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Getting Smarter Urban Mobility in Mexico City: Visualizing Streets 
Pavement Conditions and Anomalies Through Fog Computing V2I 

Networks and Machine Learning 
 

by 
 

Alec García Barba 
 

Abstract 
 

One of the mayor problems of Mexico City today is its poor mobility. Despite the 
constant efforts and monetary investments to emerge as one of the largest smart 
cities in the world, City government has not found a solution to mobility problems. 
Without a complete coverage of public transportation, and around 35 million daily 
commuters, with a third of them lasting more than an hour, the country’s capital has 
been considered several times one of the world's most congested cities. 

One way to make better decisions about public spending on mobility is to analyze 
data related to the conditions of its cities’ streets and avenues. Generally, the streets 
and avenues are fixed as soon as they have a citizen report or when a major incident 
happens. However, it is uncommon for cities to have real-time reactive systems that 
detect the different problems they have to fix on the pavement.  

Today, the government provides internet connection in more than 13,690 Access 
Points distributed throughout the city.  This document thoroughly reviews the context 
of Mexico City, its communication system range, and technological limitations. At the 
same time, it is proposed to implement a distributed computing network that couples 
with the existing infrastructure to capture, filter, and analyze the data that could 
potentially help decision-makers in terms of public spending on mobility through 
sensors within vehicles that travel those streets daily and connecting them to a fog-
computing architecture on a V2I network. 

This solution detects main road problems or abnormal conditions in streets and 
avenues by implementing Machine Learning (ML) algorithms to compare roughness 
against a flat reference. An equipped vehicle obtained the reference through 
accelerometry sensors and then sent the data through mid-range communication 
systems. 

The present work compares the accuracy and F1 score metrics of a soft-Max 
Artificial Neural Network (supervised MLA) and a K-Nearest Neighbor (Unsupervised 
MLA) to select the best option to handle the acquired data, and compares both 
model’s classification in two different avenues close to ITESM CCM premises.  
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Chapter 1: Introduction 
Since the beginning of our history as humanity, we have focused on different 
communication techniques, in the coding of our language and the interpretation of 
the signs and symbols that we use to transmit the ideas that we generate inside our 
head. This is how various alphabets, codices, languages and languages have been 
generated with which we communicate as a species. Telecommunications are a 
symbiosis of the human desire to communicate with each other, with the desire to 
connect at a distance. 

Thanks to last decade’s technology development, humans are not the only ones 
connecting to one another. Inventions such as Internet of Things, Cloud computing, 
as well as telecommunication breakthrough technologies such as DSRC, CV2X or 
5G, entire cities are slowly, but steadily connecting to the internet. It is projected that 
approximately 38.6 billion IoT devices will be connected to the internet worldwide by 
2025 [1]. 

Concepts such as Smart Cities and Smart Mobility are transitioning to reality as 
governments start to provide free wireless connectivity within the city, as well as 
private competitors lower their costs and bring new alternatives to citizens. There 
seems to be no clear consensus on the specific definition of both terms, but generally 
speaking, Smart City refers to an ultra-modern urban area that addresses the needs 
of businesses, institutions, and especially citizens with focus on Environment, 
Economy, Mobility, Governance, way of living and people itself [2]. 

While some authors focus extensively on the sustainable aspect of smart urban cities 
[3], others focus on the integration and impact of Information and Communications 
Technology (ICT) throughout the whole city [4]. The term of smart city evolves 
constantly, and it is rediscovered through new lenses almost on a daily basis.  

Smart mobility plays a decisive role in considering whether a city is considered smart 
or not. Even though a lot of definitions arise in the literature as well, the better suited 
to this document is the one presented by G. Lyons [5]: 

“Generate and share data, information and knowledge that influences decisions; 
using technology to enhance vehicles, infrastructure, and services; and deriving 
improvements for transport system operators, users and for shareholders.” 

The data sources for smart mobility are endless: vehicles, roads, buildings, 
pedestrians, even traffic lights, or sensors embedded in any of the above. However, 
the data created by any source that can help achieve a smarter mobility must be 
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communicated for further filtering, processing, analysis, and finally be used to     
improve the city. This is where vehicular communications come into play. 

Vehicle to Infrastructure (V2I) communications have been implemented based on 
numerous standards, such as IEEE 802.11n, DSRC, and Infrared techniques [6]. 
Generally consisting of single hop communication between the vehicle and the 
infrastructure. These vehicles can have a built-in On-Board Unit (OBU) or have them 
added afterwards. A Road-Side Unit (RSU) generally acts as a router and has a 
higher coverage than the OBU range. This is the link between the vehicle and any 
other possible computing device, and a tight integration system can have both the 
routing and the computing system.  

Once the communication of such data is successful, it still needs processing, and 
analysis to be useful. In the traditional context of smart cities, such data is stored 
and handled in the cloud, whether it is public or private. Cloud technology provides 
ubiquity, almost unlimited storage and computing capacity, elasticity, and benefits 
from a cost efficiency model; turning the cloud into an advantageous technology. [7] 
However, the massive use of cloud computing unmasks a new set of challenges.  

30.8 billion devices connecting to the internet, specially to the cloud, will lead to many 
issues, including network congestion, delay, and privacy concerns if the data is 
analyzed on cloud. More specifically, transmitting the data to the cloud consumes 
many network resources, congests networks, and leads to long latency. [8] Just on 
IP traffic alone, a staggering 19.5 zettabytes of information is expected to travel on 
data centers globally [9].  

The concept of Edge computing was born in order to solve this problem. It leverages 
the storage and processing capacities of a large number of devices connected to the 
internet deployed for the purpose to provide an intermediate layer between the end 
devices and the cloud. With the presence of these “Edge devices”, the computation 

load at the data centers is reduced by handling some of the requests directed to the 
cloud, locally, which do not require intervention from the cloud. Therefore, this 
approach reduces the latency in resolving the requests and allows real-time handling 
of a subset of requests. Edge devices also support mobility due to the abundant 
availability and geo-distributed nature.  [10] 

Another concept that proposed both by the industry and academia is fog computing.  
Fog Computing bridges the gap between the cloud and Internet of Things (IoT) 
devices by enabling computing, storage, networking, and data management on the 
network nodes within the close vicinity of IoT devices. Therefore, computation, 
storage, networking, decision making, and data management occur along the path 
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between IoT devices and the cloud, as data moves to the cloud from the IoT, or in 
our case, Internet of Vehicles (IoV) devices.[11] 

Edge computing is located at the edge of the network close to IoT devices; note that 
the edge is not located on the IoT devices, but as close as one hop to them. [11] 

The Industrial Internet and Open Fog Consortium makes the distinction that fog 
computing is a system-level hierarchical architecture and it provides computing, 
networking, storage, control, and acceleration anywhere from cloud to things; while, 
edge computing tends to be limited to computing at the edge, being the boundary 
between the pertinent digital and physical entities, delineated by IoT devices. [12] 
Figure 1 and figure 2 present a general scheme of vehicular communications, and a 
comparison that show the difference between edge and fog computing. 

 

 

Figure 1. General scheme of Vehicular communications 

 

Figure 2. Fog vs Edge computing comparison 



Chapter 1. Introduction   

 

16 

 

One of the questions this dissertation means to answer is how to approach the 
massive list of problems urban environments currently have, with the technology we 
currently possess, under the specific scope of smart urban mobility. 

Each city is different from the others, and definitely not all cities have the same 
problems, nor the same technological capacity or economic resources. That is why 
there are no concrete methods or universal recipes that solve the mobility problems 
of every urban environment. It is imperative to solve the problems of the city in the 
same context in which the city finds itself, and adapt solutions to its resources and 
possibilities. 

Mexico’s capital, CDMX, as of 2020 is the home of 9,209,944 people [13]. With a 
city this enormous, and territorially extensive, problems regarding mobility arise on 
a daily basis.  Public transport inefficiencies, heavy traffic, and a deterioration of the 
urban landscape are just the tip of the iceberg of the problems that millions of people 
must bear every time they want to move from one point to another.  

It is imperative to know in depth the context, the available technology, and the 
possibilities of implementation, as well as the major areas for improvement within 
the city before proposing solutions to these problems. 

In this dissertation, I present the context in which CDMX currently operates in 
general terms of urbanism and mobility related problems, technology, and 
communications. And afterwards, I propose a smart urban mobility approach to start 
solving mobility problems using a V2I-fog computing architecture, with data 
visualization tools on the cloud. At the same time, this solution will be aligned with 
the principles of affordability, effectiveness, attractiveness, and sustainability.  

This document is divided as follows:   

• Chapter 1: The motivation, problem statement and city and global context is 
provided. The research question, hypothesis and both general and particular 
objectives are stated. The limitations of this project are stated at the end of 
this section, as well as the main contributions. 

• Chapter 2:  A literature, theoretical framework and a state-of-the-art 
technologies review is detailed, in terms of smart mobility, vehicular 
communications, fog computing and anomaly detection. 

• Chapter 3: a research-based methodology is proposed to implement a V2I-
Fog network. Two main avenues near ITESM CCM campus are used for 
reference and experimentation. 

• Chapter 4: the final results of the project are presented. 
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• Chapter 5:   Both the results and the overall performance of the project are 
discussed. 
 

• Chapter 6: A conclusion is derived and recommendations for further research 
are suggested.  
 

 

1.1Motivation 
With the invention of the automobile, new possibilities arose that unleashed great 
economic, social, and technological growth. These advances of course have been, 
and will, continue to be of great benefit to humanity. However, they also were 
accompanied by large costs.  

The excessive use of cars has generated problems related to climate change, 
mobility, accidents, economic losses, and loss of lifetime of people who need to 
commute multiple times a day in these highly urbanized cities. These problems grow 
exponentially as the poor planning of cities and their accelerated growth rate limit 
emerging solutions. Specially in developing cities with high birth rate. 

Scientists and engineers around the world are currently seeking solutions to this set 
of problems: including electric vehicles, better proposals for public transport, 
autonomous vehicles, and a myriad of small solutions that seek to improve the 
quality of the air we breathe, the lives and stress of people who spend entire hours 
daily in some form of transportation, the economy, and/or general well-being. 

Despite the fact that many solutions have been studied in depth, and even tried some 
level of real-life implementation, carrying them out in cities in a practical way has 
been nearly impossible. Due to its practically null feasibility due to high costs, among 
many other factors, like solutions that require a much higher level of computation 
because the lack of information of the vehicle’s surroundings, or simply because the 
vehicle requires data from the network.    

This dissertation is focused on developing a platform in which all these individual 
solutions can be integrated into a large vehicular network, given that they are V2I 
solutions, where information can be collected, vehicles connected, data analyzed to 
give better and different proposals, in an effective way. This solution is based on 
802.11 communication technology, fog computing architecture support subsequent 
projects related to the solution of vehicle problems in cities. However, as new 
technologies arise, migration to these technologies are heavily advised. 
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1.2 Problem Statement and Context 

The exponential increase in automobile manufacturing, together with the population 
growth rate in urbanized cities, constantly generates new needs and problems. 
Traffic, a poor coordination within the public transport system, the safety of 
pedestrians and drivers, as well as the enormous financial losses due to the man-
hours invested in transporting workers make it necessary to find a solution. Those 
solutions require concrete, data-based decisions.  

A clear example of economic and time losses can be seen in Mexico City, where 35 
million average trips are made on a weekday, of which 33.3% last more than an 
hour, and 7.5 million of those trips are work related activities.  36% of them last at 
least two hours [14].  

It is easy to notice the great loss of both man hours and fuel use in a city with that 
much commuting. The total cost of vehicular congestion costs the Valley of Mexico 
$ 46,043,636,087 MXN annually [15].  

In order to find a way out first, it is necessary to fully understand the dimension of 
the problem. Therefore, first we need to measure, and intelligently gather information 
regarding traffic and mobility to be able to find areas of opportunity, and thus, 
implement efficient and effective solutions that solve these problems related to 
modern urban mobility in Mexico City. 

In the era of "Big Data", where efficient information processing adds high-reaching 
value in any company or government, solutions based on extremely large data sets 
processing set both a standard and an example to face the aforementioned 
problems. However, before going into this topic, it is necessary to ask what is needed 
before being able to process the data related to vehicular mobility in urban 
environments. The answer is to have an infrastructure to collect and ship them. 

As our knowledge about mobility in the city increases, better proposals can be 
applied to solve the main issues.  A V2I-Fog Computing architecture that, in addition 
to being an instrument for the connectivity of intelligent vehicles, can also enhance 
data analysis related to mobility, safety, and roads in the city, seems to be a great fit 
in this context. 

Throughout this thesis project, it is sought that, at the same time that an infrastructure 
is generated to collect information and understand the problem, the same 
infrastructure generates data analysis regarding the mobility situation, using the 
same architecture to advance a large part of the process. In this way, a two-stage 
process where the appliance is first created and then the data will be processed after 
the collection and transportation will be time-reduced.  
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By having a large-enough network, that processes data in real time, and processes 
information faster, instead of using the most common storage services like cloud or 
private services, and that can provide information to the city’s decision makers, or 
even the new generation of intelligent vehicles, we will be able to provide solutions 
worthy of our own technological advancement. 

 

1.3 Research Question 
How can a smart urban mobility visualization solution can be made for Mexico City 
that uses existing infrastructure and vehicles to propose solutions in terms of traffic 
and road safety? 

1.4 Hypothesis 
A V2I-Fog computing architecture that integrates different sensors in vehicles, 
preprocesses information at the edge of the network, and through fog computing 
detects problems in the state of the streets and brings data visualization through 
cloud will bring Smart urban mobility solutions in terms of affordability, effectiveness, 
attractiveness, and sustainability. 

1.5 Aim and Objectives 

This project involves several areas of knowledge, from hardware implementation and 
communications, all the way through application development and artificial 
intelligence. However, the purpose of this project is to unite hardware 
implementation, telecommunications and software development in an instrument 
that benefits the urban environment of Mexico’s capital with use of their data, while 
understanding the context in which the city currently operates. The Aim and 
Objectives, therefore, are described below.  

Aim: 

Design, develop and evaluate a V2I-fog computing network that receives, 
processes, and subsequently sends data related to traffic, accidents and/or 
vehicle safety automatically, in order to have a smarter urban mobility in 
Mexico City. 

Objectives: 

• Generate information through devices at the edge of the network and send it 

to micro servers for pre-processing. 

• Build databases accessible through the internet with useful information for 

urban decision making, related to mobility. 
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• Design and evaluate an independent protocol tool that analyzes data provided 

by the same vehicles, detecting mobility, traffic, and safety problems in CDMX 

in order to make proposals for improvement. 

• Produce an efficient, affordable, effective data visualization tool that allows 

better decision-making. Developing greater sustainability of the city in the long 

term. 

1.6 Limitations and annotations of the dissertation 
No autonomous driving algorithm, system, or process will be implemented. This 
project will only focus on establishing vehicular communications and defining the 
distance ranges per access point with a mean PER of less than 20%, an average 
latency of less than 300ms, and a network with up to 4 APs. The architecture will be 
tested with 1 OBU, and 1 RSU, and its scalability will be put to test via simulation. 

The requirements in terms of PER is practically a quarter of the best result obtained 
from using radio frequency technologies operating in free band for close 
environments, and as good as a cellular-technology V2I communication in a LOS 
scenario, both measured in previous works: [16],[17]. The latency average limit was 
also taken from previous experimentation on V2I networks.  

On the other hand, the maximum distance is directly dictated by the frequencies 
used by wireless technology, whether cellular, 802.11 or other alternatives. A 
decrease in the maximum distance is expected as well, due to the loss in LOS, partial 
obstructions with metal objects, weather conditions, or any other unexpected events 
that could alter the digital communications. 

It should also be clarified that if there is a change in communication technology in 
the future, where they have higher frequencies, according to the increase in speed, 
their reach will be directly reduced.[18]  

Various experiments will be carried out in two different avenues. A reference street, 
which has been recently paved, and with few anomalies to take as the “ideal street”, 
and another avenue with very little maintenance, where it will be sought to make a 
data processing system that detects different anomalies in the avenue. 

Data from sensors connected to the vehicle will be used that subsequently will be 
processed in the available computing nodes. Afterwards, an analysis will be made 
on two different fronts. The first analysis will be regarding the condition and rugosity 
of the streets where routes will have been traveled by a standard vehicle with an 
OBU added on it. The purpose of this analysis is to prove if the architecture can bring 
benefits to the decision makers in terms of general street investment. 
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The second analysis will regarding how much information was avoided sending to 
the network, to determine the percentage of throughput release and storage use 
savings for then carry out a technical, electrical, and financial analysis comparison 
between a conventional V2N architecture, and a V2I-Fog computing architecture. 

1.7 Contributions 

Generate robust vehicular communications in local scenarios with the possibility of 
being replicated en masse, which can make the traffic of an entire city more 
efficient, generating savings for traffic and time that would avoid expenses of up to 
millions of pesos annually. 

The technical goal of this dissertation is to make possible the implementation of 
various solutions to traffic problems. Haddad proposes that, under an efficient and 
robust vehicular communications scenario, eventually all traffic lights will be 
eliminated to allow a continuous flow of cars as a solution to traffic jams [19]. This 
can be achieved by doing an optimization model where each vehicle drives at its 
maximum possible speed, with its proper speed limit on each street or avenue, 
without encountering another car at any intersection. A possible first step to reaching 
a system of this nature is by designing a V2I communications network. 

Leaving the scope of the project for a moment, and regarding vehicular collision 
avoidance, various systems have been made to avoid deaths, crashes, and 
increased pollution. Among them are proposals such as making predictive 
calculations for worst-case analysis for pedestrian movement [20], or the automatic 
collision avoidance system from Mercedes Benz [21]. On environmental issues, it is 
proposed to use the sensors of buildings, supermarkets and public spaces to 
contribute to the database necessary for autonomous driving  [22].   

All these scientific advances can be highly benefited on, or are completely 
dependent of, vehicular communications. It is very difficult to operate relatively 
inexpensive autonomous vehicles with proper environmental sensing if they do not 
obtain data from their surroundings. 

Finally, a fog computing system directly contributes to an economic benefit, since 
vehicles avoid having built-in supercomputers, and can more easily use currently 
available resources due to the short physical and logical distance. Data centers will 
avoid handling heavy traffic and massive storage. Fog achieves this by using 
relatively inexpensive equipment right on the edge of the network, with otherwise 
unproductive devices which can operate in standby or asleep mode [7]. Considering 
the fog computing architecture benefits, this technology can lead to a substantial 
benefit to the scalability of the project. 
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Chapter 2 - Literature Review and State of the Art  
Over the last decade, vehicular communications have gained popularity with both 
academia and industry, since they are getting closer to being a reality due to the 
emerging technologies surrounding it, such as Artificial Intelligence (AI), 5G, the 
Internet of Things (IoT), and autonomous driving. Efforts to develop and improve the 
former, have substantially benefited adjacent technologies. 

The different technologies that surround this new generation have opened a huge 
spectrum of possibilities, including smart cities and therefore smart urban mobility. I 
will now focus on providing an overview of the most relevant technologies developed 
in the last decade in terms of smart urban mobility, V2I communications, fog-
computing, and different mechanisms for street anomalies detection. 

 

Two dictionary definitions actually help to understand the direction of this project: 

• Smart – having or showing a quick-witted intelligence; far on or ahead in 
development and progress. 

• Intelligent – having the ability to acquire and apply knowledge and skills.  
 

Thus, intelligent transportation systems must have the ability to apply knowledge 
given by the data processing of different vehicular communications systems, and 
smart urban mobility must route the city’s development to an accelerated progress. 

 

This chapter is divided in three parts. Firstly, I provide an overview of previous work 
[16], [17] related to vehicular communications, as well as a theoretical framework in 
which these technologies operate. Then, a literature review is performed to help 
understand how smart urban mobility solutions have been carried out around the 
world. Lastly, state-of-the-art technologies are revised to compare, contrast, and 
guide the project with the best solutions within the context of Mexico City urban 
conditions. 
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2.1 Theoretical framework & Previous Work 

2.1.1 Theoretical framework 

Internet of Vehicles (IoV), as we know it today, focuses on intelligent integration of 
humans, vehicles, things, and environments. It is a larger network that provides 
services for large cities or even a whole country. IoV is an open integrated network 
system with high manageability, controllability, operationalization and credibility, 
composed of multiple users, vehicles, infrastructure and networks. [23] 

Multiple applications arise from this technology. For instance, safety applications, 
such as notifying vehicles about dangerous situations within the roads ahead or 
identifying possible parking locations before the vehicle actually arrives to the 
destination.  

Vehicles are expected to provide data about vehicle sensors, environment, the driver 
and passengers. A Road-Side Unit (RSU), or generally speaking, Road-Side 
Equipment (RSE) can exchange context-aware information with an On-Board Unit 
(OBU), or On-Board Equipment (OBE) installed inside any of the vehicles in the 
network. Context-aware information exchange between RSU/RSE and vehicles can 
help in generating real time information, e.g., traffic information [24]. 

The first popular communication architecture for interconnecting vehicles were 
called Vehicular Ad-Hoc Network, or VANET. The basic principle of a VANET is that 
a vehicle is a mobile node that enables the connection with other vehicles thereby 
creating a network [25]. Multiple technologies and protocols arose from this concept 
network, such as: IEEE 802.11p, Directional Medium Access Control (DMAC), 
Vehicular Cooperative Media Access Control (VC-MAC), Dynamic Source Routing 
(DSR), General Packet Radio Services (GPRS), and others [26]. 

This is considered a local network, connected in mesh, which in theory makes the 
information collected from one vehicle available to the others, through direct 
communication between vehicles, or via a Roadside Unit. One of the main problems 
of VANETs is its limited capacity for processing all the information that is collected 
by themselves and other actors (such as sensors and mobile devices) around the 
environment [25]. 

Current IoV systems must have at least a data source layer, a communication layer, 
a fog layer, and a cloud layer. This is a direct evolution from VANETs, in which the 
communication only stayed at the edge of the network. 
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Figure 3. IoV layer architecture [24] 

The communication layer represents a fundamental aspect of this project. 
Independently of the technology used in this layer, the following elements must be 
considered: 

• Transmission frequency and Bandwidth (BW): Every wireless communication 
sends wave signals in a specific range of frequencies. Bandwidth is defined 
as the data transfer capacity of a computer, in terms of bits per second (Bps). 
There is a strong relation between the transmission frequency and its Bw. 

• Data Rate. In wireless communications, a more complex modulation results 
in a higher data rate, but also requires a higher signal-to-noise ratio (SNR) in 
the receiver to decode correctly. 

• Latency: the delay between the sending of a wireless signal, and the arriving 
of such a signal. Latency can be produced by multiple hops in the network, or 
mistakes in the communication and constant re-sending of the information. 

• Throughput: Throughput is a measure of the rate of successful message 
delivery over a communication channel. Successful meaning data being 
transferred without errors. 

• Packet error Ratio (PER): The packet error ratio is a value that indicates the 
number of data packets received incorrectly divided by the total number of 
received packets, with this we can know in a numerical way the fidelity of 
transmission in a medium, in this case, a wireless communication. A packet 
is declared incorrect if at least one bit of the packet or string is wrong. 
 

• Bit Error Ratio (BER):  The bit error ratio works in a very similar way as the 
PER. However, this type of ratio is not always measured in physical networks 
because an error in a bit implies an error in the packet. 
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• Signal to Noise Ratio (SNR): measure of signal strength, relative to the 
background noise in the medium. Usually measured in decibels (dB). 
Maximizing this ratio leads to minimizing errors in any communications 
system. 

These elements provide enough tools to measure the performance of a wireless 
communications system, regardless of whether it is DSRC, cellular, satellite, or any 
other at a physical layer. 

2.1.2 Previous work  

In the publication “A Simulation Approach of the Internet of Intelligent Vehicles for 
Closed Routes in Urban Environments”, an implementation of the simulation of 
intelligent vehicular communications through the IEEE 802.11p protocol was 
implemented.  

An algorithm for the generation of vehicular convoys to improve vehicle flow 
application through V2X communication was proposed and implemented in the 
simulation, and the communication quality was validated in a closed route in an 
urban environment during the simulations, omitting aspects of security in 
communications. A closed vehicle route was designed using the open traffic 
simulation software SUMO, and the communications during the route were simulated 
using the software framework OMNeT++. 

 

 

Figure 4. Simulated structural model for a 1km Route 
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Three antennas have been placed in the simulation model by car. Two vehicles were 
included that will communicate during the same trip in two configurations: with Line 
of Sight (LOS) and No Line of Sight (NLOS). 30 additional vehicles are added to 
observe the effects of adjacent communications.  

It was chosen as measure of attenuation of the signal in the transmission between 
the two cars of 9 dB for each 0.4 of height of the buildings. A central reception 
frequency of 5.89 GHz places us in the band of the technology implemented in 
VANET networks. The RSU is located in a building at the entrance of the University, 
3 meters above the ground. 80 bits were sent in a frame in 1 second intervals. The 
maximum interference distance was 2600 meters. The transmission power was 20 
mW, and the sending rate is 6 Mbps, the reception sensitivity of the antennas, that 
is the vehicles, was -89dBm. The presence of thermal noise with a value of -110dBm 
was considered. The model implemented for the loss of signal was Simple Path Loss 
Model for the transmission of the RSU in the free space. 

 

 

Figure 5. Results of PER in LOS simulations 

 

Within a completely LOS environment, different simulations were run, and a 
maximum of 20% PER was obtained. However, it was an outlier in comparison to 
the average result.  
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Figure 6. Results of PER in NLOS simulation 

In contrast with the LOS scenario, the NLOS environment caused a considerable 
increase in the packet error rate. Figure 7 shows a comparison between 2 different 
OBUs in both a LOS and NLOS scenario, with a total of 10 route runs.  

 

Figure 7. Packet Error Rate Box Plot comparison 

In general, it was found that LOS is a very important factor to generate a viable 
communication on the IEEE 802.11p protocol because of its high transmission 
frequencies, so having NLOS generates a higher and more variable PER. 

Within the bachelor thesis project called “Emulation of V2X communications”, a V2I 
architecture was proposed, with only a central computer and a database to test the 
edge communications system using various technologies. A mixed communication 
system was proposed, with the 802.11ac/n protocol connecting different APs with a 
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central RSU system, while the communication between OBUs in a VANET styled 
mesh network.  

 

 

Figure 8. V2I Network Design 

 

A comparison between different modulations used in 802.11 technology was carried 
out, to determine the BER in contrast with the SNR, to consider the amount of power 
an antenna with this protocol should have in order to have a low error rate. The other 
alternative, is to accept a lower modulation in the transmission, which will lead to a 
poor data transmission rate. 

This gives us a theoretical upper-bound limit, depending on the power capabilities of 
the different appliances used both in the reception and transmission of data over this 
type of wireless communication protocol. 
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Figure 9. Analysis of BER in Wi-Fi communications, varying modulation and 
SNR [16]  

 

Finally, an experiment was set up with the following variables: LoS, Cyclic 
Redundancy Check detection, packet sending retries in case of error, Power, 
Bandwidth channel, number of devices, distance, and acknowledging times. After 32 
repetitions of the experiment, the most important factors within 802.11 protocol to 
affect wireless communications were found out to be the Line of Sight, Cyclic 
Redundancy Check detection, Power, and Bandwidth. Considering the maximum 
distance of the experiment was lower than the limit specified by the protocol. 

Multiple tests were carried out where both the latency and PER were tested, 
considering them as the dependent variables. The main idea was to identify the most 
important factor during these specific wireless communications, and based on the 
correlation between controllable factors implement a wireless solution that minimizes 
both the latency and the packet error rate.   

The results can be seen in the figures 10 and 12.  Within range, the maximum latency 
obtained with this particular network configuration network was if 1.5 seconds. 
However, this latency included the generation of packets, sending through the 
network, data processing and comparison. This protocol can vary depending on the 
type of hardware, software, and processing of such communications. Figure 10 
shows the total latency of the designed network, while Figure 11 shows different 
tests and characterization made by Nokia regarding 802.11n/ac communications, 
creating a Cumulative Distribution Function (CDF) of the latency of such protocol. 
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Figure 10. Latency of V2I network throughout several experiments 

 

   

Figure 11. CDFs of Wi-Fi latency varying hardware [27] 

 

With these graphics we can have a valid understanding of the delay in 802.11ac/n 
networks. While the upstream/downstream latency of a single packet 
communication, considering different hardware devices, normally takes up between 
1-2 ms, a whole communication process normally takes between 400 and 500 ms. 

The packet error rate of the proposed V2I network in the bachelor thesis project 
ended up with results of an average 2.47% PER, with a maximum of 8% given the 
worst configuration possible and unexpected anomalies in the communications, 
which can include interference, partial or complete obstruction in the line of sight, or 
unexpected weather conditions.  
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Figure 12. Packet Error rate throughout experiments 

 

After all this previous work and previous work, some key points have to be 
considered: 

• Wireless protocols for V2I communications cover a short distance in relation 
to the amount of distance a vehicle can travel in a short amount of time. Any 
real V2I implementation in CDMX must have an enormous amount of Access 
Points to the network. 

• 802.11p protocol seemed promising, however it was substituted by further 
technologies such as C-V2X and in following years 5G. However, 5G is not 
currently available for commercial use in Mexico.  

• Other alternatives similar to 802.11p, such as 802.11ac/n could represent a 
temporal alternative while other technologies are accessible to the masses. 

• LoS is a main pillar in wireless communications in the range of 802.11 
protocols. Whatever solution is proposed with this type of communications 
must take it into account.  

• Given the packet error rate and general latency, other alternatives should be 
proposed in V2V communications, where ultra-low latencies and reliability are 
desired. This type of communications will not be possible in reality without 
5G. 
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2.2 Literature Review 

The concept of Vehicular Ad Hoc Networks (VANETs) was conceived over two 
decades ago, and it was a very active area of research, both in academia and 
industry [25], [26], [28]–[30]  as part of the Intelligent Transportation systems(ITS).  

ITS are a core component regarding smart urban mobility. Some of the main 
challenges that ITS try to solve are traffic assessment and management, In-vehicle 
and on-road safety management, Driver modeling techniques, and emergency 
management. [31] 

The new solutions to the above problems started demanding more requirements to 
vehicular networks. Since multiple sensors, multiple vehicles, and non-vehicle 
devices and users were needed to be considered in the equation.  

One of the main problems regarding VANETs is its reduced ability to both permit the 
integration of sensors and data-collecting technology, and integration, processing 
and forwarding of information to networks or devices outside that meshed network. 

In this context, vehicles needed to evolve into smarter objects equipped with a multi-
sensor platform, with a set of communication technologies, robust computational 
units, IP-based connectivity to the Internet, and a direct or indirect connection to 
other vehicles and with all devices around the environment. In this context, the 
concept of vehicular ad-hoc networks is evolving into the Internet of Vehicle (IoV) 
[25].    

There are multiple technologies, and use cases of IoV that VANETs cannot simply 
handle. Some of the solutions that IoV enable in urban environments including traffic 
control and large-scale mobility coordination through V2I networks, pedestrian 
detection and avoidance systems in autonomous vehicles with V2V, V2P and V2I 
communications, collision avoidance within vehicles through V2V, etc. This type of 
communications are being constantly studied and evolving, both with the help of the 
academia, the industry and the government. [32]–[34] 

Focusing on V2I communications, they enable us to innovate the current traffic 
control strategies, mainly in three verticals:  

(i) Fixed time mobility management, in which pre-programmed signal plans 
are based on historical traffic data along the day.  

(ii) Traffic-actuated, where real-time traffic conditions either change the 
length or order of signals phases, changing traffic strategies.  

(iii) Adaptive, which also predicts near future traffic conditions in order to 
optimize signal timing using an objective function, minimizing mobility 
transfer times.[35] 
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IoV also provides other numerous benefits, including dynamic information services, 
intelligent vehicle control and applications to reduce insurance rates and increased 
productivity due to the reduction of traffic jams and car accidents [36], [37] 

Since this type of communications needed, in most of the cases, some integration 
with the internet, as well as data processing, IoV started depending on the Cloud to 
operate. Due to the inefficiencies of the distance that traffic, latency, and lack of 
Local to Metro Area Network solutions, Vehicle Edge Computing was born.  

While several authors have mixed opinions and thoughts on Edge computing’s exact 
definition, most often refers to having intermediating infrastructure at the edge of the 
network that handles storage, computing, analysis, and networking issues. This 
infrastructure must exist, logically speaking, as near as possible to the end user.    

In edge computing, the processing and analysis of data take place in the proximity 
to the end devices. Edge acts as an intermediary amongst the cloud and vehicles. 
The benefits of Vehicular Edge Computing (VEC) and Vehicular Cloud Computing 
can be seen at table 1.  

 

Table 1: Comparison Between VEC and VCC, from  [38] 
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One of the main reason Edge Computing has gained momentum in the industry is 
because of the reduced latency that it brings to applications that need real-time data 
processing or secure data treatment. A couple of examples unrelated to vehicular 
communications include Virtual and Augmented reality, smart manufacturing, or 
smart retail artificial intelligence applications. 

Within Vehicular communications, considering them a subset of Internet of Things 
that require low latency for some of the real-time analysis applications, processing 
as close to the vehicle as possible can become critical to avoid any kind of accidents. 
This is one of the main reasons that Edge computing was considered a good suit to 
the IoV environment. 

Multiple applications can depend on this type of technology, from secure safety data 
sharing of vehicles [39], to enhance passengers user experience using deep 
reinforcement learning [40]. IoV does not limits to specific vehicle technical 
requirements, it can also improve the user experience during the recurrent travels 
within the city. 

However, With the growing quantity of data generated at the edge, speed of data 
transportation is becoming the bottleneck for the Edge-Cloud based computing 
paradigm [41]. Since only one Gateway and processing node or cluster generally 
exist in edge computing networks, most of the computing actually goes to the cloud 
for further processing. There is an evident tradeoff here, where you need to bring 
expensive computing power to the edge, or end up with a lot of bandwidth 
consumption and processing in the cloud. In both scenarios, economic costs can 
naturally rise up and scale out of proportion. 

 VEC is definitely an improvement from vehicular cloud computing networks, 
however, a better solution can be found within Fog Computing networks. 

Fog Computing is a highly virtualized platform that provides compute, storage, and 
networking services between end devices and traditional Cloud Computing Data 
Centers, typically, but not exclusively located at the edge of network. The defining 
characteristics of the Fog are:  

a) Low latency and location awareness, b) Wide-spread geographical distribution,  
c) Mobility, d) Very large number of nodes, e) Predominant role of wireless access, 
f) Strong presence of streaming and real time applications, and g) Heterogeneity [42] 

Based on this type of computing network, the architecture layer in figure 3 describes 
its need to separate data, communication, fog cloud. A more device-oriented 
architecture can be seen on figure 13. 
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Figure 13. Fog Computing conceptualized architecture [42] 

The evolution from local VANETs, to Cloud computing VANETS and IoV to Vehicular 
Edge Computing, and finally to Vehicular Fog Computing has come a long way in 
the past two decades.  

Of course there are advantages and different use cases better suited depending on 
the type of applications, but all things must be considered depending on the 
scenario. Real-time applications need powerful computing and strong 
communications, and big computing processing must be done as close as possible, 
giving VEC architectures a complete advantage. Big Data solutions are more 
suitable to VFC architectures, where multiple processing can be done in different 
clusters, optimizing computing due to its distributed nature. Lastly, applications 
which need to preserve data as it is can enter in a more suitable way into a Cloud-
Computing environment, in which security of the data can be better taken care of. 

Besides the general application, other things can be considered within these three 
architectures.  The amount of storage capacity, context or even application 
awareness, etc. There is no clear winner in these three architectures in an IoV 
environment. Depending on the solution desired, any architecture could be better 
suited. A more detailed comparison is presented in table 2.  
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Table 2. Comparison Between VCC, VEC and VFC architectures 

Features VCC VEC VFC 

Location Remote 

location 

User’s proximity User’s proximity, 

and remote 

location 

Latency High Low Low 

Mobility support Limited Higher Highest 

Decision Making Remote Local Remote & local 

Communication Constraints in 

Bandwidth 

Real Time Real Time and 

asynchronous 

Storage Capacity Highly scalable limited Highly scalable, 
both locally and 
remotely 

Context Awareness No Yes Yes 

Device Heterogeneity Limited Highly supported Highly supported 

Computing Capability High Medium High 

Cost of Development High Low Medium 

Cost of Scalability Low Medium Low 

 

With the enormous scalability of vehicular-fog-computing architectures, it must be 
considered how to scale, create clusters, and take advantages of all the computing 
processing capability acquired through these types of networks. While Edge 
Computing needs one good computing appliance or cluster at the border, Fog 
computing can be built with several low-cost computing devices as nodes of a cluster 
of clusters, making it more scalable. But, in order to surpass edge computing in terms 
of benefits, it must be built with the proper amount of nodes and clusters. 

The next section describes some state-of-the-art technologies that demonstrate the 
real benefits of such networks.  



Chapter 2. Literature Review 
 

37 

 

2.3 State of the Art 

This section is completely focused on the state of the art regarding smart mobility 
and V2I communications in urban environments. It is divided in 4 main sections:  

• V2I communications in Smart Mobility.  

• Fog Computing in V2X communications within smart cities.  

• Communication technologies regarding V2X. 

• Anomaly detection within smart vehicles. 

2.3.1 Smart Mobility and V2I applications 

When referring to smart mobility, the literature in general refers specifically to smart 
urban mobility. This distinction is important due to the fact that technology is 
completely city oriented, since most of V2X network rely heavily on QoS, replication, 
and are designed for high data transfer/processing volumes. 

Even though multiple definitions arise frequently, this dissertation will take as 
reference the one proposed by [5], defining smart (urban) mobility as: connectivity in 
towns and cities that is affordable, effective, attractive and sustainable. This is of 
special value in the context of the following chapters; if by some reason a user cannot 
afford to connect to the infrastructure, the proposed infrastructure is not smart 
enough.  

Connectivity should be treated only as what it is, a means to an end. This end should 
be affordable, effective, attractive, and sustainable. This end by no means should 
strictly be on the technological high-end side, especially if it does not comply with 
any of the previous definition of smart mobility.  

In order to compare the progress, in terms of smart mobility within a city, several 
authors have tried to condense all the properties of a city that converts them in a 
smart city, with smart mobility. [43] proposed an indicator, Smart Mobility Indicator 
(SMI), based on technical infrastructure, information infrastructure, mobility methods 
and vehicles used for this purpose, and legislation. The technical infrastructure must 
be able to communicate with different kinds of transport, and the quality of those 
communications, as well as the implemented applications impact considerably on 
the “smartness” of the city. 

Main V2I applications found in the literature revolve around: traffic solutions, secure 
communications for privacy of data, and data processing.  
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Traffic signal algorithms to control flow traffic have been studied by [35], where 
simulations have showed a decrease in waiting time down to almost 80%, and  
reductions in travel time of 15%, comparing to non-connected vehicle scenarios. 

B. LV et al. developed a LiDAR-Enhanced Connected Infrastructure to provide high-
resolution traffic information to both smart vehicles, autonomous or not, and a central 
computer, providing up to 8 MB of information about real-time traffic in no more than 
200ms. [44] 

Security in communications vary from safeguarding communications in the physical 
layer through mathematical models and algorithms with encoded transmissions [45], 
to using blockchain technology as a way to secure information through V2I 
communications, with blockchain handling vehicle’s authorization [39], [46]. 

Data processing with this type of architecture takes advantage of artificial 
intelligence. Autonomous vehicles platooning for time reduction using directional 
positioning algorithms in a platooning decision making process with multiple 
communications technologies and sensors has been tested in [47], while Long Short-
Term Memory (LSTM) models to reduce interference and enhance data streaming 
and performance can also be done in this type of networks [48]. 

2.3.2 Fog computing in V2I infrastructure within smart Cities 

There are many reasons of why a fog computing architecture can benefit IoV 
communications, especially in V2I networks and infrastructures:  

The RSU can be physically damaged by some malicious activity or other harsh 
environments. With appliances exposed to weather, traffic, and all kinds of 
conditions, nodes of the cluster will eventually go down. 

The network connectivity during V2I and I2I communications may be temporarily cut 
off, affecting immediate data communication.  

The vehicular network should be sufficiently scalable to adapt to the increasing 
number of vehicles. As more and more people adopt vehicles with OBU capacities, 
or intelligent vehicles go out to market, the amount of nodes within clusters, and 
clusters themselves must scale accordingly.  

Data processing needs to be performed closer to the data sources to minimize 
network latency [49], and as more roads get smarter, more clusters are needed to 
cover them in a low latency environment. 

Javed et al.  proposed a general fault-tolerant V2I framework with a 
publish/subscribe data communication pipeline using Kubernetes as both a 
virtualization and fault-tolerant management tool. Allowing the system to survive 
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node failures. They have an 802.11p communication system between vehicles within 
the 5.850 – 5.925 GHz spectrum. The concept behind Kubernetes and virtual 
containers is to avoid having a single point of failure throughout the whole 
architecture. 

 

Figure 14. Fault-tolerant distributed network from [49] 

 

In this context of distributed computing within smart cities, Artificial Intelligence can 
empower edge computing. Dai et al. propose an AI powered computing caching 
through deep reinforcement learning with a deep deterministic policy gradient that 
estimates the performance of network policies [50]. The application of Deep Learning 
in distributed network benefits the entire architecture in terms of improving the actual 
management of the network, allocating resources more quickly and efficiently. 

Fog computing needs multiple components to operate, once the infrastructure allows 
communications in a V2X network, and the algorithms for data processing, as well 
as the security challenges are overcome, the distribution of data needs to be 
considered.  FCN operate in a Big Data context, and the Resilience of data is 
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completely necessary. Figure 14 shows a state-of-the-art processing data model for 
fog computing networks. 

 

 

Figure 15. Data Processing model alternative in a Fog Computing Network, 
from [51] 

One of the key points of this alternative is its distributed data access and storage. 
The combination of Hadoop and the database, which in this case is a noSQL Mongo 
instance, allow the network to rely in a distributed data environment. In a VFC 
network, not only the processing of the data must be distributed, but also the data 
itself.  

Apache STORM as the distributed processing software is also a good candidate, 
considering the entire Apache software ecosystem integration and scalability. 
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2.3.3 Communication technologies for V2I 

Communications can be divided in several ways. However, one of the most effective 
ways is to divide them by the actual range of distance in which the technologies can 
operate. Ahangar, Ahmed, Khang et al. did a spectacular state-of-the-art survey 
regarding communication technologies and divided them by range. The three main 
classifications can be found in tables 3, 4, and 5. 

 

Table 3. Comparison of short-range technologies from [52] 

 

 

Some of the applications of short-range technologies vary from localization to 
warning signaling. These types of communications can’t carry vast amounts of data 
and are not suitable candidates for low latency critical applications.  

One example of application in short range Ultra-wideband (UWB) technologies is 
ranging estimates to track the vehicle’s position in an outdoor environment. This 
could be a more precise alternative to GPS. 

Martin et al. built an accurate and reliable positioning solution based on the 
combination of UWB ranging estimates, together with inertial and odometry data of 
the vehicle [53]. However, UWB technologies offer a really low range of 
communications. 

Vehicle Identification can be done through low-cost, long battery life ZigBee 
technology. One proposed application is the classification of vehicles and 
communication through the 802.15.4 protocol [54].  

Zigbee technologies can be used in V2V communications under certain conditions, 
as long as the bandwidth or throughput needed for the application remains low. The 
maximum channel bandwidth of Zigbee technology does not exceeds 0.6 MHz, with 
a maximum data rate of 250 kbps.  
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One more application regarding short-range technologies is collision warning under 
low-speed circumstances through Zigbee. [55] 

Other applications could include communication of sensors in Wireless Personal 
Area Networks (WPAN) [56], and low-energy BLE-based fingerprint localization [57]  

In closing, short-range communications are suitable for V2X whenever specific 
conditions are set, or they can help as aide for geo-localization, warning signaling, 
or identification. More complicated applications that include security, internet 
connection, or real-time data processing are out of the scope of this type of 
communications.  

Medium range technologies wide out the spectrum of application possibilities. The 
two main medium range technologies can be compared in Table 4. However, 
different variants of the 802.11 protocol exist with different bandwidths, modulations, 
and spectrum ranges. 

 

Table 4. Comparison of medium range technologies, from [52] 

 

 

Applications of mid-range technologies are generally in the V2I-V2X spectrum, 
where data safety, management, and some non-maximum security data processing 
is better suited in comparison of short-range communications, not just in terms of 
distance, but in data transfer rates, latency, modulation, etc.  
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Vehicle to vehicle communications in highways were tested in simulation with DSRC, 
but with high latency and big packet error rates, proving the difficulties these 
technologies have with this type of communications [58].  

Other type of tested applications were vehicle communications in platooning 
scenarios [59], and maintaining lane distances through vehicle communications [60]. 
However, the results were never as promising, with higher latencies and packet error 
rates than expected.  

Pedestrian recognition, detection and informing can also be considered within this 
range of applications, integrating  human-vehicle classification through Support 
Vector Machines (SVM) and radar systems at the infrastructure, while 
communicating this information to vehicles, bicycle, or even other pedestrians. [61] 

One sustainability application found in the literature revolves around eco-driving with 
fuel optimization with traffic status and v2i communications [34] 

The IEEE 802.11 family can be used for information dissemination and Internet 
access, however, if the goal of the network is to enhance complete autonomous 
driving, other technologies must be integrated into the system [62]. 

Studies have been made about the support of applications over Wi-Fi in smart cities, 
testing access to the internet or voice over IP (VoIP) applications, which can upgrade 
the user experience of passengers. [63] 

 

As seen on the literature, mid-range technologies can enhance better algorithms, 
communication between vehicles, and even the integration of Artificial Intelligence. 
There is a significant improvement in terms of latency, reliability, distance and 
bandwidth. However, new generation applications such as autonomous driving and 
real-time processing in V2V networks are still out of the scope of mid-range 
communications.  

This is where long-range technologies come into play. A comparison between mid-
range technologies can be seen on table 4. However, the theoretical comparison 
and reliability of the network still lacks that effectiveness in practical scenarios. Table 
5 offers a good comprehension of long-range technologies.  
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Table 5. Comparison of long range technologies, from [52] 

 

Applications of long-range technologies can really achieve complete secure and 
low latency V2V, and general V2X applications.  

Long range technologies can make possible V2X service negotiation and location-
aware scheduling to provide the network with insights about the mobility pattern 
and application requirements of the vehicular equipment, enabling the network to 
optimize the availability and scalability of automotive applications. [64] 

Other important benefit that 5G and C-V2X communications bring is a better Quality 
of Service (QoS).  5G offers a unique provision of providing computational resources 
and storage at the network edge. This enables the network to host applications 
closer to vehicles, reducing greatly latency. Multi-Access Edge Computing (MEC) 
utilizes the network core and backhaul efficiently, therefore reducing the latency 
requirement of autonomous vehicles [178]. Since vehicular users are highly mobile, 
frequent handovers can be supported via resource management at the edge of the 
access network [64] 

Most of these communications technologies operate within the IP protocol, a layer 
of the network architecture in which the vast majority, if not all of the internet devices 
operate. Jeong et al. did a survey focused on different IP-based vehicular networks 
[52, Fig 15.], where several protocols, architectures, and mobility handling 
techniques were discussed.  An IP approach to vehicular communications is 
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essential in a cloud or fog computing environment to interconnect vehicles with the 
rest of the internet, bringing together all types of software applications.  

 

Figure 16. Classification of IP-based vehicular networks by Jeong et al. 

 

In recent years, new clustering approaches over V2I communications have emerged. 
One of the most recent is a Multi-hop Clustering Approach over Vehicle-to-Internet 
communication called MCA-V2I to improve local V2I communication performance, 
allowing vehicles to connect to the Internet via a special infrastructure called a 
Roadside Unit Gateway (RSU-G) to perform the clustering process. The latter is 
performed using a Breadth-first search algorithm for traversing the graph and based 
on a Mobility Rate. The MCA-V2I approach strengthens the cluster’s stability, 
improving latency and traffic handling. [66] 

Cluster-based approach in a fog computing environment is desirable, since 
distributed RSU equipment could communicate effectively and have processing 
resilience. With all these different technologies, resource management, mobility 
handling, and clustering processing, could make possible an automated transporting 
environment. It is possible to have an intelligent transport system in coming years, 
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similar to that of figure 16, where a fully integrated technological environment of 
vehicle systems can be appreciated. 

 

Figure 17. Autonomous driving cars in smart cities and its integration with multiple 
state-of-the-art technologies, from [62] 

 

Depending on the application, different technologies can enhance the user 
experience and ensure reliability. Figure 17 offers an example of different types of 
different-range communications enhancing a complete IoV environment, including 
safety, warning, driving assistance and much more applications.  

Instead of choosing the better alternative, the best alternative is to understand which 
technologies are better suited to the given task, and creating an environment that 
maximizes the use of the electromagnetic spectrum is critical to create an IoV 
environment which can be integrated seamlessly to a smart city environment. 

2.3.4 Anomaly detection within smart vehicles 

The combination of communication technologies, fog computing, and different types 
of vehicular communications in a smart urban mobility environment within smart 
cities bring the possibility of the integration with multiple kinds of Artificial Intelligence 
that detect, classify, and even predict different types of relevant phenomena in 
transportation.  
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One impressive feature that AI enables is driver’s behavior detection, including 
driving under influence detection [67], and  the detection of the driver’s emotional 
state through sentiment analysis [68], potentially saving drivers from accidents 
caused by their temporal inability to drive.  

Besides from the driven or the passenger inside vehicles in V2X networks, other 
anomalies can be detected with the aid of artificial intelligence. Pothole detection 
can be achieved using Convolutional Neural Networks (CNN) such as the AlexNet 
[69], or the “You Only Look Once” CNN algorithm [70]. Data anomalies caused by 
faults or errors in the vehicle’s sensors, or even cyberattacks can be detected 
through a combination of Long Short-Term Memory (LSTM) Neural Networks and 
CNNs [71]. 

 

Figure 18. Detection Pothole AlexNet Convolutional Neural Network, from [69]  

One of the main problems with the proposed CNN network is that it depends on a 
clear zenithal plane to detect the pothole. This, in a vehicular mobility environment 
is non-practical, due to the angle of the camera. It is better suited a front-plane view 
of the camera to detect more types of anomalies other tan potholes. 

There are many approaches to detect anomalies in the streets via image recognition, 
and there are multiple approaches to sentiment analysis and behavioral 
classification and prediction, but there was not found in the literature pothole 
detection through the sensors of an intelligent vehicle, or vice versa, sentiment 
analysis through image processing and CNNs. While the latter could result in privacy 
invasion, the former could potentially be a useful application for pothole mapping 
throughout the city. 
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Chapter 3. Research Methodology
 

To present a smart solution that can correctly benefit the mobility context of Mexico 
City, a great amount of research on different areas must be done. This chapter builds 
a methodology from the ground up, from preliminary studies to a functional prototype 
with a data-visualization solution. 

The proposed solution, based on the hypothesis presented in chapter 1.5, is that a 
V2I-Fog computing architecture that integrates different sensors in vehicles, 
preprocesses information at the edge of the network, and through fog computing 
detects problems in the state of the streets and brings data visualization through 
cloud will bring Smart urban mobility solutions in terms of affordability, effectiveness, 
attractiveness, and sustainability. 

Figure 19 presents the solution graphically and broken down into different levels, 
from the perspective of physical communication, pre-processing, computation, 
storage, and presentation in the form of a data visualization tool. 

 
Figure 19. Diagram of the proposed V2I-Fog computing network solution 
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This solution can be broken-down into several parts. The first part corresponds to 
the physical communication between vehicles and APs. This corresponds to layer 1, 
layer 2, and layer 3 metrics, since it is an IP-Based approach. Here, maximum range 
distance, packet loss, latency and related measures help determine the feasibility of 
the overall solution. 

The second part is related to OBU-RSU communications, and data handling. Since 
an important part of this project, which is distributed computing can be tested 
due to external limitations, benchmarks and other research studies are 
presented to justify the selection of technologies.  

The third part corresponds to classification through Machine Learning. In order to 
process information in a useful way, machine learning algorithms have been proven 
to be the best alternative multiple times. So, it is needed to come up with useful 
models that correctly classify the data obtained via the OBU. 

The last part of the project corresponds to the visualization of the processed data, 
and show useful information regarding the city’s streets and avenues conditions. 
This last part proves the true value of the project. 

However, before any real implementation of the solution is actually done, a study 
case of Mexico City must be done beforehand. If the solution presented is not a good 
fit considering the city’s context, or is not aligned with the smart mobility principles 
presented in chapters 1 and 2, this project lacks purpose. 

The solution conceptualized is built and tested in the following sections. To test and 
verify every aspect of this solution, from conception to the functional prototype, the 
following methodology is presented: 

Section 3.1 Presents a Case Study of CDMX, where population conditions and 
communications infrastructure are analyzed to compare different alternatives that 
proposal and its accessibility to the population, both in terms of economic and 
physical distribution accessibility. 

Section 3.2 provides the methodology and analysis of a proposed V2I architecture 
based on its communications capabilities. Multiple experiments and iterations are 
presented until the system provides a useful communication system for the project’s 
purposes. 

Section 3.3 compares different technologies to implement a faster, and scalable 
ecosystem for a distributed computing architecture. 

Section 3.4 presents integration tests of both the communication system and the 
computation system in an RSU-OBU environment, with multiple sensors 
implemented in a standard vehicle, circulating in two different roads and circuits. 
There are multiple iterations on the system, until the amount of information provided 
by the OBU is sufficient to detect different anomalies in the pavement of the streets. 

Section 3.5 analyses two different ML algorithm to detect anomalous situations on 
streets and avenues based on the data provided by a vehicle with the OBU 
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integrated technology. Then, show geographical data visualization on the data 
obtained by previous experiments. 

 

3.1 CDMX Case Study for an IoV communications system 
Based on the data provided by the Mexican National Institute of Statistics and 
Geography (INEGI), Mexico’s capital: CDMX (renamed on 2019) is divided in 16 
counties, with a total of 1,495 square kilometers, representing the 0.1% of the 
national territory. 

However, being the country’s capital, the number of registered inhabitants in 2020 
were 9,209,944, representing the 7% of the country’s population [13]. This number 
does not take into consideration the amount of people that travel on a daily basis 
from the surrounding states to the capital. It is important to notice that in a city with 
a population density of more than 6000 inhabitants per square kilometer, 
transportation and commuting is severely challenged. 

CDMX represents 17.7% of the total GDP, with the service sector being the most 
relevant [72]. But even with the amount of productive value Mexico City has, one 
major problem with Mexico City is the distribution of wealth. Figure 19 shows the 
average and median income of the population divided by deciles, where the top 
decile of the population in 2018 earned on average 51 times more than the lowest. 

Any solution that plans to benefit the whole city must take into consideration the 
access to the technology, considering the staggering amount of people with low 
incomes. 

 

Figure 20. Median (Yellow) and average (Green) income by deciles in Mexico 
City’s population 
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Out of all the 9.2 million people living in CDMX, 52.5% of the population is considered 
to be in poverty as of 2018, as shown in figure 20. Considering this situation, it is of 
utmost importance to bring a solution as low-cost as possible, given that practically 
half the population will have many problems accessing technology. With smart 
decisions, technology can bridge the gap between income inequality and 
technology, or at least increase the average income for every decile within Mexico 
City. 

 

Figure 21. Stacked bar chart of socioeconomic strata in Mexico. [73] 

This is all relevant because the distribution and access of technology is normally 
directly correlated with the distribution of wealth. Early adopters’ profile of new 
technologies generally include higher incomes. 

However, another important benefit to the access of Information and Communication 
Technologies (ICT) can generate social benefits such as solving partially income 
inequality.  

ICTs have been instrumental in generating numerous new employment opportunities 
as global value chains and outsourcing have shifted production to low and middle-
income countries. As ICTs reduce entry barriers into many economic activities, they 
create new opportunities for self-employment in high and low-income countries. 
Likewise, the emerging platform economy promises new opportunities of integrating 
individuals and firms in low-income countries into the global economy. [74] 
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In order for a smart mobility solution to be considered as smart, the access of 
technology cannot be restricted by wealth. It should be accessible to as many people 
as possible.  

There are two alternatives for big scale access IoV communications for the capital, 
given the telecommunications infrastructure of the city: cellular communications or 
the C5 communication system: a complex distributed technological system that 
provides the city with video surveillance, seismic alarm, data gathering and compute, 
and also free 802.11/x Wi-Fi.  

There are immediate differences between both alternatives. First of all, every 
cellular-data frequency band in Mexico can only be used through federal grants. This 
is the first obstacle in utilizing cellular technologies; there will be cost associated to 
the internet-access of every vehicle connected to the network, and its access is 
limited to mobile operators, or virtual operators offering their service through the 
infrastructure of those operators.   

Other obstacle in cellular communications is the country’s technological lag. 5G 
technologies, which are expected to connect the smart vehicles of the future, are far 
from deployed. Federal grants are still in process, and  

Although the Federal Telecommunications Institute (IFT) launched the first public 
bids for 5G technology frequency bands grants in February 2021 after almost 2 years 
of analysis [75]–[77]. These late bids will probably delay the deployment of 5G 
technologies for months or even years, making this technological option infeasible 
for the short and medium term. 

There are currently efforts of the country’s main mobile operators to offer dedicated 
internet access to vehicles. However, the solutions are not adequate for mass scale 
projects due to the fact that the main target of this solution are luxurious lines, with 
important modifications of the actual vehicle. The cost for standard vehicles 
compared with the inhabitant’s average income is completely out of proportion.  

The other alternative is mounting a distributed computing architecture in the existing 
C5, or Command, Control, Compute, Communications and Citizen-Contact 
infrastructure. However, it must be guaranteed that the access of the APs must be 
distributed equally throughout the city, and an acceptable amount of coverage area 
is reached.  

The first step is to obtain the average income of inhabitants per county, and compare 
wealth, income, and other factors with the distribution of APs in the city to find any 
kind of correlation.  
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Evalúa CDMX is the organization responsible for calculating and analyzing all kinds 
of social disparities within the capital, and most of the information presented was 
obtained through the annual 2020 report. Information was obtained as well from 
CONEVAL, and the open database system of the city. 

 

Figure 22. Average income [green] and median income [yellow] of CDMX 
habitants per county, from [73] 

An important measure of economic wellbeing is social development. Its calculation 
is based on 6 dimensions: Housing quality and space, access to health and social 
security, educational lag, durable goods, sanitary adaptation, and energy adequacy 
[78]. It is a dimensionless unit, calculated with the following equation.  

 

Where the incidence, or H is calculated by the amount of poor people divided by the 
total population. 

 

And the intensity, or I, is calculated as a relative measure of the weighted sum of all 
6 dimensions stated earlier (Z), and the distance between the poverty line and the 
population wellbeing Lj.   

 

One way to obtain information about the correlation of the distribution of access 
points and the wellbeing or lack thereof, is to get the percentage of high and low 
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social development of each county and measure the correlation to the APs’ 
distribution. 

Table 6 Shows information regarding geographical and social conditions that could 
impact the decisions on how the communication infrastructure would be distributed.  

Table 6. Social and Geographical Conditions of Mexico City by County [73], [78], 
[79] 

County Area 
[km2] 

Population 
[%] 

Average 
Income 
[MXN] 

High social 
development 
[%] 

Low social 
development 
[%] 

Access 
points  

Benito 
Juárez 

26.03 434,153 14,090 83.2 0 796 

Coyoacán 54.4 614,447 6,934 49.6 15.5 907 

Miguel 
Hidalgo 

46.99 414,470 12,500 37.9 0.3 926 

Tlalpan 312 669,928 5,404 21.8 30.9 1448 

Cuauhtémoc 32.4 545,884 8,843 20.8 21.4  

Álvaro 
Obregón 

96.17 759,137 6,548 17.4 31.6 899 

Gustavo A. 
Madero 

94.07 1,173,351 3,795 16 17.4 1790 

Azcapotzalco 33.6 432,205 4,632 13.9 0.1 707 

Venustiano 
Carranza 

33.4 443,704 4,289 11.8 0.6 990 

Magdalena 
Contreras 

74.58 247,622 5,187 11.1 38.2 305 

Xochimilco 122 442,178 3,365 9.3 37.3 416 

Iztacalco 23.3 404,695 4,504 8 0 664 

Cuajimalpa 
de Morelos 

80.95 217,686 12,250 6.1 30.7 239 

Iztapalapa 117 1,835,486 3,308 4.1 40.7 2100 

Tláhuac 85.34 392,313 2,843 0 49.6 540 

Milpa Alta 228.41 152,685 2,345 0 100 213 



Chapter 3. Research and Methodology 
 

55 

 

 

One way to have confidence that this alternative is accessible to the population is 
that the correlation between the number of Access Points in each county and the 
size of population is high, while other factors such as income, or level of social 
development is close to zero. This means that the main factor for the distribution of 
APs is the population, without any economic bias. 

The correlation analysis is presented in Figure 22. After a comparison with several 
other factors, the only relevant correlation between the access points distribution 
and any other is in fact the population of the county, with a direct relation given its 
value (0.89). This preliminary measure ensures that this technology is distributed 
approximately equally throughout the city depending on the size of the population. 
This also ensures that the APs are less prone to access saturation. 

 

Figure 23. Correlation Matrix between social development, income, and APs in 
CDMX 
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The next step is to know the coverage area of the C5 infrastructure. The city’s 
government updates constantly this information in the open database system of the 
city. There are currently almost 14,000 APs distributed throughout the city. A more 
visual approach to understanding the distribution is presented in figures 23 and 24.  

 

Figure 24. C5 APs distribution cloroplexic map by neighborhood. 

Showing the distributed access points by neighborhood, given the correlation with 
its population, also shows the approximate distribution of the population. However, 
the size of each neighborhood varies greatly, and so this level of granularity can be 
deceiving. Also, the southern part of the capital is the less populated and with less 
urban density, giving the false idea that the Access Points are serving only half the 
city. 

Figure 25 shows, with less granularity, the information about the distributed Access 
points. This bigger picture shows an AP density that could preliminarily give a 
scalable solution to the vehicular communication demand throughout the city.  
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Figure 25. C5-APs distribution cloroplexic Map by County. 

In order to have a better understanding and not depend on general statistics, an 
interactive map to locate Access Points through all the city was programed. A 
Screenshot of such interactive map is shown on figure 26.  

 

Figure 26. Interactive map for Access Point localization. 
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Figures 24 through 26 show a bigger picture of the Access Points’ distribution. 
Practically every neighborhood has more than 1 AP, with an average of 7.7 Access 
Points per neighborhood. This number varies greatly depending on the 
neighborhood: However, this variation corresponds to the number of inhabitants.  

Even though the density of APs could be higher, they are placed where they are 
most effective.   

3.2 Communications 
Once we are certain about the feasibility of the project, we need concise metrics 
regarding the proposed communication system.  

For local connection and edge computing data preprocessing, the emulation 
communication system is proposed with TP-Link modems devices. In terms of 
specifications, both the TP-Link modems and the C5 Access Points use the same 
protocol for wireless connection, and thus have approximately the same coverage 
area and speed. 

It is desired that this emulation system can process data with an acceptable level of 
latency and range. Lacking the possibility to test directly on the C5 equipment due 
to the absence of legal permits to do so, a local area network is implemented with 
these devices. 

This section focuses on the quality of the connectivity of these emulation devices 
that operate with the protocol 802.11b/g/n. In this section, several experiments and 
measures are presented, from maximum distance to LOS vs NLOS scenarios 
comparisons, as well as different latency cumulative distributions varying the 
distance in a straight plain avenue. 

Subsection 3.2.1 presents all the preliminary measurements to configure the 
simplest local area network possible, and to test latency, packet loss percentage and 
signal strength between an AP and an end device.  

Subsection 3.2.2 presents a more sophisticated approach to building a LAN with 
enhanced communication capabilities, bringing physical additions to the network in 
order to increase its coverage area, and communication between APs was also 
tested. 

3.2.1 Preliminary Measurements 
 

All the physical equipment used in this preliminary experiment can be found in Table 
C-1.  All three devices work with the 802.11b/g/n protocol, as well as 802.11ac. 
Because this is a test for maximum distance and signal reception, only the 
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802.11b/g/n protocol will be considered as it has the longest range given its lower 
frequency band, and is least sensitive to a non-line of sight (NLOS) scenario.  

Figure 27 presents the logical connection of these devices to test the reception 
sensitivity and connectivity depending on the distance and LOS and complete NLOS 
scenarios. This network is simply to check the layer 1 connection and capacities 
between the two devices that connect wirelessly. Both the Raspberry Pi 3B +, and 
the TP-Link model Archer 5 router. 

This scenario in which a static local network with only 3 IPv4 addresses with 2 end 
devices running different operative systems was implemented. A software tool for 
signal strength checking on the laptop and the built-in Linux tools of the raspberry 
were used to report the results. 

 
Figure 27. Preliminary logical network. 

 

A completely plain street was chosen to be able to carry out tests with Line of Sight 
of up to a maximum of 140 meters. Due to the shape of the street, and the low traffic 
flow, it is a scenario where the tests are completely possible to perform.  

For the NLOS scenario, the vehicle's OBU device was hidden behind another 
vehicle, simulating a situation where a car blocks the line of sight. Figure 28 presents 
the satellite view of the street with the software measurement of its largest 
unobstructed distance. 
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Figure 28. Sattelite view of the chosen street with maximum LOS distance. 

All tests were made without any climate inconvenience, and with no vehicle 
interference whatsoever in LOS testing. The devices were elevated to a distance of 
approximately 1.8 meters for LOS, and 1.2 meters for NLOS.  

It was verified that the signal coming from the router had an adequate intensity, and 
completely visible by the receiving device. Since Wi-Fi operates within unlicensed 
frequency bands, it is expected to have a considerable amount of devices interfering 
with the signal.  

Figure 29 presents a plot with the different access points’ signal strengths found on 
the street, showing the variety of devices that share Wi-Fi channels. A total of 14 
devices were active, with approximately 10 devices operating on the same channel.  

 
Figure 29. Measurement of signal strengths [dBm] at the street center. 
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IEEE 802.11a/c or b/g/n have a guaranteed 50 meters connectivity radius with line 
of sight, looking for its average signal strength. This process was repeated for an 
NLOS scenario, and the entire process was iterated for 50,60,70,80 and 90 meters. 
A Wi-Fi strength signal software was used to obtain the sensitivity, and the evidence 
can be found in Appendix C.   

Once the average signal strength was captured, a total of 50 packets with 1KB of 
information were sent in each position. This experiment was repeated for the 
following distances: 50,60,70,80,90 meters, both with LOS and NLOS. The results 
are shown in tables 7 and 8. 

Table 7. LOS Experiment Results 
Distance Signal Strength 

[dBm] 
Lost packet 
percentage 

Average round 
trip time [ms] 

50 -65 2% 12 

60 -69 12% 15 

70 -82 16% 152 

80 -84 26% 314 

90 -86 82% 627 

 

Table 8. NLOS Experiment Results 
Distance Signal Strength 

[dBm] 
Lost packet 
percentage 

Average round 
trip time [ms] 

50 -66 2 9 
60 -74 18 36 
70 -84 24 219 
80 N/A 100 N/A 
90 N/A 100 N/A 

  
 
Given the high percentage of packets lost at a distance of 90 meters, it is not feasible 
to consider it an adequate distance for connectivity. In an ideal scenario, the 
maximum distance in terms of radio that these communications can support is 80 
meters with its current capacities. The packet loss at higher distances is 
unacceptable for this communication system. 

Due to the nature of the Raspberry Pi 3B + equipment, it is possible to connect an 
antenna with high gain via USB to increase this range, or consider the possibility of 
repeaters to increase the signal coverage, and an alternative of signal repeaters 
could also benefit the maximum connectivity radius. 
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The TP-Link devices have an inbuilt software protocol called WDS, which enables a 
wireless link between devices, with a shared local area network. All these features 
and possibilities were tested in the following experiment. 

 

3.2.2 Communication measurements 
 

In this experiment the same scenario was presented, with the main difference that 
the WDS protocol was enabled to test multiple AP devices, an external antenna was 
integrated to the OBU device, and signal repeaters were tested as well. All the 
devices used in these experiments are shown in table C-2. 
In the WDS topology, a router acts as an AP connected wirelessly to the first. Making 
two wireless LANs seamlessly connect between routers, sharing the same subnet, 
which is the main benefit. The disadvantage of this configuration is the dependency 
between routers, which means that they cannot be separated big distances from 
each other, and an important amount of the coverage radius of both is lost because 
they share partial area of coverage. Figure 30 presents the connection of two TP-
Link devices connected through WDS. 

 
Figure 30. WDS topology with 2 TP-Link devices. 

This experiment is divided in two sections. First, the previous experiment was 
repeated with the new configurations: external antenna and signal repeaters. For the 
second section of the experiment, the APs were tested on distance and latency, 
obtaining the cumulative distribution function of packets sent from an end device to 
a second AP connected through WDS. 
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In the first section, a total of 50 packets with 1KB of information were sent in each 
position. This experiment was repeated for the following distances: 50,60,90,100, 
and 90 meters with both LOS and NLOS tests, comparing the network 
communication with the external antenna and with signal repeaters. The results are 
shown in tables 9 through 11. 

 
Table 9. LOS Experiment Results with an External Antenna  

Distance Signal Strength 
[dBm] 

Lost packet 
percentage 

Average round 
trip time [ms] 

50 -51 2% 11 
60 -47 0% 39 
90 -78 12% 81 
100 -85 20% 150 

 
 

Table 10. NLOS Results with an External Antenna 
 

Distance Signal Strength 
[dBm] 

Lost packet 
percentage 

Average round 
trip time [ms] 

50 -62 2% 23 
60 -71 10% 48 
90 -83 18% 115 
100 -86 28% 326 

 
 
Given the low performance of the signal repeaters, only a LOS scenario was tested. 
With a 50m radius of distance the percentage of lost packets surpassed 80%, so this 
implementation was immediately discarded. 
 

Table 11. LOS Experiment results with a Signal Repeater 
Distance Signal Strength 

[dBm] 
Lost packet 
percentage 

Average round 
trip time [ms] 

40 -71 4% 11 
50 -87 85% 44 

 
Given that the communication between APs for this range had no registered packet 
loss, more extensive tests regarding its operation were carried out. Table 12 shows 
how there was no packet loss for 80 and 100 meters in a scenario without line of 
sight. 

Table 12. WDS distance sensitivity 
Distance Signal Strength 

[dBm] 
Lost packet 
percentage 

Average round 
trip time [ms] 

80 -51 0 3 
100 -47 0 10 
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 The experiment ran on a real-world physical environment, with two APs connected in 
WDS mode with distance tests from 70 to 120 m, sending hundreds of packets, with 100 
bytes or 1000 bytes of information. Tests were run on a busy avenue at 6pm in the 
afternoon, and the cumulative distribution was obtained for each package size scenario.  
In order to find the range of time it took to send the packets between two access points 
depending on their distance, a python Extract-Transform-Load (ETL) script was generated 
to read ping logs from text files obtained through a Windows command line, and then each 
cumulative sum was calculated and plotted.  

The end of these measures is to determine the maximum acceptable distance between 
devices. Figures 31 and 32 show the results for 70 and 120 meters, and the rest of the plots 
can be seen in Appendix C, Figures C-5 to C-8. 

Figure 31. Cumulative distribution function for 100 and 1000 bytes between 2 APs 
at 80 mts distance. 

 

Figure 32. Cumulative distribution function for 100 and 1000 bytes between 2 APs 
at 80 mts distance. 
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The 90% mark can show the maximum time limit where most of the packets will take 
in a round trip time with 4 logical hops. Table 13 shows the round-trip time for 
70,80,90 and 100% of the packets of every trial with 1kB of information sent. 

Table 13. Round trip latencies for 1KB packets 

Distance 

70% 
round trip 

time 
latency 

[ms] 

80% 
round trip 

time 
latency 

[ms] 

90% 
round trip 

time 
latency 

[ms] 

100% 
round trip 

time 
latency 

[ms] 

70 13 15 17 55 

80 7 11 13 25 

90 11 13 15 33 

100 11 12 16 35 

110 8 11 18 25 

120 16 19 40 90 
 

The 120-distance experiment showed relatively poor connection performance in 
comparison with lower distances. For the following experiments, the 120-meter 
radius will be set as the maximum limit in which communications can be done 
between OBU units and the RSU. 
 

3.3 Distributed Computing and its applicability to Urban Mobility 
In order to maintain a low-cost solution, low-cost equipment must be implemented. 
The main problem with this type of devices is their capacities. Hence, they require 
techniques of distributed systems, where each computing system has local storage 
and computation. The benefits of this systems start to show when projects scale. 

For this particular dissertation, the amount of data obtained was not enough to 
encounter Big Data problems. However, if this solution intends to scale up to a City 
Level, distributed computation systems must be correctly implemented. 

Besides virtualization techniques, Hadoop emerged as an alternative to handle 
distributed databases for its processing, and multiple benchmarks and studies have 
been done regarding its scalability. 

Bajcsy et al. benchmarked hadoop with different CPUs as nodes, with the following 
characteristics: 

Master Node: Intel Core i5-2400 @ 3.1GHz – 10 GB RAM memory 
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Slave Node 1: Intel Core i7-2600 @ 3.4GHz – 16 GB RAM memory 

Slave 2: Intel Core i7-2600 @ 3.4GHz – 8 GB RAM memory 

Slave 3: Intel Core i3-540 @ 3.07GHz – 8 GB RAM memory 

Hadoop was then tested with a Tera Sort algorithm, which consists in ordering from 
1GB, up to Terabytes long array in ascending or descending order.  The tests is run 
varying nodes and array sizes. Figure 33 shows the runtime results with the different 
nodes described above. 

 

Figure 33. Tera-Sort scalability test runtime on different nodes, from [80]. 

Tinetti et al. also performed tests on image processing algorithms using hadoop: Flat 
Field correction, Segmentation based on convolution kernels, and Feature 
extraction. 

These algorithms handle multiple operations to correct, stich, and format different 
images in TIFF format. The Hardware for each node consisted of 2 to 16 virtual 
processors, with 4 up to 32GB of RAM with a limit of 800 total nodes. Hadoop was 
entirely run in a Java environment, within the Linux CentOS flavor.  

Figure 34 shows a comparison between the Tera Sort computation algorithm, a 
hadoop cluster implementation, vs a non-hadoop Raritan cluster with the same 
algorithm, where it shows a better performance for a Hadoop cluster.  
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Figure 34. Tera-Sort vs Segmentation algorithm on different working nodes, from 
[81]. 

The important part of this plot is to show the major improvement of runtime by the 
addition of nodes. In both figure 33 and 34, low end computers acted as nodes with 
Hadoop technology, and in both cases the runtime fell dramatically.  

The other piece of software left to test is related to the Machine Learning Algorithms. 
Since this solution is being entirely built on Python 3.6, two main set of MLA libraries 
currently can bring the possibility of computation within this whole solution. On one 
side, the most popular framework for data science: TensorFlow, Pandas, and Sci-kit 
Learn. On the other hand, the Apache foundation ecosystem that runs on python: 
Py Spark and MLlib.  

Since this solution will be running on low end software, a single cloud instance was 
created in the IBM platform to test how these libraries compare to each other. 

A simple benchmarking test of map-reduce operation was set to compare the 
computation time for both. It consisted of creating a dataset of random numbers from 
a N by 2 matrix, and map-reduce it by adding each element of the data frame. The 
virtual instance consisted of a 3.6 python virtual environment, with 1GB of RAM 
memory running on a Linux-based Jupyter notebook.  

Figure 35 shows a runtime benchmark between both technologies with multiple map-
reduce computations. 
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Figure 35. Runtime comparison between Pandas and NumPy Vs PySpark and 
MLlib. 

There are benefits for either set of technologies, however, the runtime proved to be 
remarkably better for one set technology over the other. Table 14 shows a quick 
comparison for both set of technologies. 

Table 14. Comparison between Data Science libraries and frameworks 
 

NumPy, Pandas, TensorFlow, Sci-Kit 
Learn 

PySpark, 
MLlib 

Distributed-
computing integrated 

ecosystem 

x ✔ 

Open Source ✔ ✔ 
Size Big Small 

Runtime over large 
datasets 

Fast Slow 

Vectorized 
Computation 

✔ x 

 

From recent years, several libraries and alternatives have been developed to create 
faster libraries for data science. However, the most maintained libraries up to date 
are pandas, sci-kit learn and TensorFlow. Pandas, for example, works with java as 
an underlay technology, and TensorFlow is currently maintained by Google. 
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Even though spark and hadoop work in a single ecosystem, there is no library that 
can run as nearly as fast, with its vectorized algorithms and better programming 
language decisions. 

3.4 RSU-OBU communications and data preprocessing 
The goal of this section is to get useful information via RSU-OBU communications 
emulating the C5 Mexico City system with interconnected mobile Access Points, 
using as our area of experiment the Tec de Monterrey CCM’s nearby streets and 
avenues. 

There are various approaches and possibilities to carry out the experiment. In 
section 3.3 it was proved that the external LG antennas increase the coverage radius 
up to 100 meters and up to an absolute limit of 120 meters with an acceptable packet 
loss and latency, given that none of these communications are for real-time 
applications. With the proposed experiment scenario, two possible scenarios arise: 
a series of independent W-LANs, with a coverage diameter of 200 meters, or a 
shared WLAN through WDS with 120m of separation between each router. The use 
of repeaters was ruled out due to the short distance they extended to the range (40m 
maximum), in addition to increasing latency considerably by including more hops 
between OBU and RSU. 

The next question to be solved is whether it is completely necessary to cover 100% 
of the route, since being an experiment to measure the state of the streets through 
sensors inside cars, this data can be temporarily stored in the RAM memory of the 
cars. Raspberry Pi 3B + in which the car is reconnected. Since the communications 
are based on the IP/TCP protocol, the same mechanism of TCP helps creating a 
more robust communication. 

This section focuses mainly on the sensor integration, and complete testing of an 
RSU-OBU system that could collect useful information regarding streets and 
avenues of Mexico City. Based on the architecture presented in section 3.2, and with 
software built partially during section 3.3, several iterations were done to find errors, 
optimize software and improve performance. All the network equipment used during 
the experiments and tests was single vendor, and all code was written in python 3.5+ 
language. Appendix C shows all the devices used during this section. 

Section 3.4.1 presents an initial experiment to understand the network behavior 
under car movement and communication handover between two different Access 
Points with the OBU. Also, the preliminary software was tested to find further 
improvements. 

Section 3.4.2 presents a full experiment using a total of 4 Access Points, and all 
sensors available in the OBU. Several laps were done over two different routes to 
test the system in a stressed environment, and all the data was saved for further 
analysis. 
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Section 3.4.3 presents the recollection of reference data for Machine Learning 
models training. The criteria for that reference data is described, as well as part of 
the methodology of data preprocessing.  

3.4.1 Initial Experiments 
 

Intelligent vehicles need a huge number of sensors to enable autonomous driving 
either partially or totally; they need to plan routes, detect pedestrians, potholes, traffic 
lights, as well as other vehicles to be able to make decisions. This information, in 
addition to being useful and completely necessary for the vehicle, can become 
extremely important for a city focused on developing sustainable mobility. The 
advantages of processing and storing this information outside the vehicle are mainly 
to inform other autonomous vehicles of the physical state of the road on which they 
travel, as well as to inform the authorities about the conditions on which their streets 
and avenues are, in order to make better and more informed decisions regarding the 
investment of public spaces in order to have better mobility in the city. 

To prove if the proposed technology could serve up the purpose stated below, a 
series of experiments were carried out in two scenarios. The first scenario was a 
route with a total distance of 711 meters, the second was a route with a distance of 
1555 meters, both routes being part of the same avenue, using the 802.11n protocol. 
Data was collected from a vehicle with a device called OBU with different sensors, 
to store data from different events during the transfer of the vehicle. 

3 different sensors were integrated to recognize images, acceleration in three axes, 
and the geolocation of a vehicle traveling on the two routes within the avenue. The 
experiments were carried out with a total of 3 access points, which were strategically 
placed in different positions on the avenue to cover both routes, based on the max 
distance determined by previous experiments. All the devices used in these 
experiments can be found in Appendix C, table C-3. 

All the devices were connected using the WDS protocol, in which the routers are 
wirelessly connected to each other. This keeps any device connected to any of the 
routers within the same LAN. Figure x presents the AP topology used in both 
experiment scenarios. 
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Figure 36. Network topology for 3.4.1 experiment. 

 

The two routes used for the experiment are shown below, as well as the position of 
the routers on the map. The first route was sought to be within the coverage area 
for as long as possible, while for the second route the maximum coverage was 
exceeded maximum coverage area and stress the system to its limits. The 
coverage radius can be seen in red, and the route taken by the vehicle in yellow.  

 

 
Figure 37. Route 1, avenue upper section 
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Figure 38. Route 2, lower avenue section  

 

The avenue in which the experiments were carried out is "Prolongación Canal de 
Miramontes", around the intersection with street “Calle Puente”, on one side of the 
campus vicinity. The experiment was carried out on a Friday, between 11:15 am and 
1:00 pm, with heavy traffic, close to a construction area. Figures 36 and 37 present 
a satellite view of the experiment, as well as the placement of the routers in it. During 
the experiment, light adjustments were made to the placement of the APs to ensure 
the better connectivity possible. 

Taking advantage of the functions of the TCP protocol, and the connectivity via 
sockets between server and client, packets were sent continuously, with a 
separation of less than 500ms, containing the GPS position of the OBU with their 
respective packet number. At the end of the transmission, the packets sent by the 
OBU and received by the RSU was sent by SSH to a computer, the data were tagged 
with the respective date, and stored in csv files for further processing. 

Using TCP sockets, communications can be kept open and lost messages can be 
automatically resent. This way it is ensured that the packages that are lost when 
there is a change of link between the end device and the router, could be resent 
later. 

Socket communication works in a server-client model. The server for the experiment 
was the RSU, with port 8080 available to receive messages from any OBU that sent 
information. A dedicated socket was opened for sending GPS data and MPU6050 
sensor data. 

Images captured by the camera were sent through a different socket. The reason it 
was implemented in this way was because are only intended to be a visual aid to 
identify the anomalies detected in the road, while the data to be processed comes 
from the other sensors and are not completely essential to the experiment. 

 
This system, however, reported a low packet generation. Mainly because software 

and hardware related performance issues on the OBU. In the second  
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Table 15. Initial Experiment results 

Route Laps Sent packets Received 

packets [%] 

Sensor related 

packets with 

error per lap 

First  2 150 100% 2% 

Second 2 271 58.6% 0% 

 

Despite the improvements made in the past, new areas of opportunity were 
discovered with the system pushed to a higher stress level. 

There was only one major packet loss occasion, however, at least full 50 seconds 
worth of route information was lost on the second route. This may be due to the 
asynchronous processing of data collection and sending of images, which saturated 
the buffer when trying to forward this information to the RSU and not having a 
connection. The information collected from the experiment shows that the most 
important areas of opportunity are the following: 

• By having asynchronous processing software, the system stops completely when 
one of its components fails 

• The images were taken in high resolution, without any compression algorithm or 
streaming, thus facilitating delivery. 

• Having only two access points, and long-distance routes (693m, and 1293m 
respectively), led to a point where the current configuration could not hold the stored 
information for too long. 

• There is an important area of improvement in the handling of socket connection 
with the RSU 

Those are the major challenges of the prototype to improve the connection and to 
be able to have a functional system collecting traffic data, as well as images to 
improve visualization. Once improvements have been implemented to correct the 
errors that stopped the experiment, next improvements could point towards the 
direction of saving processed information in the cloud, create a webapp that 
connects to the cloud information to visualize the information, create and develop 
analysis tools for the anomaly detection, and observe the behavior of 2 or more 
vehicles connected to the network. 

3.4.2 Full OBU-RSU V2I Experiment 
 

For this set of experiments, the following improvements were done: image 
compression, concurrent data collecting in sensors, software improvements, and 
more APs were set for the experiment, 

Figure 40 presents the network topology for the experiment with 4 V-WLANs 
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Fig 40. Full Network topology with Raspberry Pi as RSU and TP-Links as APs. 

The two routes used for the experiment are shown below, as well as the position of 
the routers on the map. Due to the limited coverage area of the access points, it was 
sought to stress the system to find failures in the buffer or in the programming, as 
well as to measure the capacity to send data in a strained system. 

The two routes used for the experiment are shown below, as well as the position of 
the routers on the map. Due to the limited coverage area of the access points, it was 
sought to stress the system to find failures in the buffer or in the programming, as 
well as to measure the capacity to send data in a strained system. 

Finally, in Figures 41 and 42 the location where the APs were placed can be seen, 
each with a coverage radius of maximum 120 m. The numbers on the marks also 
correspond to the distance they are from the starting point of the avenue at its 
intersection with Avenida De las Torres. 

 
Figure 41. APs marks on the first route of the experiment. 
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Figure 42. APs marks on second route of the experiment. 

Assuming a maximum range of 100m, both routes were carried out with a theoretical 
coverage area greater than 90%. All the access points were linked in WDS mode 
and all the information was condensed into a single dataset to be able to process 
the most important points where there was an acceleration change. 11,985 
discretized signal data was obtained from the MPU6050 sensor at approximately 
3,595 different points along the paths. Table 16 shows a summary of the data 
captured in the experiments. 

Table 16. Experiment 3.4.2 summary results  
Route Laps Sent packets Total distance 

[m] 
Route 

coverage [%] 

First route  5 2182 950 92.6% 

Second route 3 1414 880 50% 

 

The software improvements from experiment 3.4.1 to experiment 3.4.1 show a 

more than significant difference. Figure 43 and 44 present maps of clusters of 

datapoints. It is immediately obvious that this experiment’s data collection was way 

more effective and with an increased volume of over 900%.  

 

 
Figure 43. Distribution of packets by area of experiment 3.4.1 
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Figure 44. Distribution of packets by area of experiment 3.4.2 

The experiment demonstrated positive aspects of the network, while showing some 
areas for improvement. The important thing is to notice the areas of opportunity in 
the system. 

The access points where there was considerably less efficient communication were 
those corresponding to the second branch, whose IP addresses are 192.168.1.4 and 
192.168.1.5. In the first route they were found in the corresponding position at 100 
m and 200 m, while in the second at 800 m and 900 m. 

Besides being the branch with the greatest physical extension in terms of total 
distance, there were problems at the electrical / electronic level. The first was related 
to the battery level. The second, which could have been the product of the first, was 
a constant deconfiguration of the access points throughout the experiment. It is 
possible that the communication has had errors due to the stress submitted by the 
distance between teams. 

These situations unleashed an error in the unforeseen code, since the code did not 
check to have a connection directly to the socket, but rather to have an active 
connection to send packets. This what caused was that having a connection with 
access points 3 or 4, but not with the RSU, the packets were lost in the geographical 
areas where the access points were located. 

3.4.3 Reference Data Obtention and Preprocessing 
 

This last procedure consisted in obtaining data from a good reference of both how a 
street is supposed to be without any anomaly, and how specific anomalies’ signals 
should be. The main reason is to obtain training and test data for ML algorithms. 

The street used for reference had very few anomalies, was recently paved, and it is 
mostly flat in all its extension. Transistores street, is located in front of a section of 
the CCM campus, and it became a suitable candidate because it has the 
aforementioned characteristics and its proximity to the campus is a great advantage. 
It was found in this whole street three uneven drains, several speed bumps, and one 
steep curve therefore, these were the anomalies labeled and used as reference in 
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the training and classification of the visualization system. Figure 45 shows a satellite 
view of the street, while figure 46 shows an image captured by the OBU and sent to 
the RSU for storage. 

 

 
Figure 45. Satellite view of the reference street. 

 
Figure 46. Photograph taken by the OBU unit during experimentation. 

For each anomaly detected in this street, multiple runs were made to take samples 
at different approximate average speeds. The different speeds were 20, 25 and 30 
kilometers per hour. Only 2 access points were used since the distance was a 
controlled situation where it was always measured within the coverage area, and 
all samples were subsequently labeled by type of anomaly. Table 17 shows the 
classification of the anomalies taken as reference. In order to have more data 
inputs, several methods were applied to the raw data obtained. The explanation of 
that process is found on the next chapter. 

  Table 17. Classification of obtained data. 

Type 

unique 

physical 

anomaly 

total 

physical 

samples 

total individual 

sensor 

samples 

total 

input 

samples 
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pothole 3 9 3000 60 

speed 

bump 2 6 4800 95 

curve 1 3 2700 54 

plain 2 3 4200 84 

 

Lastly, appendix C shows different graphs of the 3 axes obtained by the sensor in 
the time domain, as well as photographs of different anomalies captured by the 
OBU during experimentation. 

3.5 Data Preprocessing and Machine Learning Algorithm 
Implementation for anomaly detection 
One of the most relevant sections of the entire dissertation is the measurement of 
ML models, since it proves that all the previous work and data collection does have 
a clear and practical utility as a final product or service. 
Two machine learning models were developed to be able to classify anomalies in 
Mexico City streets: K-nearest neighbor algorithm and an artificial neural network. 
Both models have almost similar preprocessing in terms of their input data, and they 
can accomplish the same sorting task in multiple categories. 
This section is completely focused on data processing, training, and an analysis of 
the performance of the models, which shows if all the previous work has a real 
applicability. 
 
Subsection 3.5.1 focuses on the pre-processing of the data, where different 
processes were applied to obtain a larger dataset, the comparison between the time 
domain and the frequency, mathematical methods applied to the datasets, and the 
input form and total samples sent as input to both models. 
Subsection 3.5.2 corresponds to the breakdown of the models and their 
characteristics, their training, and their results in terms of precision, and F1-Score, 
making a visual comparison with scatter plots and confusion matrices. 
Finally, subsection 3.5.3 corresponds to the application of these same algorithms to 
classify the data from experiment 3.4.2 and 3.4.3, to visually show the difference 
between a newly paved street, and one with multiple complications and anomalies 
such as was the avenue of experiment 3.4.2. 
 
3.5.1 Data preparation and preprocessing 
 

In order to have a training and test dataset, they agglomerated the different 
anomalies into 4 different datasets, depending on the type of anomaly: healthy, 
pothole, bump, curve. 
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Because each anomaly had a significant number of previous points and subsequent 
points, multiple time offsets could be made, in order for the system to register the 
anomaly as if it were a different one. 

Taking advantage of the fact that one of the major differences between the speeds 
at which the route was traveled is the power of the voltage obtained, different 
samples can be generated with the combination of a time offset and a small increase 
or decrease in the y-axis of the signal. 

Applying these two methods on the data obtained, and putting them all together in 
different datasets in a random way, was how the number of samples was increased 
artificially. All datasets were exported as comma separated files for machine learning 
algorithm training. 

Finally, a comparison was made between the signals in the frequency domain vs the 
time domain to have a visual reference of which signals visually have the greatest 
difference between them, as a preliminary measure on the preprocessing of the data 
prior to training. by ML. 

Figures 47 and 48 show the difference between different anomalies in the time 
domain and the frequency domain with just a simple Fast Fourier transformation 
(FFT), considering only the real part of the FFT. The difference in frequency domain 
is much more noticeable than time, so it may be an indication that applying a Fourier 
transform to the signals may be a good step in preprocessing. 

 
Figure 47. Time domain with multiple anomalies dataset. 
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Figure 48: Simple FFT real transform over anomalies’ dataset. 

It should be noted that the sampling frequency of the MPU6050 sensor is 1KHz, and 
the frequency of anomalies at a low level of driving speed gives room to maneuver 
to apply a low-pass filter to eliminate possible noise in the signal and have models 
with a Higher F1 Score. However, the elimination of high frequencies in the three 
signals was not carried out in this project. The only frequencies removed were those 
greater than half the sensor sample rate as they do not have a valid representation 
due to the Nyquist frequency limit. 

There are multiple ways in which the data can be transformed, not only in terms of 
frequency but in the power of the frequency, phase shifts, etc.  

The power spectrum is commonly defined as the Fourier transform of the 
autocorrelation function. In continuous and discrete notations the power spectrum 
equation becomes: 

 [82] 

the power spectrum can be calculated using the FFT algorithm. The time-domain 
signal x(t) contains N samples, and n refers to the sample number (total sampling 
time of T = NΔt).  

Here, the lower integration limit starts at t = 0 in order to account for causal signal 
behavior. For any time series, the series’ autocorrelation function can be used to 
calculate the power spectral density in terms of autocorrelation. 
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Appendix C contains a pseudocode to obtain the power spectrum based on the FFT. 
There are multiple frameworks and libraries in multiple programming languages. 
Thus, the FFT will not be discussed in this section. 

Figures 49 and 50 show the power spectrum obtained from a signal without 
anomalies in the street, and the power spectrum from a speed bump. The difference 
is immediately detectable, not only in terms of the frequency peaks, but in their 
amplitude and frequency. 

 
Figure 49. Power spectrum for non-anomalous 50 data points. 
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Figure 50.  Power spectrum of a pothole detected with 50 data points. 

In appendix C, plots for all other examples of anomalies can be found, where it shows 
big differences every type of anomaly. Not only in terms of amplitude, but in where 
the spectral peaks are located, as well as the shifts between the peaks. 

3.5.2 Models Breakdown and training process 
 

In order to generate a good classification system, two MLA were proposed: K-
Nearest Neighbor algorithm, and an Artificial Neural network with a SoftMax layer at 
the end.  

With the classification of table 16, where 4 different types of output are established, 
the KNN algorithm K constant must be set to 4, while the SoftMax output layer of the 
ANN must have 4 different outputs. 

Regardless of the model, all the data obtained via the OBU must be preprocessed 
in order to get better classification results. With only a few key differences, the 
preprocessed data was exactly the same for both algorithms. 

 

 

Offset removal 

Due to a possible offset in the signal, given to the nature of the sensors, as well as 
the practically constant gravitational force in the z axis of the accelerometer, it was 
decided to eliminate the offset of the signal by subtracting the mean in every axis. 
Even though a DC component in a frequency spectrum analysis is irrelevant as it 
represents a peak around 0 Hz, it represents noise in the input of both models and 
was decided to be removed. 

Time-domain to frequency-domain transformation 
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Based on the procedure presented on 3.5.1, the signal of every axis was transformed 
into power spectrum, and every frequency superior to the 500 Hz threshold was 
ignored.  

Data scaling  

In case of the artificial neural network, additional scaling was done to improve the 
training process using a min-max scaler from 0 to 1. This is because by the nature 
of the artificial neural network, scaled data tends to improve training given the great 
amount of matrices multiplications. This is the main difference between the input of 
both models. The KNN algorithm classifies information based on different types of 
distances: Euclidian distance, cosine squared distance, etc. And the scaling of data 
does not represent any difference. 

Input shape transformation 

For every 50x3 data points provided by the OBU, the signal was repeated 5 times to 
show more easily the power peaks in the signal, the offset removed, the power 
spectrum obtained, and a single sample with 453 total features is set as the input for 
both the neural network and the KNN ML algorithm.  

KNN architecture 

The KNN algorithm is quite simple and direct. The classifier considered 4 different 
kinds of neighbors, with a uniform weight consideration, meaning that all points in 
each neighborhood are weighted equally. This algorithm was built with python’s 
library Sci Kit Learn. 

ANN architecture 

The ANN was built using the TensorFlow library for python. It is a sequential model 
with four hidden layers, 3 Dense hidden layers with 5, 10 and 5 neurons respectively, 
and a SoftMax layer with 4 outputs. 

After previous trains and tests, it was found that the neural network was rapidly 
overfitting the data. In response to that behavior, the original number of neurons was 
reduced, and a Dropout Layer with a rate of 0.15 was added. This ensured that the 
model behaved in a more accurate manner when presented with unknown data. 

To train the network, a batch size of 50 was used, and 15 epochs for back 
propagation were set. While the batch size number was arbitrary and iterated for 
performance reasons, the number of epochs was set low given the fact that the 
signals were clearly identifiable, the training dataset was small, and overfitting was 
to be avoided.  For the same reason of the small dataset, validation data was not 
provided to the model. 

Two optimizers were tested to improve performance. Gradient descent with 
momentum, and the Adam optimizer, and the differences were abysmal. The 
Gradient descent with momentum was not able to create an accurate model and 
thus, was discarded. 
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Adam is an algorithm for first-order gradient-based optimization of stochastic 
objective functions, based on adaptive estimates of lower-order moments. The 
method is appropriate for non-stationary objectives and problems with very noisy 
and/or sparse gradients, and previous empirical results demonstrate that Adam 
works well in practice and compares favorably to other stochastic optimization 
methods. [83] 

Given the nature of the data, a Categorical Cross-Entropy loss was used as the 
parameter to optimize. Figure 51 shows the full architecture of the neural network. 

 

 
Figure 51. ANN network topology 

Lastly, both algorithms were given 85% of the whole dataset to train and 15% to test. 
These tests consisted of accuracy for training, and F1-Score for test data, as well as 
a confusion Matrix to determine in which specific classifications they did not perform 
well. 

Comparison 

Both algorithms were trained, with highly acceptable results. Both algorithms had 
over 90% accuracy during training, with the KNN having a 95.55% and the ANN 
scoring a result of 96.79% over training data. 

Figures 52 and 53 show the confusion matrices generated with the test data. While 
the KNN algorithm did have minor errors in the classification of non-anomalous data 
and curves, the ANN had trouble classifying only curves. In both confusion matrices, 
the number 0 represents healthy data, number 1 represents possible potholes, 
number 2 speed bumps, and number 3 harsh curves.  
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Figure 53. KNN confusion matrix. 

  
Figure 53. ANN confusion matrix. 

The other measurement was the F1 score. This is a measure of complete accuracy, 
using both precision and recall. Reaches its best value at 1 and worst at 0. The 
precision refers to the amount of true positives per true positive and false positive, 
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while the recall measures the amount of true positives per true positives and false 
negatives. 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =  𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 

The results on the test data was coherent with the results of the training. The KNN 
algorithm scored 97.80%, while the ANN scored 93.33%. 

In order to visualize the data presented, 3D scatter plots were done with the labeled 
test data. Figure 54 shows both scatter plot, done with the mean of the 3 axes of the 
sensor data, labeled the same as the confusion matrices. There is a complete 
similarity between both results, and the types of anomalies that differ the most within 
these visualizations are the speed bumps and healthy data. 

 

 
Figure 54. KNN 3D scatter plot (left) vs ANN 3D scatter plot (right). 

 

3.5.3 Classification on Experiment 3.4.2’s Data 
 

The same preprocessing for each model was done with two different datasets: one 
composed exclusively from random sections of the reference dataset, and another 
with multiple laps from the 3.4.2 experiment. The idea is to visualize completely 
how the streets would look and be classified with these models. 
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The KNN classifier worked in a very acceptable way. While the reference avenue 
was correctly detected, all the data obtained from the 3.4.2 experiment seems 
approximately correct. The red zones from figure 55 results coherent with the 
observations, and that avenue was specifically chosen because the amount of 
anomalies presented. 

 

Figure 55. KNN geo-spatial classification 

The ANN on the other hand, labeled incorrectly the street with which the model was 
trained, and seemed to mislabel some of the information of the 3.4.2 experiment’s 
data. Figure 56 shows significant differences with the KNN classifier. 

 

Figure 56. ANN geo-spatial classification 
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Where the KNN classifier failed the most was with the mislabeling of other classes, 
or neighbors, into curves. However, with only one real physical example, any kind of 
data that its power spectrum varied more, it was more probable that it fell into that 
category. 

The ANN SoftMax classifier failed to accurately detect a great amount of the data 
without distinction. One of the main problems of the classifier could possibly be the 
sensitivity to scaling.  

SoftMax showed not too convincing probability for each of the classes in most of the 
cases, and scaling could potentially be the main issue in the classification. Since the 
anomalies were more frequent, greater, and different to the training dataset, the 
amplitude of the signal of bigger anomalies probably caused troubles translating into 
correctly scaled signals for the ANN to recognize. 

Even though both algorithms were trained in a completely similar form, and the test 
of both algorithms resulted in great performance results, the data obtained from the 
street reference was not completely similar to the experiment’s data. This showed 
clearly in the result of the classification. A deeper analysis of this situation is 
presented in chapter 5, but there are several reasons as to why this happened, 
including labeling, human error, lack of training data, etc.  
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4. Results 
This project has results in multiple levels, from layer 1 up to layer 7 of the OSI model. 
Thus, the results are divided by the different sections of chapter 3.  

Section 3.1 Results 

The analysis showed a strong correlation of 0.89 between inhabitants per county 
and AP density, meaning that the distribution of the population matches the 
distribution of Access Points. However, Mexico City lacks sufficient APs to cover 
completely the city.  

This system would not cover the entirety of the capital’s area; however, it will cover 
the city evenly, with 7.7 APs and a total of 292,702 square meters per neighborhood.  

Section 3.2 Results 

Considering an acceptable threshold level for latency of 15ms in a 2-hop 
communication between virtual LANs, the major coverage radius for the APs was 
set to 110 m. In ideal conditions, without any major interference such as moving 
vehicles blocking de signal, 120-meter radius would be considered acceptable. This 
sets the maximum distance of connection for the WDS protocol between 2 TP-Link 
routers. 

The WDS protocol proved to be reliable in that network setup, with no major packet 
losses. However, the system lacked an internet direct access due to the mobility 
conditions. 

Section 3.3 Results 

Hadoop technology has been tested over more than a decade, and it has proved 
several times its efficiency handling Big Data. The benchmarks of section 3.3 proved 
its significant improvement in runtime while adding different nodes. One important 
thing to notice is that the hardware of the majority of Hadoop slave nodes used in 
both cited papers were not high-end technology. This couples with the idea of fog 
computing, where low-end software computes and processes data in a distributed 
way, lowering costs an making it a more affordable solution. 

The other technology decision was about libraries and framework for data 
processing. Python was the set language for the project given its facilities and native 
support from both OBU and RSU technologies, so the data processing decision was 
between the set of Pandas, NumPy, TensorFlow and sci-kit learn technologies 
versus Apache PySpark and MLlib. While the former were developed and are 
maintained independently, the latter are part of the Apache ecosystem, the same 
organization that currently maintains Hadoop. 
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The benchmark on map-reduce operations, proved not only that the first technology 
is faster, but escalates better. This could be due to several reasons, including the 
underlying software, and that most of that technology is maintained by companies 
such as Google, and that those become the most popular libraries for Data Science, 
and have been supported more widely. 

Section 3.4 Results 

The main result of this section is the V2I network itself. The OBU and RSU were 
designed and tested in a real environment, with experiments during working hours 
and major traffic, NLOS scenarios, multiple APs, and moving vehicles with speed 
limits of 35 km/h.  

Major improvements were done with the software of the OBU device, with concurrent 
script-running, and parallelizing sensor reading instead of waiting on GPS sensor to 
actually read the position. 

The difference between experiment 3.4.1 and 3.4.2 is abysmal in terms of data 
acquisition, obtaining around 9.1 times more data in the second experiment. 

Section 3.4.3 was done in a more controlled environment, with a more stable, plain, 
recently paved, and straight avenue, with only a few anomalies to measure. As much 
data as possible was obtained in a period of 1 hour, and that data was labeled and 
saved for the following section.  

Two datasets with accelerometer and GPS data were obtained thanks to the V2I 
network developed thanks to sections 3.2, 3.3 and 3.4. With different processing 
techniques, a total of 293 labeled samples were obtained for further model training. 

Section 3.5 Results 

This section’s results are completely tied to the previous, since everything obtained 
from this section corresponded to experiment 3.4.2 and 3.4.3. Two different datasets 
were obtained, one labeled and one unlabeled, based on experiments with the V2I 
network developed in previous sections.  

The two different models were trained with acceptable levels of training accuracy 
and F1-Scores on test. After several iterations and different data preprocessing 
techniques, Power Spectrum transformation over time-domain signals proved to be 
the most accurate way of preprocess input features to both models. 

The KNN algorithm was trained with a result of 95.55% in accuracy during training, 
and an F1-Score of 0.978. Comparing and contrasting the classification of the 
unlabeled dataset, and comparing the classification with human observation, the 
system proved to be consistent in the classification of both datasets. 

The ANN algorithm was trained with a result of 100% in accuracy during training, 
and an F1-Score of 1 on testing, outperforming the KNN model. However, the 
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classification of the unlabeled dataset was completely inconsistent in comparison 
with human observation. This model had major problems corresponding to data 
scaling, and probably overfitting. 

Geo-spatial visualization was done to compare and choose a better model for 
classification of anomalies on the city’s streets. The main reason why KNN was a 
better fit is that it did not require data scaling for its inputs, and thus, handled better 
a street with mode deep potholes, speed bumps without any paint or signaling, and 
a generally more chaotic avenue that generated bigger sensor signals. 

Maps generated with the folium library can actually be exported, and since they run 
a technology called leaflet as the underlying software, they can be exported, or even 
generated with front-end technologies, libraries, and framework such as React, 
Angular, Vue, or any technology that runs with the Node runtime environment. 

All the codebase, Jupyter Notebooks, and exported data in csv format can be 
found in a public repository made with the purpose of sharing the whole project’s 
internals at [84]
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5. Analysis and Discussion 
During section 3.1, where the city analysis about was done, mobile alternatives were 
discarded because of the costs it represents nowadays. However, this project is 
based on the premise that cellular technologies are not currently available. 5G 
technologies were delayed due to the Covid-19 global pandemic. And one of its 
many side effects was the delay of 5G deployment in Mexico. This alternative should 
not be discarded, as it many countries have started its deployment, and it will 
become the global standard for IoT communications.  

Several Cloud companies such as Azure, Amazon Web Services, or Google Cloud 
Platform are starting to offer Edge Computing solutions based on 5G 
communications, and it this technology will eventually arrive to every corner of most 
cities. 

While this happens, mobile alternatives such as 4G LTE or C-V2X could fill the gap 
that the C5 system does not cover. Mobile service providers do have a much better 
coverage area for their communications systems and that alternative should be 
considered. 

Section 3.2 to section 3.4 show similar areas of improvement. Starting with the 
emulation system. The WDS protocol was able to create stable communications but 
with a low number of APs. During the 3.4.2 experiment, the main obstacle and 
problem was the communication between APs. Constant reconfigurations had to be 
made, and since it was an emulated mobile network, problems related to the energy 
supply also arose. However, those problems would not exist while having a constant 
energy supply, which is the case of the C5 system. 

One major unsolved issue during V2I communication handover. There are visible 
areas without coverage on Figure 44. This is because of the static IP handling. Other 
alternatives for a better performance should be considered, as well as software 
optimization in case of flickering connectivity, or when the communication is changed 
from AP, even if they are on the same virtual LAN. 

For further experiments, multiple RSU clusters should be integrated, with multiple 
nodes to really measure the benefits of this distributed architecture, since these 
experiments were done at low scale due to budget constraints. 

The C5 system does also have integrated cameras and sensors. The combination 
of OBU devices with the C5 sensors could also potentially bring new opportunities 
for distributed computation systems. 

On distributed computation systems, multiple alternatives were not explored. 
Kubernetes, Docker containers, and other virtual machine technologies could 
potentially help lower costs and benefit greatly the usage of hardware in the RSU. 

Data acquisition was sufficiently acceptable to adequately train two ML models, 
however, a speed limit was set in order to obtain those signals. This means that the 
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vehicles with this integrated technology would only provide useful information when 
they drive at low speeds.  

KNN showed a considerable better performance with unknown data with different 
amounts of signal change, which was the case of experiment 3.4.2’s data. The main 
reason is that this algorithm is quite simple and does not require data scaling, or 
even labeled data to begin with. Since there are only 2 non trainable parameters on 
the KNN model, it is easier to train and shown better results.  

ANN is too sensitive to the amplitude, and Deep Learning models rely on bigger 
training datasets to outperform other ML models. Two alternatives for the 
improvement of the network are proposed. First, increase the amount of labeled, not 
just in terms of volume, but with all kinds of anomalies, so the scaling of the whole 
dataset would correctly represent all the different amplitudes. The second is to fine 
tune the scaling system, in such a way that the amplitude does not affect excessively 
the model. 

Other problem to consider with ANN is the overfitting of the data. Since the dataset 
was not big enough to train with validation data, the overfitting of the model could 
not be correctly detected. However, this problem should also be solved with the 
proposed improvement.  

In addition to the previous improvements, other considerations within the ANN 
network topology could be improved for overfitting, with dropout layers included in 
the hidden layers of the model.  

Fine tuning must be considered in both classifiers, to correctly detect any anomaly. 
This include a more thorough classification, data obtention and training. However, 
the models seem to be a good fit. Is just a matter of the data used to train, test, and 
when the dataset is sufficiently big, create a validation set to detect if further 
improvements are needed. 
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6. Conclusion and Further Research 
This whole system proved to be able to detect anomalies and create geo-spatial data 
visualization to represent the streets condition on two tested avenues. While the 
proposed research hypothesis proved to be true, this project has vast areas of 
opportunity, improvements, and further research in order to scale to a system to a 
complete city level.  
One of the untouched aspects of this project is the cloud solution. Design and 
implementation of cloud services to host the website are needed for the visualization 
tools, as well as the creation and maintenance of a database, relational or not, and 
complementary systems necessary for the operation of the proposed data recovery 
and analysis platform. 

More data acquisition should be done, as well as the generation of more datasets 
with more labels, as well as more precise labels for anomaly detection, including 
more anomalies, such as culverts, transverse and longitudinal cracks, stoplights, 
speed bumps, dents, etc. This could be done in the periphery of Tecnológico de 
Monterrey CCM before expanding to other neighborhoods or counties. 

With more data, better labeling, and a fog-cloud solution, experiments, training, and 
more tests should be done on the MLA proposed in this dissertation.  

This project proposed a simple geo-spatial visualization tool for anomaly detection. 
However, it is yet to be determined the most appropriate, efficient, and useful type 
of visualizations for the observation of relevant information, detected anomalies and 
areas of opportunity found in the data retrieved by the OBUs. 

Finally, this project could be taken a step further by automatically express 
recommendations and conclusions regarding urban mobility to the corresponding 
authorities, besides only showing visualization.  

Other recommendations for further research include the analysis of the deployment 
5G in upcoming years, join different network alternatives for different types of traffic, 
software defined networks, and research of other virtualization tools for a better V2I 
network scalability. 
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Appendix A 
Abbreviations and acronyms  

_____________________________________________________ 

   Description 

_____________________________________________________ 

5G Fifth Generation Technology Standard for Broadband 
networks 

IoT  Internet of Things 

IoV  Internet of Vehicles 

DSRC  Dedicated Short Range Communications 

ICT  Information and Communications technology 

V2I  Vehicle to Infrastructure 

V2V  Vehicle to Vehicle 

V2X  Vehicle to Everything 

C-V2X Cellular-V2X  

 OBU  Onboard Unit 

 RSU  Roadside Unit 

PER  Packet Error Rate 

 BER  Bit Error Rate 

 Wi-Fi  Wireless Fidelity 

AP  Access Point 

VANET Vehicular Ad-Hoc Network 

LOS  Line of Sight 

NLOS  No Line of Sight 

ITS  Intelligent Transport System 

AI  Artificial Intelligence 

SVM  Support Vector Machines 
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 GPRS  General Packet Radio Services 

CDF  Cumulative Distribution Function 

FCN  Fog Computing Networks 

CCN  Cloud Computing Networks 

VCC  Vehicular Cloud Computing 

VEC  Vehicular Edge Computing 

VFC  Vehicular Fog Computing 

YOLO  You Only Look Once 

AI  Artificial Intelligence 

 MCA  Multi-hop Clustering Approach 

 MEC  Multi-access Edge Computing 

 RSU-G Roadside Unit Gateway 

 IP  Internet Protocol 

 QoS  Quality of Service 

 IEEE  Institute of Electrical and Electronics Engineers 

 VoIP  Voice over IP 

 LSTM  Long Short-Term Memory 

 CNN  Convolutional Neural Network 

 ETL  Extract-Transform-Load 

 FFT  Fast Fourier Transform  

 MLA  Machine Learning Algorithm 

KNN  K-nearest neighbors 

ANN  Artificial Neural Network 

___________________________________________________ 

 



Appendix B 
 

97 

 

 

 

Appendix B 
Variables and Symbols 
 _____________________________________________ 

 Variable  Description   Units 

 _____________________________________________ 

    W   power or radiant flux  kg*m2*s-3 

    Hz  Hertz. Unit of frequency  s-1 

    BW  Maximum data transfer rate Mbps 

   EbNo Energy per bit to noise power dB 

_____________________________________________ 
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Appendix C 
Additional Plots, Tables, and Data 
In this Appendix, all the plots, tables, and other additional information is presented. It 
is divided by subsection, and the only subsections referenced here correspond to 
previous ___ on its corresponding subsection, section, or chapter. 

Section 3.2.1 

Table C-1 Preliminary measures devices 

 

Raspberry Pi 3B+ 
 

 TP-Link router model Archer A5 

 

Lenovo laptop 

 

 

 
Figure C-1. Maximum and minimum signal level at a distance of 50 meters with LOS. 
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Figure C-2. Maximum and minimum signal level at a distance of 50 meters 

with NLOS. 

 
Figure C-3. Maximum and minimum signal level at a distance of 60 meters with LOS. 

 
Figure C-4. Maximum and minimum signal level at a distance of 60 meters 

with NLOS. 
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Section 3.2.2 

Table C-2 

 
Raspberry Pi 3B+ 

 
 
 

TP-Link router model Archer A5 (2) 

 

  

Lenovo laptop 

 
Green Leaf external antenna 

 
 
 
Repetidor COM-8200 
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Subsection 3.2.3 

 

 

Figure C-5 Cumulative distribution function for 100 and 1000 bytes between 2 APs at 
80 mts distance 

 
Figure C-6 Cumulative distribution function for 100 and 1000 bytes between 2 APs at 

80 mts distance 
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Figure C-7 Cumulative distribution function for 100 and 1000 bytes between 2 APs at 

80 mts distance 

 
Figure C-8 Cumulative distribution function for 100 and 1000 bytes between 2 APs at 

80 mts distance 
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Section 3.4 

 
Table C-3. Equipment required for experiments 3.4.1 to 3.4.3 

 
 
 
Section 3.5 
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Figure C-9. Parked signal reference 

 

 
Figure C-9. Plain route signal at 20km/h 

 
Figure C-10. Street with pothole and speedbump at 20km/h on average 
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Figure C-11.  Street with 3 different potholes at 30km/h on average. 

 

 
Figure C-12.  OBU photograph before a pothole and a speed bump. 
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Figure C-13. Power Spectrum of a steep curve/turn at 25 km/h 

 
Figure C-14. Power Spectrum of a speed bump at 25 km/h 

 
Figure C-15. Power Spectrum of the oscillations of a vehicle turned on without 

moving.  
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Pseudocode for Power spectrum calculation. 
 
 time_domain_signal = getTimeDomainSignal(source); 

Fs=Sampling_Rate 
N= length of(time_domain_signal); 
xdft = FFT(time_domain_signal); 
xdft = xdft(1:N/2+1); 
psdx = (1/(Fs*N)) * abs(xdft).^2; 
psdx(2:end-1) = 2*psdx(2:end-1); 
freq = 0:Fs / length(time_domain_signal):Fs/2; 
 
#plotting  
plot(freq, psdx) 
 
title('Periodogram Using FFT') 
xlabel('Frequency (Hz)') 
ylabel('Power [V^2]') 

 
 
Section 3.5.3 
 

 

Figure C-16. KNN detected anomalies in both avenues. 
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Figure C-17. KNN healthy street points. 
 
 

 

Figure C-18. ANN detected anomalies in both avenues. 
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Figure C-19. ANN healthy street points.
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Abstract—In recent years, through the evolution of 

intelligent transport systems (ITS), there has been an 

increase in components to monitor different variables 

in the vehicles (such as driver monitoring, tire pressure, 

oil pressure, vehicle speed, acceleration, among others). 

Internet of Things (IoT) is enabling the collection of a 

variety of information of all types of components for 

monitoring the environment and systems. Also, as part 

of this evolution, the original concept of Vehicular Ad-

hoc networks (VANETs) is being transformed into a new 

concept, the Internet of Vehicles (IoV), which involves 

Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I) 

communications, and other variations of these (V2X). 

In this paper, a review of the state of the art of the 

technologies and architectures generated around the 

Internet of the vehicles (IoV) is carried out and with 

this, an implementation of the simulation of intelligent 

vehicular communications through the IEEE 802.11p 

protocol and one of its applications. An algorithm for 

the generation of vehicular convoys to improve vehicle 

flow application through V2X communication is 

proposed and implemented in the simulation, and the 

communication quality is validated in a closed route in 

an urban environment during the simulations, omitting 

aspects of security in communications. 

Keywords—Automotive Vehicles, Autonomous Vehicles, 

Internet of Things, Internet of Vehicles, Semi-

autonomous Vehicles 

 

I. INTRODUCTION 

The concept of Vehicular Ad Hoc Networks 

(VANETs) was conceived over a decade ago 

and it has been a very active research area, 

both in academia and industry [1] [2] [3] [4] 

[5]. However, as the number of vehicles 

connected to the Internet of Things increases, 

new requirements of VANETs are emerging [1]. 

The basic principle of a VANET is that a vehicle 

is a mobile node that enables the connection 

with other vehicles thereby creating a network 

[1]. One of the main problems of VANETs is its 

limited capacity for processing all the 

information that is collected by themselves and 

other actors (such as sensors and mobile 

devices) around the environment [1]. In this 

context, vehicles must evolve into ‘smart’ 

objects equipped with a multi-sensory 

platform, including a set of communication 

technologies, robust computational units, IP-

based connectivity to the Internet, and a direct 

or indirect connection to other vehicles and 

with all devices around. This is where the 

Internet of Vehicles emerges as an evolution to 

this technology, where the IoV integrates two 

technological visions: vehicles networking and 

vehicles intelligence [6] and focuses on the 

integration of objects such as humans, vehicles, 

things, networks and environments to create 

an intelligent network based on computing and 

communication capabilities that supports 

services for large cities or even a whole country 

[1].  

Some studies have predicted that 25 billion 

devices will be connected to the internet by…
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