
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

School of Engineering and Sciences

LSTM Neural Networks for Remaining Useful Life Estimation of
Turbofan Engines

A thesis presented by

Luisa Fernanda Montoya Herrera

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Master of Science In

Manufacturing Systems

Monterrey, Nuevo León, December 4th 2020







Declaration of Authorship

I, Luisa Fernanda Montoya Herrera, declare that this dissertation titled LSTM Neural Networks
for Remaining Useful Life Estimation of Turbofan Engines and the work presented in it are my

own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• • If this dissertation has previously been submitted at this University or other institution, it
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. Except for quota-
tions, this dissertation is entirely my work.

• I have acknowledged all the primary sources of help.

Luisa Fernanda Montoya Herrera
Monterrey, Nuevo León

December 4th 2020

iii



@2020 by Luisa Fernanda Montoya Herrera
All rights reserved



Dedication

To

I thank my parents for their unconditional support in each of the things that I have
proposed in life. This achievement is both theirs and mine. In particular, I am

grateful to my mother for teaching me, through her example, that striving always
brings a good reward. I thank my friends and all the people who could see this

process during my stay at Tecnológico de Monterrey; this experience was much
more rewarding thanks to them.

iv





Acknowledgments
I want to thank my thesis advisor, Dr. Rubén Morales Menéndez, and co-advisors Adriana
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LSTM Neural Networks for Remaining Useful Life
Estimation of Turbofan Engines

By
Luisa Fernanda Montoya Herrera

Condition-based Maintenance is a maintenance strategy that monitors the actual condition of
a system to make predictive decisions whit respect to it. This type of maintenance includes detec-
tion, diagnosis, and prediction of system failures. It has become increasingly important because
it generates the least losses, reducing total maintenance costs in a business by 5In general, the
Remaining Useful Life estimation allows making failure predictions. The complexity of failure
prediction in mechanical systems has led to a significant amount of literature. Different solutions
have been proposed; however, this still a real problem.Remaining Useful Life estimation can be
done from other approaches, for example, using physical models, knowledge-based models, or
data-driven models. Extracting relevant features from raw data using physical or knowledge-based
techniques alone, in most cases, is not enough due to the complexity of the characteristics present
in the data. Literature shows that data-driven approaches are the most used for prediction.

In recent years, Deep Learning models for different applications have been used, including
failure detection, diagnosis, and prediction. The Deep Learning model’s advantage is that an in-
depth knowledge of the system is not required, and due to its robustness, complex learning results
are satisfactory. For Remaining Useful Life estimation, Long Short Term Memory neural networks
are a viable option since they can adequately handle the time series needed for failure predictions
using Remaining Useful Life estimation.

The three main stages for developing this method based on Long Short Term Memory neu-
ral networks were data pre-processing, model training, and model performance evaluation. The
methodology uses two datasets of turbofan engines with different operational conditions and faults
for its validation. The process evaluates signals obtained from sensors located along with a turbo-
fan engine simulated through a Simulink-based program.

This methodology presents a reasonably acceptable performance in terms of Root Mean Squared
Error of 2.85 with a standard deviation of 0.39. It means that on average for the engines, the failure
prediction will have an error of 3 cycles; and a Score function of 7.26 with a standard deviation
of 1.76, which is an asymmetric algorithm where late predictions are more penalized than early
predictions, increasing exponentially with the error. The proposed methodology has the advantage
of being more straightforward than other methods found in the literature. Besides, the obtained
values of the predictions are conservative.
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Chapter 1

Introduction

The demand for faster and more efficient manufacturing processes has increased in recent years,
with the rise of the Industry 4.0 revolution. As sensors and indicators fully monitor most manufac-
turing processes, a considerable amount of data has become available to analyze and use as sup-
port for decision making. Conventional maintenance strategies are insufficient for manufacturers
to stay competitive against companies using emerging technologies, such as Smart Manufacturing
(SM), where manufacturing systems are real-time monitored using Artificial Intelligence (AI) ap-
proaches. Statistics show that most companies using SM technologies have increased efficiency
and customer satisfaction [1]. Researches developed the concept of Condition-Based Maintenance
(CBM), which focuses on the fault detection, diagnosis, and prognosis of machines and systems.
CBM is also known as Prognosis and Health Management (PHM).

The concept of CBM was first introduced by the Rio Grande Railway Company in the late
1940s [2]. CBM is a maintenance strategy that seeks for the optimization of the repairing times
of a machine. To achieve optimization is necessary to monitor the equipment continuously. Thus,
maintenance actions are only taken when there is evidence of abnormal behaviors. One of the
most notable advantages of this type of maintenance is that it can significantly reduce unnecessary
stops. To achieve a good CBM program, it is necessary to acquire the data, process it, and make
the required decisions based on the obtained information

As [3] said, CBM is conducted based on the observation that systems usually suffer a degra-
dation process before failure. The maintenance staff could observe the degradation process by
indicators such as temperature, pressure, voltage, and vibration to take advantage of the informa-
tion obtained by monitoring these sensors. The correct instrumentation of the systems is crucial
for the development of this type of strategy.

4
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1.1 Motivation

Predictive analytic, also called prognosis, is one of the main topics nowadays, forecasting a 20% to
50% market penetration in about 2 to 5 years, according to Gartner Inc. [4]. Since fault prediction
is less developed than fault diagnosis, early development of fault prognosis was once regarded as a
complement to fault diagnosis [5]. Experts can see the prediction of failure in mechanical systems
from two different points. First, as the forecast of the remaining time a system has before it fails,
Remaining Useful Life Estimation (RUL); second, as the possibility that a machine or system works
without failure taking into account the current state of the engine and the historical behavior it has.

Creating a RUL monitoring system will improve downtime, which generates reductions in
productivity and, therefore, economic losses. According to AltexSoft, a company specialized in
technology applied to industry, using a CBM program may reduce the time invested by making
maintenance plans between 20%-50%, increase equipment availability and uptime by 10%-20%
and reduce total maintenance costs in a business by 5%-10Ẇhen the aim is to achieve maximum re-
liability, an appropriate CBM system with monitoring capabilities must be adopted, gathering and
combining all kinds of useful sources of information simultaneously and providing the prognos-
tics needed to assure the assets’ correct operation [6]. Besides, it will help maintenance programs
migrate CBM using Deep Learning (DL) tools that will facilitate decision-making regarding the
machines’ maintenance times.

1.2 Problem Description

There are different techniques and methodologies to implement CBM today in companies. These
methods can be distinguished from those carried out offline, such as all visual inspection methods,
vibration analysis, ultrasound, thermography, and lubricants, among others, and those done online,
generally using physical, knowledge, and data approaches. Direct or offline measurement methods
have the advantage of being precise; however, they are vulnerable to various disturbances found
in the field and can interrupt the normal operations of the analyzed system, which leads to system
stoppages that cause economic losses.

On the contrary, in indirect methods, The maintenance personnel can obtain through the sen-
sors the measurements of the system’s behavior directly related to its useful life, which represents
a significant advantage since they can be easily installed and allow constant monitoring of the con-
ditions of the system. It indicates a need to implement intelligent systems that can help in decision
making regarding the reading and interpretation of said data; These systems serve as a tool for
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proper CBM. Low-cost monitoring systems to collect data from machines for detection, diagnosis,
and failures are prevalent. To predict failures, data-driven approaches such as similarity modes
or Remaining Useful Life estimation are good options. The RUL of an asset or system is defined
as the length from the current time to the end of the useful life [7], which is considered the core
and always a significant PHM challenge. Then, RUL calculation depends on the data available,
the lifetime data for similar machines, the run-to-failure histories of other devices, and a known
threshold value of a condition indicator that detects the failure.

Turbofans or jet engines are the most critical system on an aircraft. The maintenance carried
out to the airplane engines is planned by hours or phases, from an oil level check to an inspection
for turbine damage; nothing should be left unverified. By correctly maintaining turbofans, techni-
cal life can be prolonged thanks to less mechanical stress and reduced vibrations. Since this work
requires a lot of time and effort from all maintenance personnel, it is necessary to do this type of
maintenance only when it is needed. In this sense, the estimation of the RUL plays an essential role
in turbofan engine maintenance. Being able to predict when an engine is going to fail or at what
time it is more appropriate to repair so that it continues to operate correctly will avoid unnecessary
stoppages of the machines, which is directly related to maintenance costs.

It is possible to use the instrumentation of mechanical systems to predict the most suitable time
to perform maintenance, that is, estimate RUL using the data from the sensors and analyzing its
variation over time to establish when it is appropriate to schedule engine maintenance.

1.3 Research Question

The complexity of estimating the useful life of systems has led to a significant amount of research
related to this problem. Several techniques have been proposed; however, predicting the system’s
damage remains a real and complex problem to solve due to its constant change in the process
variables.

Literature shows that data-based approaches have gained much ground for the classification,
diagnosis, and prediction of failures in recent years. Estimating systems’ lifetime is not always an
easy task because some critical characteristics are related to time series and cannot be directly seen.
In this case, DL is a tool with a powerful capacity to learn features and predict the relationship
between data and the life of the systems by estimating the RUL of a fleet of aircraft engines to
establish how much time the system has left before it fails.
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1.4 Solution Overview

Develop a methodology for RUL estimation, using Long-Short Term Memory (LSTM) neural net-
works that avoid the vanishing problem and allow a better selection of the information stored within
the network, therefore presenting better results when working with time series. The methodology
consists of 4 phases: 1. data acquisition, 2. preprocessing of signals to choose the parameters and
features to be entered into the model, 3. training and validation of the LSTM neural network using
cross-validation and, finally 4. RUL estimation. As DL approaches can handle the signal’s noise,
the preprocessing phase will only normalize the data and select the system’s representative sensor.
The LSTM neural network trains the model until reaching a good performance so that the RUL
results are the most accurate according to the system’s behavior.

This solution is general for any system with time dependency; however, it is necessary to
modify different systems. In this case, a fleet of aircraft will serve to validate the methodology,
observe the system’s degradation, and estimate the RUL of the system.

1.5 Main Contribution

This thesis’s main contribution is developing a simple methodology using a DL approach for the
estimation of the remaining useful life of turbines of a fleet of aircraft that have similar operating
and capacity characteristics. The DL technique used is an LSTM neural network, which is selected
based on its features of being suitable for managing time series. This methodology can be used
to monitor the system and make decisions regarding the maintenance of the turbines. Applying
this model to the industry represents an advantage with the incentive that this methodology uses a
neural network with reduced computing time. It does not take up much computational cost for its
development.

The entire coding process of the methodology is developed using python 3.7 in the Google
collaborative work environment, using the TensorFlow, Keras, and sklearn libraries for the prepro-
cessing of the data and the training of the model. This code is adaptable to the work environment
of jupyter or any other that is required. Multiple tests with various configurations are detailed to
determine a fair value for each of the parameters and thus obtain an adequate and robust model.

1.6 Organizations

This research work is organized as follows:
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• Chapter 2 presents the state of the art of different approaches of PHM for RUL estimation.
Also, the areas of opportunity to develop this research are identified.

• Chapter 3 includes the theoretical background of turbofan engine degradation, simulation
conditions and, description of the datasets used and a RUL estimation overview.

• Chapter 4 present the proposed methodology.

• Chapter 5 presents the results of the evaluation of the methodology and a comparison with
similar research projects.

• Chapter 6 presents the conclusions, the contributions and, future work of this research.

• Bibliography

• The appendix which is composed of the acronyms and variables definition, additional results
of the real vs. predicted RUL, and the code with which all the research work was developed



Chapter 2

State of the Art

This chapter covers the most relevant work related to the data-driven approaches for machine health
monitoring, especially for RUL estimation of mechanical elements as turbofan engines using DL.

2.1 Introduction

Prognosis is the capability to use available observations to predict upcoming states of a machine or
forecast the fault before it occurs [8]; The prediction or prognosis of failures in mechanical systems
refers to the life that a machine or system has before it fails. Using the current condition and his-
torical data is necessary to predict how much time remains before a failure occurs, also known as
RUL. Monitoring the fault propagation process using a forecast or trend model for certain system
variables is the most common. Researches were developing many techniques and research works
related to failure analysis and RUL estimation. In recent years, with the rise of AI, a tendency to-
wards the applications of DL systems can be observed. These algorithms allow developing robust
monitoring systems focused on PHM. A wide variety of research has been conducted regarding DL
to detect and diagnose failures in systems. However, studies have been more limited to the lack of
available run to failure data about failure prognosis.

For CBM, companies are using three different approaches [9] states that they are all framed
within the same three categories: Model-based, Knowledge-based, and Data-driven based meth-
ods. Model-based approaches require an accurate mathematical model to be developed and use
residuals as features, where residuals are the outcomes of consistency checks between the sensed
measurements of a real system and the outputs of a mathematical model [10]. Knowledge-based
approaches use symbolic representations to solve problems, which can be very difficult when deal-
ing with complex systems. Data-driven based techniques are used when system models are not
available, unknown, or are too complex to model, but instead, monitoring systems are available

9
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[9]. Most common data-driven based approaches are based on AI, which refers to techniques that
fit into Machine Learning (ML) with examples of use as Support Vector Machine (SVM), Fuzzy
Logic, and DL [11; 12; 13; 14]. However, there are also many other applications such as Wavelets
and Fourier transform.

2.2 Data-driven based approaches

DL is a subset of ML that allows computational models composed of multiple processing layers to
learn representations of data with various abstraction levels using the back-propagation algorithm
[15]. In recent years, DL has been of great interest for researchers, especially in object recognition,
image segmentation, speech recognition, and machine translation. As a ML branch, DL attempts
to model hierarchical representations behind data and classify or predict patterns via stacking mul-
tiple layers of information processing modules in hierarchical architectures [16]. Although DL is
not something new, its recent popularity is mostly due to the increase in computers’ computing
power and the increase in the data available from systems or machines. There are different types
of models within the DL, such as Auto Encoders (AE), Deep Belief Network (DBN), Deep Boltz-
mann Machines (DBM), Convolutional Neural Networks (CNN) and, Recurrent Neural Networks
(RNN), adapting the model’s characteristics to different real problems. Currently, DL can be used
in manufacturing systems to monitor machines’ status; this is known as Machine Health Monitor-
ing Systems (MHMS).

Authors in [17] formulated a generic framework of structural health prognostics composed
of a health index, offline learning based on sparse Bayes learning techniques, a generic online
prediction scheme using the similarity-based interpolation and uncertainty propagation map for
the prognostic uncertainty management. The methodology applies to different engineered systems,
and with two cases of study, its possible to demonstrate its effectiveness. In [18], the authors used
a semi-supervised RBM model with the aim of pre-train the model and saw the effect on the RUL
estimations results. Additionally, a Genetic Algorithm (GA) approach is applied to tune the hyper-
parameters in the training process. The results obtained in this research show that the proposed
method outperforms other models like CNN and LSTM models. In In [19], the authors propose
a Deep separable convolutional network (DSCN) for RUL estimation of turbofan engines. The
proposed model uses the sensors’ data as inputs, introduce separable convolutions to increase the
sensitivity of the DSCN. A unit is constructed behind the detachable convolutional layer to perform
adaptive feature response re-calibrations. The RUL is finally estimated with a fully-connected
layer. The result shows that the proposed method outperforms the other methods, and comparing
it with a LSTM, emphCNN, and Bidirectional Long-Short Term Memory (Bi-LSTM) is better.

In [20] the authors used a Stacked Denoising Autoencoder (SDA) for health state identification
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in three main steps, dividing it into training and testing groups for the SDA model. A deep hierar-
chical structure is set with a transmitting rule of greedy training. Finally, a sparsity representation
was applied to obtain high-order characteristics with better robustness in iteration learning. Other
authors have taken advantage of CNN networks’ remarkable capacity to process images and have
used them for the diagnosis or classification of faults. Authors in [21] used Deep Convolutional
Networks (DCNN) through the combination of wavelet packet transform and space reconstruction
to rebuild a 2-D wavelet packet energy image of the frequency subspaces. Also, in [22], the au-
thor used 1-CNN for fault detection, which does not need a separated feature extraction algorithm
because the input is the raw data resulting in more efficient systems in terms of both speed and
hardware. Different approaches have been used to study the detection and diagnosis of failures in
systems using, AE and CNN

The authors in [23], used an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for ma-
chine fault prognosis of a bearings dataset provides by the University of Cincinnati, the model used
to consist of an off-line phase where the model is trained. In an on-line phase where predictions
are made, the proposed model outperforms the traditional ANFIS models for different prediction
horizons. Authors in [24] proposed a combination of Data-driven and knowledge-based prog-
nostics equipment, and a Weibull proportional hazard model is used to establish the relationship
between failure rate and state parameters. The least-squares nonlinear regression is used to obtain
the failure rate trend. The results obtained show that the model successfully predicts with a stan-
dard deviation of 0.42. The authors in [25] proposed a data-driven prognostic approach combining
Principal Component Analysis (PCA) with an exponential degradation model using an ideal health
indicator to predict the RUL of a rotating shaft. Feature selection was made by a feature impor-
tance ranking, reducing the model’s number of inputs for better performance. In[26] the authors
propose a correlation method to reduce the complexity of the model to estimate RUL in turbofan
engines. This approach shows better efficiency and high-performance thanks to excluding the low
correlated inputs of the dataset.

In the same way, the authors in [27] proposed an ensemble data-driven prognostic approach
which combines an accuracy-based weighting, a diversity-based weighting, and an optimization-
based weighting. Then they used a k-fold cross validation (CV) to estimate the prediction error
required. The results obtained in this research for three different cases suggest that this approach
is better to estimate RUL compared with any other algorithm. Authors in [28] used a combination
of a stochastic Wiener process with Principal Component analysis to estimate RUL. This research
shows the relevance of probabilistic approaches using a stochastic process instead of probabilistic
approaches with lifetime models and similarity-based approaches with the same health indicator.
In [29], the authors present a hybrid method of a mixture of Gaussian hidden Markov model, and
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fixed-size least squares support vector regression for fault prognostic. First, the models are trained;
then, the system recognizes the unknown samples. Finally, the forward variables are calculated and
serve as inputs for the regression to compute the RUL of the unknown sample.

In recent years, the use of DL techniques has increased considerably. However, there are other
data-based approaches that, as seen above, can be used. For example, to extract the data character-
istics, the authors use Principal Component Analysis, Independent Component Analysis, ANOVA,
Self-organizing Maps, and Fast Fourier Transform, among others. For classification and diagnosis,
the authors use SVM, K-Nearest Neighbors, and Decision Trees; However, Artificial Neural Net-
works have been preferred by many engineers and widely applied to fault diagnostics of various
engineering systems. Different probabilistic and regression models are used in prognoses, such as
Proportional Hazard Model, Markovian Process-Based Models, Wiener Process, Threshold Re-
gression Model, and Bayesian Models. However, for CBM, DL models that require less knowledge
of the systems and are much easier to use are preferred [30].

2.3 LSTM neural networks

LSTM has been widely used in speech recognition, machine translation, sentiment analysis, video
activity recognition, music generation, and handwriting generation. However, these networks’ use
for predicting mechanical systems failures has not been as explored as to its use in other areas. [31]

used a LSTM to predict the RUL using multiple sensor time-series signals and apply this method
to the CMAPS turbofan engine data set from NASA. After completing the model, 10 engines are
used to validate the trained LSTM and compare against various models such as Support Vector Ma-
chine (SVM), SVR, CNN, Multi Layer Perceptron (MLP). Results showed that the proposed model
gave the best performance in terms of the Score, R-score, and Error range 655, 18.33, and [-47,
56], respectively. The authors [32] proposed a novel Bi-LSTM and FNN architecture on the same
data set to predict the RUL of the components while taking into account the system’s operational
conditions using different sequence lengths and determining the impact of adding auxiliary input
to try and increase accuracy. Results were evaluated using the mentioned prediction Root Mean
Squared Error (RMSE) and Score obtaining 25.9 and 4882, respectively; the authors used a CNN
model to compare this result.

In [33], authors use an LSTM neural network to estimate the RUL of a fleet of engines identi-
fying the initial useful life with an Euclidean distance-based method to make the estimations more
accurate; the authors observe that this method is better compared with MLP, SVR and CNN. Au-
thors in [34] opted for a Gated Recurrent Units (GRU) approach, reporting an RMSE of 35.0 and
taking 0.34 hours for training, showing that they obtained better results than using an LSTM. [35]
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used used a BLSTM based AE scheme to predict RUL using the same CMAPS model to create six
simulated data sets. The results using the already mentioned model for prediction score, accuracy,
and RMSE were 1098, 47%, 19.5, respectively.

The authors use a Vanilla LSTM [36] to estimate the RUL of four sets of turbofan aircraft
simulation from the NASA dataset that were normalized, comparing its results against a standard
RNN and a GRU-RNN. The proposed model obtained the lowest Mean Squared Error (MSE) for
the most complex fault modes using 32 nodes. Results showed 3485.1 and 578.1 MSE for a hybrid
fault and a single operating mode, 2710.7 and 1205.4 MSE for a hybrid fault and multiple opera-
tional modes, on train and validation sets, respectively. Also, [37] used a Bi-LSTM neural network
to predict RUL in a turbofan jet engine from the NASA dataset. The methodology was carried
out in two stages, online and offline, where the sensor data is preprocessed. The signals feed the
proposed model with the RUL labels via a Back-propagation algorithm. In the online phase, the
auxiliary data and the sensor data are fed to the training model to obtain real RUL values based on
real-time monitoring. Prognosis metrics are the prediction Score and RMSE, obtaining 25.1 and
4793 for the FD002 dataset and 26.6 and 4971 for the FD004 dataset for RMSE and prediction
score. The proposed model outperformed models such as CNN, and a Multi-objective Deep Belief
Network Ensemble proposed in [38].

In [39], the authors used an LSTM neural network to predict excess vibrations in aircraft en-
gines, using a data set recorded via the Flight Data Recorder system. The authors evaluated three
different architectures and results showed that even when one of the three architectures had the best
performance, it was computationally more expensive and took more time series as input. Predic-
tions were evaluated through MSE and Mean Absolute Error (MAE) for 5, 10, and seconds. [40]

Proposed a DL method to estimate the RUL of aero-propulsion engines using an LSTM structure
with two layers and 64 neurons per layer. The results of the proposed method, compared with other
methods, is better; the LSTM neural network results in terms of RMSE and the scoring function
value were 16.7372 and 3.88 × 102.

Results show that, compared with other structures, LSTM Neural Networks has better results
of MAPE, RMSE and R2. In 2008 there was a competition called PHM08’, one of the winners
were [41] using an RNN with 24 inputs has three layers of feed-forward connections and recurrent
connections and also used an evolutionary algorithm for updating weights and bias, obtaining an
error of 519.8. The other winner was [42], who presented a Similarity-based approach for RUL;
first, a performance assessment is made. Then, an RUL estimation based on a Health Index (HI), A
total score of 5636.06 is achieved, which is the overall best in the competition. The authors in [43]

proposed a Hybrid method combining an LSTM neural network and a CNN, which is validated with
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the turbofan engine dataset from NASA. The input layer is a two-dimensional matrix that includes
operational settings and sensor measurements in its columns and snapshots of each time cycle in
its rows. This layer’s output serves as the input of an LSTM layer, and the output layer is a dense
layer used for RUL estimation purposes. The results obtained with this hybrid method outperform
the ones obtained with an LSTM neural network in FD001, FD002, and FD003 datasets.

In [44], the authors developed a methodology that includes a hybrid model for RUL estimation
using a CNN and an LSTM neural network. The CNN network is used to extract characteristics
and reduce the network’s dimensionality. The LSTM network is used to analyze the time series,
and finally, a fully connected layer is used for the network output. The results obtained of RMSE
and Score are equal to 7.81 and 88.66, respectively. The authors in [45] proposed an LSTM neural
network to diagnose and predict complicated operations, hybrid fault, and intense noise. The input
layer is a 3D array with shape (sample number, time steps, feature). There is a hidden layer, and
finally, two outputs layer, one for diagnosis and the other for RUL estimation. The results obtained
with this model show the deep neural network can predict good results under complex operations
modes and hybrid degradation.

In [46], the authors used a convolutional Bi-LSTM with Multiple Time Windows (MTW) (MTW
CNN-BLSTM) for RUL estimation. In the training phase, multiple CNN-BLSTM base models with
different time window sizes are trained, and then, in the test phase, test units are classified, and
suitable base models are applied to predict the RUL of the system finally. The model is validated
with the turbofan engine dataset from NASA; the results obtained show better results in RMSE
and standard deviation than other models as CNN, Bi-LSTM CNN-BiLSTM. The authors in [47]

proposed an LSTM based Encoder-Decoder scheme to obtain an unsupervised health index for
RUL estimation using multi-sensor time-series data. The results obtained in terms of RMSE and
Score function were 12.08 and 256, respectively.

2.4 Comparison

Table 2.1 shows a comparison between different DL methods found in the literature in recent years
concerning RMSE and Score function, which are the most used key performance indicators to pre-
dict failures in turbofan engines.
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Table 2.1: Comparison between different investigations on RUL estimation using Deep Learning
techniques

References
year

DNN
Architecture

Case Study Results Additional Information

[41]

2008
RNN C-MAPSS Dataset Score=519.8 Winner of the PHM08’

competition

[46]

2020
CNN, BiLSTM C-MAPSS Dataset RMSE=12.66

Score=304.29
Moving time window
implementation

[48]

2018
BD-LSTM C-MAPSS Dataset RMSE=15.42 Better performance compared

with SVR, MLP, LSTM

[49]

2019
ResCNN C-MAPSS Dataset RMSE=24.97

Score=3400.44
Better performance compared
with MLP, SVM, DBN,
LSTM, CNN

[50]

2018
LightGBM C-MAPSS Dataset RMSE=13.45

RMSE=250.4
Better performance compared
with XGBoost, CNN, RF

[51]

2018
TW, ELM C-MAPSS Dataset RMSE=13.78

Score=267.31
Better performance compared
with SVM, SVR, LSTM

[52]

2008
Kalman
Filtering,
MLP, RBF

PHM08 Dataset MSE=984 Normalization is made based
on 6 failures modes

[53]

2017
GBT, CNN
SEM

C-MAPSS Dataset GBT RMSE=31.13
SEM RMSE=26.76

Normalization is made based
on 6 failures modes

[54]

2019
RNN, LSTM,
GRU

C-MAPSS Dataset RMSE=18.82
Score=699.9

Energy of coefficients

[44]

2020
CNN-ULSTM C-MAPSS Dataset RMSE=7.81

Score=88.66
Better performance compared
with SVR, MLP, LSTM

[55]

2017
LSTM PHM08 Dataset RMSE=17.84 Better performance compared

with Naive Bayesian
regression model

[56]

2019
RNN with statical
recurrent unit

C-MAPSS Dataset RMSE=19.63
Score=3200

Better performance compared
with ANN, SRNN, LSTM

[57]

2018
MLPNN Infer,KF,
and MLPNN
Project

PHM08 Dataset Does not apply HI estimation for RUL

[58]

2019
Similarity based
model, ANN

PHM08 Dataset Score=5530.12 DPE

[59]

2017
RNN C-MAPSS Dataset MSE=466 Does not apply

[60]

2016
PCA, WED Turbofan engine Dataset Does not apply HI estimation for RUL

[61]

2019
BLSTM C-Mapss Dataset RMSE=26.61

Score= 4971
Better performance compared
with DCNN, SKF, MODBNE

[62]

2019
CNN-RNN C-MAPSS Dataset RMSE=29.73

Score=7212.2
Better performance compared
with MLP, SVR, CNN
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Table 2.1: Comparisson between some machining researches using wavelet approach (Continued)

References Defects Case Study Technique Additional Information

[63]

2019
LiRUL C-MAPSS Dataset RMSE=20.72 Better performance compared

with others LSTM
architectures

When looking through the literature, a tendency can be seen related to prognosis and health
monitor-systems. Data-driven methodologies are the most used in the works reviewed. Specifi-
cally, DL techniques have gained significant strength in recent years due to the increased processing
capacity of the equipment to analyze the data available from the systems. There is also a noticeable
evolution from models with simple networks such as FNN and their variants to the use of AE, CNN,
or LSTM networks that represent greater complexity in their models but at the same time produce
better results with much shorter processing times. New DL tools have emerged; LSTM neural net-
works have the advantage that they can handle the complexity of working with time series, which
represents an advantage for RUL estimation of systems; thus, there is an area of opportunity to
apply these tools. It is observed from the literature that to date, there are models that represent
the behavior of the systems properly; however, there is a lack in the results obtained and therefore
an opportunity to improve the performance of these models and make them less complicated and
more conservative. In this research work, LSTM networks’ use to estimate RUL of mechanical
systems, specifically the turbofan engine, will be studied.

A review of the most relevant works of recent years related to the prediction of failures using DL
was presented. In the next chapter, the information related to the concepts necessary to understand
the rest of the work in a better context is shown.



Chapter 3

Simulation System

This chapter presents all the necessary information regarding turbofan engines and RUL, in addition
to all the necessary background to understand the proposed methodology.

3.1 Turbofan Engines

Turbofan engines are a generation of jet engines that replaced turbojets, which produces thrust
using a combination of exhaust flow and bypass air accelerated by a driven fan driven by the jet
core. It could be low or high bypass. The incoming air is divided into two paths at the front of the
engine: bypass or secondary air and primary air. They have several advantages: they consume less
fuel, which makes them cheaper, produce less pollution, and reduce environmental noise [64]. It
is usually interesting to maintain high bypass degrees since they reduce noise, pollution, specific
fuel consumption, and increase performance. However, an increase in bypass reduces the specific
thrust at speeds close to or higher than the speed of sound; thus, low bypass turbofan engines are
used in military aircraft.

A turbofan is a machine that works using thermodynamic and mechanical cycles, producing
work from the latent energy supply [65]. Its operation is based on the Joule- Brayton cycle; the
ideal cycle efficiency is obtained by dividing the net useful work by the energy used, as shown in
equation (3.1). if it is considered that the fluid is an ideal gas where γ = Cp

Cv
, the efficiency of the

cycle is represented by the equations (3.1) and (3.2) [66].

ηi =
Wout −Win

Qin

(3.1)

ηi = 1− 1

p2
p1

γ−1
γ

(3.2)

17
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Turbofans engine is made up of a fan where the propulsion begins, a compressors where the
secondary air is compressed to increase the pressure and air temperature. Later, the air passes
to the combustion chamber, where the air is mixed with the fuel and burns the mixture, which
then passes to the turbines where the air rotates the various axes. Once the hot air has passed
through the turbines, it exits through a nozzle at the engine’s rear. The nozzle walls force the air to
accelerate, and the air weight combined with this acceleration produces part of the total thrust [67],
due to the principle of action and reaction, also known as Newton’s third law. The degradation of
turbofan engines occurs over time, which is usually measured in hours of operation. In Figure 3.1,
a diagram of the turbofan is observed, whit the sensors placed to give an idea of the engine aging.
It means that the parameters that indicate the motor’s health state must be chosen. For example, a
permissible value of efficiency, temperature, or pressure of any engine components can be taken as
a reference, from which an engine overhaul should be done [68].

Fan

LPT

Combustor

Nozzle

LPC HPC

HPT

Figure 3.1: Scheme of a Turbofan and its components

3.2 Turbofan engine degradation

The most common degradation can be defined as the blade (airfoil) pollution, pitting on the blade
surface, the rising of the blade clearances, the rotor imbalance caused by blade clearances, nozzle
hoarse, unstable airflow, low speeds, and higher ambient temperatures [69; 70; 71]. Gas turbine
degradation could be classified as fouling, corrosion, oxidation, hot corrosion, erosion and wear,
and particles’ coalescence and mechanical degradation [72]. According to [67], mechanical wear
due to regular use is reflected as changes in internal flow characteristics, components efficiency,
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and at its optimum point of operation, causing a decrease in efficiency or safe engine margins. In-
ternal engine damage may reduce the component’s strength, and its accumulation also causes the
initiation of flaws, which may lead to cracking and component failure [73]. Usually, high-pressure
shaft components are more susceptible to wear due to higher speed and pressure operation condi-
tions [74]. Below, equation (3.3) to equation (3.6) shown different types of efficiency of a turbofan
engine; when these efficiencies fall below their normal operating points, it can be considered that
there is a failure in the system.

Propulsive efficiency:

ηp =
Thrust Power

Power imparted to engine airflow
(3.3)

Thermal Efficiency:

ηth =
Power imparted to engine airflow

Rate of energy supplied in the fuel
(3.4)

Overall Efficiency:

ηo =
T ∗ u
ṁf ∗Qr

(3.5)

Where T is the thrust, u is the aircraft speed, ṁf is the fuel flow, andQr the fuel calorific value.

Specific Fuel Consumption:

TSFC =
ṁf

T
(3.6)

Turbofan degradation has a direct consequence of failure occurrence at some point in the jet’s
operation. In this case, RUL estimation of the system becomes essential to monitor the system’s
status continually and make appropriate decisions according to said monitoring. One approach
used to analyze the data obtained from the monitoring system is the DL models. The faults to be
considered for this investigation are related to the fan and the high-pressure compressor.
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3.3 Simulation conditions

CMAPS is a flexible turbofan engine simulation environment that provides easy access to health,
control, and engine parameters in an extensive and realistic commercial turbofan engine range. The
simulation has different simulation modes, Open-Loop Engine and Generation of Linear Models,
Controller Design With the Model-Matching Algorithm, and Simulation of the Controlled Engine.
CMAPS simulates an engine model of the 90,000 lb thrust class. The package includes an atmo-
spheric model capable of simulating operations at altitudes ranging from sea level to 40,000 ft,
Mach numbers from to 0.90, and sea-level temperatures from -60 to 103. The package also in-
cludes a power management system that allows the engine’s operation over a wide range of thrust
levels throughout the full range of flight conditions [75].

It also contains fan speed controllers and a set of regulators and limits that prevent the engine
from exceeding its design limits. Figure 3.1 shows significant engine components, and Figure 3.2
shows some subroutines of the engine simulation, starting with the inlet of the system that corre-
sponds to the atmosphere, which is in contact with the fan, passing through the compressor, the
combustion chamber, and the turbine to finally reach the nozzle which represents the outlet of the
system.

Intel

Atmosphere

Intel

Fan

Splitter

LPC

HPCFuel

HPT

LPT

Bumer

Core
Nozzle

Bypass
Nozzle

Bypass
path

Figure 3.2: Subroutines of the engine simulation

The simulator has two types of inputs, control inputs, and health parameters, which its manip-



3.3. SIMULATION CONDITIONS 21

ulation is direct. The system inputs constitute a set of health parameters associated with pressure,
flow, and efficiency characteristics of the fan, low-pressure compressor (LPC), low-pressure tur-
bine (LPT), high-pressure compressor (HPC), and high-pressure turbine (HPT) of the turbofan.
The system outputs include various sensor response surfaces and operability margins. Table 4.1
shows 21 of the 58 outputs available for the system used.

There is a fleet of aircraft whose engines are subjected to different flight conditions through
simulation. Depending on different factors, the engines’ damage will be different between each
cycle of the engines. The sensors located in the turbofans are counted to predict the remaining
useful life of engines throughout the cycles measured every ten minutes until failure. Further, the
effects of between-flight maintenance have not been explicitly modeled but have been incorporated
as the process noise [75]. Additionally, to simulate this scenario, it is necessary to add initial wear,
which is very common in real systems and is considered normal but unknown at the beginning of
each cycle. Also, an additional noise is simulated that serves the model as the factors that are not
taken into account in the simulation as stoppages due to maintenance between each flight. The
two types of failures observed in the simulation are failures in the fan and failures in the high-
pressure compressor; however, there is not enough information to classify these failures with the
data available.

3.3.1 Damage propagation modeling in the simulation system

One of the most important steps in simulating the data is the correct propagation of the system’s
damage. Common models used across different application domains include the Arrhenius model,
the Coffin-Manson mechanical crack growth model, and the Eyring model [75]. What all these
models have in common is the exponential evolution of the faults, in [75] they used a general-
ized equation for wear, which ignores micro-level processes but retains macro-level degradation
characteristics as shown in equation (3.7):

w = AeB(t) (3.7)

Assuming an upper wear threshold, thw, which denotes an operational limit beyond which the
component/subsystem cannot be used. The generalized wear equation is written as a time-varying
health index, but it is not discussed here because the main interest in this work is to detect when
the element will fail, but not how it will fail. This dataset was used for the prognostics challenge
competition at the International Conference on Prognostics and Health Management (PHM08).
The winners of the competition were [41; 42; 76].

Two different databases are resulting from the simulation made with CMAPS. The first dataset
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is used in the Prognostics Health Management PHM08’ competition carried out in 2008. Six
different failure modes are used; this dataset is considered the most standard for calculating the
degradation of engines by RUL. The second, Turbofan Engine Degradation dataset or CMAPS, is
divided into four subsets representing different failure modes. These two databases are used to
evaluate the robustness and effectiveness of the proposed method.

3.3.2 Simulation databases

PHM08’ Database

PHM08’s dataset consists of multiple multivariate time series. The dataset is divided into training
and test sets and could be considered from a fleet of engines of the same type. As mentioned be-
fore, each engine starts with different degrees of initial wear and manufacturing variation, which
is unknown to the user but can be considered healthy, which means it is not considered a fault
condition. In addition to the data from the 21 sensors, data from 3 operational settings, altitude,
mach number, and the throttle resolve angle, which significantly affect the sensors, are included.
The motors are operating normally at the beginning of each time series, and they begin to degraded
through cycles. In the training set, each motor’s time series ends when the RUL is zero; that is, the
motor is no longer in a suitable state of operability. However, for the test set, the time series ends
for a specific time before. It must be determined how many cycles remain before the engine is no
longer operable or the respective maintenance must be done.

In this dataset, six different operating conditions resulting from the combinations of the three
operational settings are identified; each operating condition presents a different trend in the sen-
sors’ behavior over time. In addition to this, the dataset shows faults in both the fan and the
high-pressure compressor. Table 3.1 shows the characteristics of the PHM08’ dataset, including
the number of engines in the training, test, and validation set, the number of conditions, and the
fault modes.

Turbofan engine degradation database

This dataset was obtained under similar conditions to those of the PHM08’ dataset; however, the
data set is divided into four different subsets. FD001 dataset contains 100 train and test engines
with one operation condition and one fault which occurs in the high-pressure compressor. FD002
has 260 engines in the train set and 259 in the test set, with six operation conditions and one
failure in the high-pressure compressor. FD003 has 100 train and test engines with one operation
condition and two faults, which occurs in the high-pressure compressor and fan. FD004 has 248
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Table 3.1: PHM08’ dataset characteristic

Data Set: PHM08’

Train trajectories: 218

Test trajectories: 218

Validation Trajectories: 435

Conditions: SIX

Fault Modes: ONE (HPC Degradation)

engines in the train set and 249 in the test set, with six operation conditions and two failures in the
high-pressure compressor and fan. These characteristics are shown in Table 3.2

Table 3.2: Turbofan Engine dataset characteristic

Data Set: FD001 Data Set: FD002

Train trajectories: 100

Test trajectories: 100

Conditions: ONE (Sea Level)

Fault Modes: ONE (HPC Degradation)

Train trajectories: 260

Test trajectories: 259

Conditions: SIX

Fault Modes: ONE (HPC Degradation)

Data Set: FD003 Data Set: FD004

Train trajectories: 100

Test trajectories: 100

Conditions: ONE (Sea Level)

Fault Modes: TWO (HPC Degradation,

Fan Degradation)

Train trajectories: 248

Test trajectories: 249

Conditions: SIX

Fault Modes: TWO (HPC Degradation,

Fan Degradation)

3.4 Remaining Useful Life Estimation

The RUL estimation of a system or a component is defined as the length from the current time to
the end of its useful life, and it can be used to characterize the system’s current health status [77].
As for CBM, it is possible to make RUL estimation through three main approaches, model-based,
knowledge-based, and data-driven. The RUL of a system is a random variable, and it depends
on the current age, the operation environment, and the observed condition monitoring [77]. For
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RUL estimation, an instrumented system must monitor the system’s environmental conditions and
parameters, which give indications of the status in real-time. These estimations are subject to
uncertainties inherent to the system. Besides, RUL is a technique used to estimate the system’s
degradation, which occurs due to wear and damage from its use. It means that it can not predict
sudden failures that are generally due to human errors, cracks in elements, defects in materials,
among others.

For a turbofan engine system, RUL is the number of cycles remaining for each engine before it
must undergo a repair or schedule a maintenance shutdown. This process will be monitored in line
with the in-flight data of the turbofan sensors. The maintenance team will have access to data to
verify the operation. The monitoring system will then present the necessary alerts at the adequated
cycles that depend on each aircraft cluster’s requirements, for example, between 10 and 8 hours
before the engine will fail. For this case, each cycle is equivalent to 10 minutes. In this way, the
first alert of system degradation could occur at 70, 60, or 50 remaining cycles equivalent to a range
of 12 to 8 hours of remaining operation.

3.4.1 RUL labeling

Since the system degradation initially can be considered constant, a piece-wise linear function is
used to label the RUL of the data, the RUL value of 120 is set, according to [41]. This value
could change in terms of the minimum run the length of the databases. Then, at a certain point of
operation, the motor begins to degrade linearly with a slope of -1. Whit equations (3.8) to (3.12),
it is possible to obtain the operating cycle where each motor starts to degrade:

120 = cut+ b (3.8)

0 = maxcycle − b (3.9)

From equations (3.8) and (3.9):

120 + cut = maxcycle (3.10)

cut = maxcycle − 120 (3.11)

Figure 3.3 shows the cut value for the maximum cycle of the motor, where the model is divided,
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forming a piece-wise linear equation, then:

y =

 120→ 0 < x ≤ cut

−x+ (120 + cut)→ cut < x ≤ maxcycle)
(3.12)
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Figure 3.3: Piece-wise linear degradation model

Using piece-wise linear functions is more realistic than using a linear function. In mechanical
systems, machines are in good condition from the start of the operation until a specific cycle, which
means that its degradation does not begin with the first moment of use.

In this chapter, all the theoretical background necessary to fully understand this research work
is presented. The description of the methodology used in this research work is developed in the
following chapter.
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Proposal

This chapter presents the proposed methodology to address RUL estimation in turbofan engines
and the description of the Turbofan Engine Degradation database [75] provided by the National
Aeronautics and Space Administration (NASA).

4.1 Methodology

LSTM neural networks mainly focus on fault diagnosis and classification [78; 79; 80]. However,
their primary use in MHM is on predicting the RUL, which is an essential part of PHM. Using
data-driven approaches helps learn the relationship between monitored data, and the correspond-
ing RUL gradually becomes prosperous [81]. Thanks to the structure of LSTM networks, they
focus on solving problems in terms of CBM, especially for failure prediction using RUL. One of
the main advantages of these networks is that the preprocessing of the data is not extensive. In
most cases, it will be enough to normalize the data and identify the most suitable features for the
network, according to their monotonicity, prognosability, and trendability. Figure 4.7 shows RUL’s
estimation in systems with multiple failure modes such as turbofan engines using LSTM neural net-
works. In this work, we developed a methodology for estimating RUL in turbofan engines based
on LSTM using signals from sensors located throughout the entire turbofan. This section describes
the methodology step-by-step and the training procedure.

4.1.1 Data pre-processing

The pre-processing stage consists of observing the sensors’ behavior and how they are correlated
to select those that best adjust to the system’s degradation and then normalize them.

Sensor selection starts from observation in each operating regime. Sensors present discrete or
continuous values. Sensors with discrete values remain constant throughout all cycles, which does

26
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not represent useful information for system degradation. Sensors with continuous values show a
positive or negative trend and could have inconsistent values towards the end of the cycles for the
engines or have a monotonic trend. Figure 4.1 show the different trend in the data. With this infor-
mation, sensors with constant values over time will be discarded, and only sensors with continuous
values will be used. However, to observe the dependence between sensors is made a correlation of
the sensors. Figure 4.2 shows the correlation of sensors; y-axis and x-axis are the sensors, from
1 to 21 and operating conditions from 1 to 3 of the system and, the color bar goes from -0.2 for
sensors which its correlation is negative, to 1 which its correlation is positive, through 0 which are
non-correlated sensors.

It is necessary to emphasize thatDL models can handle the sensor data that are not represen-
tative but would take more time to train them. The preprocessing and selection of the sensors
are made first. Figure 4.1 shows the different scales that the sensor records have; that is why the
data must be normalized. Table 4.1 shows the turbofan engine system’s inputs. The model’s in-
put variables are time series with data from the different sensors located in the fan, compressors,
turbines, and turbofan nozzle. The data from these sensors have different value scales; therefore,
they will be normalized from 0 to 1 to have all the same numerical range values. Beyond select-
ing the most representative sensors and normalizing the data, it is unnecessary to make additional
pre-processing since the model could handle the raw data.
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Figure 4.1: (a) represents a sensor with discrete constant values, (b) represents a sensor with
continuous and inconsistent values, and (c) represents a sensor with continuous and monotonic

values.

4.1.2 Training/testing relation

In DL models, it is essential to separate the database in training and testing. Typically the data
should be shuffled to assure that the testing and training sets share homogeneity in their charac-
teristics. However, when dealing with time series is not that simple because the data is dependent
on time. For preserving the time series, it is necessary to choose 70% of the engines for training
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Table 4.1: CMAPS outputs to measure system response

Input Name Units

T2 Total Temperature at Fan inlet R

T24 Total Temperature at LPC outlet R

T30 Total Temperature at HPC outlet R

T50 Total Temperature at LPT outlet R

P2 Pressure at Fan inlet psia

P15 Total Pressure in bypass-duct psia

P30 Total Pressure at HPC outlet psia

Nf Physical Fan Speed rpm

Nc Physical Core Speed rpm

epr engine Pressure Ratio —

Ps30 Static Pressure at HPC outlet psia

φ Ratio of Fuel flow at Ps30 pps/psi

NRf Corrected Fan Speed rpm

NRc Corrected core Speed rpm

BPR Bypass Ratio –

farB Burner Fuel-air Ratio –

htBleed Bleed Enthalpy –

Nfdmd Demanded Fan Speed rpm

PCNfRdmd Demanded Corrected Fan Speed rpm

W31 HPT Coolant Bleed lbm/s

W32 LPT Coolant Bleed lbm/s

and 30% for testing. Then, 20% of the training set is used to validate it, as shown in Figure 4.3a.
Then, doing cross-validation verifies that the model is independent of the training data. Figure
4.3b shows the data splitting in training and testing for different percentages of the dataset. 70, 80,
90 and, 100% of the database is split for cross-validation to see the variance of the results obtained
with the model.

The failures treated with this methodology are failures due to the engines’ regular use with
different operational conditions. These failures can occur mainly in the fan, the high-pressure
compressor, or both. The RUL estimation is valid only for failures whose degradation evolves in
time and has an identifiable behavior but not for sudden failure predictions.
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Figure 4.3: (a) represents the split of the database and, (b) represents the cross-validation
procedure’s split.

4.1.3 Key Performance Indicators

When working with DL models, it is essential to define the appropriate metrics to measure the
model’s behavior. The most commonly used metrics are MAE and RMSE for prediction problems.

MAE is the sum of the difference between the real and predicted values over the number of
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values. It does not consider the direction of the errors. The difference between real and predicted
values is the error:

MAE =

∑n
i=1 |yi − ŷ|

n
(4.1)

RMSE is the square root of the sum of the squared error over the number of values. RMSE
gives a higher weight to large errors. Due to that, RMSE is more useful when large errors are
particularly undesirable [82]. RMSE is a frequently used measure of the differences between values
predicted by a model and the values observed. The RMSE for training and test sets should be very
similar if a suitable model has been built. If the RMSE value for the test set is higher than the value
for the training set, there is probably an overfit of the data:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷ)2 (4.2)

In turbofan engine degradation, the model will use MAE, MSE and, RMSE error . Also, the
model will use another metric called Score function. The Score Function is a performance measure
that the authors in [75] designed to measure system performance for prognosis and health man-
agement competition in 2018. In PHM, the critical aspect is to avoid failures. Therefore it seeks
to predict failures early instead of predicting them late. The scoring algorithm that the authors
developed for this challenge was asymmetric around the actual time to failure. The penalization
of the late predictions was heavier than early predictions. This penalty grows exponentially with
an increasing error. Equation 4.3 shows how the parameters a1 = 10 and a2 = 13 control the
asymmetric preference: :

Score =


∑N

i=1 e
− d

10 − 1→ ford < 1∑N
i=1 e

d
13 − 1→ ford ≥ 1

(4.3)

where d = ŷRUL − yRUL and N is the number of units or motors in the dataset.

When evaluating the results, the authors who developed the Score Function equation found that
this forecasting metric must be improved. Predicting further into the future is more complicated
than predicting closer to the end of life. Also, it is more important to weigh the RUL’s accuracy
when it is closer to the end of the useful life. Considering it, more weight should be assigned to
cases where the motors have a shorter RUL. Another feature of the data is that the algorithm’s per-
formance is evaluated from multiple engines, for example, in fleet applications. Since the metric is
a combined aggregate of performance for individual engines, an additional correlation metric must
be employed to ensure that an algorithm consistently predicts well for all cases rather than well for
some and bad for others. Due to this function’s characteristics, it will be used to complement the
results obtained with MAE and RMSE.



4.2. LSTM NEURAL NETWORK DESIGN AND STRUCTURE 31

4.1.4 Flow diagram of the proposed methodology

Figure 4.4 shows a diagram of the methodology implemented to estimate the remaining useful life
in turbofans engines using LSTM neural networks.

4.2 LSTM Neural Network design and structure

The idea of RNN first emerged in 1974. The Hopfield Newark introduced this concept in 1982 [83],
but the idea was described shortly in 1974 by [84]. RNN are networks with loops in them. They
have short-term memory that gives them the possibility to remember and apply that knowledge in
the forward part. The main problem with RNN approaches is the vanishing gradient problem. With
the use of certain activation functions, the gradients of the loss function approach zero, making the
network difficult to train or even not train at all. The lower the gradient is, the harder it is for the
network to update the weights and, the longer it takes to get to the final result. Other architectures
as Gated Recurrent Unit GRU, LSTM and its variants or even Convolutional LSTM (ConvLSTM)
were proposed to overcome this problem.

The simplest RNN is the Elman networks, which take the output from hidden layers as inputs
of the next layer [85] and Jordan networks, feeding the next layer from the output layer instead of
the hidden layer [86]. The equations of these networks are bellowed:

- Elman Networks
ht = σh(Whxt + uhht−1 + bh) (4.4)

yt = σy(Wyht + by) (4.5)

- Jordan Networks
ht = σh(Whxt + uhyt−1 + bh) (4.6)

yt = σy(Wyht + by) (4.7)

where xt is a vector of inputs, ht are hidden layer vectors, yt are the output vectors, σh and σy are
the activation functions, W and u are weight matrices and, b is the bias vector.

LSTM neural networks are a type of RNN capable of learning long-term dependencies. The
first to talk about LSTM neural networks were Hochreiter and Schmidhuber. The critical insight in
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Figure 4.4: Scheme of RUL estimation methodology using LSTM

the LSTM design was to incorporate nonlinear, data-dependent controls into the RNN cell, which
can be trained to ensure that the gradient of the objective function concerning the state signal does
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not vanish [87]. LSTM removes or adds information to the cell states called gates: input gate it
forget gate ft and output gate ot can be defined as in [88].

Neural networks have an input layer, an output layer, and hidden layers, which are the layers
between the input and the neural network’s output. Hyper-parameters are the parameters config-
ured before training the model; the most important are: batch size, epochs, learning rate, time
steps, and activation functions. This model’s LSTM neural network is a simple DL model with a
1input layer, 3-hidden layers, and 1-output layer with 128, 64, 32, 16, and 1 neuron, respectively.
Figure 4.5 shows the general scheme at time t of the neural network. For LSTM networks, the input
shape parameter defines the network’s input and must be a 3D matrix of the form batch size, time
steps, and input data, as shown in Figure 4.6. The unit parameter only corresponds to the number
of neurons that will have the input layer’s output. It has no direct relationship with the network’s
input, so it can be any number that will contain the results of having updated the weights and biases
in the first layer.

ht-1

Xt-1

A

ht

Xt

ht+1

Xt+1

tanh

tanh
X

X

+

X

σ
ft otċt

ht-1

ct-1

ht

ct

Aσ σ

it

Figure 4.5: Representation of a Long-Short Term Memory Neural Network

The core idea behind LSTM neural networks is their memory cell. It can maintain its state over
time through the cell state vector, representing the memory of the LSTM, and it changes, forgetting
old memory and adding new memory through its gates. The LSTM gates are divided into three: the
input gate, which identifies the information that must be used to modify the network memory, the
sigmoid function decides which values to let through 0.1, and the tanh function gives weightage
to the values which are passed, deciding their level of importance ranging from-1 to 1; forget gate,
which identifies the information that should be forgotten, this is done through the activation func-
tions, 0 means that the information should be omitted and 1 that the information should be kept
for each number in the cell state; the output gate, where the input and the memory of the block
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Figure 4.6: Representation of the input shape of the LSTM Neural Network

are used to decide the output, sigmoid function decides which values to let through 0.1 and tanh
function gives weightage to the values which are passed deciding their level of importance ranging
from-1 to 1 and multiplied with the output of sigmoid.

The first step in the LSTM is to decide which of the weights W , biases b, and the values ht−1,
which correspond to the network output in t − 1 that enters the actual cell through the input gate
is to be discarded and which information is to be stored via 4.8. The next step is to decide what
new information will be stored in the cell state, this procedure is done in two stages; first a sigmoid
layer decides which values are going to be updated, see equation (4.9), then a tanh layer creates a
vector of new candidate values, see equation (4.10):

ft = σ(Wf .[ht−1, xt] + bf ) (4.8)

it = σ(Wi.[ht−1, xt] + bi) (4.9)

C̃t = tanh(Wc.[ht−1, xt] + bc) (4.10)

Later the value of Ct−1 is updated to Ct. the old state is multiplied by ft, forgetting what
sigmoid and than layer decided to forget earlier, then itC̃t is added as in equation (4.11). These are
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the new candidate values:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.11)

Finally, based on the cell state, after passing the information through the forget gate and updat-
ing Ct’s values, it is decided what the output will be. See equations (4.2) and (4.13).

ot = σ(Wo.[ht−1, xt] + bo) (4.12)

ht = ot ∗ tanh(Ct) (4.13)

The Xt inputs will be the data from the sensors. The entire internal process is done to update
the weights and bias, taking into account the network’s activation functions and other parameters.
At this point, the network identifies which data is useful and what data can be discarded. Table 4.2
shows the general structure of the proposed LSTM neural network with its respective properties.
Although there is no established methodology in the literature to select the networks’ hyperparam-
eters, some recommendations can be followed. For example, activation functions depend on the
type of data available. However, it is recommended to use non-linear functions such as sigmoid,
relu, tanh, or softmax; finally, the use of these functions is established for the model’s performance.
When training a neural network, the model might fit perfectly to the training data but not to the test
data; this is known as overfitting. To prevent this problem, a parameter called dropout is used.

Table 4.2: LSTM Neural Network Structure

# Layer Layer type Units Activation function Dropout

1 LSTM 128 Softmax 0.2

2 LSTM 64 ReLu 0.2

3 LSTM 32 ReLu 0.2

4 LSTM 16 ReLu 0.2

5 Dense 1 ReLu -

Figure 4.7 shows a general methodology to estimate RUL withDL approaches using LSTM
neural networks. First, an off-line phase where the historical data obtained from the sensors is used
as inputs to the model and identify the behavior of the system degradation. Then, a preprocessing
is done by normalizing the data for a better performance of the model. The trend of the sensors is
analyzed to select which are best related to the system’s behavior. Finally, a model is made with
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an LSTM neural network in which the data is divided into training and test data. Once the desired
performance is achieved, the model is saved and used in the second phase. In the online phase,
real-time data is also pre-processed, and the trained model is applied. Finally, an estimation of how
much useful life the system has left is done, and with this, CBM decisions can be made. Although
this methodology can be used with any other DL model, the idea of using LSTM neural networks
arises from their ability to handle time series in such an efficient way. That is why these networks
are the most suitable for making predictions because changes in system data are directly related to
operating time.
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Figure 4.7: Basic Structure of a model using LSTM for RUL Estimation

In this chapter, a detailed description of the methodology used to develop the research work
was made. In the next chapter, the results obtained when developing it will be shown.



Chapter 5

Results

This chapter presents the results obtained when applying the proposed methodology to the PHM08’
and CMAPS datasets. It also explains the selection of sensors such as time steps, activation func-
tions, and the number of training epochs for feeding the LSTM neural network. In addition to
evaluating the network with two datasets. Then, the methodology is compared with other works
focused on DL techniques.

5.1 Data pre-processing

As previously mentioned, the two databases have similar characteristics; however, it is necessary to
make a slightly different pre-processing due to the operational conditions and the different failures
that occur.

Sensor selection

Case I

In PHM08’ database are six operation regimens resulting from the operational conditions that exist.
Also, two different failures occur in the fan and the high-pressure compressor. Figure 5.1 shows
the different clusters that exist. Then, when applying K-means, an unsupervised classification al-
gorithm that groups object into k groups based on their characteristics, it is included in the dataset
the six resulting clusters as another feature of the system.

For each regime, there is similar behavior of the sensors. By observing the sensors’ behavior
through all the cycles for each motor, sensors with constant values are eliminated. These sensors
were 1, 5, 6, 10 16, 17, 18, and 19. A correlation of the sensors to identify which ones are more
correlated, either positively or negatively, is made. The results show that sensors have a correlation
value of 0.7 or more; therefore, the model uses all remaining sensors as input.

37
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Case II

In the CMAPS database, it is unnecessary to apply k-means since there is just one operating regime
and a single fault in the high-pressure compressor. However, the rest of the methodology uses the
same procedure as in PHM08’ database.

Figure 5.2 shows the behavior of the 21 sensors for the two databases. For PHM08’ dataset, this
behavior is for each cluster, and for CMAPS dataset is the system’s general behavior through the
cycles. Sensors 1, 2, 5, 6, 10 16, 17, 18, and 19 are constant throughout the cycles for each engine;
that is why they are not considered since they do not have any relevant information regarding
system behavior degradation.

5.1.1 Data normalization

Normalization of the data is necessary to ensure that all the model features are on the same scale;
in this case, normalization of the data ranges from 0 to 1. However, the use of other ranges is also
valid. Equation (5.1) shows the normalization of the features. X is the value to be normalized, and
Xmin and Xmax are the minima and maximum values in the data to be normalized, respectively. In
this way, each of the system’s inputs will be on a scale from 0 to 1.

X ′ =
X −Xmin

Xmax −Xmin

(5.1)
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Figure 5.2: It represents the behavior of all the input sensor for the LSTM model.
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5.2 LSTM neural network design

The parameters that cause the most significant effect during network training when using LSTM
neural networks are learning rate, training epochs, batch size, and time steps. The convergence of
the network is directly affected by the learning rate. A typical value as 1 × 10−3 accelerates the
convergence and improves the network’s precision, but with a value as 1×10−6, there is a negative
effect on the level of precision achieved. A test is performed with different learning rate values
to see which one obtains the best RMSE value, as shown in Table 5.1. We carried out the tests to
define the parameters of the network with the PHM08’ database.

Table 5.1: RMSE values and training time for different learning rate values

Test Batch Size Epochs
Time

Steps

Learning

Rate

Training Time

(s)
RMSE Std

1 32 50 5 1× 10− 3 1056 4.03 1.15

2 32 50 5 1× 10− 4 1383 3.52 0.86

3 32 50 5 1× 10− 5 1563 16.99 1.61

4 32 50 5 1× 10− 6 1544 93.34 0.55

For the time steps selection, the model uses values between 3 and 15 time steps, and it obtained
the best results with a value of 5, setting it for the rest of the tests. Initially, the model is tuning
with 200 epochs; however, this value was reduced to 100 without affecting the results of RMSE
and improving the training time. Figure 5.3a and Figure 5.3b show the loss function’s behavior
with 200 and 100 epochs, respectively, and Table 5.2 shows the results of RMSE for both epochs
values.

Table 5.2: RMSE values for 100 and 200 epochs

Test Batch Size
Time

Steps

Learning

Rate

Training Time

(s)
RMSE Std

100 epochs 32 5 1× 10− 4 2251 5.89 1.04

200 epochs 32 5 1× 10− 4 3637 5.1 1.35

For batch size selection, the model uses values of 16, 32, and. The tests are carried out with
these values since the literature recommends small batch size values, not higher than 100. Table
5.3 shows the results of the three values in terms of RMSE. Besides, Figures 5.4 and 5.5 show the
results in box plots to observe the RMSE values in train and test set after running the model several
times, its standard deviation, and the quartile means location for each batch size.
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Figure 5.3: Figure (a) represents the loss function in terms of MAE for 200 epochs, and Figure (b)
represents the loss function in terms of MAE for 100 epochs.

Finally, the network structure consists of an input layer with 128 units, three hidden layers
with 64, 32, 16 units, and an output layer with 1 unit. Table 5.4 shows the runings with different
configurations five times for each configuration. First, with an input layer of 20 neurons and
increasing neurons until finding the best RMSE value. This configuration of units and activation
functions had the best RMSE results of the model for both datasets. With this configuration, there
was no overfitting of the data due to the train, and the test model’s behavior is almost the same,
which is reflected in the RMSE values obtained.
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Table 5.3: RMSE values and Std for 16, 32 y 64 batch size

TRAIN TEST

PHM08’ CMAPS PHM08’ CMAPS

Batch size RMSE STD RMSE STD RMSE STD RMSE STD

16 3,63 0,54 6,09 2,43 4,13 0,85 5,846 2,37

32 3,55 0,51 7,20 2,65 3,60 0,55 7,13 2,61

64 4,22 1,19 6,27 3,30 4,26 1,23 6,20 3,22

16 32

PHM08’
CMAPS

Box plot of RMSE values in train set
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Figure 5.4: it is a box plot of the RMSE for the training set for 16, 32, and 64 batch size

Table 5.4: Neurons configurations

# Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 RMSE Std

1 21 15 9 3 1 20.15 1.85

2 32 16 9 3 1 15.36 1.53

3 64 32 16 8 1 10.43 1.96

4 120 60 30 15 1 9.62 1.65

5 128 64 32 16 1 3.89 0.89

6 256 128 64 32 1 6.23 1.56
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Figure 5.5: It is the box plot of the RMSE for the test set for 16, 32, and 64 batch size

5.2.1 Neural Network Train/Test

Once the model’s structure is defined, cross-validation is performed on the data to ensure that the
model results are independent of the data organization. For the PHM08’ datasets, k-fold cross-
validation uses 70, 80, 90, and 100% of the data; in this case, k is equal to 4. For the CMAPS
database, 100% of the data is used in all cases. Still, different engines are used randomly to train
and test the model, this is because the number of engines in this database is less than in PHM08
dataset. When using a percentage of the engines, the model does not have a good performance in
RMSE and Score. Model tuning uses the four different partitions for calculating the RMSE values
of the overall system.

Case of study

As the hyperparameters and other network values have been established, below is an illustrative
example of one of the model’s executions for CMAPS and PHM08 datasets. Table 5.5 shows the
final hyperparameters.

The model is trained for 100 epochs with the established hyperparameters. Figure 5.6 shows
the loss of the model through the epochs for the two databases. This behavior is typical of a loss
function; in this case, it is in terms of MAE. Initially, in the first epochs, the loss is high, but the
loss begins to decrease exponentially until the last epoch. The model behavior is observed in the
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Table 5.5: Established Hyper-parameters for LSTM model

Layers Epoch Batch Size Time Steps Learning Rate

4 100 32 5 1× 10− 4

test set. This behavior indicates that the model has a good performance with the combination of
the hyperparameters.
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Figure 5.6: (a) it is the loss function for the PHM008’ dataset, and (b) it is the loss function for
the CMAPS dataset.

Figure 5.7 shows the behavior for the training and test set for the PHM08’ and CMAPS
databases, respectively. The test and training set behavior is similar, which indicates that the model
can effectively predict the test data, and overfitting was correctly avoided in the model’s training.
The blue line corresponds to the actual RUL values for all engines from cycle 1 to the maximum
or final cycle, and the red dots correspond to the RUL predictions for all engines in all cycles.
In general, model behavior is right; however, it has significant prediction errors at the end of the
cycles, considered outliers.

Additionally, Figure 5.8 shows the distribution of the train set’s errors in blue and test set’s
errors in red for the PHM08’ and the CMAPS databases. Error distribution is centered at zero and
fits into a normal distribution of the data. Furthermore, the distribution of errors for the test and
training set in the two databases has similar behavior, which indicates that the RMSE values will
be almost the same, which is the predictive model’s expectations. The distribution of the errors in
the training set and the test presents some outliers. Due to the data distribution, when the model
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Figure 5.7: It represents Real Rul vs. Predicted Rul in train and test set for PHM08’ and CMAPS
databases.

is passed from one engine to another in training, testing takes one or two cycles to the model to
identify that change. These outliers are later discarded for the analysis of the behavior of the model
for each engine.

5.3 LSTM Neural network performance

As mentioned above, to ensure that the model’s performance does not depend on the partitioning
of the data in training and testing, k-fold cross-validation of the data is performed. In this case,
for each k-value, the RMSE of the model is obtained in the training and test set. The mean and
standard deviation of the validations serve to measure the model’s performance using different
partitions for training and testing. Table 5.6 shows the RMSE and standard deviation values for
the two databases. These values result from making k-fold cross-validation with four folds in each
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Figure 5.8: (a) it is the error distribution for PHM008’ dataset and (b) it is the error distribution
for CMAPS dataset.

run; that is, each RMSE value in the table corresponds to the mean of the RMSE in the four-folds.
Finally, the average RMSE and standard deviation for all tests are shown. The RMSE and standard
deviation values of the CMAPS database are slightly higher than those of the PHM08 database;
this is mainly due to the number of engines in each database, 100 and 218 engines, respectively.
However, the values obtained are below compared with the values from other research works. It
indicates that the model is validated for its use in the two different databases, obtaining satisfactory
results. Finally, the validation results indicate that the motors’ data do not depend on the partition
that we have of the data.

Table 5.6: RMSE and standard deviation values for the PHM08’, and the CMAPS dataset

Train set Test set

PHM08’ CMAPS PHM08’ CMAPS

RMSE Std RMSE Std RMSE Std RMSE Std

3,55 0,29 8,80 0,96 3,59 0,32 8,68 0,96

3,84 0,67 5,72 3,51 3,86 0,70 5,60 3,41

3,94 0,58 5,36 2,97 4,01 0,91 5,36 3,20

3,15 0,65 6,89 2,38 3,11 0,42 5,39 2,73

3,29 1,12 6,15 3,20 3,76 0,89 5,91 3,25

3,37 0,25 8,59 1,98 3,85 0,21 8,42 2,58

3,85 0,38 7,95 1,06 3,29 0,44 7,69 0,92

3,12 0,44 5,89 2,94 3,19 0,55 5,86 2,83

3,66 0,20 9,62 2,6 3,72 0,19 9,55 2,58

3,59 0,94 5,98 3,25 3,66 0,97 5,96 3,28

3,54 0,55 7,10 2,49 3,60 0,56 6,842 2,57
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The RMSE results are a measure of the difference that exists between the real values and the
predicted values. This value gives more weight to large errors and is in the same units as the
model’s target. For the PHM08’ dataset, RMSE and standard deviation values are 3.54 and 0.55
for the train set and 3.60 and 0.56 for the test set. For the CMAPS dataset, RMSE and standard
deviation values are 7.10 and 2.49 for the train set and 6.84 and 2.57 for the test sets. These
RMSE values indicate that the difference between the actual and predicted remaining cycles is
approximately 4 for the PHM08 database and 7 for the CMAPS database.

5.4 Discussion

So far, there are predictions for each cycle of all engines. However, for KPI’s measurements, it
is necessary to establish a threshold at a single point in the cycle. When developing the model, it
is necessary to create an alert to observe how many cycles are left until a maintenance stop must
be made. Thresholds of 50, 60, and 70 cycles before the engine failure are used; this number
will depend on the company’s requirements where the failure prediction system is applied by esti-
mating RUL. Table 5.7 shows the RMSE and Score function values with their respective standard
deviations for the two databases. RMSE and score function results are satisfactory for the three
thresholds. Results variations for the score function are due to its algorithm. This function was
developed for the competition in 2008, and the authors [75] suggest this function can be improved.
However, lower values are observed than those found in the literature.

Figure 5.9 shows the box plot for RMSE values. Also, the RMSE values’ variation is more
significant for the CMAPS database; however, the values obtained are still below the values found
in the literature. In general, the RMSE values in the test set are slightly higher than in the training
set; however, the behavior is conservative. In the train and test set, RMSE values present better per-
formance for the thresholds of 50 and 60 cycles compared with the threshold of 70. Regarding the
RMSE values, the threshold that offers the best results is 60 cycles. Figure 5.10 shows the box plot
of the Score function. In the Score function, the data is more extensive for the PHM08’ database
because it has more engines than the CMAPS dataset. In general, the Score function values are
higher in the training set. It is also because the percentage of data used in training is higher than in
the test set (70-30%). For both databases, better Score function results are obtained at the 60 and
70 cycle threshold than at the 50 cycle threshold.

For most of the data, the means are in quartile 2, with a low value of RMSE and Score function,
which is sought in these two metrics. The standard deviation of data is small for the three thresh-
olds; however, the best results for RMSE and Score function are obtained with a threshold of 60
for both databases.
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Table 5.7: RMSE and Score function values for threshold 50, 60, and 70 for PHM08’ and
CMAPS dataset

Train set Test set

PHM08’ CMAPS PHM08’ CMAPS

RMSE Std Score Std RMSE Std Score Std RMSE Std Score Std RMSE Std Score Std

THRESHOLD 50 THRESHOLD 50

4,00 1,51 43,14 21,32 3,57 1,52 20,13 11,33 4,50 1,77 33,22 21,35 3,99 1,67 9,89 5,01

3,65 0,90 37,17 8,53 3,79 2,07 23,04 16,03 4,60 3,55 45,67 59,38 3,3 1,98 8,51 7,19

3,96 0,83 43,24 12,84 2,72 0,59 12,85 4,32 4,19 1,35 30,95 12,65 3,46 1,68 8,47 4,61

3,90 1,37 39,81 14,40 2,49 0,81 12,23 6,77 5,03 2,10 40,64 28,63 3,24 0,51 7,26 1,76

4,10 1,36 44,35 13,34 3,01 1,69 15,18 11,45 5,34 2,44 49,31 36,76 3,14 1,44 7,47 4,57

3,92 1,19 41,54 14,09 3,12 1,34 16,69 9,98 4,73 2,24 39,96 31,75 3,426 1,46 8,32 4,628

THRESHOLD 60 THRESHOLD 60

3,16 1,41 34,05 22,26 2,72 0,89 14,13 6,19 3,96 1,96 30,09 20,13 4,21 1,78 10,67 5,46

2,85 0,39 29,27 4,69 3,52 1,62 21,19 13,08 3,71 1,74 28,79 23,96 3,42 1,38 8,06 4,07

2,94 0,46 30,19 3,64 3,40 1,18 17,16 8,13 3,38 0,88 24,11 12,35 3,89 1,84 9,84 4,96

2,94 0,86 28,24 6,49 3,25 1,62 17,96 11,20 3,83 1,02 28,16 15,83 3,36 1,15 7,79 3,12

3,43 1,18 36,09 8,99 2,56 1,1 13,75 7,67 4,47 1,50 37,03 21,63 3,32 0,67 7,75 2,56

3,06 0,86 31,57 9,21 3,09 1,29 16,84 9,25 3,87 1,42 29,64 18,78 3,64 1,36 8,822 4,03

THRESHOLD 70 THRESHOLD 70

3,90 1,38 43,57 23,08 2,84 1,05 15,06 6,71 4,82 1,78 35,82 20,01 4,45 1,87 11,40 5,77

3,70 0,67 37,71 10,25 2,75 0,5 13,83 3,58 4,55 2,23 36,22 31,51 3,47 1,81 8,47 5,36

3,57 0,75 35,70 9,91 3,66 2,6 23,39 23,44 5,20 2,24 39,93 21,98 3,37 1,46 7,98 4,15

3,17 0,6 31,70 6,07 2,75 1,3 14,46 7,89 4,12 2,14 31,59 20,18 3,95 2,01 10,07 5,57

4,63 1,84 52,46 26,59 2,61 1,02 13,71 7,22 5,75 4,03 60,96 65,80 3,51 0,62 8,29 1,84

3,79 1,05 40,23 15,18 2,92 1,28 16,09 9,77 4,89 2,48 40,90 31,90 3,75 1,55 9,24 4,54

Finally, Figure 5.11 shows the real RUL’s behavior and the predicted RUL for the three thresh-
olds used in one test engine. In the case of the three thresholds, the model’s behavior is conserva-
tive; even though for the threshold of 60, the value of the predicted RUL is above the real value, the
difference between these two values is minimal. It is considered that the model will always predict
values that are below the real RUL value; this behavior is the desired one because a model that
makes predictions of life more significant than the real ones is not ideal for real-life applications.
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Figure 5.9: ((a) it is the box plot in the train set for the RMSE, and (b) it is the box plot in the test
set for for the RMSE.

5.5 Comparison

In table 2.1, the authors tend to use hybrid DL models, which use LSTM networks combined with
other structures such as CNN. The models used are complex models that combine different DL
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Figure 5.10: (a) it is the box plot in the test set for the Score function, and (b) it is the box plot in
the test set for the score function.

techniques in the model and techniques for data preprocessing and extraction of characteristics,
making it challenging when implementing these models at an industrial level. Table 5.8 compares
the proposed methodology and other methodologies used by different authors with different DL
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Figure 5.11: (a) it is Real RUL vs Predicted RUL for a threshold of 50 in motor 1, (b) it is Real
RUL vs Predicted RUL for a threshold of 60 in motor 1 and (c) it is Real RUL vs Predicted RUL

for a threshold of 70 in motor 1.

approaches.

The authors who carry out the different investigations and the proposed method do so in similar
contexts, except for the work by [41] in 2008, where it is considered that the available computing
capacity was much lower than that currently available. The proposed methodology comparison is
made with recent works, from the year 2018 to 2020. Most of the authors use an experimental plat-
form with a windows operating system with Intel Core i5 to i7, 1.60-GHz CPU and 4-8GB RAM,
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Table 5.8: Comparison of the proposed methodology with other authors

Author Year Method Training time (s) RMSE Score Dataset

[41] 2008 RNN N/A 14,99 740,31 PHM08

[51] 2018 Extreme Learning Machine with TW 5,04 13,78 267,31 FD001

[50] 2018 LightGBM- Decision trees TW 50 13,45 250,4 FD001

[48] 2018 Bi-LSTM N/A 15,42 N/A FD001

[49] 2019 Residual CNN N/A 12,16 212,48 FD001

[46] 2020 CNN-BLSTM 200 12,66 304,29 FD001

Proposed

Method
2020 LSTM

2137

938

3.87

3.57

29.64

8.63

PHM08’

FD001

others use Ubuntu Linux with GTX 1080 GPU. This gives an indication that the comparison of
the models is being carried out under equal conditions, although they cannot be replicated because
there is not enough information.

In [51], they use an Extreme learning algorithm to model the relationship between time-series
data and RUL, combined with a moving window of time that serves to observe the data’s history.
This methodology’s main advantage is its short processing time and the use of a time-window for
sampling the sensor values to integrate the historical information; in this work, the authors use raw
data without preprocessing. The results presented in this research reach an RMSE value of 13, 78,
and a Score value of 267.31. This is a data-driven approach focused on Deep Learning techniques.
Another approach is [50]; authors use LightGBM- Decision trees, which works well with high-
dimensional inputs and easy to interpret. The methodology’s main contribution to the literature
is the rapid training time of the model; a time-window is used to observe the data. However, the
authors only validate the methodology with FD001 dataset. The results presented in this research
reach an RMSE value of 13, 45, and a Score value of 250.4. This is a data-driven approach focused
on Deep Learning techniques

Authors in [49] have shown the efficiency of using CNN in the prediction of failures in this type
of system. The residual CNN applies a residual block, which skips several convolutional layers by
using shortcut connections and overcoming vanishing problems. Also, the authors used a k-fold
ensemble method that better integrates the cross-validation. However, this methodology has the
limitation that the model’s tuning time is high because it is done by trial and error. The authors also
obtain good results with the FD001 dataset. Still, when they wanted to validate this methodology
with the FD004 dataset, the RMSE and standard deviation results were not satisfactory. That is,
this methodology is valid only for one operational condition and one failure mode. The results
obtained were an RMSE of 12.16 and a Score value of 212.48; however, they do not report model
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training times. This is a data-driven approach focused on Deep Learning techniques

On the other hand, the authors in [48] have used an LSTM neural network translating the raw
sensor data to an interpretable health index to describe the system health better and then track the
historical system degradation for accurate prediction of future health conditions. However, they
only used the FD001 dataset to validate this model. The results obtained from RMSE are 15.42,
reducing the prediction error by over two cycles; however, they do not report Score function val-
ues or training times. This is a data-driven approach focused on Deep Learning techniques. In
[46], a combination of Bi-LSTM and CNN networks is used to predict the system’s RUL values.
The authors used multiple CNN-BLSTM based models with different time window sizes to learn
several temporal dependencies between features, which expands the time window size and reduces
the training error compared to other time window approaches. However, even though this method
seems more robust, this methodology was validated only with the FD001 dataset for one opera-
tional condition and one failure mode. The results obtained from RMSE were 12.66, and the Score
values were 304.29 with a training time of 200 seconds. This is a data-driven approach focused on
Deep Learning techniques

The research works mentioned above have in common that they use only the FD001 dataset
of the CMAPS database. Even though all of them outperform the results they were compared,
they are not general methodologies; they only work under specific flight conditions and one fail-
ure mode. Contrary to other authors, [41] used the PHM08 database, one of the winners of the
competition reaching RMSE values of 14.99 and Score values of 740.31 without reporting training
times. This database presented two different failure modes and operational conditions that resulted
in 6 operating regimes; this author originally proposed a linear model by parts for the system’s
degradation and used a simple RNN network to develop the methodology proposed in his research
work. Also, he finally used a combination of three different models to estimate his Score results
function. This is a data-driven approach focused on Machine Learning techniques

In this case, the proposed methodology has the advantage of being a general model used to
analyze the two available databases for turbofan engines’ simulations. The above methodologies
seem robust and deep but have not reported results for the PHM08 database, except for [41], one
of the competition winners. The proposed methodology has the advantage of being a simple model
that uses a 4-layer LSTM neural network and does not require detailed data preprocessing. It is an
advantage considering that this research aims to apply them at an industrial level despite being a
research work. The RMSE and Score results obtained are 3.87 and 9.64, for the PHM08 database
and .57 and 8.63 for the CMAPS database, with training times of 2137 and 938 seconds, respec-
tively. It means that, for PHM08 and CMAPS datasets, predictions can be made with an error of
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approximately four-cycle, conservatively.

The proposed methodology has two main types of limitations, the data, and the hyperparame-
ters. First, the system’s data is a simulation that represents a restriction related to the type of faults
present. In the simulation, failures due to degradation in time are considered, but stochastic fail-
ures are not. However, with real data, the model could be adjusted for a combination of wear and
stochastic failure. Regarding the simulated data, the other limitation is on the system degradation
model, which, although it is not linear, does not adjust to what the degradation of a real process
would be. The second limitation of the method is the model and its hyperparameters. The selected
hyperparameters for this methodology are trial and error; this means that it was not possible to
cover all the hyperparameters’ values to optimize them and obtain the best resulting combination.
Despite the results obtained exceeding the literature’s data, there is no certainty that the hyperpa-
rameter combination used was the most optimal.

The proposed methodology is focused on aircraft turbine failures; therefore, the model’s train-
ing time is not a factor that considerably affects the model if it were to be applied at an industrial
level. This methodology aims to monitor the behavior of the system and predict when the aircraft
should be stopped for maintenance of the turbines with times that allow the completion of flights,
if necessary, for which time is not a determining factor. For the proposed method, RUL estima-
tion is related to degradation over time. However, the model could be improved with real data to
predict the remaining cycles to stop the engine for service and detect an anomaly in the sensor’s
measurements and use it as additional information.

The results shown in this chapter are the most relevant of the research work; then, in chapter
6, the conclusions, contributions, and possible future work are also shown. The appendices with
additional information are included in this work.



Chapter 6

Conclusions

Models that use data-driven approaches with DL techniques have high computational efficiency
and a high degree of precision when working with signals in the time domain without requiring
an extensive pre-processing or data adaptation stage. Furthermore, the development of general
models for different systems is feasible, representing an advantage if you want to take this type of
development to an industrial level. Currently, most companies have integrated systems that serve
to collect data from the sensors. The DL models offer the possibility of taking advantage of this
type of data to the maximum efficiency without higher computational cost than the data analysis
that can be performed through these models in the industry.

The methodology developed in this work using DL techniques, specifically LSTM neural net-
works, presents a high degree of efficiency when predicting RUL values in turbofan engines sub-
jected to different operating conditions. The highest error in terms of RMSE was 9.50, with a
standard deviation of 2.55. In terms of the Score function, they were 60.96 with a standard devi-
ation of 65.8; These values demonstrate the model’s better performance compared to the research
studies found so far.

6.1 Contributions

This work’s main contribution is a detailed methodology to estimate the RUL of a fleet of turbofan
engines. The methodology uses two datasets for its validation, and it can be used for engines with
different operating conditions and faults in the system. The specific contributions are described
below:

1. A new methodology using LSTM neural networks and time-domain signals is presented.

55
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This methodology allows the RUL estimation with an average RMSE value of 3.87 and an
average score function of 29.64 for PHM08’ dataset and an average RMSE value of 3.64
and an average score function of 8.82 for CMAPS dataset. It is worth mentioning that with
this methodology, the model estimates approximately 10 hours before the system fails. This
methodology also works efficiently for different thresholds in which you want to alert that
the personnel must repair the system, an industrial level, it is of great value.

2. A detailed test-based study of how hyperparameters affect LSTM networks and it best config-
uration of the network to work with different data domains of turbofan engines, with different
modes of operation and different types of failure with time-domain sensor data without the
need for extensive preprocessing of the data for use as input to the network.

3. The proposed model has an excellent capacity for generalization or adaptation to different
data; even when training with a smaller number of engines, the system can be considered
conservative since the RUL predictions are below the real values in most cases. Furthermore,
reduced computational resources indicate that the developed methodology has sufficient po-
tential to be considered in real-time industrial applications.

6.2 Future work

The present work demonstrated the excellent performance of LSTM neural networks in RUL esti-
mation of turbofan engine degradation. Even so, there are some points to keep in mind for future
work.

• Apply the methodology developed in this work in real-time processes with real data. It
would help to understand better what happens in a real process and what kind of problems
can arise when applying these models in a system. It to be able to apply this methodology at
an industrial level.

• Develop a model in which it is not necessary to pre-process the data so that the neural net-
work can learn the characteristics of the sensors with raw data; this could be achieved by
implementing a hybrid model, such as CNN or AE.

• The failure predictions through RUL that are made in this work assume a system’s behavior
since there is not enough information about the system; this has the advantage that the model
is developed to work with as little information as possible. However, As future work, a more
detailed model could be made in which the failure can be detected, diagnosed, and predicted
in a more precise way in the system if there is more information about it.
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• This methodology is developed using supervised learning techniques; as future work, the
field of unsupervised learning could be explored for the diagnosis and prediction of failures
using RUL. However, it should be taken into account that this type of learning is computa-
tionally more expensive and is less accurate and reliable than supervised learning
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Appendix A

Acronyms and Variables Descriptions

A.1 Acronyms

Table A.1: Acronyms Definitions

Acronyms Description

AE Auto Encoder

AI Artificial Intelligence

BiLSTM Bidirectional Long-Short Term Memory Neural Networks

CBM Condition Based Maintenance

CNN Convolutional Neural Network

ConvLSTM Convolutional Long Short Term Memory

DBN Deep Belief Network

DBM Deep Boltzmann Machine

DL Deep Learning

DRCNN Deep Recurrent Convolutional Neural Network

DSCNN Deep Separable Convolutional Neural Network

FNN Feed Forward Neural Network

GA Generic Algorithm

GRU Gated Recurrent Units

LSTM Long-Short Term Memory Neural Networks

MAE Mean Absolute Error

MSE Mean Squared Error

MHMS Machine Health Monitoring Systems

ML Machine Learning

MLP Multi layer Perceptron

PHM Prognosis and Health Management

RMSE Root Mean Squared Error

RRN Recurrent Neural Network

RUL Remaining Useful Life

SM Smart Manufacturing

SVM Support Vector Machine

SVR Support Vector Regression
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A.2 Variable description

Table A.2: Variables Description

Variable Description Units

bf Bias -

ct−1 Long term parameter -

d Difference between predicted and real value of RUL -

ft Forget gate -

ht−1 Short term parameter -

ṁf Fuel flow -

n Number of samples -

u aircraft speed -

w Wear of the system -

ŷ Estimation -

yi Real value -

A Constant -

B Constant that determine acceleration between stress combinations -

T Thrust -

Qr Fuel calorific value -

Cp Specific heat at constant pressure KJ
Kg.K

Cv Specific Heat at Constant Volume KJ
Kg.K

P2 Pressure in 2 KPa

P1 Pressure in 1 KPa

Qin Energy investment KJ

Wout Exit work KJ

Win Entrance work KJ

Wf Weights -

γ Ratio of heat capacity -

ηi Ideal efficiency -

σ Activation function -



Appendix B

Results of real vs predicted RUL

This appendix shows the actual vs. predicted RUL results for other engines used in the case study,
so that the different behaviors in the data can be observed.
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Figure B.1: Real RUL vs predicted RUL using a threshold of 50, 60, and 70 in motor 3 for
PHM08’ dataset.
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B.2 Engine 4
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Figure B.2: Real RUL vs predicted RUL using a threshold of 50, 60, and 70 in motor 4 for
PHM08’ dataset.
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Figure B.3: Real RUL vs predicted RUL using a threshold of 50, 60, and 70 in motor 5 for
PHM08’ dataset.
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B.4 Engine 61
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Figure B.4: Real RUL vs predicted RUL using a threshold of 50, 60, and 70 in motor 61 for
PHM08’ dataset.

B.5 Engine 190

0 50 100 150
0

20

40

60

80

100

120 Real valuesReal values
Predicted valuePredicted value

RUL (real) vs Predictions of motor 190 in train set

Cycles

R
U

L

Threshold of 50

Truel RUL= 52

Predicted RUL= 55.12

0 50 100 150
0

20

40

60

80

100

120 Real valuesReal values
Predicted valuePredicted value

RUL (real) vs Predictions of motor 190 in train set

Cycles

R
U

L

Threshold of 60

Truel RUL= 63

Predicted RUL= 64.36

0 50 100 150
0

20

40

60

80

100

120 Real valuesReal values
Predicted valuePredicted value

RUL (real) vs Predictions of motor 190 in train set

Cycles

R
U

L

Threshold of 70

Truel RUL= 70

Predicted RUL= 69.48

Figure B.5: Real RUL vs predicted RUL using a threshold of 50, 60, and 70 in motor 190 for
PHM08’ dataset.
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