interface to the simulation is set in the block “interface”. The interface will be used 
to define input and output files as well as the analytical program used for the implementation of 
the pre-and post-processing and the implementation of the simulation as response. The file 
Analysis-drivers is the pre-and post-processing and initiation of the implemented simulation. The 
parameters-file is produced by DAKOTA and contains the data required for pre-processing. The 
simulation result is sent to DAKOTA after the post-processing file of the results. 
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3.5.8 Description of responses 
The responses specification in a DAKOTA input file specifies the data set that can be recovered 
from the interface after the completion of a "function evaluation." Here, the term function 
evaluation is used somewhat loosely to denote a data request from an iterator that is mapped 
through an interface in a single pass. 

 

3.6 Chapter conclusions 
In this chapter, a bibliographic introduction to the optimization methods and more particularly to 
the genetic algorithms is presented. An explanation of the reasons on why it is necessary to use 
a stochastic technique of optimization is given. The history and origins of evolutionary 
approaches is described, and so is an introduction of Darwin’s theory of natural selection. The 
derived concepts from biological evolution that are being implemented in computers are 
explained: a) the unit of variation and how the genes behave to pass information to their 
successors; b) the unit of selection, that explains the fitness mechanism; and c) the unit of 
evolution that relates to change over time and iterations. A more detailed explanation of genetic 
algorithms is given when the chapter describes its use in simulation and the optimization loop is 
graphically presented. Also, definitions on the basic terms used in the genetic algorithms are 
shown. In order to exemplify how the genetic algorithms in simulation perform, a simple 
mechanical problem is presented related to the topology optimization of a structural bridge. 

It is also introduced in the chapter a bibliographic analysis of multi-objective optimization with the 
use of genetic algorithms. It is explained how most of real problems are inherently multi-
objective and how previous approaches have been used in the solution of such cases. The 
concept of Pareto frontier is explained and how the Pareto graph can be used to reveal conflicts 
in performance parameters of a system. A brief mathematical description of multi-objective 
optimization problems is presented, together with some basic definitions and approaches. 
Finally, an explanation of the optimization software used during most of the deployment of the 
case study of this research is given.  
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Chapter 4 Development  Strategy of the Crankshaft 
 

The following is a procedural framework for extending the optimization paradigm into an 
innovation strategy to be applied in a general crankshaft development method. The strategy has 
different perspectives and it could be used to a more general range of applications. The main 
scheme, which relates to the steps of a product development cycle [83], is enhanced and 
consists of the next activities. 

Definition of the innovation problem and identification of the requirements or functional 
parameters in conflict. During this step a deep understanding of the problematic situation has to 
be done. It is worth noting that at this stage on the development of a product, a preliminary 
design concept should be finished. A model a the process of conceptual design can be found in 
[84]. Functional relationships between components of the system has to be completely 
understood by the design team involved in the project. During this stage of the development, the 
functional conflicts (contradictions) are identified and the corresponding parameter metrics can 
be measured. 

Construction of the computer aided design and engineering (CAD/CAE) model. The use of 
computational tools for the representation of the geometry and functional behavior of a product 
or system nowadays more frequently used in earlier steps of the product development cycle. 
The construction of the model should include the geometric parameters and physical 
phenomena that the behavioral simulations are going to perform. In the case of the present 
research with the crankshaft, the geometric modifications, balancing calculations in the form of 
embedded equations and finite element analysis to simulate dynamic behavior were represented 
in the model. During this stage, it is required that not only a complete single run of the simulation 
be performed, but a sensitivity analysis of the parameters involved. As described in the last 
chapter, a sensitivity analysis for the crankshaft was performed in order to identify the geometric 
characteristics that have the greater influence in the functional characteristics that compose the 
fitness functions. 

Development of the optimization/innovation task. This stage corresponds to the main content of 
the research work and includes the activities described in the following sections of the chapter. 
Is during the development of these activities where the combination of elements that are part of 
the research, even when alone are commonly used, produce the outputs than extend a normal 
optimization result into a more innovative paradigm, as described in the introduction of the 
research. The specific requirements to be satisfied by the strategy are: 

• An in-depth study of optimization techniques. What are the parameters and objective 
functions implied to evaluate the behavior of the crankshaft? Response surface methods 
are suitable for problems with several variables and one or more response variables, like 
crankshafts, even when it is little known about the process. Besides, some part of the 
methodology approaches multiple responses 
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• Develop interface programming that allows for integration of the different software: CAD 
for modeling and geometric evaluations, CAE for simulation analysis and evaluation, and 
genetic algorithms for optimization and the search for alternatives.  

• Approach the target of imbalance of a V6 engine crankshaft, without affecting either its 
weight or its manufacturability.  

 
Analysis of results and synthesis of solutions. The final stage of the general approach consist of 
an analysis of optimization/innovation results and a definitive and exhaustive inference of the 
design team into the concepts obtained by the algorithms. No computer substitutes the 
imagination and creativity of a person so the final decision about the configuration of the product 
remains in the team of engineers. What remains in the analysis is to find the ideal final result 
(TRIZ nomenclature) of the strategy and express it as an additional set of requirements 
(explained in the last chapter of the research): 

• Find the innovation principles that complement the genetic operators (mutation, 
crossover, etc) to be able to generate a list of “extended operators” to apply to the 
geometry. 

• Obtain new design concepts for the shape of the counterweights that help the designer to 
develop a better crankshaft in terms of functionality more rapidly than with the use of a 
“manual” approach. 

 

The previous steps can be identified in a standard product development cycle, where the 
elements of the research strategy are contributing the most. The new element can be viewed as 
an integration loop that merges the activities during concept generation and evaluation, together 
with detailed design activities, as shown in Figure 4-1. 

 

 

 

The general procedure of the strategy is the integration loop into the framework, which compiles 
the elements that are part of the optimization tasks. For defining the problem, the crankshaft 
optimization task of this research work is converted into a parameter value optimization task by 
using spline curves for shape representation, particularly, the counterweight shape is 
represented by a spline curve. The model geometric variation of the shape is defined by floating-
point values assigned to corresponding control points of the spline curve. Thus, the coordinates 
of the spline curve control points are serving here as design variables. To optimize the shape, 
the values assigned to control points must be optimized. Then, in principle at least, any non-
linear parameter optimization method can be used to solve this optimization task and thus 
optimize the shape of the counterweight cross-section. However, in practice a global 

Problem definition 
and analysis 

Concept Design 
and creativity  

Concept 
evaluation 

Detailed Design 
and Engineering 

Generative Computer-Aided-Invention Process

Figure 4-1 Integration of the optimization/innovation algorithm into the development cycle
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optimization algorithm like GA, appears to be essential for obtaining solutions of acceptable 
quality. 

 

During the optimization loop, the coordinates of the control points that define the splined profile 
of the crankshaft modeled in the parametric CAD software is automatically manipulated by the 
Genetic Algorithms thanks to an interface programmed in JAVA language and controlled by an 
optimization algorithm, i.e. by a genetic algorithms (GA). The JAVA interface allows the CAD 
software to run continually with the crankshaft model loaded in the computer memory, so that 
every time an individual is generated the geometry automatically adapts to the set of 
parameters. The splined profiles allow shapes to be changed by genetic algorithms because the 
codified control points of the splines play the role of genes. The equations of imbalance are 
introduced into the CAD software, and automatically provide the value of the fitness function, i.e. 
the difference between the current and target imbalance. This value is automatically updated 
every time the geometry is modified, because of the interface linking the CAD model to the 
genetic algorithms that control the optimization process.  

The tasks described next are intended to be automated, so the optimization loops could be 
programmed to run with a close monitoring of the results, produced in every evaluation. In the 
first place it is described the structure of the task for the optimization of imbalance. The second 
task describes the multi-objective optimization between the imbalance and the curvature. The 
third task describes the multi-objective optimization between imbalance and eigen-frequencies. 

 

4.1 First Task: Geometric Optimization of Crankshaft’s Balance 
The first task involves the optimization of crankshaft’s imbalance considering only geometric 
restrictions related to the profile of the counterweights. The use of genetic algorithms in the 
design of balancing of forged crankshafts is based on the premise that the counterweight´s 
profile shape can be modified (inside customer specs) to have a robust balance as an output 
function to be evaluated. This can be attained by following the general criteria described below:  

a. Identification of the control parameters. Experiments will be performed on the geometry 
of the counterweights to find and confirm which counterweights have more significance to 
the balance of the crankshaft. Once done, the profile of the significant counterweights will 
be controlled by spline points.  

b. Simulation of balance. A simulation program for the balance of the crankshaft will be run 
to have a measure of the influence of the counterweight´s profile changes. It is required 
to find an interface of the CAD software to the simulator. An evaluation criterion is 
required for any change of the significant counterweights. 

c. Codification of the parameters. A chromosome representing the control points of the 
spline or control parameters to be evolved will be developed. In addition, an interface of 
the CAD software to the codification program needs to be developed. 

d. Runs of different optimization algorithms and comparison between them. Why are 
genetic algorithms preferred? What advantages do they have in contrast with the classic 



optimizat ion solvers (e.g. steepest descend, direct search)? Wha t is the advantage of 
using new GAs heurist ics that deal with mult iple object ives that contradict each other? 

e. A study describing differences between optimization tools. The advances in the 
automat ion of the evaluat ion runs to improve a crankshaft 's balance, f rom the equations 
embedded into a C A D model , are presented. 

The proposed sequence of steps can be observed in Figure 4-2, which shows the parallel 
execut ion of D A K O T A and C A D software. The C A D software initialization loads the crankshaft 
C A D model into memory which, as explained before, needs to be pre-processed with all the 
codif icat ion and functional implementat ion. Parallel to the C A D initialization the DAKOTA 
sof tware is init ialized, which will activate the opt imizat ion algor i thm, as expla ined in the previous 
chapter. The communicat ion between the genetic algori thm and the C A D sof tware is performed 
by an interface programmed in JAVA language that is t r iggered every t ime the coord inates for 
the modif icat ion of the spl ines for a particular individual appears. J A V A conducts the 
regenerat ion of the C A D model of the crankshaft and returns the imbalance results to DAKOTA. 
The detai led procedure will be descr ibed in the next chapter. 

4.2 Second Task: Multi-objective Crankshaft Optimization 
The activit ies for the second task define a research topic in mult i-object ive system opt imizat ion, 
focused on the development of engine crankshafts. From the results at tained f rom the first task 
on opt imizat ion of crankshaft 's balance, based mainly on CAD geometry modi f icat ions using 
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genetic algorithms, activities for the second part are extensions of the general strategy.  
Objective functions and restrictions are added by the use of FEM simulation of the dynamic 
response during geometry variations, resulting in what attempts to be an integration of different 
systems running totally or partly automatically. 

From the first task, it was found that additional objective functions and restrictions needed to be 
considered as important in the development of the research strategy. The restrictions are 
defined as follows: 

a) Balance of the finished crankshaft (Restriction) 
b) Dynamic response of the geometry: Eigen-frequencies (Objective or restriction) 
c) Minimization of the mass of the crankshaft (Objective) 
d) Curvature of the geometry of counterweights (Restriction).  

 

Those four objectives-restrictions define a multi-criteria approach for the optimization of the 
system.  

As mentioned in the previous section, a conclusive study on whether genetic algorithms are the 
best suited for this particular problem will be done. Meanwhile, the task scheme will be prepared, 
based on the assumption that GA´s are used (derived from the reference papers consulted) and, 
in case of a change to a better optimization algorithm, only the corresponding interface will be 
modified. Modularity of the scheme is encouraged in a such way that parameters and results are 
triggering, via text files, the systems execution. 

For a consequent shortening of the product development process, the application of optimization 
processes and parametric geometry information are required within corresponding CAE 
processes. It would be obvious to use parametric finite element models (FE models) for the 
model generation in FE pre-processors. However, parametric modeling in common FE pre-
processors is only supported rudimentarily. Therefore, parametric modeling within FE pre-
processors can be very time consuming and is only feasible for a certain kinds of parameters. 

Since the use of parametric design of CAD models has been established in common CAD 
environments, it seems natural to also use these existing parameters for CAE processes. This 
can be achieved by the integration of CAE functionalities in CAD environments. Especially CAD 
tools have been enhanced by analysis functionalities in the last few years and it is now possible 
to conduct parameter studies directly in CAD environments. However, at the present time, this is 
mostly restricted for use in internal FE solvers. Furthermore, the functionalities supplied in 
parameter studies and optimizations cannot compete with the possibilities of dedicated software 
packages like DAKOTA. 

To use the parametric geometry information from CAD models in combination with external CAE 
software, it is necessary to set up a continuous automated process, starting from the CAD model 
and ending with the result evaluation of the analysis. Modern CAD and optimization software 
offer the basis for such an automated process, but they must be linked each other via suitable 
interface software. 
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The parametric generation of components in 3D CAD software has been established in many 
industry sectors, but no company in particular has yet achieved a continuous use of these 
models. Some CAD software offers possibilities to generate 3D volume meshes based on CAD 
models and to define boundary conditions and loads for a FE analysis. Commercial software 
also suppliy integrated solvers to conduct FE analyses. However, the utilization of the widely 
spread solver MSC.Nastran was preferred for the processes described in this section. For some 
CAD software there is the option to export MSC.Nastran models directly from the CAD 
environment. These models do not need any further processing before calculation. 

This section extends the work done in the previous one, where the fitness evaluation consisted 
of the crankshaft imbalance. An evaluation of the first Eigen-frequency of the crankshaft was 
added. This evaluation is performed for every geometrical configuration of the CAD model by 
external CAE software. This two-objective optimization problem has a non-trivial Geometrical 
solution, owing to the different nature of the objective functions, one being in the frequency 
domain (eigen-frequencies) and the other, in the geometric domain (imbalance).  The crankshaft 
structural analysis to be used as an additional objective function, predicts the crankshaft 
dynamic response based on the finite-element method. The additional fitness-function for the GA 
is based on evaluation of the simulation results because the engine crankshaft is a finely 
optimized component with significant resonances (both torsional and bending) within its normal 
operating range. The additional objective is the first eigen-frequency, which has to be increased. 
With this approach, objective and constraint functions involved can be evaluated either on the 
basis of the FEM simulation results or directly on the basis of the geometric shape itself, when 
the counterweight’s shape is being modified. 

The dynamic optimization of a crankshaft can be understood as an optimization problem with 
two distinct and, perhaps, conflicting objectives. It also involves the unpleasant features of 
crankshaft eigen-values that cannot be explicitly written but can only be calculated by simulation 
of the system model of the CAD geometry. In addition, constraints in the design’s parameters 
should be taken into consideration.  

The first step is defining the representation of the component within CAD software. Besides 
common CAD-geometry, boundary conditions, loads and properties of the model have to be 
defined. The actual mesh has to be defined by element sizes, edge divisions, fixed points, and 
curves. 

The sequence of steps for this task is very similar in construction than in the previous task: The 
CAD software and DAKOTA execute in parallel. DAKOTA passes over the new set of 
parameters to the CAD software, which regenerates the model, exports the imbalance result and 
initiates the mesh generation. After the FEM mesh is created, Java starts the MSC.Nastran 
analysis and performs an evaluation of the results obtained by the analysis. After finishing the 
analysis, the Java application evaluates the analysis results and send the results, together with 
the imbalance results, to DAKOTA. The process is illustrated in Figure 4-3. 

 



4.3 Third Task: Forging Optimization of Crankshaft's Dies 
The application of Genetic Algorithms to the tooling design is an approach intended to be made 
on a similar strategy but different environment and platform. Non-linear FEM simulation software 
can be used to perform computational analysis of the forging transformation process. Evaluation 
of the results is made according to different output parameters, mainly: load, deformation flow, 
die strain and breakage, etc., obtained with the simulation. 

a) Input parameters are the shape of the forging tooling, made in CAD systems. So 
development of control points over the dies to modify geometry requires interfaces with 
the programmed genetic algorithms. 

b) Simulation of forging. It requires considerable computational capacity due to the plastic 
deformation of the forging process. One commercial software application has the 
capability of use parallel net processors to run faster. This is advantageous when genetic 
algorithms are conducting in parallel the evaluation of individuals. But the research in this 
topic deserves a separate chapter. 

c) Topological variation. Codified as chromosomes, the control points of the working 
surface of the dies are going to be altered by topological variation, making the geometry 
of the tooling go in directions not considered by the designers. 
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At this point of the research, it was possible to reach the proof of concept for the new 
counterweights with splines. A simulation of the forging in comparison with the original profile 
was made.  

Other approaches for performing simulation have been made in [85] which a simulation tool 
known as the upper bound elemental technique was used. That technique embodies the 
characteristic of fast simulation and can be used in 3D and for preform design. 

 

4.4 Chapter conclusions 
 

This chapter describes the general strategy and framework from which the optimization 
paradigm is extended into an innovation approach. The general framework enhances a standard 
product development cycle by included an optimization/innovation integrating loop. The steps of 
the strategy are described, beginning with the definition of the problem, the construction of the 
model, the development of the optimization/innovation task and finally the analysis of results and 
synthesis of solutions. An explanation of how the activities of concept design and evaluation can 
be merged with the activities of engineering design can be integrated is given.  

It is explained how the different tasks will connect the genetic algorithms to the CAD model of 
the crankshaft, and how the splines will be modified according to the corresponding individuals 
thanks to an interface programmed in Java language. The first task relates to the optimization of 
crankshaft balance. The characteristics and conditions for the loop are explained. The second 
task relates to a multi-objective optimization involving not only imbalance but dynamic analysis 
with FEM. The integration is made in a similar way than the first task but is extended to include 
CAE software for FEM analysis, which makes the task more compiling and implies the 
conditions for a contradiction to appear. The detailed description of the tasks are given in the 
next chapter. Finally, the conditions required for a third task on optimization of crankshaft’s dies 
are presented but the extent of the research only covers the proof of concept.  
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Chapter 5 Deployment of the Implementation 
 

In this chapter a description of the construction and set up of the model in the CAD software is 
presented. The CAD software is a commercial alternative called PRO/Engineer that is selected 
due to the programming functionality to be manipulated automatically. A description of the CAD 
model structure is followed by the transformation of the counterweights of the crankshaft from 
their commonly arc-shaped design. The curved profiles are substituted by splines, one of the 
main elements of the strategy. The imbalance analysis of the CAD model of the crankshaft and 
the formulas introduced in section 2.2.2 are embedded in the model, as long as the curvature 
and the eigen-frequencies. The control interface programmed in Java language and the 
requirements of the programming in order to let PRO/Engineer and nastran to communicate 
consist of a series of modules. The modules are a group of Java programs that allow to perform 
a series of commands upon the model of the crankshaft. The first module starts the execution of 
the PRO/Engineer in order to load the CAD model into the computer memory. The second 
module executes the regeneration of the model according to the data provided by the genetic 
algorithm. The third module is used during the multiobjective optimization between imbalance 
and eigen-frequency analysis. It produces a finite element mesh form the updated model and 
sends the mesh to the FEM solver. 

The results of the tasks described in the previous chapter are an exemplification of how the 
general strategy can be applied. According to the strategy for the optimization/innovation of an 
engine crankshaft, the first two tasks, related to the imbalance and the eigen-modes, are 
integrating a series of activities that link the conceptual steps with the analysis steps of a typical 
product development process. Such integration enriches the production of designs. 

5.1 Construction of the Model in CAD System 
 

The CAD model is built using an assembly of several components. In 3D CAD systems for 
modeling parametric solids, the information is structured hierarchically. Shape and topological 
changes of the parts are performed to encourage changes in the existing relations between the 
features that constitute them. The geometric forms of the faces or surfaces, edges and vertexes 
are dependant on the parent features. Features are formed from sketches (the new geometry 
incorporated into the model) that are added by Boolean operations among its constituting 
features, or can be originated from the modification of created geometry (faces or edges) as it is 
the case of fillets, chamfers, shells, etc. The way to promote automatic changes in the shape of 
the parts is to introduce direct changes in the sketches of it. Those changes automatically 
originate topological and dimensional changes in the faces, edges and vertex.  

The finished modeled crankshaft with consists of counterweights numbered W1 to W2, as 
explained in . For a better understanding of the modeling, the counterweighs that are going to be 
transformed with splined shapes are CW1, CW2, CW8 and CW9, that correspond to W1, W2, 
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W8 and W9, as explained in section 2.1.  In the pins numbered P1 to P6 are assembled the six 
additional elements known as fictitious weights. The fictitious weights are used to simulate the 
weight of the pistons. They are specified in the assembly drawing of the crankshaft. The balance 
analysis is a set of analysis features used to calculate the mass properties of the assembly. The 
components are the counterweights and will be placed under the assembly of the crankshaft. 
Figure 5-1 shows the complete model of the crankshaft assembly.  

 

 

Figure 5-1 Assembly model of the crankshaft 

 

The assessment of the design generated by the optimizer draft is done using a CAD system. 
The CAD system used in this method is Pro/ENGINEER version Wildfire 2. This software has 
the advantage of a JAVA based interface with which it can be almost completely controlled. The 
missing commands can be macros that can be accessed on the JAVA interface. However, in 
principle, it is possible the use of any CAD system, if the following conditions are met:  
Automation of the required functions, fault tolerance with regard to the input values and stability 
in the preparation of geometry. The assessment of the intended design can be reached by the 
geometry of the model. For this purpose, the weight of the crankshaft, the curvature of the 
counterweights and the balance is calculated.  

After modeling, all the components are put into an assembly, and the required analysis features 
to calculate the imbalance are introduced. The last component is the machining model but for 
the purposes of the analysis, it is suppressed.  The exact structure of the individual components 
and the assembly are described below. 
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5.1.1 Construction of the counterweights  
 
The counterweights are modeled by three basic parts: the first contains the basic datum planes 
and the protrusions of the mains and pins plus the fixed base of the counterweights. The second 
consist of the variable portion of the CWs, which is formed by a spline with two fixed points 
(Point - A and Point E) at the beginning and end of the profile and three points along the length 
that are parameterized. 

To execute geometry modifications the decision was made to substitute the current shape 
design of the crankshaft under analysis, from the original “arc-shaped” design representation of 
the counterweight’s profile, to a profile using spline curves [28]. From the analyzed patents it can 
be noticed that any counterweight is constructed using a chained series of arcs. In Figure 5-2 
our case study is shown how it is originally sketched. The substitution of arcs was done 
because, as already explained, cubic splines allow smooth shape changes via control points 
with continuous second derivatives, a desired property for material fluency during the 
manufacturing process.  

 

Figure 5-2 Profile of original counterweight number 2 

 

From a previous sensitivity analysis it was found that defects in the profile (under-filling) of the 
outermost counterweights (CW1, CW2, CW8 and CW9), have the greatest influence on the 
balance of the crankshaft. Then it was decided to begin with codification of the “Y” coordinates of 
three control points, each upper and lower profile from these counterweights, adding 24 control 
parameters. The co-ordinates of the spline’s control points are serving here as crankshaft design 
variables. Design variables are the quantities that are allowed to vary during optimization. The 
variation of the control parameters results in a balance response as design objective. Design 
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objectives quantify the designer’s desired properties of the array and require that metrics be 
defined that allow the genetic algorithm to evaluate the fitness of a particular design. To optimize 
the imbalance, the values assigned to control points must be optimized. Then, in principle at 
least, any non-linear parameter optimization method can be used to solve this optimization task 
and thus to optimize the design of the crankshaft. However, in practice a global optimization 
algorithm, like GA, appears to be essential for obtaining solutions of acceptable quality. The 
Figure 5-3 shows the counterweight’s profile of the crankshaft with splines. 

 

 

 
 

Figure 5-3 Profile of counterweight number 2 represented by a spline 

 

The use of rectangular coordinates was decided of behalf of the general shape of the 
counterweight, but polar coordinates are also possible and they have been used in other works 
[86] .  The last part includes some rounding of edges and the machining cuts. For the control of 
the profile shape, the coordinates of the points are parameterized by internal Pro/ENGINEER 
variables. Figure 5-4 shows internal variables driving the control points of the spline that define 
the profile of counterweight 1. These internal variables can be assigned on conditioned 
parameters, the parameters that the conditions on the coordinates of the points are assigned.  

To make a curve shape without kinks and gradations of the counterweights, at the beginning and 
end of the spline the following is specified as a condition:  a tangent to the continuity of surface 
of the partition. The profile was made using splines; and it would also train in the use of a design 
element. The counterweight was a full cross-section modeled with a thickness of 45 mm. The 
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thickness of the counterweight can be altered eventually, but for the first trials was fixed, due to 
manufacturing restrictions.  

  

Figure 5-4 Spline scheme of a counterweight CW1 

 

Figure 5-5 shows an interface window with the parameters shown in the profile and the relations 
introduced to the Pro/ENGINEER model of CW1, to control the spline profile that was shown in 
Figure 5-4. Dimensions named dy1 to dy6 are the y coordinates of the splines on both sides of 
the CW1. These dimensions are related to the Parameters Y1 to Y6 (current internal parameters 
of Pro/ENGINEER), which are assigned a value by the Java interface during an automatic 
control loop. 

 

Figure 5-5 Driving parameters of a counterweight 

The splining of the shapes and their control points, codified to be interpreted by genetic 
algorithms, form the basis for an evolutionary designed shape. Three main genetic operators act 
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on the “genes” of the geometry: selection, crossover and mutation. Crossover allows the 
geometrical characteristics of selected splines (compared on the basis of a fitness function) to 
be merged in pairs and their properties to be extended to following generations.  

The crossover has different levels of influence, the genotype and the phenotype (geometric 
coordinates of the spline’s control points), but its impact is in the level of the shape of the 
product. Moreover, the concept can be extended to the whole structure of the product and even 
to the functional structure. Figure 5-6 shows how the splines substitute the original profile of the 
other counterweights. The spline is within the tolerances of the original counterweight’s profile 
but will not be limited during the development of the shapes. 

 

 

       

a) Counterweight 1   b) Counterweight 8 

    

c) Counterweight 2   d) Counterweight 9 

 

Figure 5-6 Counterweights sketched using splines (dark lines). 

 

5.2 Imbalance analysis of the crankshaft  
 

In Pro/ENGINEER the analysis features obtain the imbalance analysis of the crankshaft. The 
CAD model has to be in the same condition that it is when in the balancing machine, it is: 
completely machined, cold and with the fictitious weights properly located, and the system of 
units must be in mm and mass in grams. Then, these next steps must be followed: 



1. Create a coordinate system. A reference system is located on the rotation axis and or iented 

with its x axis towards the f lange end upon the rotation axis and the z axis in the proper vertical 

orientation (see Figure 5-7). The origin must be in the middle between the two correct ion p lanes. 

Figure 5-7 Orientation of coordinate system 

2. Obtain the mass properties. PRO/Engineer, as most of C A D software, provides info with the 

proper c o m m a n d about the mass propert ies of the model . This data will be extracted f rom the 

model for the evaluat ion of the f i tness funct ion using the Java program. Using the coordinate 

system created in step 1 as reference, it is possible to obtain the required propert ies that are 

needed to calculate the imbalance. The crankshaft balancing is obtained by reading the mass 

propert ies f rom the model . As part of the model propert ies the fol lowing are included: Weight , 

Center of gravity and Moments of inertia. See Figure 5-8 for a data sample of the info file that is 

extracted f rom the model . 

mg : mass of the mach ined crankshaft , including fictitious weights, identif ied in the f igure as 

MASS. 

rgy : y coordinate of the center of gravity of the crankshaft, with respect to coordinate system 

rgz : z coordinate of the center of gravity of the crankshaft, with respect to coordinate sys tem 

Ixy : the inert ia product xy at center of gravity with respect to coordinate system 

lxz : the inert ia product xz at center of gravity with respect to coordinate system 

The coordinates can be identif ied in the Figure 5-8 in the sect ion C E N T E R O F GRAVITY. The 

inertia products can be identif ied in the sect ion INERTIA at C E N T E R O F G R A V I T Y of the same 

f igure. 
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Figure 5-8 Mass properties extracted f rom CAD model 

3. Calculate the imbalance. The current design unbalance is calculated according to the 
formulas deployed in section 2.2.2. The formulas are embedded in the C A D geomet ry of the 
Pro /ENGINEER software. Wi th the embedded formulas, it is calculated the imbalance of the 
crankshaft in both correction planes. Therefore, every t ime the genet ic algor i thm produces a new 
individual, the model is modif ied in the counterweight profi les, and a new f i tness value is 
returned to DAKOTA. Figure 5-9 shows the command window, cal led analysis feature, where 
the embedded imbalance formulas are introduced to the C A D software. It can be seen how the 
internal (codified) parameters related to the mass propert ies of the model , are ass igned to a set 
of temporary parameters cal led peso, IXY, IXY, YG, ZG. Those parameters are used to build the 
formulas of imbalance mRrRy, mRrRz, mLrLy and mLrLz that, internally in the calculat ions, are 
composed by intermediate calculat ions that are identif ied as MRRRY, MRRRZ, MLRLY and 
MLRLZ in the Figure 5-9. Those values give the current imbalance of the individual (m L r L y 
mRrR). 
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Figure 5-9 Embedded imbalance formulas in the CAD model 

If a target for unbalance is specified, the difference between the target and the current 
unbalance is a set of vectors that will be minimized by making modifications in the crankshaft 
geometry. In the case of the crankshaft under study, the imbalance target is 400 g-cm in the y 
direction in both correction planes. Figure 5-10 (a) shows the analysis feature that calculates the 
function-to-target imbalance from both sides of the counterweight. And (b) shows the analysis 
feature that defines one of the fitness functions, relating the previous parameters of function to 
the target. 

The function to target in the right correction plane is obtained using equations (1) and (2): 

The function to target in the left correction plane is obtained using equations (3) and (4): 

And the fitness function is the minimization of the sum of equations (6) and (7), according to the 
goal programming approach stated in equation (5), it is: 

Fitness = min(mRrRc + mLrLc) (8) 
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(a)                                                       (b) 

Figure 5-10 Internal Calculation of the imbalance and fitness function in the CAD software 

During the calculation of the imbalance, problems often occur in Pro/ENGINEER such as large 
change in the profile that causes a possible collision and interferes with a different body in the 
same place. When this happens, Pro/ENGINEER cannot regenerate. Then a signal is provided, 
either a null or a NaN (Not a Number signal). This problem can also occur during a change of 
surfaces of different bodies. In this case, there is no other choice but to assess a fixed value or 
provide a signal null or a NaN to the fitness function. Optimization software cannot evaluate this 
design. This creates a great disadvantage for the evaluation of the design quality, as the 
individual can be greatly distorted by the specified imbalance. In the next section is described 
how the curvature of the counterweights of the crankshaft is obtained, directly from the CAD 
model. 

 

5.2.1 Curvature of the counterweights  
Curvature of the counterweights is a restriction that need to be considered because from it, it is 
inferred the forge ability of the crankshaft, as explained in section 4.2. The curvature of the 
counterweights is taken into account by calculating the maximum value in the profile. For an 
accurate assessment it is necessary, therefore, that the curvature of the entire profile be 
analyzed. For scanning the curvature, there are two options. One option can be using the 
curvature command included in the Analysis menu of Pro/ENGINEER. The problem with this 
option is that it cannot be embedded in an analysis feature.   
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The second option is to create a datum point on the spline and around this point create a circle 
curve from which a radius (and so a curvature) can be measured.  Then a user-defined analysis 
feature is employed to scan the value of this circle curve along the spline and subsequently 
obtain the maximum value and extract it.  Figure 5-11  shows the measure of the curvature used 
to illustrate the curvature along the spline, applied directly on the counterweight. It can be clearly 
observed that the Maximal curvature is at the bottom of the counterweight. 

 

 

Figure 5-11 Curvature of counterweight profile 

 

5.2.2 Analysis of the Eigen frequencies 
 

It is relatively simple to define FE models from existing CAD models in Pro/ENGINEER. 
However, an appropriate parameterization from the constructional and manufacturing point of 
view is not necessarily suitable for an optimization or robust design analysis. It is usually 
necessary to adapt the parameterization and to consult with the design engineer in advance. 
This additional expenditure should already be considered in an early phase of the whole 
process. In some cases it is also necessary to generate additional geometry to determine the 
exact definition of the loads and boundary conditions. In the optimization processes, the FE 
mesh is regenerated during each calculation run. Thus, a control of the mesh is only possible via 
mesh parameters and not via manual intervention as in classical CAE processes. There are only 
restricted possibilities to control the mesh within Pro/ ENGINEER. Sometimes additional 
geometry must be used to generate comparable, good meshes in critical places. An example 
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would be definition of additional curves as fixed curves in radii to guarantee comparable 
meshes. 

To evaluate the eigen-frequencies of the crankshaft the procedure was to have the CAD model 
meshed in Pro/ENGINEER. For doing so, it is necessary to have a pre-modeled set of conditions 
available at PRO/Mechanica (from the Applications menu) and enabled to work with 
Pro/ENGINEER. If PRO/E fails to mesh a model, it is probably because PRO/Mechanica is not 
enabled. To do so, it is necessary to go to the installation directory of Pro/ENGINEER 
(C:\Programs\proeWildfire 2.0\bin) and run ptcsetup.bat . At the dialog box, any default option is 
reviewed until the windows: “Optional Configuration Steps” and Check: “Configure Other Product 
Interoperability” appear. The user clicks on Next and in the field “Locate Other Installation 
Locations” the installation location of PRO/Mechanica:  (C:\Programs\mechWildfire 2.0) is 
introduced. 

Three features need to be added: the material STEEL for every CW has to be assigned to every 
part individually. To every main rolling a cylindrical restriction is added, one of the four mains, 
additionally has an angular restriction and another main has an axial restriction. All four 
constrain completely the movement of the counterweight. Finally, a mesh control is assigned to 
all CW with a minimum  mesh size of 2 mm. 

 

5.3 Control Interface for the CAD Model 
This section describes the control interface that is required in order to the Java program to 
manipulate the CAD software and send results to DAKOTA. Modern CAD software can be 
automated to perform with pre-programmed instructions. Pro/ENGlNEER can be automated in 
three different ways. It offers advantages and disadvantages in every automation possibility and 
may have different features. To achieve a fully automated control of Pro/ENGINEER, a 
combination of two of the three options can be used.  

5.3.1 Pro/PROGRAM  
Pro/PROGRAM is a native programming language for the manipulation of complex relationships. 
The syntax of Pro/PROGRAM is similar to traditional programming languages, but with less 
features. The program is built directly into the CAD file and is embedded within Pro/ENGlNEER. 
This means that user input to the implementation of optimization cannot be avoided. Due to this 
fact and the low functional scope, Pro/PROGRAM is not used in optimizing. 

5.3.2 J‐LINK  
J-LINK is a powerful programming module for automatic control of Pro/ENGINEER. It is based 
on JAVA, and for this reason offers the same advantages as object-oriented programming and is 
platform independent. Thus, it is possible to build on an existing design, elements of access to it 
or create new ones. The functions of J-LINK are very large. However, some features, e.g. 
reading the curvature, are not implemented. 

The interface offers a synchronous and an asynchronous operating mode. The source code is 
mostly interchangeable without problems between the two modes. A synchronized J-LINK 
program will be launched and executed directly into Pro/ENGlNEER. An asynchronous J-LINK 
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program works independently and is started and executed outside Pro/ENGINEER. The 
optimization was in the asynchronous mode. 

For J-LINK to run, the Java Development Kit must be installed. This is done by download JDK 
from Sun Microsystems homepage and install to the programs directory. Then, a group of 
Windows Operating System environment variables need to be set up, these conditions are listed 
in Table 2 

Table 2 Environment variables required in the set up of J-link 

Variable Contents Comments 
CLASSPATH .; C:\programs\Java\jdk1.5.0_10\jre\lib\rt.jar; (1.5.0_10 can be replaced by 

newer versions) 
 C:\ programs\ proeWildfire 

2.0\text\java\pfcasync.jar; 
(proeWildfire 2.0 can be 
replaced by newer versions) 

PATH C:\programs\Java\jdk1.5.0_10\bin;  
 C:\programs\ proeWildfire 2.0\i486_nt\lib;  
 C:\ programs\ proeWildfire 2.0\bin;  
 C:\ programs \proeWildfire 2.0\text\java;  
PRO_COMM_
MSG_EXE 

   C:\ programs\ proeWildfire 
2.0\i486_nt\obj\pro_comm_msg.exe;

 

PRO_DIRECT
ORY 

C:\ programs \proeWildfire 2.0  

 

5.3.3 Trail files 
In Pro/ENGINEER software there is a macro-control called “trial file”. A trial file is a macro of a 
sequence of commands executed by the user to perform some activity with the software. It can 
be from any single command such as “copy and paste” to the modeling of a whole part. The 
sequence of commands can be recorded as an external file and later imported for use when the 
very same activity in the software needs to be made. It is very convenient for automation. In 
carrying out the trial file there are often difficulties because the references to objects have 
relative relations and are stored not by absolute names. It may occur that the model tree 
inadvertently changes during optimization and tries to execute on the wrong design element. 
The result is a stop during optimization, as the function is not applied on the desired design 
element. The errors can then often be resolved only by user input.  

 

5.3.4 Combination of J-LINK and trail files  
Since all the necessary functions for modeling a part are not available in the J-LINK interface, 
the combination with trial files is necessary. The combination at first glance looks easy, but the 
calls to the asynchronous mode of J-LINK interface cause some problems of coordination at the 
moment of executing commands. The interface sends the commands to Pro/ENGINEER without 
feedback on the state of execution. Particularly in the case of complex commands, sometimes 
the trail files executed over the J-LINK program are already responding to the next command 
before the current command is stopped. However, the J-LINK internal commands have to 
contend with insufficient time to be executed. To resolve this problem, at some points during the 
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control, it is necessary to integrate a waiting period so that the execution is reliable. To perform 
reliable control some effort to operate at any point in the program is needed, because the waiting 
period required is large.  

Pro/ENGINEER with Jlink offers a powerful interface for automation, which allows accessing 
most of the objects and methods of a session. This only applies, however, to the CAD part of the 
application. Within the integrated Pro/Mechanica environment, the automation can only be 
carried out with macros that repeat manually performed user actions, which nevertheless can be 
performed in batch-mode without a user-interface. This restricts the generation of a standardized 
control and results in an additional programming expenditure when a new model is being used. 

 

5.3.5 Description of the J‐LINK Modules 
 

The J-LINK interface consists of four Java modules independent of each other but interrelated 
and coordinated by I-O text files (they communicate through files saved to the hard drive). The 
modules are divided into the following:  

a) Pro/ENGINEER start up,  
b) Update of the model, 
c) Creation of the mesh and  
d) Solving of the eigenvalues. 

Each model is intended to work independently but interrelated. To have J-LINK running, it is 
convenient to add the file pfcasync.jar into the working local directory.  The Java modules, as 
being programmed in Java, need to be compiled. To compile any of these four modules, it is 
necessary to run the corresponding #_compile.bat compilation file in the working directory. A 
manifest text file #_manifest.txt and A J-LINK library file pfcasync.jar have also to be present. 
The compilation file contains three lines: 

a) set classpath=".;C:\Programs\Java\jdk1.5.0_10\jre\lib\rt.jar;.\pfcasync.jar This line resets 
the environment variable classpath in case it hast not been defined previously. 

b) javac module#_###.java   This line creates the executable .jar  file from the 
corresponding .java file, and 

c) jar -cvfm0 module#_###.jar module#_###_manifest.txt module#_###.class 
pfcuParamValue.class   This line compresses the required files needed to execute J-
LINK. 

The manifest file contains the declaration of the Main class and the paths to the .jar files of the 
module and J-LINK. It consists of four rows: 

a) Manifest-Version: 1.2  
b) Main-Class: module#_### 
c) Class-Path: pfcasync.jar module#_###.jar  
d) Created-By: 1.4 (Sun Microsystems Inc.) 
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5.3.6 Pro/ENGINEER Startup 
The first module is Module1_startpro.java. This module runs in a command window separately, 
after compiling according to previous instructions. The module consists of a Java program that 
starts Pro/ENGINEER and keeps it running while the optimization is executing. For a listing of 
the code, see appendix. 

5.3.7 Update of the Pro/ENGINEER model 
The second module is Module2_proe_update.java. This module runs when executed by the 
optimization loop, making connection with the module 1. It consists of three processes: 

a) Retrieval of the parameters of the individual for an evaluation 
b) Regeneration the model according to the parameters 
c) Delivery of a geometric response, depending on the evaluation, which may be a balance 

response or a curvature response. 

For a listing of the code, see appendix. 

5.3.8 Meshing of the model 
The third module is Module3_proe_mesh.java. This module runs in order to mesh the geometry 
of the model. The boundary conditions must be defined previously in the model. The meshing is 
performed after the regeneration, based on the individual in the previous model. For a listing of 
the code, see the appendix. 

5.3.9 Solving for the eigenvalues 
The last module is Module2_nastranrun.java. This module is run to perform the solution of the 
eigenvalue evaluation, as defined by the FEM mesh obtained in the previous module. This 
module takes the FEM file with the input conditions and executes nastran to create a solution 
file. The model also reads the required response and creates a results file for the algorithm to 
evaluate. For a listing of the code, see the appendix 

After passing the parameter sets to the CAD software and updating the geometry, the FE mesh has to be 
generated. This FE model generation with about 250,000 linear elements requires about 90 seconds at a 
workstation with 3 Ghz when Pro/ENGINEER is used. A summary of the files that must be in the working 
directory in order to the modules run is presented in  

Table 3 

 

Table 3 List of files required for the Java program to run 

files description list 
Java files: Shown for one module. 

Other modules are 
similar (the .java files, 
and so the xxx 
_manifest.txt file,  
needed for compilation 
have to contain the  
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path to the working 
directory) 

 auxiliary files:   -pfcuParamValue.class,  
-pfcasync.jar 

 needs to be edited to 
contain the path to the 
working directory 

environment_modules.opt 
 

Crankshaft files: checks, main, pins and 
assembly, they must 
be done in a 
compatible 
Pro/ENGINEER 

 auxiliary files: -config.pro,  
-config.win,  
-schablonemodes.nas 

DAKOTA Files: 
 

 

  

 trigger files: -ProeRunning.txt,  
-_solve_fertig.txt 

 

5.4 Results of the tasks 
 

Next are presented the results of the tasks that include the optimization of imbalance and the 
multiobjective optimization including curvature and eigen-frequency. In each task the general 
conditions are provided in order to allow the repeatability of the experiments. However, in 
principle, no similar results are expected when repeating the run because of the random factor 
implied in the genetic algorithms.  
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5.4.1 Results of the optimization of imbalance 
 
In this problem, a population of 50 individuals is generated randomly. Each individual is a gene 
containing a set of 24 parameters, codified in lineal mapping with 0s as the lower limits and 1s, 
the upper limits. Once generated, the phenotypes (de-codified) are written to a file and read by 
the CAD software to generate a fitness result. The parametric CAD software used in the project 
regenerates the model with an interface programmed in Java, and some of the subroutines were 
adapted to let this fitness result be read and sent back to the genetic algorithm, where it is 
assigned to the corresponding individual. The objective function was equation (8), as stated in 
section 5.2. After the whole generation has been evaluated, tournament selection plus other 
genetic operators produce the next generation. As an estimation of how long (elapsed time) a 
typical optimization exercise takes, the following elements are calculated: the automatic 
regeneration of an individual’s geometry lasts about 15 seconds. When the regeneration of the 
geometry fails, it takes about 45 seconds for the CAD software to restart. The optimization run 
consists of about 1000 evaluations, of which approximately 10% of them fail the regeneration 
and return a NaN, so it is a 5 hours long run. 

The genetic algorithm that was used in the very first runs was the vgGA. It performed well during 
the initial runs, as it was capable of delivering a geometry that improved the fitness function in 
each generation. Capable of running a substantial number of evaluations, vgGA showed a 
convergence to a fixed fitness value, as shown in Figure 5-12. 

 

Figure 5-12 Evolution of the fitness function using VGGA 

 

It should be noted that the graph does not show a continuous increase, which would have been 
expected as the balance reaches the target. Because the target balance could not be attained 
inside the design constrains defined for the geometry of the counterweights, some trials were 
performed allowing the spline to trespass the geometry constraints. However, although improved 
results were obtained, the convergence was not yet satisfactory. In Figure 5-13 It can be seen 
that the shape of some counterweights takes some non conventional forms like having notches. 
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It should be noted that the shapes, although not satisfactory from the forging point of view, tend 
to “separate” the balancing mass out from the crankshaft center axis.  

 

 

 

This behavior led to the conclusion that a different algorithm was required for validating the 
convergence. It was therefore decided to substitute vgGA, and to continue to the next step of the 
study using a GA solver inside the DAKOTA toolkit. 

In order to substitute vgGA with a DAKOTA GA, some adjustments to the strategy had to be 
made:  

1. A DAKOTA GA, that solves for minimization instead of making a maximization, was 
chosen, so the fitness function is the inverse of the result used in vgGA, aiming at a zero 
value (important when comparing the two evolution graphs). 

2. Most of the parameters used in vgGA were kept (mutation and crossover ratios, etc) but 
now the solver (named pga_real) was from the DAKOTA “Stochastic Global 
Optimization” library, a genetic algorithm for real numbers. 

 

In the first runs, it was not possible to reach the balance target inside the design constrains of 
the parameters that control the splined counterweight profiles. In Figure 5-14 the development of 
a fitness function can be observed. The x axis shows the number of evaluations; the y axis is the 
average fitness value of every generation. 

notches 

Figure 5-13 First shapes resulting from vgGA optimization 
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Figure 5-14 Generation history of imbalance fitness 

No conclusive results are obtained when using a mono-objective function (fitness). After the 
balancing behavior of some individuals was analyzed, it was observed that when a good balance 
was reached in CW1, the balance in CW9 worsened, and vice versa. This conflicting behavior 
needed to be confirmed using a multi-objective approach. 

 

5.4.2 Results of multi‐objective optimization using imbalance in both correction planes 
as independent fitness functions. 

 

The balances on both sides of the crankshaft (CW1 and CW9) were defined as two independent 
objective functions. Because no data on this condition had been collected on the previous runs, 
further runs were performed. A multi-objective genetic algorithm (MOGA) was chosen from the 
DAKOTA toolkit to generate the required data. Some graphs from the analysis were obtained.  

Figure 5-15 shows the distribution of the first generation in dots and the last generation in 
squares, with the value of the first function (imbalance of CW1) on the x-axis and the value of 
the second function (imbalance of CW9) on the y-axis. The results from the first attempts show 
that the imbalances from both sides of the crankshaft are in conflict with each other, according to 
the perceived distribution in the diagram. Nevertheless, the last generation show a movement 
towards the value of zero, which in this case is regarded as the “ideal point”. 
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Figure 5-15 Graph of imbalance on CW1 vs CW9 

 

It should be noted that the graph does not show a defined frontier, which would have been 
expected as the balance reaches the target. As the target balance could not be attained inside 
the design constraints defined for the geometry of the counterweights, some trials were 
performed to allow the spline to override the geometry constraints. However, although improved 
results were obtained, the convergence was not yet satisfactory. Results from previous attempts 
[49] where only two instead of four out of the nine counterweights had been splined, had not 
shown this behaviour.   

From this last generation an individual was found to be very close to the imbalance target. In 
order to have a visual feeling about the way the algorithm was performing, this individual was 
modeled in the CAD geometry. The resulting geometry of that individual is shown in Figure 5-16.  
In these pictures the profiles of the counterweights are close to the geometric restrictions 
imposed by the original design. It is inferred that to reach the balance target, it may be 
necessary to reconsider these constraints. As can be observed in this case, sharp edges arise in 
the profile, which is not a convenient condition from the forging point of view of the crankshaft 
because this causes difficulties in the material flow.  
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a) Counterweight 1       b) Counterweight 2 

 

c) Counterweight 8       d) Counterweight 9 
 

Figure 5-16 Representations of the first attempt with the counterweight (dark line).  

 

An open-minded designer should recognize that the paradigm is challenged and a new concept 
is arising. In other words, a break with the notion that the counterweights have to be convex arc-
shapes and accept the use of the splined smooth profiles with curvature changing signs. The 
intention of these systems, as mentioned at the introduction of the thesis, is to present 
challenging alternatives to the designer. Finally, these proposals are solution triggers that should 
inspire him/her, but, at least at this present time, they do not substitute his/her role in selecting 
the most suitable solutions and implementing them properly. 

 

5.4.3 Results of multi‐objective optimization between imbalance and CW curvature 
 

A corresponding constraint to the optimization strategy is formulated next. An additional 
objective function was added: the measure of the curvature of all the splines from the profiles of 
counterweights. It is known fact that the curvature is the inverse of the radius of an inscribed 
circle of the curve. In this case, it was decided to integrate the required inscribed circles and 
analysis features into the geometry to extract the maximum curvature along the profiles of the 
four varying counterweights. The resulting objective function is the sum of all maximum 
curvatures, with the aim of reducing it (for instance, avoid the sharp edges by increasing radius 
of the inscribed circles).  A new MOGA run was performed. One objective function was the 
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crankshaft imbalance, and a second was the previously described sum of curvatures. From this 
new run it was possible to reduce the sharpness of the profiles, particularly from CW9, which 
was reduced to the shape shown in Figure 5-17. With a maximum curvature of 0.2 in the sharp 
edge, that is, a minimum radius of 5mm, something better than the previous shape that had a 
curvature in the same vertex of 0.4 (radius 2.5mm) was reached. Such a small radius in shape is 
not permitted in common die design rules because of the stress concentration in the die. 

On the other hand, the imbalance of this individual presented a very close-to-target result, a 
positive development direction. 

 
a) before     c) after improvement 

Figure 5-17 Curvature in CW9 profile showing an improved curvature  

 
In the next part of this thesis, an additional evaluation will be introduced: the dynamic response 
of the crankshaft in order to control the first eigen-frequency, with the aim of not affecting the 
weight. As in this first approach, the GA will be used to produce automatically alternative 
crankshaft shapes for the FEM simulator program, to run the simulator, and finally to evaluate 
the counterweight’s shapes based on the FEM output data. 

5.4.4 Results  of  multi‐objective  optimization  results  between  imbalance  and  eigen‐
frequency 

 

The dynamic response of a crankshaft can be predicted based on a finite element analysis of its 
structure. Even when calculation of eigen-frequencies for large structures is computationally 
expensive, the simplification of the CAD model allows evaluations in an automated evolution 
process. Further JAVA programming was performed to also link the CAE software to the 
strategy.  After an individual is assigned to the CAD geometry, an additional routine in the 
interface permits the finite element meshing of the CAD geometry to be performed and exported 
to an input file that is read by a FEM solver. The strategy allows this process to be automatic. 
Once the FEA result (the eigen-frequencies) is ready, it is attached to the file containing the 
result from the imbalance and, together, sent back to the GA to be related to the corresponding 
individual and let DAKOTA do the evolution of the generation.  

In Figure 5-18 is shown the first generation (dots) and the last generation (squares) for 
optimizing the multi-objective system, with the two objectives (eigen-value and imbalance 
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fitness, see previous section) in each axis. It can be observed in the graph that the direction of 
improvement of the eigen-value is upwards while imbalance fitness is towards the zero targets. 
The conflict of objectives can be appreciated as in the previous section. In the graph, it can also 
be observed that the range of the balance fitness is very broad. This is due to the very sensitive 
influence of the counterweights on the geometry. 

On the other hand, the first mode variation is not changing very much. The perception of the 
influence of the geometry on the dynamic response of the crankshaft is not as significant as the 
balance at the level of the system involved in the analysis. Nevertheless, the direction of 
improvement moves to a concentrated area in the upper-left hand corner of the graph, though 
the balance is still not reaching the target. An individual distinguished by its position to the left 
was chosen as the best and the profiles of its counterweights were extracted.  

 

Figure 5-18 Distribution between imbalance and second eigen-mode evaluation. 

 

The FEM evaluation of the eigen- frequencies of a single individual with 5000 elements takes 
about 200 seconds using a PC with a Pentium 4 dual processor of 3 GHz and 1 Gigabytes RAM. 
It is approximately a 60 hours long optimization run. This is a long time compared to the run with 
only geometric imbalance, so performing an inheritance evaluation of the eigen-frequency is 
being considered to avoid doing the FEM analysis for every individual, and instead, do an 
interpolation of the parent’s values for a small percentage of the offspring in the population. This 
method is described in [87]. 

 Nevertheless, the direction of improvement moves to a concentrated area in the upper-lefthand 
corner of the graph. However, the balance is still not reaching the target. An individual 
distinguished by trespassing the intended Pareto frontier was chosen as the best and the 
profiles of its counterweights were selected, see Figure 5-19.  
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a) Best shape CW1       b) Counterweight 2 

 

c) Counterweight 8       d) Counterweight 9 
 

Figure 5-19: Crankshaft shapes after moga evaluation (new profile in dark line) 

 

From the images it can be noted that the shapes of CW1 and CW2 are less wide and better 
shaped than in the first approach. However, CW8 and CW9 still need improvement. This profile 
needs to be further smoothed to allow better material flow during the forging process. The 
process of making smooth and less sharp a profile is a continuous refinement that is made 
taking into account the different objective functions. Nevertheless, the difference in the evolution 
is noticeable from the beginning of the single objective task, compared to Figure 5-13. 

Additional to the shape of the counterweights, the corresponding imbalance graph was 
extracted, as can be seen in Figure 5-20. From this graph it is inferred that, even when the 
shapes of CW1 and CW2 look better, the balance is not as close to the target as the first 
approach was. But further iterations will be performed to improve both the imbalance and the 
curvature of CW8 and CW9. 

The workflow presented offers all necessary features for optimizing the parts considered and/or 
does robustness and reliability evaluations. In the case discussed in this thesis, both workflows 
have been used for evaluating the robustness of the relevant eigen-frequencies against 
variations of the geometry of the part. In a first step, the sensitivity of the stresses has been 
evaluated in a structured DOE. This led to the identification of the most important measures. A 
response surface has been modeled, describing the dependencies between the stresses and 
the identified measures. After the surface was verified, a multi-criteria-optimization of geometric 
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design parameters was performed with the objective functions “Eigen-frequencies” and 
“Balance”. 

An automated generation of FE meshes and FE analyses of components can be executed by 
the functional range of the current CAD software packages and additional scripts that are 
comparatively easy to handle. By using established solvers like MSC.Nastran and automation of 
the CAE processes, it is also possible to use the CAD software packages. When joining CAD 
and FEM, there are further advantages: The application of established solvers enables a direct 
comparison of analysis results with classically generated FE models. The applied boundary 
conditions are revisable and controllable. The processes presented offer all the features for 
optimization and/or robustness and reliability evaluations of a component. Restrictions in 
automation are rather natural and are applicable to alternative processes such as mesh-
morphing. 

 

 
 

Figure 5-20 Imbalance graph of best individual from second approach  

 

5.5 Chapter conclusions 
 

During the development of the chapter, it was possible to deploy the implementation of the tasks 
that are built upon the optimization/innovation strategy described in previous chapter. It was 
described the construction of the CAD model and how the counterweights of the crankshaft were 
transformed from simple arc lines to a spline curve, one of the key elements of the strategy. The 
chapter describes how the imbalance formulas, presented in section 2.2.2 were introduced to 
the model. Elements also described were the curvature and the eigen-frequencies analysis. The 
control interfaces developed in Java language was introduced. Such Java interface allows the 
CAD software and the Finite Element Analysis software to communicate and interact in order to 
coordinate the results of imbalance and the eigen-frequency value. The interactions permits the 
CAD software to generate a FEM mesh, with corresponding boundary conditions, and send it to 
the solver for solution. 
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In the chapter, the results of the optimization tasks are presented, together with an analysis and 
comments about the shapes obtained. The repeatability of the results is a factor of possibility, 
because of the randomness of genetic algorithms. Nevertheless, during the first task that 
consisted in a single objective of imbalance, two different algorithms were used an compared: 
vgGA and DAKOTA GA. Both algorithms presented a similar behavior in terms of convergence 
during the generations. However, the convergence is not towards zero, as originally expected, 
which means is not reaching the optimum. Another interesting result was the shape of the 
counterweight that resulted during this task: the appearance of notches in the profile near the 
joint with the mains. It is a condition that can be read as if the mass were separating from the 
crankshaft, a condition that has been implemented in crankshafts from other engines. Then it 
was decided to perform a multi-objective optimization using the imbalance from both sides of the 
crankshaft (both correction planes) as two fitness functions. For the run it was used a DAKOTA 
moga and the results, deployed in graphical format, reveals a movement of the individuals, from 
a evenly distributed dispersion, towards a value of zero in the last generation. The shapes of the 
counterweights resulted in a form that, even when improves, still has sharp edges. So further 
improvements were needed using curvature analysis to reduce the sharp edges in the profiles. 

The last optimization task of the chapter was a multi-objective optimization with imbalance as an 
objective function and the second eigen-frequency as the other objective function. The results 
were presented in graphical format and the direction of improvement that was appreciated goes 
from a wide dispersion in the first generation towards the upper left corner of the graph. It is 
worth to mention that the shapes of the counterweight resulted in a more smooth and less sharp 
edges, also the width of the profiles are smaller than the original designs. This result needs to be 
validated and a proof of concept will be presented using fem simulation of the forging process in 
the next chapter. 
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Chapter 6 The Optimization / Innovation Approach 
 

Even when the design of the counterweights is not totally finished, a designer should be able to 
recognize that the paradigm is challenged and a new concept can be derived, in other words, 
dropping the notion that the counterweights have to be arc-shaped and allowing the splined but 
smooth profiles. The intention of these systems is, not only to create a totally automatic 
optimized solution, but also to provide the designer with challenging alternatives. In reality, these 
proposals are solution triggers that inspire him/her, but they do not substitute his/her role in 
selecting the most suitable solutions and implementing them properly. 

This chapter presents two aspects that need to be further studied but general basics are stated. 
One is the extension of the optimization task to include the simulation of forging by FEM. The 
proof of concept using simulation of forging is an indicator of the advantage of the approach and 
it is shown. A second part of the chapter deals about how the topological development of 
products can be enhanced with new paradigms. Particularly the integration opportunities 
between genetic algorithms and TRIZ  

6.1 Simulation of forging vs. curvature of counterweights 
 

The next step of the strategy consists of correlating the curvature of the counterweights to the 
forge-ability of the crankshaft. A correlation between curvature and metal flow can help reduce 
computational time. Identification of potential curvature parameters to be evaluated is necessary 
to find correlation with metal flow in forging mechanics. The intention is to reduce the absolute 
value to a certain limit, defined by the forging simulation results.  

There are two ways to make this correlation possible. The first involves the automatic 
manipulation of forging software using a Java interface. As in the solution of the eigen-
frequencies FEM solver, there is FEM-based forging simulation software with script capabilities, 
and one possibility is to include the simulation of the forging into the optimization loop. The 
drawback of this option is the time required to complete the evaluation of an individual. This may 
involve extracting the profile of the counterweight from the CAD software to the FEM software; 
preprocess the forging conditions including the billet; running the simulation, and extracting the 
results of the forging’s material filling.  

The second possibility is to create a table that correlates the curvature of the counterweights’ 
profile, with some results from simulations of the forging process. This option allows every 
individual from the optimization loop that has a curvature evaluation to be assigned with a value 
of forge-ability previously defined and tabulated. This way a forging simulation does not have to 
be performed during the optimization, but can be done in advance; and the time to complete 
each evaluation is much less. The drawback of this option resides in the possibility that the 
results have to be interpolated to individuals that do not match any value included in the 
predefined table.  

Both previously mentioned possibilities imply the importance of defining which forging parameter 
should be used as objective function. The most convenient is the filling of the cavities of the 
forging dies. Given that the root cause of the forging’s imbalance influence is the under filling 
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condition of crankshafts; as stated in the introduction, it is important to include it as a main 
optimization direction. An additional strategy can be considered in the thesis due to the particular 
nature of the phenomena analyzed: fitness inheritance.   

A typical genetic algorithm (GA) operates by using a population of potential solutions to create a 
new population via selection and mating. Then, the GA eliminates the old population (of parent 
solutions), and evaluates the new population (of offspring solutions). Thus, the fitness values of 
offspring are related to those of their parents only through genetic inheritance [87]. In the natural 
world, a child's legacy can be more complex. In species that conduct parental nurturing, parents 
effectively "pass on" some of their fitness to their children in a variety of ways. A child's 
survivability is enhanced by having successful, protective parents. In addition, parents can pass 
on their fitness-related knowledge and experience to their children through teaching. Moreover, 
a parent can pass on fitness through inherited wealth. In some optimization problems, it is 
difficult to apply a GA because the cost of determining fitness values for an entire population is 
prohibitive. If obtaining the fitness of a single individual involves a complex calculation, like a 
finite element model or a lengthy simulation, a population-based approach may be impractical. 
Certainly, a low-cost way for an individual to survive is to obtain fitness the old-fashioned way: 
inherit it. 

The use of the JAVA interface allowed the genetic algorithm to be integrated into the CAD 
software, as described before, and the further integration with the CAE software, as described in 
the second part. The development of a Pareto frontier from the first analysis and a Pareto with 
the additional eigen-value objective were possible. The following important conclusions were 
extracted: 

• It is necessary to prevent the development of sharp edges in the shape of the 
counterweight by adding extra control of the curvature and minimal radii. 

• Simulation of the forging process is a required next step for definition of the relationship 
between good shape-curvature and manufacturability. This is very important when a 
proposed design outside the initial shape restrictions needs to be justified to avoid 
affecting formability.  

Subsequent activities include the definition of additional fitness functions not only in CAD but 
also in CAE simulation (forging simulation) for the control of “strange” shapes. Objective 
functions and restrictions will be added with the use of forging simulation and stress analysis 
during variations in geometry. The aim is to integrate different systems that run totally or partially 
automatically. 

 

6.2 Proof of Concept by Forging Simulation of New Counterweight Profile 
The next step was to perform a proof of concept of the new profile of the counterweights using 
splines. A simulation of the original profile of CW2 with the following characteristics was 
performed: 

• The preform is a circular bar with a 117.7 mm diameter 
• Temperature of the bar: 900oC 



103 
 

• Temperature of the dies: 400oC 
• Specifications of the mechanical press: stroke: 520mm, velocity: 0.533 strokes /sec 
• Current stroke at the moment of deforming: -468.24mm 

The initial conditions of the simulation can be seen in the Figure 6-1. The color mapping is the 
contact distance between the dies and the work piece. 

 

Figure 6-1 Initial conditions of the forging simulation. 

The Figure 6-2 shows the final conditions of the simulation of the original profile. It is possible to 
see that the material didn’t fill out all the die cavity. 

 

Figure 6-2 Final conditions of simulation with original profile. 
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The Figure 6-3 is a simulation of the forging using the profile concept resulting from the use of 
the development method of this research. It can be seen that the die is better filled with material. 

 

Figure 6-3 Final conditions using a splined profile 

 

 

6.3 From evolutionary design to computer‐aided innovation 
 

The aims of this research program are to extend the “detailed design” capabilities of computers, 
and to merge them with “conceptual” activities during the product development process. Within 
this context, the use of genetic algorithms is put forward as a mechanism for mediating conflicts. 
They are able to reveal the conflict that may exist between parameters, shown by the different 
fitness functions. When a designer is solving a multi-objective optimization problem, he or she 
tries to find a vector of decision variables which satisfies the constraints and optimizes the 
objective functions. These functions form a mathematical description of the performance 
parameters, which are usually in conflict with each other. Hence, the term “optimize” means to 
find a solution that will give the values of all the objective functions an “acceptable trade off” to 
the designer [62]. To deploy the concepts explained, the Pareto diagram is used (mainly in multi-
objective optimization processes). Such a diagram shows a boundary that divides the region of 
feasible solutions from the region where restrictions or physical constraints prevent the solutions 
from acquiring certain values. 

An airplane is designed to fly a range of missions under a variety of externally imposed 
conditions. The combination of missions and external conditions determines a performance 
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envelope in which the aircraft is expected to perform well. For example, an airplane might be 
designed to fly in a range of temperature, pressure, and velocity conditions, with specified 
degrees of turbulence, payload, maximum crosswind at landing, and so forth. As long as it 
operates within the specified envelope, and as long as the aircraft has been properly designed, 
the aircraft is expected to perform satisfactorily. When the boundaries of either the mission or 
external conditions are surpassed- when the envelope is pushed -or when the aircraft is 
improperly designed the increased likelihood of less-than-satisfactory performance or failure can 
be anticipated [88]. 

Performance improvement of a product is commonly obtained through quantitative changes of a 
parametric design (optimization) and, once the improvement through optimization reaches its 
limit, new searches must be carried out through qualitative changes and paradigm shifts 
(innovation). Certain innovations can be achieved through methodologies based on optimization 
processes that focus on functionality and performance where not only design parameters, but 
also shapes and topologies can be changed. In other words, it may be stated that product 
innovation may also be implicit as “optimization not restricted to parametric variation” but 
extended to ‘constrained concept variations’ [89]. As has been shown in several case studies, an 
extended parametric optimization is achieved by adding shape and topology as possible search 
directions. This extended optimization has been achieved by allowing shape variation through 
substitution of the original shapes based on straight lines and arcs with spline curves, or by 
eliminating finite elements from a meshed structure to reduce it to a new shape or by 
considering predefined alternative shapes. An extended shape variation in tree-structured CAD 
systems represents a possible enhancement to allow an "automatic" control of the shape 
variation not  only when shapes are represented by parametric curves but also when 
represented as 3D shapes in 3D parametric CAD packages in which they are built from 
constrained parametric profiles and Boolean operations. This represents a further step toward 
adding "concept variation" to optimization procedures. 

 

6.3.1 Multi-objective optimization, conflicts and the ideal solution 
 

Solving optimization problems with multiple, often conflicting objectives is generally a very 
difficult goal. Although single-objective optimization problems may have a unique optimal 
solution, multi-objective problems, as a rule, present an innumerable set of solutions. When 
evaluated, the solutions produce vectors with components that represent trade-offs. TRIZ deals 
with the concept of the Ideal at the moment of resolving trade-offs [90]. According to TRIZ the 
ideal final result is a concept that represents when the function is performed but the systems that 
carries it doesn’t exist in reality, a paradigm that serves as mental inertia breaker. However, the 
concept of the ideal point has also been taken up in other studies, as described by Coello [91]. 
These studies explain that attempts have been made to develop a methodology emulating the 
criteria that drive a human being to adopt a certain solution named the ideal point [62]. However, 
there is a set of optimal solutions lying on a line that prevents the functions from reaching the 
“ideal” at the same time. This notion is represented in a Pareto diagram (see Figure 6-4. Given 
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the constraints in the solution space, the ideal point lies in the unfeasible region. It is the place 
where the objective functions may lie if the system doesn’t exist, as explained before. 

 

 

Figure 6-4 Pareto diagram and the concept of Ideal. 

  

To solve this, a decision must be made by exploring the achievable limits along each particular 
attribute of importance (parameter) in order to find an ideal alternative. Some authors propose 
performing a set of mono-objective optimization tasks to reveal conflicts [75]. TRIZ proposes the 
use of the inventive principles. The idea is to direct algorithms as “conceptual machines” and let 
computer scientists hesitant to move forward without exact models precisely describing their 
situation to collaborate with engineers, who have a more practical orientation. How many fitness 
functions are enough? How many objectives are generally required to adequately capture the 
essential characteristics of a multi-objective problem? Can all relevant characteristics be 
captured? “Where do I begin?” We cannot specify an “all purpose” multi-objective technique. 
However, we can suggest algorithms that appear appropriate as a starting point.   

  

6.3.2 TRIZ and cataclysmic operators 
 

Traditional TRIZ theory encourages the attainment of an Ideal Final Result and offers tools for 
identifying the underlying technical and physical contradictions in a technological system. TRIZ 
general solutions (i.e. inventive/separation principles, Standard Solutions, etc.) are proposed to 
overcome the conflict and let the product evolve according to the “laws of technical evolution” 
[92]. This is a natural convergence direction to merge evolutionary design (based on laws of 

Ideal point Pareto front 

Compromise Solution 

Direction of solution 

f1(x*) f1(x) 

f2(x*) 

f2(x) 

Feasible Region 

Non-feasible 
region 
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biological evolution) with TRIZ (based on laws of technical evolution) within a computer 
framework suitable for computer-aided innovation. Other authors also apply the TRIZ 
methodology to the structural product optimization [75]. Still others are using GAs to generate 
creative forms and shapes [9], but the main difference with them lies in the merging of TRIZ 
inventive principles with genetic algorithms. In other words, genetic algorithms controlling splined 
shapes are the core interface to apply innovation operators from TRIZ to the development of a 
product in a CAD&CAE environment. 

Technical change is an evolutionary process; technology keeps on producing entities superior to 
those in existence earlier. Technological change and innovation processes are thus 
‘evolutionary’ because of their characteristics of non-optimality and of an open-ended and path-
dependent process. 

Altshuller [90] states that: 

• Technological systems evolve not randomly but according to objective laws of evolution. 
These laws do not depend on humans. They should be observed, formulated and used in 
order to develop efficient methods of problem solving. 

• Technological systems evolve not randomly but they have to overcome contradictions. 
To get breakthrough idea we should find a way to overcome contradictions. 

• Each specific problem must be solved in accordance with the restrictions of the specific 
problem situation, with peculiarities in each specific case, and cannot be given a general 
solution. A robust solution is a solution that involves as few new resources as possible. 

 

Some authors have tried to link system parameters and laws of engineering system evolution in 
what is called an evolution hypothesis [93], in research seeking a logical use of these laws of 
technical evolution, within the choice of the appropriate pair of parameters in conflict. Those 
previous efforts are converging in the extended use of genetic algorithms. 

In the research on which the present thesis is based, the aim is to extend the paradigm of multi-
objective optimization to reach the ideal point, in this case the “Ideal Final Result”.  GAs can be 
enriched by taking advantage of the inventive principles, and extending the operators beyond 
basic “mutation” and “crossover”. Additionally, it is possible to have new operators or “agents” 
capable of modifying the way the algorithms operate on the CAD geometry [89]. In this way, 
CAD systems can develop new configurations and alternative modifications to the geometry, and 
supply the designer with a set of alternative modifications, defined automatically on the basis of 
the selected principles, which may themselves be applied on the basis of the concept of 
cataclysmic mutations [94]. Mutations following a pattern similar to a “cataclysm” are now being 
studied in the area of Evolutionary Algorithms as tools for finding innovations [95][96]. The 
extension of the solution can reach a level of detail that leads to two possibilities: either 
automatic development of solutions by the genetic algorithm with or without the use of 
cataclysmic operators or, on a more detailed level, inspired by these suggestions, the designer 
can select the most suitable solution and implement it.  
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In many cases, the use of TRIZ can facilitate the design optimization process, giving a 
qualitative lead to what in the model may need to be changed. These leads can be then 
validated via FEA. To design a product that meets a set of performance criteria, it is often 
necessary to go through several iterations of computer modeling (e.g., using finite element 
analysis) and then make design changes. The optimization process requires determining 
sensitivity parameters of the FEA model, which leads to complicated derivations and then time 
consuming calculations. The number of calculations can be reduced if there is some 
understanding of how the optimum design should look, based on a simplified model, or intuition. 
Unfortunately, the tasks like those described above are often counter-intuitive, and developing 
an adequate simplified model can be a challenge in itself. 

A researcher who intends to combine in the optimization process highly structured and well 
established numerical procedures, such as FEA and sensitivity analysis, on the one hand, and 
TRIZ recommendations, on the other, has to be able to overcome psychological challenges as 
he or she tries to interface the two approaches. The TRIZ statements need to be rephrased and 
made more custom tailored for the application in question. They also need to be interpreted in 
terms of those variables that can be changed in the problem. The TRIZ recommendations need 
then to be verified through direct modeling. However, a proper application of TRIZ to the highly 
intensive numerical procedures can make a difference between getting the solution or no 
solution. Moreover, a systematic decision-making process for accomplishing product innovation 
is necessary, in accordance with the target quality, i.e. the target values and relative weights of 
the relevant quality characteristics of the product to be developed. An approach of a decision 
making process with the use of TRIZ and using a die-casting machine as an illustrative example 
is described in [97] 

Inventive principles suggest a series of recommendations to change the direction in which 
solutions are sought. The recommendations are based on the fact that they have provided 
solutions in previous analogous technical problems. These recommendations can be regarded 
as a knowledge database, which can be used to feed the cataclysmic transformation of 
genotypes in the course of evolution for optimization, allowing them to override the barriers of 
contradictions or constraints. The TRIZ inventive principles with a geometric interpretation can 
be added to form the extended cataclysmic operators. The level of impact from the different 
operators can vary from a slow, steady accumulation of changes (the way an optimization 
algorithm normally performs), to a sudden disturbance in the nature of the system (a cataclysm). 
The most important effect is the creation of a jump in the phase transition. SeeTable 4. 

 

Table 4 Comparison of genetic and inventive principles 

GA operators TRIZ principles Representation 

Crossover, simple Segmentation, 
combination 

Divide two genotypes and 
combine alternate parts 

 Asymmetry Break symmetrical genotypes 
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 Merging Join genotypes (similar or not) 

Crossover, nesting Nesting Place part of a genotype 
inside another 

Inversion Inversion Turn around a genotype 

 Another dimension Create genotypes from 
different parameters 

 Homogeneity Make a genotype 
homogeneous 

 Discarding and 
recovering 

Break down and rebuild 
genotypes 

 Spheroidality Join the beginning to the end 
to form a circle 

Mutation  Change a gen in a genotype 

Selection Feedback Return fittest genotypes 

 Copying Take a copy of fittest 
genotypes 

 

Some examples of how the agents may be applied to the case study can be seen in Figure 6-5. 

 

a) Asymmetry             b) Separation                 f) Inversion                     

Figure 6-5 Graphic representation of inventive “agents” (dark lines). 

 

More suggestions can be enriched by means of guidelines provided by the inventive 
principles that can be associated with the genetic operators. As result, the algorithm should be 
capable of applying agents according to the conflict being faced.  

Directly interpreting TRIZ principles in a geometric context could lead to a wide number of 
possibilities. During an optimization process with genetic algorithms, any of these TRIZ 
interpretations could provide valid options during the process. It is important to note that some 
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principles are related to the function of the product, so they can be applied more directly. The 
absence of direct functional information about the overall characteristics of the design, during the 
optimization process, could reduce the possibilities of a valid solution. On complex geometries or 
time consuming optimizations where manufacturing constraints play an important role, more 
restricted TRIZ interpretations could be the best suited [27]. TRIZ concepts could prove useful in 
suggesting modification possibilities based on some of the TRIZ innovation principles. Such 
principles can be identified by generalizing existing design contradictions in the given part to 
obtain suggestions from a predefined contradiction table. These suggestions should enunciate 
the modification principle along with a design-oriented example depicted by CAD models. 
 
Other inventive principles are of a rather topological nature and therefore may be implemented 
in CAD systems' assembly modules. In other cases the principles are of a mechanical or 
physical nature, which also involves the effect of time and other physical parameters such as 
velocity, force, acceleration, temperature, etc. and may be implemented using multi-body 
systems. Normally a graphic description along with a picture or drawing depicting the given 
suggestion is also provided. With these examples, the user would have a much better idea about 
where and how the shape modification process should be focused. However, the designer has 
to implement the required modifications on his or her own by editing step by step the actual 
shapes and topologies based on how he or she understands the recommendation. This is 
commonly a time-consuming task that avoids the search for better solutions. 

In this study, the results from the first attempts show that the imbalances from both sides of the 
crankshaft are in conflict with each other. A resolution of these conflicts are then sought using 
“innovation agents”. Further development of the algorithms can only be achieved by its 
integration with innovation methods. The resulting systems are of a parametric shape and 
topology innovative configuration. Some features need to be added to the system for it to work in 
an "out of the paradigm" way that will lead to solutions not considered before. To give a visual 
impression of the way the algorithm performs, some of the counterweights are shown in Figure 
6-6.  

  

 

Figure 6-6 Representations of the crankshaft´s counterweights (transparent)  
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The shapes present some notches that are not suitable for forging, but the direction of the 
solution is cataclysmic. An open minded designer should be able to recognize that the paradigm 
is challenged and a new concept can be derived. This is the intention of these systems, as 
mentioned at the beginning of the thesis, presenting the designer challenging alternatives. 
Finally, these proposals are solution triggers that inspire him or her, but they are not substituting 
his or her role in selecting the most suitable solutions and implementing them properly. 

Even when the innovation principles cannot be codified in a genetic structure, it is possible to 
treat them as a concept called “meme”. In the book “The Selfish Gene” [98], Dawkins speculated 
that we may now be on the threshold of a new kind of genetic takeover. DNA replicators built 
'survival machines' for themselves - the bodies of living organisms including ourselves. As part 
of their equipment, bodies evolved onboard computer-brains. Brains evolved the capacity to 
communicate with other brains by means of language and cultural traditions. However, the new 
milieu of cultural tradition opens up new possibilities for self-replicating entities. The new 
replicators are not DNA and they are not clay crystals. They are patterns of information that can 
thrive only in brains or the artificially manufactured products of brains - books, computers, and 
so on. But, given that brains, books and computers exist, these new replicators, which Dawkins 
called memes to distinguish them from genes, can propagate themselves from brain to brain, 
from brain to book, from book to brain, from brain to computer, from computer to computer. As 
they propagate they can change - mutate. In addition, perhaps 'mutant' memes can exert the 
kinds of influence that Dawkins is calling 'replicator power'. This means any kind of influence 
affecting their own likelihood of being propagated. Evolution under the influence of the new 
replicators - mimic evolution - is in its infancy. Additionally, during this process new ideas can 
arise in what has been called “emergence” [99]. An explanation is given of some frameworks for 
both representation and process for a computational model of creative design that are based on 
design prototypes and on an evolutionary model. This phenomenon of emergence is deemed to 
play an important role in design [100]. Computer-based design assistants can and should 
support this human perceptual ability, using pattern recognition to anticipate human designers’ 
perception of emergent shapes and supporting the subsequent manipulation of and reasoning 
with these shapes as part of the design. 

 

6.4 3D Model Repositories as Knowledge Databases 
Recently the appearance in the market of so-called innovation software presents a combination 
of TRIZ methods and instant access to knowledge databases. Those databases consist of 
patent databases and knowledge documents. It would be useful to exploit the valuable 
knowledge embedded in repositories of digital models where search engines are capable of 
expressing high-level and advanced queries, which can effectively support the re-use of CAD 
models. The retrieval mechanism should be able to return not only global similarity measures 
among objects, but it should also be coupled with methods for the automatic identification of 
similar sub-parts in the query and retrieved models, possibly highlighting automatically the object 
differences [101]. Technological improvements related to object acquisition, visualization and 
modeling, have caused a considerable growth of the number of 3D models in digital form, which 
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are now available in large databases of shapes, ranging from unstructured repositories. This is 
especially crucial for CAD model databases which contain designed shapes: it has been 
estimated, indeed, that a large part of the design activity is based on the reuse of previous 
knowledge to address new design problems. Therefore, a retrieval system closer to the human 
perception of similarity should be able to assess similarity to identify the common parts (global 
and partial matching).  Structure-based shape description is particularly important for 
engineering applications. The use of structural descriptors is an intermediate step between the 
geometry and the semantics of the object, since it characterizes features of the object that are 
relevant with respect to the application context or the design activities, like holes, slots and 
handles. 

To perform content-based indexing and retrieval of 3D objects, each model must be converted 
into some collection of features [102]. Previous research on model matching and retrieval has 
drawn on feature definitions from mechanical design, computer graphics and computer vision 
literature. Many of these feature-based techniques ultimately use vertex labeled graphs, whose 
nodes represent 3D features (or their abstractions) and whose edges represent spatial relations 
or constraints, between the features. Retrieval and matching is done using some variation of 
graph matching to assign a numerical value describing the distance between two models. It is 
common in engineering communities for the term feature to be used to refer to machining 
features (i.e., holes, pockets, slots) or other local geometric or topological characteristics of 
interest, depending on the domain (i.e., assembly surfaces, molding lines, etc.). In the context of 
this research, feature will be used as an intrinsic property of the 3D shape which may 
encompass local geometry and topology. Feature-based descriptions of models also vary by 
system. Hence, CAD search tools that can perform semantically effective searches using “the 
lowest common denominator” (e.g., shape) representation are widely applicable. 

Unlike shape models, for which only approximate geometry and topology is available, solid 
models produced by CAD systems are represented by precise boundary representations. When 
comparing solid models of 3D CAD data, there are two basic types of approaches for content-
based matching and retrieval: (1) feature-based techniques and (2) shape-based techniques.  

• Feature-based approaches. Historically, Group Technology (GT) coding was the way to 
index parts and part families. This facilitated process planning and cell-based 
manufacturing by imposing a classification scheme (a human-assigned alphanumeric 
string) to individual machined parts. While there have been a number of attempts to 
automate the generation of GT codes, transition to commercial practice has been limited.  

• Shape-based approaches. Comparing CAD models based on their boundary 
representations can be difficult due to variability in the underlying feature-based 
representations. Additional complications are created by differences among the boundary 
representations used by systems (i.e., some may use all NURBS; some may use a mix 
of surface types, etc.). 

Feature-based modeling and tree structures of part geometry of CAD systems are suited for the 
linking of shape conception with the functional requirements. But little effort has been made in 
integrating the functional requirements with the CAD system structure. As a result, CAD 
environments usually ignore functionality and focus on the geometrical, detailed design process. 
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This situation enhances the psychological inertia of designers and their reluctance to introduce 
concept changes because it is necessary to perform difficult operations to introduce non 
parametric modifications to the parts, sub-assemblies and assemblies. 

The evolution trends of CAD systems has been towards systems integration [27]. The inclusion 
of CAM, CAE, PLM and others has been taking place at different integration levels. However, 
another evolution trend could be the inclusion of knowledge modules in CAD systems. These 
knowledge modules allow the creation of functional descriptions of the product at abstract levels 
before the part geometry is defined. The functional relationships between components is made 
by different boxes and arrows that determine the interactions between each design component 
and show whether they have positive or negative effects on the principal function. 

Those tools for functional decomposition and interrelations in a given design, could be more 
easily integrated with an entirely new CAD-integrated application that establishes such 
interactions in a parameter-free environment. That environment could prove useful in relating 
TRIZ innovative principles with modification suggestions for a given design, and the designer 
would not be restricted to the current geometry but would be free to manipulate the CAD 
geometry. Such a tool should enhance the standard CAD hierarchical specifications tree with 
information about the functional relations existing between features, and could enable the 
possibility of generating multiple functional variants be integrated with the shape and topology 
creation process. In a new design paradigm, such structures could prepare the way to generate 
shape and topological variations in CAD systems, which can contribute to stimulating the 
designer’s imagination to generate more design variants by reducing the psychological inertia.  

The difference between an assembly and a part in a 3D-CAD system is determined through the 
type of relationships established inside the model tree. Among features, the relationships for 
building a part are Boolean type operators, such as join, cut, merge and so on. At assembly level 
the relationships among neighbors are of type mate, insert, align, etc. Functional similitude 
between two features/parts/assemblies may be derived from similar declared functions as 
human identified or perceived actions in order to distinguish them from the behavior concept, 
which is identified when simulating the performance in a CAE environment. A behavior is, 
therefore a simulator-identified action or action value and does not require human intervention  
(object action-reaction-object-result as basis for functional behavior analysis). The functional 
structure may be introduced in the geometric tree of parts and/or assemblies, by the human 
user, for analysis purposes. This is the type of analysis that is performed today with existing 
TRIZ software. In the case of a CAD system with functional information, the analysis performed 
may lead to the recommendation to use some of the “genetic operators”, which could be applied 
to the related features/parts/assemblies for visualization purposes. That means the geometric 
structure is varied with the aim of suggesting to the CAD model, possibilities for overcoming the 
problems formulated through the functional structure. A further step occurs when the changes 
introduced (from changing operators or from crossbreeding operations) are analyzed by CAE 
tools (FEM, CFD, MBS) for analyzing its behavioral structure (stress and levels, fluid behavior, 
accelerations, velocities, etc) in search of “optimal solutions” 

The design research community has spent much of its effort in recent years developing 
computer-supported design systems [103]. Generative design systems - systems for specifying, 
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generating and exploring designs spaces and alternatives - have been proposed and studied as 
a topic of design research for many years. However, systems to date are just beginning to have 
an impact in practice. Designers have authority to decide what kind of sketch shapes, 
components and layout are selected. Through the interaction between the designers and the 
system, it is possible to produce new designs that the designer alone could not have easily 
created. 

6.5 Chapter conclusions 
 

The chapter started with some considerations on the simulation of forging as a means to provide 
proof of concept for the shapes developed in the previous chapter. In addition, some 
considerations relative to the correlation between curvature of the counterweights and the forge 
ability of the crankshaft are explained. The proof of concept consisted on simulating the forging 
process with the original profile of the crankshaft, and comparing the results against the new 
profile, obtained according to chapter 5. The simulations that an improvement in terms of cavity 
filling is gained and that promising results are possible to obtain. 

Next, a sequence of reasoning and dissertation on the transition from evolutionary approaches 
to the emerging discipline on computer-aided innovation followed. It is explained how the 
present research aims to extend the capabilities of computers into a support for conceptual 
design activities during product development. The key elements that are having significance on 
the process are the multi-objective optimization, the conflicts and the ideal solution. They relate 
the TRIZ methodology to the Pareto diagram, where the ideal solution concept can be 
represented. Traditional TRIZ tools encourage the attainment of Ideal Final Result and their 
general solutions help to overcome conflicts while the system evolves. The laws of technical 
evolution converge to merge with the laws of biological evolution, from where the genetic 
algorithms come. Some coincidences are found between the inventive principles and the genetic 
algorithm operators, which lead to think on new operators form TRIZ that can be used during an 
optimization and provide novel solutions. 

Even when the computers are not generating creativity by itself, the observance of the designer 
on the shapes and forms generated can influence his thinking. Ideas in the form of “memes” can 
trespass the barriers of algorithm codification and emerge in the mind of individuals. On the 
other side, the so-called innovation software that benefit from TRIZ and provides access to 
knowledge databases, could exploit the existence of CAD models organized in the form of 
accessible information, classified according to shape and topology.  
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Chapter 7 Summary and Conclusions 
 

The usefulness of computers in product design ranges from data management, drawing, 
analysis and simulation, to numerous other applications. Computer is extending from modeling 
activities and optimization tasks to simulating the performance of a product. They are 
programmed to do what humans intend and are capable of performing far beyond the abilities of 
the most skilled designer. This allows the engineering designer to concentrate on activities 
related to analysis, prototype testing, creativity and innovation.  

Nowadays, however, designers are provided with software tools that are suited for the quality 
paradigm of the 80´s and 90´s, and not always adapted to satisfy contemporary innovation 
requirements, which are increasingly more focused on optimizing the creative solutions that, in 
theory, lie in a space with infinite design variants. The automation of conceptual design 
processes in engineering is a desirable characteristic that has been pursued many times. 
Automation allows designers to focus their efforts on their irreplaceable role in engineering 
design to improve design performance. One of these efforts has been the use of knowledge-
based system techniques to develop a computational tool for creative conceptual design [104]. 

Methods for structural and topological optimization, based on evolutionary algorithms, are used 
to obtain optimal geometric solutions. They evolve into configurations that minimize the cost of 
trial and error. Design knowledge comprises knowledge about the structure of a product and the 
design process [105]. The so-called control knowledge about the design process determines in 
which sequence design actions should be carried out in order to minimize trial and error. 
Although the field of evolutionary design is showing some impressive results, computers are not 
fully autonomous. People are required to work out which function the design should perform, and 
how a computer should be applied to the problem. Evolutionary design can present 
characteristics that add value to the product, even by chance. If the creations of design concepts 
evolve by generating novel designs, e.g. novel product shapes that achieve higher performance, 
this can be interpreted as “being creative”. So it can be said that computers can display 
“creative” behaviour. 

The development of a new category of tools known as computer aided innovation (CAI) is 
growing as a response to a development of methods and tools that are used to boost creative 
solutions. These new tools stand out from the current CAD/CAE/CAM tools because they 
challenge the previous standards. The goal of these CAI tools is to assist designers and process 
developers in their creative stage. Functional analysis and synthesis of the generated system is 
accomplished with the computer aided innovation (CAI) systems, which provide computer 
support in the area of innovative task formulation and solution.  

Computer-aided innovation uses software tools to provide extended support for the creative part 
of the design process. Software tools can use knowledge from designers to generate new 
solutions, based on many separate ideas and suggest entirely new design concepts. With this 
support the designer can improve the performance of his or her concepts, letting computers take 
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part not only in generating variants, but also in making judgments, by simulation, of these 
variants. Thus, a designer can explore numerous creative solutions to problems (overcoming 
'design fixation' or the limitations of conventional wisdom) by generating alternative solutions.  

The main problem for a "computer-aided inventing" algorithm resides in the fact that the possible 
concept variations of any product or process are infinite even inside of constrained spaces. The 
"computer-aided optimization" concept is based on techniques that reduce the search space by 
"sensing" the effect of variations of a reduced number of parameters involved. This means that 
an inherent contradiction is widening of the search space to non-parametric variations as the 
universe of possible solutions increases enormously to the extent that no computer-aided 
methods are available for thoroughly searching the existing possibilities. This contradiction in 
computer-aided inventing may be expressed as follows: the universe of possible variations 
should be widened so as to not be constrained to only the parameters of the object's original 
functional principle but should be constrained so as to reduce the search space to an affordable 
number of variants. Computer-aided inventing algorithms should be allowed to unrestrictedly 
search in the whole design space but as it rapidly grows to an infinite number of possible 
variations it should be constrained to such variations that allow a "maximal slope" of the 
conflicting objective parameters.  

7.1 Contributions of the research work 
In this work has been presented a procedural framework for a general strategy that extends the 
product development cycle into an innovation one. It takes the cases study for developing the 
geometry of a crankshaft using different tools as it is the genetic algorithms. The present 
research attempted to develop a set of guidelines to be integrated into a CAD platform in order 
to support the designer in the analysis of the conflicting features of the crankshaft under 
development and to provide systematic directions for the implementation of a solution that 
overcomes latent “geometrical contradictions”. In the pursuing of a new paradigm in product 
development, next are listed the main contributions of the research. 

-The main contribution can be stated as a proposal of an integration loop inside the product 
development cycle, which merges the activities during concept generation and evaluation, 
together with detailed design in a way that allows the designer overcome mental inertia. The 
procedure results in a strategy that merges the integration loop into a general computer aided 
innovation framework, which compiles the elements that are part of the optimization tasks but 
are extended, in order to provide innovative results. 

-The implementation of genetic algorithms in automatic optimization tasks involving the use of 
splines and the integration of CAD and CAE systems. CAD software to define the model 
geometry using splines, CAE to perform simulations of dynamic characteristics, process analysis 
and mathematical models of the product, controlled by a managing layer created in a 
programming code, used to integrate all these types of software. 

-The generation of design concepts for the shape of the counterweights, which help the designer 
to develop a novel crankshaft. The concepts obtained were both different from what it has been 
found in the patents, and the proof of concept shows that the material flow during the forging 
process is able to fill the cavity of the die. 
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-The development of the initial approaches to find a correlation between the inventive principles 
form TRIZ, that complement the genetic operators (mutation, crossover, etc) of the genetic 
algorithms theory, in order to be able to generate a list of “extended operators” to apply to the 
geometry of products. The correlation is based on the natural convergence of the laws of 
technological evolution from TRIZ, and the laws of biological evolution, from where genetic 
algorithms take its origins.  

For the attainment of the contributions, the research work consists of several chapters. An initial 
introductory chapter presented the concepts of evolutionary design and its use in optimization of 
mechanical systems; particularly the shape optimization based on genetic algorithms and the 
use of spline curves. The second chapter presented the cases study of a v-type 6-cylinder 
engine crankshaft; it is described an introduction to the dynamics of balance and a description of 
the balance equations. Third chapter describes the use of genetic algorithms in optimization and 
general characteristics of this type of algorithm; and introduces the general characteristics of the 
DAKOTA software that is used during the development of the case study. 

In the fourth chapter there is a description of the conceptual framework for the creation of the 
strategy that extends the optimization paradigm into an innovation one. It is described how the 
standard product development cycle is enhanced. The steps of the strategy are described and 
the different optimization/innovation tasks presented. Chapter five contains the description of the 
deployment of every task implementation: from optimization of balance to a multi-objective 
optimization involving curvature and eigen-frequencies. The results of all tasks are presented, 
which leads to a solution of a crankshaft with some novel characteristics that are changing the 
paradigm in counterweight design, not described in previous patents. 

In chapter six there are some thoughts on evolutionary design, genetic algorithms and inventive 
principles; at the same time, an algorithm to associate relevant inventive principles to models of 
geometrical contradictions has also being developed. Suggestions will guide the designer 
through the analysis of the conflicting geometrical features to the redefinition of the optimization 
tasks. There is an explanation of current optimization systems and of how different techniques, 
e.g. Pareto diagrams, can help identify conflicts. The aim was to resolve these conflicts by 
“innovation agents”. Further development of the optimization systems (parametric and topology) 
can only be achieved by integrating them with innovation methods. The resulting systems have a 
parametric shape and an innovative topological configuration. Some features need to be added 
to the system to be able to work in an "outside of the paradigm" way, and reach solutions that 
have not been considered before.  

The use and combination of optimization tools and innovation capabilities is intended to provide 
a means for “automatically” varying the shapes, forms and topologies derived from the 
evaluation made by CAE systems. Genetic algorithms are viewed as mechanism for embedding 
the innovative principles in a CAD interface. For example the parametric optimization capabilities 
of CAD systems can be extended from simple “size variations” to an enhanced performance 
similar to what can be achieved by FEM but without losing the parametric functionality. With this 
insight into enabling creativity by evolution, a framework for explorative supporting creative 
design by evolutionary computing technology has emerged; for only a part of generated 
mathematical expressions can be expressed by curves and generate useful shapes. CAI is 
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intended to stimulate the imagination of designers and activate their ‘mind’s eye’. It will give the 
designers concrete help to extend their design spaces 

Performance enhancements are first achieved through optimization methods for finding maxima 
or minima of the response surface. Then, after performance enhancements through parametric 
changes are exhausted, paradigm shifts and other qualitative changes that lead to innovation 
are required. This is a step closer to building a Computer Aided Innovation Environment that 
goes more deeply into the evolution of technical systems as an analogy to biological evolution. 
The basics of a new concept of engineering design software and computer aided innovation 
(CAI), are presented and the impact on global design performance and limits exploration is 
analyzed. In particular, the ability to introduce automatic changes in shapes and topologies in a 
3D-CAD environment is linked to the concept of CAI, allowing for an exploration of a broader 
field for possible solutions to a design problem. As a final reflection, it can be said that creativity 
and innovation can be structured in an objective methodology and taken out of the individual’s 
sub-conscience. Inventive principles suggest a series of recommendations to change the 
direction in which solutions are searched. These recommendations can be regarded as a 
knowledge database, which can be used to feed the cataclysmic similar transformation of 
genotypes during an evolution for optimization, allowing it to transcend the barriers of 
contradictions or constraints.  

The use of GAs in this research allowed the design and optimization of crankshaft shape, but 
GAs also automated the design process. The design automation was one of the pursuits when 
the GA-based approach was used for crankshaft shape optimization, since the conventional 
counterweight shape determination processes are typically both laborious and time consuming. 
The evolutionary approach and the conventional trial-and-error method are both based on using 
the same simulator programs for solving the real-life design problems. The difference lies in their 
capabilities for optimization. However, it is neither relevant nor possible to conclude that the 
crankshaft designed by an evolutionary approach would perform better with respect to the 
corresponding physical reality. At any rate, it can be concluded that it is likely to perform better if 
the quality of the used simulation model is at least reasonably good. 

Further research is necessary to implement the "automatic" variation of shape, topology and 
physical principles involved in a product development process following the recommendations 
derived from the simulation of the product performance parameters in a CAD/CAE environment. 
As the patterns of product evolution are useful in selecting the directions of possible variations to 
the functional principles further research is also required to look for the possible selection of 
alternative functional principles in a computer-aided inventing environment. 

7.2 Future work 
Two main directions of study are necessary to reach the attainment of an integrated approach 
for computer-aided innovation: The technical deployment and the theoretical foundation. 

For the technical deployment, some future lines of evolution for computer aided innovation 
approaches include the integration of evolutive algorithms with functional models in order to 
simplify the transition from concepts to virtual prototypes. Functional analysis allows the 
designer to see the complete design intention in the early stages of the product development 
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cycle. A good functional model should also provide integration with existing CAD models. It is 
necessary for instance to take into account the current CAD representation during functional 
modeling because it is one of the key elements to an automation process.  

Methods to represent functions, either by statements or by systems, can be structured 
representations based on graphs. One benefit of the models on graphs is that there are many 
rules, properties, and algorithms for analysis derived from graph theory. The graph data 
structure is a robust tool for modeling engineering knowledge of geometry. In addition, the 
graphs provide the ability to model connections between different elements, and illustrate their 
relationships. This is essential for modeling behavior and functionality, needed to design a 
solution concept or knowledge gain. 

Functional representation of models is not the only possibility to implement a technical approach. 
NIST Design Repository Project is a project of the National Institute of Standards and 
Technology (NIST) that involves research on providing a technical foundation for the creation of 
design repositories. Repositories of heterogeneous knowledge and data that are designated to 
support representation, capture, exchange, and reuse of design knowledge in general. One 
possibility for future work is to analyze the way in which design repositories can be implemented 
and used for the integration of the elements that comprise the CAI strategy, for example 

• Development of a platform for modeling information to support the product engineering 
modeling; and provide a more comprehensive knowledge than traditional CAD systems. 

• Implementation of interfaces for creating, editing, design and search design repositories 
that are easy to use and effective to convey the information you want, during a design 
process. 

• The use of standard representations, when possible, and a contribution to the long-term 
standard developments where there is currently no evolutionary development 

To achieve the technical implementation of CAI, we must work with existing CAD systems, 
especially those who make use of equations for modeling of products, added to the possibility of 
being integrated into a programming language. This is important since it will integrate the 
concepts of functional elements in a natural way. On the other hand, it is important to consider 
the basic geometry, because when changing the dimensions of the parameters, we could make 
use of genetic algorithms. 

The possibility of an automatic development of the design process and product innovation, 
involving the above elements, requires a theoretical and a practical basis. CAD representations, 
model repositories, knowledge databases, spline curves, etc., must be integrated with analysis 
at a functional level, simulations, CAE, genetic algorithms and implementations particularly 
supported by high-level concepts like TRIZ. Given the level of computer processing, one can 
predict that the graphics and programming skills will perform the referred activities in the near 
future. The possibility of integrating mathematical methods such as genetic algorithms with CAD 
representations and a functional description that may relate to the principles of TRIZ, make it 
possible to obtain an automatic design and innovation process. 
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A future work is related to a profound analysis of the most effective genetic algorithms 
nowadays, and to implement the inventive principles in an algorithmic way so that the concepts 
of TRIZ be part of the genetic operators. There is still work to do in that direction but we must 
make the first steps. 

 

A theoretical study is still necessary to pursue in the aim of the complete comprehension of the 
technical deployment. Questions like why using GAs instead of other methods? The answer may 
be linked to the versatility of evolutionary algorithms, in general, and GAs, in particular, makes 
them suitable for design-creativity tasks [2]. It has been expressed in chapter six how the 
evolution of technological systems and biological evolution are linked; it is reasonable to believe 
that the human evolution and the human creativity processes are also closely related. In 
situations where the borderline between optimization and creativity becomes undistinguishable, 
it is comprehensible to suppose that TRIZ and GAs are pointing in the same direction, but this is 
not enough to obtain a synergistic interaction. Some authors are proposing the use of dialectic 
laws as a framework to generate a coherent method integrating both tools as the basis for 
developing a computer-aided innovation framework [106].  

Since evolution has proven to be a good general strategy for problem solving, the possible 
interaction with GAs and design methodologies is another future work that could be pursued. 
With GAs and TRIZ complementing each other, Evolutionary Innovation Axioms can be 
proposed: 

 The phenotypic representation (observable characteristic) of the model can be 
hierarchically ordered, with the geometric dimension as its minimal level. The next level 
is its genotypic representation (chromosome: 0’s and 1’s). 

 A conflict can be expressed as the win-loss relationship between two or more phenotypic 
characteristics of a product, denominated “target functions” of the system, linked by a 
unique genotype. 

 The genetic operators act at a genotypic level during the evolution of a product, while the 
innovation operators act at a phenotypic level, which implies a cataclysmic change in the 
product characteristics. 

 

In this context, the structure of inventive principles could be redefined, including analogies 
between GA operators and TRIZ. There are very few studies linking TRIZ and genetic algorithms 
and when approached, it is treated very superficially. Both methods, together, can be further 
studied in order to increase the performance of the innovation process, to optimize, predict and 
innovate. The dialectic approach could reorganize the inventive principles and extend them into 
a more axiomatic structure and make them compatible with the genetic algorithms operators. 
Future work is necessary to discover new inventive principles and classify them in levels of 
specification.  

Since innovating requires seeing what others do not, the inclusion of new “search dimensions” 
will lead from optimization to innovation. From this viewpoint, the difference between traditional 
computerized optimization techniques and computer-aided innovation (CAI) could be done by 
considering the capability of expanding the search space for enhanced performance of the 
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technological system, when the search process of the traditional optimization approach does not 
deliver the required performance enhancement. A computer-aided innovation framework could 
be defined as a new system which aids in identifying the most likely constraints of the 
optimization process. The cycle have to be surpassed or overcome as achieving the ideal 
performance; and, on the other hand , to be integrated into CAD/CAE systems that can expand 
autonomously the original search space into new areas,  and look for "inventive solutions" likely 
to deliver the requested performance. Thus, a CAI framework is similar to two main ways human 
inventors look for new inventive solutions:  

1. New conceptual approaches based on establishing new shapes, topologies or physical 
principles that add new capabilities to the existing systems. 

2. Hybridizing the original system with others that add value to the new emerging one. 
 

Some authors are attempting to develop a theory of Universal Scheme of Evolution [107]. 
According to the author, his theory in its structure is similar to the Genetic Algorithm approach. A 
Universal Scheme of Evolution is developed on the base of trends of Engineering Systems 
evolution. From this point, their similarity grows. As computer time becomes ever more 
inexpensive, researchers will start routinely use genetic programming to produce useful new 
designs, generate patentable new inventions, and engineer around existing patents. If assuming 
that computer intelligence is the ability of the program to reflect the trends of the surrounding 
world, and this knowledge is used to gain system's goals, then when the program actively 
interacts with its environment, it has the elements of intelligence, and acts in accordance with 
USE algorithm.  

A more comprehensive approach is what it recently has been called C-K Theory. C-K Theory, or 
Concept-Knowledge Theory, is a theory of reasoning in design [108]. It defines design reasoning 
as a process of logic expansion, i.e. a logic that organizes the generation of unknown objects. C-
K theory is also a design theory that explains cognitive and collective aspects of design activities 
by such specific mode of reasoning. According to the theory, the process of design is defined as 
a double expansion of the C and K (C a space of concepts, K a space of knowledge). That 
expansion is performed through the application of four types of operators: C→C, C→K, K→C, 
K→K. According to their authors, C-K theory has been presented with a limited mathematical 
development. Yet there is a large area of investigation in this direction. The properties of K can 
be studied in more detail and the structure of the four operators presents very interesting 
features. A future work can attempt to characterize the conditions that warrant the existence of 
disjunctions and conjunctions; and finally investigate the mathematical and computerized tools 
that could capture the C-K process. 

One of the questions that arise is whether the man needs preparation to innovate. Or is it a 
computer that the one that must perform this task. The latter enters in the field of artificial 
intelligence, which has been one of the most controversial issues in the past 50 years. In 
between, we could make use of the computer to clarify our ideas and, by doing so, to achieve 
the goal of customer satisfaction and therefore our permanence in the market. 

Experience and judgment can lead to good design. When evaluating a fitness function genetic 
algorithms rely only on the latter of these two characteristics (judgment), based on evaluation 
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and comparison against certain criteria. The experience characteristic derived from the 
substantial knowledge of designers can be added to genetic algorithms by incorporating into the 
process inventive principles such as cataclysmic genetic operators. This additional information 
aids in the possibility of generating multiple functional variants that could be integrated into the 
creative process. Shape variations in CAD systems can contribute to stimulating the capacity of 
the designer’s imagination to generate more design variants, thus reducing the psychological 
inertia [44]. 
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