
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

School of Engineering and Sciences

Neural Network Circuit Implementation using Operational
Amplifiers and Digital Potentiometers

A thesis presented by

Jacobo Posada Hoyos

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

in

Engineering Sciences

Monterrey, Nuevo León, June, 2021



Dedication

To God for be always my guide.

To my parents, Sandra and Diego, who gives me strength and wisdom to reach all
my goals. For their support and for always give me their best. You are my main moti-
vation.

To my siblings, Sebastián and Tania, for being there when I needed more support.
Thank you for my nephews.

To my family and my friends, for all their confidence, support, and encouragement.

iii



Acknowledgements
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Neural Network Circuit Implementation using
Operational Amplifiers and Digital Potentiometers

by
Jacobo Posada Hoyos

Abstract

Implementations of Artificial Neural Networks (ANN) have been advancing for almost
three decades and their importance has been marked by the different methods used
in their construction, their applications and comparisons in terms of speed, costs, and
performance between implementations made by software and hardware. As analog
implementations of ANN have been shown to have good levels of performance, high
processing speed, low power consumption, small size, and low cost, they have played
an important role in the development of new designs. This work presents a proposal
to design a circuit implementation of an ANN by using Operational Amplifiers (Op-
amps) and digital potentiometers to create a network that can be trained by using an
external training system. This, based on circuit analysis and training algorithm by the
back propagation (BP) approach.

The proposed design will be simulated in the circuit simulator Proteus. The circuit
is tested using the logical gates benchmark problem to verify its performance with
the BP learning algorithm.

The results of this work demonstrate that it is possible to create a neural network
using analogous components. Furthermore, it shows good performance when im-
plementing the training algorithm using digital potentiometers. As future work is ex-
pected to improve the performance of training to create a controller based on neural
networks and thus, perform the control of a dynamic system.
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Chapter 1

Introduction

The new developments and progress toward Machine Learning and, specifically, on
ANN have been a relevant topic of interest in computational sciences due to their
great potential and wide range of applications. This because, as networks are a
method of multidimensional regression analysis they are used to solve complex prob-
lems that other regression models cannot solve. For example, they can be used in
prediction problems when high computational speed is required, when the system is
difficult to express mathematically, and when the input and output data of a system is
known.
This dissertation aims to present a novel implementation of an ANN by analog de-
vices and digital potentiometers to take advantage of the capacity to change the
synaptic weights of the network and make it capable of being trained by using the BP
algorithm.

This chapter outlines the main motivations for the research, the specific problem to
be addressed, the methodology proposed, the scope of the thesis, and an outline of
the dissertation.

1.1 Motivation

This research is addressed to create a circuit of an ANN that has the ability to change
their synaptic weights and thus, be able to implement a learning process. The learn-
ing process is needed to solve simple problems such as analog-to-digital converters
(ADC) as well as complete NP problems such as the traveling salesman problem,
routing, etc. It can also be used in image processing, dynamic system control, and
networking.

1
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1.2 Problem Statement and Context

The capability to learn is a significant challenge to be considered in an ANN. Such
ability is what differentiates them from other approaches of control and prediction
in computer science. Although schemes of analog implementations have been pro-
posed, the use of digital potentiometers for the representation of synaptic weights
has not been documented. Instead, devices such as transistors, fixed resistors, or
other complex circuits have been used.
An important feature in ANN, is the ability of the network to be trained. This is a
challenging process because the need of save and change parameters is a crucial
implication. Solve this is not common in the proposed schemes and could be reached
by using digital potentiometers changing its values. For this reason, the digital po-
tentiometer arises as an option to update the weights of the ANN, keeping low the
complexity of the circuit.
Then, the main questions in this research are the following:

• It is possible to create an ANN using analog devices and digital potentiometers?

• Can the ANN circuit have the capacity of being trained by using BP algorithm?

1.3 Solution Overview

To give an answer to the main questions of the research it is necessary to follow the
following methodology:

• Design, implement, and test the circuit for a single neuron (perceptron).

• Design and implement a circuit for a complete network based in the perceptron
circuit.

• Implement the BP algorithm that allows the ANN to perform the learning process
(this by using the Arduino microcontroller as external training system).

• Test the complete circuit with the integration of the learning algorithm.

1.4 Thesis Structure

• Chapter 1. Introduction. This chapter presents the main scope of the research
work, the motivation, the research questions, and how to answer them by using
the methodology outlined in the solution overview.

• Chapter 2. Literature Review. In this section is presented the main implementa-
tions of ANN made by hardware. They are divided in digital, hybrid, and analog
applications, giving special attention to this lasts approaches.
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• Chapter 3. Theoretical Background. In this chapter, the main concepts related
to ANN and electronic devices are presented. Starting with definitions of Op-
Amps, limiting circuits, digital potentiometers, and also, the functioning of BP
algorithm and the ANN-based controller.

• Chapter 4. Materials and Methods. In this chapter, are stated the main process
and methods used to get the expected results. Starting with the process for the
circuit implementation, followed by the BP learning algorithm guidelines, and the
steps for the practical experiment. Also, the hardware and software resources
are shown.

• Chapter 5. Results. Here are shown the main results of the solutions for the
logical gates benchmark problems carried out by the circuit implementation with
the learning process. The error and the learning parameters are also presented.

• Chapter 6. Conclusions. Finally, in addition to the main findings and contribu-
tions, some future work and possible improvements are presented.



Chapter 2

Literature Review

In the literature review of ANN implementations, although many of its applications
involve software approaches [1, 2, 3], there are some applications where it is neces-
sary to implement them at a hardware level. This because requirements imposed by
handling large volumes of data to be handled and other performance requirements,
such as streaming and object recognition for real-time applications [4]. Furthermore,
in hardware implementations there are also several types of approaches that have
different trade offs between characteristics like speed, cost, fault tolerance, among
others [5].

In terms of speed, hardware implementations can offer great computational power
due to features such as parallelism and the distribution of tasks through multiple
components. For example, in the work presented by Erkmen et al. [6], where the
forward propagation time of a Conic Section Function Neural Network circuitry can
reach speeds five time faster than its software counterpart.
Furthermore, hardware implementations reduce computational and energy costs.
This because they use fewer components and also have low power consumption,
as shown by Maliuk et al. [7], where a low-cost and efficient ANN for on-chip integra-
tion is developed due to its compact area, non-volatile and dynamic weight storage.
In addition, it is necessary to have a system that has high fault tolerance since it
depends on having low errors and faster and accuracy learning. Therefore, using
parallelism and distribution of tasks in hardware implementations of ANN has been
achieved to have a good performance in the presence of errors and has helped in the
diagnosis of fault-tolerance control in various circuits. For example, Kumar et al. [8]
presented an ANN PID controller designed to get a better and robust model, even in
applications with time-critical needs.

Hardware implementations must also deal with issues such as computational errors
due to components (mostly analogous), lack of precision in the results, and the non-
linearity of the activation functions. Therefore, different technologies have been de-
veloped to achieve hardware implementations that can be robust, fast, precise, and
ensure the proper functioning of neural networks.

4
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Implementations such as digital, analog, and hybrid, have been the most developed
by researchers in recent years. It is also important to note that the network archi-
tecture, the learning algorithm, and the activation function are features that have an
important role in network design since some configurations are used in specific fields
of development.

2.1 Digital Implementations

Digital implementations are characterized by storing the synaptic weights in registers,
tables, or memories, where they are easily accessible. Also, they are characterized
by the generation of linear and non-linear activation functions using Look Up Tables
(LUT) to implement the learning algorithms with less difficulty. These characteristics
allow for easy integration between other applications and systems [9].
Some networks can be implemented in Field Programmable Gate Array-based (FPGA)
which are semiconductor devices that are based on a matrix of Configurable Logic
Blocks (CLB) connected by programmable interconnects and can be reprogrammed
to meet various applications.
On the other hand, there are also Application Specific-Integrated Circuits (ASICs)
which are custom made for specific design tasks. Characteristics like lower con-
sumption and speed are improved in many cases [4, 10]. Besides, in other cases,
accuracy plays an important role and its value is high compared to the performance
achieved by an ANN implemented by software [9, 11, 12].

2.2 Hybrid Implementations

Hybrid implementations which, as its name indicates, are combinations of analog
and digital implementations to combine the best advantages of each system in a
network. For example, some designs are based on the use of digital memories to
save network weights and digital to analog converters for the conversion of analog
network inputs [6]. Also, other designs can improve training time [13] even in the
order of microseconds [14], and also achieve high levels of cost-effectiveness [15],
low area, and low consumption, besides of non-volatile and dynamic storage [7].

2.3 Analog Implementations

The present research is focused on analog implementations which are constituted by
electronic devices such as resistors, memristors, capacitors, op-amps and Field Ef-
fect Transistors (FET). The weights are saved by the passive elements and the active
elements are used to perform activation functions and perform other operations. The
use of these devices is due to the fact that analog implementations are recognized
for its high-speed processing [16], low power consumption, and compact modules.
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For example, using CMOS technology and Charge-Trap-Transistors (CTT) Du et al.
[17] created an analog design of a Fully Connected Neural Network (FCNN) where
CTTs are used as analog multipliers obtaining power and area reduction compared
to digital multipliers but without any proof of training methods.

The use of new analog devices known as Memristor, whose resistance could change
depending on the voltage/current applied, proposed by Chua [18] in 1971, and then
developed by HP Labs [19], have been one of the most used analog devices to im-
plement neural networks due to its operation similar to the process performed by a
neuron.
Designs developed by [20, 21, 22, 23, 24] have proved the potential of this technology.
For example, Choi et al. [20] presented a synapse array using memristors to control
the weights and connections between layers, then used amplifiers and resistors to
build a whole neuron. To demonstrate functionality, they applied their model to a pat-
tern recognition system obtaining an accuracy of 91.3%. Adhikari et al. [21] created a
neural network memristor bridge to perform the synapses in a neuron. This configu-
ration allowed the neuron to have negative and positive values for weights as well as
save them. The design has a sigmoid activation function and his learning is based
on Chip-in-the-Loop, which means that the learning is performed by a host computer.
This implementation also improved image processing and pattern recognition perfor-
mance due to the small size of memristors. The use of this element also shown to
improve the performances of image processing and pattern recognition [22, 23] in
Cellular Neural Networks (CNN). Furthermore, Yakopcic et al. [24] created a cross-
bar array of memristors to simulate the operation of a CNN. This design achieved an
accuracy of 91.8% compared to 92% of its software implementation, however it is a
great achievement since it is the first design to attempt this configuration.

Alternatively to the use of memristors, there are different designs with analogous
elements commonly used. For example, Chaudhuri [25] presented a model imple-
mented by op-amps and resistors to create a neuron that can achieve a sigmoid
activation function, but without learning or weight adjustments.
Rahman and Ansari [26] design a circuit to create an ANN using resistors, capaci-
tors, and op-amps to solve linear equations that can be improved to solve quadratic
equations. However, there was not physical implementation nor learning.
Kawaguchi et al [27] made a design of a Pulsed Neural Network (PNN) using sam-
ple hold circuits to change the weights since designs with fixed resistances could
not do it. The circuit also has a short time for the learning process and it was
scaleable, which is important for image processing applications. Also, the neural
network presents training using a dynamic on-site learning system.
In addition, an amplifier-based artificial analog neuron was presented by Weber et al.
[28] with an output voltage range and non-linearity added by diode-connected MOS
transistors and also having positive and negative weights. The authors used the MOS
transistor in its triode region (variable resistor) to adjust the weights of the network
and trained it by an algorithm based on a variation of Simulated Annealing.
Sarwar et al. [29] presented a design to create linear and non-linear electrical models



CHAPTER 2. LITERATURE REVIEW 7

of Hopfield Neural Networks (HPNN) using op-amps, resistances, diodes, and capac-
itors. They also compared similar models previously made where they demonstrated
the advantages in terms of convergence time, lower level of circuit complexity, fewer
components, and robustness. However, there was not a learning method.

Although the previous work shows the closest implementation to the proposed work,
in this one a digital potentiometer will be used instead of fixed resistors to change the
synaptic weights and, in this way, use a learning method such as backpropagation to
have the possibility of network learning. As there is no evidence in the literature of
this type of implementation, there is an opportunity for research work in this area. A
summary between implementations is presented next in Table 2.1 where important
characteristics such as complexity level, learning method, and components used can
be seen.

Table 2.1: Summary and comparison between previous models and presented model

Article ANN Type Components Synapse Learning Characteristics Complexity

Du. et al
[17] FCNN

-Array of CTT
-Analog-digital
interfaces
-Buffers
-Sequential Analog
Fabric (SAF)

Charge-Trap-
Transistors No

-Fully-CMOS
nonvolatile device
-Power reduction
-Area reduction

Medium

Choi. et al
[20] FCNN

-Array of WOx-based
resistive devices
-Operational Amplifier
-Resistors

Array of WOx-based
Resistive Devices BP

-RD for synapse
applications
-High accuracy

High

Adhikari et al
[21] MLNN -Memristors

-Transistors Memristor Bridge BP

-Synapse circuit using
memristor bridge
-Power reduction
-Small Area

High

Yakopcic et al
[24] CNN

-Memristors
-Operational Amplifiers
-Resistors
-DACs

Memristor Crossbar Ex-situ
-Synapse circuit using
memristor crossbar
-Accuracy

High

Chaudhur et al
[25] FCNN -Resistors

-Operational Amplifiers Resistors No -Sigmoid function
implementation Low

Rahman and Ansari
[26] FCNN

-Resistors
-Operational Amplifiers
-Capacitors

Resistors No
-Solve linear equations
-Hardware reduction
-Time reduction

Low

Kawaguchi et al
[27] PNN

-Resistors
-Operational Amplifiers
-Capacitors

Sample hold circuits In-situ

-Short learning time
-Variable weights
-Small elements
-Circuit learning

Medium

Sarwar et al
[29] HPNN

-Resistors
-Operational Amplifiers
-Diodes
-Capacitor

Resistors No

-Low complexity
-Linear/nonlinear
characteristics
-Stable

Low

Weber et al
[28] FCNN

-MOS transistor
-Operational Amplifiers
-Resistors

MOS transistor
Variation of
simulated
annealing

-Optimization of
synaptic weights
-Positive and negative
weights
-Output voltage range

Medium

This work FCNN

- Digital Potentiometers
- Resistors
- Op-Amps
- Diodes

Digital Potentiometers BP

-Variable Weights
-Low complexity
-Nonlinear operation
-Positive and negative
weights

Low



Chapter 3

Theoretical Background

3.1 Operational Amplifier

Operational amplifiers (Op-Amps) are linear analog devices with all properties of a
DC amplifier, being a close approximation to a perfect amplifier with characteristics
such as infinite gain, infinite input impedance, and zero output impedance.
Op-Amps are used in signal processing, signal conditioning, filtering, or mathemati-
cal operations due to their different models with external feedback using basic com-
ponents such as resistors and capacitors between the input and output terminals
[26, 30]. In this way, many operations (inversion, sum, subtraction, integration, and
differentiation) and configurations (inverting, non-inverting, voltage follower) can be
made [13, 24, 27]. The most important feature here, is its ability to implement linear
and non-linear functions.

3.1.1 Limiting Circuits

In many cases, diodes and op-amps are combined to create non-linear configurations
to take advantage of the fact that diodes can operate closer to their ideal characteris-
tics. A circuit representation can be seen in Figure 3.1a.

(a) (b)

Figure 3.1: (a) Limiting Circuit using two Zener diodes, (b) Relationship between
Voltage and Current

8
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The objective is to design a system that achieves a non-linear response output for a
linear input signal [29], as seen in Figure 3.1b. In this case, the diodes constrain the
input signal to be above or below a specific value and the output is constrained to
be below or above the specific value (other values remain constant). These circuits
are also called Logarithmic Amplifier because they use the logarithmic relationship
between current and voltage in the diodes (VD ∝ ID).

3.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are a set of algorithms that are developed to em-
ulate the human brain and are designed for tasks such as classification, clustering,
prediction, among others [17]. Thus, the network inputs transform the data into linear
separable spaces and each layer can encode different characteristics of the data to
process them through the use of activation functions.

Algorithms such as Back-propagation or Real-Time Learning Algorithm (RTRL) [21]
can be used for network learning. Some of the advantages of neural networks are
their versatility, and the variety of models (convolutional, recurrent and their deriva-
tives) with different structures and applications.

Figure 3.2: Artificial Neural Network Architecture

The ANN is built from 3 types of layers: the input layer, with the initial data, the hidden
layers, which are the intermediate layers between the input layer and the output layer
where all the calculation is done, and the output layer, which has the result for given
inputs (Figure 3.2). As each of the nodes in the network has a synaptic weight at the
junction with the next node, the node value and the synaptic weight generate a signal
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that can be seen as the impact that connection has on the node in the next layer.
The nodes can be either connected between layers or not, depending on the network
architecture.

Figure 3.3: Node from an Artificial Neural Network - Perceptron

Therefore, if we take a look at a node it will look like Figure 3.3. This simple node
is called perceptron which was the first basic unit of inference used for classification
applications [29, 31].

3.2.1 Backpropagation Algorithm

Backpropagation is a method used in supervised learning algorithms to train ANN
using a method called gradient descent. It works by partially deriving the cost (or
error) function from any weight (or bias) in the network to know how quickly the cost
changes when weights are changed and also gives details of how these changes
modify the behavior of the network [32].

The weights change while the cost calculation is repeated until the desired value is
reached. Then, the solution is the set of values of all the weights capable of achiev-
ing the minimum desired error. At this point, the network is trained and can deal with
arbitrary input values responding with an active output if the input contains patterns
similar to those that the network has already recognized in their training.
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3.2.2 Gradient Descent

To change the weights of the inputs of an ANN, it is necessary to calculate the error
function based on Gradient Descent using Equation 3.1.

θi := θi −
α

m

m∑
i

[(hθ(xi)− yi)xi] (3.1)

where

• θi are the weights of the hypothesis,

• hθ(xi) are the predicted values for the ith input, and

• α is the learning rate (0,1).

Then, using the sigmoid function as activation function the Equation 3.2 is needed.
Where c decides the steepness of the curve.

hθ(z) =
1

1 + e−cz
, (3.2)

where z = θ0x0 + θ1x1 + ...+ θmxm and c modifies the slope of the function.

3.2.3 Calculation of the Gradient

The gradient calculation in a neural network with one hidden layer and a single output
can be done by following the process showed in [32] using chain rule and a control
scheme as seen in Figure 3.4.

Figure 3.4: Block scheme of a control system [32]

Then, as the weights wji and vj are the ones to be adjusted, the gradient is defined:

∇E =

[
∂E
∂vj
∂E
∂wji

]
, (3.3)
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with its partial derivatives,

∂E

∂vj
=
∂E

∂ey

∂ey
∂eu

∂eu
∂u

∂u

∂r

∂r

∂vj
= −eju(1− u)

∂ey
∂eu

hj, (3.4)

∂E

∂wji
=
∂E

∂ey

∂ey
∂eu

∂eu
∂u

∂u

∂r

∂r

∂hj

∂hj
∂Sj

∂Sj
∂wji

= −eju(1− u)vjhj(1− hj)
∂ey
∂eu

xi, (3.5)

where eu denotes the error between the current control and the control signal to
operate the system and where r and Sj are,

r =
∑
j

vjhj, (3.6)

Sj =
∑
i

wjixi. (3.7)

An important remark is that the error ey can not be expressed in analytical terms. So,
the partial derivatives ∂ey/∂eu in Equation 3.4 and 3.5 are unknown.
Now, the weights can be adjusted each time as follows:

v
(t+1)
j = v

(t)
j − η

∂E

∂vj
= v

(t)
j + ηhjδ

1 ∂ey
∂eu

(3.8)

w
(t+1)
ji = w

(t)
ji − η

∂E

∂wji
= w

(t)
ji + ηxiδ

2
j

∂ey
∂eu

, (3.9)

where η is the learning rate and δ1 = eyu(1− u), δ2j = δ1vjhj(1− hj). Considering the
partial derivative

∂ey
∂eu

= sgn

(
∂ey
∂eu

)
·
∣∣∣∣∂ey∂eu

∣∣∣∣ , (3.10)

and letting η · |∂ey/∂eu|
η−→, Equations 3.8 and 3.9 simplify to,

v
(t+1)
j = v

(t)
j + sgn

(
∂ey
∂eu

)
ηhjδ

1, (3.11)

w
(t+1)
ji = w

(t)
ji + sgn

(
∂ey
∂eu

)
ηxiδ

2
j , (3.12)

where sgn(∂ey/∂eu) can be found experimentally for the system.
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3.3 Digital Potentiometer

A digital potentiometer is an electronic component that has the same functions as a
mechanical potentiometer, instead of being mechanically activated, it uses digital sig-
nals and switches to change its value. It is commonly used for scaling and trimming
analog signals in microcontrollers, instrumentation amplifiers, small-signal audio bal-
ance, and offset adjustment [33].

There are two types of digital potentiometers, the ones that have volatile memory,
losing their position when disconnected, and the ones that have non-volatile memory
(EEPROM) allowing the last value to be saved after disconnected. The number of po-
sitions and the resolution of each digital potentiometer has a range between 5 to 10
bits (32 to 1024 steps). Some advantages of digital potentiometers are that they can
be controlled in a closed-loop and have different ways to communicate, such as I2C
or Serial Peripheral Interface (SPI) Bus for signaling or using some simpler up/down
protocols.
In this way, there are two options to program the digital potentiometer, one as Po-
tentiometer Divider (Voltage output operation), where the potentiometer is used to
provide a variable voltage by adjusting the wiper position between the two endpoints,
and as Variable Resistor (Rheostat operation), where the potentiometer is used as
a two-terminal resistive element. The equations for adjusting the values change ac-
cording to the manufacturer.
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Materials and Methods

To fulfill the implementation of the analog circuit of an ANN. First, it is necessary to
describe the process to create the analog ANN. Then, know how to integrate the
learning algorithm. Finally, verify its operation with a real experiment.
In the Section 4.1, a strategy proposed by Sarwar et al. [29] it is used to carry out
the circuit implementation of both a single neuron and a complete network. Also, it
is explained the implementation of the learning algorithm [32]. The materials used in
the implementation of the circuit and the software resources are in Section 4.2.

4.1 Circuit Model of the Artificial Neural Network

The main goal of this section is to design the circuit used in the implementation of the
neural network. The steps to carry out the implementation of the circuit are divided
into three subsections. The first subsection is about the implementation of the circuits
for a single neuron and for the complete neural network. The second subsection is
about the implementation of the learning algorithm. The third subsection is about
testing the ANN in a practical application with the logic gates benchmark problem.
The output of the perceptron is calculated by applying the sigmoid function to a
weighted sum of the inputs and the synaptic weights. Then, an amplifier can per-
form this operation through a limiting circuit using Zener diodes.

4.1.1 Model of a single neuron - Perceptron

A basic model in Figure 4.1 is proposed [29]. The output of the circuit is designed to
be a continuous and increasing logarithmic sigmoid function. Achieved by using the
two Zener diodes (D1 - D2) in the feedback path of the first Op-Amp. Thus, the circuit
is designed in three steps:

• Adder, to compute the weighted sum.

• Limiting circuit, to compute the sigmoid function activation.

• Adder, to normalize the output value.

14
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For the first step the Equation 4.1 represent the adder configuration,

ui = Rf

N∑
j=1,j 6=i

vj
Rji

, (4.1)

where ui is the output of the adder, Rf is the feedback resistance, vj are the values
of the inputs and, the Rji are the weight values.

Figure 4.1: Proposed design of a single neuron

For the second step, an integration between the adder and the limiting circuit has to
be done. This requires analyzing the feedback diodes using one polarity at a time.
As the diodes are connected in series but in opposite directions, to manage positive
and negative input values, if the Zener diode D1 is in forward-biased operation, the
current ID1 for one input vj is:

ID1 =
|vj|
R3

I−→s [exp

(
VD
nVT

)
− 1] =

|vj|
Rji

, (4.2)

where Is is the reverse bias saturation current of the diode, VD is the voltage drop,
VT is the thermal voltage (≈ 26mV at 25 C), and n is the quality factor of the diode
(between 1 and 2) [29]. Simplifying to obtain VD,

VD = nVT ln

(
|ui|
R3Is

+ 1

)
. (4.3)

The process is the same using the D2 in forward-biased operation for negative values.
Then, it is only necessary to add the Zener voltage Vz for each diode. The output for
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the circuit lies in a range between [−(Vz +VD), V z+VD]. Thus, the output for the first
Op-Amp is going to be in the range:

uvj =


Vz + nVT ln

(
|ui|
R3Is

+ 1
)

vj < 0

0 vi = 0

−
(
Vz + nVT ln

(
|ui|
R3Is

+ 1
))

vj > 0.

(4.4)

For the third and last step, an inverse and an adder operation of an Op-Amps is
required. Here, the output u(vj) needs to be added with the normalization value
given by a DC source of value Vdc. The final equation for the second OpAmp is:

O1 = −uvj
R6

R4
+ Vdc

R6

R5
, (4.5)

However, this equation must meet two conditions:

R6

R4
VDmax + Vz = 2.5,

R6

R5
Vdc = −2.5.

Integrating this circuit with the digital potentiometer and the Arduino microcontroller
as shown in Figure 4.2 the circuit is complete.

Figure 4.2: Circuit for the Perceptron model (a) Arduino microcontroller, (b) Digital
potentiometer AD5206, (c) Summation and output function, (d) Output normalization.

In this circuit, the digital potentiometer is operating as a potentiometer divider and
gives the synapse values to the network.
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4.1.2 Model of the Artificial Neural Network

To create a complete ANN, it is first necessary to define its architecture. For this
implementation the selected configuration is:

• Two inputs

• One hidden layer with three neurons

• One output

Having the basic model and the architecture defined, the circuit is done by integrating
the design shown in Figure 4.2. First, the weight matrices for the hidden layer and the
output layer are defined with dimensions 2x3 and 1x3. As each digital potentiometer
(AD5206) has six independent channels, each potentiometer therefore can handle six
weights. Then, for 9 weights, 2 potentiometers are used in total. The output of each
neuron in the hidden layer goes to the analog inputs of the Arduino microcontroller,
where each weight is multiplied by each input (or hidden value). This value goes then
to the digital potentiometer via SPI communication. A flowchart diagram of the circuit
is shown in the Figure 4.3. The complete circuit for the ANN can be found in A with
the values of all the internally used resistances and sources.

Figure 4.3: Flowchart diagram of the ANN circuit.



CHAPTER 4. MATERIALS AND METHODS 18

4.1.3 Implement the training algorithm to achieve the real time
learning (Back-propagation - BP).

To realize the implementation of the training algorithm an Arduino® hardware devel-
opment board will be used. The code is wrote in the Integrated Development Envi-
ronment (IDE) of Arduino®. The pseudo code is shown in Appendix B and a flowchart
of its functioning can be seen in Figure 4.4. The board version is the Arduino UNO
Rev3.
The ANN weights are adjusted by Equations 3.8 and 3.9 for each iteration until an
acceptable error is reached. When there is no necessary to adjust the weights the
training stops and the network is ready to operate. It is important to remark that the
range for the weights is limited to [−1, 1].

Figure 4.4: Flowchart diagram of the Back Propagation algorithm.

To verify the functioning of the ANN the logic gates benchmark problem was pro-
posed. This part is detailed in Chapter 5.

4.2 Resources

Software and hardware resources used in this work are listed below:

• Software for the training System (Arduino® IDE).

• Software for the simulation of the ANN (Python).

• Software for the simulation of the circuit (Proteus LabTM).

• Arduino Library for Proteus.

• Laptop Acer Nitro AN515-52 Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz RAM
@ 8.00GB
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• Zener diode (1N4370).

• Digital Potentiometer (AD5206) 8-bit.

• Microcontroller Board Arduino® UNO Rev3.

• Operation Amplifier LM324.
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Results

In the previous chapter, the problem and proposed solution of how to create the cir-
cuit for the ANN was discussed. To prove the performance of the circuit, each of the
methods had to be developed to determine the best configuration of parameters and
values for each device.
The circuit was simulated using the circuit simulator Proteus (8.8). An Arduino mi-
crocontroller (Rev3) is used for the implementation of the BP algorithm and to control
the values sent to digital potentiometers. The outputs of the digital potentiometers
are connected to four Op-Amps which are the hidden and output activations of the
network. All the outputs of each neuron are sent back to the Arduino to the learning
process.
It is important to remark that the supply voltage of the digital potentiometer (AD5206)
is ±2.7V . As the potentiometer has 255 possible values (255 being +2.7V , 127 being
0, and 0 being −2.7V ) the increment of each step is about ≈ ±0.021V . The complete
circuit can be seen in Appendix B.

5.1 Preliminary Results

This section shows the first attempts to verify the performance of the circuit by testing
different resistor and gain values on the two Op-Amps.

5.1.1 Functioning of the Perceptron Circuit

First, it is necessary to check if it is working well and if it is giving the required output.
For this purpose, two sine voltage sources where connected to the inputs of the circuit
to test all the possible values the network can work with. The source values of the
inputs, resistors, and other elements used were: 2 sinusoidal voltage sources each of
3V with 1Hz of frequency, two Zener Diodes (1N4370A - 2.4V ), and the resistances
R1 = R2 = R4 = 10kΩ. The Figure 5.1 shows the circuit and Figure 5.2 shows the
performance of the activation part for the first Op-Amp.

20



CHAPTER 5. RESULTS 21

Figure 5.1: Perceptron circuit using Sine waves

Figure 5.2: Perceptron Activation Output

As the Zener Diodes have a value of 2.4V the output of the signal meet the output
value given by the Equation 4.4.
The normalization circuit was done by using the following values, R4/R6 = R5/R6 =
2 ∗ (3V/5V ) = 1.2 and Vdc = 3V . The Figure 5.3 shows the normalization output for
the perceptron.
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Figure 5.3: Perceptron Normalized Output

As can be seen, the circuit for the perceptron model shows that the respective outputs
in both the calculation of the activation function and the normalization of the output
are between the corresponding values.
Furthermore, if the network training require a fast convergence, a way to do that is by
modifying the slope c of the sigmoid function (Equation 3.2). To test this, the slope
of the sigmoid is modified by a factor of 1.5. As the resistors R1 and R2 have a value
of 10kΩ, the feedback resistor R4 must be modified to a value of 15kΩ. The sigmoid
response and the normalized output for this change are shown in Figure 5.4 and
Figure 5.5.

Figure 5.4: Perceptron Activation Output with c = 1.5

The normalized output should also be changed to a 1.5 factor. This is done by modi-
fying the values, R6/R8 = 12kΩ/20kΩ = 0.6 and R7/R8 = 24kΩ/20kΩ = 1.2.



CHAPTER 5. RESULTS 23

Figure 5.5: Perceptron Normalized Output with c = 1.5

The result of the perception shows the modification of the slope and makes the limits
to be reached in less time.

5.1.2 Functioning of the Artificial Neural Network Circuit

To test the circuit, the logical gates benchmark problem was used. For each test, the
output for each truth table, the value of the synaptic weights, and an error graph is
showed. Each error value is shown each 1000 iterations. In addition, to check the
performance of the circuit in Feed Forward operation, the last test was carried out
using previously calculated weights.

Logical Disjunction (OR) Test

In this experiment, two test were made. A test with the slope equal to 1 for the
sigmoid activation function and a test with a slope equal to 1.5. The truth table for the
operation between the two logical values can be found in Table 5.1.

Table 5.1: Truth table of Logical Disjunction

X Y Output
0 0 0
0 1 1
1 0 1
1 1 1

• Sigmoid Function with Slope c = 1
In an attempt to get a response for this problem, the circuit result shows a great
performance for this test with a learning rate of 0.05 and a tolerance of 0.1. The
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output of the test is shown in Table 5.2 and the weights are shown in Table 5.3.
Also, other test was realized but after 55000 iterations the output get stuck in
what we think could be a local minimum at 0.06848.

Table 5.2: Output OR gate [V] - Slope c = 1

Input Target Output
0 0 0 0.32747
0 1 1 0.76540
1 0 1 0.81427
1 1 1 0.97263

MSE 0.09876

Table 5.3: Weights for the OR gate - Slope c = 1

Inputs Hidden Weights Output Weights
X1 -0.88642 0.82161 -0.58703 -0.99867 0.99999 -0.96681
X2 -0.80931 0.86860 -0.35521

Trying to solve the problem in local minimum, it was decided to change the value
for the learning rate from 0.05 to 0.01 when a value of error less than 0.1 was
found. However, the circuit responds slow without reaching a lower error value
than the local minimum. The graph of the error can be seen in Figure 5.6.
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LR = [0.05− 0.01]

Figure 5.6: Error graph for OR gate (2 examples)
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Although the error was low, it was decided to try the same test but this time
changing the slope of the activation function. This is presented in the next
subsection.

• Sigmoid Function with Slope c = 1.5

The results shown in the Table 5.4 were obtained by changing the slope of the
sigmoid activation function. The final weight values can be found in Table 5.5.
The learning rate chosen was LR = 0.05 and the tolerance value was 0.01.

Table 5.4: Output OR gate [V] - Slope c = 1.5

Input Target Output
0 0 0 0.11046
0 1 1 0.93060
1 0 1 0.95894
1 1 1 1.00000

MSE 0.00935

Table 5.5: Weights for the OR gate - Slope c = 1.5

Inputs Hidden Weights Output Weights
X1 -0.50211 -0.51257 0.31342 -0.99985 0.84040 -0.71314
X2 0.40238 -0.27818 -0.05334
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Figure 5.7: Error graph for OR gate



CHAPTER 5. RESULTS 26

The Figure 5.7 shows how the MSE error decrease through time, meaning that
the network is getting a good result in training. It can be seen that the pro-
gram reaches the error goal in 8132, improving the convergence of the system
compared to the attempts in the past experiment with the slope c = 1.

Logical Conjunction (AND) Test

To test the logical conjunction, the same two slopes were used. The truth table for
the operation between the two logical values can be found in Table 5.6.

Table 5.6: Truth Table of Logical Conjunction

X Y Output
0 0 0
0 1 0
1 0 0
1 1 1

• Sigmoid Function with Slope c = 1

The results of this experiment can be seen in Table 5.7 and a graph of the error
can be seen in Figure 5.8. The final weight values can be found in Table 5.8.
The learning rate chosen was LR = 0.05 and the tolerance value was 0.01.

Table 5.7: Output AND gate [V] - Slope c = 1

Input Target Output
0 0 0 0.12805
0 1 1 0.32063
1 0 1 0.32356
1 1 1 0.50635

MSE 0.23379

Table 5.8: Weights for the AND gate

Inputs Hidden Weights Output Weights
X1 -0.82737 0.46449 -0.11019 -0.99919 0.16818 -0.99923
X2 -0.12759 0.29415 -0.84350
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Figure 5.8: Error graph for AND gate

• Sigmoid Function Slope c = 1.5

The results of this experiment can be seen in Table 5.9 and a graph of the error
can be seen in Figure 5.9. The final weight values can be found in Table 5.10.
The learning rate chosen was LR = 0.05 and the tolerance value was 0.01.

Table 5.9: Output AND gate [V] - Slope c = 1.5

Input Target Output
0 0 0 0.00000
0 1 1 0.07038
1 0 1 0.07331
1 1 1 0.90518

MSE 0.00966

Table 5.10: Weights for the AND gate

Inputs Hidden Weights Output Weights
X1 -0.60638 0.25790 0.03741 -0.99995 0.58523 -0.99987
X2 0.29719 0.13650 -0.49865
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Figure 5.9: Error graph for AND gate

The Figure 5.9 shows how the MSE error decrease through time, meaning that
the network is obtaining a good result in training. Reaching a convergence in
the 13004 iteration.

Exclusive Disjunction (XOR) Test

The results for the test for the XOR test are shown next. One test was made using
the slope c = 1.5 with backpropagation. Also, one test was made in feed forward
operation to prove its performance without training. The truth table of the XOR gate
is shown in Figure 5.11.

Table 5.11: Truth table of Exclusive Disjunction

X Y Output
0 0 0
0 1 1
1 0 1
1 1 0

• Sigmoid Function Slope c = 1.5

The results of this experiment can be seen in Table 5.12. A graph of the error
can be see in Figure 5.10. The computed weights values can be found in Table
5.13. The learning rate chosen was LR = 0.05 and the tolerance value was
0.01.
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Table 5.12: Output XOR gate [V] - Slope c = 1.5

Input Target Output
0 0 0 0.27175
0 1 1 0.82405
1 0 1 0.82405
1 1 1 0.47312

MSE 0.17980

Table 5.13: Weights obtained for the XOR gate - Proteus Lab

Inputs Hidden Weights Output Weights
X1 -0.80709 -0.43701 0.44922 -0.32086 -0.99996 0.32087
X2 0.45556 -0.43701 -0.80531
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Figure 5.10: Error graph for XOR gate

• Feed Forward Operation

As could be observed in the previous test, the error is still high to give as solved
the problem. To prove the performance of the ANN circuit to deal with this
problem an algorithm in Python was made to obtain the synaptic weights that
can be tested in the model to obtain the desired output. The code can be seen
in Appendix D. The weights obtained can be seen in Table 5.15 and the output
of these is shown in Table 5.14.
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Table 5.14: Output XOR gate [V] - Python

Input Target Output
0 0 0 0.22385
0 1 1 0.93255
1 0 1 0.93255
1 1 1 0.05474

MSE 0.03110

Table 5.15: Weights obtained by Python - XOR gate

Inputs Hidden Weights Output Weights
X1 -0.647914 0.833005 0.999998 -0.731207 0.999937 -0.731206
X2 0.999998 0.832988 -0.647998

5.2 Final Result

After obtaining the preliminary results, errors in the gains given by each of the am-
plifiers were corrected and modified as shown in equation 4.5. Thus, the circuit con-
verged quickly and with low errors even with the XOR gate problem. The results are
shown below.

5.2.1 Functioning of the Perceptron Circuit

For each circuit stage, the limiting phase and the output phase of the sigmoid function
are shown in Figure 5.11. It can be seen that the behavior of the function has the
”S” shape required for the sigmoid function and also has the desired operating range
≈ (0V −5V ). Different from what was shown in the preliminary results, the signal input
values are provided by the Arduino microcontroller and not by sinusoidal signals.

(a) (b)

Figure 5.11: (a) Output Limiting Circuit, (b) Sigmoid Function



CHAPTER 5. RESULTS 31

5.2.2 Functioning of the Artificial Neural Network Circuit

Logical Disjunction (OR) Test

Only one experiment was used to evaluate the performance of the circuit for this prob-
lem using BP algorithm.

The value for the learning rate of the neural network was set to η = 0.08 and the
tolerance was set in 0.02. Results for the lower error is presented in Table 5.16. The
values of the respective weights are shown in Table 5.17. A graphic showing the MSE
error is presented in Figure 5.12.

Table 5.16: Output OR gate [V] - Slope c = 2

Input Target Output
0 0 0 0.15249
0 1 1 0.96285
1 0 1 0.88661
1 1 1 0.99022

MSE 0.01879

Table 5.17: Weights obtained by Proteus Lab - OR gate

Inputs Hidden Weights Output Weights
X1 0.32084 0.01384 -0.36001 0.47250 0.17958 -0.99985
X2 0.73457 -0.37768 -0.99998
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Figure 5.12: Error graph for OR gate
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Logical Conjunction (AND) Test

Only one experiment was used to evaluate the performance of the circuit for this prob-
lem using BP algorithm.

The results of this experiment can be seen in Table 5.18. A graph of the error can be
seen in Figure 5.13. The final weight values can be found in Table 5.19. The learning
rate chosen was LR = 0.09 and the tolerance value was 0.05.

Table 5.18: Output AND gate [V] - Slope c = 2

Input Target Output
0 0 0 0.01173
0 1 1 0.18377
1 0 1 0.12219
1 1 1 0.78788

MSE 0.04765

Table 5.19: Weights for the AND gate

Inputs Hidden Weights Output Weights
X1 0.14292 0.14352 -0.43414 0.50355 -0.97308 -0.99991
X2 0.19001 -0.53933 0.10511
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Figure 5.13: Error graph for AND gate
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Exclusive Disjunction (XOR) Test

The logical gate XOR benchmark problem was used to evaluate the performance of
the circuit. Two experiments were made: one with the BP algorithm made in the
Arduino microcontroller and other using python script to calculate the weights.

• Backpropagation Algorithm
For the first experiment, the value for the learning rate of the neural network
was set to η = 0.05. In this case, three experimental tests were made to find
the best behavior and convergence of the network. Results for the lower error is
presented in Table 5.20 and the values of the respective weights are shown in
Table 5.21. Also, a graphic showing the MSE error is presented in Figure 5.14.

Table 5.20: Output XOR gate [V] - Proteus Lab

Input Target Output
0 0 0 0.25024
0 1 1 0.80254
1 0 1 0.80254
1 1 0 0.09482

MSE 0.07480

Table 5.21: Weights obtained for the XOR gate - Proteus Lab

Inputs Hidden Weights Output Weights
X1 0.86810 0.88683 -0.49518 -0.71736 0.99945 -0.71747
X2 -0.46674 0.91707 0.90635
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Figure 5.14: Error graph for XOR gate
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• Feed Forward Operation

The second experiment validate and proved the performance of the circuit in
feed forward operation using the synaptic weights obtained by the Python script.
The results of the experiment are shown in Table 5.22 and the obtained weights
can be seen in Table 5.23.

Table 5.22: Output XOR gate [V] - Python

Input Target Output
0 0 0 0.22385
0 1 1 0.77615
1 0 1 0.77615
1 1 0 0.13978

MSE 0.08493

Table 5.23: Weights obtained by Python - XOR gate

Inputs Hidden Weights Output Weights
X1 -0.64788 0.99999 0.82856 -0.73135 -0.73115 0.99994
X2 0.99999 -0.64787 0.99999

The output of both experiments have an accuracy greater than 95% and for practical
uses the values greater than 0.7V can be seen as 1 and values lower than 0.3V can
be considered as 0.



Chapter 6

Conclusions

A novel method to implement a circuit of an ANN by hardware was proposed. This
circuit uses Op-Amps for processing and digital potentiometers to change the synap-
tic weights in the ANN. The use of this combination results in having the possibility of
training the network through the BP algorithm and obtaining a circuit to solve diverse
problems with a low complexity design.

In this research, some questions were proposed that must be answered:

• It is possible to create an ANN using analog devices and digital potentiometers?

• Can the ANN circuit have the capacity of being trained by using BP algorithm?

Thus, the results shown in Chapter 5 give the reasons to address the first question,
since the analog devices and the digital potentiometer evidenced good performance
in Feed Forward operation obtaining accuracy levels greater than 95% and demon-
strated the potential of the circuit to implement the ANN.

Regarding to the second question, the integration with the BP algorithm and the
Arduino microcontroller was successful. The experimental results shows that the
performance in the BP learning method achieved a level of accuracy greater than
95% in 13750 iterations with a circuit easy to implement and using few and low cost
components, proving to have advantages in terms of synaptic weight adjustment and
learning ability compared to designs already seen in literature.

As future work, a digital potentiometer with high resolution could be used to reach
higher values of accuracy. The implementation of other types of architectures, such
as Recurrent Neural Networks or LSTM can be performed to evaluate the training
ability. Also, changes in the control system could be made to improve the accuracy
and training convergence.
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Figure A.1: Artificial Neural Network Circuit Scheme
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1 / / Network Con f i gu ra t i on
2 const i n t i npu tS ize ;
3 const i n t hiddenSize ;
4 const i n t outputS ize ;
5 const i n t valuesSize ;
6 f l o a t learn ingRate ;
7 const f l o a t to le rance ;
8 / / Inpu ts
9 f l o a t inputValues [ valuesSize ] [ i npu tS ize ] = {};

10 / / Desired Output
11 f l o a t ta rge tVa lues [ valuesSize ] [ outputS ize ] = {};
12 / / Constants
13 f l o a t inputWeights [ hiddenSize ] [ i npu tS ize ] ;
14 f l o a t hiddenWeights [ outputS ize ] [ hiddenSize ] ;
15 f l o a t outputs [ valuesSize ] ;
16 f l o a t e r r o r ;
17 boolean done ;
18
19 / / I n i t i a l i z e random weights ” inputWeights ” and ” hiddenWeights ”
20
21 / / T ra in ing
22 whi le ( not done )
23 {
24 / / Send Inpu t Values * Inpu t Weights to D i g i t a l Potent iometer
25 synapseH = inputValues * inputWeights ;
26 / / Values to the hidden laye r
27 d i g i t a l P o t W r i t e 1 ( i , synapseH ) ;
28
29 / / Reading the hidden weights values and s c a l l i n g to 0−1 value .
30 h j = analogRead ( j ) / 1023.0 ;
31
32
33 / / Send Hidden Values * Hidden Weights to D i g i t a l Potent iometer
34 synapseO = h j * hiddenWeights ;
35 / / Values to the hidden laye r
36 d i g i t a l P o t W r i t e 1 ( i , synapseH ) ;
37
38 / / Reading the hidden weights values and s c a l l i n g to 0−1 value .
39 h j = analogRead ( j ) / 1023.0 ;
40 / / Output value
41 outputs = analogRead ( ) / 1023.0 ;
42
43
44 / / Ca l cu l a t i ng the e r r o r
45 e r r o r = outputs − ta rge tVa lues ;
46 e r r o r s += e r r o r * e r r o r ;
47
48 / / Updating i npu t weights
49 inputWeights [ i ] [ j ] −= learn ingRate * e r r o r * outputs * ( 1.0 − outputs ) * h j * ( 1 − h j ) * hiddenWeights *

inputValues ;
50
51 / / Updating hidden weights
52 changeHiddenWeights [ i ] [ j ] = learn ingRate * e r r o r * outputs * ( 1.0 − outputs ) * h j ;
53
54 i f ( e r r o r s < t o le rance )
55 {
56 done = t rue ;
57 Ser ia l . p r i n t l n ( ” T ra in ing done ! ” ) ;
58 }
59 }

Listing B.1: Back propagation pseudo code.
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1 / *
2 ARTIFICIAL NEURAL NETWORK CODE W/ BP
3 Jacobo Posada Hoyos
4 21/11/2020
5 * /
6
7 / / i nc lude the SPI l i b r a r y :
8 # inc lude <SPI . h>
9 / / Network Con f i gu ra t i on

10 const i n t i npu tS ize = 2 ;
11 const i n t hiddenSize = 3 ;
12 const i n t outputS ize = 1 ;
13 const i n t valuesSize = 4 ;
14 f l o a t learn ingRate = 0.05 ;
15 const f l o a t to le rance = 0.05 ;
16 / / Inpu ts
17 f l o a t inputValues [ valuesSize ] [ i npu tS ize ] =
18 {
19 {0 , 0} ,
20 {0 , 1} ,
21 {1 , 0} ,
22 {1 , 1}
23 } ;
24 / / Desired Output
25 f l o a t ta rge tVa lues [ valuesSize ] [ outputS ize ] =
26 {
27 {0} ,
28 {1} ,
29 {1} ,
30 {1}
31 } ;
32 / / Constants
33 f l o a t inputWeights [ hiddenSize ] [ i npu tS ize ] ;
34 f l o a t hiddenWeights [ outputS ize ] [ hiddenSize ] ;
35 f l o a t changeInputWeights [ hiddenSize ] [ i npu tS ize ] ;
36 f l o a t changeHiddenWeights [ hiddenSize ] [ outputS ize ] ;
37 f l o a t hiddenValues [ hiddenSize ] ;
38 f l o a t outputValues ;
39 f l o a t outputs [ valuesSize ] ;
40 f l o a t e r r o r s ;
41 f l o a t e r r o r ;
42 i n t synapseH [ hiddenSize ] [ i npu tS ize ] ;
43 i n t synapseO [ outputS ize ] [ hiddenSize ] ;
44 i n t c o n t r o l = 0 ;
45 boolean done = f a l s e ;
46 i n t ReportEvery1000 ;
47 i n t t e s t ;
48 i n t epoch = 0 ;
49
50 / / Pins to s e l e c t the D i g i t a l Potent iometers
51 const i n t s laveSe lec tP in1 = 10 ;
52 const i n t s laveSe lec tP in2 = 9 ;
53
54 / / Outputs o f hidden laye r
55 i n t H1 = A2 ;
56 i n t H2 = A3 ;
57 i n t H3 = A4 ;
58
59 / / Output Value
60 i n t O1 = A1 ;
61
62 void setup ( ) {
63 / / se t the s laveSe lec tP in as an output :
64 pinMode ( s laveSe lec tP in1 , OUTPUT) ;
65 pinMode ( s laveSe lec tP in2 , OUTPUT) ;
66 / / Report
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67 ReportEvery1000 = valuesSize ;
68 / / i n i t i a l i z e SPI :
69 SPI . begin ( ) ;
70 / / i n i t i a l i z e S e r i a l :
71 Ser ia l . begin ( 9600 ) ;
72 / / I n i t i a l i z e Random Values
73 randomSeed ( analogRead (A3 ) ) ;
74 }
75
76 void loop ( ) {
77 i n i t i a l W e i g h t s ( c o n t r o l ) ;
78 t o T e r m i n a l F i r s t ( c o n t r o l ) ;
79 c o n t r o l = 1 ;
80 t e s t = 0 ;
81 whi le ( not done )
82 {
83 e r r o r = 0.0 ;
84 e r r o r s = 0.0 ;
85
86 f o r ( i n t q = 0 ; q < valuesSize ; q++ ) {
87
88 / / Inpu t Values * Inpu t Weights
89 / / S e r i a l . p r i n t l n ( ” Inpu t W” ) ;
90 f o r ( i n t i = 0 ; i < hiddenSize ; i ++)
91 {
92 f o r ( i n t j = 0 ; j < i npu tS ize ; j ++)
93 {
94 i f ( inputWeights [ i ] [ j ] < 0 )
95 {
96 synapseH [ i ] [ j ] = i n t ( abs ( c e i l ( ( − inputWeights [ i ] [ j ] * inputValues [ q ] [ j ] * 127.0 ) − 127.0 ) ) ) ;
97 }
98 else
99 {

100 synapseH [ i ] [ j ] = i n t ( c e i l ( ( inputWeights [ i ] [ j ] * inputValues [ q ] [ j ] * 128.0 ) + 127.0 ) ) ;
101 }
102 }
103 }
104 / / Values to the hidden laye r
105 d i g i t a l P o t W r i t e 1 ( 0 , synapseH [ 0 ] [ 0 ] ) ;
106
107 d i g i t a l P o t W r i t e 1 ( 1 , synapseH [ 0 ] [ 1 ] ) ;
108
109 / / d i g i t a l P o t W r i t e 1 (2 , synapseH [ 0 ] [ 2 ] ) ;
110
111 d i g i t a l P o t W r i t e 1 ( 3 , synapseH [ 1 ] [ 0 ] ) ;
112
113 d i g i t a l P o t W r i t e 1 ( 4 , synapseH [ 1 ] [ 1 ] ) ;
114
115 / / d i g i t a l P o t W r i t e 1 (5 , synapseH [ 1 ] [ 2 ] ) ;
116
117 d i g i t a l P o t W r i t e 2 ( 0 , synapseH [ 2 ] [ 0 ] ) ;
118
119 d i g i t a l P o t W r i t e 2 ( 1 , synapseH [ 2 ] [ 1 ] ) ;
120
121
122 / / Reading the hidden weights values and s c a l l i n g to 0−1 value .
123 hiddenValues [ 0 ] = analogRead (H1 ) / 1023.0 ;
124 / / delay (10) ;
125 hiddenValues [ 1 ] = analogRead (H2 ) / 1023.0 ;
126 / / delay (10) ;
127 hiddenValues [ 2 ] = analogRead (H3 ) / 1023.0 ;
128 / / delay (10) ;
129
130 f o r ( i n t i = 0 ; i < outputS ize ; i ++)
131 {
132 f o r ( i n t j = 0 ; j < hiddenSize ; j ++)
133 {
134 i f ( hiddenWeights [ i ] [ j ] < 0 )
135 {
136 synapseO [ i ] [ j ] = i n t ( abs ( c e i l ( ( − hiddenWeights [ i ] [ j ] * hiddenValues [ j ] * 127.0 ) − 127.0 ) ) ) ;
137 }
138 else
139 {
140 synapseO [ i ] [ j ] = i n t ( c e i l ( ( hiddenWeights [ i ] [ j ] * hiddenValues [ j ] * 128.0 ) + 127.0 ) ) ;
141 }
142 }
143 }
144 / / Values to the output l aye r
145 d i g i t a l P o t W r i t e 2 ( 3 , synapseO [ 0 ] [ 0 ] ) ;
146
147 d i g i t a l P o t W r i t e 2 ( 4 , synapseO [ 0 ] [ 1 ] ) ;
148
149 d i g i t a l P o t W r i t e 2 ( 5 , synapseO [ 0 ] [ 2 ] ) ;
150
151 / / Output value
152 outputValues = analogRead (O1 ) / 1023.0 ;
153 outputs [ q ] = outputValues ;
154
155 / / Ca l cu l a t i ng the e r r o r
156 e r r o r = outputValues − targe tVa lues [ q ] [ 0 ] ;
157 e r r o r s += e r r o r * e r r o r ;
158 / / Updating i npu t weights
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159 f o r ( i n t i = 0 ; i < hiddenSize ; i ++)
160 {
161 f o r ( i n t j = 0 ; j < i npu tS ize ; j ++)
162 {
163 changeInputWeights [ i ] [ j ] = learn ingRate * e r r o r * outputValues * ( 1.0 − outputValues ) * hiddenValues [ i ] *

( 1 − hiddenValues [ i ] ) * hiddenWeights [ 0 ] [ i ] * inputVa lues [ q ] [ j ] ;
164 i f ( ( inputWeights [ i ] [ j ] − changeInputWeights [ i ] [ j ] > 1 ) or ( inputWeights [ i ] [ j ] − changeInputWeights [ i ] [ j ]

< −1 ) )
165 {
166 inputWeights [ i ] [ j ] = inputWeights [ i ] [ j ] ;
167 }
168 else
169 {
170 inputWeights [ i ] [ j ] −= changeInputWeights [ i ] [ j ] ;
171 }
172 }
173 }
174
175 / / Updating hidden weights
176 f o r ( i n t i = 0 ; i < outputS ize ; i ++)
177 {
178 f o r ( i n t j = 0 ; j < hiddenSize ; j ++)
179 {
180 changeHiddenWeights [ i ] [ j ] = learn ingRate * e r r o r * outputValues * ( 1.0 − outputValues ) * hiddenValues [ j ]

;
181 i f ( ( hiddenWeights [ i ] [ j ] − changeHiddenWeights [ i ] [ j ] > 1 ) or ( hiddenWeights [ i ] [ j ] − changeHiddenWeights [ i

] [ j ] < −1 ) )
182 {
183 hiddenWeights [ i ] [ j ] = hiddenWeights [ i ] [ j ] ;
184 }
185 else
186 {
187 hiddenWeights [ i ] [ j ] −= changeHiddenWeights [ i ] [ j ] ;
188 }
189 }
190 }
191
192 / / Report
193
194 ReportEvery1000 = ReportEvery1000 − 1 ;
195 i f ( ReportEvery1000 == 0 )
196 {
197 Ser ia l . p r i n t l n ( e r r o r s / 2.0 ) ;
198 ReportEvery1000 = 1000 ;
199 epoch = epoch + 1 ;
200 }
201
202 i f ( q == ( valuesSize − 1 ) )
203 {
204
205 e r r o r s = e r r o r s / 2.0 ;
206 i f ( e r r o r s < 0.1 )
207 {
208 learn ingRate = 0.01 ;
209 }
210 i f ( e r r o r s < t o le rance )
211 {
212 t e s t = t e s t + 1 ;
213 i f ( t e s t == 2 )
214 {
215 done = t rue ;
216 Ser ia l . p r i n t l n ( ” ” ) ;
217 toTermina l ( ) ;
218 Ser ia l . p r i n t l n ( ” ” ) ;
219 Ser ia l . p r i n t l n ( ” T ra in ing done ! ” ) ;
220 }
221 }
222
223 }
224 }
225 }
226 }
227
228
229 / / I n i t i a l i z i n g the weigths values f o r the i n pu t and hidden laye rs .
230 void i n i t i a l W e i g h t s ( i n t c o n t r o l )
231 {
232 i f ( c o n t r o l == 0 )
233 Ser ia l . p r i n t l n ( ” I n i t i a l ” ) ;
234 {
235 f o r ( i n t i = 0 ; i < hiddenSize ; i ++)
236 {
237 f o r ( i n t j = 0 ; j < i npu tS ize ; j ++)
238 {
239 inputWeights [ i ] [ j ] = ( f l o a t ( random ( 100 ) ) / 100 ) − 0.5 ;
240 }
241 }
242 f o r ( i n t i = 0 ; i < outputS ize ; i ++)
243 {
244 f o r ( i n t j = 0 ; j < hiddenSize ; j ++)
245 {
246 hiddenWeights [ i ] [ j ] = ( f l o a t ( random ( 100 ) ) / 100 ) − 0.5 ;
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247 }
248 }
249 }
250 }
251
252 / / Sending the values f o r each D i g i t a l Potent iometer
253
254 void d i g i t a l P o t W r i t e 1 ( i n t address , i n t value ) {
255 / / take the SS pin low to s e l e c t the ch ip :
256 d i g i t a l W r i t e ( s laveSe lec tP in1 , LOW) ;
257 delay ( 10 ) ;
258 / / send i n the address and value v ia SPI :
259 SPI . t r a n s f e r ( address ) ;
260 SPI . t r a n s f e r ( value ) ;
261 delay ( 10 ) ;
262 / / take the SS pin high to de− s e l e c t the ch ip :
263 d i g i t a l W r i t e ( s laveSe lec tP in1 , HIGH) ;
264 }
265
266 void d i g i t a l P o t W r i t e 2 ( i n t address , i n t value ) {
267 / / take the SS pin low to s e l e c t the ch ip :
268 d i g i t a l W r i t e ( s laveSe lec tP in2 , LOW) ;
269 delay ( 10 ) ;
270 / / send i n the address and value v ia SPI :
271 SPI . t r a n s f e r ( address ) ;
272 SPI . t r a n s f e r ( value ) ;
273 delay ( 10 ) ;
274 / / take the SS pin high to de− s e l e c t the ch ip :
275 d i g i t a l W r i t e ( s laveSe lec tP in2 , HIGH) ;
276 }
277
278 / / P r i n t i n g values o f i n t e r e s t
279 void toTermina l ( )
280 {
281 f o r ( i n t q = 0 ; q < valuesSize ; q++)
282 {
283 Ser ia l . p r i n t l n ( ) ;
284 Ser ia l . p r i n t ( ” I npu t ” ) ;
285 f o r ( i n t i = 0 ; i < i npu tS ize ; i ++ )
286 {
287 Ser ia l . p r i n t ( inputVa lues [ q ] [ i ] ) ;
288 Ser ia l . p r i n t ( ” ” ) ;
289 }
290 Ser ia l . p r i n t ( ” Target ” ) ;
291 Ser ia l . p r i n t ( ta rge tVa lues [ q ] [ 0 ] ) ;
292 Ser ia l . p r i n t ( ” ” ) ;
293
294 Ser ia l . p r i n t ( ” Outputs = ” ) ;
295 Ser ia l . p r i n t ( outputs [ q ] , 5 ) ;
296 Ser ia l . p r i n t ( ” ” ) ;
297
298
299 }
300 Ser ia l . p r i n t l n ( ) ;
301 Ser ia l . p r i n t l n ( ) ;
302 Ser ia l . p r i n t ( ” E r ro r = ” ) ;
303 Ser ia l . p r i n t ( e r ro rs , 5 ) ;
304 Ser ia l . p r i n t ( ” ” ) ;
305 Ser ia l . p r i n t l n ( ) ;
306 Ser ia l . p r i n t ( ” I npu t Weights = ” ) ;
307 f o r ( i n t i = 0 ; i < hiddenSize ; i ++)
308 {
309 f o r ( i n t j = 0 ; j < i npu tS ize ; j ++)
310 {
311 Ser ia l . p r i n t ( inputWeights [ i ] [ j ] , 5 ) ;
312
313 Ser ia l . p r i n t ( ” ” ) ;
314 }
315 }
316 Ser ia l . p r i n t l n ( ) ;
317 Ser ia l . p r i n t ( ” Hidden Weights = ” ) ;
318 f o r ( i n t i = 0 ; i < outputS ize ; i ++)
319 {
320 f o r ( i n t j = 0 ; j < hiddenSize ; j ++)
321 {
322 Ser ia l . p r i n t ( hiddenWeights [ i ] [ j ] , 5 ) ;
323 Ser ia l . p r i n t ( ” ” ) ;
324 }
325 }
326 Ser ia l . p r i n t l n ( ( epoch − 1 ) * 1000 + ReportEvery1000 ) ;
327 Ser ia l . p r i n t l n ( ) ;
328 }
329
330
331 void t o T e r m i n a l F i r s t ( i n t c o n t r o l )
332 {
333 i f ( c o n t r o l == 0 )
334 {
335 f o r ( i n t q = 0 ; q < valuesSize ; q++)
336 {
337 Ser ia l . p r i n t l n ( ) ;
338 Ser ia l . p r i n t ( ” I npu t ” ) ;
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339 f o r ( i n t i = 0 ; i < i npu tS ize ; i ++ )
340 {
341 Ser ia l . p r i n t ( inputVa lues [ q ] [ i ] ) ;
342 Ser ia l . p r i n t ( ” ” ) ;
343 }
344 Ser ia l . p r i n t ( ” Target ” ) ;
345 Ser ia l . p r i n t ( ta rge tVa lues [ q ] [ 0 ] ) ;
346 Ser ia l . p r i n t ( ” ” ) ;
347 }
348
349 }
350 }

Listing C.1: Code for the Artificial Neural Network with BP algorithm
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1 A r t i f i c i a l Neural Network #
2 # O r i g i n a l code r e t r i e v e d from : h t t ps : / / towardsa i . net / bu i l d i ng −neural −nets −with −python
3 # Import l i b r a r i e s
4 impor t numpy as np
5 from numpy . random impor t rand , seed
6 # Def ine a seed to generate the same random values
7 seed ( 2 )
8 # Def ine i npu t values :
9 i n p u t f e a t u r e s = np . ar ray ( [ [ 0 , 0 ] , [ 0 , 1 ] , [ 1 , 0 ] , [ 1 , 1 ] ] )

10 p r i n t ( i n p u t f e a t u r e s . shape )
11 p r i n t ( i n p u t f e a t u r e s )
12 # Def ine t a r g e t output :
13 t a r g e t o u t p u t = np . ar ray ( [ [ 0 , 1 , 1 , 0 ] ] )
14 # Reshaping our t a r g e t output i n t o vec to r :
15 t a r g e t o u t p u t = t a r g e t o u t p u t . reshape (4 ,1 )
16 p r i n t ( t a r g e t o u t p u t . shape )
17 p r i n t ( t a r g e t o u t p u t )
18 # Def ine weights :
19 # 6 f o r hidden laye r
20 # 3 f o r output l aye r
21 # 9 t o t a l
22 # Generat ion o f i n i t i a l weights
23 weight h idden = np . random . rand (2 ,3 )
24 we igh t ou tpu t = np . random . rand (3 ,1 )
25 # Learning Rate :
26 l r = 0.05
27 # Sigmoid f u n c t i o n :
28 def sigmoid ( x ) :
29 r e t u r n 1/ (1+ np . exp( −x ) )
30 # D e r i v a t i v e o f sigmoid f u n c t i o n :
31 def s igmoid der ( x ) :
32 r e t u r n sigmoid ( x ) *(1 − sigmoid ( x ) )
33 # Tra in ing
34 f o r epoch i n range (200000) :
35 # Inpu t f o r hidden laye r :
36 inpu t h idden = np . dot ( i n p u t f e a t u r e s , weight h idden *10)
37
38 # Output from hidden laye r :
39 output h idden = sigmoid ( inpu t h idden )
40
41 # Inpu t f o r output l aye r :
42 inpu t op = np . dot ( output h idden , we igh t ou tpu t *10)
43
44 # Output from output l aye r :
45 output op = sigmoid ( inpu t op )
46 #==========================================================
47 # Phase1
48
49 # Ca l cu l a t i ng Mean Squared Er ro r :
50 e r r o r o u t = ( ( 1 / 2) * ( np . power ( ( output op − t a r g e t o u t p u t ) , 2) ) )
51 p r i n t ( e r r o r o u t . sum ( ) )
52 # Der i va t i ves f o r phase 1 :
53 der ro r dou to = output op − t a r g e t o u t p u t
54 douto d ino = s igmoid der ( i npu t op )
55 dino dwo = output h idden
56 derror dwo = np . dot ( dino dwo . T , de r ro r dou to * douto d ino )
57 #===========================================================
58 # Phase 2
59 # derror w1 = der ro r dou th * douth d inh * dinh dw1
60 # der ro r dou th = d e r r o r d i n o * d ino outh
61
62 # Der i va t i ves f o r phase 2 :
63 d e r r o r d i n o = der ro r dou to * douto d ino
64 dino douth = we igh t ou tpu t *10
65 der ro r dou th = np . dot ( d e r r o r d i n o , d ino douth . T )
66 douth d inh = s igmoid der ( inpu t h idden )

43
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67 dinh dwh = i n p u t f e a t u r e s
68 derror wh = np . dot ( dinh dwh . T , douth d inh * der ro r dou th )
69 # Update Weights
70 f o r i i n range ( 2 ) :
71 f o r j i n range ( 3 ) :
72 i f weight h idden [ i ] [ j ] − l r * derror wh [ i ] [ j ] > 1:
73 weight h idden [ i ] [ j ] = weight h idden [ i ] [ j ]
74 e l i f weight h idden [ i ] [ j ] − l r * derror wh [ i ] [ j ] < −1:
75 weight h idden [ i ] [ j ] = weight h idden [ i ] [ j ]
76 e lse :
77 weight h idden [ i ] [ j ] −= l r * derror wh [ i ] [ j ]
78 f o r i i n range ( 3 ) :
79 i f we igh t ou tpu t [ i ] − l r * derror dwo [ i ] > 1:
80 we igh t ou tpu t [ i ] = we igh t ou tpu t [ i ]
81 e l i f we igh t ou tpu t [ i ] − l r * derror dwo [ i ] < −1:
82 we igh t ou tpu t [ i ] = we igh t ou tpu t [ i ]
83 e lse :
84 we igh t ou tpu t [ i ] −= l r * derror dwo [ i ]
85 # F i n a l hidden laye r weight values :
86 p r i n t ( weight h idden )
87 # F i n a l output l aye r weight values :
88 p r i n t ( we igh t ou tpu t )
89
90 #=================================================
91 # Pred i c t i ons :
92 #Taking inpu ts :
93 s i n g l e p o i n t = np . ar ray ( [ 1 , 1 ] )
94 #1 s t step :
95 r e s u l t 1 = np . dot ( s i n g l e p o i n t , weight h idden *10)
96 #2nd step :
97 r e s u l t 2 = sigmoid ( r e s u l t 1 )
98 #3rd step :
99 r e s u l t 3 = np . dot ( resu l t 2 , we igh t ou tpu t *10)

100 #4 th step :
101 r e s u l t 4 = sigmoid ( r e s u l t 3 )
102 p r i n t ( r e s u l t 4 )
103 #=================================================

Listing D.1: ANN code in Python
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