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The Identification of DoS and DDoS Attacks to IoT
Devices in Software Defined Networks by Using Machine

Learning and Deep Learning Models
by

Josué Genaro Almaraz Rivera

Abstract

This thesis project explores and improves the current state of the art about detection tech-
niques for Distributed Denial of Service (DDoS) attacks to Internet of Things (IoT) de-
vices in Software Defined Networks (SDN), which as far as is known, is a big problem
that network providers and data centers are still facing. Our planned solution for this
problem started with the selection of strong Machine Learning (ML) and Deep Learning
(DL) models from the current literature (such as Decision Trees and Recurrent Neural
Networks), and their further evaluation under three feature sets from our balanced version
of the Bot-IoT dataset, in order to evaluate the effects of different variables and avoid the
dependencies produced by the Argus flow data generator.

With this evaluation we achieved an average accuracy greater than 99% for binary
and multiclass classifications, leveraging the categories and subcategories present in the
Bot-IoT dataset, for the detection and identification of DDoS attacks based on Transport
(UDP, TCP) and Application layer (HTTP) protocols.

To extend the capacity of this Intrusion Detection System (IDS) we did a research
stay in Colombia, with Universidad de Antioquia and in collaboration with Aligo (a cyber-
security company from Medellı́n). There, we created a new dataset based on real normal
and attack traffic to physical IoT devices: the LATAM-DDoS-IoT dataset. We conducted
binary and multiclass classifications with the DoS and the DDoS versions of this new
dataset, getting an average accuracy of 99.967% and 98.872%, respectively. Then, we did
two additional experiments combining our balanced version of the Bot-IoT dataset, apply-
ing transfer learning and a datasets concatenation, showing the differences between both
domains and the generalization level we accomplished.

Finally, we deployed our extended IDS (as a functional app built in Java and con-
nected to an own cloud-hosted Python REST API) into a real-time SDN simulated envi-
ronment, based on the Open Network Operating System (ONOS) controller and Mininet.
We got a best accuracy of 94.608%, where 100% of the flows identified as attackers were
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correctly classified, and 91.406% of the attack flows were detected. This app can be fur-
ther enhanced with the creation of an Intrusion Prevention System (IPS) as mitigation
management strategy to stop the identified attackers.
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Chapter 1

Introduction

Distributed Denial of Service (DDoS) attacks are one of the main threats to network sys-
tems, affecting the applications and devices that rely on them. DDoS attacks consist in
grouping multiple devices against one target, preventing legitimate users to access ser-
vices such as email and websites, damaging the money and time of people and organiza-
tions. They represent the most common and critical attack against Internet of Things (IoT)
devices, Cloud Computing, and fifth-generation (5G) communication networks [63].

According to the Kaspersky Q2 2020 DDoS Attacks Report [50], in the second quar-
ter of 2020, the number of DDoS attacks slightly increased compared to the first quarter
of the same year (from 302.08% to 316.67%), and more than three-fold compared with
the data for the same period in 2019 (see Figure 1.1). In addition, the Kaspersky Q3 2021
DDoS Attacks Report [35], when compared to the same quarter of 2020, shows that the
total number of DDoS attacks increased by nearly 24%, and the total number of advanced
and targeted DDoS attacks increased by 31%.

A factor that intensifies these denial of service attacks, is that everyday more and
more devices are connected to and through the Internet (a trend which does not seem to
stop). From smart homes to industrial environments, the IoT is an ally to easing daily ac-
tivities, where some of them are critical. By 2025, there will likely be more than 27 billion
IoT connections [57], and due to the large amount of different manufacturers, it leads to
the lack of robust security standards between them for the fabrication of these devices,
that in turn allows for the creation of botnets after IoT hijacking [22]. Also, these IoT
devices often use weak passwords which makes them more vulnerable to compromise and
exploitation. This infection often goes unnoticed by the users, and an attacker could easily
conduct a high-scale attack without the device owner’s knowledge [22]. For instance, the
Mirai botnet unleashed massive DDoS attacks on major websites from millions of com-
promised devices in 2016, showing the power of IoT attacks [46]. Another example is
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Quarter trends of the total number of DDoS attacks in 2020 compared to 2019.
Image from [50].

Mozi, which emerged in 2019, and is the most active Mirai-type variant, controlling ap-
proximately 438,000 hosts which target routers and cameras, and in 2020 accounted for
89% of the total IoT attacks detected by IBM for the year [46]. These data corroborate the
need for computer systems capable of protecting the IoT infrastructure.

There exists a vast variety of DDoS attacks, but also there are many existing defense
systems, and these applications still create the impression that the research community
efforts are not enough. However that is the reality, because cybersecurity, as many others
fields, changes so fast and it is needed to accelerate it even further.

These defense systems are divided into two main categories:

• Intrusion Detection Systems (IDS).- These systems are responsible for capturing
network anomalies [44], and detecting if an attack is being conducted or not.

• Intrusion Prevention Systems (IPS).- These systems are responsible for responding
to the detected attacks.

There has been research and proposals using Artificial Intelligence (AI) to tackle
these detection and mitigation problems, such as Support Vector Machines [47], which
have reduced the effects of DDoS attacks, and an IPS designed for Software Defined Net-
works (SDN) [42] to secure the data plane (such as the WedgeTail system [56]).
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This work proposes to apply Machine Learning and Deep Learning algorithms, over
DDoS attacks in SDN, for the creation of an Intrusion Detection System with at least 95%
of accuracy in a deployed network, and integrate it into an Open Network Operating Sys-
tem (ONOS) app, for its future extension with a mitigation strategy to stop the identified
attackers. Machine Learning models such as Decision Trees and Random Forests, and
Deep Learning models such as Recurrent Neural Networks and Multi-layer Perceptron,
are assessed and discussed.

The design of a SDN infrastructure is the best option to deploy our IDS, because
these new generation networks are important for data centers, 5G technology, the integra-
tion of IoT devices, and have demonstrated effectiveness against cyberattacks [63]. An
explanation of what is SDN can be found in chapter 2.

The Figure 1.2 shows a modular SDN infrastructure proposed in [54] for attacks
detection and mitigation. We will focus on the IDS module, and provide it as a Service
API for the whole network. For development and testing purposes, we will run a simulated
environment using Mininet [43] and the ONOS controller. ONOS controller is the leading
open source SDN controller for building next-generation SDN solutions, and it gives real-
time control for native SDN dataplane devices with OpenFlow [15, 45].

Figure 1.2: A modular SDN architecture proposal, from [54].

The expected behavior of the IDS block from the architectural design in Figure 1.2,
is to receive a JSON request from the Flow Management module with the features from
the flow, for further inspection using the Machine Learning (ML) or Deep Learning (DL)
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model specified as one of the object parameters. The IDS then classifies this flow as normal
or attack, and identifies if this attack is based on UDP, TCP, or HTTP protocols. At the
end of this whole process, a proper JSON response is sent to the IPS on the controller, for
blacklisting of the attackers. The SDN Device block is usually a switch, and the devices
connected to it and the controller are the interests of protection.

By applying this framework proposal, it is expected to achieve a solution to the
rapidly growing DDoS attacks in Software Defined Networks, and significantly save time
and money of people and organizations.

The collection of data used for training and testing the novel smart IDS here pro-
posed, is the Bot-IoT dataset [41], published in 2019. This dataset was created with the
simulation of IoT sensors emulating a smart home arrangement: a weather station, a smart
fridge, motion activated lights, a remotely activated garage door, and a smart thermostat.

This dataset was chosen because it is a state-of-the-art dataset observed in other ap-
proaches for protecting IoT devices [36, 65, 37, 55, 29, 32], since it contains realistic
normal and attack traffic. Furthermore, this dataset has a subcategory field which en-
ables multiclass classification, and it presents information of DDoS and Denial of Service
(DoS) attacks generated using GoldenEye [9] for Application layer protocols (HTTP), and
Hping3 [10] for Transport layer protocols (UDP, TCP). The Argus tool [2] was used by the
dataset authors, after collecting the pcap files, to generate the network flows and produce
the features.

SYN flooding is one of the attack variants contained in the Bot-IoT dataset, and
according to the Kaspersky Q3 2021 DDoS attacks report [23], it is the method used
in 51.63% of the attacks. Flooding DDoS attacks based on UDP finished second with
38%, and those based on TCP remained third with 8.33%. DDoS attacks based on HTTP
finished in fourth place with 1.02%. This distribution of denial of service attacks by type,
motivates us to create models suitable for testing in Transport and Application layers, since
they represent at least 47% of the whole attack distribution, and when accompanied with
the SYN flooding variant from the Bot-IoT dataset we cover near to 99%.

The total amount of records in the Bot-IoT dataset exceeds 72 million [3], whilst
5% of this data (i.e., over 3 million records), is used in [41] by the authors of the dataset.
However, the Bot-IoT dataset suffers from severe class imbalance [58], with just a few
thousands (about 9,000) normal flows. This problem leads to bias towards a majority
class, one of the issues this thesis tackles.

To extend the capacity of our proposed IDS and finally deploy it into a real-time
simulated SDN environment, we did a research stay in Colombia with Universidad de
Antioquia and in collaboration with Aligo (a cybersecurity company from Medellı́n) [1].
There, we created a new dataset based on real normal and attack traffic to physical IoT
devices: the LATAM-DDoS-IoT dataset. More information about how we created this
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dataset, its structure and content, is shared in chapter 3.

1.1 Hypothesis and Research Questions

The hypothesis tested is that with a proper Machine Learning and Deep Learning models
selection, class balancing technique, and feature set from the Bot-IoT dataset, we can
obtain an Intrusion Detection System among the best ones in the state of the art literature
(in terms of efficiency and accuracy), for detecting DDoS and DoS attacks to IoT devices
in Software Defined Networks.

In particular, we will examine three main research questions:

1. Which class balancing technique can be applied to the Bot-IoT dataset for solving
the bias it has towards the majority class?

2. What is the best feature set for class classification using the Bot-IoT dataset to avoid
dependencies produced by the Argus flow data generator?

3. What Machine Learning and Deep Learning models selection is good for achiev-
ing fidelity and efficiency in detection of DDoS attacks to IoT devices in Software
Defined Networks?

1.2 Objectives

The primary objective is the application of Machine Learning and Deep Learning models
selection for the design of an Intrusion Detection System with an accuracy of at least 95%,
for DDoS attacks to IoT devices in Software Defined Networks.

There are three secondary objectives in this study:

• Analyze the state of the art for a proper Machine Learning and Deep Learning mod-
els selection, for the detection of DDoS attacks to IoT devices in Software Defined
Networks.

• Create an AI based Intrusion Detection System for the correct identification of DDoS
attacks based on UDP, TCP, and HTTP protocols.

• Deploy the resulting Intrusion Detection System in a production simulated environ-
ment based on ONOS controller and Mininet, to identify denial of service attacks.
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1.3 Contributions
We can summarize the main contributions of this thesis as follows:

• A suitable way to address the Bot-IoT dataset bias problem without adding class
weights and without generating synthetic data.

• An extensive evaluation of the classification and time performance of several Ma-
chine Learning and Deep Learning models with different feature sets, which led to
the discovery that it is not necessary to use the Argus flow data generator for any
online implementation based on the Bot-IoT dataset.

• Anomaly detection models that match and exceed the performance of the current
state of the art for identifying specific denial of service attacks categories, using
different feature sets.

• A deployed IDS on a production simulated environment using ONOS and Mininet,
that identifies denial of service attacks.

• A new dataset created with real normal and attack traffic to physical IoT devices.

1.4 Thesis Structure
This thesis consists of 5 chapters, including this introduction. The literature review is
presented in chapter 2. Chapter 3 describes the solution proposal for the creation of the
novel AI based Intrusion Detection System here proposed. Results analysis and evaluation
are shown in chapter 4. Finally, in chapter 5, we present the conclusions and future work.

For the sake of clarity of the reading in chapters 3 and 4, we added appendices A and
B, including some tables and figures.



Chapter 2

Literature Review

This chapter is about the efforts around the Bot-IoT dataset for the design of Intrusion
Detection Systems based on Artificial Intelligence. We discuss about resampling tech-
niques for tackling the class imbalance problem this dataset has, and different feature sets
configurations proposed by other authors. First of all, we define what denial of service
attacks are, their classification, and outline the different approaches that can be followed
for attacks detection (to determine which fits better for IoT).

2.1 DDoS Attacks: Definition and Classification
Denial of service attacks from a single point (DoS) or distributed points (DDoS), lead to
the depletion of memory and processing power on the victim (e.g., a server), so that legit-
imate traffic cannot be served, and the service becomes unresponsive [62]. They represent
the most common and critical attack against IoT devices, Cloud Computing, and 5G com-
munication networks [63], damaging the time and money of people and organizations. The
DDoS field is too complex and has reached the point where it is difficult to understand the
vast problem space [49].

According to the size of the traffic they generate for exhausting the victim, denial of
service attacks can be classified into two main categories: high-rate and low-rate attacks.
The behavior of low-rate attacks is extremely inconspicuous since they behave similarly
to legitimate traffic and can account for about 10%-20% of the total normal network traffic
[66]. Although the average traffic of low-rate attacks is small, they can potentially not
only reduce the quality of service of the target, but also stop the service completely [66].
This is achieved by an attacker sending periodically pulsing data, instead of continuous
flows [64]. Examples of low-rate denial of service attacks are GoldenEye, Slowloris and
R.U.D.Y. (R-U-Dead-Yet?) [54].

7
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On the other side, high-rate DDoS attacks employ an approach of high-rate trans-
mission of packets, where the statistical changes in the behavior can be used to distinguish
them from the normal data flows [64]. High-rate attacks violently exhaust the resources
and the capacity of the network, making the victim unresponsive in a short period of time
[66]. Examples of high-rate denial of service attacks are SYN Flood and UDP Flood [66].

2.2 Intrusion Detection Approaches: Network-based vs
Host-based

Due to their nature of low power and low computational strength, IoT devices may not be
capable of running encryption algorithms or antivirus software, and because of this, many
IoT devices become easy targets of botnets. The large size of IoT makes these botnets be
able to perform destructive DDoS attacks [48].

Because of these resource constraints, traditional DDoS defense solutions are not ef-
fective in IoT environments. It is mandatory to come up with new proposals, and there has
been research about it. A couple examples are the FR-WARD system [48], and DeepPower
[33].

In general, malware detection approaches can be divided into two categories [33]:

• Network-based approach: this type of solutions have been commonly used for pro-
tecting IoT systems. What these solutions do is to detect malicious traffic patterns
in IoT networks.

• Host-based approach: this type of solutions examine the activities executed inside
the IoT devices using for instance antivirus software.

There are many IoT devices, and so they are built in a different way, what makes it
difficult to come up with one global detection approach. This is why it is impractical to
directly use traditional host-based detection solutions.

Mitigation strategies are not in the scope of this thesis, but it is also an interesting
and complex problem to mention. Large botnets made up of IoT devices have been a
continuous presence in the threat landscape since 2016. Different IoT malware families,
such as Mirai, have enabled attackers to launch massive DDoS attacks and other forms of
cybercrime. A key aspect observed of IoT botnets, is that they have a short lifetime, so they
seem to be highly disposable. This is a huge advantage for the attackers, because it means
these botnets are very resistant to takedown with mitigation strategies such as blacklisting,
because most IP addresses are used only once [59]. The detection and mitigation tasks for
IoT networks are hard to design, but the benefits of these solutions are immense because
of the demanded protection tasks.
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As previously mentioned in the detection approaches, due to the resource constraints,
and different manufacturers of IoT devices, we decided to follow a network-based ap-
proach for our detection system, using the Bot-IoT dataset. In the next section we see in
detail the testbed used to design this dataset, along the tools used for collecting and parsing
the packets into flows and create the features.

2.3 The Bot-IoT Dataset

The Bot-IoT dataset was created in a testbed designed by the University of New South
Wales (see Figure 2.1), and includes among others, DDoS and DoS attacks. It consists
of four Kali Virtual Machines which act as attackers (Bot Kali 1, Bot Kali 2, Bot Kali 3,
and Bot Kali 4), and five IoT devices simulated using Node-RED [14], implemented on
an Ubuntu Server, emulating a smart home scenario with a weather station, a smart fridge,
motion activated lights, a garage door, and a smart thermostat. For generating normal
traffic, the authors used the Ostinato tool [17], along with maintained periodically normal
connections between the virtual machines by executing functions such as file transferring.

To dump and analyze the network traffic, the tshark tool [21] was used on the
Ubuntu Tap machine, and the pcap files collected were further parsed offline into network
flows to produce the dataset features, using Argus. The total amount of records exceeds
72 million [3].

In the original publication of the Bot-IoT [41], its authors evaluated their work by
training three different models: one Machine Learning model based on a Support Vector
Machine (SVM) with a linear kernel; two Deep Learning models, using a simple Recurrent
Neural Network (RNN), and a Long-Short Term Memory (LSTM) architecture.

The performance of the models was evaluated with two different sets of features: the
first of them used the 10 best features (selected from a filter with Correlation Coefficient
and Joint Entropy), and the second one used all the 35 features.

For multiclass classification of all the attacks in the Bot-IoT dataset, the best accu-
racy was of 99.988% with a SVM using all the 35 features. In terms of exclusively DDoS
and DoS attacks, the work only reports binary classifications (e.g., Normal flows vs DDoS
HTTP), getting the maximum accuracy of 99.999% for Normal flows vs DDoS UDP with
a RNN.

Nevertheless, the dataset was unbalanced [58], which may have affected positively
the identification of attacks (i.e., the majority class) due to data bias. This is one of the
opportunities we address in this research. In the next section we explore the works around
the Bot-IoT dataset.
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Figure 2.1: Testbed configuration for the Bot-IoT dataset. Image from [41].

2.4 Related Work

The work in [36], used also 5% of the Bot-IoT dataset, and presented 7 different Deep
Learning models including RNNs, achieving a maximum sensitivity of 96.868% for Nor-
mal flows vs DoS HTTP. With respect to DDoS, the maximum sensitivity was for Normal
flows vs DDoS UDP, with 96.666%.

In [65], the authors applied different Random Forest configurations, tuning the depth
and the number of trees. The authors proposed 6 different feature sets (from 4 to 8 features,
such as IP, port, and timestamp), and compared their accuracies with the 10 best features
set and the SVM in the Bot-IoT paper [41]. The accuracy of the SVM with the 10 best
features set is 88.372%, while the accuracy of the proposed Random Forest (with the 6
different feature sets) is 100%. Nevertheless, it is important to note that the experiments
in [65] not only considered either DDoS or DoS attacks, but also included other types of
attacks, such as data ex-filtration and service scanning. No other models were presented
by the authors, only Random Forest, with small number of features, which might lead to
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the loose of information. With respect to time performance, the authors only evaluated the
effects of the Random Forest sizes on run-time overheads to classify a single data packet.

In [37], a packet level model based on Deep Learning was proposed, using Feed For-
ward Neural Networks (FFNN) for binary and multiclass classification with the Bot-IoT
dataset. The four categories of attacks were DoS, DDoS, reconnaissance and information
theft, in order to differentiate them from the normal traffic. Confusion matrices were gen-
erated, and the accuracy, precision, recall, and F1 score metrics were used for performance
evaluation. With respect to only DoS and DDoS attacks, the proposed model presented all
accuracies above 99% in binary classification (e.g., Normal flows vs DDoS TCP), and an
accuracy of 99.414% for multiclass classification. In order to deal with the unbalanced
nature of the dataset, class weights were introduced to the training data, so the class with
a smaller number of samples got a higher weight value. However, this technique could
introduce the risk of over tuning, resulting in weights that may not generalize optimally
[37].

In [55], the Bot-IoT dataset was used to validate a new feature selection algorithm
based on the Area Under the Curve (AUC) metric. A feature set of 5 variables was selected
as the best one, and the mean and the standard deviation of the duration of the aggregated
records were two of those features. Only 4 Machine Learning models were applied: De-
cision Tree, Naive Bayes, Random Forest and SVM. The accuracy, precision, recall, and
specificity metrics were used for performance evaluation. In terms of results, Random
Forest and Decision Tree showed an accuracy of 100% for HTTP, TCP, and UDP denial
of service attacks detection. This paper presented a solution for the problem of select-
ing effective features for accurate attacks detection in IoT networks. The AUC metric is
useful for dealing with imbalanced datasets [38], nevertheless, the research work neither
evaluates Deep Learning models nor presents a performance evaluation metric, such as
the average of flows per second each model can process, which is relevant to evaluate the
feasibility of real-time implementation of their proposed best models.

The work in [29] presented a novel use of Gated Recurrent Units (GRU) in the Bot-
IoT dataset. GRUs aim to solve the vanishing gradient problem in a standard RNN [29],
by using update and reset gates. The proposed model used only 125,971 samples from the
original Bot-IoT dataset, in order to do a fair comparison and to have the same size than
the NSL-KDD dataset [60], obtaining an accuracy of 99.76% for Normal vs Attack traffic
identification, with no exclusivity for either DDoS or DoS attacks.

In [32], the Bot-IoT dataset was used for conducting binary and multiclass classifica-
tion tasks, with balanced and unbalanced representations of it, where the class balancing
technique used was based on weights, as seen in [37]. As mentioned by the authors in
[32], they used the default values of the hyper parameters for each classifier, as provided
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by Scikit-Learn [53] and Keras [31]. In terms of performance metrics, they present indi-
cators like accuracy and F1 score, however the authors did not present an evaluation of the
models feasibility in a real-time scenario (e.g., by evaluating time performance). From the
original Bot-IoT dataset that has 35 variables, the authors removed columns with missing
values, as well as columns that contain text and columns they considered to be irrelevant.
Their complete dataset had 19 variables, where features like the timestamps and the Ar-
gus sequence number remained. For training and testing, they applied a data split of 80%
and 20% respectively, with no percentage reported for a validation set. For the weighted
datasets, the Artificial Neural Network (ANN) was the most outstanding model, with a
stable accuracy of 99% for binary classification in DDoS and DoS attacks protocols. For
the multiclass classification, the authors presented an overall accuracy with all the attacks
types contained in the Bot-IoT dataset, where the ANN kept in first place with an accuracy
of 97%. The authors stated they did not train Deep Learning models.

In [58], the authors recognized the need for class balancing in the Bot-IoT dataset.
This study showed the majority classes belong to the attack types, while the normal traffic
is part of the minority classes with only 9,515 samples (accompanied with information
theft, which has 1,587 samples), resulting in a ratio of normal to malicious traffic of 1:7687
[58]. An imbalanced dataset may lead to problems such as poor accuracy and/or bias
towards the majority class in the results obtained. Specifically, talking about DDoS and
DoS attacks, the normal to attack traffic ratio for DoS is 1:459 (i.e., 9,515 to 33,005,194
flows), and the ratio for normal to DDoS is 1:4038 (i.e., 9,515 to 38,532,480 flows) [58].
Thus, the Bot-IoT dataset seems to be better suited to distinguish between a DoS and a
DDoS attack [58], since these categories have similar number of samples (i.e., about 38
million for DDoS, and 33 million for DoS).

Based on this state of the art review, it can be seen that only two works applied class
balancing to the Bot-IoT dataset, and not all of them considered Machine Learning and
Deep Learning models. Furthermore, time performance evaluation only was contemplated
by one of the works. This analysis reflects a need for a more extensive experimentation on
the Bot-IoT dataset to design robust anomaly detection models.

Table 2.1 presents a summary comparing the related work with our approach. We
present this comparison across 6 relevant criteria to describe the position of our work and
how it stands out from the current state of the art. As we can see, our work is the only
one that tackles the class balancing problem of the Bot-IoT dataset whilst using different
feature sets, evaluating ML and DL models, time performance, and all at a flow-level
detection.
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Table 2.1: Comparison between our approach and the related work around the Bot-IoT
dataset.

This
work

[41] [36] [65] [37] [55] [29] [32]

Class balancing ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔

ML models eval-
uation

✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔

DL models evalu-
ation

✔ ✔ ✔ ✗ ✔ ✗ ✔ ✗

Feature set(s)
proposal

✔ ✔ ✗ ✔ ✔ ✔ ✗ ✔

Time perfor-
mance evaluation

✔ ✗ ✗ ✔ ✗ ✗ ✗ ✗

Flow-level detec-
tion

✔ ✔ ✔ ✔ ✗ ✔ ✔ ✔
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2.5 Class Balancing

In order to deal with imbalanced datasets, resampling techniques can be applied to ame-
liorate this problem. When oversampling, minority class instances are created, either by
duplicating elements or by creating new ones synthetically from a similar distribution.
The latter technique can be achieved using the Synthetic Minority Oversampling Tech-
nique (SMOTE), where depending on the amount of oversampling required, neighbors
from the k nearest neighbors are randomly chosen, with one sample generated in each
one’s direction [30]. When undersampling, samples from the majority class are removed,
which can cause loss of information.

We propose to tackle the data bias problem of the Bot-IoT dataset by randomly se-
lecting consecutive flows sections per each DDoS/DoS attack type, to preserve the tempo-
ral behavior of the attacks whilst not altering the network traffic collected from the realistic
testbed configuration used to design the Bot-IoT dataset.

2.6 Software Defined Networks

The Software Defined Networks are also known as new generation networks. This net-
working paradigm enables more flexible and manageable environments, by decoupling
the control and data planes, which were formerly implemented inside switches and routers
[62]. All the network control functions, such as traffic monitoring, take place in a software-
based controller [63], which can either be physically centralized or distributed, but logi-
cally centralized [26], whilst network switches become forwarding elements that follow
rules to dispatch flows [62].

The controller is the most important entity in SDN, however, it is also very sensitive
to a broad range of attacks [62]. DDoS attacks are one of these security risks, downgrading
the performance, availability, and integrity of the network, by saturating with packets the
communication channel between the switches and the controller [62]. This communication
channel is also known as the Southbound interface, where OpenFlow [45] and P4 [18] are
well-known providers for such API.

In order to fulfill the principles of better administration, transparency, and automa-
tion, the Open Networking Foundation [16] proposed a three-layer architecture for SDN
(see Figure 2.2), with the control and data planes, but also with the application plane.
The application plane includes applications for providing services such as monitoring and
routing, such as Intrusion Detection Systems and Intrusion Prevention Systems. These
applications communicate to the controller using a Northbound interface, which can be
implemented as a REST API [62].
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Figure 2.2: Three-layer architecture for SDN, from [62].

This flexibility on global network monitoring and network configuration enables the
implementation of detection and mitigation mechanisms against cyberattacks [63]. Sim-
ulation of SDN can be done even on a personal computer, using Mininet [43] and con-
trollers such as ONOS [27] and Ryu [19], for research and testing purposes of large-scale
networks.

2.7 Conclusions

Based on this review of the current state of the art, we planned to carry out an exten-
sive experimentation specialized in normal flows vs DDoS and DoS attacks, in binary and
multiclass classifications, with different feature sets to evaluate how different flows pro-
cessors could be used either in a simulated or in a real network implementation, such as
CICFlowMeter [4] or Flowtbag [8], to avoid dependencies produced by Argus. This ex-
periment design divided in binary and multiclass classifications, allowed us to evaluate the
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detection and identification of network traffic, respectively, leveraging the categories and
subcategories present in the Bot-IoT dataset. Likewise, we planned to compare several ML
and DL models for a finer selection of our best algorithms for anomaly detection, under
popular metrics such as accuracy and precision, but also time performance to analyze the
feasibility of implementation of our smart IDS in a real-time environment.

We decided to train and test Support Vector Machines, Decision Trees, and Random
Forests, as Machine Learning models, and Multi-layer Perceptron, Recurrent Neural Net-
works, LSTMs, and GRUs, as Deep Learning models, due to their strong use in the state
of the art for smart intrusion detection.



Chapter 3

Solution Proposal

In this chapter, we describe the methodology we followed to create our balanced version
of the Bot-IoT dataset, and also the feature standardization process we applied to help
convergence in the different classifiers. Likewise, we present a summary of the ML and
DL models parameters to conduct our experiments with the proposed feature sets, and
define the different performance metrics to evaluate our results.

First of all, we present the data processing we followed and our proposed feature sets
for the Bot-IoT dataset, to then continue with the AI models training and evaluation defi-
nition. Then, we present and explain the LATAM-DDoS-IoT dataset creation, which was
used for extending our smart IDS based on the Bot-IoT dataset for the goal of deploying
our prototype in a real-time SDN testbed. This experimental topology is described in the
last section of this chapter.

For the sake of clarity of the reading in this chapter, some tables are in appendix A.

3.1 Data Processing and Proposed Feature Sets
In order to start working with the Bot-IoT dataset, we downloaded the labeled CSV files
from [3]. A total of 9,085 samples were extracted for the normal class. We selected items
in the majority class (the attacks) by randomly choosing sections of consecutive flows
for each DDoS/DoS attack type, in the same proportion to the normal samples to keep a
balanced ratio. Figure 3.1, shows we achieved the same number of flows for each of the
classes for the multiclass classification, where UDP, TCP, and HTTP, are samples from
both DDoS and DoS attacks. See Figure 3.2 for the distribution for binary classification.
In the end, the complete dataset size was of 36,340 samples.

In order to design our models, we selected three different feature sets from the orig-
inal Bot-IoT dataset that has 35 variables. We followed this approach in order to evaluate

17
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Figure 3.1: Data distribution plot for multiclass classification.

Figure 3.2: Data distribution plot for binary classification.
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how the records timestamps affect in the models predictions, and to avoid the dependen-
cies produced by the Argus flow data generator (so that more flows processors could be
used in a simulated or real network implementation, such as CICFlowMeter or Flowtbag).

As seen in Table 3.1, all the feature sets share the same statistical variables (i.e., rates,
mean, maximum, minimum, etc.). The first feature set we tried is selected to evaluate the
impact of the timestamps and the Argus sequence number on the classification results. The
second feature set removes the timestamps, because we argue the model could memorize
these features which may lead to poor generalization in a real-time scenario, likewise we
remove the Argus sequence number to avoid dependencies with this parser. Finally, in the
third feature set, we keep the Argus sequence number in agreement with the current state
of the art (that use this feature) to evaluate how it affects the classifications excluding only
the timestamps.

Table 3.1: Feature sets selected.

Name Features Description

First feature set stime, pkts, bytes, ltime,
seq, dur, mean, stddev,
sum, min, max, spkts, dp-
kts, sbytes, dbytes, rate,
srate, drate

Using timestamps, the
Argus sequence number,
and the statistical variables
(i.e., rates, mean, maxi-
mum, minimum, etc.).

Second feature
set

pkts, bytes, dur, mean, std-
dev, sum, min, max, spkts,
dpkts, sbytes, dbytes, rate,
srate, drate

With no timestamps nei-
ther the Argus sequence
number, only the statistical
variables.

Third feature set pkts, bytes, seq, dur, mean,
stddev, sum, min, max, sp-
kts, dpkts, sbytes, dbytes,
rate, srate, drate

With the Argus sequence
number and the statistical
variables.

The three feature sets ranged between 15 and 18 variables, which were selected
after dropping columns with missing values and choosing statistical features to capture the
traffic behavior. No more feature removal was applied in order to capture the most amount
possible of information. See Table 3.2 for the description of the variables. It is relevant to
note that 8 of the variables in the 10-best feature set, identified in [41], are included in the



20 CHAPTER 3. SOLUTION PROPOSAL

first and the third feature sets we proposed, and 7 of those 10-best variables in the second
feature set.

Table 3.2: Variables description.

Feature Description

stime Record start time.

ltime Record last time.

seq Argus sequence number.

pkts Total number of packets in transaction.

bytes Total number of bytes in transaction.

dur Record total duration.

mean Average duration at records aggregate level.

stddev Standard deviation of the duration at records aggregate level.

sum Total duration at records aggregate level.

min Minimum duration at records aggregate level.

max Maximum duration at records aggregate level.

spkts Source to destination packets count.

dpkts Destination to source packets count.

sbytes Source to destination bytes count.

dbytes Destination to source bytes count.

rate Total packets per second in transaction.

srate Source to destination packets per second.

drate Destination to source packets per second.
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Figure 3.3: Correlation matrix for multiclass classification.

The correlation matrix for the multiclass classification task is shown in Figure 3.3,
and for binary classification in Figure 3.4. Here, subcategory represents the class to pre-
dict. Since we wanted to see the linear relation between our variables (where all are nu-
merical), we calculated these matrices using the Pearson’s correlation coefficient, resulting
in values between -1 and 1, positive values indicating a pair of features that increase or de-
crease together, and negative values indicating that the increase of one variable implies the
decrease of another variable (and vice versa).

To help convergence, the features were standardized by subtracting the mean (cen-
tering), and dividing by the standard deviation (scaling), resulting in a set of values whose
mean is 0, and the standard deviation equals to 1 (see Equation (3.1)).

x′ =
x−mean

stddev
(3.1)

3.2 AI Models Training and Evaluation
The dataset split for all the Machine Learning and Deep Learning models was 80% for
training, 10% for validation (tuning hyper parameters), and 10% for testing. Given our
total number of samples, we decided to create separate sets for training, validation and
testing, instead of using other alternatives such as k-fold cross-validation.
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Figure 3.4: Correlation matrix for binary classification.

All the ML models (i.e., Support Vector Machines, Decision Trees, and Random
Forests) were built using Scikit-Learn [53], and the DL models (i.e., RNN, GRU, LSTM,
and Multi-layer Perceptron [MLP]) using PyTorch [52]. Confusion matrices were gener-
ated and accuracy, precision, recall, and F1 score metrics, in addition to time performance
as proposed in [25], were used for evaluation and models benchmark. See Equations (3.2),
(3.3), (3.4), and (3.5), for these metrics’ definitions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.5)

Tables A.1, A.2, and A.3, show the parameters for the ML models using the three
feature sets. With respect to the DL models, all of them share the characteristics presented
in Table A.4, where the input size varies according to the feature set (i.e., 18 for the first set,
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15 for the second one, and 16 for the third one). The hyper parameters for both Machine
Learning and Deep Learning were chosen after a process of systematic tuning.

This process of systematic tuning for the hyper parameters, consisted in an iterative
approach of proving different settings. For instance, when defining the depth of our best
decision tree, we selected the tree depth with the best accuracy from a finite range of
values; for the SVMwe tried the different kernels (linear, polynomial, radial, and sigmoid)
to select the best one; for the DL models we defined the best learning rate minimizing the
range between 0 and 1 using random decimal numbers.

In this regard, the best obtained max depth for the Decision Tree, in both binary and
multiclass classification, was correspondingly used as max depth for the Random Forest
sub-estimators. Likewise, we report the number of trees that led us to optimal balance
between accuracy and run-time. It should be noted that, the Decision Tree implementation
Scikit-Learn uses is an optimized version of the CART (Classification and Regression
Trees) algorithm [5].

All our DL models follow a fully connected neural network architecture, where
Adam [40] is used as optimizer. Adam is suitable for convex and non-convex optimization
problems, with large datasets and a lot of parameters. We decided to choose it because
when compared to other optimizers, such as AdaGrad [34] and RMSProp [61], it con-
verges faster (in a less number of epochs) to the best solution. Advantages of Adam are
the natural implementation of learning rate annealing (i.e., adaptive learning rates), and
its hyper parameters require little tuning (in fact, we used the default values provided by
PyTorch for β1, β2, and ϵ).

3.3 The LATAM-DDoS-IoT Dataset

For extending our smart IDS based on the Bot-IoT dataset, we did a research stay in
Colombia, with Universidad de Antioquia and in collaboration with the cybersecurity
company Aligo, where we built and implemented a hybrid testbed for DDoS attacks. See
Figure 3.5 for the testbed configuration.

The victims of the attacks were four physical IoT devices and one simulated device.
The four physical IoT devices were two Google Home Mini, one smart power strip, and
one smart light bulb, connected via an access point. The simulated device using Node-
RED was a thermostat, running on a container in a virtual machine with Fedora Linux.

We launched DDoS and DoS attacks based on UDP and TCP (using Hping3), and
based on HTTP (using GoldenEye). The attackers were two Kali virtual machines, running
the previously mentioned tools, but also tcpdump [20] for capturing the network traffic,
and Nmap [13] for port scanning to identify open services running on the victims.
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Figure 3.5: Testbed configuration for the LATAM-DDoS-IoT dataset.

The normal traffic was captured from the testbed13.aligo.corp node, connected to
a span port, where allowed real activities from the Aligo customers were collected. The
time window for capturing this normal traffic was of 50 minutes, whilst for each victim
attack was of 10 minutes. Each time window was run after the previous finished, to avoid
any bias towards the timestamps. The pcap files collected were then offline processed
using Argus for getting data at flow-level and the features we previously discussed from
our different feature sets. See Table 3.3 for the total number of flows collected for the DoS
version of our dataset, and Table 3.4 for the DDoS version.

The data was labeled following the same convention from the Bot-IoT dataset, with
a category column (where 0 means normal, and 1 means attack traffic), and a subcategory
column (with values from 0 to 3, for Normal, UDP, TCP, and HTTP classes, respectively).
This labeling allows the implementation of supervised learning methods (as we have done
so far), and binary and multiclass classification tasks for the detection and identification of
denial of service attacks.

The total number of samples for the LATAM-DoS-IoT dataset was 30,662,911 flows
with 20 columns, and for the LATAM-DDoS-IoT dataset was 49,666,991 flows with the
same number of columns. The correlation matrix for the DoS version is shown in Figure
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Table 3.3: Total flows for the LATAM-DoS-IoT dataset.

Victim Via Time Flows

Google Home Mini
(192.168.200.33)

hping3 TCP 10 minutes 8,002,589

Google Home Mini
(192.168.200.34)

hping3 UDP 10 minutes 7,667,921

Smart Light Bulb hping3 UDP 10 minutes 7,610,420

Smart Power Strip hping3 UDP 10 minutes 6,573,253

Normal Traffic Span port 50 minutes 799,187

Thermostat GoldenEye (HTTP) 10 minutes 9,541

Table 3.4: Total flows for the LATAM-DDoS-IoT dataset.

Victim Via Time Flows

Google Home Mini
(192.168.200.34)

hping3 UDP 10 minutes 14,804,835

Smart Light Bulb hping3 UDP 10 minutes 13,053,593

Smart Power Strip hping3 UDP 10 minutes 12,632,022

Google Home Mini
(192.168.200.33)

hping3 TCP 10 minutes 8,343,462

Normal Traffic Span port 50 minutes 799,187

Thermostat GoldenEye (HTTP) 10 minutes 33,892
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Figure 3.6: Correlation matrix for the LATAM-DoS-IoT dataset.

3.6, and for the DDoS version in Figure 3.7 (both calculated using the Pearson’s correlation
coefficient).

As stated by the Bot-IoT dataset authors [41], they did not have access to real IoT
devices during their experiments. This is one of the advantages of using our proposed
dataset, where our scenario is diverse and represents a realistic configuration. Also, an-
other advantage is that we present a vast amount of real normal traffic, generated by real
customers consuming real services, which can be used to model one-class classifiers [39]
for zero-day attacks [28] detection.

Our denial of service attacks based on TCP and UDP protocols had a flooding be-
havior. We successfully made the two Google Home Mini fail, where the Google service
remained processing the voice requests (with the status lights on) but it could not respond
to them. Also, we got to successfully stress the smart power strip, because it did not resist
the DDoS attack for more than 8 minutes. For the smart light bulb, the light remained on,
but it could not change of color. Hping3 seems to be a strong attack tool for denial of ser-
vice, since GoldenEye (used against the simulated thermostat) did not interrupt the victim.
That can be explained because GoldenEye is a low-rate denial of service tool so it requires
more time to stop the victim. See Table 3.5 for the commands used to launch the attacks.
The difference between the LATAM-DoS-IoT and LATAM-DDoS-IoT datasets, is that the
same attack commands were launched from either one or two Kali virtual machines at the
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Figure 3.7: Correlation matrix for the LATAM-DDoS-IoT dataset.

same time, respectively.

Table 3.5: Attacks commands for both LATAM-DoS-IoT and LATAM-DDoS-IoT
datasets.

Victim IP Port Command
Smart Power Strip 192.168.200.37 6668 hping3 -S –udp –flood -d 100

-p 6668 192.168.200.37
Google Home Mini 192.168.200.34 8008 hping3 -S –udp –flood -d 100

-p 8008 192.168.200.34
Google Home Mini 192.168.200.33 8008 hping3 -S –flood -d 100 -p

8008 192.168.200.33
Smart Light Bulb 192.168.200.32 6668 hping3 -S –udp –flood -d 100

-p 6668 192.168.200.32
Thermostat 192.168.200.26 80 goldeneye.py

http://192.168.200.26:80
-m post -s 75 -w 1
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From Table 3.5 we can see three distinct commands patterns:

1. hping3 -S –udp –flood -d 100 -p 6668 192.168.200.37: this command means to
launch a SYN UDP attack sending packets as fast as possible, of body size 100
bytes, against destination port 6668 of the IP 192.168.200.37.

2. hping3 -S –flood -d 100 -p 8008 192.168.200.33: this command means to launch a
SYN TCP attack sending packets as fast as possible, of body size 100 bytes, against
destination port 8008 of the IP 192.168.200.33.

3. goldeneye.py http://192.168.200.26:80 -m post -s 75 -w 1: this command means to
launch an HTTP attack against the port 80 of the IP address http://192.168.200.26,
using the HTTP method POST, 75 concurrent sockets and 1 concurrent worker.

From the datasets we created, we decided to apply the same random selection of con-
secutive flows sections for each attack type, in the same proportion to the normal samples
to keep a balanced ratio. See Figure 3.8 for the data distribution for the LATAM-DoS-
IoT dataset, and Figure 3.9 for the LATAM-DDoS-IoT dataset. In the end, the complete
dataset size for training the AI models was of 2,407,102 and 2,431,453 samples, for DoS
and DDoS versions respectively. The difference between both distributions is basically
the number of GoldenEye flows, which is less than the other classes due to the low-rate
behavior of this tool.

Figure 3.8: Data distribution plot for the LATAM-DoS-IoT dataset for training the AI
models.
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Figure 3.9: Data distribution plot for the LATAM-DDoS-IoT dataset for training the AI
models.

Once having these balanced versions, we conducted different experiments with the
best Machine Learning and the best Deep Learning models from our tests with the Bot-
IoT dataset, namely Decision Tree and Multi-layer Perceptron. These new experiments
included applying transfer learning with our Bot-IoT dataset balanced version, and an-
other experiment concatenating datasets. In chapter 4 we present and discuss the obtained
results.

3.4 SDN Testbed for IDS Deployment

In order to deploy our smart IDS we simulated a SDN infrastructure using Mininet and
ONOS as network controller. This testbed is a hybrid architecture, where we have ONOS
installed and running as a Linux service in an Ubuntu 18.04.6 LTS machine, but we also
have simulated devices using Mininet. The network diagram is depicted in Figure 3.10.

Our testbed includes one physical Ubuntu computer where the ONOS controller is
directly running as a Linux service. Also, the architecture is structured with two switches,
where each one of them has four nodes with an IP address in the subnet 10.0.0.x. We used
iPerf [12] for generating normal traffic from the normal clients, and also for implementing
two servers listening on TCP port 5001. The attacker nodes generate high-rate denial of
service attacks based on TCP using Hping3. We can list the different commands, per type
of node from the Figure 3.10, as follows:

1. iperf -s: this command allows running iPerf in server mode. We ran this command
for implementing the server nodes (i.e., the 10.0.0.1 and 10.0.0.8 IP addresses).
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Figure 3.10: SDN testbed for deploying our smart IDS.

2. iperf -c 10.0.0.1 -p 5001 -t 60 -p 3: this command allows running iPerf in client
mode, and creates three TCP simultaneous connections to the server 10.0.0.1 in the
port 5001, during 60 seconds.

3. hping3 -S –faster -d 100 -p 5001 10.0.0.1: this command means to launch a SYN
TCP attack sending 100 packets per second, of body size 100 bytes, against destina-
tion port 5001 of the IP 10.0.0.1.

Naming the hosts from the IP address 10.0.0.1 up to the IP address 10.0.0.8, as h1 up
to h8, we can explain from which node to what node the communications occur in the SDN
testbed. The host h2 generates legitimate traffic to h8; h5 and h6 legitimate traffic to h1;
h3 and h4 attack h1; and h7 attacks h8. We generated legitimate traffic during 60 seconds
from our normal hosts at the same time, and in the second 50 we started launching denial
of service attacks from all the attacker nodes for 10 seconds. This was enough for running
a ping reachability test in the network and see 98% of the communications dropped.

Currently our Java prototype is limited to work only for TCP traffic, but can be
further enhanced to capture also UDP traffic, in order to exploit the most out of our AI
models. This is the reason why we only launch TCP traffic from the attackers. HTTP also
runs over TCP, but due to time constraints and since it only represents 1.02% of the attacks
registered in the third quarter of 2021 (as mentioned in chapter 1), we decided to leave that
experiment as future work.
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The Java app mentioned above is based on [11], and was developed for capturing
the network traffic, parse the packets into flows, and then extract the features. It uses a
Java implementation of Flowtbag (originally written in Go), and we extended the code for
connecting to our cloud-hosted REST API written in Flask [7] (where our logic for the
flows classification is running), and to structure the JSON request with the variables we
needed. See Algorithm 1 for the procedure we followed for the IDS classification process
inside our API.

Algorithm 1 IDS Classification Process
Input: JSON request with the flow parameters.
Output: JSON response with the flow classification.
1: Normalize data applying standardization.
2: Select model specified in JSON request.
3: Predict flow.
4: Return JSON response with the flow prediction, specifying the name of the model

used, the classification result, and the corresponding class id.

The results we got and the discussion we made from this experimental topology, can
also be read in chapter 4.





Chapter 4

Experimental Results and Discussion

In this chapter we present the obtained results with our balanced version of the Bot-IoT
dataset, and we make a comparison with the related work presented in chapter 2. We also
show and discuss the results we got using the LATAM-DDoS-IoT dataset, with transfer
learning and concatenating the Bot-IoT dataset. Finally, we present the performance of our
smart IDS after being deployed in the SDN experimental topology described in chapter 3.

In order to improve the reading of this chapter some results are in appendix B.

4.1 Bot-IoT Dataset Results

The results for multiclass and binary classification for the first feature set are presented
in Tables B.1 and B.2, respectively; for the second feature set, we display the results in
Tables B.3 and B.4; finally, Tables B.5 and B.6 show the results for the third feature set.
From these results, it can be seen that Decision Tree and Random Forest have the best
performance for both classification tasks in the three distinct feature sets, outperforming
the DL models. On the other hand, SVM is the poorest performing model (in agreement
with previous work in [41], with the 10-best feature set).

Our results show that Machine Learning models such as Random Forest and Deci-
sion Tree have strong performance, that is marginally better than that presented from Deep
Learning models. Since all the results show a similar order of magnitude, we argue that
given the relative small amount of features in all our datasets, Decision Tree methods show
a robust performance that do not learn to depend on one particular feature, thus general-
izing better. This also shows that traditional ML models are reliable and should not be
discarded without proper evaluation, such as the one we carried out here, and particularly
when using tabular data.
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Our sampling methodology allowed us to use standard cost functions without weight-
ing techniques, whilst addressing the balancing problem in the Bot-IoT dataset, in contrast
to what is commonly done in the current state of the art (e.g., in [37]), which may lead
to over tuning. Likewise, our feature sets included more characteristics compared to [65],
capturing more information, whilst reducing the amount of manual feature engineering, in
agreement with the ethos of current Machine Learning practices. With this, we presented
extensive tests with both Machine Learning and Deep Learning models (compared, for
instance, to [32], where only Machine Learning models were presented by the authors).

Given the importance of hardware real-time implementations, we consider it is rel-
evant to evaluate the time performance of each model for classifying network traffic. As
proposed in [25], we calculate the average number of flows per second our anomaly de-
tection methods can classify. This experimentation was conducted in a MacBook Pro with
Apple M1 Chip and 16 GB RAM for both the multiclass and the binary classification mod-
els, with the three feature sets. See Tables B.7 and B.8 for the first feature set; Tables B.9
and B.10 for the second feature set; and Tables B.11 and B.12 for the third feature set.

From the real world scenario tested in [25], on regular days around 500 flows/second
passed through the network collector, while in dense traffic situations it achieved peaks
of a maximum of 1,681 flows/second. Then, for the first feature set, from Tables B.7
and B.8, all the models, except for Random Forest in binary classification, are capable of
analyzing the amount of flows/second required on heavy traffic days; whilst for the second
feature set (Tables B.9 and B.10), all the models, except for SVM in both classification
tasks, achieve the maximum peak. Finally, results for the third feature set (Tables B.11
and B.12) show that all the models, except for SVM and Random Forest in multiclass and
binary classification, achieve the maximum amount of flows/second discussed.

From the results, it can be seen that Decision Tree is the best anomaly detection
method for the proposed IDS, as shown in the results for accuracy, precision, recall, F1
score, and time performance, outperforming all the other models in the three feature sets,
see Figure 4.1. We consider the third feature set as the most appropriate one for our novel
IDS, since it shows stable results for Machine Learning and Deep Learning models (similar
to results in the state of the art), both in multiclass and binary classifications, whilst not
using timestamps as learnable features (which can lead to poor performance in a real-time
real-world scenario). In addition, results in the literature use the Argus seq as one feature
they feed in their models, as our third feature set does. See Figure B.1 and Figure B.2 for
the Decision Tree confusion matrices using this feature set.

Not using neither timestamps nor the Argus sequence number (as in the second fea-
ture set), caused the Deep Learning models to have accuracies around 96% and 97% for
both binary and multiclass classification, which is lower than the performance achieved
by standard ML models. Although initially this result may appear surprising, we argue
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Figure 4.1: Decision Tree accuracy, as the best model, across the three different feature
sets for binary and multiclass classifications.

this is due to the fact that the DL models learn to depend heavily on these particular fea-
tures. Given the recurrent nature of the neural networks we assessed, these features (as
provided in the original dataset) may display strong temporal dependencies (with strong
correlations to the categories our models are classifying), once again strengthening the
network dependence on these features, leading to poor generalization when implemented
with online data. Nonetheless, Random Forest and Decision Tree still show the strongest
performance when trained on this feature set, achieving results above 99.8%, which can be
explained due to the random nature of these models, that allows overcoming dependencies
on temporal data. It should also be noted, that we did not find other studies that use a
similar set of features as those proposed in our second one, so we cannot establish a fair
comparison to other works. In addition, the models trained on this feature set are totally
independent of temporal characteristics such as timestamps and, particularly, Argus gener-
ated sequence numbers, which make strong generalization models suitable for online IDS
implementations.

In addition to all these experiments, binary classification for Normal flows vs each
DDoS/DoS protocol were performed. Tables B.13, B.14, and B.15, show the best anomaly
detection models regarding accuracy, precision, recall, and F1 score, for each of those
combinations. It can be seen that Decision Tree and Random Forest are the strongest
models, achieving 100% across all the metrics in several combinations.

4.2 Comparison with Previous Works
Unlike previous works, this study addresses the class imbalance problem of the Bot-IoT
dataset without adding class weights (which can lead to poor generalization, as seen in
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[37, 32]), and without generating synthetic data. With this, we carried out an extensive
experimentation of normal flows vs denial of service attacks, in binary and multiclass
classifications. Under these analyses, three different feature sets were selected from the
original dataset (with larger size and solving the problem of missing information, com-
pared to [65]). It is also discussed why different flows processors could be used in a
real-world scenario, and the importance of learning different features.

Likewise, this work shows an extensive evaluation of 7 distinct Machine Learning
and Deep Learning models different to [65, 55, 29, 32], where only either ML or DL
models are assessed by the authors. Also, we applied a systematic tuning of our models
hyper parameters and dedicated 10% of our data to validation, in contrast to the process
followed in [32]. With respect to performance evaluation, we not only presented confu-
sion matrices and popular metrics (i.e., accuracy, precision, recall, and F1 score), but also
added the time performance measurement to show the IDS feasibility of implementation
in production networks, demonstrating that the best resulting models here presented are a
realistic solution, this is in contrast to all the related works reviewed in chapter 2 that use
the Bot-IoT dataset (except for [65]).

Our results match and exceed the current state of the art, with an average accuracy
greater than 99% across our three different feature sets, and 100% across several combi-
nations of Normal flows vs the DDoS/DoS subcategories. These results do not present
bias towards a majority class. Compared to the works in our review that deal with class
balancing, in [37] the accuracy for multiclass classification for normal flows vs DDoS and
DoS attacks is 99.414%, whilst our best results for the same classification is 99.945% for
the first feature set, 99.89% using the second feature set, and 99.917% using the third
feature set. In addition, compared to [32], where the stable accuracy was 99% for binary
classification in DDoS and DoS attacks protocols, and 97% for multiclass classification,
we obtain accuracies greater than 99.85% using our three different feature sets for binary
classification, and a best accuracy of at least 99.945% for the multiclass classification on
our three feature sets.

4.3 LATAM-DDoS-IoT Dataset Results

As demonstrated in section 4.1 with the performance metrics, the best Machine Learning
model was Decision Tree and the best Deep Learning model was Multi-layer Percep-
tron. Now, to extend our smart IDS we decided to conduct experiments using the LATAM
dataset (for short) and the second feature set we proposed (the one with no timestamps
neither the Argus sequence number). This second feature set, as stated, is the best for
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online IDS implementations, and removes any dependency with the Argus flow data gen-
erator (which, as mentioned, was originally used for the Bot-IoT dataset). Since our Java
prototype uses Flowtbag, we now have a suitable data configuration to test for different
parsers.

First of all, we conducted binary and multiclass classifications using the balanced
version of the LATAM dataset, previously presented in chapter 3, for both the DoS and the
DDoS versions. See Table B.16 for the hyper parameters setting for the best AI models
using the LATAM-DoS-IoT dataset, and Table B.17 for the LATAM-DDoS-IoT dataset.
This hyper parameters tuning was using the same systematic approach explained in chapter
3. The classification results are shown in Tables B.18 and B.19 for the LATAM-DoS-IoT
dataset, and in Tables B.20 and B.21 for the LATAM-DDoS-IoT dataset.

The time performance results for the LATAM-DoS-IoT dataset are in Tables B.22
and B.23. For the LATAM-DDoS-IoT dataset see Tables B.24 and B.25. The presented
results for the LATAM dataset indicate Decision Tree is marginally better than MLP, and
both anomaly detection models still outperform the maximum peak of 1,681 flows per
second discussed in [25]. In both dataset versions, binary classification is a bit better
than multiclass classification, and the LATAM-DoS-IoT dataset classification results are
slightly better than the results using the LATAM-DDoS-IoT dataset.

For combining the LATAM dataset with the Bot-IoT dataset in order to extend our
smart IDS with real traffic from real customers and physical IoT devices, we conducted
two experiments: one applying transfer learning, and another one concatenating both
datasets. More details can be found in the followed subsections.

4.3.1 Transfer Learning

Transfer learning is an AI technique focused on transferring knowledge from a source do-
main to a target domain, when both of them share similarities [67]. We want to transfer
knowledge from the LATAM dataset to our balanced version of the Bot-IoT dataset, be-
cause we believe more data (millions vs thousands records, respectively) can positively
indicate more generalization of the problem domain (i.e., anomaly detection in network
flows).

Transfer learning helped us to initialize the weights and biases of our new MLP
models, instead of applying random initializations. To accomplish that, we took our neural
networks trained with the LATAM dataset, and applied freezing to all their linear layers
except for the last one, in order to train our new and final linear layer with our balanced
version of the Bot-IoT dataset, but now in much less time because we accelerated the whole
learning process. For the Decision Tree we tried to implement some kind of incremental
learning, with partial fits, but so far Scikit-Learn does not include that API implementation
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for this model. See Tables B.32 and B.33 for the transfer learning results with the adjusted
MLP models.

Our recall results from both tables, for binary classification, indicate the models de-
tected above 95% of the attacks. For multiclass classification in both tables, precision was
the highest metric, indicating flows identified as attacks were in their majority correctly
classified. We can argue that the normal flows heavily affected our accuracies, because
the testbed designed for the Bot-IoT dataset incorporates synthetic normal traffic gener-
ated using Ostinato, which is different to our normal traffic collected from real customers
consuming real services. This aspect conducts to a negative transfer [51] between both do-
mains, which can be slightly improved with a fine-tuning to find a better network setting
that improves our detection metrics, for instance freezing different layers (not all of them).

4.3.2 Datasets Concatenation

Other experiments we conducted were concatenating our balanced version of the Bot-
IoT dataset with each balanced version of the LATAM dataset, which took more time
for training but allowed the models to learn all data from both domains from scratch,
leading to best classification results. The resulting dataset size for the concatenation of
our balanced version of the Bot-IoT dataset with the balanced version of the LATAM-
DoS-IoT dataset was 2,443,442 samples; for our balanced version of the Bot-IoT dataset
concatenated with the balanced version of the LATAM-DDoS-IoT dataset was 2,467,793
samples. From now on, for easy reading, we will call LATAM-Bot-DoS-IoT our Bot-IoT
+ LATAM-DoS-IoT combination, and LATAM-Bot-DDoS-IoT our Bot-IoT + LATAM-
DDoS-IoT combination.

The hyper parameters setting (applying the same systematic tuning approach we
have followed so far) for the LATAM-Bot-DoS-IoT dataset is in Table B.26, and for the
LATAM-Bot-DDoS-IoT dataset in Table B.27. See Tables B.28 and B.29 for the classi-
fication results with the LATAM-Bot-DoS-IoT dataset, and Tables B.30 and B.31 for the
LATAM-Bot-DDoS-IoT dataset.

Tables B.34 and B.35 show the time performance of the anomaly detection models
obtained from the LATAM-Bot-DoS-IoT dataset. See Tables B.36 and B.37 for the time
performance with the LATAM-Bot-DDoS-IoT dataset.

These performance results indicate that learning all data from scratch conducts to
better classification results, and now our anomaly detection models have successfully
learned information from both domains: the Bot-IoT dataset and the LATAM dataset.
Since Decision Tree outperforms the MLP in time performance and both classification
tasks, we decided to choose it to conduct a final experiment deploying our smart IDS
in the SDN topology we designed and previously explained in chapter 3. We will use
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learning from both domains (to increase generalization), and since we will launch DDoS
attacks, the Decision Tree obtained from the LATAM-Bot-DDoS-IoT dataset is going to
be evaluated.

4.4 IDS Deployment Results in SDN Testbed
When deploying our smart IDS in the SDN topology we created, we wanted to know the
classification results, but also measure how much time it takes for our Java app to process
the packets, and how much waiting time is required to free all the connections in the
network. Since our Java prototype currently works only for TCP traffic, we evaluated the
Decision Tree for binary classification from the LATAM-Bot-DDoS-IoT dataset.

After three runs of the SDN experiment described in chapter 3, we got the results
from Table 4.1. It took an average of 11 minutes for the network to free all the connections,
which was the average waiting time required between experiments to run them; an average
of 0.0025 seconds for processing each TCP packet (i.e., adding the packet into a new or
existing flow, and classify the flow if its connection is closed); and we got an average
classification accuracy of 93.181%, and a best accuracy of 94.608%. See Figure 4.2 for the
confusion matrix of this best binary classification, and Table 4.2 for the other classification
metrics.

Table 4.1: IDS results in SDN testbed.

Run Time to free the connections Avg time to process packets Accuracy

1 10:25.13 min 0.0025 s 92.118%

2 11:40.9 min 0.0026 s 92.818%

3 10:58.32 min 0.0025 s 94.608%

Table 4.2: Best binary classification results in the SDN testbed.

Model Accuracy Precision Recall F1 score

Decision Tree 94.608% 100% 91.406% 95.510%
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Figure 4.2: Best confusion matrix for Decision Tree binary classification in the SDN
testbed. The numbers in the axes mean 0 for Normal class, and 1 for Attack class.

From Table 4.2, we can see that 100% of the flows the smart IDS identified as attacks
were correctly classified, and 91.406% of the attack flows were detected. The F1 score is
95.51%, indicating a good balance between the precision and recall. Since our results
do not show misclassifying of legitimate traffic, and show detection of above 90% of the
attacks, we can argue our smart IDS is a suitable defense system against denial of service
attacks in SDN environments.

To take a look at how devastating our attacks were, we show a ping reachability test
from Mininet in Figure 4.3, where we can see 98% of the communication was dropped.
This test was executed just after the 60 seconds of launching all the traffic in one of the
experiment runs, and the only ping that remained working was between the attack host h7
and its victim (i.e., the server h8). That can be explained because 10 seconds were not
enough for a single attacker to completely overflow its victim. In this experiment run, an
average of 860,016 packets were transmitted by each attacker node in just 10 seconds, to
the victim nodes h1 and h8 (as presented in chapter 3).

Figure 4.4 shows a fragment of our smart IDS logs while classifying traffic in ONOS:
we log the classification results, the model the administrator specified for detecting the
traffic, and the tuple that conforms the flow (source IP, source port, destination IP, desti-
nation port, and protocol). The white square in the image shows our smart IDS is able
to detect attacks from different source IPs. These source IPs values correspond to the
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Figure 4.3: Ping reachability test using Mininet.

Figure 4.4: Logs of our smart IDS running in ONOS.

attackers h4 and h7.
In the next chapter we conclude this thesis and present future work that can be done

for exploring new directions and extending what we have accomplished.





Chapter 5

Conclusions and Future Work

In this last chapter we enclose the conclusions from our research, and we propose future
work that can be done to further extend what we have made.

5.1 Conclusions
Anomaly detection is a vast problem in Artificial Intelligence. Its application in network
traffic leads to the creation of defense systems against cyberattacks that can be devastating
for people and organizations, so their level of protection is crucial. In this thesis, we
focused on DDoS and DoS attacks, which represent the most common threat against and
from technologies such as IoT and 5G communication networks.

For one set of experiments we used the Bot-IoT dataset, a state-of-the-art collection
of data for protecting IoT networks. The methodology proposed addresses the class im-
balance problem of the original dataset (without neither adding synthetic data nor class
weights) leading to the creation of a novel IDS based on AI models which focuses on
DDoS and DoS attacks based on UDP, TCP and HTTP protocols. The proposed IDS
presents results without biases towards a majority class, achieving an average accuracy
greater than 99% with our three distinct feature sets, where the Decision Tree is the out-
standing anomaly detection model, whilst being feasible for implementation in real-time
production environments, with a remarkable time performance for heavy traffic days (eval-
uating more than 1,681 flows/second). Also, we achieved 100% across accuracy, precision,
recall, and F1 score metrics, with the Decision Tree and the Random Forest for several
combinations of Normal flows vs the DDoS/DoS protocols.

We extended the capacity of this smart IDS adding real normal traffic from real
clients consuming real services, and also real attack traffic to physical IoT devices, cre-
ating a new dataset called: the LATAM-DDoS-IoT. First of all, to leverage the categories
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and subcategories present in it, we conducted binary and multiclass classifications with its
balanced DoS and DDoS versions, getting an average accuracy of 99.967% and 98.872%,
respectively. Then, we combined our balanced version of the Bot-IoT dataset applying
transfer learning, showing how different our datasets were from each other. Also, in an-
other experiment we concatenated both datasets to get a higher level of generalization from
both domains, achieving high results such as the 99.99% of accuracy obtained from the
Decision Tree in binary classification for DoS.

Since one of our initial objectives was to deploy our resulting IDS in a production
SDN simulated environment, we created a hybrid architecture using ONOS and Mininet,
and coded a Java app for communicating with our cloud-hosted Flask REST API. We can
say our smart IDS behaves strongly, where 100% of the flows identified as attacks were
correctly classified, and above 90% of the attack flows were detected. Our defense system
does not misclassify legitimate traffic, and presents an average time performance of even
more than 30,000 flows per second.

Part of the results of this thesis have been published in the paper “Transport and
Application Layer DDoS Attacks Detection to IoT Devices by Using Machine Learning
and Deep Learning Models” [24].

5.2 Future Work
This work can be extended creating and deploying an Intrusion Prevention System as
mitigation management strategy, which integrates and communicates with our Intrusion
Detection System. The resulting architecture will not only allow to detect attacks (as we
have done), but also to stop the identified attackers, diminishing the network damage.

Another direction for further improvement, is to test our IDS in a fully physical SDN
architecture. We moved from a 100% simulated architecture (as the virtualized simulation
in [54]), to a hybrid architecture running ONOS as a Linux service instead of using Docker
[6]. Now, the next component to remove would be Mininet, to avoid virtualized hosts and
implement real physical devices.

So far, our Java functional prototype only works for capturing TCP traffic. Naturally,
an area of improvement would be to make it suitable for capturing also UDP traffic, in
order to take the most out of our AI models.

We also proposed a new dataset, with DoS and DDoS versions, that we globally
called the LATAM-DDoS-IoT dataset. It will be interesting to see what kind of experi-
ments derive from its use, as one-class classifiers, since their real traffic from real clients
and physical IoT devices make it convenient for real production environments.
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Table A.1: Summary of ML models parameters for the first feature set.

Model Binary classification Multiclass classification

SVM

• Kernel: Radial Basis
Function

• Max iterations:
70,000

• Kernel: Linear

• Max iterations:
70,000

Decision Tree

• Max depth: 11

• Entropy criterion

• Max depth: 10

• Entropy criterion

Random Forest

• Max depth: 11

• Entropy criterion

• Trees: 12

• Max depth: 10

• Entropy criterion

• Trees: 9
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Table A.2: Summary of ML models parameters for the second feature set.

Model Binary classification Multiclass classification

SVM

• Kernel: Radial Basis
Function

• Max iterations:
50,000

• Kernel: Radial Basis
Function

• Max iterations:
50,000

Decision Tree

• Max depth: 7

• Entropy criterion

• Max depth: 8

• Entropy criterion

Random Forest

• Max depth: 7

• Entropy criterion

• Trees: 2

• Max depth: 8

• Entropy criterion

• Trees: 9
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Table A.3: Summary of ML models parameters for the third feature set.

Model Binary classification Multiclass classification

SVM

• Kernel: Radial Basis
Function

• Max iterations:
50,000

• Kernel: Radial Basis
Function

• Max iterations:
70,000

Decision Tree

• Max depth: 8

• Entropy criterion

• Max depth: 7

• Entropy criterion

Random Forest

• Max depth: 8

• Entropy criterion

• Trees: 11

• Max depth: 7

• Entropy criterion

• Trees: 21
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Table A.4: Summary of DL models parameters for the three feature sets.

Model Binary classification Multiclass classification

RNN, LSTM,
GRU, MLP

• Classes: 2

• Batch size: 128

• Input size: 18, 15,
and 16

• Hidden size: 128
(512 for MLP)

• Layers: 3 (4 for
MLP)

• Sequence length: 1
(None for MLP)

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU

• Classes: 4

• Batch size: 128

• Input size: 18, 15,
and 16

• Hidden size: 128
(512 for MLP)

• Layers: 3 (4 for
MLP)

• Sequence length: 1
(None for MLP)

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU
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Table B.1: Multiclass classification results for the first feature set.

Model Accuracy Precision Recall F1 score

Random Forest 99.945% 99.945% 99.945% 99.945%

Decision Tree 99.917% 99.918% 99.917% 99.917%

LSTM 99.862% 99.862% 99.864% 99.863%

GRU 99.862% 99.861% 99.865% 99.863%

MLP 99.862% 99.861% 99.865% 99.863%

RNN 99.807% 99.806% 99.811% 99.808%

SVM 94.056% 94.661% 94.056% 94.122%
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Table B.2: Binary classification results for the first feature set.

Model Accuracy Precision Recall F1 score

Random Forest 99.972% 99.973% 99.972% 99.972%

Decision Tree 99.945% 99.945% 99.945% 99.945%

RNN 99.862% 99.889% 99.926% 99.908%

MLP 99.862% 99.889% 99.926% 99.908%

GRU 99.835% 99.852% 99.926% 99.889%

LSTM 99.807% 99.816% 99.926% 99.871%

SVM 98.404% 98.431% 98.404% 98.388%

Table B.3: Multiclass classification results for the second feature set.

Model Accuracy Precision Recall F1 score

Random Forest 99.890% 99.890% 99.890% 99.890%

Decision Tree 99.862% 99.863% 99.862% 99.862%

MLP 96.340% 96.372% 96.375% 96.354%

GRU 96.230% 96.276% 96.250% 96.249%

LSTM 96.010% 96.042% 96.042% 99.022%

RNN 95.019% 95.126% 95.027% 95.049%

SVM 75.482% 78.481% 75.482% 75.218%



51

Table B.4: Binary classification results for the second feature set.

Model Accuracy Precision Recall F1 score

Decision Tree 99.862% 99.862% 99.862% 99.862%

Random Forest 99.835% 99.835% 99.835% 99.835%

GRU 97.111% 97.797% 98.339% 98.067%

LSTM 96.753% 97.437% 98.228% 97.831%

MLP 96.505% 97.498% 97.822% 97.66%

RNN 96.147% 97.381% 97.453% 97.417%

SVM 81.205% 84.721% 81.205% 76.825%

Table B.5: Multiclass classification results for the third feature set.

Model Accuracy Precision Recall F1 score

Random Forest 99.917% 99.918% 99.917% 99.917%

Decision Tree 99.862% 99.863% 99.862% 99.862%

GRU 99.697% 99.693% 99.702% 99.697%

MLP 99.642% 99.638% 99.646% 99.641%

LSTM 99.560% 99.557% 99.565% 99.561%

RNN 99.560% 99.556% 99.566% 99.560%

SVM 89.351% 89.603% 89.351% 89.347%
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Table B.6: Binary classification results for the third feature set.

Model Accuracy Precision Recall F1 score

Decision Tree 99.890% 99.890% 99.890% 99.890%

Random Forest 99.835% 99.835% 99.835% 99.835%

MLP 99.697% 99.742% 99.852% 99.797%

GRU 99.642% 99.595% 99.926% 99.760%

RNN 99.615% 99.595% 99.889% 99.742%

LSTM 99.615% 99.559% 99.926% 99.742%

SVM 94.194% 94.347% 94.194% 94.246%

Table B.7: Multiclass classification time performance for the first feature set.

Model Avg flows / second Stddev flows / second

Decision Tree 29,453 790.687

MLP 8,306 537.827

SVM 4,283 139.935

RNN 4,158 59.906

GRU 2,497 51.750

LSTM 2,388 20.823

Random Forest 1,813 65.692
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Table B.8: Binary classification time performance for the first feature set.

Model Avg flows/second Stddev flows/second
Decision Tree 29,452 716.966

MLP 9,411 38.543
SVM 4,956 25.011
RNN 4,375 77.826
GRU 2,661 8.712
LSTM 2,610 5.094

Random Forest 1,350 81.339

Table B.9: Multiclass classification time performance for the second feature set.

Model Avg flows / second Stddev flows / second
Decision Tree 30,362 681.989

MLP 9,319 48.970
RNN 4,742 49.485
GRU 2,864 17.051
LSTM 2,702 33.465

Random Forest 1,954 15.106
SVM 651 8.033

Table B.10: Binary classification time performance for the second feature set.

Model Avg flows/second Stddev flows/second
Decision Tree 29,940 523.611

MLP 9,177 142.993
RNN 4,697 27.281

Random Forest 4,571 60.758
GRU 2,763 49.491
LSTM 2,687 22.446
SVM 866 7.232
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Table B.11: Multiclass classification time performance for the third feature set.

Model Avg flows / second Stddev flows / second

Decision Tree 33,094 378.595

MLP 9,934 257.982

RNN 4,823 99.721

GRU 2,918 51.754

LSTM 2,877 65.451

SVM 1,171 17.393

Random Forest 994 22.931

Table B.12: Binary classification time performance for the third feature set.

Model Avg flows/second Stddev flows/second

Decision Tree 32,607 151.361

MLP 10,017 101.060

RNN 4,883 123.540

GRU 2,996 34.989

LSTM 2,864 79.405

Random Forest 1,668 89.448

SVM 1,422 10.979
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Table B.13: Binary classification results for Normal flows vs DDoS/DoS subcategories
(protocols), using the first feature set.

Classes Best
Model(s)

AccuracyPrecision Recall F1
score

Normal vs
DDoS

Random
Forest

99.956% 99.956% 99.956% 99.956%

Normal vs
DDoS UDP

Decision
Tree and
Random
Forest

99.853% 99.853% 99.853% 99.853%

Normal
vs DDoS
HTTP

Decision
Tree and
Random
Forest

100% 100% 100% 100%

Normal vs
DDoS TCP

Decision
Tree and
Random
Forest

100% 100% 100% 100%

Normal vs
DoS

Random
Forest

99.956% 99.956% 99.956% 99.956%

Normal vs
DoS UDP

All mod-
els, except
for SVM

100% 100% 100% 100%

Normal vs
DoS HTTP

Decision
Tree

100% 100% 100% 100%

Normal vs
DoS TCP

All mod-
els, except
for SVM

100% 100% 100% 100%
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Table B.14: Binary classification results for Normal flows vs DDoS/DoS subcategories
(protocols), using the second feature set.

Classes Best
Model(s)

AccuracyPrecision Recall F1
score

Normal vs
DDoS

Decision
Tree and
Random
Forest

99.956% 99.956% 99.956% 99.956%

Normal vs
DDoS UDP

Decision
Tree and
Random
Forest

99.853% 99.853% 99.853% 99.853%

Normal
vs DDoS
HTTP

Decision
Tree and
Random
Forest

100% 100% 100% 100%

Normal vs
DDoS TCP

Decision
Tree and
Random
Forest

100% 100% 100% 100%

Normal vs
DoS

Random
Forest

99.868% 99.868% 99.868% 99.868%

Normal vs
DoS UDP

All mod-
els, except
for SVM

100% 100% 100% 100%

Normal vs
DoS HTTP

Decision
Tree

100% 100% 100% 100%

Normal vs
DoS TCP

Decision
Tree and
Random
Forest

100% 100% 100% 100%
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Table B.15: Binary classification results for Normal flows vs DDoS/DoS subcategories
(protocols), using the third feature set.

Classes Best
Model(s)

AccuracyPrecision Recall F1
score

Normal vs
DDoS

Random
Forest

99.956% 99.956% 99.956% 99.956%

Normal vs
DDoS UDP

Random
Forest

99.853% 99.853% 99.853% 99.853%

Normal
vs DDoS
HTTP

Decision
Tree and
Random
Forest

100% 100% 100% 100%

Normal vs
DDoS TCP

Random
Forest

100% 100% 100% 100%

Normal vs
DoS

Random
Forest

99.868% 99.868% 99.868% 99.868%

Normal vs
DoS UDP

All mod-
els, except
for SVM

100% 100% 100% 100%

Normal vs
DoS HTTP

Decision
Tree

100% 100% 100% 100%

Normal vs
DoS TCP

All mod-
els, except
for SVM

100% 100% 100% 100%
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Figure B.1: Confusion matrix for Decision Tree multiclass classification, using the best
feature set. The numbers in the axes mean 0 for Normal class, 1 for UDP class, 2 for TCP
class, and 3 for HTTP class.

Figure B.2: Confusion matrix for Decision Tree binary classification, using the best feature
set. The numbers in the axes mean 0 for Normal class, and 1 for Attack class.
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Table B.16: Summary of AI models parameters for the LATAM-DoS-IoT Dataset.

Model Binary classification Multiclass classification

Decision Tree

• Max depth: 11

• Entropy criterion

• Max depth: 12

• Entropy criterion

MLP

• Classes: 2

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU

• Classes: 4

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU
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Table B.17: Summary of AI models parameters for the LATAM-DDoS-IoT Dataset.

Model Binary classification Multiclass classification

Decision Tree
• Max depth: 14

• Entropy criterion

• Max depth: 14

• Entropy criterion

MLP

• Classes: 2

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU

• Classes: 4

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU

Table B.18: Binary classification results for the LATAM-DoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 99.996% 99.996% 99.996% 99.996%

MLP 99.940% 99.999% 99.912% 99.955%
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Table B.19: Multiclass classification results for the LATAM-DoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 99.995% 99.995% 99.995% 99.995%

MLP 99.938% 99.938% 99.940% 99.937%

Table B.20: Binary classification results for the LATAM-DDoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 98.911% 98.942% 98.911% 98.915%

MLP 98.834% 99.978% 98.287% 99.125%

Table B.21: Multiclass classification results for the LATAM-DDoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 98.908% 98.857% 98.908% 98.605%

MLP 98.834% 98.793% 98.839% 98.456%

Table B.22: Binary classification time performance for the LATAM-DoS-IoT dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 31,967 480.296

MLP 9,669 124.086
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Table B.23: Multiclass classification time performance for the LATAM-DoS-IoT dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 31,070 564.739

MLP 9,623 59.003

Table B.24: Binary classification time performance for the LATAM-DDoS-IoT dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 32,349 215.802

MLP 9,990 39.523

Table B.25: Multiclass classification time performance for the LATAM-DDoS-IoT dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 32,320 257.284

MLP 9,764 108.798
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Table B.26: Summary of AI models parameters for the LATAM-Bot-DoS-IoT dataset.

Model Binary classification Multiclass classification

Decision Tree

• Max depth: 12

• Entropy criterion

• Max depth: 12

• Entropy criterion

MLP

• Classes: 2

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU

• Classes: 4

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU
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Table B.27: Summary of AI models parameters for the LATAM-Bot-DDoS-IoT dataset.

Model Binary classification Multiclass classification

Decision Tree

• Max depth: 13

• Entropy criterion

• Max depth: 14

• Entropy criterion

MLP

• Classes: 2

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU

• Classes: 4

• Batch size: 128

• Input size: 15

• Hidden size: 512

• Layers: 4

• Epochs: 100

• Optimizer: Adam

• Loss function:
Cross Entropy

• Learning rate:
0.0011

• Device: CPU
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Table B.28: Binary classification results for the LATAM-Bot-DoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 99.990% 99.990% 99.990% 99.990%

MLP 99.801% 99.859% 99.843% 99.851%

Table B.29: Multiclass classification results for the LATAM-Bot-DoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 99.989% 99.989% 99.989% 99.989%

MLP 99.793% 99.791% 99.789% 99.789%

Table B.30: Binary classification results for the LATAM-Bot-DDoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 98.884% 98.916% 98.884% 98.888%

MLP 98.655% 99.840% 98.156% 98.991%

Table B.31: Multiclass classification results for the LATAM-Bot-DDoS-IoT dataset.

Model Accuracy Precision Recall F1 score

Decision Tree 98.867% 98.868% 98.867% 98.625%

MLP 98.654% 98.658% 98.661% 98.376%
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Table B.32: Transfer learning results using the LATAM-DoS-IoT dataset as source domain
and the Bot-IoT dataset as target domain.

Model Classification Accuracy Precision Recall F1 score

MLP Binary 83.187% 84.081% 95.533% 89.442%

MLP Multiclass 78.481% 79.734% 78.517% 78.255%

Table B.33: Transfer learning results using the LATAM-DDoS-IoT dataset as source do-
main and the Bot-IoT dataset as target domain.

Model Classification Accuracy Precision Recall F1 score

MLP Binary 87.342% 87.272% 97.195% 91.966%

MLP Multiclass 82.223% 84.295% 82.355% 81.885%

Table B.34: Binary classification time performance for the LATAM-Bot-DoS-IoT dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 31,334 344.921

MLP 9,781 33.618

Table B.35: Multiclass classification time performance for the LATAM-Bot-DoS-IoT
dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 32,785 179.086

MLP 9,998 62.752
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Table B.36: Binary classification time performance for the LATAM-Bot-DDoS-IoT
dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 31,485 142.967

MLP 9,592 181.967

Table B.37: Multiclass classification time performance for the LATAM-Bot-DDoS-IoT
dataset.

Model Avg flows / second Stddev flows / second

Decision Tree 32,101 264.161

MLP 9,756 170.605
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AZODOLMOLKY, S., AND UHLIG, S. Software-defined networking: A compre-
hensive survey. Proceedings of the IEEE 103, 1 (2015), 14–76.

[43] LANTZ, B., HELLER, B., AND MCKEOWN, N. A network in a laptop: Rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (New York, NY, USA, 2010), Hotnets-IX, As-
sociation for Computing Machinery.

[44] LI, H., WEI, F., AND HU, H. Enabling dynamic network access control with
anomaly-based ids and sdn. In Proceedings of the ACM International Workshop
on Security in Software Defined Networks & Network Function Virtualization (New
York, NY, USA, 2019), SDN-NFVSec ’19, Association for Computing Machinery,
p. 13–16.

[45] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G., PETER-
SON, L., REXFORD, J., SHENKER, S., AND TURNER, J. Openflow: Enabling in-
novation in campus networks. SIGCOMM Comput. Commun. Rev. 38, 2 (mar 2008),
69–74.

[46] MCMILLEN, D. Internet of threats: Iot botnets drive surge in network at-
tacks. https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-
attacks/, 2021. Accessed on 17 December 2021.

[47] MEHR, S. Y., AND RAMAMURTHY, B. An svm based ddos attack detection method
for ryu sdn controller. In Proceedings of the 15th International Conference on
Emerging Networking EXperiments and Technologies (New York, NY, USA, 2019),
CoNEXT ’19, Association for Computing Machinery, p. 72–73.



BIBLIOGRAPHY 73

[48] MERGENDAHL, S., SISODIA, D., LI, J., AND CAM, H. Source-end ddos defense
in iot environments. In Proceedings of the 2017 Workshop on Internet of Things
Security and Privacy (New York, NY, USA, 2017), IoTS&P ’17, Association for
Computing Machinery, p. 63–64.

[49] MIRKOVIC, J., AND REIHER, P. A taxonomy of ddos attack and ddos defense
mechanisms. SIGCOMM Comput. Commun. Rev. 34, 2 (Apr. 2004), 39–53.

[50] OLEG KUPREEV, EKATERINA BADOVSKAYA, A. G. Ddos attacks in q2 2020 —
securelist. https://securelist.com/ddos-attacks-in-q2-2020/98077/, 2020. Accessed
on 15 November 2021.

[51] PAN, S. J., AND YANG, Q. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering 22, 10 (2010), 1345–1359.

[52] PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G.,
KILLEEN, T., LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF,
A., YANG, E., DEVITO, Z., RAISON, M., TEJANI, A., CHILAMKURTHY, S.,
STEINER, B., FANG, L., BAI, J., AND CHINTALA, S. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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