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Hedging and optimization of energy asset portfolios 
 

By 
 

Roberto Raymundo Barrera Rivera 
 

Abstract 

 

This thesis includes three papers on hedging and optimization of energy asset portfolios. 
The regulatory scheme for natural gas (NG) prices in Mexico is described and the 
behavior of international and domestic gas prices and the peso-dollar exchange rate from 
January 2012 to June 2017 is analyzed. Statistical analysis reveals that volatility in the 
daily growth rate of international NG prices exceeds daily fluctuations in the exchange 
rate. Based on this knowledge, the behavior of First-Hand Sales prices is modeled, and 
two price hedging strategies are proposed, one through futures and the other through 
swaps. Given how First-Hand Sales prices are calculated, the optimal futures hedge 
should consider the acquisition of gas futures one and two months prior as well as 
contemporary exchange rate futures. 

Based on a hedging strategy that includes NG futures and using an MGARCH VCC 
(MGARCH stands for Multivariate Generalized Autoregressive Conditional 
Heteroskedasticity and VCC for Variable Conditional Correlation) model, conditional 
variances were estimated with lags of 20 and 40 days between the prices of NG Futures. 
Dynamic hedges of NG were calculated assuming theoretical futures prices of the US 
dollar in Mexican pesos. By applying backtesting, it was found that the forecasts of 
optimal hedge ratios improve with short prediction periods and proximate observed data. 
The dynamic hedging model proposed can be extended to other fuel markets. The 
importance of hedging NG prices derives from the size of the market and the extent of 
the risks to which the market participants are exposed. 

Using the share price data of six energy companies of Latin America and other regions 
and two crude oil futures, this thesis proposes the integration of hedging portfolios and 
the calculation of efficient frontiers under different risk measures. The original financial 
series are transformed into new ones to improve the risk measurement. With the new 
series obtained through simulation with the support of the Extreme Value Theory and t-
copulas, different conditional risk measures are calculated. These conditional risk 
measures are used to solve the hedging and optimization problems. Non-linear integer 
programming techniques are used to obtain these solutions. The programming codes 
used to generate the new series and solve the hedging and optimization problems are 
presented in the annexes. Due to the economic value and the volatility of energy markets, 
hedging strategies and portfolio optimization are useful tools to reduce non-desired levels 
of risk or to avoid unnecessary costs.  
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Chapter 1 

Introduction 

1.1. Motivation 

This thesis deals with energy risk management and how tools are combined to obtain 
practical solutions to problems: whether it be how to minimize risk in a Natural Gas 
(NG) position, how to update that solution over time, or how to forecast solutions 
and, for international energy asset portfolios, how to obtain combinations that give 
the smallest possible risk and how to combine portfolio components in order to 
minimize risk that is subject to certain performance standards. All the preceding 
without bypassing the issue of how to measure the risk. 

According to the Energy Information Administration (EIA), in 2017 total energy 
demand around the world was 14,034,897 ktoe1 (kilo tonnes of oil equivalent). Of 
this demand, 40.46% was for petroleum products, 18.45% for electricity and 14.99% 
for NG. Part of the demand for NG was used in electricity generation. The energy 
market is volatile: in the 12 months leading up to March 2020, daily volatility in the 
US dollar price for West Texas Intermediate (WTI) was US $9.28 and volatility of the 
daily log returns for the same period was 5.14%. The energy market, and in particular 
the hydrocarbon market, is large (economically valuable) and volatile. 

These two characteristics of the energy market are an invitation to manage risk. For 
this purpose, there are financial derivatives such as futures, options, and others that, 
together with analysis and optimization tools, make it possible to obtain solutions 
that limit exposure to risk, transferring it to third parties. All this for the benefit of 
whoever owns the energy assets. 

Despite the development of risk management tools in the North American, Asian, 
and European energy markets, their use has not been widespread in countries such 
as Mexico. This thesis looks at certain analyses carried out for Latin American 
markets. 

1.2. Problem Statement and Context 

Some energy markets, such as that for NG distribution, are natural monopolies; 
consequently, their activities should be regulated to avoid predatory practices. One 
of the most frequently used regulatory instruments is price capping. Until June 2017, 
the maximum price for NG in Mexico was established by the country's Energy 
Regulatory Commission (CRE for the acronym in Spanish). This maximum price is 
known as the First-Hand Sales Price (PVPM for the acronym in Spanish), and the 
mechanism to establish it will be explained later. Since participants in the NG market 
are usually exposed to fluctuations in the raw material price (i.e., the price of the NG 

                                            
1 A ton of oil equivalent corresponds to 41,868,000,000 J (joules) or 11,630 kWh (kilo-watt hours). 
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molecule), and possibly exchange rate fluctuations for the commodity's price, 
strategies should be developed and specific solutions found that reduce exposure to 
price and exchange rate risk. In this work, hedging strategies are proposed and 
optimal solutions to minimize risk are obtained for a given period. 

Optimal solutions to NG hedging problems are changeable over time and depend on 
collecting new data. These changes can be explained through models whose results 
serve to produce forecasts for the immediate future, which in turn can be used to 
determine solutions that can be applied even before new events occur. These 
forecasts and solutions should be evaluated to see how accurate they are and, if 
necessary, to make adjustments. In this thesis, the problem of dynamic NG hedging 
is also raised, and a model is proposed to obtain conditional variances and 
correlations. Forecasted optimal hedging solutions are obtained and evaluated by 
backtesting, and measures to improve the effectiveness of the forecast are 
proposed. 

The NG hedging problem can be extended to a portfolio comprised of energy 
company shares and crude oil futures, with a different methodology - that of portfolio 
optimization - and extending it to other risk measures. Portfolio hedging, which is 
understood to mean a given solution that minimizes risk, is a specific example of a 
solution for the risk-return model in which the risk measure may be different from the 
portfolio returns variance. If other risk measures are adopted and simulations are 
used, it is advisable to generate more data than those observed, using interpolation 
and extrapolation techniques. Using a portfolio of emerging international energy 
companies who receive less coverage from industry analysts, hedging and 
optimization models are developed employing three different risk measures. These 
risk measures are evaluated, and optimal solutions are obtained through 
simulations. 

1.3. Research Questions 

In approaching, developing and solving the NG hedging model, it is necessary to 
verify whether gas futures are desirable instruments to incorporate into a hedging 
portfolio, the periods during which they best correlate to the NG position to be 
hedged, and whether the returns on the futures in those time periods are statistically 
independent from each other. Additionally, it is essential to determine the optimal 
hedge ratios, i.e., the proportions between the hedged portfolio's long and short 
positions that minimize its variance. In a portfolio of optimal hedges, the volatilities 
of the short positions closely replicate the volatilities of the long positions; therefore, 
the route to hedging solutions is the one used to create synthetic instruments. The 
solutions so obtained are applicable to the periods analyzed, although it would be 
important to find out if they can continue to be effective in the future. 

Changes in the prices of assets in a hedged position can be explained through 
statistical models that feed back to the results of previous estimates. If these models 
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attain high likelihood values and their estimates have high levels of confidence, they 
can effectively forecast future results based on the latest actual observations. This 
thesis proposes a model that determines forecasts, which are then tested by 
backtesting to ascertain whether the results are effective, i.e., whether they are close 
to future values. To increase the effectiveness of the forecasts, a set of data closer 
to the forecast period should be tested as well as determining the horizon of the 
period for which the forecasts are closest to the observed values from backtesting. 

In a portfolio of energy assets, it is likely that asset returns are correlated. For this 
reason, obtaining optimal hedging ratios with changing information becomes 
complex. In addition, since the historical data are discrete, the calculation of some 
risk measures yield "step patterns". Therefore, it is desirable that, without altering 
the most important statistical characteristics of the series, the number of data is 
increased by means of interpolation and extrapolation techniques. On the other 
hand, some risk measures are not coherent, and it is therefore necessary to measure 
the risk differently, which leads to a much more complex calculation. 

This thesis proposes a portfolio of shares in energy companies and oil futures whose 
historical data are transformed into new series to improve the measurement of risk 
under different measures and different scenarios. The first problem that arises is that 
of hedging. For its solution, a reference portfolio must be defined. The second, more 
general problem is obtaining efficient frontiers with different risk measures. Risk 
minimization as an objective, subject to certain performance levels, requires the 
solution of non-linear integer programming models. 

1.4. Solution Overview 

Since Henry Hub NG prices in the United States play a role in determining PVPMs, 
it should not be surprising that Henry Hub NG futures are a good hedge for PVPMs 
and that peso-dollar futures can also reduce currency risk exposure in peso NG 
positions. Given the statistical independence between dollar NG futures with one- 
and two-month lags and that the NG position to be hedged, the optimal hedging 
ratios can be obtained through closed formulas or regression coefficients using 
ordinary least squares (OLS). The optimal hedge is the one that is best for the whole 
period analyzed but not necessarily for sub-periods or for the immediate future. The 
objective of the hedge is to minimize risk without considering return, since the aim is 
to replicate the volatility of the position to be hedged; however, the hedge may also 
have a return objective. 

The conditional variances and correlations of the data from the analysis period are 
calculated, as has already been mentioned, with a model whose estimates are 
significant. The model allows for predicting values for the immediate future through 
known data. The forecasts are more accurate to the extent that the data used are 
closer to the period to be predicted, provided that the solutions with high degrees of 
likelihood produce convergent solutions. The effectiveness of forecasts decreases 
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as the prediction horizon increases. The use of backtesting allows the model to be 
calibrated, both in terms of coefficients and the extent of the actual data and the 
horizon to be predicted. The process of dynamic hedges is iterative, as new 
information is received. 

In the transformation of the data from the analysis period by interpolation and 
extrapolation, one type of distribution function is used for the central part of the 
original data series and another for the extreme tails. The application of the proposed 
method adds new internal and extreme elements to the original data, without losing 
its original statistical characteristics, so that it is possible to estimate risk measures 
with greater precision. In order to determine the hedging solutions and efficient 
frontiers under different risk measures, optimization algorithms are executed so that, 
in the case of hedging, the minimum of minimums is reached for each risk measure 
and, for the efficient frontiers, the minimum risk portfolios are obtained for a range of 
returns. This way the investor can select the risk-return combination that best 
matches their preferences. 

In the following chapters, three essays on hedging and optimization of energy assets 
are presented: Strategies for Hedging First-Hand Natural Gas Prices in Mexico: 
Barrera-Rivera, R. & Valencia-Herrera, H. (2019); Dynamic Hedging of Prices of 
Natural Gas in Mexico: Barrera-Rivera, R. & Valencia-Herrera, H. (2020); and 
Hedging and Optimization of Energy Asset Portfolios: Barrera-Rivera, R. & Valencia-
Herrera, H. (2021). The final chapter presents the conclusions of the thesis. 
Additionally, references and annexes are included. 

After the review of the thesis’ examiners, they recommended to include some 
elements of analysis at the end of chapter 2 and chapter 3 which were not included 
in the original versions of the articles. 
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Chapter 2 

Strategies for Hedging First-Hand Natural Gas Prices in Mexico 

2.1. Introduction 

The structure of energy markets sometimes requires price regulation. One example is 
the Natural Gas (NG) market, where natural monopolies are created based on activity 
or geographic location. In such cases, governments decide to regulate prices by 
imposing prices caps as a defensive measure to support market participants. 

Until June 2017, Mexico's Energy Regulatory Commission (CRE for the acronym in 
Spanish) restricted the NG prices that Petróleos Mexicanos (PEMEX), the state oil 
consortium, used for the first sale of gas to other participants in the distribution chain. 
Such prices are known in Spanish as the precio de venta de primera mano (PVPM), 
or first-hand sales price. These were fixed for a period, usually one month, were 
denominated in pesos, and initially referred to two strategic geographic points: the 
main gas import site (Reynosa) and the main production hub (Ciudad Pemex). 

Other prices in the distribution chain were determined based on PVPM, considering 
other factors such as transportation costs, taxes, margins, and return on investment. 
Since PVPM remained fixed for one month and was denominated in pesos, and NG 
prices in the U.S. market changed frequently and were denominated in dollars, there 
was a possibility that the importer, distributor, or consumer of gas would use a hedge. 
This was to mitigate risks from selling or consuming at a set price in one currency 
(Mexican pesos) and eventually having to acquire the commodity in the future at 
another price, which was fixed according to floating prices (prices in the southern U.S.) 
in another currency (U.S. dollar). 

In the following sections we describe the literature on oil and gas hedging and the 
mechanism of PVPM in Mexico, analyze the statistical series of prices, indexes and 
quotes, propose hedging strategies with futures, outline work that could be developed 
in the future, and finally, draw conclusions. 

2.2. Conceptual Framework 

2.2.1. Background 

Rosellón (2008) highlights the CRE's work since 1996 to adopt a methodology for NG 
prices that linked them to prices in the southern United States through the netback rule 
and the Little-Mirrlees approach. He points out that, when setting a reference price, it 
is advisable to use two geographical points - the import point and the domestic 
production point - and to adopt an intermediate point that presumably reduces the 
arbitrage between the options to import or to buy gas from domestic production. 
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Literature that analyses oil and gas hedging is extensive. Pindyck (2003) examines 
the behavior of volatility in natural gas and crude oil futures prices since 1990. He finds 
that there is a short-term trend in volatility due to shocks and that, during these, the 
interrelationship between the volatilities of both hydrocarbons increases. Jin & Jorion 
(2006) study the hedging activities of 109 U.S. oil and gas producers and analyze the 
effects that these activities have on the value of the companies. They find that hedging 
reduces the companies' stock price sensitivity to fluctuations in hydrocarbon prices. 
Using a partial regression model, Woo, Olson & Horowitz (2006) prove that California 
NG users can exploit cross-hedging opportunities with the Henry Hub index and even 
forecast the index's behavior, thereby improving risk management through futures or 
swaps. The authors point out that in 2000, the price of NG in that state increased 
tenfold. 

Regarding pricing forecasts, Wong-Parodi, Dale & Lekov (2006) compare the 
forecasts for NG prices published by the U.S. Energy Information Administration (EIA) 
with those from the New York Mercantile Exchange (NYMEX). They found that prices 
on the futures market are a better indicator than the forecasts released by the 
government agency, which consistently overestimated prices during the 1982-2005 
period. Brown & Yücel (2008) study the independent movement of NG and crude oil 
prices. They develop an error-correction model to show that crude oil prices influence 
NG prices; consequently, both products can be regarded as substitutes. Kaufmann & 
Ullman (2009) study the effect of innovation on hydrocarbon prices and how these 
effects spread to other prices in the spot and futures markets. They also analyze the 
long-term relationship between spot and futures prices. Nomikos & Andiosopoulos 
(2012) investigate the behavior of the prices of eight energy products listed on the 
NYMEX, both in the spot and futures markets, and conclude that there is a leverage 
effect for West Texas Intermediate (WTI) and heating oil while in the remaining 
markets the effect is inverse. 

Other authors have analyzed the volatility of oil prices. Suenaga, Smith & Williams 
(2008) examine the volatility of NYMEX NG futures prices and conclude that prices 
exhibit seasonality in winter, in addition to the fact that the effect of price shocks is 
persistent; therefore, hedging strategies that do not consider these factors are sub-
optimal. Agnolucci (2009) compares the predictive ability of Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) models and implied volatility 
models to estimate volatility in the prices of WTI futures contracts on the NYMEX 
based on statistical and regression results. Wei, Wang & Huang (2010) use different 
GARCH models to estimate the volatility of Brent and WTI crude oil prices and find 
that non-linear models are better at capturing long-term effects and asymmetric 
volatility. 

More recently, Scholtens & van Goor (2014) analyze the volatility in NG prices in the 
United Kingdom and conclude that GARCH models based on supply and demand and 
supported by theoretical assumptions of an economic nature are good predictors. 
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Asche, Oglend & Osmundsen (2017) find that when NG prices are decoupled from oil 
prices due to short-term effects, models such as Error Vector Correction can lead to 
erroneous conclusions about the nature of the co-integration relationship. Ghodussi & 
Emamzadehfard (2017) experiment with hedging alternatives in the U.S. NG market. 
They contrast the use of a single futures contract with the use of futures contracts that 
exceed the time-to-maturity for hedging six different physical price positions. They 
conclude that using longer maturity contracts can increase the effectiveness of the 
hedge. 

2.2.2. Regulation of Natural Gas Prices 

Since NG transportation and distribution are natural monopolies, the government 
regulates prices to protect the consumer. Investment in transmission and distribution 
networks in certain areas is so costly that it would be problematic to have overlapping 
networks belonging to different suppliers; it would simply ensure that some 
investments lay idle, the costs of which would eventually be passed on to the 
consumer. For this reason, regulators usually fix maximum selling prices that allow 
regulated companies to recover their investments and costs at a reasonable 
capitalization rate. 

This asymmetrical regulation is applicable to other parts of the production, 
transportation and distribution chains whenever monopolistic situations arise. For 
example, when there is a single producer or a dominant warehouser, or a carrier that 
owns the only pipeline in a region, or a distributor in an urban area. 

In addition to limits on prices and tariffs, regulators use other measures, which could 
include allowing use of a sole operator's facilities and equipment, mandatory 
unbundling, and restrictions on monopolies. Recently, for example, regional 
distributors in Mexico have had to open their networks to sellers with marketing and 
administration capabilities but no infrastructure, who offer NG to consumers and 
handle the final sale. 

The NG price regulation model is widely used in market economies. The methodology 
for regulating NG prices has evolved since its first appearance in Mexico 22 years ago. 
In February 2016, the CRE published its most recent approach, establishing the 
method for calculating the PVPM in two hubs: Reynosa and Ciudad Pemex, with two 
different frequencies: daily and monthly. 

2.3. Methodology 

To develop this work, price series, indexes, and quotations from the beginning of 2013 
to September 30, 2016 were used. The NG price series in the U.S. were taken from 
the EIA website. Spot and futures market prices correspond to those from the NYMEX; 
the PVPM in Reynosa and Ciudad Pemex are those published by the CRE. The Henry 
Hub and Houston Ship Channel indexes are from Platts and the peso-dollar exchange 
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rate are those published by the Bank of Mexico (BANXICO for the acronym in 
Spanish). 

The following factors were taken into account for each of these prices: (1) the 
estimated price of NG in South Texas; (2) whether there is a net import or export of 
NG in the country; (3) the cost of transportation between Reynosa and South Texas; 
(4) the transportation rate of the Sintragás system from Reynosa to Ciudad Pemex, 
and (5) the peso-dollar exchange rate. 

To estimate the price of NG in South Texas, the indexes used were: (1) Henry Hub, 
(2) Houston Ship Channel published by Platts, and (3) other local Texas indexes.  

Transportation rates in the U.S. were estimated using the following systems: (1) 
Tennessee Gas Pipeline Company, L.L.C.; (2) El Paso Natural Gas Company, L.L.C., 
and (3) Texas Eastern Transmission, LP, published by the United States Federal 
Energy Regulatory Commission (FERC). 

The parameters obtained from an Ordinary Least Squares model using an Engle-
Granger procedure, in which the dependent variable is the PVPM and the factors are 
the independent variables, were applied to the above-mentioned factors. Such 
parameters are public and are updated from time to time. 

There is a time lag for data. For example, the exchange rate is based on an average 
taken from the 15 days prior to the month corresponding to the PVPM. In the model, 
values of factors from previous periods (months or days) are introduced. 

Using the values of the PVPM in Reynosa or Ciudad Pemex, PVPMs are calculated 
for each of the Gas Processing Terminals and other geographic points where PEMEX 
delivers fuel to be transported and distributed. The PVPMs are transmitted along the 
whole chain and become the component that most affects the price to the end-
consumer, whether industrial or domestic. In most cases, prices to distributors or end-
users are sustained for one month and are quoted in Mexican pesos per gigajoule or 
by volume. 

Consequently, the price of fuel remains fixed in pesos during the period while the dollar 
price of imported fuel frequently varies. 

2.4. Analysis 

2.4.1. Statistical overview of the price series 

As has been mentioned, several factors influence setting the PVPM. In this essay, we 
will concentrate on two: (1) the price of NG in dollars in South Texas; and (2) the peso-
dollar exchange rate. The other factors have less relevance in determining PVPM and 
are less volatile. 
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Figure 2.1 shows the daily and monthly PVPM in Reynosa for the analysis period. 
Note that the monthly value does not correspond to the average of the daily values. 
This is because the monthly PVPM was determined one day before the beginning of 
the month and was sustained throughout the period, while the daily prices, although 
also calculated one day in advance, were modified daily, allowing them to reflect more 
updated international price information. 

Figure 2.1. Daily and monthly PVPM in Reynosa during the period of analysis. 

 

Source: Own elaboration with data of the CRE. 

Statistics of the series of daily PVPMs in Reynosa are shown in Table 2.1. Table 2.2 
includes statistics of the natural log series of PVPM variations, to eliminate the effect 
of the PVPM's first value.  
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Table 2.1. Statistics of the series of daily PVPM in Reynosa (US$/MMBtu) during 
the period of analysis. 

Mean 3.27564 
Typical error 0.028812 
Median 3.2662 
Mode 3.776 
Standard deviation 0.894104 
Variance 0.799423 
Kurtosis 2.021911 
Skewness 0.753176 
Range 6.4395 
Minimum 1.5458 
Maximum 7.9853 
Observations 963 

Source: Own elaboration with data of the CRE. 

Table 2.2. Statistics of the daily continuous growth rate of PVPM in Reynosa 
during the period of analysis. 

Mean -6.376E-05 
Typical error 0.00153 
Median 0 
Mode 0 
Standard deviation 0.047719 
Variance 0.002277 
Kurtosis 59.72235 
Skewness -0.789370 
Range 1.095689 
Minimum -0.662498 
Maximum 0.4331 
Observations 962 

Source: Own elaboration with data of the CRE. 

The dispersions are of special interest to this work: the standard deviation for daily 
PVPM in Reynosa, in dollars, for the period analyzed was 0.894104 and that of the 
logarithmic variation was 0.047719. 

Similarly, the Henry Hub and Houston Ship Channel index series were analyzed, as 
well as the spot and futures prices for 1-month and 2-month NG contracts on the 
NYMEX and the peso-dollar exchange rate quotations. Since a high correlation was 
found between the daily PVPM and the spot price of NG on the NYMEX, we will focus 
on the graphs and statistics of NG on the NYMEX and the peso-dollar exchange rate. 
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Figure 2.2 shows the NYMEX NG spot price chart for the period analyzed. At a glance, 
you can see the similarity of the profile with Figure 2.1 that shows the daily PVPM in 
dollars in Reynosa. 

Figure 2.2. Spot prices of NG at NYMEX in US$/MMBtu during the period of 
analysis. 

 

Source: Own elaboration with data of the NYMEX. 

As indicated in Tables 2.3 and 2.4, the standard deviation of the spot price series from 
the NYMEX was 0.961053 and the continuous daily growth rate was 0.040707. The 
standard deviation of the continuous daily growth rate of NG on the NYMEX was less 
than that of the daily growth rate of PVPMs in dollars in Reynosa for the same period 
(0.047719). This means that, during the period analyzed, the PVPM in Reynosa was 
more volatile than the spot price of NG on the NYMEX. Finally, the behavior of the 
peso-dollar exchange rate for the period is shown in Figure 2.3.  
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Table 2.3. Statistics of the daily spot price series of NG at NYMEX (USD/MMBtu) 
during the period of analysis. 

Mean 3.323406 
Typical error 0.030969 
Median 3.32 
Mode 2.88 
Standard deviation 0.961053 
Variance 0.923623 
Kurtosis 1.820140 
Skewness 0.700156 
Range 6.66 
Minimum 1.49 
Maximum 8.15 
Observations 963 

Source: Own elaboration with data of the NYMEX. 

Table 2.4. Statistics of the daily continuous growth rate of NG spot prices at 
NYMEX during the period of analysis. 

Mean 0.000297 
Typical error 0.000147 
Median 0 
Mode 0 
Standard deviation 0.005437 
Variance 2.96E-05 
Kurtosis 5.254254 
Skewness 0.269750 
Range 0.070360 
Minimum -0.029854 
Maximum 0.04050 
Observations 1368 

Source: Own elaboration with data of the NYMEX. 

Finally, the following shows the behavior of the peso-dollar exchange rate during the 
period: 
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Figure 2.3. Mex Peso -- US Dollar exchange rate during the period of analysis. 

 

Source: Own elaboration with data of the BANXICO. 

As can be seen in Figure 2.3, the exchange rate underwent greater volatility starting 
in 2015, which continued through to the last date in the period analyzed. 

Table 2.5 shows statistics of the daily continuous growth rate (logarithmic differences) 
for the exchange rate. During the period of analysis, the standard deviation of the daily 
continuous growth rate was 0.005437. From 2015 onwards, this standard deviation 
increased to 0.006380 (not shown in the Table). Accordingly, and during the period 
considered, the volatility of NG prices in dollars (NYMEX), measured through the 
standard deviation of the logarithmic variation, was eight times the volatility of the 
peso-dollar exchange rate. 
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Table 2.5. Statistics of the daily continuous growth rate of the peso – dollar 
Exchange rate during the period of analysis. 

Mean 0.000297 
Typical error 0.000147 
Median 0 
Mode 0 
Standard deviation 0.005437 
Variance 2.956E-05 
Kurtosis 5.254254 
Skewness 0.269750 
Range 0.070360 
Minimum -0.02985 
Maximum 0.04050 
Observations 1368 

Source: Own elaboration with data of the BANXICO. 

2.4.2. Characteristics of the First Hand-Selling Price in Reynosa 

Ever since an open market for NG imports has existed in Mexico, the PVPM in 
Reynosa has been the reference for prices in other markets, including the PVPM in 
Ciudad Pemex (the production center). PVPM in Ciudad Pemex was not calculated 
based on production costs but as a price that balanced the import with the hypothetical 
export of NG. For this reason, we will focus on the PVPM in Reynosa and on its 
monthly rate, which more clearly demonstrates the option of adopting a hedging 
strategy. 

During the period studied, the monthly PVPM in dollars in Reynosa was highly 
correlated with the daily prices of the NYMEX's NG Future Contract 1. Figure 2.4 
shows the similarity of monthly PVPMs to the daily prices of the futures contract.
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Figure 2.4. Monthly PVPM in dollars in Reynosa vs contract prices of the Future #1 
in the NYMEX during the period of analysis. 

 

Source: Own elaboration with data of the CRE and NYMEX. 

We can get a closer look at the behavior of these prices by analyzing their differences 
or changes, i.e., whether the rise or fall in daily NG prices in Reynosa has any relation 
to, for example, the change in futures prices on prior days. Table 2.6 shows the results 
of simple linear regression between daily differences of the PVPM in dollars in 
Reynosa and daily differences of the NG Futures Contract 1 prices on the NYMEX 
with a one-day lag. 

Table 2.6. Statistics of the simple linear regression between the daily differences 
of the PVPM in dollars in Reynosa and the differences of the NG Future #1 prices 

at Nymex with a lag of one day during the period of analysis. 

Variable Coefficient Standard error T statistic Prob. 
Future # 1 (-1) 0.980709 0.010414 94.16891 0.0000 
C 0.043812 0.035484 1.234683 0.2173 

R2 = 0.902318; R2 adjusted = 0.902216 

Source: Own elaboration with data of the CRE and NYMEX. 
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We can see in Table 2.6 that 90.2216% of the variances of the adjusted daily 
differences of PVPM in dollars in Reynosa can be explained by the variations of the 
daily differences in the NG Futures Contract 1 prices on the NYMEX with a one-day 
lag, during the period analyzed. 

The peso-dollar exchange rate comes into play when converting the PVPM in dollars 
to pesos. However, there is no significant correlation between NG prices in dollars 
(NYMEX) and the peso-dollar exchange rate. The correlation between the logarithmic 
variations of both factors was -0.0545 for the analysis period. 

2.5. Hedging strategy with futures 

Among the multiple hedging strategies that participants in the NG production or 
distribution chain in Mexico can adopt is one using futures contracts. To demonstrate, 
we will take the case of an urban NG distributor and an industrial consumer.  

2.5.1. The use of futures contracts for hedging 

The NG distributor in an urban zone acquires from PEMEX, or from an importer, fuel 
that will later be sold to domestic or industrial consumers. The distributor acquires the 
NG at a fixed price at the city gate once the gas has been transported from the point 
of importation or from the processing terminal. For one month, the gas purchase price 
will be fixed in pesos and the distributor will, in turn, have to sell it at a fixed price to 
their consumers. The following month, the distributor will purchase the NG at a 
different price that will depend on fuel prices in South Texas and the peso-dollar 
exchange rate, among other factors. To manage the risk represented by fluctuations 
in both the price of NG in dollars and the exchange rate, the distributor may enter into 
futures contracts for gas as well as for the exchange rate. 

It should be recalled that, as noted in Figure 2.4 above, the volatility in the price of NG 
in dollars is generally higher than the volatility of the exchange rate, so the two hedging 
strategies - for the price of NG in dollars and for the peso - could be independent and 
intermittent. 

The NYMEX market offers NG futures contracts with monthly expirations that span a 
decade ahead. For example, the last trading day for the December 2016 contract was 
the prior November 28 for delivery by December 31, 2016. Each contract size was for 
10,000 MMBtu and the tick size is USD $0.001. 

The Chicago Mercantile Exchange (CME) peso-dollar futures contract is for 500,000 
MXN, with a minimum dollar-to-peso exchange rate fluctuation of 0.00001, equivalent 
to USD $5.00 per contract. The contracts have monthly expirations and cover an 18-
month period. 
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A distributor who speculates that NG prices in dollars will rise and that the peso will 
depreciate in the next weeks or months can buy NG futures on the NYMEX and buy 
dollar futures on the CME. To do so, they will need to open contracts and deposit 
collaterals. Before their expiration date, the distributor should reverse their position 
unless they wish to take "physical delivery" of the goods. In the event of a reverse 
trade, the distributor will take their profit or loss to the spot exchange market to convert 
the dollars into pesos. With the potential profit, the distributor will be able to acquire 
NG at the new PVPM. If the hedging strategy was successful, the distributor will have 
the ability to acquire the same or a higher volume of NG as a result of good risk 
management. Figure 2.5 diagrams the use of futures contracts as a hedging tool. 

Figure 2.5. Diagram of the use of hedges with NG futures and dollars. 

 

Source: Own elaboration. 

Evidently, it would be the inverse operation if expectations were for prices to decrease. 
Futures would be sold on the NYMEX and, if necessary, dollar futures would be sold 
on the CME. In any case, the result in dollars would be expected to be positive. 

The classic theory of hedging with futures - see for example Hull (2007) and Ghoddusi 
and Emamzadehfard (2017) - consists of reducing or nullifying the price volatility of a 
spot position by including a certain number of futures contracts in the portfolio. If you 
have a portfolio P with 𝑛𝑛𝑆𝑆 long positions in assets and 𝑛𝑛𝐹𝐹 short positions in futures, the 
hedge ratio would be the number of future positions to hedge one unit of the spot 
position, i.e., ℎ = 𝑛𝑛𝐹𝐹

𝑛𝑛𝑆𝑆
. 

The value of the portfolio, considering 𝑛𝑛𝑆𝑆 units of assets to be hedged and 𝑛𝑛𝐹𝐹 units of 
futures, would result from the equation (2.1). 

𝑃𝑃 =  𝑛𝑛𝑆𝑆 𝑆𝑆 −  𝑛𝑛𝐹𝐹 𝐹𝐹 (2.1) 

Consequently, the changes in the hedged portfolio result from the equation (2.2). 

∆𝑃𝑃 =  𝑛𝑛𝑆𝑆 ∆𝑆𝑆 −  𝑛𝑛𝐹𝐹 ∆𝐹𝐹 (2.2) 
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The minimum variance hedge ratio is estimated by selecting the number of futures 
contracts that minimize the conditional variance of changes in portfolio value. The 
optimal hedge ratio is the equation (2.3). 

ℎ∗  = 𝑛𝑛𝐹𝐹
𝑛𝑛𝑆𝑆

= 𝐶𝐶𝐶𝐶𝐶𝐶�∆𝑆𝑆,∆𝐹𝐹�𝐼𝐼�
𝑉𝑉𝑉𝑉𝑉𝑉�∆𝐹𝐹�𝐼𝐼�  (2.3) 

where I is the set of information in time 𝑡𝑡 and ℎ∗ is the optimal hedge ratio. 

As mentioned, the PVPM in Reynosa is a maximum price for NG in Mexico. The 
formula for determining the monthly price according to the CRE considers the previous 
monthly international NG prices from Henry Hub, Texas Eastern STX, Tennessee 
Zone 0, and Houston Ship Channel, adjusted for other factors such as transportation 
costs. In particular, the CME quotes NG futures contracts using the Henry Hub 
numbers as a reference. 

These futures contracts are closely related to their underlying. Also, gas prices at 
Henry Hub are closely related to those of Texas Eastern STX, Tennessee Zone 0 and 
Houston Ship Channel, as can be seen in Table 2.7. Consequently, hedge ratios could 
be estimated using the PVPM in Reynosa and CME's Henry Hub NG futures as spot 
prices. 

Table 2.7. Correlation between the monthly growth of different international prices 
of NG during the period of analysis. 

 Futures # 1 Henry Hub Houston SC Tennessee Texas STX 
Futures # 1 1.000000 0.832366 0.881157 0.853803 0.846315 
Henry Hub 0.832366 1.000000 0.975052 0.992991 0.990873 
Houston SC 0.881157 0.975052 1.000000 0.980367 0.985568 
Tennessee 0.853803 0.992991 0.980367 1.000000 0.994432 
Texas STX 0.846315 0.990873 0.985568 0.994432 1.000000 

Source: Own elaboration with data of the NYMEX and Platts. 

To estimate the hedge ratios, equation (2.4) is used, where Δ𝑃𝑃𝑡𝑡 is the monthly growth 
of the PVPM in Reynosa with respect to its price in month t and Δ𝐹𝐹1,𝑇𝑇 is the growth of 
Henry Hub one-month gas futures vis-à-vis its price in period 𝑇𝑇 on the NYMEX of the 
previous month.  

Δ𝑃𝑃𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1 Δ𝐹𝐹1,𝑇𝑇 +  𝜀𝜀𝑡𝑡   (2.4) 

Given that the estimate for PVPM takes into account a lag in international NG prices, 
futures from previous periods could be useful for hedging PVPMs.  
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Figure 2.6 shows the growth in one-month futures prices and the growth of PVPM in 
Reynosa in dollars. This shows that the Reynosa one-month and two-month lead 
PVPMs have a statistically significant correlation with one-month futures. 

Figure 2.6. Correlation between the growth of the Henry Hub one-month futures 
and the growth of the monthly PVPM in dollars in Reynosa during the period of 

analysis. 

 

Source: Own elaboration with data of the NYMEX and CRE. 

Table 2.8 shows the hedge ratios of CME NG futures during the analysis period and 
prior periods. We can see that only futures at a one- or two-month lag behind the 
PVPM offer hedging possibilities, since only in these cases is ℎ∗ statistically significant. 
The optimal hedge for a seller of natural gas in the Mexican market could be structured 
with a one-month lag, taking a short position in futures for 51.4961% of the value of 
the position to be covered one month before the natural gas is sold at PVPM. The R2 
is an indicator of the potential risk reduction using the hedge, in this case 20.9224%. 
Since the optimal hedge ratio with two-month futures is statistically significant, one 
could hedge, for example, the purchase at PVPM by buying futures for 44.3225% of 
the value of the position to be covered two months before the purchase is made. 
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Table 2.8. Optimal hedge ratios of the PVPM in dollars with regards to the one-
month futures at the CME with lags during the period of analysis. 

Months of lags of 
the Future #1 ℎ∗ Standard error R2 

0 0.079718 0.162166 0.005010 
1 0.514961 0.281373* 0.209224 
2 0.443225 0.179516** 0.155223 
3 0.030040 0.076684 0.000718 

* and **, statistically significant at 90% and 95%, respectively. 

Source: Own elaboration with data of the NYMEX and CRE. 

Hedging can be structured by purchasing multiple futures over several prior periods. 
More specifically, given that the autocorrelation in future growth is very small and not 
statistically significant, futures with a lag of one month and two months can be 
considered independent instruments. Therefore, the coefficients obtained by applying 
linear regression to the growth in PVPMs with respect to growth in futures with one-
month and two-month lags can be considered as optimal hedge ratios with each 
instrument, in a multiple hedge. From Table 2.9, a position in gas subject to PVPM 
could be hedged using one-month futures with one- and two-month lags, acquiring 
futures worth 49.8119% of what will be paid a month earlier and worth 41.8258% of 
what will be paid two months earlier, for a risk reduction of 35.0306% (R2). 

Table 2.9. Optimal hedge ratios of the PVPM in dollars with regards to two 
combined Henry Hub futures during the period of analysis. 

Months of lags of 
the Future #1 ℎ∗ Standard error 

1 0.498119 0.315104 
2 0.418258 0.191188** 

* and **, statistically significant at 90% and 95%, respectively. 

R2 = 0.350306 

Source: Own elaboration with data of the NYMEX and CRE. 

To analyze the hedge with exchange rate futures, for analysis purposes synthetic 
futures were estimated using the hedged interest rate parity 𝐹𝐹𝑡𝑡 = 𝑆𝑆𝑡𝑡(1+𝑟𝑟𝑑𝑑)

�1+ 𝑟𝑟𝑓𝑓�
 , where 𝐹𝐹𝑡𝑡 is 

the directly quoted future price in period t, 𝑆𝑆𝑡𝑡 is the directly quoted spot exchange rate, 
and 𝑟𝑟𝑑𝑑 and 𝑟𝑟𝑓𝑓 are the effective domestic and foreign forward rates in period t, 
respectively. In this case, rates for 91-day Cetes (Mexican Federal Treasure 
Certificates) and 90-day Treasury Bills, adjusted to a one-month term, were used. 



 

33 
 

Figure 2.7 shows cross correlations between the monthly growth of the PVPM in pesos 
in Reynosa with the growth of MXN-USD exchange rate futures, with different lag and 
lead periods. From the correlogram, it can be seen that the only statistically significant 
correlation is when there are no lags and leads between these instruments, and 
possibly when there are two lags. This is confirmed by the results of Table 2.10, in 
which the optimal hedge ratio without lags is 1.211913 and with two lags is -1.129440. 
This is statistically significant in both cases: the first at 95%, the second at 99%, 
although paradoxically these relationships have opposite signs. 

Figure 2.7. Cross correlations between the monthly growth of the PVPM in pesos 
in Reynosa and the monthly growth of the peso-dollar exchange rate during the 

period of analysis. 

 

Source: Own elaboration with data of the CRE, BANXICO and Bloomberg. 
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Table 2.10. Optimal hedge ratios of the PVPM in pesos in Reynosa with futures of 
the peso-dollar exchange rate with one-month lag during the period of analysis. 

Months of lags of 
the future ℎ∗ Standard error R2 

0 1.211913 0.521351** 0.091359 
1 -0.055272 0.727505 0.000174 
2 -1.129440 0.409645*** 0.069684 
3 -0.314282 0.810577 0.005377 

*, ** and ***, statistically significant at 90%, 95% and 99%, respectively. 

Source: Own elaboration with data of the CRE, BANXICO and Bloomberg. 

Finally, Table 2.11 shows the results of hedging with a model that uses a hedge 
combining gas futures and MXN-USD exchange rate futures for the PVPM in 
Reynosa. 

Table 2.11. Hedge models of the PVPM in pesos, Henry Hub futures and futures 
of the peso-dollar exchange rate during the period of analysis. 

Model 1 

Instrument ℎ∗ Standard error 
MXNUSD1 1.032752 0.259077*** 

Future #1(-2) 0.419196 0.286295 
Future #1(-1) 0.495714 0.480097 

R2 = 0.407014 

Model 2 

Instrument ℎ∗ Standard error 
MXNUSD1 1.360383 0.507579** 

Future #1(-2) 0.452500 0.175684** 

R2 = 0.237207 

** and ***, statistically significant at 95% and 99%, respectively. 

Future #1, one-month Henry Hub futures of the CME, MXNUSD1, one-
month futures of the peso-dollar exchange rate, in parenthesis the lag 
of the instrument. 

Source: Own elaboration with data of the CRE, NYMEX, BANXICO and 
Bloomberg. 
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2.5.2. Other Hedges 

Another possibility to hedge for an unfavorable shift in the NG price in dollars and in 
the peso-dollar exchange rate is the use of swaps. Swaps are private agreements 
between two parties, one of which is usually a financial institution, to exchange cash 
flows. For example, suppose an industrial company decides to pay a fixed monthly 
amount in pesos during a given quarter in exchange for receiving, in pesos each 
month, the equivalent value in a certain volume of NG. In this way, they would be fixing 
the price at which they would like to buy gas during the quarter, regardless of the price 
fluctuations for NG in South Texas or the exchange rate. Each month, for three 
months, the company would pay the middleman a fixed amount in pesos and, in return, 
would receive a varying amount in pesos to purchase the same volume of NG, 
regardless of price fluctuations. This is a fixed vs. floating swap, with the arrangement 
that the floating part represents the value of the commodity in pesos. Figure 2.8 shows 
graphically the swap mechanism. 

Figure 2.8. Diagram of the exchange of flows in a swap. 

 

Source: Own elaboration. 

Swaps are flexible and are agreed to based on the needs of the clients and the 
possibilities of the intermediaries. 

There are other hedge possibilities, such as forwards, options, and exotic options, 
among others. Each vary as to costs and risk patterns that in certain cases may offer 
better hedging possibilities. 

In addition, the behavior of PVPMs changes during different periods of time, so an 
analysis of the PVPM in sub-periods should provide an interesting perspective. 
Volatility in the price of hydrocarbons seems to allow some breathing room at times, 
while at others, the ups and downs are pronounced. Forecasting parameters change 
during these intervals. 

Hedging strategies can be evaluated by backtesting. On principle, we know that it is 
not advantageous to completely hedge all the time, so it is important to learn when 
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and how much it would be worthwhile to do so, and what kind of strategy would be the 
most advisable. 

A possible hedging and investment tool would be the creation of a hydrocarbon fund, 
a commodity fund whose value would change based on international prices and the 
exchange rate, in addition to offering returns. The possibility of buying or selling shares 
in the fund would allow hedging against fluctuations and could also be an attractive 
investment, especially for those who do not have easy access to international markets. 

The hydrocarbon market and the NG market invite forecasting. Short- and medium-
term forecasts would complement the use of hedges once the uncertainty about the 
direction and volatility of future prices is limited. Work related to NG can be extended 
to other fossil fuels: LPG, gasoline and diesel are logical next steps, although the 
markets may not be regulated for the latter two.  

NG hedging strategies provide lessons that can be followed in electricity. Both markets 
are regulated and even have a forthcoming connection, as NG is a fuel widely used in 
electricity generation. 

Finally, the findings can be extended to other markets and international environments. 
The NG market is regulated in many countries and many of them import fuels that are 
listed on global exchanges. The proposal made here could well be adopted 
internationally. 

2.6. Conclusions 

A major finding of this essay confirms what international energy traders know: that 
price volatility for NG and other hydrocarbon exceeds exchange rate volatilities. For 
this case and during the analysis period, NG volatility on the NYMEX was eight times 
that of the peso-dollar exchange. Even during critical periods for the peso (2015-2016), 
the volatility in the commodity price was six times that of the peso-dollar. The 
correlation between NG price and exchange rate variations is close to zero. 

It would be worth examining the autocorrelation that can appear in the Linear 
Regression of PVPM and the price of NG on the NYMEX, focusing the model on the 
relationship between variations in both prices. 

Optimal hedging of gas First-Hand-Sales prices considers the acquisition of futures 
months before the hedge date, which may allow for arbitrage. In view of the opening 
of the gas market in Mexico, it is recommended that the schemes for determining the 
prices of First-Hand gas sales in Mexico be revised to reflect the current international 
gas market. 

The analysis and proposed hedging strategy could be extended to other fuels and 
other international markets with little effort. NG price regulation is an international 
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regulatory practice and many countries are net importers of hydrocarbons. The 
generation of electric energy from NG heightens the importance of this effort. 

Finally, the field appears promising. Setting prices for a period implies costs and risks 
that someone must assume: the final consumer, the distributor, the importer, or the 
government consortium. The hedging strategy allows this risk and cost to be 
distributed among other participants with different capital structures and market 
perspectives. 

2.7 Post Data 

This section includes materials which were not part of the original essay, however, 
in the view of the thesis’ examiners and my own, we consider they are pertinent to 
include: 

2.7.1  Effectiveness of the hedging model using backtesting 

One question that might arise with the proposed hedging model is how stable it is. 
Can it be used in subperiods? To address these questions, first, we show Figure 2.9 
which includes the actual and fitted values for the first months of the data series 
using Model 1, and then we made a backtesting analysis for two subperiods of the 
period of analysis; the first subperiod from January 2012 to December 2014 (in-
sample) and the second from January 2015 to September 2016 (out-of-sample). 
Based on the Model 1 whose results appear on Table 2.11, we show in Table 2.12 
the results for the in-sample subperiod and in Table 2.13 those for the out-of-sample. 

Figure 2.9. Actual and fitted values of the growth of the monthly PVPM in pesos 
using Model 1 during the first months of the period of analysis. 

 

Source: Own elaboration with data of the CRE, NYMEX, BANXICO and Bloomberg 
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Table 2.12. Hedge Model 1 of the PVPM in pesos, Henry Hub futures and futures 
of the peso-dollar exchange rate during the in-sample subperiod of analysis. 

Instrument h* Std. Error t-Statistic Prob. 
FUTURES_1(-1) 0.733938 0.149983 4.89349 0.0000 
FUTURES_1(-2) 0.047851 0.153338 0.31206 0.7572 
FUT_TC 1.132081 0.542226 2.08784 0.0454 

R2 0.475321 
Source: Own elaboration with data of the CRE, NYMEX, BANXICO and 
Bloomberg. 

Table 2.13. Hedge Model 1 of the PVPM in pesos, Henry Hub futures and futures 
of the peso-dollar exchange rate during the out-of-sample subperiod of analysis. 

Instrument h* Std. Error t-Statistic Prob. 
FUTURES_1(-1) 0.097874 0.276319 0.354205 0.7278 
FUTURES_1(-2) 0.589016 0.24842 2.371049 0.0306 
FUT_TC 1.863486 0.801361 2.3254 0.0335 

R2 0.464808 
Source: Own elaboration with data of the CRE, NYMEX, BANXICO and 
Bloomberg. 

The first thing we can say from the analysis of Tables 2.12 and 2.13 is that the 
explanatory power of the tests is high and similar. In the in-sample subperiod we 
have an R2 of 0.4753 and for the out-of-sample the R2 is 0.4648. Meaning that the 
logarithmic variations of the regressors can explain (and eliminate) such fractions 
(the R2) of the logarithmic variations of the PVPM in pesos. In the in-sample 
subperiod, the statistical significance of the hedge ratio h* associated to the Future#1 
with a two-month lag is low, while in the out-of-sample subperiod the hedge ratio 
with the low statistical significance is the one related to the Future#1 with a lag of 
one month. In Model 1 of the original essay (Table 2.11), both hedge ratios have a 
significance above 95%. The hedge ratios for the peso-dollar exchange rate futures 
in both subperiods are statistically significant at the 95% level. 

Table 2.14 include the comparative results of the hedge ratios and the R2 for the two 
subperiods.  
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Table 2.14. Comparative results of the hedge Model 1 of the PVPM in pesos, 
Henry Hub futures and futures of the peso-dollar exchange rate during the in-

sample and out-of-sample subperiods. 

Instrument In-sample ℎ∗ Out-of-sample ℎ∗ % Abs Diff 
MXNUSD1 0.733938 0.097874 86.66% 

Future #1(-1) 0.047851 0.589016 1130.94% 
Future #1(-2) 1.132081 1.863486 64.61% 

    

R2 0.475321 0.464808  
Source: Own elaboration with data of the CRE, NYMEX, BANXICO and 
Bloomberg. 

It is clear from the percentage absolute differences (% Abs Diff) in Table 2.14 that 
the hedge ratios for the in-sample subperiod are not good predictors of the hedge 
ratios for the out-of-sample subperiod. However, the hedge model for the PVPM in 
pesos based on the Henry Hub Future#1 and the peso-dollar exchange rate futures 
stands, not with the same hedge ratios but with the same structure of long position 
in PVPM in pesos and shorts in Henry Hub Future#1 and peso-dollar exchange rate 
futures. 

A lesson from the backtesting in the two subperiods is that it is necessary to calibrate 
the model and to choose those regressors which are statistically significant and 
contribute to improve the explanatory power of the test. 

2.7.2 Operational suitability for the hedging of the Futures with one and 
two-month lags 

Someone trying to implement the hedging strategy and model developed in the 
essay, might have some concerns about the tradability of the Henry Hub Futures#1 
with one and two-month lags. 

On July 21, 2020, at the opening of the trades at Globex (Global Exchange -- an 
electronic trading system managed by the Chicago Mercantile Exchange), there 
were 452,086 contracts of Henry Hub NG pending to be traded. At the end of the 
day, there was an open interest of 1,298,974 contracts. As it was pointed out in the 
essay, each contract size is for 10,000 MMBtu. During the same trading day, 19,848 
contracts were traded with futures with maturities in the coming two months (August 
and September), with an economic value of USD $335.2 million. 

If the NG position to be hedged is large compared to the daily trade volume of the 
selected futures, then a basket of futures with different maturities should be 
considered. However, this may have not been the case for most of the local players 
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who would have been interested in hedging a PVPM position during the period of 
analysis. 
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Chapter 3 

Dynamic hedging of prices of Natural Gas in Mexico 

Abstract 

The first-hand sale prices of Natural Gas (NG) in Mexico had a dynamic lagged 
relationship with international NG futures prices during the period of January 2012 
to June 2017. Based on a hedging strategy which includes NG futures and using an 
MGARCH VCC (MGARCH stands for Multivariate Generalized Autoregressive 
Conditional Heteroskedasticity and VCC for Variable Conditional Correlation) model, 
conditional variances were estimated with 20 and 40 days of lag between the prices 
of NG Futures. Dynamic hedges of NG were calculated assuming theoretical futures 
prices of the US dollar in Mexican pesos. With the use of backtesting, it was found 
that the forecasts of optimal hedge ratios improve with short prediction periods and 
proximate observed data. The dynamic hedging model proposed can be extended 
to other fuel markets. The importance of hedging NG prices derives from the size of 
the market and the extent of the risks to which the market participants are exposed. 

Keywords: Natural gas prices, first-hand sale prices, dynamic hedging, backtesting. 

JEL Classification: G13, G15, Q41, Q48 

3.1. Introduction 

The structure of energy markets usually requires price regulation as in the Natural 
Gas (NG) markets in which there are natural monopolies. In these cases, 
governments regulate prices by imposing limits on them as a defense measure in 
favor of the other market participants. 

In Mexico, the Energy Regulatory Commission (CRE) is the regulatory body that, 
until June 2017, limited the prices of the NG that Petróleos Mexicanos (PEMEX), the 
state oil and gas company, used in its first sales to the other participants in the 
distribution chain. These prices are known as First-hand Sale Prices (PVPM, for its 
initials in Spanish). These prices typically set for a one-month period were 
denominated in pesos, and initially referred to two strategic geographical points: the 
main gas import gate (Reynosa) and the main production point (Pemex city) in the 
country. See CRE (2016). 

The other prices in the distribution chain were determined from the PVPM, 
considering transportation costs, taxes, and investment recovery, among others. 
The PVPM remained fixed for a month and was denominated in Mexican pesos. The 
NG prices in the US market changed frequently and were quoted in dollars. Hence, 
there was a possibility that the importer, the distributor, or the consumer would use 
hedges to manage the risk that was assumed when selling or consuming at a 
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constant price in one currency (Mexican pesos) and eventually buying the product 
in the future at another price, which was set according to floating prices (prices in 
the South of the United States) in another currency (US dollar). 

After June 2017, the CRE stopped the releasing of PVPM. The risk management 
problem was transformed because the NG distributor or consumer continued to face 
an environment of fixed prices in pesos for sale to the public versus permanently 
changing dollar prices of the commodity. The problem of NG price hedging becomes 
increasingly important internationally due to the growing demand for hydrocarbons, 
which is driven by the also greater generation of electricity using NG, and the gap 
between NG exporting and importing countries. In countries that import NG with a 
weak regulatory scheme, the wholesale prices of the NG are set by independent 
contracts in which the international price component is the most critical factor. 

Since the transport and distribution of NG are natural monopolies, the authorities 
regulate prices in such a way that the consumer is not deprecated. Given the 
necessary investment in transportation and distribution networks by a provider to 
serve an area, the overlapping of networks of different providers will result in 
significant additional costs. For this reason, regulators usually set maximum selling 
prices that allow the regulated parties to recover their investments and costs at a 
reasonable capital rate. This asymmetric regulation applies to other elements of the 
production chain, for example, a single producer or a preponderant storage facility. 

In addition to the limits on prices and tariffs, regulators employ other measures, such 
as allowing the use of facilities and equipment of the monopolist, ordering 
disintegrations, and limiting concentrations. It is important to notice that, in the 
absence of an appropriate regulatory system, price fluctuations and risks are (at 
least in part) transferred to the final consumer. The NG price regulation model is 
widely used, even in market economies. The following section includes a revision of 
some relevant work. 

The main objectives of this investigation are the following two: 

(1) To introduce a dynamic hedging approach based on a MGARCH-VCC 
model to predict the values of the best hedges for an immediate future period, and  

(2) To evaluate the predictions obtained through backtesting and make 
recommendations to improve these predictions.  

The importance of the study is based on the considerable size of the NG import 
market in Mexico, the possibility of a resurgence of NG regulated prices in Mexico, 
and the existence of regulation in the energy sector in many countries of the world, 
for which the Mexican experience in first-hand NG prices can be relevant. 
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The organization of the paper is as follows. In this section, we include the 
introduction. The following section briefly discusses relevant Mexican NG price 
regulation. The third section is a bibliographical review. The fourth section presents 
the methodology. The fifth section analyzes the data and the results. Finally, we 
make concluding remarks in the last section. 

3.2. The Mexican NG regulation. 

In Mexico, the NG price regulation methodology evolved since its first publication in 
1996. In February 2016, CRE (2016) published its latest methodology, which 
explains the calculation of the PVPM at two points: Reynosa and Pemex city, with 
two different frequencies: daily and monthly. The considered factors are: (1) the 
estimation of the price of NG in South Texas; (2) the existence of a net import or 
export of NG in the country; (3) the cost of transportation between Reynosa and 
South Texas; (4) the Sintragás system transportation fee from Reynosa to Pemex 
city, and (5) the peso-dollar exchange rate. In turn, the estimate of the price of NG 
in South Texas considers the following price indexes: (1) Henry Hub; (2) Houston 
Ship Channel published by Platts, and (3) other local Texas indexes. For the 
estimation of the tariffs of transport in the United States, the rates of the systems 
were used: (1) Tennessee Gas Pipeline Company, L.L.C.; (2) El Paso Natural Gas 
Company, L.L.C., and (3) Texas Eastern Transmission, LP, published by the Federal 
Energy Regulatory Commission of the United States. 

3.3. State of the Art 

Tse & Tsui (2002) propose a GARCH model for multiple variables (MGARCH) in 
which the correlations vary over time; the conditional variance follows a single 
variable GARCH formulation, and the conditional correlation matrix adopts a self-
regressive average behavior. Tolmasky & Hindanov (2002) present a family of term 
structure models to evaluate contingent obligations of contingency goods and 
seasonal markets, in particular the oil market. Pindyck (2003) examines the behavior 
of volatility in the prices of natural gas and crude oil futures since 1990 and finds that 
there is a short-term trend of volatility due to shocks and that, during these, the 
interrelation between volatilities of both hydrocarbons increases. Jin & Jorion (2006) 
study the hedging activities in 109 oil and gas producing companies in the United 
States and analyze the effects that these activities have on the value of the 
companies. They found that the hedges reduce the price sensitivity of the 
companies’ shares to variations in the prices of hydrocarbons. 

Woo, Olson & Horowitz (2006) prove, through a partial regression model, that 
California NG users in the United States can take advantage of the opportunity to 
cross-cover with the Henry Hub index and can even predict the behavior of the index 
in the future and, thereby, improve risk management through futures contracts or 
swaps. Wong-Parodi, Dale & Lekov (2006) compare the NG price forecasts 
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published by the Energy Information Administration (EIA) with those of the New York 
Mercantile Exchange (NYMEX) market and found that the futures market prices are 
a better forecast than the forecasts released by the government agency. 

Rosellón (2008) highlights the work of the CRE since 1996 for adopting an NG 
pricing methodology that links them to the prices of this same substance in the South 
of the United States. The author points out that, in setting a reference price, it is 
appropriate to use two geographical points: the one of importation and the one of 
domestic production, and to adopt an intermediate point that presumably reduces 
the arbitration between the option of importing and buying gas from domestic 
production. Brown & Yücel (2008) study the separation between the prices of NG 
and those of crude oil. They develop a vector error correction (VEC) model, with 
which they demonstrate that the prices of the crude affect those of the NG. So, both 
goods can be considered substitutes. Suenaga, Smith & Williams (2008) examine 
the volatility of the prices of the NG futures in NYMEX and conclude that the prices 
show seasonality in the winter. Besides, the effect of price shocks is persistent. 
Therefore, hedging strategies that do not consider these factors are sub-optimal. 

Agnolucci (2009) compares the predictive capacity of GARCH models and that of 
implied volatility to estimate the volatility in the prices of West Texas intermediate 
(WTI) futures contracts in the NYMEX based on statistical and regression results. 
Kaufmann & Ullmann (2009) study the effect of innovation on hydrocarbon prices 
and how these effects are propagated to other prices in the spot and futures markets, 
they also analyze the long-term relationship between spot and futures prices. Wei, 
Wang & Huang (2010) use different models of the GARCH type to estimate the price 
volatility of the Brent and WTI crude markers. They found that non-linear models are 
better for capturing long-term effects and asymmetric volatility. 

Laurent, Rombouts & Violante (2012) investigate the selection of different MGARCH 
models in large-scale portfolios and find that the models are inaccurate in periods of 
instability. Nomikos & Andriosopoulos (2012) investigate the behavior of the prices 
of eight energy products listed on the NYMEX, both in the spot market and in the 
futures market, and conclude that there is a leverage effect on the WTI and heating 
oil, while in the rest of the markets the effect is inverse. Wang & Wu (2012) forecast 
energy market volatility using uni and multivariate GARCH models. They propose 
hedging strategies based on multivariate models. Lv & Shan (2013) model the 
volatility of the NG market using GARCH models with long memory distributions and 
fat tails. Gannon & Liu (2013) propose a dynamic method of rebalancing asset 
hedges extending the GARCH-BEKK (BEKK are the initials of the authors Baba, 
Engle, Kraft and Kroner) approach to one MGARCH DCC (DCC stands for Dynamic 
Conditional Correlation). Scholtens & Van Goor (2014) analyze the volatility in NG 
prices in the United Kingdom and conclude that GARCH models based on supply 
and demand and theoretical assumptions of an economic nature are good 
predictors. 
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Blazsek & Villatoro (2015) compare GARCH and EGARCH (Exponential GARCH) 
Beta-t models and conclude that the EGARCH Beta-t models had a higher 
forecasting capacity in the period after the 2008 financial crisis in the United States. 
Asche, Oglend & Osmundsen (2017) find that when NG prices are decoupled from 
crude oil prices due to short-term effects. So, models such as VEC ones lead to 
erroneous conclusions about the nature of the cointegration relationship. Ghodussi 
& Emamzadehfard (2017) experiment with hedging alternatives in the US NG 
market. They contrast the use of a single type of futures contract with the use of 
futures contracts that exceed the maturities of the obligations to cover six different 
physical positions. They found that extending the term of future contracts can 
increase the effectiveness of the hedging. Gulay & Emec (2018) compare the 
variance normalization and stabilization method (NoVaS) with different GARCH 
methods in forecasting the volatility of different financial series and find that the 
NoVaS method has a higher forecasting capacity for values that are out of the 
sample. 

Few studies analyze energy hedging in Mexico or even Latin America. For example, 
Barrera-Rivera & Valencia-Herrera (2019) describe a regulatory price model for NG 
in Mexico, propose an NG price hedging model, estimate optimal hedge ratios, and 
evaluate positions with some suitable future contracts. They propose two price 
hedging strategies: the first one through futures contracts and the other one using 
swaps. Based on the methodology of the PVPM, the optimal hedging with futures 
considers NG futures contracted one and two months earlier, plus contemporary 
exchange rate futures. Another study is Gutiérrez (2016) that focuses on cross 
hedging in the Mexican oil market with a multivariate GARCH model. Also, Díaz 
Contreras et al. (2014) analyze hedging strategies for the Colombian energy market. 
Related literature analyzes the use of international agricultural derivatives for 
hedging agricultural commodities in Latin America, see, for example, Troncoso-
Sepúlveda & Cabas-Monje (2019), Ortiz Arango & Montiel Guzmán (2017), Ortiz 
Alvarado & Girón (2015), Guízar Mateos, et al. (2012), and Godínez Placencia 
(2007).  

The present study proposes a dynamic hedging approach that considers conditional 
variances and covariances within an MGARCH VCC model and a larger sample than 
in Barrera-Rivera & Valencia-Herrera (2019). With this approach, we can predict 
optimal hedge ratios that can be used in immediate periods beyond the sample. In 
the following section, we give an overview of the methodology followed in this paper, 
the single hedging strategy and the main proposal in this paper, a dynamic hedging 
approach based on an MGARCH VCC model. 
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3.4. Methodology 

3.4.1. Use of future contracts as hedging 

For purpose of explanation, let´s introduce the following case: A NG distributor of an 
urban area acquires the fuel that it will subsequently sell to domestic or industrial 
users from PEMEX or an importer. The price of the NG is acquired at a fixed price 
at the entrance of the urban area (city gate) once the gas has been transported from 
the point of importation or from a processing terminal. For a month, the purchase 
price of the gas will be fixed in pesos and the distributor, in turn, must sell it at a fixed 
price to its users. The next month, the distributor will buy the NG at another price, 
which will depend on fuel prices in South Texas and the peso-dollar exchange rate, 
among others. To manage the risk represented by the variation of the NG in dollars 
and the exchange rate, the distributor may take positions of futures contracts for the 
gas and for the exchange rate. As was stated, the price volatility of NG in dollars 
may be higher than the volatility of the exchange rate so that the two hedging 
strategies, one for the price of NG in dollars and the other for the exchange rate in 
pesos, could be independent and intermittent. 

The NYMEX market offers NG futures contracts with monthly maturities that span a 
decade ahead. For example, the December 2016 contract was last listed on 
November 28, had physical delivery on December 31, 2016 and each contract 
covers 10,000 MMBtu (ten billion Btu). The pulse (tick) of quotation prices is 0.001 
US dollars. On the other hand, the contract of future peso-dollars in the Chicago 
Mercantile Exchange (MCE) covers Mx Ps 500,000, with a minimum fluctuation in 
the price of USD 0.00001 per peso, equivalent to 5 dollars per contract. The 
contracts have monthly maturities and cover a period of 18 months. 

A distributor that estimates that the prices of NG in dollars will be on the rise and that 
the peso will depreciate in the coming weeks or months can buy NG futures in the 
NYMEX and buy dollar futures in the CME. To allow these operations, the distributor 
will need to open contracts and provide guarantees, and before the expiration of the 
contracts, he or she must revert them, unless the distributor wishes to reach the 
"physical delivery" of the goods. In case of the reversal, the distributor will take his 
or her profit or loss, and with it he or she will go to the spot exchange market to 
convert the dollars to pesos. With the possible benefit, the distributor can acquire 
NG from the new PVPM. If the hedging strategy was successful, the distributor will 
have the ability to acquire the same or a higher volume of NG as a result of good 
risk management. The operation would be contrary if the price expectation were 
down: Futures would be sold in the NYMEX and, if necessary, peso futures would 
be bought in the CME. In any case, the resulting dollar would be expected to be 
positive. Figure 3.1 shows the use of futures contracts as a hedging tool. 
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Figure 3.1. Employment diagram of NG and dollar futures hedge. 

 

Source: Own elaboration 

The classic theory of hedging with futures, see for example Hull (2009) and 
Ghoddusi & Emamzadehfard (2017), consists of reducing or nullifying the price 
volatility of a spot position with the inclusion of a certain number of futures contracts 
in the portfolio. If we have a P portfolio with 𝑛𝑛𝑆𝑆 long asset positions and 𝑛𝑛𝐹𝐹 short 
futures positions, the hedge ratio is defined as the number of futures positions that 
are occupied to cover a unit of the spot position, that is, ℎ = 𝑛𝑛𝐹𝐹/𝑛𝑛𝑆𝑆. 

The value of the portfolio, considering 𝑛𝑛𝑆𝑆 units of assets to be covered and 𝑛𝑛𝐹𝐹 units 
of futures, would be given by equation (3.1), 

𝑃𝑃 =  𝑛𝑛𝑆𝑆 𝑆𝑆 −  𝑛𝑛𝐹𝐹 𝐹𝐹 (3.1) 

Therefore, changes in the covered portfolio are given by equation (3.2), 

∆𝑃𝑃 =  𝑛𝑛𝑆𝑆 ∆𝑆𝑆 −  𝑛𝑛𝐹𝐹 ∆𝐹𝐹  (3.2) 

The minimum variance hedge ratio is estimated by selecting the number of futures 
contracts that minimizes the conditional variance of changes in the value of the 
portfolio. The optimal hedging ratio is given by equation (3.3),  

 ℎ∗  = 𝑛𝑛𝐹𝐹
𝑛𝑛𝑆𝑆

= 𝐶𝐶𝐶𝐶𝐶𝐶�∆𝑆𝑆,∆𝐹𝐹�𝐼𝐼�
𝑉𝑉𝑉𝑉𝑉𝑉�∆𝐹𝐹�𝐼𝐼�  (3.3) 

where I is the set of information in time 𝑡𝑡 and ℎ∗ and is the optimal hedging ratio. The 
hedge ratio h* can be easily estimated using ordinary least squares (OLS), as in 
equation (3.4), where Δ𝑃𝑃𝑡𝑡 is the PVPM monthly growth rate and Δ𝐹𝐹𝑙𝑙,𝑡𝑡 is the monthly 
growth rate of an NG Futures Contract with l lags, 

Δ𝑃𝑃𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1 Δ𝐹𝐹𝑙𝑙,𝑡𝑡 + ℰ𝑡𝑡  (3.4) 
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and thus, the optimal hedge ratio  ℎ𝑗𝑗∗ would be applicable to the hedging instrument 
𝐹𝐹𝑗𝑗, as shown in equation (3.5), 

ℎ𝑗𝑗
∗  = 𝑛𝑛𝐹𝐹

𝑛𝑛𝑆𝑆
=

𝐶𝐶𝐶𝐶𝐶𝐶�∆𝑆𝑆,∆𝐹𝐹𝑗𝑗�𝐼𝐼�
𝑉𝑉𝑉𝑉𝑉𝑉�∆𝐹𝐹𝑗𝑗�𝐼𝐼�

 (3.5) 

The historical data can not only serve to determine an optimal hedging up to the last 
date of the data, it can also contribute to estimating the hedge that must be taken to 
face a risk that is expected in the immediate future through the prediction of 
conditional variances. Additionally, the initial strategy may change as new data is 
known that makes it necessary to rebalance the portfolio. In summary, in cases 
where there is a certain seasonality, historical data can be used to estimate future 
parameters, and it is convenient to update the information with newly available data 
that, in turn, will result in new estimates. Let us introduce the VCC multivariate 
GARCH model proposed to replicate the volatility of the underlying and suitable 
hedging instruments. 

3.4.2. Multivariate GARCH VCC model 

GARCH models are those in which the conditional variance of the errors can be 
explained through the variance of the previous errors and, usually, they are used 
together with the ARCH (Autoregressive Conditional Heteroscedasticity) models in 
which the conditional variance of the errors is explained through the behavior of the 
errors of the past periods. See Engle (1982) and Bollerslev (1986). 

Different authors have used and evaluated the use of GARCH models as predictive 
tools to estimate price volatility, particularly in energy. See Agnolucci (2009), Wei, 
Wang & Huang (2010), Wang & Wu (2012), Lv & Shan (2013), Gannon & Liu (2013), 
Scholtens & Van Goor (2014), and Blazsek & Villatoro (2015). 

The multivariate GARCH models (MGARCH), following the notation of Orskaug 
(2009), are defined as: 

, (3.6) 

, (3.7) 

where: 

rt: n x 1 vector of the logarithmic returns of n assets in time t, 

at: n x 1 vector of mean-corrected returns of n assets in time t, so that E[at] = 0, 

Cov[at] = Ht. 
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µt; n x 1 vector of the expected conditional values of rt. 

Ht: n x n matrix of conditional variances - covariances of at in time t. 

Ht1/2: any n x n matrix in time t as Ht is the matrix of conditional variances of at. Ht1/2 

may be obtained by a Cholesky factorization of Ht. 

zt: n x 1 vector of errors iid such that E[zt] = 0 and E[zt ztT] = I. 

µt in equation (3.6) can be modeled as a constant vector or as a time series; at is not 
correlated in time, which does not mean that it does not have a serial dependency, 
but that the dependency can be non-linear. On the other hand, Ht in equation (3.7) 
is a matrix of conditional variances, which needs to be inverted every period t. 
Besides, for Cholesky factorization to be possible, Ht must be positive and defined. 

In the VCC multivariate GARCH model, conditional variances are modeled as 
univariate GARCH models and conditional covariances are modeled as non-linear 
functions of conditional variances. The parameters of the quasi-correlations involved 
in the non-linear functions of the conditional variances follow a GARCH model 
specified by Engel (2002). In the MGARCH VCC there is a revolving estimator of the 
covariance matrix of standardized residues, following the development of Tse & Tsui 
(2002). 

The optimal hedge ratios ℎ𝑗𝑗∗ of equation (3.5) can be calculated with the conditional 
variances and covariances obtained through the MGARCH VCC model. These 
optimal hedge ratios can correspond to the whole period of data or they can be 
estimated for subperiods, even on a daily basis, as conditional variances and 
covariances can be obtained dynamically, that is, the newest estimates considers 
the last historical data available, as new information arrives, a new set of conditional 
variances and covariances can be calculated, and thus, new optimal hedge ratios. 
This can be performed with in-sample or out-of- sample data. 

In the following section, we discuss the data, the results from a single hedging 
strategy, the optimal hedging strategy from a MGARCH VCC model, and the 
suitability of the dynamic hedging proposal with the use of a backtesting tool. 

3.5. Data and Results 

3.5.1. Data 

The data sample is from the beginning of 2012, until June 30, 2017 when CRE ended 
the publication of the PVPM. The NG price series in the United States are from the 
US Energy Information Administration (EIA) website; spot and futures market prices 
correspond to those of NYMEX; the PVPMs in Reynosa and Pemex City are those 
published by the CRE, and the exchange rates of the peso-dollar are those published 



 

50 
 

by Banco de México (BANXICO). In its first part, as was stated, this study follows 
the methodology of Barrera-Rivera & Valencia-Herrera (2019) for an extended study 
period. 

Figure 3.2 shows the graph of the daily and monthly PVPM in Reynosa during the 
study period. Notice that the monthly values do not correspond to the average of the 
daily values. The reason is that monthly PVPMs were determined one day before 
the beginning of the month and sustained throughout the period. However, daily 
prices were also calculated one day in advance and modified daily, which allowed 
them to reflect information more up to date on international prices. It should be noted 
that the PVPMs correspond only to business days, they exclude weekends and 
holidays. 

Figure 3.2. Daily and monthly PVPM in Reynosa in the period of study. 

 

Source: Own elaboration with data of the CRE 

Table 3.1 shows the statistics of the continuous growth rates of the Reynosa's daily 
PVPM in dollars (USD PVPM), of the NG Spot Price at NYMEX (Spot NYMEX) and 
the Mexico United States exchange rate (Mx Ps – USD XR). The value of the 
skewness in the PVPM (-0.63395) indicates that the distribution is moderately biased 
and the value of kurtosis (57.51959) shows that the distribution is sharply leptokurtic; 
therefore, it is not normal. However, the elements of greatest interest for this work 
are those of volatilities: the standard deviation for the logarithmic variation of the 
daily PVPM was 0.04421 and the standard deviation of the logarithmic variations of 
the NG Spot Price in NYMEX was 0.03920, which means that, during the study 
period, the PVPM in Reynosa was more volatile than the NG spot price in NYMEX. 
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Table 3.1 also shows the statistics of the logarithmic exchange rate variations (Mex 
Ps - USD). During the study period, the standard deviation of the continuous daily 
growth rate was 0.0058. It should be noted that, although the prices and quotations 
of this study refer to the same period of analysis, the observations of the exchange 
rate include dates of weekends and others in addition to those of NG prices. During 
the period considered, the volatility of NG dollar spot prices (NYMEX), measured 
through the standard deviation of the logarithmic variation, was 6.7 times the volatility 
of the peso-dollar exchange rate. 

Table 3.1. Statistics of selective series in the study period. 

 Mean Standard 
Deviation Kurtosis Skewness Observations 

USD PVPM 5.05045E-05 0.04421 57.51959 -0.63395 1,364 
Spot NYMEX 2.46433E-06 0.03920 20.55434 1.03573 1,364 
Mx Ps – USD XR 0.00012 0.00588 15.82514 1.12651 2,007 

Source: Own elaboration with data of the CRE 

Figure 3.3 shows graphically the peso-dollar exchange rate in the study period. As 
can be seen in the figure, the exchange rate experienced significant volatility from 
2015 until the last date of the analyzed period. 

Figure 3.3. Daily exchange peso-dollar rate during the study period. 

 

Source: Own elaboration with BANXICO data 

Table 3.2 depicts numerically the differences in the standard deviations of the prices 
during two subperiods: from January 2012 to December 2014 and from January 
2015 to the end of the sample period. Standard deviations of the second subperiod 
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are larger than those of the first subperiod in the domestic markets. The opposite 
happens with the NG spot prices of NYMEX where the volatility is greater in the first 
subperiod. This shows that the local market had its own sources of variations. Notice 
that in both subperiods, the volatility of the NG spot price in the NYMEX was several 
times greater than the volatility of the peso-dollar exchange rate. 

Table 3.2. Standard deviations observed in sub periods during the study period 

 
Standard 
Deviation 

Whole Period 

Standard 
Deviation 

2012-2014 

Standard 
Deviation 2015-

Jun 2017 
USD PVPM 0.04421 0.04006 0.04879 
Spot NYMEX 0.03920 0.04139 0.03641 
Mx Ps – USD XR 0.00588 0.00499 0.00779 

Source: Own elaboration with data of the CRE and BANXICO 

Since there is an open market to import NG to Mexico, the PVPM in Reynosa was 
the reference for the other local market prices, even for the PVPM in Pemex city, the 
main production center. Therefore, we will focus on the PVPM of Reynosa and, first, 
on its monthly version. During the study period, the monthly PVPM in Reynosa in 
dollars is highly correlated with the daily one-month future prices ‘Future # 1’ of the 
NYMEX NG. Figure 3.4 shows graphically the proximity of the monthly PVPM and 
the daily prices of the future contract. 

Figure 3.4. Daily PVPM of Reynosa in dollars vs. prices of NYMEX Futures 
Contract # 1 in study period. 

 

Source: Own elaboration with data from CRE and NYMEX. 
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3.5.2. The simple hedging strategy 

In the case of an urban NG distributor and that of an industrial user of the product. 
We consider the CME lists NG futures contracts that take Henry Hub index prices 
as a reference. These futures contracts have a very close relationship with their 
underlying. Also, gas prices in Henry Hub have a very close relationship with those 
of Texas Eastern STX, Tennessee Zone 0 and Houston Ship Channel, as can be 
seen in Barrera-Rivera & Valencia-Herrera (2019). Therefore, the hedge ratios 
consider PVPMs in Reynosa as spot prices and the CME NG Henry Hub futures. 

In order to estimate the hedge ratios, we use equation (3.4), where Δ𝑃𝑃𝑡𝑡 the monthly 
growth of the PVPM in Reynosa at month t and Δ𝐹𝐹1,𝑡𝑡 is the one-month growth of the 
one-month Henry Hub gas future price at month t. Note that, due to the solution of 
the OLS method, the coefficient a1 in equation (3.4) is the same as the optimal hedge 
ratio h* in equation (3.3). 

Since the estimation of PVPMs considers international NG previous prices, futures 
from previous periods can be useful for making PVPM hedges. Figure 3.5 shows the 
growth in the prices of the three-month futures and the growth of the PVPM prices 
in Reynosa in dollars. Notice that PVPM of Reynosa with one and two months of 
advance and delay have a statistically significant relationship with the futures at three 
months. 

Figure 3.5. Correlation between the growth of the Henry Hub three-month futures 
and those of the PVPM in Reynosa in dollars during the study period. 

Future #3,  
Reynosa (-i) 

Future #3,  
Reynosa (+i) I Delay Advance 

 

Source: Own elaboration with data of the NYMEX and CRE 
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From Figure 3.5, it could also be stated that there may be more than one hedging 
instrument, for example, the Future # 3 with zero and one month of offset, so that 
equation (3.3) could be extended to more than one hedging instrument. 

Table 3.3 shows the hedge ratios with NG futures of the CME for the period and 
previous periods. From the table, only the futures of one and two delayed periods to 
the PVPM offer hedging possibilities, since only in these cases ℎ𝑗𝑗∗ are statistically 
significant. The optimal hedging of a natural gas seller in the Mexican market could 
be structured with the instrument lagged one month by taking a short futures position 
for 54.7082% of the value of the position to be filled a month before the natural gas 
is sold to PVPM. The 𝑅𝑅2 is an indicator of the potential risk reduction using hedging, 
here 14.0259 %. Since the optimal hedging ratio for futures with two months of delay 
is statistically significant, it could be hedged, for example, the purchase of PVPM 
buying futures for 36.4429% of the value of the position to be filled two months before 
it was made the purchase. 

Table 3.3. Optimal hedge ratios of PVPM of Reynosa with three-month futures 
with delay. 

Delayed months 
of Future #3 ℎ𝑗𝑗

∗ Standard 
Error T Statistics R2 

0 0.211115 0.179270 1.177642 0.018822 
1 0.547082 0.167063 3.274710** 0.140259 
2 0.364429 0.174800 2.084838** 0.057112 

**, statistically significant at 95%. 

Source: Own elaboration with data of the NYMEX and CRE. 

The hedging can be structured by acquiring multiple futures during several previous 
periods. Because the autocorrelation in the growth of futures with months of lag is 
very small and not statistically significant, it is possible to consider futures with 
arrears of one and two months as independent instruments. Therefore, the 
coefficients that are obtained when making a linear regression of the growth in PVPM 
with respect to the growth of futures with one and two months of lag can be 
considered as optimal hedge ratios with each instrument, in a multiple hedging. From 
Table 3.4, a position of gas subject to PVPM could be filled with futures of different 
maturities with one and two months of lag, acquiring futures at two months, with a 
value of 56.0542% of the position, one month before and 31.11712% of the value to 
cover two months before, for a risk reduction of 23.3381% (𝑅𝑅2). 
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Table 3.4. PVPM hedging in dollars with two Henry Hub futures instruments with 
one- and two-month lag. 

 ℎ𝑗𝑗
∗ Standard 

Error T Statistics 

Future # 2 (-1) 0.560542 0.149673 3.745105** 
Future # 3 (-2) 0.311712 0.159525 1.95399** 

**and***, statistically significant at 99% and 94%, respectively.  
𝑅𝑅2 = 0.233381 

Source: Own elaboration with data of the CRE and NYMEX. 

To analyze the hedge with exchange rate futures for the purpose of analysis, 
synthetic futures prices were estimated using the interest rate parity 𝐹𝐹𝑡𝑡 =
𝑆𝑆𝑡𝑡(1 + 𝑟𝑟𝑑𝑑)𝑡𝑡/�1 + 𝑟𝑟𝑓𝑓�

𝑡𝑡, where 𝐹𝐹𝑡𝑡 the price of the future quoted at period t, 𝑆𝑆𝑡𝑡 is the 
exchange rate spot in direct quotation and 𝑟𝑟𝑑𝑑 y 𝑟𝑟𝑓𝑓 are the effective domestic and 
foreign rates at the future term in period t, respectively. In this case, the rates of the 
91-day Cetes and the 90-day Treasury Bills were considered, adjusted for a period 
of one month. In a similar exercise, the PVPM in Reynosa can be covered with two- 
and three-month NG futures with one and two lags and one-month MXN-USD 
exchange rate futures, see Table 3.5. 

Table 3.5. PVPM hedging models in pesos in the study period with Henry Hub 
futures and Mex Ps-USD exchange rate futures in the study period. 

Instrument ℎ𝑗𝑗
∗ Standard Error T Statistics 

Mex Ps-USD (1) 1.420590 0.392058 3.623420** 
Future # 2 (-1) 0.609386 0.137362 4.436364** 
Future # 3 (-2) 0.278413 0.145986 1.907120** 

𝑅𝑅2= 0.371015 

Source: Own elaboration with data of the CRE, NYMEX, BANXICO and 
Bloomberg. 

3.5.3. Hedging under the MGARCH VCC model 

In Barrera-Rivera & Valencia-Herrera (2019), optimal hedging ratios ℎ𝑗𝑗∗ are 
estimated for a PVPM spot position with the exchange rate and one month and two 
months lagged NG futures. Once the hedge is determined, it is can be necessary to 
rebalance the hedge based on estimates of conditional variance forecasts and 
correlations, both variations in the PVPM in Reynosa and of the NG futures used, 
since these elements concentrate the risk. 
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Table 3.5 shows the results of the MGARCH VCC for the daily series of the variations 
of the PVPM in dollars ('reynosavpm') and the two-month futures of the NG Henry 
Hub, with 20 and 40 days of lag ('lag20' and 'lag40', respectively). The 20 and 40 
days of lag are equivalent, in the daily series of prices, to 1 and 2 months of lag in 
the monthly series used in section 3.5.1. For the model, 1,324 daily observations 
were used, distributed in a t-student manner and a Newton-Raphson optimization 
method. From the results of Table 3.6 it follows that the ARCH and GARCH 
coefficients are statistically significant at more than 99%; in the estimation of 
correlations, an acceptable statistical security was not achieved. 

Table 3.6. MGARCH VCC model of the daily variations of the PVPM Reynosa in 
dollars and the Henry Hub two-month futures, with lags of 20 and 40 days in the 

study period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**,* statistically significant at 99% and 95%, respectively. 

Source: Own elaboration with data of CRE and NYMEX. 

 

 Coefficient Standard Error Z 
ARCH_reynosavpm 
   Arch L1. .172906 .026373 6.56** 
   Garch L1. .7638289 .0314717 24.27** 
 _cons .0000642 .0000165 3.89** 
    
ARCH_lag20 
   Arch L1. .0391612 .0107685 3.64** 
   Garch LI. .9315916 .0188782 49.35** 
 _cons .0000201 8.47e-06 2.37** 
    
ARCH_lag40 
   Arch L1. .0508818 .0120538 4.22** 
   Garch L1. .9248127 .0177219 52.18** 
 _cons .0000178 7.52e-06 2.36* 
    
corr(reynosavpm,lag20) .0060658 .0308313 0.20 
corr(reynoaavpm,lag40) .0408179 .0307444 1.33 
corr(lag20,lag40) -.0016276 .0310237 -0.05 
    
Adjustment lambda1 

lambda2 
.0130937 
.7153054 

.039S09  
1.327244 

0.33 
0.54 

Degree of 
Freedom _cons 9.49200  1.00104  8.77** 



 

57 
 

In the case of daily variations in Reynosa PVPM in dollars, the two-month futures 
with 20 days lag, and the two-month futures with 40 days lag, the conditional 
variance is estimated as in equations (3.8) to (3.10), respectively, 

σ21, t = 0.0000642 + 0.172906 ε21, t-1 + 0.7638289 σ21, t-1  (3.8) 

σ22, t-20 = -0.0000201 + 0.0391612 ε22, t-21 + 0.9315916 σ22, t-21  (3.9) 

σ23, t-40 = -0.0000178 + 0.0508818 ε23, t-41 + 0.9248127 σ23, t-41  (3.10) 

With these values of conditional variances, the new optimal hedge ratios 
ℎ𝑗𝑗
∗ can be estimated and done on a recurring basis, as new information is obtained, 

in the manner of Gannon and Liu (2013). The model in Table 3.6 and equations 
(3.8), (3.9) and (3.10) can be used both to forecast conditional variances of future 
periods, and to estimate conditional variances for the historical data period itself and, 
with conditional variances, calculate the optimal hedge ratios ℎ𝑗𝑗∗ by applying 
equation (3.5). 

Figure 3.6 graphically shows the conditional covariances estimated in the study 
period obtained using the MGARCH VCC model. The estimation of conditional 
variances is dynamic, that is, even if the determined coefficients are applied to 
current data, the value of these coefficients is updated as new information is received 
and these new values are applied to the following current data. 

Figure 3.6. Estimated conditional covariances between the daily growth of the 
PVPM in Reynosa in dollars and the daily growth of the two-month Henry Hub 

futures with lags of 20 and 40 days in the study period. 

 

Source: Own elaboration with data from CRE and NYMEX. 
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Figure 3.7 shows the estimates of the conditional covariances between the variations 
of the PVPM in Reynosa and those of the two-month Henry Hub futures, with lags 
of 20 and 40 days, for the last 100 days of the series, which include 10 forecasted 
days. The predicted conditional covariances are those that appear after the vertical 
line. The covariances of the last 100 days are shown in Figure 3.7, however, the 
data of the 1,384 days of the study period were used to obtain them. The purpose of 
Figure 3.7 is to depict in greater detail the last part of the estimated conditional 
covariances. 

Figure 3.7. Estimated conditional covariances between the daily growth of the 
PVPM in Reynosa in dollars and the daily growths of the two-month Henry Hub 

futures, with lags of 20 and 40 days in the period of the last 90 days of the 
historical series and the first 10 days forecast. 

 

Source: Own elaboration with data of the CRE and NYMEX 

As already stated from the data of the conditional variance matrix, the optimal hedge 
ratios ℎ𝑗𝑗∗are obtained using equation (3.5). Figure 3.8 shows the graph of the hedge 
ratios between the spot position and the futures with lags of 20 and 40 days in the 
study period. 
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Figure 3.8. Optimal hedge ratios ℎ𝑗𝑗∗ between the daily growth of the PVPM in 
Reynosa in dollars and the daily growth of the two-month Henry Hub futures, with 

lags of 20 and 40 days in the study period. 

 

Source: Own elaboration with data from CRE and NYMEX. 

Table 3.7 lists the optimal hedge ratios ℎ𝑗𝑗∗ predicted for the 10 days following the 
last date with historical data and, as support, the conditional covariances between 
the spot position and the futures are detailed. 

Table 3.7. Relationship of conditional covariances and optimal hedge ratios 
ℎ𝑗𝑗
∗ predicted for 10 days with the two-month Henry Hub futures, with lags of 20 

and 40 days. 

Day 
Forecast 

Cov Reyn 
Lag20 

Cov Reyn 
Lag40 h*20 h*40 

1 0.000032 0.000032 0.060609 0.074616 
2 0.000047 0.000034 0.086592 0.075478 
3 0.000060 0.000033 0.109885 0.071314 
4 0.000061 0.000043 0.109619 0.088827 
5 0.000061 0.000051 0.108659 0.101764 
6 0.000062 0.000057 0.107585 0.111066 
7 0.000062 0.000062 0.106600 0.117609 
8 0.000062 0.000066 0.105759 0.122111 
9 0.000062 0.000069 0.105057 0.125129 

10 0.000062 0.000072 0.104472 0.127080 
Source: Own elaboration with data of the CRE and NYMEX 
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3.5.4. Backtesting in the VCC model 

Forecasts of conditional variances and optimal hedge ratios ℎ𝑗𝑗∗ say little about the 
goodness of the estimate. Figure 3.8 above shows the conditional covariances 
predicted for a period of 10 days, however, how much do the out-of-sample 
covariances forecasts approximate the estimated in-sample covariances? To 
resolve this uncertainty, we performed a backtesting; first, we used the first 90% of 
historical data (in-sample) to forecast the last 10% of the information (out-of-sample). 
Figure 3.9 graphically shows the results in the forecast period; in that figure, the first 
current and forecast optimal hedge ratios appear within the ellipse. 

Figure 3.9. Optimal hedge ratios ℎ𝑗𝑗∗ in-sample and forecasted out-of-sample in the 
last 10% period of the data observed through backtesting. 

 

Source: Own elaboration with data of the CRE and NYMEX 

Notice that the out-of-sample predicted hedge ratios ℎ𝑗𝑗
∗ do not closely follow short-

term changes in the in-sample ratios; however, the order of the predicted ratios is 
the same as that of the current ones, that is, the in-sample and out-of-sample ℎ20∗ 
predicted hedge ratios are lower than the in-sample and out-of-sample ℎ40∗predicted 
ratios. Table 3.8 shows the backtesting statistics, both for in-sample data and in the 
out-of-sample forecast period.  
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Table 3.8. Statistics of the optimal ℎ20∗  and ℎ40∗ in-sample ratios and out-of-
sample forecasts in the entire period and the estimation period in the backtesting. 

 
First 1,192 days 

(90%) 
(In-sample) 

Remaining 132 days (10%) 
(Out-of-sample) 

 h*20 
actual 

h*40 
actual h*20 actual h*40 actual h*20 predict h*40 predict 

Mean 0.082095 0.112268 0.063728 0.081820 0.117371 0.140759 
Std Dev 0.076295 0.103794 0.017128 0.020148 0.006357 0.010954 
Kurtosis 83.675187 25.423120 -0.689331 0.100092 1.587913 5.993851 
Skewness 7.824266 4.612342 0.158550 0.129760 1.683808 -2.502337 

Source: Own elaboration with data of the CRE and NYMEX 

The absolute differences between the actual and predicted out-of-sample optimal 
hedge ratios ℎ20∗ and ℎ40∗ are 0.05364 and 0.05894, respectively. Table 3.8 shows 
the “memory” that the estimated hedge ratios retain, since they do not fully reflect 
the decline in actual hedge ratios in the forecast period, within the backtesting. 

In order to reduce this “memory” period in the estimated hedge ratios, we reduced 
the period of actual data to a minimum in which the MGARCH VCC estimates were 
convergent with the Newton-Raphson method and we sought to make forecasts for 
a shorter period (10 days). Table 3.9 shows the results for this shorter backtesting 
period. 

Table 3.9. Statistics of the optimal ℎ20∗ and ℎ40∗ in-sample ratios and out-of-
sample forecasts for the period of the last 252 days in the backtesting. 

 First 242 days 
(In-sample) 

Remaining 10 days 
(Out-of- sample) 

 h*20 actual h*40 actual h*20 actual h*40 actual h*20 predict h*40 predict 
Mean 0.012957 -0.049824 -0.01765 -0.075207 0.019034 -0.073572 

Std Dev 0.039929 0.036346 0.010531 0.014862 0.014705 0.023248 
Kurtosis -0.602354 0.613126 0.507476 2.186578 5.099191 -0.442972 

Skewness 0.279302 -0.558116 0.214191 1.365924 2.206246 -0.968940 

Source: Own elaboration with data of the CRE and NYMEX 

The absolute differences between the actual and predicted out-of-sample optimal 
hedge ratios ℎ20∗ and ℎ40∗ in the 252 days period are 0.036685 and 0.001635, 
respectively, which implies reductions in the differences of the estimates of 31.61% 
and 97.23% for hedge ratios of 20 and 40 days. That is, the proximity of the actual 
data and the shortage of the predicted period result in better predictions if the 
historical data is enough for a convergent solution. 

  



 

62 
 

3.6. Conclusions and final considerations 

This study focuses on the study of the dynamic hedging of NG, in particular of PVPM 
in Mexico. It is paradoxical that being NG a fuel of such broad use, it has attracted 
so little attention among researchers in the field. This study confirms, at least during 
the study period, that volatility in the prices of NG usually exceeds exchange rate 
volatilities. During the study period, the volatility of the NG prices in NYMEX was 6.7 
times the volatility in the peso-dollar exchange rate; however, the correlation 
between variations in the price of NG and the exchange rate is close to zero. This 
was also true for two subperiods of the sample which show different volatility 
patterns. 

The optimal hedging of NG first-hand sale prices (PVPMs) proposed considers the 
purchase of futures, months before the hedging date, which may allow arbitration. 
Considering the opening of the oil and gas market in Mexico, if PVPMs are re-
established, the pricing schemes must be reviewed to reflect in a timelier manner 
the international price levels and avoid arbitration. A similar recommendation applies 
wherever PVPMs are used. 

Dynamic hedging is a necessary tool for exposures to changing levels of risk, so that 
hedging is updated as new information is obtained. To obtain more reliable forecasts 
of variances, it is necessary to "filter" historical price information, so that the 
importance of some abrupt changes can be properly assessed and whether they are 
matched in other markets. 

The MGARCH VCC method of forecasting conditional variances was an adequate 
tool for estimating optimal hedge ratios for the case analyzed. This tool improves its 
efficiency when the predicted period is short and the actual sample data is close and 
they result in a convergent solution in the estimation method. 

The proposed hedging analysis and scheme is extensible to other fuels and other 
international markets, with little effort since the regulation of NG prices is an 
international regulatory practice and many countries are net importers of 
hydrocarbons. An immediate case is the gasoline market where gasolines spot 
positions can be hedged with crude oil or RBOB (reformulated blendstock for 
oxygenate blending) futures. Another case of great importance is the generation of 
electricity from NG where both markets, the power market and the NG’s have their 
own intricacies. 

The hedging strategy adopted in this investigation minimizes the variance of the 
hedge portfolio which it is not necessarily the most adequate approach for an 
investor, especially when he or she has an opinion on the price trends, in the 
presence of transaction costs or with a more rational attitude towards risk. In these 
cases, the optimal hedge solution should consider the expectations of the returns 
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and risk measures as well as a function to deliver the investor’s preferences under 
such expectations. 

Finally, the field looks promising; NG pricing for a period, even without the PVPM 
scheme, implies costs and risks that someone must bear: the final consumer, the 
distributor, the importer, and/or the local gas producer. Hedging strategies allow the 
distribution of this risk and cost among other participants with capital structures and 
market views that may be different. Having a different view of the risk as a result of 
a forecast and, at the same time, having the hedging a cost, it is convenient to 
evaluate whether it is appropriate to rebalance the hedging, however, this would be 
subject to further study. 

3.7 Post Data 

This section includes materials which were not part of the original essay, however, 
in the view of the thesis’ examiners and my own, we consider they are pertinent to 
include. 

3.7.1  Effectiveness of the hedging results with the backtesting 

To better explain the results obtained in section 3.5.4 ‘Backtesting in the VCC 
model’, I am going to make use of some elements which were already included in 
that part of the essay. 

The ellipse in Figure 3.9 intends to raise the attention to the out-of-sample short-
term forecast of the model, which I reproduce in the following Table 3.10 that 
includes the optimal hedge ratios calculated for the 132-day out-of-sample period. 
Some of the figures in Table 3.10 were obtained from Table 3.8. 

Table 3.10. Effectiveness of the optimal hedge ratios ℎ20∗  and ℎ40∗ forecasts for 
the 132-day out-of-sample period in the backtesting. 

  Remaining 132 days (10%) 
(Out-of-sample) 

  actual predict % Abs Diff Abs Diff 
h*20 0.063728 0.117371 84.17% 0.053643 
h*40 0.08182 0.140759 72.03% 0.058939 

Source: Own elaboration with data of the CRE and NYMEX 

In the case of the estimates of the out-of-sample ratios, even though the h*20 actual 
value is smaller than the h*40 actual value and this order in size is maintained in the 
forecasted values, the percentage absolute difference between the actual and the 
forecasted values ranges from 72.03% to 84.17%, which can be improved. 
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To enhance the effectiveness of the forecasts, a shorter and more recent period of 
historic data was used, and the forecast period was reduced to 10 days. 

Table 3.11 shows the predicted hedge ratios and their effectiveness, calculated for 
the new out-of-sample period of 10 days, based on the in-sample information of only 
242 days. Some of the figures in Table 3.11 were obtained from Table 3.9. 

Table 3.11. Effectiveness of the optimal hedge ratios ℎ20∗  and ℎ40∗ forecasts for 
the 10-day out-of-sample period in the backtesting. 

  Remaining 10 days 
Out-of-sample 

  actual predict % Abs Diff Abs Diff 
h*20 -0.01765 0.019034 207.84%** 0.036684 
h*40 -0.07521 -0.073572 2.17% 0.001638 

Source: Own elaboration with data of the CRE and NYMEX 

** Without considering the difference in sign, the percentage would have been 
7.84%. 

Even though there is a better forecast for the h*40 hedge ratio (the % Abs Diff is 
2.7%), we should be cautious with negative hedge ratio figures. This means that 
instead of having short positions in the Henry Hub Future#1 we should be long. This 
is because the short-term log variations of the NG Futures are contrary in nature to 
the PVPM log variations. This effect happened occasionally but could not last more 
than a few days and was due to differences in the sort-term trend of the Henry Hub 
NG prices and the short-term trend of the PVPM. 

The hedging model proposed does not limit the sign of the optimal hedge ratio. 

In terms of absolute differences there are enhancements in both forecasts. The 
absolute difference in the h*20 forecast improved; it decreased 31.61% from the 132-
day out-of-sample case to the 10-day out-of-sample case. The reduction is clearer 
in the h*40 forecast; it was 97.22%. 

There is an enhancement with the forecast capabilities of the model when the 
forecast period is shorter, and the historic data used are more proximate. The model 
can be improved introducing a positive sign constraint in the optimal hedge ratios, 
but just for the PVPM case, due to the time lag in the Henry Hub prices used to set 
the PVPM. 
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Chapter 4 

Hedging and optimization of energy asset portfolios 

Abstract 

Due to the economic value and the volatility of energy markets, hedging strategies 
and portfolio optimization are useful tools that allow to reduce non desired levels of 
risk or to avoid unnecessary costs. Based on the share price data of six Latin 
American and other regions energy companies and two crude oil futures, this study 
proposes the integration of hedging portfolios and the calculation of efficient frontiers 
under different risk measures. The original financial series are transformed into new 
ones to increase granularity and extension. With the new series obtained through 
simulation with the support of the Extreme Value Theory and Copulas-t, different 
conditional risk measures are calculated. These conditional risk measures are used 
in the solutions of the hedging and optimization problems. To obtain these solutions, 
we use non-linear integer programming techniques. Additionally, we present the 
programming codes used to generate the new series and to solve the hedging and 
optimization problems. 

Key Words: Financial hedging, Risk measures, Portfolio optimization. 

JEL Classification: C61, G15, G17, Q49 

4.1. Introduction 

Hedging and portfolio optimization problems are closely related. The optimal 
hedging solution, which minimizes risk for all possible cases, is a specific solution to 
the portfolio optimization problem. The goal is to minimize a risk measure, subject to 
a return and other conditions, or vice versa, to maximize the portfolio return, subject 
to a level of risk and other conditions. The "efficient frontier" (EF) concept developed 
by Markowitz in 1952, is the set of optimal portfolios for a mean-variance model. In 
this study, we will extend this concept to other mean-risk models, in which mean is 
the expected value of returns and risk is a measurement of the randomness of 
returns that can have different traits, as will be seen later. 

Energy commodities are natural resources that have become highly valuable 
because, on the one hand, they are non-perfect irreplaceable goods, and, on the 
other, they are scarce and sometimes non-renewable. Hydrocarbons, such as crude 
oil or natural gas, are non-renewable energy sources from which fuels and other 
widely used chemicals are derived. Oil and gas fields are concentrated in some 
regions of the world; some countries have these resources in abundance while 
others do not. 
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This study focuses on portfolios with shares or American Depositary Receipts 
(ADRs) of specific oil and gas companies that have attracted less attention than the 
world's five biggest oil consortiums, as named by Forbes magazine. In particular, we 
will analyze portfolios that include securities from six energy companies that trade 
on international markets: Amerisur Resources Plc (AMER.L) from Colombia, 
Ecopetrol (EC) from Colombia, Petro Matad Ltd (MATD.L) from Mongolia, Petrobras 
(PBR) from Brazil, Sasol Ltd (SSL) from South Africa and Yacimientos Petrolíferos 
Fiscales (YPF) from Argentina. The six companies’ total revenues in 2019 were US 
$1,112.7 billion. Also, our analysis includes short positions in two crude oil futures, 
Brent Crude (-BRENT FUT) and West Texas Intermediate (-WTI FUT), which are 
listed on the New York Mercantile Exchange (NYMEX). 

Based on portfolios that include these eight securities - six long positions in stocks 
and two short positions in futures - we will seek to obtain optimal hedging portfolios 
under three risk measures: standard deviation, Conditional Value at Risk (CVaR) 
and Mean Absolute Deviation (MAD) and develop the efficient frontiers of these 
portfolios using those risk measures. 

This chapter has several objectives: 

1. We will obtain a new series with greater granularity and extension through a 
simulation from the historical price series for the securities mentioned above. 
The main characteristics of the original series are preserved so that we can 
interpolate and extrapolate the results and, with the simulated data, use 
numerical tools to calculate conditional risk measures. we will apply the model 
proposed by Nyström & Skoglund (2002), which uses the Extreme Value 
Theory (EVT) and t-copulas, to develop a new series from historical data. 

2. We will obtain the best hedging solutions for a portfolio comprising the six 
selected stocks and ADRs plus short positions in the two crude oil futures 
with the three different risk measures with the simulated series.  

3. We will obtain the efficient frontiers for portfolios composed of long positions 
in stocks and ADRs and short positions in crude oil futures under the risk 
measures mentioned above. 

We will develop codes in MATLAB® to generate the new series and to obtain the 
hedged portfolios and efficient frontiers. 

This study's importance stems from its analysis of portfolios that include international 
energy companies that have received less coverage from industry analysts. Besides, 
new data analysis techniques are applied, less conventional "coherent" risk 
measures are obtained, and investment portfolios are integrated along efficient 
frontiers. Employing these techniques is useful for diversifying risks and obtaining 
better investment returns. 
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4.1.1. Organization of the study 

The organization of this study is as follows. Section 4.1 includes the introduction and 
research objectives. Section 4.2 describes the relevant literature to the study. 
Section 4.3 presents the study's methodology (i) for generating new data series; (ii) 
with regards to risk measures; and (iii) overall, in terms of the optimization problems 
to be addressed. Section 4.4 describes the data used and presents the results for 
the problem of hedging and for portfolio optimization to obtain efficient frontiers under 
different risk measures. Section 4.5 introduces a computational alternative to 
estimate CVaR from MAD. Finally, section 4.6 states conclusions and final 
considerations. A bibliography is included, and annexes detail the codes developed 
in MATLAB® that support data transformation, hedging, and optimization 
calculations at the end of this thesis. 

4.2. State of the art 

The literature on risk measurement is extensive, see, for example, Glosten et al. 
(1993), Artzner et al. (1998), Hult et al. (2012), Nyström and Skoglund (2002), 
Rockafellar et al. (2002), Khokhlov (2016), Du et al. (2016), Isaksson (2016), among 
others. In particular, Glosten et al. (1993) find support for a negative relationship 
between conditional expected monthly returns and the conditional variance of those 
returns using a Generalized Autoregressive Conditional Heteroscedastic (GARCH-
M) model modified to allow (1) adjustment for seasonal volatility, (2) positive and 
negative innovations to returns, and (3) nominal interest rates to predict conditional 
variance. Artzner et al. (1998) analyze risk measurement methods, and present and 
validate four desirable properties for measuring risk, satisfying the "coherent" risk 
measures. Similarly, Hult et al. (2012) pinpoint the properties that risk measures 
should have. Nyström and Skoglund (2002) develop a mathematical model of the 
evolution of joint risk factors over time and the concept of an information hypercube. 
On the other hand, the distribution in the tails can have different properties from the 
main distribution. Rockafellar et al. (2002) establish the advantage of CVaR over 
VaR as a measure of risk for financial loss distribution that can involve discreteness. 
In this line, Khokhlov (2016) derives closed-form CVaR formulas for certain elliptical 
distributions. In a parallel line of research, Du et al. (2016) note that Expected 
Shortfall (ES) has better risk measuring properties than VaR and proposes a back-
testing use of ES. 

Because natural gas prices, like other commodity prices, cannot be predicted, 
management must handle portfolios and risk exposures. The forecasting of 
commodity prices is a difficult problem because these markets, in general, are 
efficient. For example, Mishra & Smyth (2015) conclude that natural gas (NG) futures 
prices are not good predictors of hydrocarbon spot prices and that NG spot and 
futures prices are weak-form efficient and, therefore, non-predictable using market 
information. 
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Related to portfolio risk management, there is extensive literature considering 
different risk measures and optimization techniques, after the initial efforts of 
Markowitz (1952) mean-variance analysis. For example, Konno & Yamazaki (1991) 
show that the optimization of a portfolio using Mean Absolute Deviation (MAD) as a 
risk measure can be carried out with less computational effort than the Markowitz 
model. Rockafellar et al. (2000) compare the minimization of Value at Risk (VaR) 
and Conditional Value at Risk (CVaR) as risk measures in the optimization of 
investment portfolios. Xu et al. (2008) use a non-linear integer programming model 
to find a minimum cost rebalancing solution in portfolios where the risk measure is 
CVaR. Wang and Zheng (2010) investigate the use of rebalancing using fat-tailed 
distribution functions in optimization models with downside risks. Weng et al. (2010) 
analyze and compare the performance of various portfolio optimization models 
employing different risk measures and conclude that the Mini-Max model is superior 
to the others. Babazadeh et al. (2019) use VaR with extreme values to measure risk 
in portfolio optimization models, employing a Non-dominated Sorting Genetic 
Algorithm (NSGA-II) and conclude that use of this algorithm allows results superior 
to those of other mean-VaR models. 

Some recent efforts have been oriented to optimize portfolios using CVAR risk 
measures and multivariate distributions at the mean or the tails, for example, 
Forghieri (2014), Isaksson (2016), and Lönnquist (2018). Forghieri (2014) performs 
portfolio optimization by minimizing CVaR as a measure of risk, which he rates as a 
robust method, and proves that Generalized Hyperbolic distribution (GH) delivers 
the best fit for the real distribution of returns and is the most accurate in minimizing 
risk and calculating optimal weights. More recently, Isaksson (2016) develops a 
robust optimization method with CVaR and logarithmic returns for both elliptical and 
asymmetric marginal distributions with normal copulas. Lönnquist (2018) evaluates 
the importance of Multivariate Generalized Autoregressive Conditional 
Heteroskedastic (MGARCH) constant conditional correlation (CCC), dynamic 
conditional correlation (DCC) and varying conditional correlation (VCC) models in 
the context of optimal portfolios and concludes that these models have relevance for 
purposes of minimum-variance portfolios.  

Hedging is a related risk management problem to the portfolio risk management 
problem. In this line, Fu (2002) explores the non-linear relationship between optimal 
hedge ratios and transaction costs under different spot market returns and concludes 
that optimal hedge ratios are relatively sensitive to transaction costs when spot 
market returns are low. More recently, Chen et al. (2013) propose a new spot-futures 
hedging method that determines optimal hedge ratios by minimizing the riskiness of 
hedged portfolio returns, where the Aumann & Serrano (2008) index measures risk. 
Regarding transaction costs, Andrade et al. (2018) evaluate the influence of 
stochastic transaction costs on hedging decisions.  
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Concerning oil hedging, among the recent contributions are Zhao et al. (2018), 
Batten et al. (2019), and Wang et al. (2019). Zhao et al. (2018) develop a Fractionally 
Integrated Generalized Autoregressive Conditional Heteroskedastic (FIGARCH)-
EVT-copula-VaR model for optimal hedge ratios including hedging crude oil spot and 
futures markets and conclude that this model gives superior results to those of other 
approaches. Batten et al. (2019) study the feasibility of hedging stocks with crude oil 
using the GARCH DCC model and show that there are economic benefits to hedging 
with oil. However, the effectiveness of the hedging varies over time and depends on 
the state of the market. Wang et al. (2019) compare variance reduction versus other 
risk reduction methods in selecting the optimal hedged portfolios for crude oil 
markets and find results differ depending on whether the aim is to minimize variance 
or minimize risk. 

4.3. Methodology 

4.3.1. Data adjustments and simulation 

Zhao et al. (2018) refer to eighteen different methods to simulate series using 
GARCH models in conjunction with the Extreme Value and Copula Theory. In this 
study, we will start with the log-returns of the original price series. Using simulation, 
we will generate a new series of log returns with greater granularity and extension. 
To do so, we will use the method proposed by Nyström and Skoglund (2002) that 
employs EVT and t-copulas to obtain the new series and, with those, calculate risk 
measures. See Mathworks (2020-1). 

4.3.1.1 Nyström & Skoglund (2002) basic theoretical assumptions 

According to these authors, EVT and in particular the Generalized Pareto 
Distribution (GPD) give an asymptotic theory for the tail behavior of a distribution. 
They change the focus from modelling the whole distribution to the modelling of the 
tail behavior. One key assumption in EVT is that extreme returns are independent 
and identically distributed. As there is ample evidence of volatility clustering in 
extreme returns they propose to apply EVT to the filtered conditional residuals. 
Specifically, the authors assume that the continuously compounded return process, 
yt, follows a stationary ARMA-(asymmetric) GARCH model 

Φ(𝐿𝐿)𝑦𝑦𝑡𝑡 = Θ(𝐿𝐿)𝜀𝜀𝑡𝑡 (4.1) 

where 𝛷𝛷(𝐿𝐿) =  ∑ 𝜙𝜙𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝐿𝐿𝑖𝑖 , 𝛩𝛩(𝐿𝐿) = 1 + ∑ 𝜉𝜉𝑗𝑗

𝑞𝑞
𝑗𝑗=1 𝐿𝐿𝑗𝑗 are the lag polynomials and with εt 

decomposed as, εt = ztht. The conditional variance process, ℎ𝑡𝑡2, is governed by the 
recursive equation 

ℎ𝑡𝑡2 = 𝑎𝑎0+𝑎𝑎1𝜀𝜀𝑡𝑡−12 + 𝑎𝑎2sgn(𝜀𝜀𝑡𝑡−1)𝜀𝜀𝑡𝑡−12 + 𝑏𝑏ℎ𝑡𝑡−12   (4.2) 
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with the filtered conditional innovation, zt, being independent and identically 
distributed with mean zero and unit variance. 

4.3.1.2 Data adjustments and simulation process 

New series of log returns are generated due that the original data series have step 
patterns and include minimum and maximum limits. The limitations of the original 
data render the calculation of risk measures inadequate because the tails' effects 
are not fully captured. The collection of new series seeks to address these 
limitations. 

The process first extracts the filtered residuals from the original return series with an 
asymmetric Glosten-Jagannathan-Runkle-GARCH (GARCH-GJR) model that 
eliminates autocorrelation and heteroscedasticity. Then, a cumulative sample 
distribution function is constructed for each asset using an estimated Gaussian 
kernel for the interior and a Generalized Pareto Distribution (GPD) to estimate the 
upper and lower tails. The data are then adjusted with a t-copula that incorporates 
correlations between the simulated residuals of each asset. 

To generate a series of independent and identically distributed (i.i.d.) observations, 
a first-order autoregressive model is initially applied to the conditional mean of the 
logarithmic returns of each asset. 

𝑟𝑟𝑡𝑡  =   𝑐𝑐 + 𝜃𝜃𝑟𝑟𝑡𝑡−1 + 𝜖𝜖𝑡𝑡   (4.3) 

and an asymmetric GARCH-GJR model to the conditional variance. 

𝜎𝜎𝑡𝑡2   =  𝑘𝑘 +  𝛼𝛼𝜎𝜎𝑡𝑡−12 +  𝜙𝜙𝜙𝜙𝑡𝑡−12 +  𝜓𝜓[𝜀𝜀𝑡𝑡−1 < 0] 𝜖𝜖𝑡𝑡−12   (4.4) 

The first-order autoregressive model seeks to compensate for autocorrelation, while 
the GARCH model compensates for heteroscedasticity. In particular, the GARCH-
GJR introduces asymmetry (leverage) in the variance through a Boolean indicator 
that takes a value of 1 if the residual of the previous model is negative and 0 
otherwise. See Glosten et al. (1993). 

Also, the standardized residuals of each asset are modeled as a standardized 
Student's t-distribution to compensate for the fat tails associated with securities 
returns: 

𝑧𝑧𝑡𝑡   =  𝜀𝜀𝑡𝑡  / 𝜎𝜎𝑡𝑡  i.i.d. t(ν) distributed (4.5) 

Given the i.i.d. standardized residuals of the previous step, the Cumulative 
Distribution Function (CDF) of each asset's return must be estimated with a 
Gaussian kernel, which smoothes out the estimated CDFs, eliminating a step pattern 
of unsmoothed CDFs from the sample. Although the CDFs estimated with a non-
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parametric kernel are appropriate for the interior of the distributions where most of 
the data is located, they tend not to behave well when applied to the upper and lower 
tails. To better estimate the tails of the distribution, the EVT is applied to the tails' 
residuals. 

Specifically, we will look for the upper and lower thresholds so that 10% of the 
residuals are included in each tail. We will then adjust the amount by which these 
extreme residuals fall into the tails, beyond the thresholds associated with a 
parametric GPD using the maximum likelihood method. This approach is often 
referred to as the "distribution of exceedances" or "peaks over the threshold." 

Given the exceedances for each tail, the negative log-likelihood function is optimized 
to estimate the tail index (zeta) and the beta scale parameter of the GPD. 

The proposed method allows interpolation inside the CDFs (Gaussian kernel) and 
extrapolation in the tails (GPD). Extrapolation is desirable since it allows the 
estimation of quantiles apart from historical data, which is highly desirable in risk 
management applications. 

Moreover, Pareto tail objects also allow methods to evaluate CDFs and inverse 
CDFs and to numerically calculate cumulative probabilities and quantiles in each 
segmented part of the distribution. 

Given the standardized residuals, the degrees of freedom, and the correlation matrix 
(R) for the t-copula need to be estimated, which can be done using two different 
methods. 

The primary method is the maximum likelihood method conducted as a two-step 
process. The first step maximizes the log-likelihood function with respect to the linear 
correlation matrix, given an initial value for the degrees of freedom. This conditional 
maximization is allowed a gap of one degree of freedom, and the log-likelihood 
function is maximized again by varying the other parameters. The function that is 
maximized in this second step is known as the log-likelihood profile for the degrees 
of freedom. 

In contrast, the code used in this study employs an alternative method that 
approximates the log-likelihood profile for the degrees of freedom parameter. 
Although this method is significantly faster than the primary method, it should be 
used with caution, as the estimates and confidence limits may not be suitable for 
small or medium samples. 

Nyström and Skoglund (2002) propose that the user provides the degrees of 
freedom parameter as a specific piece of data in the simulation process, which 
allows the user to induce extension in the tail dependencies between the assets. In 
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particular, the authors recommend a relatively low value for the degrees of freedom, 
something between 1 and 2. This method is useful for stress tests, where degrees 
of extreme codependency are of critical importance. 

Given the parameters of the t-copula, the returns on assets with shared dependency 
can now be simulated by first simulating the standardized residuals. The simulation 
allows us to generate what we believe are sufficient elements for the case study: 
from 1,242 original returns, we will simulate 2,000 new ones. 

To do this, first, we simulate the dependent uniform variables. Then, we extrapolate 
the tails (GPD) and interpolate the internal segment (Gaussian kernel), which 
transforms the uniform variations into standardized residuals through the inversion 
of the semi-parametric marginal CDF for each asset. The procedure generates 
simulated standardized residuals consistent with those obtained from AR(1) + 
GJR(1,1) (asymmetric GARCH) already described. These residuals are independent 
in time but dependent at each point in time. Each set of simulated standardized 
residuals for each asset represents a vector with a stochastic i.i.d process if viewed 
in isolation, while at each point in time, the assets' returns have a copula-induced 
correlation. 

With the use of the simulated standardized residuals as an i.i.d. noise process, the 
autocorrelation, and heteroscedasticity observed in the original asset returns are 
reintroduced, and the new simulated returns are obtained. These simulated returns 
will be used in the risk measure calculations in this study. As such, the risk measures 
are not those corresponding to historical data but rather risk measures conditional 
to the new series obtained as indicated. 

The process described above is developed in a MATLAB® code called 'stepzero' 
that is included in Annex 1 of this work. 

4.3.2. Risk measures 

According to Isaksson (2016), financial risk can be measured in different ways, most 
frequently by variance. As a risk measure, the variance has the disadvantage that it 
does not distinguish between positive deviations from the mean (portfolio gains) and 
negative deviations (losses). The standard deviation, the square root of the variance, 
can only be considered as a measure of risk if the future value of the portfolio is 
distributed in a normal or elliptical way. In general, it is better to use a risk measure 
that distinguishes between "good" and "bad" deviations from the expected future 
value of the portfolio. 

Artzner et al. (1999), Hult, et al. (2012) and other authors stress that risk measures 
must gather specific properties to be considered suitable measures. The authors call 
measures that meet these properties "coherent." 
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Let ρ(X) be a function that measures the risk of a stochastic variable X. Coherent 
risk measures are those that have the following properties: 

1. Translational invariance. 𝜌𝜌(𝑐𝑐𝑅𝑅0 +  𝑋𝑋) = −𝑐𝑐 +  𝜌𝜌(𝑋𝑋) for 𝑐𝑐 ∈  ℝ. This characteristic 
means that adding an amount c with an interest rate R0 to a portfolio reduces the 
portfolio risk by the same amount. 

2. Monotonicity. If X2 < X1, then 𝜌𝜌(𝑋𝑋1) ≤  𝜌𝜌(𝑋𝑋2). The property implies that if it is 
known for sure that an X1 portfolio is larger than an X2 portfolio in the future, the 
first portfolio is considered less risky. 

3. Convexity.  𝜌𝜌(𝜆𝜆𝑋𝑋1 + (1− 𝜆𝜆)𝑋𝑋2)  ≤  𝜆𝜆𝜆𝜆(𝑋𝑋1) + (1 − 𝜆𝜆)𝜌𝜌(𝑋𝑋2), for any 𝜆𝜆 ∈ [0,1]. The 
risk measure rewards diversification, which means that it is better to invest in 
more than one risk position than in one. 

4. Normalization. ρ(0) = 0. This property means that it is acceptable not to invest in 
risky assets; that is, the empty portfolio is risk-free. 

5. Positive homogeneity. 𝜌𝜌(𝜆𝜆𝜆𝜆) =  𝜆𝜆𝜆𝜆(𝑋𝑋), for any 𝜆𝜆 ≥ 0. The property implies, for 
example, that investing twice as much in a risk position doubles the risk. 

6. Subadditivity. 𝜌𝜌(𝑋𝑋1 + 𝑋𝑋2) ≤ 𝜌𝜌(𝑋𝑋1) + 𝜌𝜌(𝑋𝑋2) . This property implies that the risk 
measure rewards diversification. A set of two risk assets is less risky than having 
the two assets separately. 

4.3.2.1. Standard deviation, CVaR and MAD 

For purposes of this study, we will use three risk measures: (1) standard deviation, 
(2) CVaR, and (3) MAD. 

The concept of standard deviation is widely understood and needs not to be defined 
here. The same could be said about MAD; in short, it is the average of the absolute 
deviations from the mean. While the standard deviation is differentiable in almost all 
its points, the algebraic treatment of MAD is complicated. It is the differentiability of 
the standard deviation (and variance) that enables it to be a measure of risk in a 
large number of optimization models in which it is assumed that the returns on 
financial assets can be fully explained by the first two moments of their distribution 
functions. As will be seen later, the use of MAD as a risk measure in numerical 
models is based on the simplicity of its handling. Neither standard deviation nor MAD 
is a coherent risk measure as they do not meet the requirement of subadditivity. The 
same is true of variance, nor does the variance meet the property of positive 
homogeneity. 

CVaR, also known as Expected Shortfall (ES), is the expected value of VaR. VaR is 
defined as follows: 
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Let X be a function of the distribution of utilities (or loss). The VaR at a level 𝛼𝛼 ∈ (0,1) 
is the smallest number y so that the probability of 𝑌𝑌 ≔ −𝑋𝑋 does not exceed y is at 
least 1 – α. Mathematically, VaRα(X) is the quantile (1-α) of Y, that is: 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑋𝑋) =  − inf{ 𝕩𝕩 ∈ ℝ: 𝐹𝐹𝑋𝑋(𝑥𝑥) > 𝛼𝛼} =  𝐹𝐹𝑌𝑌−1(1− 𝛼𝛼) (4.6) 

where FX is the CDF of X and is well defined. 

VaR is also not a coherent measure of risk as it does not comply with the principle 
of subadditivity and, as some authors have pointed out, does not provide information 
about the number of losses beyond the VaR threshold. Besides, numerically, in 
terms of optimization, VaR calculated under different scenarios results in a non-
convex, "non-smooth" function with multiple local extremes, making it difficult to use 
optimization algorithms.  

CVaR is a coherent risk measure proposed by Rockafellar & Uryasev (2000), which 
lacks the limitations described for the other risk measures. CVaR has computational 
advantages over VaR while maintaining consistency with VaR in terms of results 
when normal or elliptical distributions are used. In these cases, VaR and CVaR are 
consistent with variance results, opening the possibility for them to participate as 
alternative risk measures in the Markowitz optimization model.  

CVaR is defined as follows for the continuous case: 

Let X be a continuous random variable representing a loss. Given 𝛼𝛼 ∈ (0,1), the 
CVaRα(X) is: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑋𝑋) ≔  𝔼𝔼[𝑋𝑋|𝑋𝑋 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 (X)] (4.7) 

Figure 4.1 shows the VaR and CVaR of a standard normal distribution for an α of 
95%.  
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Figure 4.1. VaR95% and CVaR95% of a random variable standard normally 
distributed. 

 

Source: Own elaboration. 

4.3.3. Optimization of functions 

Problems of portfolio hedging or obtaining efficient frontiers, in which a risk measure 
with minimum levels and associated returns are sought in addition to the composition 
of specific portfolios, almost always require algorithms for their solution. Sometimes 
these are linear optimization problems, although, for example, when using CVaR as 
a risk measure, optimization problems are non-linear and require integer solutions. 

Optimization problems can be linear or non-linear, depending on the nature of the 
objective function and its constraints. For example, the problem of minimizing MAD 
is usually a linear programming problem. However, depending on the type of 
constraints, it can become an integer programming problem, i.e., one where the 
solutions or constraints require integer values. CVaR minimization or standard 
deviation problems are usually non-linear problems of integer solutions. 

To solve a complex optimization problem, such as a non-linear integer problem, 
there are two paths to take: choose a general solver or choose a problem solver. A 
general solver addresses a technique or set of general application optimization 
techniques, in which problems can be fragmented and addressed in a serial or 
parallel manner. A problem solver addresses typical cases, such as those in this 
study: minimizing a risk measure like CVaR, subject to linear constraints, including 
integers. 
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In this study, we will use programming objects to obtain the desired solutions, for 
example, and in the case of MATLAB®, mean-standard deviation, mean-CVaR, or 
mean-MAD optimization objects. 

4.3.4. Portfolio hedging 

The purpose of portfolio hedging is to create a minimal risk portfolio. In our case, the 
portfolio is composed of a ‘long’ position in the spot market that we want to hedge 
with a ‘short’ position in the futures market. The purpose of minimal risk hedging is 
to find a combination of hedging elements that replicates the behavior of the long 
positions with the least possible risk (e.g., variance). This objective is particularly 
attractive when it comes to creating synthetic instruments. 

Batten et al. (2019) point out that the optimal hedge ratio βt, i.e., the ratio of futures 
to spot assets, is defined by the following:  

𝛽𝛽𝑡𝑡 =  𝐶𝐶𝐶𝐶𝐶𝐶�𝑅𝑅𝑆𝑆,𝑡𝑡  ,𝑅𝑅𝐹𝐹,𝑡𝑡�ℱ𝑡𝑡−1�
𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅𝐹𝐹,𝑡𝑡�ℱ𝑡𝑡−1�

 (4.8) 

where RS,t, and RF,t are the returns of positions in the spot and futures markets 
respectively, and ℱ𝑡𝑡−1 is the filtration with information for the period t-1. 

Equation (4.8) is manageable when spot and futures positions maintain their 
composition, and when futures are not correlated to each other. However, the 
problem increases in complexity when compositions vary, that is, when it comes to 
changing the portfolio composition of spot and future assets, alternatively, as in the 
case of this study, when futures are highly correlated. Also, equation (4.8) is used 
when trying to minimize the hedged portfolio's variance. In the case of normal or 
elliptical distributions, this method cannot be used in a generalized manner to find 
the minimums of other risk measures. 

As an alternative to equation (4.8), Zhao et al. (2018) describe at least six different 
hedging methods based on autoregressive conditionally heteroscedastic (ARCH) 
models, which seek to obtain an explanation of the conditional variances of the 
series in order to calculate optimal hedge ratios. 

Another way to solve portfolio hedging is to treat it as an optimization problem that 
attempts to identify the minimum value of the risk measure under all feasible 
scenarios. In other words, the minimum of minimal risks. 

We pose the following optimization problem: 

Min   ρ(X1, X2, …, Xn) (4.9) 

s.t. 
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 ∑  𝜔𝜔𝑖𝑖𝑖𝑖 𝑟𝑟𝑋𝑋𝑖𝑖 ≥ 𝑅𝑅𝑝𝑝, 

 ∑  𝜔𝜔𝑖𝑖𝑖𝑖 = 1, 

 𝜔𝜔𝑖𝑖 ≥ 0,        𝑗𝑗 = 1, … ,𝑛𝑛 

where ρ(.) is a risk measure to be minimized; Xi is a vector of random variables that 
represent stocks or futures; 𝑟𝑟𝑋𝑋𝑖𝑖 is a vector of expected returns on the variables Xi; Rp 
is the desired return, at the very least, on the portfolio p; and ωi is the weight of the 
value Xi in the portfolio (note that all weights must be positive and add up to one). 

The code in MATLAB® that solves the hedging problem described is called 
‘stephedge’ and is found in Annex 2 of this study. 

4.3.5. Portfolio optimization 

In 1952, Markowitz proposed the mean-variance (MV) model in which the risk 
measure is the variance, and the mean return is the key risk indicator of the expected 
portfolio return. The objective function of equation (4.9) above takes the following 
form for the MV model: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝜌𝜌(∙) = 𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝑗𝑗𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 (4.10) 

where σij is the covariance of the returns 𝑟𝑟𝑋𝑋𝑖𝑖 and 𝑟𝑟𝑋𝑋𝑗𝑗; σii is the variance of the return 
𝑟𝑟𝑋𝑋𝑖𝑖, and ωi and ωj are the weights of the values described in equation (4.9) above. 
The other constraints of equation (4.9) also apply to this problem. 

The MV model obtains the portfolio of minimum variance given a portfolio return Rp. 
However, if this return varies throughout its domain and if the constraints of equation 
(4.9) are met, the EF will be the location where the minimum variance portfolios lie. 
In other words, the EF for the MV model is the geometric place of the portfolios of 
minimum variance for any allowable Rp return, when the model's restrictions are met. 

As mentioned above, risk measures other than variance will be used in this study. 
However, the generalization of the EF is applicable, i.e., the EF is the location of the 
least risk portfolios rather than the location of least variance portfolios, all other 
things being equal. 

One of the drawbacks of the Markowitz model is the computational effort it requires 
since, for example, 𝑛𝑛(𝑛𝑛+1)

2
 covariances need to be calculated to obtain its solution. 

To simplify the calculations of the risk measure, Konno & Yamazaki (1991) proposed 
the MAD method that gives solutions equivalent to those of the MV model for normal 
distributions but only using an average value. 
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According to Konno & Yamazaki (1991), the use of MAD instead of variance as the 
risk measure to obtain the EF has the following computational advantages:  

1. There is no need to calculate the covariance matrix to set up the optimization 
model. 

2. It is easier to update the model when new data are added. 

3. The use of computational resources is less demanding, which enables to 
calculate the EF on a real time basis even when the model incorporates 
thousands of securities. 

Isaksson (2016) points out that portfolio optimization when using CVaR as a risk 
measure shows a significant advantage over the MV approach when log-returns are 
modeled with asymmetric distributions. The disadvantage of using CVaR with 
simulated yields is that it introduces statistical uncertainty into the problem, beyond 
the calculation of historical covariances of MV and that the calculation of t-copulas 
involves more steps and processing time than only taking a sample from an elliptical 
distribution. 

The objective of obtaining the EF is different from that of hedging. The EF marks 
different points for the risk-return combination, leaving it up to the investor to decide 
which point to choose, depending on their risk preferences. In contrast, as noted 
above, minimal risk hedging seeks to identify elements that come as close as 
possible to the risk pattern of the underlying or long-held securities. 

For the solution to optimization problems and for obtaining the EF under different 
risk measures, the code ‘stepone’ was developed in MATLAB®, the text of which 
appears in Annex 3. 

4.4. Data and Results 

4.4.1. Data 

For this study, five years of daily price data from November 10, 2014, to November 
7, 2019, were used. These were obtained from the New York (EC, PBR, SSL, and 
YPF) and London (AMER.L and MATD.L) stock exchanges, the CME Group 
(BRENT FUT, and WTI FUT) and Bloomberg. Prices from the New York Stock 
Exchange (NYSE), as well as those of the Chicago Mercantile Exchange (CME), are 
in US dollars; those of the London Stock Exchange (LSE) are in pounds sterling. 
Bloomberg was the source for the exchange rates from pounds to dollars. All prices 
were converted to US dollars. 

Table 4.1 shows statistics of log returns from the daily price series in dollars, with 
the understanding that data related to futures are already expressed as short 
positions. As can be seen, the AMER.L, MATD.L, and YPF series are markedly 
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leptokurtic, and those of MATD.L and YPF are asymmetrical, the former being 
positive and the latter negative. The observed asymmetrically indicates that some of 
the series are not normally distributed. 

Table 4.1. Statistics of the daily log-returns of the energy assets during the period 
of analysis. 

 
Mean Median Std Dev Kurtosis Skewness Min Max Count 

AMER.L -0.0009 -0.0022 0.0400 9.3377 0.3589 -0.3122 0.3146 1,242 
- BRENT FUT 0.0002 -0.0008 0.0232 2.9240 -0.0822 -0.1364 0.1029 1,242 
EC -0.0001 0.0000 0.0262 3.1804 -0.0982 -0.1608 0.1417 1,242 
MATD.L 0.0002 -0.0027 0.0870 41.7854 2.3895 -0.7383 1.1757 1,242 
PBR 0.0004 0.0015 0.0351 2.4016 -0.1449 -0.1852 0.1555 1,242 
SSL -0.0006 0.0000 0.0228 3.6265 -0.5096 -0.1617 0.0898 1,242 
- WTI FUT 0.0002 0.0010 0.0244 2.6632 -0.1304 -0.1369 0.1079 1,242 
YPF -0.0010 -0.0018 0.0276 41.9005 -2.5939 -0.4163 0.1216 1,242 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

Table 4.2 shows the correlations from the original log returns series before further 
processing. The futures series are strongly correlated (0.9264), as well as the series 
of futures and returns of almost all companies, except for the MATD.L ADR. It can 
also be observed that the WTI future correlates more with Latin American companies 
than the Brent future, except for YPF, the Argentine oil company. 

Table 4.2. Correlation matrix of the original daily log-returns of the energy assets 
during the period of analysis. 

 AMER.L - BRENT FUT EC MATD.L PBR SSL - WTI FUT YPF 
AMER.L 1 -0.1896 0.1957 0.0222 0.1743 0.1983 -0.1948 0.1551 
- BRENT FUT -0.1896 1 -0.6534 -0.0332 -0.4987 -0.5167 0.9264 -0.3817 
EC 0.1957 -0.6534 1 0.0388 0.6118 0.5691 -0.6668 0.4240 
MATD.L 0.0222 -0.0332 0.0388 1 0.0330 0.0221 -0.0307 0.0441 
PBR 0.1743 -0.4987 0.6118 0.0330 1 0.5005 -0.5106 0.4454 
SSL 0.1983 -0.5167 0.5691 0.0221 0.5005 1 -0.5067 0.3965 
- WTI FUT -0.1948 0.9264 -0.6668 -0.0307 -0.5106 -0.5067 1 -0.3720 
YPF 0.1551 -0.3817 0.4240 0.0441 0.4454 0.3965 -0.3720 1 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

4.4.2. Results 

From the historical data, a new series of log returns were generated through 
simulation using the Nyström y Skoglund (2002) method with the ‘stepzero’ code. 
Table 4.3 shows the statistics of the simulated daily log returns series. In these new 
returns, the AMER.L and MATD.L ADRs maintain a marked leptokurtosis, and, the 
latter has a skew, now negative. 
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Table 4.3. Statistics of the daily log returns generated by the model for the period 
of analysis. 

 Mean Median Std Dev Kurtosis Skewness Min Max Count 
AMER.L -0.0015 -0.0022 0.0284 9.6822 0.7477 -0.2229 0.2411 2,000 
- BRENT FUT 0.0016 0.0007 0.0181 1.3107 0.3939 -0.0612 0.0883 2,000 
EC -0.0005 -0.0001 0.0156 2.1953 -0.0676 -0.0702 0.1163 2,000 
MATD.L 0.0024 -0.0021 0.1347 95.7780 -3.0099 -2.6245 1.3405 2,000 
PBR -0.0001 0.0001 0.0205 5.8334 -0.6048 -0.2093 0.0684 2,000 
SSL -0.0020 -0.0010 0.0315 4.2357 -0.6863 -0.2736 0.1017 2,000 
- WTI FUT 0.0017 0.0011 0.0178 0.5699 0.2086 -0.0590 0.0786 2,000 
YPF -0.0004 -0.0004 0.0288 1.4766 -0.1628 -0.1871 0.1044 2,000 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

Table 4.4 shows the correlations between the simulated returns series. In the 
simulated series, there remains a strong correlation between futures, and between 
futures and all stocks except for the MATD.L ADR, as in the original series. In 
addition, the high degree of correlation between WTI futures and Latin American 
series is maintained, except for YPF, as in the original correlations. 

Table 4.4. Correlation matrix of the daily log returns generated by the model for 
the period of analysis. 

 AMER.L - BRENT FUT EC MATD.L PBR SSL - WTI FUT YPF 
AMER.L 1 -0.1792 0.1499 0.0442 0.1394 0.1571 -0.1830 0.1504 
- BRENT FUT -0.1792 1 -0.6294 -0.0857 -0.4978 -0.5331 0.9268 -0.3872 
EC 0.1499 -0.6294 1 0.0585 0.5871 0.5751 -0.6477 0.4196 
MATD.L 0.0442 -0.0857 0.0585 1 0.0826 0.0577 -0.0590 0.0876 
PBR 0.1394 -0.4978 0.5871 0.0826 1 0.4763 -0.5137 0.4446 
SSL 0.1571 -0.5331 0.5751 0.0577 0.4763 1 -0.5180 0.4112 
- WTI FUT -0.1830 0.9268 -0.6477 -0.0590 -0.5137 -0.5180 1 -0.3723 
YPF 0.1504 -0.3872 0.4196 0.0876 0.4446 0.4112 -0.3723 1 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

The simulated data obtained allow risk measures such as CVaR to be calculated 
other than through the historical method. These same simulations can be used in 
the valuation of contingent assets whose underlying are the examined series. 

To solve the hedging problem, a portfolio comprising the six energy stocks or ADRs, 
each with the same weight, was evaluated and hedged with short futures positions 
in Brent and WTI crudes. As noted above, short futures were introduced in the data 
from the beginning (negative returns, positive variances) so that the weights in the 
portfolio compositions were positive, which is a common constraint on optimization 
problem solvers. 
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Figure 4.2 shows the EF for the hedged portfolio, taking standard deviation as a risk 
measure. Note the point of minimum risk value within the circle; this is the desired 
hedged portfolio. 

Figure 4.2. Mean-Standard Deviation Efficient Frontier for the Equally Weighted 
Portfolio during the period of analysis. 

 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

Table 4.5 shows the composition of the hedged portfolios under the three risk 
measures considered: standard deviation, CVaR, and MAD. It also includes data on 
the value taken by the risk measure at that point, which is shown in bold and the 
daily portfolio return at the minimum risk point. When the risk measure is the 
standard deviation, the hedged portfolio is composed of 6.82% in stock and ADRs, 
43.60% in a short position in Brent futures rand 49.58% in a short position in WTI 
futures. The minimum standard deviation value is 0.0069, and the return on the 
hedged portfolio is 0.0003. As can be observed, given the selected hedging (short 
futures position in crude oil), a significant short position is required to minimize the 
standard deviation, which does not happen in the other two cases considered. 

In each risk model, the values of the other risk measures are included. For example, 
the portfolio of optimal hedging in the mean-standard deviation model also provides 
CVaR and MAD results. However, the values in bold are the minimum values of the 
risk measure for each case. The portfolio of mean-standard deviation hedging is the 
one with the lowest standard deviation, and the portfolio of mean-CVaR is the one 
with the lowest CVaR, which does not imply, at least in an obvious way, that the 
portfolio of the standard deviation model is better hedged than the portfolio of mean-
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CVaR. Each hedged portfolio is the one with the lowest risk measure, based on how 
it is measured. However, since CVaR is the only coherent risk measure used, its use 
is recommended, especially if the proportions of the portfolios should change. It 
should be noted that CVaR was calculated at 95%. 

Table 4.5. Composition and risk levels of the hedged portfolios by risk model for 
the period of analysis. 

Risk Model 
Weights Risk level 

Return 
Portfolio 

-Brent 
Fut 

-WTI 
Fut 

Std 
Dev CVaR MAD 

Mean-Std Dev 0.0682 0.4360 0.4958 0.0069 0.0314 0.0126 0.0003 
Mean-CVaR 0.3331 0.3458 0.3211 0.0105 0.0235 0.0094 0.0010 
Mean-MAD 0.3438 0.3597 0.2965 0.0106 0.0235 0.0094 0.0010 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg 

The values obtained should be interpreted as the best values, given the series 
simulated from the historical series. The use of these values as predictors of future 
values depends on the permanence of the series' parameters. 

Regarding portfolio optimization, Figure 4.3 shows the EFs graphically for the energy 
portfolios, using standard deviation, CVaR at 95%, and MAD as risk measures. 

Figure 4.3. Efficient frontiers for the portfolios under different risk measures for the 
period of analysis.

 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

Table 4.6 shows the composition of 10 portfolios that lie on the EF using different 
risk measures in which, in addition to the weights, the values of risk and daily return 
are indicated. Note that in all cases, the minimum return is 0.0004 using the 
corresponding measure (standard deviation, CVaR, or MAD). There is a small 
difference in the maximum return (0.0024, 0.0026, and 0.0032), which should be the 
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same since it corresponds to having the entire portfolio invested in the MATD.L ADR. 
The result is due to the different values produced by the simulations. 

Table 4.6. Weights, Returns, and Risk levels of Portfolios lying on the Efficient 
Frontiers for the period of analysis. 

  Mean - Standard Deviation Model 
Port # 1 2 3 4 5 6 7 8 9 10 

AMER.L' 0.0536 0.0117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
- BRENT FUT 0.1683 0.1395 0.1016 0.0588 0.0073 0.0000 0.0000 0.0000 0.0000 0.0000 
EC' 0.3609 0.3321 0.2248 0.1019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
MATD.L 0.0015 0.0048 0.0097 0.0149 0.0206 0.0293 0.1213 0.4142 0.7071 1.0000 
PBR 0.0871 0.1208 0.1573 0.1952 0.2092 0.0868 0.0000 0.0000 0.0000 0.0000 
SSL 0.0271 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
- WTI FUT 0.2787 0.3642 0.4871 0.6191 0.7628 0.8839 0.8787 0.5858 0.2929 0.0000 
YPF 0.0228 0.0269 0.0196 0.0101 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000            
Return 0.0004 0.0006 0.0008 0.0011 0.0013 0.0015 0.0018 0.0020 0.0022 0.0024 
Risk Level 0.0063 0.0067 0.0079 0.0099 0.0123 0.0152 0.0220 0.0561 0.0951 0.1347            

  Mean – CVaR Model 
Port # 1 2 3 4 5 6 7 8 9 10 

AMER.L' 0.0515 0.0094 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
- BRENT FUT 0.1892 0.1582 0.1441 0.1155 0.0296 0.0000 0.0000 0.0000 0.0000 0.0000 
EC' 0.3475 0.3020 0.1677 0.0270 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
MATD.L 0.0023 0.0063 0.0111 0.0153 0.0234 0.0329 0.2297 0.4865 0.7432 1.0000 
PBR 0.0960 0.1323 0.1858 0.2327 0.1697 0.0334 0.0000 0.0000 0.0000 0.0000 
SSL 0.0258 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
- WTI FUT 0.2673 0.3585 0.4579 0.5775 0.7773 0.9337 0.7703 0.5135 0.2568 0.0000 
YPF 0.0204 0.0333 0.0334 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000            
Return 0.0004 0.0006 0.0009 0.0011 0.0013 0.0016 0.0018 0.0021 0.0023 0.0026 
Risk Level 0.0126 0.0135 0.0161 0.0202 0.0255 0.0323 0.0664 0.1331 0.2031 0.2741            

  Mean – MAD Model 
Port # 1 2 3 4 5 6 7 8 9 10 

AMER.L' 0.0546 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
- BRENT FUT 0.1925 0.1536 0.1619 0.1527 0.1499 0.0000 0.0000 0.0000 0.0000 0.0000 
EC' 0.3537 0.2987 0.1178 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
MATD.L 0.0020 0.0078 0.0177 0.0307 0.0494 0.2306 0.4229 0.6153 0.8076 1.0000 
PBR 0.0828 0.1476 0.2180 0.1862 0.0071 0.0000 0.0000 0.0000 0.0000 0.0000 
SSL 0.0314 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
- WTI FUT 0.2582 0.3744 0.4846 0.6304 0.7936 0.7694 0.5771 0.3847 0.1924 0.0000 
YPF 0.0249 0.0179 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000            
Return 0.0004 0.0007 0.0010 0.0013 0.0016 0.0019 0.0022 0.0025 0.0028 0.0032 
Risk Level 0.0051 0.0056 0.0074 0.0102 0.0139 0.0264 0.0456 0.0659 0.0865 0.1072 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

As can be seen in both Figure 4.3 and Table 4.4, the efficient frontiers' endpoint is 
composed of a single stock or ADR (MATD.L) that has a risk and return higher than 
all other combinations in the portfolio. The corner solution is a common problem in 
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optimization, usually solved by placing additional limits on portfolio composition, e.g., 
minimum, and maximum investment weights, a minimum number of stocks that must 
make up the portfolio, and so on. These limitations have a cost: ultimately, new 
frontiers are obtained that are ‘sub-efficient’ compared to the original frontier. 

Figure 4.4 shows the EF of a mean-standard deviation portfolio, with and without 
restrictions. To the original constraints of equations (4.7) and (4.8) was added 
another in which the weights of the stocks or ADRs in the portfolio must be zero or 
in the range of 0.05 to 0.3. The later constraint requires at least four stocks or short 
positions in the portfolio. 

Figure 4.4. The efficient frontier of the Mean-Std Dev portfolio with and without 
constraints for the period of analysis. 

 

Source: Own elaboration with data of NYSE, LSE, CME, and Bloomberg. 

4.5 A computational alternative to estimate CVaR based on MAD results 

It has already been said in this essay that the computational effort to calculate CVaR 
can be highly demanding. In the model developed in this work, we calculate 2,000 
points for the two tails and the mid-section of each historic data distribution (6,000 
points in total per distribution), then we simulate 2,000 values for the eight t-
connected distributions and then the model performs 20,000 internal trials to 
calculate a single CVaR value. All this to obtain a good estimate of CVaR without 
abrupt steps. By contrast, the calculation of MAD and the Standard Deviation can be 
performed directly from historic data. 
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Once we have done the initial effort to calculate CVaR and MAD from a series of 
data, we can estimate new values of CVaR from new calculated MAD values with 
the use of mapping and Monte Carlo simulation techniques. 

1. Let Pi be a specific portfolio i of n weighted securities which fulfills the 
constraints of equation (4.9). 

2. Portfolio Pi has a, rPi, return and two risk measures associated, MADPi, and, 
CVaRPi. 

3. For any two portfolios, Pa and Pb, that fulfill the constraints of equation (4.9) it 
is necessary that they accomplish the principle of ordinality: MADPa ≤ MADPb 
⇔ CVaRPa ≤ CVaRPb. 

4. A pair (MADPi , rPi) can be mapped to a risk measure CVaRPi, because they 
correspond to the same portfolio Pi. 

5. With the use of Monte Carlo simulation, we generate m portfolios, Pi , and 
calculate m triads (CVaRPi ,MADPi , rPi). These triads integrate a matrix M with 
a dimension (m x 3). 

6. When we create a new portfolio Pk for which we calculate its return, rPk , and 
MADPk  values, we enter matrix M and obtain the corresponding CVaRPk 

estimate value. As matrix M is integrated by discrete real triads, we need to 
use interpolation techniques to find the approximate CVaRPk value that 
corresponds to the (MADPk , rPk) pair. 

This proposed computational alternative has some limitations: (1) it works mostly 
with elliptical distributions; (2) new data should not change significantly the statistical 
characteristics and relations of the distributions; and (3) MAD does not only capture 
‘negative’ variations of the returns in non-elliptical distributions as CVaR does, so 
the mapping of CVaR and MAD may be distorted by this characteristic of the risk 
measures. 

This proposed method can be improved with other techniques that are going to be 
suggested as ‘work to be developed’ in the conclusions part of this thesis. 

4.6. Conclusions and final considerations 

It is not unusual for financial series to be limited and to have staggering returns. The 
algorithm developed in this study, based on the model by Nyström & Skoglund 
(2002), makes it possible to simulate new series with more extension and granularity 
to calculate risk measures that are difficult to compute, such as CVaR and, 
eventually, to evaluate contingent assets. 

Of the risk measures used, CVaR is the only coherent one. It shows advantages in 
risk assessment compared to the standard deviation or MAD. However, these 
advantages come at a cost: the computational effort to obtain it is considerable 
compared to the other two. 



 

86 
 

If we live in a world of normal or elliptical distributions, MAD produces results 
consistent with those of standard deviation when measuring risk, although with less 
computational effort. 

Energy assets are highly volatile, including the stocks, ADRs, and oil futures used in 
this study, as demonstrated by the abrupt changes that occurred in March 2020. This 
volatility, coupled with the economic importance of the sector, underlines the need 
for efficient hedging and portfolio optimization. Between May 1, 2018, and March 9, 
2020, the Morgan Stanley Capital Initiative (MSCI) global energy index fell 48.5%, 
while the five largest global oil companies lost US$ 593.3 billion in capitalization 
value from January 1 to March 9, 2020. Much of this loss could have been offset by 
short positions in oil futures, as discussed in this study. Paradoxically, the trigger for 
this abrupt change in March 2020 was a sudden drop in oil price, followed by the 
unexpected COVID-19 pandemic.  

Solving optimization problems is complex. Fortunately, there are tools already 
developed in different programming languages that enable us to get closer to the 
specific solution we seek. 

The solution proposed here allows us to solve a problem with historical data and, 
although new series are generated with more extension and granularity, it is still 
today's vision based on what has already happened. Nevertheless, what do we 
expect to happen tomorrow or in the following days? A logical approach would be to 
develop a scheme of dynamic hedges and optimizations based on volatility 
predictions or other risk measures. We already have techniques to make these 
predictions. The market provides information about implied volatilities, which can be 
good predictors of volatilities in the immediate future. 
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Chapter 5 

Conclusions 

5.1. Contributions 

This thesis contributes to the field of risk management in energy asset investments. As 
noted in the introduction, energy assets are important for their economic value but also 
volatile because of their price fluctuations. 

For the case of NG PVPMs in Mexico, a hedge model was developed using Henry Hub 
NG futures. This allowed the volatility of prices to be replicated to a great extent while 
minimizing the risk of combining long positions in NG PVPM and short positions in futures, 
with a result that benefits the investor and other participants in the value chain. Despite 
the fact that the PVPMs ceased to be published in July 2017, the problem of hedging NG 
in Mexico remains, as the urban distributor sells the molecule at a fixed price in pesos for 
a period and acquires the commodity at a fluctuating price denominated in dollars. For 
this reason, the model proposed remains applicable even if there is no longer an official 
maximum price. Application of the methodology developed here can be extended to other 
petroleum products and to other markets that still use price capping, such as the 
agricultural market. The model and methodology are also applicable to other commodities 
and in other countries. 

The model proposed for determining variances and conditional correlations and, 
therefore, for obtaining optimum hedging ratios, attains high likelihood and produces 
estimates with a high level of confidence. Backtesting proved to be useful in calibrating 
the model to achieve more accurate forecasts. The dynamic hedge model developed 
allows the composition of the hedging portfolio to be adjusted against forecasts of 
changes in the short-term future. 

The application of Nyström & Skoglund's (2002) method for obtaining new series based 
on historical yields expands the number of data while retaining the main statistical 
properties of the original series. This makes the calculation of risk measures for a portfolio 
of international energy assets more reliable. With the new series and the use of the non-
linear programming tools that were developed, hedging solutions and optimal risk-return 
combinations for a portfolio of energy stocks and ADRs are obtained. This same tool 
simplifies the calculation of coherent risk measures. These same hedging and 
optimization techniques can be applied to other financial assets. 

5.2. Conclusions 

Financial hedging problems are dynamic because hedging decisions are recurrent. When 
a hedge is adopted, it is done with immediate and future effects in mind, even if the 
solution has been obtained with historical data. In the best-case scenario, one would 
expect that if optimal hedging ratios are maintained, combinations of long and short 
positions in assets would result in a lasting degree of low risk. When new information 
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arrives, new combinations of assets will be calculated to minimize the level of risk. In 
situations such as those discussed in Chapter 3, historical data are used for forecasting 
purposes and updating these data with new observations results in new forecasts. The 
objective is for these new forecasts to yield combinations that are superior to the 
alternative of maintaining the current hedge, as was achieved in the model introduced. 

The hedging and energy portfolio optimization solutions in Chapter 4 are the best, 
considering historical data. The data generated from historical data allows for more 
reliable risk measurements by avoiding step patterns. The CVaR is a coherent measure 
of risk, and the portfolios obtained with this and other measures show minimal risk for 
both hedging and efficient frontiers. 

5.3. Future work 

As noted above, the hedging model can be extended to other commodities and other 
countries. The situation is analogous to a power producer that sells kWhs (kilo-watt hours) 
at a fixed price in pesos and buys NG at floating prices in other currencies or for an LPG 
distributor that sells at fixed prices in pesos and imports propane at floating prices. The 
model can also utilize other non-futures hedging instruments, such as options, which are 
suitable when interested in managing the returns. Hedging can also incorporate risk 
measures other than variance, such as CVaR, which performs better when risks are 
added or multiplied. 

MGARCH models have several variants that could be tested for specific situations. Other 
statistical forecasting methods can also be used, not only for conditional variances and 
correlations, but for alternative measures of risk. Moreover, markets provide values that 
can be estimates of short-term variances, such as implied volatilities of derivative 
instruments or volatility indexes. 

By adopting a hedging or optimization solution, one would assume that the results of the 
models could be preserved. However, there is no guarantee that this will happen. 
Therefore, one of the challenges that arise from hedging and optimization proposals is 
how to make the tool work dynamically and, since changing the composition of a portfolio 
entails costs, the dilemma is whether the benefits of reducing risk or seeking a different 
risk-return positioning outweigh the costs. Beyond the certainty of risk forecasts, it is 
necessary to decide whether to modify portfolios in the face of any new expectation. Since 
rebalancing is costly, the benefit of a probable decrease in risk must be evaluated against 
the cost certainty of modifying the investment position. This involves comparing the 
expected utility value of a benefit (the reduction in risk) against a certainty equivalent (the 
cost of the rebalancing). 

Nyström & Skoglund's (2002) method can be used in financial series other than energy. 
The GJR model implicit in the method can be changed to one that better represents the 
volatility of the residuals, depending on the specific case. The series generated from 
historical data can be used to obtain other risk measures. These same series can be 
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generated through ad-hoc functions built from historical data with the help of deep 
learning tools. 

The availability of computational resources for the researcher or the investor is each time 
greater. Nowadays personal computers can handle optimization problems with portfolios 
of hundreds of securities. Even, some software products allow parallel computing 
capabilities which enable to work on different parts of a problem simultaneously.  
Technological improvements do not eliminate the need of developing new algorithms  or 
methods that bring more efficiency to problem-solving, like the case of estimating CVaR 
form MAD. 

Energy markets are likely to remain valuable and volatile, so the development of new 
approaches to improve risk management is likely to find fertile ground. 
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Appendixes 

Appendix 1 

A.1. 'Stepzero'. Code in MATLAB® that generates a series of simulated returns 
from the historic price data of the portfolio assets. 

 
% STEPZERO     Comments are preceded by ‘%’ 
 
% Program to generate simulated returns from the original returns of the data series. 
% We can calculate standard deviations, CVaRs, and MADs from the new returns 
% generated here. 
 
 
% Load the data 
% Warning: choose the right directory 
filename = 'D:\Documentos\Doctorado en Ciencias Financieras\INVESTIGACIÓN\LIBRO 
JANM\DATOS\Consolidado.xlsx'; 
sheet = 'LNSHORT'; % Load the price log returns without NaN 
 
[num,txt]=xlsread(filename,sheet); % Separate the numeric and the text parts (headings 
% and dates) 
Return=num; % Security returns 
[n,nsec]=size(Return); % Number of data and securities 
Fecha=txt; 
ncol=nsec+1; 
Label=Fecha(1,2:ncol); % Labels of the securities 
% Convert dates in numeric values 
nd=n+1; 
formatIn='dd/mm/yyyy'; 
Date=datenum(Fecha(2:nd,1),formatIn); 
 
% Calculation of the correlation matrix of the original returns 
c1 = corrcoef(Return); 
 
 
% Transformation of the returns of the hedging portfolio 
% Adjust the returns: they have high dispersion and extreme values 
% We create a GARCH(1,1) model with a t function 
 
model=arima('AR', NaN, 'Distribution', 't', 'Variance', gjr(1,1)); % nsec is the number of 
% securities 
residuals=NaN(n,nsec); % Create the array 
variances=NaN(n,nsec); % Create the array 
fit=cell(nsec,1); % Here goes the description of the model 
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% Options to generate estimates 
options=optimoptions(@fmincon, 'Display', 'off', 'Diagnostics', 'off', 'Algorithm', 'sqp', 
'Tolcon', 1e-7); 
% We obtain the residuals and the variances of the new model of returns. 
for sec=1:nsec 

fit{sec}=estimate(model, Return(:,sec), 'Display', 'off', 'Options', options); 
[residuals(:,sec), variances(:,sec)]=infer(fit{sec}, Return(:,sec)); 

end 
 
% Standardized residuals 
residuals=residuals./sqrt(variances); 
 
% Estimation of the semi-parametric CDF 
 
nPoints=2000; % Number of points in each segment of the CDF 
tailFraction=0.1; % Decimal fraction placed in each tail 
tails=cell(nsec,1); % Cell with the Pareto objects 
% We separate the residuals into segments: two tails and one in the middle 
for sec=1:nsec 

tails{sec}=paretotails(residuals(:,sec), tailFraction, 1-tailFraction, 'kernel'); 
end 
 
% Transformation of the residuals into a df and a CDF 
U=zeros(size(residuals)); % Clean the array where the generated values will be placed 
for sec=1:nsec 

U(:,sec)=cdf(tails{sec}, residuals(:,sec)); % Transform the margin to uniform 
end 
 
% We use a t-copula because we want the series to be related to each other  
[R, DoF]=copulafit('t', U, 'Method', 'ApproximateML'); % Adjust of the copula 
 
 
% Generate a random series of returns  
 
% Prepare to generate good pseudorandom data 
s=RandStream.getGlobalStream(); 
reset(s) 
 
% Number of data and, if necessary, the number of periods ahead. 
nTrials=2000; 
horizon=1; 
 
z=zeros(horizon, nTrials, nsec); % Here we save the iid random values 
U=copularnd('t', R, DoF, horizon*nTrials); % Generate values between 0 and 1 distributed 



 

99 
 

% in a t-Student form 
 
for sec=1:nsec 

z(:,:,sec)=reshape(icdf(tails{sec}, U(:,sec)), horizon, nTrials); % Generate iid values 
% according the original profile further improved 

end 
 
 
% Simulation of the original residuals' Return’ 
% Simulate the hedging portfolio returns and prepare them to accumulate and further 
% calculation of VaR and ES, if necessary 
 
Y0=Return(end,:); % ‘Return’ presampled 
Z0=residuals(end,:); % Presampled standardized residuals 
V0=variances(end,:); % Presampled variances 
 
simulatedReturn=zeros(horizon, nTrials, nsec); % Clean the matrix 
 
% Simulate the portfolio returns 
for sec=1:nsec 

simulatedReturn(:,:,sec)=filter(fit{sec}, z(:,:,sec), 'Y0', Y0(sec), 'Z0', Z0(sec), 'V0', 
V0(sec)); 

end 
 
% Permute the order of the simulation columns 
simulatedReturn=permute(simulatedReturn, [1 3 2]); 
 
% Sort the results from small to large 
simulatedReturn=sort(simulatedReturn,1); 
simRes=zeros(nTrials,nsec); 
simRes=reshape(simulatedReturn, [nsec, nTrials]); 
simRes=transpose(simRes); 
 
% Calculate the correlation matrix of the new generated results 
c2 = corrcoef(simRes); 
 
% Writing the results 
% We write the simulated returns in a different Excel sheet of the original file. 
 
sheet='SIMRES'; 
xlswrite(filename, Label, sheet, 'A1'); 
xlswrite(filename,simRes,sheet,'A2');



 

100 
 

  



 

101 
 

Annex 2 
 

A.2. ‘Stephedge’. Code in MATLAB® that calculates the Efficient Frontier values, 
including the one with minimum risk for the hedging portfolio. It also calculates the 
values of alternative risk measures for optimal hedge solutions. 

 
% STEPHEDGE    Comments are preceded by ‘%’ 
 
% Program to generate the optimal hedge of a portfolio 
% We create a portfolio with the returns generated in 'Stepzero.' We assign weights to 
% the components of this % portfolio, and with the data of the efficient frontier, we 
% determine the hedging portfolio with minimum risk. 
 
 
% Load the data 
% Warning: choose the right directory 
filename = 'D:\Documentos\Doctorado en Ciencias Financieras\INVESTIGACIÓN\LIBRO 
JANM\Datos\Consolidado.xlsx'; 
sheet = 'SIMRES'; % Load the returns generated in 'Stepzero' 
[num,txt]=xlsread(filename,sheet); % Separate the numeric and the text parts (headings 
% and dates) 
Ret=num; % Security returns 
[n,nsec]=size(Ret); % Number of data and securities 
Label=txt; % Capture the name of the securities 
 
 
% Integration of the portfolio to hedge 
 
w=[1/6,1/6,1/6,1/6,1/6,1/6]; % Weights of the securities in the portfolio 
Sel=Ret(:,[1 3:6 8]); % We exclude the columns with the futures 
Port=(w*Sel')'; % We obtain the portfolio to hedge with the weights 
 
% Include the futures in the portfolio 
Targ=[Port Ret(:,2) Ret(:,7)]; 
 
% Modify the lables (titles) 
Modlabel=['Port', Label(2), Label(7)]; 
 
 
% Create an object for the Mean-Standard deviation portfolio 
 
p0=Portfolio('AssetMean',m,'AssetCovar',C); % 'p0' for the mean-std dev case 
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% Calculate the mean-std dev efficient frontier 
 
p0=Portfolio(p0,'AssetList',Modlabel(1:3)); % Include the name of the securities 
p0=estimateAssetMoments(p0,Ret(:,1:3),'missingdata',true); % Calculate the moments 
% of the portfolio 
p0=setDefaultConstraints(p0); 
[prsk0,pret0]=plotFrontier(p0,20); % Include 20 portfolios in the efficient frontier, show 
% their risks and returns 
p0wgt=estimateFrontier(p0,20); % Return the weight of the components of each portfolio 
% in the efficient frontier 
result0=table(p0.AssetList', p0wgt); % Set a table with the weights and names of the 
% securities for the 20 portfolios 
 
 
% Create an object for the Mean-CVaR portfolio 
 
% Calculate the Mean-CVaR efficient frontier 
 
p1=PortfolioCVaR; % Define the object ‘p1’ as a CVaR portfolio 
AssetScenarios=mvnrnd(m,C,20000); % Generate 20,000 scenarios 
p1=setScenarios(p1,AssetScenarios); % Include the scenarios in the object 
p1=PortfolioCVaR(p1,'AssetList',Modlabel(1:3)); % Include the name of the securities 
p1=setDefaultConstraints(p1); 
p1=setProbabilityLevel(p1,0.95); % Set the level of confidence for the CVaR (95%) 
[prsk1,pret1]=plotFrontier(p1,20); % Include 20 portfolios in the efficient frontier, show 
% their risks and returns 
p1wgt=estimateFrontier(p1,20); % Return the weight of the components of each portfolio 
% in the efficient frontier 
result1=table(p1.AssetList', p1wgt); % Set a table with the weights and names of the 
% securities for the 20 portfolios 
 
 
% Create an object for the Mean-MAD portfolio 
 
p2=PortfolioMAD; % Define the object ‘p2’ as a MAD portfolio 
 
% Calculate the Mean-MAD efficient frontier 
 
AssetScenarios=mvnrnd(m,C,20000); % Generate 20,000 scenarios 
p2=setScenarios(p2,AssetScenarios); % Include the scenarios in the object 
p2=PortfolioMAD(p2,'AssetList',Modlabel(1:3)); % Include the name of the securities 
p2=setDefaultConstraints(p2); 
[prsk2,pret2]=plotFrontier(p2,20); % Include 20 portfolios in the efficient frontier, show 
% their risks and returns 
p2wgt=estimateFrontier(p2,20); % Return the weight of the components of each portfolio 



 

103 
 

% in the efficient frontier 
result2=table(p2.AssetList', p2wgt); % Set a table with the weights and names of the 
% securities for the 20 portfolios 
 
%Alternative risk measures for the hedging portfolios 
 
%Mean-Std Dev Portfolio 
prsk0cvar=estimatePortRisk(p1,p0wgt); 
prsk0mad=estimatePortRisk(p2,p0wgt); 
 
%Mean-CVaR Portfolio 
prsk1stdev=estimatePortRisk(p0,p1wgt); 
prsk1mad=estimatePortRisk(p2,p1wgt); 
 
%Mean-MAD Portfolio 
prsk2stdev=estimatePortRisk(p0,p2wgt); 
prsk2cvar=estimatePortRisk(p1,p2wgt); 
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Annex 3 

A.3. 'Stepone'. Code in MATLAB® that calculates the Efficient Frontier values for 
a securities portfolio under different risk measures. 

 
% STEPONE    Comments are preceded by ‘%’ 
 
% Program to calculate efficient frontiers with the returns generated by the program 
% 'Stepzero.' The efficient frontiers are with Standard deviations, CVaRs 95% and MADs 
% as risk measures. 
 
 
% Load the data 
% Warning: choose the right directory 
filename = 'D:\PC\Documents\Doctorado en Ciencias 
Financieras\INVESTIGACIÓN\LIBRO JANM\Datos\Consolidado.xlsx'; 
sheet = 'SIMRES'; % Load the returns generated in 'Stepzero' 
[num,txt]=xlsread(filename,sheet); % Separate the numeric and the text parts (headings 
% and dates) 
Ret=num; % Security returns 
[n,nsec]=size(Ret); % Number of data and securities 
Label=txt; % Capture the name of the securities 
 
 
% Create an object for the Mean-Standard deviation portfolio 
 
p0=Portfolio('AssetMean',m,'AssetCovar',C); % 'p0' for the mean-std dev case 
 
% Calculate the mean-std dev efficient frontier 
p0=Portfolio(p0,'AssetList',Label(1:8)); % Include the name of the securities 
p0=estimateAssetMoments(p0,Ret(:,1:8),'missingdata',true); % Calculate the moments 
% of the portfolio 
p0=setDefaultConstraints(p0); 
p0wgt=estimateFrontier(p0,10); % Return the weight of the components of each portfolio 
% (10) in the efficient frontier 
result0=table(p0.AssetList', p0wgt); % Set a table with the weights and names of the 
% securities for the 10 portfolios 
[prsk0,pret0]=plotFrontier(p0,10); % Obtain the risk and returns of the 10 portfolios in the 
% efficient frontier 
pWithConditionalBound = setBounds(p0, 0.05, 0.3,'BoundType', 'Conditional'); % Apart.  
% Include weight limits 
 
% Plotting 
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figure; 
plotFrontier(p0); hold on; 
plotFrontier(pWithConditionalBound); hold off; 
legend('Portfolio unconstrained', ' With each asset weight 0 or [0.05, 0.3]', 'location', 
'best'); 
 
 
% Create an object for the Mean-CVaR portfolio 
 
p1=PortfolioCVaR; % Define the object ‘p1’ as a CVaR portfolio 
 
% Calculate the Mean-CVaR efficient frontier 
 
AssetScenarios=mvnrnd(m,C,20000); % Generate 20,000 scenarios 
p1=setScenarios(p1,AssetScenarios); % Include the scenarios in the object 
p1=PortfolioCVaR(p1,'AssetList',Label(1:8)); % Include the name of the securities 
p1=setDefaultConstraints(p1); 
p1=setProbabilityLevel(p1,0.95); % Set the level of confidence for the CVaR (95%) 
[prsk1,pret1]=plotFrontier(p1,10); % Include 10 portfolios in the efficient frontier, show 
% their risks and returns 
p1wgt=estimateFrontier(p1,10); % Return the weight of the components of each portfolio 
% in the efficient frontier 
result1=table(p1.AssetList', p1wgt); % Set a table with the weights and names of the 
% securities for the 20 portfolios 
 
 
% Create an object for the Mean-MAD portfolio 
 
p2=PortfolioMAD; % Define the object ‘p2’ as a MAD portfolio 
 
% Calculate the Mean-MAD efficient frontier 
 
AssetScenarios=mvnrnd(m,C,20000); % Generate 20,000 scenarios 
p2=setScenarios(p2,AssetScenarios); % Include the scenarios in the object 
p2=PortfolioMAD(p2,'AssetList',Label(1:8)); % Include the name of the securities 
p2=setDefaultConstraints(p2); 
[prsk2,pret2]=plotFrontier(p2,10); % Include 10 portfolios in the efficient frontier, show 
% their risks and returns 
p2wgt=estimateFrontier(p2,10); % Return the weight of the components of each portfolio 
% in the efficient frontier 
result2=table(p2.AssetList', p2wgt); % Set a table with the weights and names of the 
% securities for the 10 portfolios 



 

107 
 

Curriculum Vitae 

 

Roberto Raymundo Barrera Rivera was born in Hermosillo, Mexico. He obtained a Master 
of Law degree and a Bachelor of Law degree from the Centro de Estudios Avanzados de 
las Américas (Center for Advanced Studies of the Americas), a Master of Science degree 
in Management from the Alfred P. Sloan School of Management (MIT), and an 
engineering degree from the Universidad Nacional Autónoma de México (National 
Autonomous University of Mexico). He has obtained the professional designations of 
Chartered Financial Analyst (CFA) and Financial Risk Manager (FRM). 

In addition to the three academic publications included in this thesis and another on the 
Pension Fund System in Mexico, he has presented papers at the VII, VIII and IX FIMEF 
(Foundation of the Mexican Institute of Finance Executives) International Financial 
Research Conference, the 2nd World Forum on Energy Regulation, and the 10th Forum 
on Finance, Risk Management and Financial Engineering, among others. He has been a 
speaker on infrastructure financing issues at seminars organized by the OECD in Paris 
and the World Bank in Washington. He has published articles on investment in nationally 
circulated media. Notable among his achievements is recognition for participating in the 
2019 IMEF-EY International Award for Financial Investigation. 

He served as President of the MIT Club of Mexico, as a member of the MIT Educational 
Council, President of the CFA Society of Mexico, and chaired the Analysis Committee of 
the Asociación Mexicana de Intermediarios Bursátiles (Mexican Association of Securities 
Brokers). 

He has held management positions in the areas of planning and control, bank 
administration, stock market analysis, investment fund administration, corporate finance, 
credit, international investment, energy policy, and energy regulation. Currently, he heads 
the Credit and Finance area at a Mexican government financial institution. 

He has taught professional seminars as well as university courses at the undergraduate 
and graduate levels in areas related to his field of expertise. 


	1.1. Motivation
	1.2. Problem Statement and Context
	1.3. Research Questions
	1.4. Solution Overview
	2.1. Introduction
	2.2. Conceptual Framework
	2.3. Methodology
	2.4. Analysis
	2.5. Hedging strategy with futures
	2.6. Conclusions
	2.7 Post Data
	Abstract
	3.1. Introduction
	3.2. The Mexican NG regulation.
	3.3. State of the Art
	3.4. Methodology
	3.5. Data and Results
	3.6. Conclusions and final considerations
	3.7 Post Data
	Abstract
	4.1. Introduction
	4.2. State of the art
	4.3. Methodology
	4.4. Data and Results
	4.5 A computational alternative to estimate CVaR based on MAD results
	4.6. Conclusions and final considerations
	5.1. Contributions
	5.2. Conclusions
	5.3. Future work
	A.1. 'Stepzero'. Code in MATLAB® that generates a series of simulated returns from the historic price data of the portfolio assets.
	A.2. ‘Stephedge’. Code in MATLAB® that calculates the Efficient Frontier values, including the one with minimum risk for the hedging portfolio. It also calculates the values of alternative risk measures for optimal hedge solutions.
	A.3. 'Stepone'. Code in MATLAB® that calculates the Efficient Frontier values for a securities portfolio under different risk measures.

