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Evolutionary Clustering using Classifiers: Definition,
Implementation, Scalability, and Applications

by
Benjamin Mario Sainz Tinajero

Abstract

Clustering is a Machine Learning tool for partitioning multi-dimensional data automatically
into mutually exclusive groups, aiming to reflect the patterns of the phenomena it represents.
Clustering algorithms perform this task conditioned by the clustering criterion modeled in
its objective function. However, selecting the optimal criterion is a domain-dependent task
that requires information on the cluster structure that a user often does not count on due to
the unsupervised nature of the technique. Available approaches accentuate this problem as
they perform clustering according to a similarity notion often limited to the concepts of com-
pactness and connectedness, inducing bias and favoring clusters with certain shape, size, or
density properties from using conventional distance functions. However, we cannot consider
this a complete notion of a cluster because not every dataset will comply with both notions in
the same proportion. Hence, research on this topic has not converged to a standard definition
of a cluster, which raises the need for algorithms that produce adaptive solutions that mirror
the underlying structures and relations within the data.

This thesis is focused on the design of single-objective Evolutionary Clustering Algo-
rithms that generate solutions that are not biased towards any cluster structure by optimizing
a novel generalization clustering criterion. To achieve that, we designed objective functions
modeled as a supervised learning problem, considering that a good partition should induce a
well-trained classifier. That is how we decided to assess the quality of a clustering solution,
according to its capability to train an ensemble of classifiers. The main contribution of this
thesis is our series of Evolutionary Clustering Algorithms using Classifiers (the ECAC series),
which introduces the aforementioned clustering criterion along with evolutionary computa-
tion. This meta-heuristic allows us to model distinct criteria to optimize while creating and
evaluating multiple solutions along the process. The experimental results in the design of our
family of methods ECAC, F1-ECAC, and ECAC-S, show an increase in similarity between
the partitions created by our algorithms and the ground truth labels (obtained from the publicly
available repositories where we retrieved the data) with a maximum Adjusted RAND Index
of 0.96. Our second algorithm, F1-ECAC, proved the competitiveness of our contributions
against traditional, single, and multi-objective Evolutionary Clustering algorithms showing
no statistically significant difference against k-means, HG-means, and MOCLE. Our latest
contribution, ECAC-S, was tested on a satellite image segmentation task, and it produced
segmentations with higher average Adjusted RAND Index than k-means, Spectral-clustering,
Birch, and DBSCAN in 4 out of 10 images.
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Chapter 1

Introduction

The adoption of technology within industrial processes has enabled data generation at un-
precedented amounts and rates [71]. Machines used for handling packaging processes, plastic
injection, and piece evaluation exemplify how automation can propel designs that collect and
transmit data. Virtually every sector in a productive system produces data that can be analyzed
to retrieve insights for further process enhancement (e.g., a manufacturing line that has seen a
rise in average stationary time, a supply chain that has seen unexplained efficiency drops, or
market sectors that behave unnaturally) [67]. This revolution has even reached our approach
to personal computing and the devices we use every day. Smartphones (and the applications
within them) are instrumented for tracking usage data of almost every possible transaction,
and social media are the most representative case in recent times. Gathering and storing data
implies a cost; therefore, data shall be considered an investment and an asset [67].

Still, how do we process all these data? This question implies the need for methods
capable of modeling phenomena that would be impossible to be processed without numeri-
cal methods. Data Science methods have the objective of assisting the knowledge extraction
task to transform it into decisions. For instance, in the manufacturing example mentioned
before, the collected data can help find root causes and propose solutions to improve produc-
tivity. Regarding social networks, data mining can be useful for market segmentation, testing
a new feature, or modifying an existing product [67]. Standardized procedures such as the
Cross-Industry Standard Process for Data Mining, or CRISP-DM (which we have used in
previous studies to analyze the impact of the COVID-19 vaccination progress [79]), propose
an organized approach towards understanding and preparing data to evaluate and deploy a
model [93].

Machine Learning is the collection of methods for extracting models from data and is
a sub-field of Artificial Intelligence that closely aligns with scientific disciplines such as Ap-
plied Statistics and Pattern Recognition. In the end, its main purpose is concerned with the
analysis of data for identifying informative patterns. Supervised and Unsupervised Learning
are two sub-fields from Machine Learning that can be useful for answering questions depend-
ing on the intrinsic character of the task to be solved. For instance, looking for natural groups
within a set of customers would be an unsupervised approach, whereas predicting a customer’s
likelihood of buying a product based on previous examples would require a supervised tech-
nique (complete historical data on a specific target label is provided for prediction) [93, 79].

1



2 CHAPTER 1. INTRODUCTION

Clustering is an Unsupervised Learning technique widely used in exploratory data anal-
ysis for finding patterns at the beginning of a Data Science pipeline to get an outlook on the
existing relations within a dataset [48, 39, 46, 67]. One of the results of clustering a dataset
is a set of disjoint subsets of the data, which we refer to as clusters [48, 23]. The primary
purpose of clustering is to create groups that present high similarity levels within but not be-
tween them [48]. This group of methods could be helpful when dealing with questions of
open character. For instance, an image could be clustered to evaluate if its pixels might fall
into informative segments regarding color similarity [24, 34].

In general, clustering aims to find compact and isolated groups [15, 71, 32, 38, 14].
However, this ideal condition does not hold for most datasets in real applications, causing
an absence of a cluster definition that is accepted across the literature [42, 15]. Hence this
relative concept has given rise to multiple clustering methods following divergent similarity
notions to group unlabeled objects into clusters [71, 38, 15, 40, 94]. Clustering criterion is a
model capable of capturing and representing the internal structures in a dataset associated with
an algorithm [14]. Taxonomies across the literature often divide clustering algorithms into
three categories: partitional, hierarchical, and density-based methods. An algorithm in these
varieties aims to handle possible cluster shape, size, density, and noise [71, 38, 32]. In recent
decades, we have witnessed the design of dozens of publicly-available algorithms [94]. Some
examples of well-maintained libraries offering straightforward setup of clustering algorithms
are TensorFlow by Google [1], PyTorch by Facebook [64], and Scikit-Learn [65].

The interpretation of a phenomenon is susceptible to the bias encountered in the Ma-
chine Learning method that was used to model it. In clustering, a partition contains groups
formed according to a specific similarity notion modeled in an algorithm conditioned by its in-
trinsic clustering bias [67, 71]. Each algorithm offers parameters that inevitably favor groups
complying with specific cluster structures [94]. Hence performing clustering on a dataset
with multiple algorithms will raise insights that might vary significantly upon each method’s
tendency towards certain cluster shapes. Even using the same algorithm could return dif-
ferent partitions with the same data due to their sensitivity regarding hyper-parameter set-
ting [32, 48]. Clustering bias refers to a performance enhancement when the same structural
conditions are met by a clustering algorithm’s objective function and the data being analyzed.
This problem is accentuated by the natural characteristic of data from real sources, which is
not likely to perfectly match the clustering bias induced by algorithms optimizing conven-
tional distance functions [15, 71, 32, 38, 14]. Therefore, there is no clustering algorithm that
can capture every underlying structure from data [15].

The clustering approach has stayed the same while more algorithms are released each
year. Clustering criterion selection is usually a manual task that consists of choosing the
algorithm and hyper-parameters that seem most likely to return revealing partitions [82]. The
main disadvantage of this procedure is the dependency on experience-based knowledge [44,
15]. Consequently, a user might face failure in displaying informative clusters, which implies
an iterative adjustment of the clustering criterion. This evaluation takes place after running
each algorithm and requires enough knowledge on the domain (or an external expert on the
discipline) to determine whether the partitions offer an informative representation of the data
or not [15]. However, most data mining applications do not count on information about the
cluster structures within the data beforehand. This factor, and the vast amount of available
methods, makes it unfeasible to know the proper clustering criterion a-priori [71, 32].
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The relation between clustering bias and clustering criterion selection is causal, as the
former complicates the latter. For instance, k-means, could be useful when dealing with
clusters forming hyper-spheres. The main drawback of using it is that most real datasets
present irregular cluster shapes, thus not complying with the clustering bias induced by this
algorithm. It is limiting and insufficient to try fitting our anthropocentric concepts of geometry
when modeling multi-dimensional data [52, 91, 45, 51, 37, 33].

Clustering can be modeled as an optimization problem, in which an objective function
should be designed according to a desired internal quality criterion to maximize or mini-
mize [32, 18]. Therefore, a partition’s quality is delimited by the capability of the cluster
property favored by the algorithm to capture the event reflected in a dataset in a natural
manner. To tackle the problems mentioned before, clustering algorithms based on nature-
inspired meta-heuristics aim to optimize one or more objectives for creating clusters of arbi-
trary shapes and avoid falling into local minima [37, 58, 57, 60]. Among them, Evolutionary
Algorithms are the most popular for clustering [32]. Contrary to traditional methods that
optimize only one conventional criterion, single and multi-objective Evolutionary Clustering
algorithms compute fitness combining distance functions fundamentally different but equally
desirable [23, 32]. Another advantage is that they explore the search space efficiently, and
create and combine partitions during the clustering process. However, existing approaches
still optimize criteria related to compactness or connectedness, and these two properties are
not enough to formulate a complete definition of a cluster because it does not hold from real
data sources [37, 58, 57, 60, 33].

1.1 Hypothesis

The clustering algorithms developed for this thesis return partitions that reflect the intrinsic
relations within a dataset, achieving competitive performance against state-of-the-art methods
by optimizing the novel cluster quality criterion of generalization. The algorithms do not
present any clustering bias towards a geometrical shape or structure and create and assess
solutions along, and not at the end of the clustering process.

1.2 Research Questions

The following questions describe the project:

• How can we design an objective function that favors adaptive partitions?

• What would be the best search strategy to evaluate solutions during the process?

• What would be our algorithm’s position and role within the literature?

• How extensive can this type of algorithm be for dataset variety?
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1.3 Objectives
The main objective of the present thesis project is to design clustering algorithms that return
high-quality solutions. The sub-objectives on which this project focuses are the following:

• Design an efficient objective function that models the generalization cluster quality cri-
terion, leading our methods to adapt to the dataset and not the other way around.

• Implement a search strategy to generate solutions that iteratively increase in quality.

• Analyze improvement areas of the algorithms to enhance efficiency.

• Perform a benchmark on a real application using our ultimate algorithm.

1.3.1 Scope and Limitations
The boundaries that limit the project are established up to the design of clustering algorithms
that require as input a dataset and a number of clusters for recommending a partition. The
related work under consideration ranges from clustering and cluster validity indices to novel
techniques of evolutionary computation.

1.4 Contributions
This project contributed to the literature with the Evolutionary Clustering Algorithm using
Classifiers (ECAC) series of publications. The cluster quality criterion in every version of
ECAC is based upon the philosophy behind the cluster Validity Index using Classifiers by Ro-
driguez et al. [71], considering that a high-quality partition induces a well-trained classifier. In
this way, we take advantage of the benefits of modeling the objective function of a clustering
algorithm as a supervised problem to optimize the generalization capabilities of a partition.
The main point of differentiation of our methods is the inclusion of an ensemble of classi-
fiers to compute fitness in single-objective Evolutionary Clustering algorithms. Therefore,
we compute the quality of a partition according to the quality of the classification model it
can induce, giving us an informative approximation of its capability of capturing the relations
within a dataset while avoiding the disadvantages of using conventional distance functions
such as clustering bias.

During the development of this thesis project, we designed three versions of ECAC.
In every iteration of the algorithm, we aimed to find the best encoding, genetic operators,
objective function, and initialization schema for the Evolutionary Clustering process. The
first version of the algorithm, ECAC, constitutes the establishment of our algorithm’s position
within the single-objective Evolutionary Clustering literature using publicly available datasets
for experimentation. The article related to ECAC was published and presented at the IEEE
Congress on Evolutionary Computation (July 2021), and is available at Ref. [77] (implemen-
tation available at Ref. [73]). The Evolutionary Clustering Algorithm using Classifiers and
the F1 score (F1-ECAC) represents the second version of ECAC and was developed involving
major changes to the objective function. This is an enhanced version of our first algorithm
in terms of performance and efficiency and offered competitive performance in a benchmark
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against state-of-the-art multi-objective clustering algorithms. The article related to F1-ECAC
was published at IEEE Access Journal in September 2021 and is available at Ref. [78] (im-
plementation available at Ref. [74]). The Simultaneous Evolutionary Clustering Algorithm
using Classifiers (ECAC-S) represents the third and final contribution of this thesis, and offers
efficiency improvements in its implementation and design, introducing parallel computing
and an application on satellite image segmentation. The article related to ECAC-S is under
preparation for submission (implementation available at Ref. [76]).

The remainder of this thesis is organized as follows. Chapter 2 describes clustering
methods according to the most prevalent taxonomies within the literature. In Chapter 3, we
describe our ECAC series of contributions. Chapter 4 goes into detail the experimental frame-
work used to test each of our developments, and their results are depicted and discussed in
Chapter 5. Finally, our conclusions are stated in Chapter 6.





Chapter 2

Related Work

This chapter introduces the most representative clustering algorithms belonging to multiple
families, their role in the literature, and their influence on this project. It is essential to under-
stand the main drawbacks and pinpoint design decisions that could be of great use to answer
the research questions to be tackled. Taxonomies found in the literature often vary according
to the criteria or purpose [3, 42, 94]. Handl and Knowles [32] categorize clustering algorithms
based on the criterion that each algorithm optimizes. The three cluster structures considered
in this taxonomy are:

1. Compactness within a cluster: algorithms favoring this property return groups with low
intra-variation.

2. Connectedness within a cluster: algorithms favoring this property tend to group neigh-
bors together.

3. Spatial Separation within and between clusters: algorithms favoring this property tend
to consider density-related criteria to form groups.

2.1 Traditional Clustering Algorithms
We refer to algorithms in this category as those performing optimization without using meta-
heuristics. The methods presented in this, and the following sections, were used to assess the
performance of our proposals in further Chapters.

2.1.1 k-means
This partitional algorithm (it searches for a solution iteratively) is the most widely used
since its introduction in the 1960s due to its straightforward configuration and interpretabil-
ity [35, 42, 45, 52]. k-means optimizes compactness within clusters by minimizing the sum
of the squared distances from each point to its cluster centroid [42, 45, 52]. Its dependency
on conventional distance functions as the Euclidean metric favors clusters forming hyper-
spheres and an increased number of clusters, making k-means unsuitable when dealing with
complex structures (which are likely to appear in data from real sources). Another disadvan-
tage is its sensitivity towards initial centroids, which might lead to local minimums and trivial

7
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solutions [42]. The cluster quality criterion used in k-means has inspired the design of Evolu-
tionary Clustering Algorithms that do not fail to converge to a global optimum by introducing
varying heuristics and implementations [2, 29, 45, 51].

2.1.2 Agglomerative Clustering
Hierarchical methods form sequential partitions started either by locating every point 1) in
a singleton cluster or 2) in a clustering containing the whole dataset. These methods were
published around 1985, and build a dendrogram structure according to the selected distance
function and the affinity metric [91, 94]. A dendrogram can be split at the required height to
produce a desired number of clusters [39, 42]. Using a single-linkage affinity (SL) considers
the distance between the closest points from two groups to create the nested clusters. In this
case, the connectedness cluster quality criterion is optimized, inducing clustering bias towards
continuous groups (e.g., spiral-shaped structures), making it an inappropriate solution for data
from real sources [39].

2.1.3 Density-based Spatial Clustering of Applications with Noise
Spatial Separation is a cluster quality criterion susceptible to converging to trivial solutions;
hence it is commonly combined with other heuristics. This is an objective more commonly
found as cluster quality indexes and is not widely found as a heuristic in clustering algo-
rithms [30, 32]. The Density-based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm was introduced in 1996, and it aims to take care of the spatial separation
between clusters, a property not considered by the compactness and connectedness quality
criteria [13, 81]. Contrary to the previously mentioned methods, DBSCAN does not require
the number of clusters as an initial hyper-parameter. Its operation consists of computing
neighborhood density within clusters and placing objects in a group if and only if its aggre-
gation complies with a minimum threshold (this is the only required hyper-parameter by the
algorithm) and lets the user set the minimum objects required to form a cluster [13].

2.1.4 Balanced Iterative Reducing and Clustering using Hierarchies
Zhang et al. [96] developed the Balanced Iterative Reducing and Clustering using Hierarchies
(Birch) algorithm in 1996, a method that focuses on tracking densely occupied portions of
the data and creating a compact summary. This robust method computes connectedness and
compactness as it builds a height-balanced tree. This method groups objects incrementally
and can handle data points outside the main underlying pattern (considered noise). Birch only
requires one scan of the data and increases performance if allowed further iterations, but is
highly dependent on a proper hyper-parameter setting.

2.1.5 Spectral Clustering
In 1973, Donath and Hoffman proposed constructing graph partitions based on eigenvectors
of an adjacency matrix [9, 90]. This finding led to the establishment of the fundamental the-
ory behind Spectral Clustering, made popular by the work of Shi and Malik [9, 82]. Spectral
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Clustering is a series of discriminative methods that do not make assumptions of the structures
within the data (they are even capable of solving problems like cluster structures formed as in-
tertwined spirals) and compute local evidence on the likelihood of two points being clustered
together to proceed to make global decisions to create the disjoints sets of data according
to some criterion [90]. This criterion can even be decoded with an embedding framework,
where the clustering relationships could be preserved in a lower-dimensional interpretable
representation [95]. Once the similarity graph is built, a linear problem is solved in the re-
laxed continuous domain by eigendecomposition (using heuristics such as k-means to get a
discrete solution, or partition, from eigenvectors in a lower-dimensional space) with no risk of
falling into local minima and no further need of restarting the clustering process with different
initializations [90, 95].

2.2 Single-objective Evolutionary Clustering
Modeling an internal cluster quality criterion as an optimization problem can diminish the
impact of the absence of a domain expert. Thus, a cluster property embodied in an objective
function to be maximized or minimized, will define the nature of the solutions returned in an
optimization problem (⌦, P ) to find the optimal clustering C⇤ for which

P (C⇤) = min
C2⌦

P (C), (2.1)

where ⌦ is the set of reachable solutions, C is a clustering, or partition, of datasetE, and
P is an internal criterion modeled after a particular cluster assignment notion [18, 32]. The
cluster properties mentioned at the beginning of this chapter have been modeled using inno-
vative objective functions, operators, and encoding schemes. In the following section, we will
go into detail about one of the most representative single-objective Evolutionary Clustering
methods among the literature [29, 37, 58, 57, 60].

2.2.1 HG-means
Gribel and Vidal’s algorithm [29] (published in 2018), performs clustering in a single-objective
schema, introducing a genetic approach. Recombination and mutation are the main compo-
nents of HG-means’ (HGM) evolutionary search pipeline that turn a random initial population
into solutions that minimize compactness. As performed by k-means and other methods fol-
lowing meta-heuristics [33, 37], its objective function is computed as

Comp(C) =
X

Ck2C

X

i2Ck

�(i, µk)
2, (2.2)

where �(., .) represents the Euclidean metric as distance function, and i is an object from
dataset E, with centroids µk for each cluster Ck contained in C.

In each iteration, a binary tournament is in charge of selecting two parents required for
the crossover procedure. This operator solves a bipartite matching problem to align the closest
cluster centers of both parents into pairs and then selects one of them randomly with equal
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probability, continuing the process with k centroids. Subsequently, the mutation operator re-
moves one of them and reassigns it randomly to any remaining point in the dataset. This
centroid set is used to execute a local search based on k-means at the end of each generation.
This powerful algorithm incorporates diversity management strategies to foster distinct solu-
tions and avoid premature convergence. Nonetheless, HG-means also has the disadvantage
of optimizing a quality criterion that assumes that the cluster structures within the data are
spherical.

2.3 Multi-objective Evolutionary Clustering
Despite the proven benefits of evolutionary search to avoid local minima, the inability of
existing methods to produce partitions enabling two or more properties suggests the inclusion
of multi-objective methods for clustering. This could lead to high-quality solutions, reducing
the clustering criterion selection dilemma mentioned before, which could still be propelled
by Evolutionary Clustering Algorithms that optimize one objective function that induces bias
in its operation, resulting in unacceptable results. Therefore, an inadequate selection of the
optimal Evolutionary Clustering algorithm is more prone when dealing with single-objective
algorithms. Multi-objective Evolutionary Clustering Algorithms overcome this problem by
modeling the compromise of multiple complementary cluster properties, implying a more
natural data processing. A problem (⌦, P1, ..., Pm) aims to search C⇤ for which

Pt(C
⇤) = min

C2⌦
Pt(C)

t 2 1, ..., j, (2.3)

where ⌦ is a set considering all possible clusterings, C is a partition of the dataset E,
and Pt are the j multiple clustering criteria to be optimized [18, 32]. Pareto optimality is
introduced in these problems to handle the fitness balance between objective functions. Given
solutions C1, C2 2 ⌦, solution C1 is considered to dominate solution C2 (C1 � C2) if and
only if

8t : Pt(C1)  Pt(C2) ^ 9t : Pt(C1) < Pt(C2), (2.4)

and the Pareto-optimal solutions are consequently stated as

⇧ = {C 2 ⌦ : @C 0 2 ⌦ : C
0 � C}, (2.5)

which generates an objective space denominated as the Pareto front (there is no so-
lution outside of the Pareto front dominating any inside of it). Simultaneous search using
multiple objectives is expected to find solutions at least in equal capacity compared to its
separate objective functions in a single-objective framework whereas acquiring an increased
computational cost [18, 32]. Multi-objective Evolutionary Clustering Algorithms have been
commonly designed and implemented to optimize no more than two objectives. This novel
discipline has witnessed the release of relevant methods in recent years, and now, we will go
into detail about the two most dominant among the literature [31, 63, 70, 97].



2.3. MULTI-OBJECTIVE EVOLUTIONARY CLUSTERING 11

2.3.1 Multi-objective Clustering Ensemble
The Multi-objective Clustering Ensemble (MOCLE) method is an approach to Evolutionary
Clustering using Pareto-optimality and was introduced by Faceli et al. [15, 16] in 2006. MO-
CLE starts with an initial population constituted of partitions of the dataset created by concep-
tually diverse clustering algorithms (with hyper-parameter variations). Such partitions range
from k to 2⇤k clusters. The encoding of each individual representing a partition is performed
as an array of sets containing the members’ labels per cluster. The Pareto front returned by
MOCLE guarantees to offer a group of individuals representing each of its regions, as the
result of optimizing two cluster quality criteria modeled in two separate objective functions
that should be minimized:

1. Deviation is a similarity metric that resembles compactness (see Equation 2.2) but does
not use squared distance values [32], and is computed as

Dev(C) =
X

Ck2C

X

i2Ck

�(i, µk), (2.6)

2. Connectivity quantifies the inverted frequency in which neighboring points are clus-
tered together and is computed as

Conn(C) =
X

i2E

(
LX

l=1

xi,nni,l
)

xr,s =

⇢
1
l
if @Ck : r 2 Ck ^ s 2 Ck

0, otherwise , (2.7)

where nnil is the lth nearest neighbor of object i, and L is the hyper-parameter for
delimiting the number of considered neighbors, andE is the dataset under analysis [32].

As MOCLE optimizes objective functions found in other algorithms of its family, the
gradual elimination of low-performing solutions and the generation of new ones is mainly in
charge of the recombination operation and the fitness computation. The crossover operator
used in this algorithm follows an innovative approach. First, two parents are selected through
a binary tournament. Afterward, a new chromosome is created with the participation of both
parents in a clustering ensemble problem for finding a consensus partition instead of perform-
ing slicing operations. The results returned by MOCLE will vary significantly according to
the ensemble method used in this operator. If the cluster ensemble technique does not auto-
matically select the number of clusters for the child generated from both parents, the k value
must be randomly chosen from the cluster range of both parents. MOCLE does not use a mu-
tation operator, which sets it apart from other Evolutionary Clustering methods. The authors
claim that this design decision parts from assuming that the relevant structures from the data
are contained and captured within the partitions created by the set of algorithms at the begin-
ning of the procedure. Therefore, the evolutionary process of MOCLE works in a restricted
search space.
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2.3.2 Multi-objective Clustering with Automatic k-determination
In 2017, Garza-Fabre et al. [23] proposed an update to theMulti-objective Clustering with Au-
tomatic k-determination method (MOCK, from 2007) [32],�-MOCK. The enhanced version
of this Evolutionary Clustering Algorithm introduces modifications to the genotype repre-
sentation framework and its initialization, resulting in efficiency benefits. �-MOCK acts in
accordance with an evolutionary strategy, and during each iteration, a mating selection binary
tournament and two genetic operators create new offspring that compete between them and
with their parents to survive. The authors state that the optimization of two fundamentally
different but equally desirable quality criteria models the trade-off of two objective functions
to be minimized:

1. Variance within clusters, which is computed as

V ar(C) =
1

N

X

Ck2C

X

i2Ck

�(i, µk)
2, (2.8)

whereN represents the length of dataset E. This criterion computes the mean compact-
ness as seen in Equation 2.2 and improves as k increases.

2. Connectivity within clusters, as presented in Equation 2.7. The gradually decreasing
penalty 1/j emphasizes to nearest neighbors, and this objective improves as the k value
decreases.

Both objectives balance each other’s tendency towards the value of k, avoiding trivial
solutions that could be retrieved if using any of these separate objectives [15, 32].

�-MOCK is natively designed to work with the Elitist Non-Dominated Sorting Ge-
netic Algorithm (NSGA-II) [6] to search for a Pareto front with a balanced representation
per region. The initial population is built upon partitions with varying cluster numbers to the
maximum set by the user. A Minimum-spanning Tree (MST) sets up the conformation of
the genetic material to be enhanced during the evolutionary search. Partitions are recombined
through a uniform crossover operator that joins the genotypes of two parents [86]. In this
procedure, a brand new solution is started as an exact copy of a parent (baseline genotype),
and its information is interchanged with the remaining one (modifier genotype) conditioned
by a hyper-parameter pc that delimits the individual discrete probability to decide if a gene
is preserved or modified. Each parent is used once as the baseline genotype and once as the
modifier genotype. Using this operator instead of slicing the whole chromosome to give rise
to new solutions can produce any possible combination between two parents. �-MOCK uses
a neighborhood-biased operator that also computes the individual mutation probability pm per
gene (or link, because of the �-locus encoding used to represent a solution) to increase the
chances of discarding unfavorable links. Such probability for mutating a gene encoding a link
associating two solutions i ! h is computed as

pm(i ! h) =
1

|�| +
✓
nni(h)

|�|

◆2

, (2.9)

where |�| is the number of positions in the representation. The mutation of a link i ! h
replaces the link with a new link i ! z, where z 2 {i, nni1, .., nniL} \ {h} [23].
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2.4 Supervised and Unsupervised Learning
Diverse approaches have used supervised learning to solve unsupervised problems and the
other way around. Some of them will be described in this section to analyze their design
principles and their relevance to the current project.

2.4.1 Optimized Ensemble Classifier with Cluster Size Reduction
The method introduced by Jan et al. [43] in 2020 is relevant to this proposal due to the inclu-
sion of clustering in a classification problem. Clustering, an ensemble of classifiers, and an
evolutionary search strategy constitute the Optimized Ensemble Classifier with Cluster Size
Reduction. This method performs incremental clustering to generate varied class-pure groups
to pre-process the data in unbalanced problems. The obtained partitions train and test a set of
classifiers using the accuracy metric. An evolutionary process aims to retain an optimized set
of classifiers. Even though our project belongs to clustering, it is essential to consider meth-
ods from other families that have proven the benefits of using supervised and unsupervised
learning together to develop innovative proposals.

2.4.2 Cluster Validity Index using Classifiers
Rodriguez et al. [71] proposed a cluster validity index in 2018 that uses the performance of
the classifiers induced by a partition as a quality criterion, the Cluster Validity Index using
Classifiers (VIC). This internal metric to evaluate a partition implies that the performance of
a supervised classifier has a positive relationship with the capacity of a partition to reflect the
intrinsic relations within a dataset. We refer to this indicator as generalization, a novel crite-
rion that differs from the traditional ones mentioned before. Consequently, this index shall be
maximized when modeled in an optimization problem. An objective function reflecting this
criterion will assess a solution based on its capacity of inducing a good set of classifiers (using
a partition as class labels and the dataset’s attributes to train them). The numerical assessment
is the resulting maximum average Area Under the Curve (AUC) obtained by a classifier in a
five-fold cross-validation schema. The authors suggest avoiding the accuracy metric to test
the classifiers as it is misleading in unbalanced problems. For this thesis project, VIC is the
foundation of the criterion optimized in the ECAC series of algorithms.

2.5 Satellite Image Segmentation
Image Segmentation is a processing technique (that composes one of the main areas of com-
puter vision) to divide an image into multiple regions of interest [72, 24]. This tool has been
applied in various applications, for example, medical analysis, autonomous vehicles, security
cameras, and augmented reality [19, 55]. Methods allowing image segmentation could be
divided as general-purpose or use-case specific. Some of the most prevalent methods among
the image segmentation literature are Single-linkage, Hybrid-linkage, Spatial Clustering, and
Split-and-Merge techniques [34]. In this thesis, we present an evaluation of the performance
of our finest contribution on a satellite image segmentation task.
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2.6 Remarks
Single and multi-objective Evolutionary Clustering algorithms offer innovative search strate-
gies that might emulate the role of an expert to evaluate a partition while avoiding local min-
ima iteratively. However, they still operate by balancing the predefined cluster properties
inherent in the criteria they optimize. Cluster structure assumptions when modeling the ob-
jective function of a clustering algorithm are a limiting factor to be addressed in this proposal
by using the generalization cluster quality criterion defined in Section 2.4.2. The benefits, dis-
advantages, induced bias affecting data interpretation, and difference in performance between
the clustering algorithms in validation and real application tasks will be revisited in further
chapters.



Chapter 3

The ECAC Series

This chapter will elaborate on the definition, implementation, and scalability of our ECAC
series of contributions. Every algorithm belonging to our series of Evolutionary Clustering
Algorithms using Classifiers was designed upon the search strategy of the genetic algorithm,
and they optimize the novel generalization cluster quality criterion. Their main pipeline is
depicted in Fig. 3.1. A set of random partitions represent the initial genetic material that the
algorithm seeks to improve according to the selected clustering criterion through an evolu-
tionary process. In each generation, the genetic operators are in charge of generating new
chromosomes that form upcoming populations. Our algorithms run for a number of iterations
delimited by the user or until the overall best individual achieves a fitness value of 1 (except
for ECAC-S, which also incorporates a convergence exit parameter).

Figure 3.1: Pipeline followed by our series of Evolutionary Clustering Algorithms using Clas-
sifiers.

ECAC [77, 73], F1-ECAC [78, 74], and ECAC-S [76] optimize modified versions of the
cluster quality proposed by Rodriguez et al. [71] presented in Chapter 2.4.2 and escalate it
into clustering algorithms. VIC is the first internal index that introduces an ensemble of clas-
sifiers as cluster quality criterion, and as a consequence, the ECAC series is the first group of
algorithms that optimizes this index within their objective function. In this thesis, we present
three single-objective clustering algorithms that reduce the need for prior knowledge on the
most suitable clustering criterion by entrusting classifiers to compute the separation between

15
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classes of partitions created and combined along an evolutionary process. Our approaches
avoid the clustering bias induced by traditional criteria based on distance functions and do not
assume cluster structures within the data, leading to adaptive clusters with arbitrary shapes.
To summarize, the ECAC series is composed by algorithms that optimize the capability of a
partition to train an ensemble of classifiers by using each chromosome’s genes as class labels
following the search strategy of the genetic algorithm.

3.1 ECAC
The original edition of the Evolutionary Clustering Algorithm using Classifiers (ECAC) [77,
76] was our initial approach to evaluating the possible scope of using the innovative general-
ization quality criterion in a clustering algorithm designed as a single-objective problem. We
wanted to model an objective function capable of detecting the underlying structures within a
dataset; hence, we decided that supervised classifiers were the best option for computing an
individual’s fitness. The computation of ECAC can be found in Algorithm 1. To begin with,
a population � of ⇧ individuals (the population size is maintained in the evolutionary pro-
cess) is randomly generated, and its fitness is computed. Afterward, an evolutionary process
follows these steps in each generation.

1. ⇧ binary tournaments are held. Each time, two random individuals are selected from �
using the uniform distribution, and the one that presents better fitness (higher value, as
we are tackling a maximization problem) is maintained.

2. ⇧ parent pairs are formed in the following order: an individual i1 is taken as parent1,
another individual i2 is taken as parent2, and the pairing is repeated in the opposite
order (i2 is taken as parent1 and i1 is taken as parent2) and so on. It is necessary
to include both orderings for the parent selection to generate ⇧ offspring, considering
that each pair produces one child (the recombination process of parent1 and parent2 is
totally independent to the recombination process of parent2 and parent1).

3. The ⇧ pairs of parents are used for generating ⇧ children C
0
1...C

0
⇧ by recombining and

mutating them. These new offspring contain exchanged information from their parents
and constitute a new population �

0 .

4. The fitness of each chromosome in �
0 is calculated, and the all-time best solution is

stored in b.

3.1.1 Solution Representation
Our ECAC series of methods uses an integer label-based encoding to represent a clustering
solution [37]. An individual is a partition that goes through an evolutionary process. An
individual is related to one genotype, or chromosome, which is a vector of length N , and
each position within it is known as a gene, and it stores the cluster membership information
of the object from dataset E that it represents. Therefore, the qth position in a genotype
represents the cluster assigned to the qth object in E. Fig. 3.2 presents a chromosome for
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Algorithm 1 ECAC algorithm.
1: function ECAC(E,⇧, g, k)

. E: data; ⇧: population size; g: maximum generations; k: number of clusters.

2: �  i1, ..., i⇧ . Generation of initial population � with k clusters.
3: X  data E features.
4: Compute the fitness of each individual in � using OBJ(X, i, k). . See Algorithm 2
5: for u = 1.g do
6: selected  ⇧ individuals are selected from � through a binary tournament.
7: parents  selected elements form ⇧ pairs.
8: C1...C⇧  crossover(parents).
9: C

0
1, ..., C

0
⇧  mutation(C1, ..., C⇧).

10: �
0  C

0
1, ..., C

0
⇧.

11: Compute C 0
1, ..., C

0
⇧’s fitness with OBJ(X, i, k).

12: �  �
0 . . New population.

13: b  all-time best solution.
14: if b’s fitness=1 then
15: break
16: end if
17: end for
18: return b
19: end function

a dataset with 12 objects clustered into three groups. Label-based representations have the
disadvantages of proportionally increasing length as a function of N and causing repetition
in the search space by the k! possible genotypes to represent the same solution. However,
this is an encoding widely found in the literature that offers an interpretable approach that
lets the solutions be analyzed at any point of the clustering process [29, 37, 58, 57]. This
representation was selected hand in hand to fit the classifiers’ requirements of getting as input
a data structure with one target label per object to be trained, making it the optimal alternative
for this application.

Figure 3.2: Genotype representation exemplified with one partition with three groups.

3.1.2 Initial Population
The initialization routine of ECAC consists of a chromosome generator that is in charge of
creating⇧ individuals that constitute the initial generation of solutions. Every time a genotype
is formulated, one cluster is assigned to gene qi (where i 2 {1, .., N}), forming mutually ex-
clusive groups while avoiding cloned solutions. The cluster allocation is performed randomly
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(uniform distribution) in the range qi 2 {1, .., k}, where k is the fixed number of required
groups. Other methods explore the search space within the boundaries delimited by the solu-
tions within the initial population and even omit a mutation operator, as seen in Chapter 2.3.1.
Contrastingly, we attribute the capacity of our algorithms to discern low from high-quality
partitions to their objective function and consider it the main driver of their natural selection
process.

3.1.3 Objective Function
Algorithm 2 shows the steps followed by the objective function of ECAC to compute fitness.
This function receives as input the dataset featuresX and an individual’s chromosome i. Each
classifier in the objective function is trained and tested using X and i as class labels with a
fixed rate of training samples set to 25% of the data (the train-test split is held before every fit-
ness computation, and the same data is used for every classifier). This low training rate favors
short and quick trainings whereas still approximating a partition’s capability to detect the un-
derlying structures in the data, which is why we did not implement VIC purely in ECAC, F1
ECAC, or ECAC-S’ objective function. The metric to evaluate a classifier v, v 2 {1, .., w} is
the average Area Under the Curve (AUC), which is computed according to a Receiver Operat-
ing Characteristic Curve (ROC) that depicts relative predictive trade-offs made by a classifier.
The True Positive Rate (TPR) and False Positive Rate (FPR) are defined as

TPR =
TP

TP + FN

FPR =
FP

FP + TN
, (3.1)

where TP represents True Positives in the resultant confusion matrix (objects correctly
classified as positive), FN represents False Negatives (objects that should have been classi-
fied as positive but were predicted as negative), FP represents False Positives (objects that
should have been classified as negative but were predicted as positive), and TN represents
True Negative observations (objects correctly classified as negative) [67]. Plotting the TPR
versus the FPR using the prediction probability returned by the classifier with multiple thresh-
olds allows us to compute a classifier  v AUC, which is expressed as a fraction of the unit
square in a range from 0 to 1. In problems with k > 2 the process is repeated k times per
classifier using a binarized one-vs-rest training schema, and the average AUC of every class
training is set as AUCv. If a classifier cannot converge, AUCv is assigned as 0. The returned
fitness value of an individual is the average of the mean AUC obtained by all the classifiers
(or AUCv, v 2 {1, .., w}). This unweighted metric is to be maximized, and values close to 1
imply a well-trained set of classifiers.

The classifier selection plays a huge role and will directly influence the objective func-
tion’s performance (categorical and numerical data are supported as long as the classifiers are
capable of processing them) [71]. The classifiers in ECAC’s objective function are:

1. Support Vector Machine (SVMs): this versatile classifier maximizes the margin of a
hyper-plane boundary delimited by support vectors for distinguishing between classes.
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Algorithm 2 ECAC Objective Function Algorithm.
1: function OBJ(X, i)

. X: data features; i: an individual’s chromosome.

2: for v = 1.w do . w is the number of classifiers.
3:  v classifier training with X , using i as class labels.
4: for z = 1.k do
5: fprz  FPR of  v’s predictions with variable thresholds.
6: tprz  TPR of  v’s predictions with variable thresholds.
7: AUCv,z  area under the curve of (fprz, tprz)
8: end for
9: AUCv  mean(AUCv,1...AUCv,k)
10: if  v could not converge then
11: AUCv  0
12: end if
13: end for
14: return mean(AUC1...AUCw)
15: end function

SVMs optimize the model’s structure and parameters simultaneously, returning globally
optimal solutions. This classifier maps the features into a higher-dimensional space
according to a specified kernel [66, 88].

2. k-Nearest Neighbors: this classification method relies on a similarity notion based on
a distance metric and a number of neighbors k used for assigning a class to unseen
data points. The performance of this classifier is enhanced on scenarios as data in-
creases (along with its computational cost). k-Nearest Neighbors executes queries with-
out building a model using non-linear decision boundaries and offers a straightforward
parameter setup [26].

3. Logistic Regression: even though this classifier might impose a misnomer, the target
values in the data are categorical. The class probability estimate of a Logistic Regres-
sion is computed as a function of f(x) (i.e., the distance to the decision boundary).
This curve is called sigmoid due to its ‘S’ shape and is in charge of compressing the
probabilities into a range between zero and one [50, 56, 67].

3.1.4 Genetic Operators
Each of our ECAC methods uses two operators to conduct the genetic process that creates
new offspring each iteration, which runs a reproductive strategy ⇧ times.

Standard One-point Crossover

This operator proceeds if a random crossover probability (uniform distribution) pc complies
with a crossover rate of 0.95, implying a 95% probability of two parents being recombined.
If the operator does not proceed, parent1 is returned unmodified immediately. When the
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crossover is performed, the genetic material of two parents is interchanged delimited by a
random crossover point in the range cp 2 {1, .., N} (uniform distribution to be able to cut
the chromosomes of the parents at any point). Afterward, a slicing operation will induce the
formation of a child created from slicing parent1 from gene q1 to gene qcp and parent2 from
gene qcp+1 to gene qN , similar to the operator used by Handl and Knowles [32]. Fig. 3.3
depicts the procedure followed by the Standard One-point Crossover. This example uses the
genotype introduced in Fig. 3.2 as parent1 and an additional one as parent2. The result is
an offspring with the information of both parents delimited by the crossover point cp = 8.
As seen in Chapter 2.3.2, this operator has been applied with variations in state-of-the-art
Evolutionary Clustering Algorithms. We ensured that this operator keeps at least one member
per group after its execution to avoid invalid solutions and the context insensitivity issues
caused by the label-based solution representation detailed in Chapter 3.1.1 as mentioned by
Hruschka [37] and Falkenauer [17].

Figure 3.3: Crossover operator creating new offspring from the genetic material of two par-
ents.

One-point Mutation

In this operator, a random number pm (uniform distribution) is computed to determine if the
mutation of a child produced by the crossover operator will proceed or not. The mutation
rate is established at 0.98, meaning that there is a 98% probability of mutating an individual’s
genotype during the reproductive process, similar to the �-MOCK algorithm described in
Chapter 2.3.2. A mutation point mp 2 {1, .., N} is produced randomly to indicate the gene
from a chromosome that will be modified. The value of gene gmp is then updated to the cluster
assigned to gene gmp+1. Fig. 3.4 depicts the mutation procedure in the resultant offspring from
Fig. 3.3. The mutation pointmp was randomly set as 4; thus, q4 changed its cluster allocation
from 1 to 2 (gene q4 gets the cluster assignment of q5).

3.2 F1-ECAC
The Evolutionary Clustering Algorithm using Classifiers and the F1 score (F1-ECAC) [78, 74]
is the successor to ECAC and offers improved areas to simplify the operating pipeline while
increasing its performance. This section will outline every modification done to ECAC leading
to its second version, F1-ECAC.
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Figure 3.4: Mutation operation performed to the fourth gene of a chromosome, where it is
updated using the information of the fifth gene.

3.2.1 Objective Function
The fitness computation of F1-ECAC also uses an ensemble of classifiers to optimize the gen-
eralization cluster quality criterion instead of using a typical distance metric. The unweighted
average of the predictive performance induced to three classifiers by a clustering solution is
the fitness value returned by the objective function. It accounts for our multi-expert approach
to evaluate a partition in a single-objective schema (for efficiency purposes). Each classifier
uses a set of featuresX and an individual i’s chromosome as labels for training and testing, as-
sessing quality according to a partition’s capability to induce multiple well-trained classifiers
by using its representative genotype as target labels; as done by ECAC. The design changes
made to ECAC that give rise to F1-ECAC are summarized in Table 3.1 and will be described
in this section.

Table 3.1: Improvements performed to ECAC in the design of F1-ECAC.
Modification ECAC F1-ECAC

Classifiers
Support Vector Machine
k-Nearest Neighbors
Logistic Regression

Support Vector Machine
k-Nearest Neighbors

Decision Tree
Training
schema one-vs-rest multi-class

Evaluation
metric AUC F1 score

Label
binarization X -

Mutation
operator 1-point Proportional: 5%

The first modification relies upon selecting the classifiers within the objective function.
These classifiers are:

1. Support Vector Machine as described in Chapter 3.1.3.

2. k-Nearest Neighbors as described in Chapter 3.1.3.

3. Decision Tree: this intelligible predictive model determines the class of an unseen object
starting at the root node of a tree modeled after the data and descending through the
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interior nodes based on the feature vector until reaching a terminal node. At this point,
a decision is made according to some quality criterion [56, 67].

Decision Trees were selected as the third classification algorithm in F1-ECAC’s objec-
tive function instead of Logistic Regression models due to the latter’s computational cost,
which is amplified by the one-vs-rest approach for training the models (requiring every classi-
fier to be trained k times). This way, we end up with a set of classifiers from different families
(reducing classifier bias induced by predictive models as suggested by Rodriguez et al. [71])
that require only one training per fitness computation by taking advantage of multi-class train-
ing and avoiding label binarization prior to the training phase.

Another differentiating point of F1-ECAC is the metric used to evaluate each classifier.
The performance metric to test them is their macro F1 score (computing the unweighted mean
of the F1 score per class obtained by the classifier for multi-class problems with k > 2), which
is the harmonic mean of precision and recall and returns a numerical value between 0 and 1.
The F1 score is computed as

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2 ⇤ precision ⇤ recall
precision+ recall

, (3.2)

where precision and recall (or sensitivity) are used to consider the influence of TP,
FN, and FP examples [83]. The F1 score has the advantage of a more efficient computation
because it does not require the generation of prediction probabilities as done by the AUC
metric. This design decision has complexity benefits and still exploits the confusion matrices
resultant from the classifiers’ predictions. Its inclusion also inspired the name of our second
contribution in the ECAC series of publications, F1-ECAC. Considering these modifications,
the objective function of F1-ECAC computes the fitness of an individual as demonstrated in
Algorithm 3, which is exemplified in Fig. 3.5 using the offspring created in the genetic proce-
dure from Fig 3.4.

3.2.2 5% Proportional Mutation
As performed by ECAC and as mentioned in Chapter 3.1.4, this operator is executed if a
mutation probability threshold pm of 98% is met by a randomly generated number (uniform
distribution). If the mutation proceeds, a genotype is taken as input, and 5% of its genes are
modified in contrast to the One-point Mutation in ECAC, which only modified one of the
genes regardless of the dataset size. The extended execution range of this operator has the
purpose of keeping important effects in the search space regardless of the value of N . The
mutation points are selected randomly (uniform distribution) in the range mpa 2 {1, .., N},
where a 2 {1, .., N ⇤0.05}. The cluster assignment of a gene qmp is updated according to gene
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Algorithm 3 F1-ECAC Objective Function Algorithm.
1: function OBJ(X, i)

. X: data E features; i: an individual’s genotype.

2: Xtrain, Xtest, ytrain, ytest  train-test split of X and i.
3: for v = 1.w do . w is the followed in the fitness computation number of classifiers.
4:  v classifier training with Xtrain, using itrain as target labels.
5: Fv  F1 score (macro-average) of  v’s predictions using Xtest against itest.
6: if  v could not converge then
7: Fv  0
8: end if
9: end for

10: fitness  mean(F1, ..., Fw)
11: return fitness
12: end function

Figure 3.5: Pipeline followed by the objective function of F1-ECAC.

following the mutation point qmp+1, in a similar procedure to the operator used by Murthy and
Chowdhury [59]. For instance, if the first mutation point mp1 = 3, gene q3 is allocated in
the cluster where gene q4 is grouped. As done by ECAC’s version, this operator guarantees to
keep at least one member per cluster after the mutation procedure. This is the last modification
to ECAC that converts it into F1-ECAC, and all of the phases and details of the evolutionary
process that were not mentioned in this section were kept unmodified.

3.3 Improvements Leading from F1-ECAC to ECAC-S
The third and final version of our ECAC family of contributions is the Simultaneous Evolu-
tionary Clustering Algorithm using Classifiers or ECAC-S, for short (following the naming
convention of our previous algorithms and highlighting the benefits of its parallel implemen-
tation) [76]. ECAC-S preserves the design advantages of F1-ECAC presented in Chapter 3.2,
but we tackled some aspects that represented an opportunity for an efficiency boost in its
implementation. In contrast to F1-ECAC, ECAC-S was designed by testing multiple sets of
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modifications instead of only one.
In forthcoming sections, we will go into detail about each improvement done to F1-

ECAC focused on retaining solution quality while reducing runtime that brought us to the
definitive version of the ECAC series, ECAC-S. The modifications were tested sequentially in
varying aspects of the algorithm, as outlined in Fig. 3.6.

Figure 3.6: Improvements to F1-ECAC tested sequentially in the design process of ECAC-S.

3.3.1 Data Manipulation
The first set of modifications to F1-ECAC involves mandatory changes in data manipulation
from the insights raised after its development, as seen in Table 3.2. The central aspect of
this series of proposals is the parallel computation of three processes to take advantage of the
available hardware:

1. Initial population generation.

2. Fitness computing of a population.

3. Reproductive process including the crossover and mutation operators.

We introduced a heuristic to sort the dataset in the initialization phase of F1-ECAC
according to the groups suggested by the Single-linkage clustering algorithm described in
Chapter 2.1.2 to avoid the original dataset sorting affecting the solutions through the mutation
operator (which updates cluster assignment from a gene qmp according to gene qmp+1 as men-
tioned in Chapter 3.2.2). This way, we keep a consistent exploration of the search space while
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assisting the mutation operator and avoiding bias towards the source sorting of the data. An-
other implementation modification is related to changing the main pipeline of individuals and
fitness computation to lists instead of dictionaries. Moreover, we ensured to keep at least one
object per class in the training fold resulting from the train test split in the objective function
to guarantee that the classifiers are always trained with k classes. All of the components of
F1-ECAC that were not mentioned in this section were left intact (i.e., the rest of the aspects
of the algorithm work as detailed in Chapter 3.2).

Table 3.2: Data manipulation improvements proposed to F1-ECAC.
Process F1-ECAC Proposed Modification

Computing of fitness,
reproduction, and
initial population

Serial Parallel

Dataset sorting Source order Single-linkage
Main data structure
of the implementation Dictionaries Lists

3.3.2 Classifier Combinations
Previous studies show that one classifier is insufficient to give a confident approximation of a
partition’s generalization capabilities [78]. For that reason, we aim to find the best pair of clas-
sifiers for the objective function (instead of using three, as F1-ECAC) to reduce computational
runtime but still retain our algorithm’s capability to return meaningful solutions. The six clas-
sifier combinations to be tested are presented in Table 3.3. The previous algorithms from the
ECAC series compute the average predictive performance of the classifiers as fitness value to
equally weigh their contribution as would be done by a group of experts. Nevertheless, we
included the maximum F1 score returned by the classifiers in our analysis to determine if this
metric positively impacted fitness computation as done by VIC (described in Chapter 2.4.2).
This approach implies that a positive opinion of one expert is enough to consider a solution as
good.

Table 3.3: Classifier combinations tested for the objective function of ECAC-S.
Classifiers Metric 1 Metric 2

Support Vector Machine/
Decision Tree Mean F1 score Max F1 score

k-Nearest Neighbors/
Decision Tree Mean F1 score Max F1 score

k-Nearest Neighbors/
Support Vector Machine Mean F1 score Max F1 score
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3.3.3 Genetic Operator Combinations
We propose three genetic operators and seek to observe the most beneficial combination for
performing the recombination and mutation procedures. The operator combinations to be
evaluated are reported in Table 3.4. The three previously unseen genetic operators are:

1. Two-point Crossover: this is an operator that requires the computation of a probability
to determine if two parents will be recombined, as done by the One-point Crossover
presented in Chapter 3.1.4. There is a 95% probability of proceeding with the recom-
bination in this case. If the operator does not proceed, parent1 is also returned. In
case the crossover is held, this operator slices and merges two parents delimited by two
random crossover points cp1, cp2 2 {1, .., N}. An offspring is a result of slicing genes
1 to qcp1�1 from parent1 with genes qcp1 to qcp2�1 from parent2 with genes qcp2 to qN
from parent1.

2. Individual Gene Probability Crossover: this operator is initialized by using parent1
as the base genotype. A random (uniform distribution) discrete probability pc between 0
and 1 is computed for each gene qcp to determine individually if it will acquire the cluster
membership of the gene in the same position qcp, cp 2 {1, .., N} but from the opposite
parent. If pc = 0, the gene remains unmodified, otherwise, the cluster assignment of
gene gcp is interchanged with gene gcp from parent2.

3. Individual Gene Probability Mutation: following the same methodology as the Indi-
vidual Gene Crossover Probability, instead of mutating 5% of genes by selecting them
randomly, a mutation probability pm is computed for each gene gmp,mp 2 {1, .., N},
at 5% a mutation rate. This operator and the Individual Gene Probability Crossover are
similar to those implemented by Garza-Fabre et al. [23] discussed in Chapter 2.3.2.

Table 3.4: Operator combinations tested in the design process of ECAC-S.
Crossover Operator Mutation Operator

2-point 5% Proportional Mutation
Individual Gene Probability 5% Proportional Mutation

1-point Individual Gene Probability
2-point Individual Gene Probability

Individual Gene Probability Individual Gene Probability

3.3.4 Hyper-parameter Adjustment
Two previously-unseen values of 50% and 25% are proposed for the test size argument to
determine the percentage of random objects assigned to the testing fold in each fitness com-
putation (the 75% test size value used by F1-ECAC is also considered to find the optimal
one). The amount of data that is located for testing the classifiers in the train-test split will
have a positive correlation with runtime; increasing it will induce a good set of classifiers in
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exchange for higher computation time, whereas decreasing it might result in less CPU time
but cause classifiers to have lower performance (which in this application is not considered an
issue because the classifier might still be able to offer a confident fitness evaluation and return
meaningful partitions without compromising the quality of the solutions).

3.3.5 Convergence Detection
An early-stopping parameter was implemented to stop the execution of ECAC-S if the best
individual is not updated after an established number of iterations. This modification breaks
the evolutionary process once convergence has been reached, which is reflected in the absence
of improvement of the highest-performing partition. A positive outcome of including an early-
stopping parameter is the direct reduction of 10% or 20% of the generations (to be tested along
with 100%, or no early-stopping, as done in F1-ECAC). However, limiting the search space so
abruptly could reduce the quality of the solutions, despite diminishing runtime significantly.

To summarize, the set of proposed changes to be tested starts with F1-ECAC and ends
with ECAC-S, our ultimate algorithm in the ECAC series. We seek to find an adequate balance
between performance and runtime with the present modifications. The sequential evaluation
implies retaining the properties of an outperforming component/parameter combination with
a particular focus on reducing computational runtime. The definitive version of ECAC-S will
be detailed now, and the statistical analysis leading to each design decision on the properties
mentioned before can be found in Chapter 5.3.

3.4 ECAC-S
In this section, we present the latest contribution of the current thesis project, the Simulta-
neous Evolutionary Clustering Algorithm using Classifiers, ECAC-S1. This algorithm is the
result of multiple versions and iterations as discussed in Chapter 3.3 on its components and
parameters, leading to the highest solution quality with a more efficient implementation and
design, compared to F1-ECAC. Algorithm 4 outlines the computation of ECAC-S, the defini-
tive version of the ECAC series, which requires as input a dataset E with either numerical
or categorical features, the required number of clusters k, the population size ⇧ (maintained
along the clustering process), and the number of maximum iterations g.

3.4.1 Evolutionary Process
The clustering pipeline of ECAC-S follows a genetic approach as search strategy. It begins by
sorting E according to a partition suggested by the Single-linkage algorithm. This way, we
provide the mutation operator with a heuristic to continue its procedure of assigning cluster
membership conditioned by the position of an object represented by a gene q1, .., qN within E
with a more informed and guided search path, avoiding the source sorting of the data to affect
the solutions. The initial population of ECAC-S is constituted by ⇧ random individuals, each
representing a partition, in a parallel computing schema (creating one individual per core)
using the label-based representation (described in Chapter 3.1.1) to assign each object into a

1The implementation of ECAC-S is available in Ref. [76].
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Algorithm 4 ECAC-S algorithm.
1: function ECAC-S(E,⇧, g, k)

. E: data; ⇧: population size; g: max. gens.; k: number of clusters.

2: E
0  sorted E according to Single-linkage clustering.

3: X  data E 0 features.
4: �  i1, ..., i⇧ . Initial population with k clusters.
5: f�  fitness computing with OBJ(X,�). . See Algorithm 5.
6: for u = 1.g do
7: selected  ⇧ individuals are selected from �.
8: parentPairs  selected elements form ⇧ pairs.
9: C1...C⇧  2-point Crossover operator applied to parentPairs.
10: C

0
1, ..., C

0
⇧  5% Mutation applied to C1, ..., C⇧.

11: �
0  C

0
1, ..., C

0
⇧.

12: f�0  fitness computing with OBJ(X,�
0).

13: �  �
0 . . New population handover.

14: b  all-time best solution.
15: if b’s fitness=1 or no change for g ⇤ 0.20 iterations then
16: break
17: end if
18: end for
19: b

0  reordered b according to the original E’s sorting.
20: return b

0

21: end function

cluster C1, .., Ck and ensuring presence of all clusters. An evolutionary process creates new
solutions that increase in quality over time. The 2-point Crossover and 5%Mutation Operators
(see Chapters 3.3.3 and 3.2.2 for more details) are in charge of recombining and modifying in-
dividuals to create enhanced offspring in each generation using parallel computing allocating
one parent pair per core. The clustering process is terminated if the early-stopping condition
detects convergence (i.e., the best solution is not updated after 20% of the maximum gener-
ations g), a global maximum of 1 is found, or the number of iterations has reached g. The
best solution b is defined as the partition that maximizes the generalization criterion being
optimized (b is sorted back to the original order from E before it is returned at the end of the
process).

3.4.2 Objective Function
The objective function of ECAC-S is computed as indicated in Algorithm 5 for computing
the fitness of a population using a parallel framework (allocating one individual per core).
This is done by performing the following process per individual. A partition’s representative
genotype is used as class labels to train and test two classifiers along with data E’s features
X after splitting the data into training and testing folds (random training fold proportion of
25%). The ensemble in the objective function is constituted by the Support Vector Machine
and Decision Tree classifiers with the parameters mentioned in Chapter 4.2.2. The fitness
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Algorithm 5 ECAC-S Objective Function algorithm.
1: function OBJ(X,�)

. X: data features; �: a population of individuals.

2: for j = 1.⇧ do
3: Xtrain, Xtest, ytrain, ytest  train-test split of X and individual ij .
4: SVM training with Xtrain and ytrain as target labels.
5: DTC training with Xtrain and ytrain as target labels.
6: predSVM , predDTC  predictions with Xtest.
7: fSVM  F1 score of ytest and predSVM .
8: fDTC  F1 score of ytest and predDTC .
9: fitnessj  mean(fj,SVM , fj,DTC).
10: end for
11: f�  fitness1...f itness⇧.
12: return f�
13: end function

value returned to evaluate a partition is defined as both classifiers’ mean macro-average F1

score.

3.4.3 Remarks
The hyper-parameters for delimiting the number of members per population and maximum
generations ⇧ and g set as 200 return high-quality solutions in problems of similar size to
the multi-dimensional general-purpose and cross-domain data used for validation of our de-
sign (as seen in Chapter 5.3). Nevertheless, if ECAC-S is being used in a data mining task
requiring a more extensive search space, we suggest quadrupling its size by changing both
hyper-parameters to 400. To summarize, ECAC-S is an Evolutionary Clustering algorithm
that uses the benefits of parallel computing to propose partitions that optimize an ensemble of
classifiers as an approximation of its generalization capabilities, which is the cluster quality
criterion to be maximized. At this point, we conclude to elaborate on the definition, design
process, implementation, and scalability enhancements of our ECAC series of contributions.





Chapter 4

Experimental Frameworks

We worked with three separate experimental frameworks, each one developed for the article
related to ECAC [77], F1-ECAC [78], and ECAC-S; they aim to validate the performance of
an ECAC method in multiple scenarios, are self-contained, and should not be analyzed in an
interspersed manner, as important variables change between them.

4.1 ECAC Experimental Setup
This section outlines the inputs of ECAC used for experimentation, such as the datasets and
hyper-parameters. The firstborn in the ECAC family was tested against the authors’ imple-
mentation of the HG-means algorithm [28] described in Chapter 2.2.1. We chose to test ECAC
against a remarkable algorithm belonging to our algorithm’s family (single-objective Evolu-
tionary Clustering Algorithms) as a proof of concept to realize how competitive our idea was
against one of the most representative methods of its kind. The implementation of ECAC was
programmed using the Scikit-learn [65] and Pandas [54, 68] libraries in the Python program-
ming language [87] for coding the supervised classification models and data manipulation,
respectively. The experiments were held on a dual-core Intel Core i5 2.7 GHz processor with
8 GB of RAM. The source of ECAC is available at Ref. [73].

4.1.1 Datasets
The ten datasets selected from the UCI Machine Learning Repository [10] and their structural
details can be found in Table 4.1. Datasets of reduced dimensions are included in this frame-
work, but as shown in further sections, the experimental phases introduce larger datasets and
more complex experimentation as the efficiency of our algorithms is enhanced. The features
of the datasets were standardized to enhance convergence and avoid context insensitivity is-
sues.

4.1.2 Hyper-parameter Calibration
The number of clusters k that we required the algorithms to include in their solutions was set
as specified in the source from where the datasets were retrieved [10]. The population size ⇧

31
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Table 4.1: Dataset information regarding the experimental framework of ECAC.
Dataset Classes Features Objects

breast-tissue 6 9 106
dermatology 6 34 366
ecoli 8 7 336
forest 4 27 523
glass 6 9 214
iris 3 4 150
leaf 36 14 340
liver 16 5 345
transfusion 2 4 748
wine 3 13 178

was set to 20 individuals, and the g argument, which limits the number of generations held in
the evolutionary process, was established at 2,000 for both algorithms.

The classifiers within the objective function of ECAC have the following configuration:

• Support Vector Machine: linear kernel, L2 regularization parameter equal to 1 for 5,000
maximum iterations.

• k-Nearest Neighbors: two nearest neighbors with uniform weights and Euclidean dis-
tance metric.

• Logistic Regression: L2 regularization parameter equal to 1 for 100 maximum itera-
tions.

An equal input setting in data and hyper-parameters suggests a fair benchmark with
equal conditions. Now that the hyper-parameters used to obtain solutions have been outlined,
we will proceed to explain the pipeline followed to evaluate the performance of ECAC against
HG-means.

4.1.3 Computational Experiments
We tested the quality of solutions created by ECAC and HG-means, considering their quality
and the time required to produce them. Every time an algorithm is run to obtain a partition,
we store the fitness of the returned partition and runtime. Subsequently, the Adjusted RAND
Index (ARI) [4, 84] of an algorithm’s partition is computed against the ground truth labels
retrieved from the same source as the datasets [10]. The ARI is considered an objective
external measure of cluster quality to compare a solution returned by an algorithm against a
ground truth partition and is mainly used in controlled experimental environments [32]. We
are aware that most real applications do not count on reference partitions, but for these sets of
tests, they are only used to validate the performance of our methods and are not involved in
the clustering process. ECAC and HG-means were run ten independent times per dataset to
avoid their stochastic nature affecting the analysis.
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4.2 F1-ECAC Experimental Setup
In this section, we describe the experimental framework followed in the development of F1-
ECAC. In this case, we decided to test our proposal against k-means, Single-linkage Ag-
glomerative Clustering, DBSCAN, HG-means, MOCLE, �-MOCK (previously described in
Chapter 2) and ECAC, to identify our algorithm’s position within the literature regarding so-
lution quality considering algorithms with complex designs and from different families. The
classifiers within the objective function of F1-ECAC and the k-means and Single-linkage
Agglomerative Clustering methods were coded with the Scikit-learn and Pandas libraries in
the Python programming language [65, 54, 68, 87]. The experiments were performed in a
dual-core Intel Core i5 2.7 GHz processor with 8 GB of RAM.

Table 4.2: Datasets used in the experimental framework of F1-ECAC.
Dataset Classes Features Objects

aggregation 7 2 788
breast-cancer-wisconsin 2 30 569
breast-tissue 6 9 106
dermatology 6 34 366
ecoli 8 7 336
forest 4 27 523
glass 6 9 214
iris 3 4 150
jain 2 2 373
leaf 36 14 340
liver 16 5 345
parkinsons 2 22 195
pathbased 3 2 300
r15 15 2 600
seeds 3 7 210
segment 7 19 210
spiral 3 2 312
transfusion 2 4 748
wine 3 13 178
zoo 7 16 101

4.2.1 Datasets
We used 20 numerical datasets from the UCI Machine Learning Repository [10] and the Clus-
tering Benchmark repository of Fränti and Sieranoja [20, 25, 5, 89, 41]. Table 4.2 displays
the information of every dataset used for testing F1-ECAC. Fig. 4.1 depicts the ground truth
groups of the 2-D synthetic data used for testing our second algorithm1. Using artificially-
generated data helps understand the biases and structures favored by clustering algorithms,

1Fig. 4.1 and the following figures were retrieved using the Seaborn library [92] in the Python programming
language [87].
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Figure 4.1: Visualizations of the synthetic data included in the experimental setup of F1-
ECAC.

raising meaningful behavioral insights about them. However, we understand that its process-
ing will be inherently different from clustering data from real studies; thus, we decided to limit
the proportion of synthetic datasets to 25%. Every dataset was standardized before performing
clustering with the algorithms.

4.2.2 Hyper-parameter Calibration
In these subsections, we will specify the hyper-parameters used to set up each algorithm in
the validation benchmark of F1-ECAC.

• k-means: 10 random initializations for 250 maximum iterations.

• Single-linkage Agglomerative Clustering: Euclidean distance metric to compute dis-
similarity.

• DBSCAN: seven minimum samples per group and ✏ set to 0.30.

• HG-means: population size ⇧ set to 20 for 2,000 generations g. We used the author’s
implementation available in Ref. [28].

• MOCLE: as the implementation of this algorithm was not publicly available up to the
development of this thesis project, we implemented it from scratch. We used NSGA-
II as the search engine (based on the code from Ref. [47]). Our implementation of
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MOCLE creates variable population sizes each time, and was set to 50 maximum
generations. We introduced a label-based representation for interpretability, and the
initial population is constituted by clusterings created using k-means, Agglomerative
Clustering with Single and Average-linkage affinities (all of them using the Scikit-
learn library [65]), and the Shared Nearest Neighbors method [11] with varied hyper-
parameters using the authors’ implementation from Ref. [12]. For the connectedness
objective function aforementioned in Chapter 2.3.1, we used 5% of N as L. The
crossover operation was performed by the Meta-clustering Algorithm by Strehl and
Ghosh [85] using the implementation by Kultzak from Ref. [49], avoiding cloned solu-
tions. Our implementation of MOCLE is available at Ref. [75].

• �-MOCK: we used the C++ implementation of the authors from Ref. [22] with 100
individuals for 100 maximum generations. We used the �-locus representation and set
a maximum k of 50.

• F1-ECAC: ⇧ and g arguments set to 200; thus, 120,000 classifier trainings are held
along the evolutionary process. The parameters for the classifier ensemble within the
algorithm’s objective function are:

– Support Vector Machine: linear kernel with L2 regularization value of 1 for un-
limited iterations.

– k-Nearest Neighbors: five nearest neighbors with an inverse weight according to
their Euclidean distance.

– Decision Tree: unlimited maximum depth using the entropy criterion for building
the tree.

The Python implementation of F1-ECAC is available in Ref. [74].

• ECAC: we include F1-ECAC’s predecessor as it is crucial to evaluate the runtime and
performance differences between them. ⇧ of 20 and g set to 2,000. The parameters
of the classifiers inside ECAC’s objective function were set up as recommended in its
article [77] (as detailed in Chapter 4.1.2). We used ECAC’s published implementation
available at Ref. [73].

4.2.3 Computational Experiments
Each algorithm was run ten independent times per dataset, and the k values were set as spec-
ified in the source from which we retrieved each algorithm (for the algorithms that require
this argument as input). Again, the ground truth class labels from the datasets are used as a
reference for evaluating the solutions returned by the algorithms against them using the ARI
metric [4, 84] and are not influential in the clustering process. An equal-condition testing envi-
ronment across all datasets aims to propel a fair comparison between the methods. F1-ECAC
was tested against the seven mentioned contestant methods with varying indicators to be val-
idated using hypothesis testing between observations. For testing comparisons between two
treatments, we used the non-parametric Wilcoxon test [8, 69], and for benchmarks over two
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treatments, we used the non-parametric 1xN Friedman test [21] with the Holm post-hoc [8],
both with a significance level of ↵ = 0.052.

We selected the solution with the highest ARI when dealing with multi-objective algo-
rithms that return a Pareto front with multiple non-dominated solutions; thus we keep one
solution per run across every contestant method. Another remark is that we wanted to test
our decision to include three classifiers to compute fitness in an ensemble schema as an ad-
ditional experiment. Hence we ran F1-ECAC using each classifier separately to evaluate if
one classifier could be enough to create meaningful partitions. Therefore, the objective func-
tion evaluates a partition by training and testing only one classifier in this experiment, which
reduces computational runtime but might compromise solution quality.

4.3 ECAC-S Experimental Setup

As mentioned in Chapter 3.3, there are multiple areas of F1-ECAC that have to be tested to
discover the most suitable combination of components and parameters that will constitute the
definitive version of ECAC-S. Hence, we will compare the effects of each modification done
to F1-ECAC3 as detailed in Chapters 3.3.1 through 3.3.5. The implementation of each version
was programmed with Pandas [54, 68] in the Python programming language [87] (the parallel
operations were implemented using its native Multi-processing library to make use of every
core in the computer), and the classifiers in the objective function of each one of them were
coded using the Scikit-learn [65] library. These experiments were performed in an eight-core
Apple M1 3.2 GHz processor with 8 GB of unified memory.

4.3.1 Datasets

The 30 datasets selected for evaluating each intermediate version between F1-ECAC and
ECAC-S were obtained from the UCI Machine Learning Repository [10] and are listed in
Table 4.3; Fig. 4.2 depicts a histogram with the number of classes per dataset. The features
across all datasets were standardized, and those containing categorical features were encoded
into numerical ones.

4.3.2 Hyper-parameter Calibration

The arguments⇧ and g were set at 200 across every version leading from F1-ECAC to ECAC-
S to evaluate their differences under equality conditions. The parameters for the classifiers
were set as the published version of F1-ECAC (see Chapter 4.2.2).

2The number of datasets is at least two times the number of treatments; thus, this assumption for the Friedman
test holds for the experiments.

3For comparing F1-ECAC against its modified versions leading to ECAC-S, we used the F1-ECAC imple-
mentation used for publication available at Ref. [74].
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Table 4.3: Datasets used in the experimental framework of ECAC-S.
Dataset Classes Features Objects

absenteeism-at-work 19 19 740
arrhythmia 13 279 452
breast-cancer-wisconsin 2 30 569
breast-tissue 6 9 106
car-evaluation 4 6 1728
dermatology 6 34 366
echocardiogram 2 10 75
ecoli 8 7 336
forest 4 27 523
forest-fires 12 11 517
german-credit 2 20 1000
glass 6 9 214
hepatitis 2 19 155
image-segmentation 7 19 2310
ionosphere 2 34 351
iris 3 4 150
leaf 30 14 340
liver 16 5 345
parkinsons 2 22 195
seeds 3 7 210
segment 7 19 210
sonar 2 60 208
soybean-large 19 35 307
student-performance 17 32 649
tic-tac-toe 2 9 958
transfusion 2 4 748
user-knowledge-modeling 4 5 403
wine 3 13 178
yeast 10 8 1484
zoo 7 16 101

4.3.3 Computational Experiments

Every dataset was run ten independent times in each modified version of the algorithm. The k
values were set as specified in the original dataset information (in cases where the theoretical
value differed from the number of clusters found in the reference labels, the real k was used
for a fair comparison). The solutions by each algorithm version were contrasted against the
reference labels of each dataset (retrieved from the UCI Machine Learning Repository [10]).
Such partitions are only used for evaluating algorithm performance in a comparison held after
the clustering process of an algorithm has ended. Just as held in previous frameworks, the
metric to juxtapose a clustering solution and its ground truth is the ARI [4, 84] between them
to assess their similarity degree [4, 32]. This way, we estimate the capability of a clustering
algorithm to partition data as close as a human expert would.
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Figure 4.2: Histogram of the number of classes per dataset used in the design process of
ECAC-S.

When comparing the mean ARI or time per dataset returned by two algorithms, we
used the non-parametric Wilcoxon test [8, 69]. In cases over two treatments, we used the
non-parametric NxN Friedman test and the Nemenyi post-hoc [21, 61] with an ↵ of 0.05 to
identify statistically significant differences. Hypothesis testing was implemented using the
Autorank [36] and Orange [7] Python libraries. In the statistical analysis, an average rank
close to one implies better solutions (partitions from an algorithm presenting higher average
ARI values or lower computational runtime than the rest).

4.3.4 Image Segmentation Application
As an additional analysis, we present a real application of ECAC-S in an image segmentation
task. The images in this benchmark were obtained from Google Maps [27]. We selected ten
locations and captured source images of 180x180 pixels as presented in Fig. 4.3. We created
a ground truth partition for each image by arbitrarily segmenting them into different classes.
We propose a number of clusters according to the natural distribution of each capture. This
way, we generated segmentation masks that reflect the color relations within the pixels in a
fashion we would like a clustering algorithm to be capable of doing. We resized each image
and reference masks to dimensions of 64x64 pixels and used this resolution for clustering. The
features X , in this case, were the standardized Red, Green, and Blue pixel values; thus, we
are working with ten datasets with 4,096 observations and three attributes each. The ground
truth labels were generated by parsing each pixel in the reference masks and assigning it a
numerical cluster label.

We compared ECAC-S against leading algorithms that have been successfully applied
to image segmentation [82, 53] using the following hyper-parameters:
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Figure 4.3: Source satellite captures used in the image segmentation benchmark.
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• Birch: threshold of 0.50 and branching factor set to 50 [96].

• DBSCAN: 7 minimum samples per cluster and ✏ set to 0.30 [13, 81].

• k-means: 10 random initializations for 250 maximum iterations [52].

• Spectral-clustering: eigenvector quantity set equal to k, with discretizing technique
for assigning labels in the embedding space [62].

• ECAC-S: values of 400 set to ⇧ and g (population size and maximum generations,
respectively) with the implementation used for publishing the article (Ref. [76]).

All competing clustering algorithms were coded with the Scikit-learn library [65] in the
Python programming language [87]. Every algorithm processed each image ten independent
times. Once again, the metric used to assess the similarity between algorithm-generated so-
lutions and its ground truth mas was the ARI due to its applicability in comparing partitions
with group labels that have no semantic relation [4, 80]. The NxN Friedman test [21] and
the Nemenyi post-hoc [61] were used for the statistical analysis using the Autorank [36] and
Orange[7] Python libraries, considering an ↵ = 0.05 (an algorithm with an average rank close
to 1 implies solutions of overall higher-quality). The image segmentation benchmark was
performed in an eight-core Apple M1 3.2 GHz processor with 8 GB of unified memory.

These have been the experimental frameworks related to the development and applica-
tion of ECAC, F1-ECAC, and ECAC-S; further chapters will be focused on the insightful
discussion of the results obtained from them.



Chapter 5

Results and Discussion

In the following sections we will address the experimental results, according to the previously-
defined experimental frameworks. Similar to the design of the benchmarks, the analysis of
the results gets more profound as the evolution of the ECAC series requires it. The following
sections evidence the capabilities and limitations of the clustering criterion and search schema
in ECAC, F1-ECAC, and ECAC-S.

5.1 ECAC Experimental Results

The outputs of the tests detailed in Chapter 4.1 are presented in the following sections for
evaluating ECAC against a representative method of its direct family, HG-means.

Table 5.1: Mean runtime per dataset of HG-means and ECAC, and average fitness of the
solutions returned by our first algorithm. Values in bold represent the lowest average compu-
tational runtime and the highest average ARI per dataset.
Dataset HG-means (s) ECAC (s) HG-means (ARI) ECAC (ARI)

breast-tissue 0.0232 2,250.97 0.0999 0.3765
dermatology 0.8802 4,265.44 -0.0072 0.0186
ecoli 0.1618 3,100.36 0.4262 0.2165
forest 0.2028 7,141.61 0.4987 0.0044
glass 0.0762 2,451.73 0.2598 0.2375
iris 0.0161 1,201.93 0.7302 0.7793
leaf 1.3717 14,254.7 0.2950 0.3477
liver 0.3784 6,018.51 0.0305 0.06
transfusion 0.0280 1,422.60 0.0795 0.0339
wine 0.0168 1,376.43 0.3711 0.7785

41
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5.1.1 Clustering Performance Analysis
The mean runtime and ARI per dataset obtained by HG-means and ECAC are presented in
Table 5.1. HG-means was more efficient than ECAC due to its exceptionally fast implemen-
tation, and we noted this aspect for improvement in the posterior releases of the ECAC series
of publications. Still, we believe that outperforming a method in solution quality (ARI) is pri-
oritized and justifies an increase in runtime. Furthermore, the average fitness of the solutions
created by ECAC with values close to 1 might imply an overfitting issue in the classifiers.
Nevertheless, the fitness value is only an approximate measurement of the generalization ca-
pabilities of a partition computed by the classifiers for finding the separation between classes.
The boundary of this project is set up to the recommendation of a partition and neither the so-
lutions nor the trained classifiers from the last generation are intended to be used in a further
predictive classification problem.

Figure 5.1: Mean ARI per dataset obtained by ECAC and HG-means.

Fig. 5.1 depicts the performance comparison between ECAC and HG-means, contrasting
their mean ARI obtained per dataset. The x-axis contains the ten datasets detailed previously
in Table 4.1, and the average ARI is located in the y-axis using the logarithmic scale for a
clearer plot of the results. ECAC outperformed HG-means in six out of ten datasets in this
metric, returning solutions that are closer to the reference partition in most datasets. HG-
means struggled especially to cluster the dermatology dataset, and it even failed to converge
to an acceptable solution with the hyper-parameters used (see Chapter 4.1.2), getting an aver-
age ARI of -0.0072. Fig. 5.2 contains the correlation plot to compare the solutions of ECAC
and HG-means. The highly-positive correlation between the fitness values returned by the
objective function of ECAC and their resultant ARI suggests that our algorithm favors parti-
tions that are similar to their ground truth and is able to adapt to the structures within a dataset
without imposing a predefined hyper-shape into it. Moreover, our algorithm’s fitness values
are not correlated with the k value, opposite to the behavior of k-means (see Chapter 2.1.1).
However, one drawback is the susceptibility of ECAC towards large datasets, as they tend to
affect its performance.
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Figure 5.2: Correlation plot with multiple performance metrics for comparing the solutions
of ECAC and HG-means.

The three scatter plots in Fig. 5.3 illustrate the 178 objects from the wine dataset, which
contains wine samples from three Italian cultivars according to their chemical and physical
attributes (a clustering algorithm should be able to detect these groups without either the need
for an external expert or previous knowledge on the subject). The three subplots demarcate
the relations between the proanthocyanins and total phenols of every wine in the dataset, and
the color of each point is related to the cluster assignment from the ground truth labels and
the partitions returned by ECAC and HG-means. This was the best-performing dataset of our
algorithm, and the increased similarity to the reference partition is perceptible visually in the
bottom subplot.

5.1.2 Remarks

The cluster quality criterion and search schema used in ECAC led to an increase in similarity
in the solutions against reference partitions created by a human or an experimental study. The
inclusion of classifiers for evaluating partitions in an evolutionary process implies a model that
is flexible towards the structures of the clusters within a dataset. ECAC is an algorithm suitable
for generating meaningful partitions that can be used and analyzed for further decision-making
when working with datasets carrying the natural condition of having overlapping clusters that
do not follow any geometrical shape.
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Figure 5.3: Partitions of the wine dataset as suggested by its ground truth, HG-means, and
ECAC.
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5.2 F1-ECAC Experimental Results
This section points out the experiments’ results as mentioned in Chapter 4.2. First, we will
contrast the performance differences as a consequence of using one or three classifiers in
the objective function of F1-ECAC, to then proceed to present the differentiation in solution
quality and runtime of F1-ECAC and its predecessor ECAC (see chapter 3.1). Afterward, a
general benchmark is held between F1-ECAC and other evolutionary and traditional methods.

5.2.1 Ensemble vs. One Classifier
Table 5.2 contains the average ARI per dataset of F1-ECAC (in its full classifier ensemble
objective function) versus the resulting versions of the algorithm obtained by replacing the
ensemble with only one classifier (we used the same classifiers detailed in Chapter 3.2, just
including each of them separately). F1-ECAC returned higher scores than versions with only
one classifier in 14 out of 20 datasets. Remarkably, the versions using one classifier got a
higher mean ARI than F1-ECAC in 3 out of the 5 synthetic datasets. In such cases, there
was a coincidence between the evident structure and class separation of artificial data (which
does not present overlapping clusters) and the strong bias of the function optimized by the
classifiers. The advantages of using a classifier ensemble instead of a single classifier schema
suggest that the multi-expert approach leads to partitions of higher quality. The multi-expert
schema emulated by F1-ECAC ensemble objective function acts as a voting system for as-
sessing generalization where the purpose is to find if a partition is capable of inducing a set of
well-trained classifiers.

Fig. 5.4 displays the fitness of the best individual and entire population per generation
(mean value) for visualizing the convergence of F1-ECAC’s evolutionary process when creat-
ing a partition of the Iris dataset1. The enhancement of the population as they go through the
evolutionary process starts very quick (as seen in the upwards trend of both plots) and reaches
a convergence point of marginal increase around generation 100; however, we keep the pro-
cess going for more iterations to increase the search space within reasonable computational
time. For the last generations, the quality of the solutions in the populations does not differ
strongly from the overall best solution.

Figure 5.4: Convergence plot of a solution created by F1-ECAC for the Iris dataset.

1The partition we used to create this plot got a maximum fitness of 0.95 and ARI of 0.96.
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Table 5.2: Mean ARI per dataset obtained by F1-ECAC with its full ensemble objective func-
tion versus using one classifier to compute fitness. Values in bold represent the highest mean
ARI per dataset (solutions of higher quality).
Dataset SVM k-NN Decision Tree F1-ECAC

aggregation 0.4484 0.1007 0.1034 0.2685
breast-cancer-wisconsin 0.0226 0.0360 0.0191 0.0570
breast-tissue 0.4248 0.4094 0.4857 0.5046
dermatology 0.0195 0.0235 0.0172 0.0283
ecoli 0.3704 0.2993 0.2714 0.4506
forest 0.0037 0.0065 0.0020 0.0100
glass 0.2699 0.2091 0.2392 0.2880
iris 0.8021 0.7399 0.8294 0.9169
jain 0.2936 0.0829 0.0196 0.3513
leaf 0.4515 0.4050 0.4197 0.4993
liver 0.0939 0.0851 0.0857 0.0880
parkinsons 0.0368 0.0447 0.0597 0.0419
pathbased 0.3657 0.0940 0.1577 0.2900
r15 0.4389 0.4951 0.3770 0.5478
seeds 0.7908 0.6135 0.5937 0.7763
segment 0.6311 0.5386 0.5521 0.6777
spiral -0.0013 0.0447 0.0575 0.0134
transfusion 0.0505 0.0252 0.0122 0.0542
wine 0.6457 0.6208 0.5935 0.7577
zoo 0.0856 0.0770 0.0846 0.1173

5.2.2 F1-ECAC vs. ECAC

The mean ARI per dataset returned by F1-ECAC and ECAC can be found in Fig. 5.5, plotted
in the logarithmic scale (x-axis) for ease of visualization. F1-ECAC got an improved solution
quality in all datasets except for the Parkinson’s one, with a negligible decrease of 0.023. The
Wilcoxon test determined that the observations generated with both algorithms had a statisti-
cally significant difference. Along with this increase in performance, the runtime decrease of
F1-ECAC is evident in Fig. 5.6 (also using the logarithmic scale). The CPU runtime contrast
between both algorithms is positive in favor of F1-ECAC across every dataset and had a sta-
tistically significant difference. Considering mean metrics per dataset, F1-ECAC had an ARI
improvement of 83% and was seven times faster than its previous version, ECAC.

5.2.3 Clustering Performance Analysis

The benchmark including algorithms from multiple families, is presented in two sub-analyses
depending on the dataset type according to their source and origin.
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Figure 5.5: Difference in solution quality between F1-ECAC and ECAC.
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Figure 5.6: Comparison of runtime of F1-ECAC against ECAC.
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Synthetic Data

Data generated artificially can be a valuable tool for evaluating the application range of a
clustering algorithm, making evident their bias towards specific structures. The average ARI
of the partitions created by each clustering algorithm for each synthetic dataset is presented
in Table 5.3. The experiments where no solution could be retrieved were left as a blank
space. �-MOCK was capable of partitioning synthetic data with impressive results, getting
the highest score in four out of the five datasets. Moreover, k-means, MOCLE, and�-MOCK
were tied at the top-performing set of methods for the R15 dataset. We consider synthetic data
clustering a limitation of F1-ECAC. However, we target our proposals to applications using
real-source datasets, and they are not designed to favor either the cluster structures in the
artificial datasets used or any geometrical shape due to their unlikely presence in real-world
data mining tasks. Clustering algorithms designed to favor specific 2-D structures struggle
with cross-domain applicability caused by their inherent solid clustering bias despite their
visualization advantages.

Table 5.3: Mean ARI of the solutions generated by the algorithms using synthetic data dur-
ing the experimental phase of F1-ECAC. Values in bold represent the highest mean ARI per
dataset (solutions of higher quality).
Dataset k-means Single-linkage DBSCAN HG-means MOCLE �-MOCK F1-ECAC

aggregation 0.7272 0.8058 0.7338 0.9991 1 0.2686
jain 0.5528 0.0099 0.9316 0 0.4893 1 0.3513
pathbased 0.4797 0.0009 0.2255 0.4851 0.7271 0.2900
r15 0.9928 0.5425 0.2637 0.0011 0.9928 0.9928 0.5478
spiral -0.0058 1 0.4573 0.0438 0.6203 0.0134

Real-source Data

The main focus of the analysis of the clustering performance relies on the results raised from
processing data from authentic sources (giving us a confident quantification of their solutions’
quality when using data behaving naturally), which will be displayed in this section. Table 5.4
summarizes the mean ARI of the partitions created by each algorithm, and Fig. 5.7 displays
the number of datasets in which each algorithm got the highest score at least once. F1-ECAC
obtained a higher mean ARI than the rest in 7 out of 15 datasets, followed by MOCLE with 4,
k-means with 3, and �-MOCK with 1. We attribute the absence of Single-linkage Agglom-
erative Clustering in this list to its strong bias towards connected clusters. DBSCAN failed
to return acceptable clusterings in most cases to its sensitivity towards its hyper-parameter
setting, which is firmly attached to domain knowledge. HG-means was the only evolution-
ary algorithm that did not outperform the other algorithms in any dataset. F1-ECAC shows
stable solutions across the datasets, which is a positive outcome considering their variation in
dimensions and cluster structure shape, leading us to the insight of our algorithm’s adaptive
capabilities towards the intrinsic nature of the data.

The p-value from the Friedman test equalled 0 for all experiments, and Table 5.5 presents
the unadjusted and adjusted p-values of the Friedman test with the Holm post-hoc. The 1xN
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Table 5.4: Solution quality (mean ARI) of each algorithm using the UCI ML Repository
datasets in the experimental phase of F1-ECAC. Values in bold represent the highest average
ARI per dataset.
Dataset k-means SL DBSCAN HGM MOCLE �-MOCK F1-ECAC

breast-cancer-wisconsin 0.6707 0.0048 0 0.4914 0.5415 0.0048 0.0570
breast-tissue 0.2781 0.0007 0 0.0053 0.1824 0.0419 0.5046
dermatology 0.7124 0.2759 0 0.0034 0.1717 0.0060 0.0283
ecoli 0.5023 0.0399 0 0.4262 0.7446 0.0283 0.4506
forest 0.4325 0.0017 0 0.4987 0.5392 0.0076 0.0100
glass 0.1715 0.0143 -0.0076 0.2598 0.2762 0.2709 0.2880
iris 0.6201 0.5584 0.0641 0.7302 0.8008 0.0043 0.9169
leaf 0.3565 0.0221 0 0.2950 0.2880 0.3182 0.4993
liver 0.0148 0.0083 0 0.0305 0.0640 -0.0039 0.0880
parkinsons -0.0978 -0.0134 0 0 0.1674 0.0813 0.0419
seeds 0.7733 0 0 0.7166 0.7416 0.7132 0.7763
segment 0.4687 0.0010 0 0.4063 0.4524 0.0012 0.6777
transfusion 0.0527 -0.0036 0.0002 0.0795 0.0836 0.0086 0.0542
wine 0.8975 -0.0068 0 0.3711 0.3652 0.4025 0.7577
zoo 0.7581 0.4425 -0.0578 0.7088 0.7561 0.7670 0.1173

Figure 5.7: Number of datasets in which each algorithm outperformed the rest using the real
data in the experimental framework of F1-ECAC.

comparisons are held by comparing each method against F1-ECAC, which was the highest-
ranked according to Table 5.6. Getting this version of our algorithm in the top rank proves
F1-ECAC’s competitive performance even in this challenging benchmark. The difference be-
tween the results of F1-ECAC versus DBSCAN, Single-linkage, and�-MOCK is statistically
significant in favor of F1-ECAC. Therefore, k-means, HG-means, and MOCLE do not have a
significant difference with F1-ECAC.

We performed a correlation analysis to visualize the statistical relationships between the
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Table 5.5: Unadjusted and adjusted p-values returned by the Friedman test using the Holm
post-hoc in the experimental evaluation of F1-ECAC.
Algorithm Unadjusted P PHolm

DBSCAN 0 0
Single-linkage 0.0001 0.0004
�-MOCK 0.0088 0.0352
HG-means 0.0759 0.2278
k-means 0.6121 1.2242
MOCLE 0.9327 1.2242

Table 5.6: Average ranks of each treatment of the experimental evaluation of F1-ECAC (val-
ues close to 1 suggest better performance). Value in bold represents the best average ranking
(overall higher ARI values).
Algorithm Ranking

F1-ECAC 2.4
MOCLE 2.4667
k-means 2.8
HG-means 3.8
�-MOCK 4.4667
Single-linkage 5.5333
DBSCAN 6.5333

structural relations of the data, k values, and the solution quality of each algorithm using nat-
ural data. The Spearman correlation between 10 variables is shown in Fig. 5.8; we consider a
threshold of an absolute value of 0.50 to determine high correlations. The absence of corre-
lation between the quality of the partitions created with F1-ECAC and other methods implies
that the objective function of our algorithm discerns cluster quality in a contrasting manner to
conventional approaches. Moreover, F1-ECAC also does not correlate with k, retaining the
stability properties of its previous version.

Fig. 5.9 displays the ground truth and a partition created by the algorithms that scored
the highest mean ARI at least once (see Fig. 5.7). For this plot, we considered synthetic and
real data and included the best-performing solution of each selected algorithm (see Tables 5.3
and 5.4). We decided to include the Ecoli instead of the Zoo dataset in Subfigure (e) to vi-
sualize better the partition clustered by MOCLE. F1-ECAC clustered the Iris dataset almost
perfectly, only locating two of the 150 flowers in the dataset in the wrong group, achieving a
maximum ARI of 0.96 (which more complex methods were not capable of doing). This tough
clustering problem is often tackled to see if an algorithm can identify the difficult differentia-
tion between the overlapping groups (see Subfigure (g) from Fig. 5.9).
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Figure 5.8: Correlation plot of the structural details of the datasets and the ARI of the par-
titions returned by the algorithms using the UCI Repository datasets in the development of
F1-ECAC.

5.2.4 Remarks
Achieving similar performance to leading clustering algorithms is a relevant achievement of
this project. Besides, we avoided some of the theoretical issues found in other algorithms. For
instance, the disadvantages of distance-based dissimilarity metrics optimized by traditional
and single-objective evolutionary clustering algorithms (which imposes a cluster structure
into the data, thus inducing clustering bias) are overcome by the ensemble of classifiers in
F1-ECAC’s objective function; computing class separation according to the kernel in each
classifier. This is evident in Subfigures (b) and (d) from Fig. 5.9, where the bias towards
compactness and connectedness is noticeable in the partitions created by k-means and Single-
linkage for the R15 and Spiral datasets. Hence the application range of F1-ECAC is not
limited to data complying with predefined structures and offers diverse solutions that are not
tied to them. The multi-objective evolutionary approaches generated clusters of arbitrary
hyper-shapes by optimizing complementary objectives as shown in Subfigures (f), (h), and
(j) from Fig. 5.9. However, the solutions returned by k-means, HG-means, and MOCLE
got a high correlation between them as seen in Fig. 5.8 due to the inclusion of the former
in the latter two, suggesting that the solutions of evolutionary clustering algorithms might
still be biased towards certain structures if they optimize clustering criteria based on distance
functions. Another advantage of F1-ECAC is the high degree of interpretability offered by
1) the label-based representation used in F1-ECAC, contrary to the representation schemes
used by evolutionary algorithms such as �-MOCK (see Chapter 2.3.2) and 2) the intelligible
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Figure 5.9: Reference labels and best partition created by the algorithms that scored the high-
est ARI at least once while developing F1-ECAC.
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single-objective evolutionary process used to generate the search space, which can be stopped
and analyzed at any point and avoids selecting solutions from a Pareto front.

F1-ECAC (as every version in the ECAC family) has boundaries limited to the genera-
tion of a partition from an unlabeled dataset; hence fitness values close to one are not relevant
to this application even though it might suggest an overfitting issue and induced classifier
variance. It is not within the scope of this project to train classifier models ready to be de-
ployed as we are tackling a clustering problem. Regarding the negative correlation between
F1-ECAC’s performance and the number of instances in Fig. 5.8, it is important to remark
that F1-ECAC is not intended to be used in data mining tasks involving big data, because just
as the other methods mentioned in Chapter 2, the dissimilarity computation to be optimized
becomes unfeasible when dealing when data of that volume. We conclude that the design
decisions leading to F1-ECAC brought us to the fulfillment of our goal of improving our
first algorithm’s (ECAC) competitiveness in a complex cross-domain clustering benchmark
by modifying its optimization pipeline and objective function.

5.3 ECAC-S Experimental Results
This sections present the results from each modification done to F1-ECACmentioned in Chap-
ter 3.3 according to the experimental framework from Chapter 4.3. The components from
F1-ECAC are maintained the same unless explicitly specified that any part of the algorithm is
modified to test its possible impact on reducing runtime.

5.3.1 Data Manipulation
We held a comparison against the published version of F1-ECAC (detailed in Chapter 3.2)
and its parallelized version, which includes the changes proposed in Chapter 3.3.1 to the
algorithm’s data manipulation pipeline. In this 1-vs.-1 benchmark, both versions had a statis-
tically significant difference in the mean ARI and runtime per dataset metrics (ARI difference
in favor of F1-ECAC, runtime difference in favor of the parallelized version). The paral-
lelized version got a lower average runtime in 19 of the 30 datasets, with a median of 69.33
seconds per dataset, whereas it was 159.59 seconds for F1-ECAC. Despite the significant dif-
ference in solution quality, the mean ARI per dataset only decreased by a negligible drop of
0.0178.

5.3.2 Classifier Combinations
The following iterations of the algorithm contain the properties of the parallelized version,
which proved its benefits in Chapter 5.3.1. In this section, we present the results of comparing
the six classifier and metric combinations mentioned in Chapter 3.3.2 with the parallelized
version (which uses the mean F1 score of the three classifiers from the original F1-ECAC,
as seen in Chapter 3.2.1). We can visualize the results of this benchmark in Fig. 5.10 and
Fig. 5.11, where we show the average ranks and significant differences for the ARI and run-
time metrics, respectively. The parallelized version had a mean runtime per dataset of 402.88
seconds and was the worst-ranked, proving that using two classifiers instead of three will lead
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to an inherent efficiency boost. In contrast, the Support Vector Machine/Decision Tree (Mean)
version took 70.94 seconds on average to return a solution across all datasets and was the top-
ranked. Despite such improvement in runtime, there is no statistically significant difference
in ARI between the top-6 ranking algorithms. Thus we decide to continue with further im-
provements using a classifier ensemble in the objective function of our algorithm constituted
by the Support Vector Machine and Decision Tree classifiers, using the mean F1 score value
to compute fitness due to its arguable superiority in runtime without compromising solution
quality.

Figure 5.10: Adjusted Rand Index Critical Difference (CD) diagram for the classifier-metric
combinations benchmark in the design process of ECAC-S.

Figure 5.11: Runtime in seconds Critical Difference (CD) diagram for the classifier-metric
combinations benchmark in the design process of ECAC-S.

5.3.3 Genetic Operator Combinations
We tested every proposed change to the genetic procedures of F1-ECAC (see Chapter 3.3.3)
along with the Support Vector Machine/Decision Tree (Mean) version due to its efficiency
advantages against the rest as proven in Chapter 5.3.2. The Support Vector Machine/Decision
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Tree (Mean) version includes the genetic operators from the original F1-ECAC (i.e. 1-point
Crossover and 5% Mutation; see Chapter 3.2) and is included as a reference for comparison.
Fig. 5.12 and Fig. 5.13 present the resulting Critical Difference (CD) diagrams for the ARI
and runtime metrics. The Individual Gene Probability Crossover was the worst-performing
operator in both metrics. It was ranked last in every combination, and had a significant dif-
ference from the four best-performing operator combinations. The 2-point Crossover/5%
Mutation version was the top-ranked in mean ARI and runtime. We decide to proceed using
this version as it returned an average runtime decrease of 5.56 seconds per dataset without pre-
senting a significant difference in solution quality to its previous version (i.e. Support Vector
Machine/Decision Tree (Mean)).

Figure 5.12: Adjusted Rand Index CD diagram for the genetic operator combinations bench-
mark in the design process of ECAC-S.

Figure 5.13: Runtime in seconds CD diagram for the genetic operator combinations bench-
mark in the design process of ECAC-S.

5.3.4 Hyper-parameter Adjustment

We developed a hyper-parameter adjustment benchmark using the 2-point Crossover/5% Mu-
tation version resultant from the analysis in Chapter 5.3.3. The updated hyper-parameters
proposed in Chapter 3.3.4 were implemented and tested against the 2-point Crossover/5%
Mutation version, which uses a test size of 75% in proportion as done in the original F1-ECAC
as seen in Chapter 3.2. The CD diagrams in Fig. 5.14 and Fig. 5.15 show the CD diagrams
corresponding to the ARI and runtime metrics. We decide to select the 2-point Crossover/5%
Mutation version to proceed with future iterations because the 75% test size hyper-parameter
returned significant runtime improvements and obtained the top-rank in such metric. Addi-
tionally, this runtime reduction does not present a significant difference in solution quality
with the 50% test size version, which was the best-ranked in this metric.
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Figure 5.14: Adjusted Rand Index CD diagram for the hyper-parameter adjustment bench-
mark in the design process of ECAC-S.

Figure 5.15: Runtime in seconds CD diagram for the hyper-parameter adjustment benchmark
in the design process of ECAC-S.

5.3.5 Convergence Detection

We implemented the condition for detecting convergence proposed in Chapter 3.3.5 with the
test size hyper-parameter of 75% (2-point Crossover/5% Mutation version), according to the
results from the experiments in Chapter 5.3.4. We can find the mean ARI and runtime per
dataset ranks and critical differences from testing multiple early-stopping hyper-parameters
in Fig. 5.16 and Fig. 5.17. We include the 75% test size version for reference as it does not in-
clude an early-stopping condition (as done by F1-ECAC). An early-stopping hyper-parameter
that terminates the optimization process after 10% of the generations with no change in the
best solution resulted in an evident runtime advantage. However, the significant difference
in solution quality of the Early-stopping 10% and the 75% test size versions does not let us
choose this version as the most suitable. Therefore, we selected the Early-stopping 20% ver-
sion as the best option because it offers an acceptable balance between quality and runtime,
being the top-ranked in ARI while still having a significant difference in CPU time compared
to the version with no early-stopping (i.e. 75% test size version).

Figure 5.16: Adjusted Rand Index CD diagram for the convergence detection benchmark in
the design process of ECAC-S.

Now that every modification to F1-ECAC has been sequentially implemented and tested,
we claim the Early-stopping 20% version of our algorithm to be the youngest member in the
ECAC family, and we refer to it as ECAC-S.
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Figure 5.17: Runtime in seconds CD diagram for the convergence detection benchmark in the
design process of ECAC-S.

5.3.6 ECAC-S vs. F1-ECAC

To summarize the consequences in solution quality and runtime of the incremental updates
leading to establishing the final version of ECAC-S, we present the mean ARI and time in sec-
onds per dataset of F1-ECAC, ECAC-S, and their intermediate versions in Tables 5.7 and 5.8.
We can visualize the results in the relational plot found in Fig. 5.18. This figure plots the
mean ARI in the x-axis and the mean runtime in seconds in the y-axis, using the logarithmic
scale. Each dot in the plot depicts the relation between solution quality and runtime for a
specific dataset using some version of the algorithm starting with F1-ECAC and ending up
with ECAC-S, which defines the color code of the plot (i.e., F1-ECAC, parallelized version,
SVM-DTC (Mean) version, 2-point Crossover/5% Mutation version, and ECAC-S). The size
of each point represents the standard deviation in ARI of the solutions it represents. The x-
axis is reversed; therefore, a good result for an algorithm would be a set of small dots located
close to the lower-left corner of the figure. Following this logic, ECAC-S offers noticeable
advantages against the rest of the version as it generated partitions with lower runtime and
higher quality across most datasets.

The CD diagrams in Fig. 5.19 and Fig. 5.20 show the average rank and significant differ-
ences between F1-ECAC, ECAC-S, and in-between versions. The minimum mean time per
dataset obtained by F1-ECAC was 53,64 seconds, whereas it was 14.15 seconds for ECAC-
S. On the other hand, the maximum average runtime per dataset was 2,507.07 seconds for
F1-ECAC and 370.61 seconds for ECAC-S. The average runtime considering the mean of
all datasets of ECAC-S was 252.74 lower than the results obtained by F1-ECAC. The top-
rank of ECAC-S in Fig. 5.20 supports this version’s efficiency benefits compared to the rest.
Additional to the faster pipeline followed by ECAC-S, there is no significant difference in
performance, as proven by Fig. 5.19. Moreover, the maximum average ARI even increased
from 0.84 (F1-ECAC) to 0.88 (ECAC-S).

To summarize, we performed substantial enhancements to F1-ECAC in developing ECAC-
S in its data manipulation pipeline, objective function, genetic operators, convergence detec-
tion, and hyper-parameters. ECAC-S is 4.22 faster on average than F1-ECAC and has no
significant difference in performance. ECAC-S offers an important reduction in runtime due
to its modified implementation and design compared to F1-ECAC, and is capable of process-
ing datasets or greater size without compromising solution quality, which we will assess in
the forthcoming section.
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Table 5.7: Solution quality (mean ARI) per dataset of every intermediate version between
F1-ECAC and ECAC-S. Values in bold represent the highest average ARI per dataset.
Dataset F1-ECAC Parallelized SVM-DTC Mean 2pointCr/5%Mut ECAC-S

absenteeism-at-work 0.0099 0.0150 0.0165 0.0172 0.0151
arrhythmia 0.0039 0.0047 0.0034 0.0055 0.0015
breast-cancer-wisconsin 0.0524 0.0337 0.0363 0.0319 0.0413
breast-tissue 0.4742 0.4094 0.3595 0.3533 0.3576
car-evaluation 0.0068 0.0068 0.0061 0.0057 0.0066
dermatology 0.0255 0.2733 0.2439 0.2661 0.2297
echocardiogram 0.2894 0.2650 0.1203 0.0663 0.1262
ecoli 0.4196 0.3644 0.3760 0.3754 0.3623
forest 0.0098 0.0081 0.0066 0.0082 0.0088
forest-fires 0.0407 0.0361 0.0371 0.0451 0.0383
german-credit -0.0002 -0.0015 -0.0010 -0.0020 -0.0003
glass 0.2894 0.2644 0.2726 0.2319 0.2285
hepatitis 0.0690 0.0991 0.0924 0.0902 0.0857
image-segmentation 0.1541 0.1141 0.1030 0.1214 0.1300
ionosphere -0.0007 0.0095 0.0175 0.0114 0.0092
iris 0.8293 0.8378 0.7997 0.8474 0.8808
leaf 0.4848 0.2511 0.2503 0.2209 0.2528
liver 0.0962 0.0619 0.0708 0.0621 0.0484
parkinsons 0.0654 0.0348 0.0315 0.0202 0.0307
seeds 0.7727 0.6977 0.7512 0.7769 0.7209
segment 0.6715 0.4489 0.4060 0.4479 0.4894
sonar 0.0240 0.1112 0.0850 0.1731 0.1955
soybean-large 0.3956 0.2214 0.2416 0.2438 0.2541
student-performance 0.0080 0.0078 0.0066 0.0072 0.0078
tic-tac-toe 0.0039 0.0068 0.0099 0.0069 0.0060
transfusion 0.0683 0.0325 0.0358 0.0458 0.0404
user-knowledge-modeling -0.0017 -0.0008 -0.0001 -0.0027 -0.0023
wine 0.8402 0.7596 0.5667 0.7036 0.7207
yeast 0.0102 0.0089 0.0086 0.0098 0.0109
zoo 0.0766 0.2745 0.2786 0.2967 0.2829
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Table 5.8: Runtime (mean time in seconds) per dataset of every intermediate version between
F1-ECAC and ECAC-S. Values in bold represent the lowest average runtime per dataset.
Dataset F1-ECAC Parallelized SVM-DTC Mean 2pointCr/5%Mut ECAC-S

absenteeism-at-work 516.4233 843.0994 84.7060 87.2755 85.9511
arrhythmia 857.7323 2378.5323 176.5866 175.0729 84.7259
breast-cancer-wisconsin 309.4416 758.0020 56.0044 56.4008 45.6905
breast-tissue 62.1918 33.2178 21.4870 21.5318 17.8256
car-evaluation 605.8827 151.7303 112.9758 111.1874 111.0698
dermatology 194.2949 701.5605 37.6859 37.6814 37.6062
echocardiogram 53.6448 30.1839 19.2559 19.3214 14.1472
ecoli 112.3737 43.4201 29.7016 28.8953 28.7623
forest 330.3182 769.5698 60.7830 60.2331 60.6081
forest-fires 232.9348 69.7273 49.9447 49.8162 49.8075
german-credit 434.9185 850.0128 63.0129 61.2365 61.8491
glass 83.5681 38.3212 23.9405 24.0246 21.5541
hepatitis 61.0789 32.9577 21.5929 21.7754 18.2448
image-segmentation 2507.0743 1528.9290 374.5877 368.8092 370.6107
ionosphere 174.9465 701.1325 36.4350 37.3823 26.7860
iris 59.4812 30.2069 19.4150 18.5467 15.0757
leaf 216.3903 292.2674 394.4758 238.0254 232.1517
liver 144.2059 50.2775 34.7003 35.3387 28.0793
parkinsons 72.2985 35.0240 24.1872 24.2276 17.2885
seeds 68.9605 33.3604 21.5747 21.5152 19.1141
segment 89.6397 38.9343 27.0316 26.9451 25.9677
sonar 125.6720 678.8756 31.0691 31.3806 28.6788
soybean-large 194.2130 721.2563 41.6588 42.6496 39.8902
student-performance 452.0130 863.5029 75.9638 76.2097 76.3470
tic-tac-toe 235.6782 68.9275 42.7874 41.6843 40.8273
transfusion 139.9635 49.4009 32.3401 31.7268 31.5593
user-knowledge-modeling 112.3340 42.0112 28.1148 27.9042 27.2173
wine 69.2086 33.8220 22.0842 21.8553 19.7849
yeast 802.5682 184.8799 140.6381 140.5524 140.8310
zoo 59.2900 33.1688 23.5196 22.2031 18.5349
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Figure 5.18: Mean ARI, time in seconds, and ARI standard deviation per dataset of the solu-
tions returned by F1-ECAC, ECAC-S, and their intermediate versions.

Figure 5.19: Adjusted Rand Index CD diagram for the version evolution benchmark including
F1-ECAC, ECAC-S, and in-between versions.

Figure 5.20: Runtime in seconds CD diagram for the version evolution benchmark including
F1-ECAC, ECAC-S, and in-between versions.
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5.3.7 Application on Satellite Image Segmentation
Table 5.9 presents the average ARI resulting from processing each image according to the
experimental framework presented in Chapter 4.3.4. Fig. 5.21 displays the number of images
in which each algorithm achieved the best performance according to Table 5.9 (we only in-
clude those methods which surpassed the rest at least once). ECAC-S and Spectral-clustering
obtained solutions of average higher quality than the other algorithms in four out of the ten
images, followed by k-means and Birch, with one each.

Table 5.9: Mean ARI of the solutions returned by k-means, DBSCAN, Spectral-clustering,
Birch, and ECAC-S in the image segmentation benchmark. Values in bold represent the high-
est average ARI per image.
Image k-means DBSCAN Spectral Birch ECAC-S

canada 0.6904 0.0005 0.6997 0.6675 0.4379
coast 0.2132 -0.0009 0.1350 0.1091 0.2043
highway-in-the-desert 0.0739 -0.0025 0.0441 0.0356 0.3975
london 0.5813 0.0386 0.6752 0.1509 0.3207
parking-lot 0.6097 0.0362 0.7350 -0.0181 0.1428
port 0.4226 0.0073 0.4170 0.4040 0.5298
port-city 0.6253 0.0000 0.6313 0.6406 0.1896
road-with-trees 0.4511 -0.0004 0.4505 0.5328 0.6042
varadero 0.4790 0.0002 0.5722 0.3034 0.5889
white-containers 0.6731 0.0004 0.6753 0.6540 0.2292

We can also remark positive results in the robustness comparison. The results consider-
ing every solution generated with the five algorithms are illustrated in the boxplots in Fig. 5.22.
We observe that the median of the solutions of ECAC-S and Birch are comparable. In contrast,
Spectral-clustering and k-means outperformed the former two in this metric. The interquartile
range of the solutions by ECAC-S falls in an acceptable margin and is even smaller than the
one generated by the partitions of the Birch algorithm. The mean standard deviation ARI per
image of ECAC-S was 0.1723, whereas it was 0.2684 for Spectral-clustering despite being the
highest-ranked treatment. Such standard deviation decrease suggests that our algorithm offers
minor variation in results when using data of varying nature. Moreover, k-means returned a
minimum mean ARI per image of 0.0739, whereas ECAC-S had a value of 0.1428. Hence we
can state that ECAC-S could adapt to the natural phenomena represented in the data in greater
capacity because even its lowest-performing solutions start from a low-boundary mean ARI
that is noticeably better than the values of the rest of the algorithms. Achieving high perfor-
mance in a real segmentation task stands for the vast application range of our ECAC series
of contributions, thanks to its optimization process and novel cluster quality criterion. In
Fig. 5.23, we introduce the CD diagram with the rankings and significant differences result-
ing from the average ARI per image obtained by the algorithms. Here, we present one of the
most outstanding insights from this project. Our ultimate proposal, ECAC-S, does not present
a significant difference in quality with the solutions created by k-means, Spectral-clustering,
and Birch.
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Figure 5.21: Number of images where each algorithm outperformed the rest in the mean ARI
metric, including only those who achieved it at least once.

Figure 5.22: ARI of the partitions created by the algorithms from the satellite image segmen-
tation benchmark visualized as a boxplot.

Figure 5.23: CD diagram of the mean ARI obtained by each algorithm in the image segmen-
tation task.



64 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.24: Ground truth masks and best segmentation per image in the real application
benchmark of ECAC-S.
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The 64x64 pixels ground truth masks can be found in Fig. 5.24 (columns one and three),
along with the best segmentations generated by the algorithms that got the highest average
ARI per image (columns two and four, where we also include the proposed number of clus-
ters k for each capture). Spectral-clustering got the highest performance in the London image,
which implied the challenging problem of correctly identifying the colors of cars and build-
ings. k-means performed best in the Coast image, capturing the ocean almost perfectly, but
failed to represent the buildings and streets. ECAC-S outperformed the other algorithms in
complex scenarios with unbalanced clusters containing slight color differentiation, as shown
in the Highway-in-the-desert mask and solution. We confidently infer that ECAC-S offers
comparable performance to available methods in this benchmark, which required processing
of large datasets, and it can be applied in cross-domain tasks when looking for clusters that
do not follow any predefined structure.





Chapter 6

Conclusion

Our series of Evolutionary Clustering Algorithms using Classifiers (ECAC) are novel methods
that maximize the novel generalization cluster quality criterion following evolutionary search
techniques. The proposed objective functions in our algorithms compute an approximation
of the generalization capabilities of a solution using classifiers, unlike common approaches,
which often rely on distance functions for measuring dissimilarity (introducing clustering
bias). This is achieved by evaluating the capability of a partition to induce a set of well-
trained classifiers, using its representative genotype as target labels. The algorithms in our
ECAC series of contributions are recommended for clustering when looking for solutions
that adapt, identify and capture the native relationships within the data without imposing nor
making assumptions about their cluster structure.

We divided this thesis project into the development of three ECAC contributions, with
one article per method. The first version is the original ECAC, an algorithm that takes a step
forward and outperformed HG-means in a single-objective Evolutionary Clustering bench-
mark, in 6 out of 10 datasets. Our second proposal, F1-ECAC, provides a more interpretable
pipeline by introducing the F1 score instead of the Area Under the Curve (AUC) to test the
classifiers and was proved competitive against traditional, single and multi-objective Evolu-
tionary Clustering algorithms. F1-ECAC was 7 times faster than ECAC, and the quality of
the solutions (in terms of Adjusted RAND Index) was improved by a margin of 83%. The
experimental results of F1-ECAC mark its position in the literature as an algorithm with a
distinctive objective function that offers high-performance in a wide variety of scenarios, re-
turning no significant difference in Adjusted RAND Index against remarkable algorithms such
as k-means, HG-means, and MOCLE. ECAC-S is our final contribution to this project, and
returned the highest-quality solutions we were capable of achieving. ECAC-S reduced aver-
age computational runtime from 313 seconds to 60 seconds, without compromising solution
quality (no significant difference in Adjusted RAND Index). Its efficiency improvements,
compared to previous versions and mainly attributed to the inclusion of parallel computing
and the modification of its objective function, allowed us to perform an image segmenta-
tion benchmark, achieving state-of-the-art performance against high-performing algorithms
that have been applied in computer vision before. ECAC-S achieved better segmentation
performance (average Adjusted RAND Index) than k-means, Spectral Clustering, Birch, and
DBSCAN in 4 out of 10 images. We implemented our methods in algorithms ready to be
deployed in any data mining task.

67
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The ECAC series assists the clustering criterion selection dilemma by diminishing the
need for a domain expert due to the emulated unweighted multi-expert voting system for eval-
uating thousands of solutions created along the evolutionary process of our algorithms with
a quality criterion proven to be beneficial with data of varying nature. Our proposals of-
fer a straightforward hyper-parameter setting, requiring no previous knowledge of the cluster
structure and not presenting sensitivity towards the required number of clusters. Moreover,
the number of generations and population size hyper-parameters are influential in augmenting
or reducing the search space. However, neither of them influences the quality of the objec-
tive function’s evaluation capabilities. Still, our ECAC family of contributions maintains the
efficiency and intelligibility benefits of single-objective optimization by following the search
strategy of the genetic algorithm. For future work, we plan to explore the application range
of ECAC-S along with alternative optimization techniques and meta-heuristics. This project
is the result of a continuous and collective learning process, and we hope the ECAC series
represents a valuable asset for your data mining tasks.
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