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Development of an Open Architecture Quadrotor Micro Air Vehicle: 
Manufacture, Hardware and Software Integration. 

 

by 
 

Pedro Antonio Guerrero Cardoso 
 

Abstract 
 

The thesis addresses the development and manufacturing methodology of a Micro Aerial 

Vehicle of the Quadrotor (Quad-MAV). The software employed to design the electronic 

diagram, the layout of the Printed Circuit Board (PCB) and the embedded software of the 

drone, were from open source, allowing free access. 

 

The proposal of this thesis is to demonstrate that it is feasible to create a Quad-MAV with 

low cost components previously selected and using free software for the development of 

the product. 

 

To prototype, the PCB layout and the electronic diagram are developed on Autodesk 

EAGLE and then the Gerber files are processed by the LPKF CircuitPro to manufacture 

the coper wires over a FR4 plate and later the Surface Mounted Devices (SMD) are 

placed and soldered on their respective space over the board. 

 

The program of the microcontroller used in the prototype allows a stepped process to 

read the instructions of the Wi-Fi communication module and the data of the current state 

provided by the Inertial Measurement Unit (IMU), both processes, data and solve the 

control equations, allows that the system works. The code is written in C using the IDE 

MPLAB® X, the XC32 compiler and the firmware development tool, MPLAB® Harmony. 

The external modules, namely the Wi-Fi communication module and the IMU circuit, are 

coded and programed using as base the programs provided in Arduino. 

 

The experiments are conducted using a computer as a ground station to send the data to 

the Quad-MAV to ensure the communication and the integration of all the components in 

the final prototype of the board. Such experiments suggest that the construction of a 

Quad-MAV using low cost and commercial components is feasible giving access to an 

open source drone that can be adapted by the end-user to fulfill specific purposes. 
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Chapter 1 
 

1 Introduction 
 

This section contains information and context related to the Unmanned Aerial Vehicles 

(UAVs) and the state of the art related to the micro scaled vehicles. The problem is stated, 

and the objectives, methodology and contributions of the thesis are presented in this 

chapter. 

 

1.1 Context and background 
 

An Unmanned Aerial Vehicle, shortened as UAV, can be defined as a machine that can 

travel through the air without the necessity of a human crew aboard as the first part of the 

name indicates it [1]. 

 

The UAVs and its modern uses started since the World War I according to [2], where the 

aerial torpedo was developed. Nowadays the UAVs are used in many areas, from military 

to research and even as a hobby. The drones on the military service are employed for 

tasks as intelligence and recognition, collecting data of the ground as the one in Figure 

1.1, while in research tasks are used for improving the functionality of different algorithms 

like vision or flight stabilization, and as hobbies are used for photography and recording 

on areas or angles that for the human are not safe or impossible to reach. The UAVs 

currently can be used on numerous tasks, all depending on the specifications on the 

drone used and the purpose of the task that is programed. 

 

According to the initial team on the development of this project, on [3] and using other 

models of the UAVs in the state of the art, the elements listed below, and represented in 

the Figure 1.2, are present in all the developments of drones: 

 

• Propulsion system. The actuators that allow the vehicle to fly and perform 

maneuvers in the air, it can be turbines like in the airplanes and most fixed-wing 

aircrafts or can be motors with propellers like in the helicopters and multi-rotor 

aircraft. 

• Battery. Supplies the power to all the modules allowing them to work properly. 

• Sensors. Measures the current state of the aircraft and gives the feedback to the 

main processing unit. 

• Main Controller Unit (MCU). This unit is where all the information provided by the 

sensors and the ground station is processed through algorithms to control the state 

of the vehicle. 

• Ground station. Base for the flying crew, including the pilot, that ensures and 

supervises the functionality of the UAV. 
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• Communication module. Module that receives the data from the ground station, 

sends the coded information to the MCU and feedbacks the current state of the 

vehicle to the ground station. 

 

 
 

Figure 1.1 A3Rs drone from Exyn Technologies used for gold mining. 
 

 
 

Figure 1.2 Basic Elements of a drone 
 

Micro Aerial Vehicles (MAVs) are a sub-division of this kind of aerial vehicles that has 

some specifications being size, weight and flight range the most important. The Defense 
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1. GTOW (Gross Take-Off Weight): Maximum that the vehicle can Lift including its own weight. 
2. AGL (Above Ground Level): Maximum height that the vehicle can fly, having as reference the 

platform from where it takes-off. 

Advanced Research Projects Agency (DARPA) started the investigation to develop this 

kind of aircraft to create an aerial vehicle capable of being used in combat or in urban 

areas, especially inside buildings, where the space is reduced [1]. 

 

The MAVs, due to their characteristics of weight and size can accomplish those tasks on 

places where a Small Aerial Vehicle or a regular sized UAV cannot be used as are indoors 

and mines, especially on places where the GPS signal is not available. The MAVs can 

also perform tasks of the ISR (Investigation, Surveillance and Recognition) type, since 

this kind of vehicles are harder to be detected than the regular and most of the small sized 

drones. 

 

1.2 Quad-MAV definition 

 

As previously mentioned, the small-scale UAVs has some restrictions and are classified 

according to the magnitude of this restrictions. Using the Table 1 and as exemplified in 

[1], a Micro Aerial Vehicles has a weight lower than 100 [𝑔], a wingspan smaller and 15 

[𝑐𝑚] and a flight range smaller than 10 [𝑘𝑚]. 
 

Table 1.1 Comparison of small-scale vehicles1, 2 

 

Specs Small Tactical Miniature Micro

Size < 10 [m] < 5 [m] < 15 [cm]

GTOW 10 - 25 [kg] < 10 [kg] < 100 [g]

Speed < 130 [m/s] < 50 [m/s] < 15 [m/s]

Altitude < 3500 [m] AGL < 1200 [m]AGL < 100 [m] AGL

Range < 50 [km] < 25 [km] < 10 [km]

Endurance Up to 48 [h] Up to 48 [h] Up to 20 [min]  
 

 The characteristics of the MAVs makes them ideal for the tasks of the ISR kind, 

being able of maneuver inside buildings, mines and general closed spaces. 

 This thesis uses the concept Quad-MAV to refer to a Micro Aerial Vehicle of the 

quadrotor kind that was used to conduct the development of this project. 

 

1.3 State of the art 

 

With the purpose of making this project competitive, some other researches of the same 

kind where consulted. In [4], Elisa Capello, et. Al. conducted an experiment where the 

mathematical model of a Micro UAV of the quadrotor kind was used, this with the purpose 

of developing the Proportional-Derivative (PD) controller that later will be uploaded to the 

onboard controller. This document only presents the modeling and the results of the 

experimentation but never clarifies the hardware used nor the real size of the drone 
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Other of the projects reviewed is from students from the National University of Singapore 

[5]. The micro aerial vehicle in that project used a frame made of ABS as a general 

structure of the MAV, while also as a protective case for the multiple PCBs of the 

electronic system. Each motor has a microcontroller and a power phase to control the 

speed, adding weight and cost. The most expensive component is the Inertial 

Measurement Unit (IMU) employed, being a VN-100 that costs around $800.00 dollars, 

causing a very expensive product and avoiding the open source philosophy. 

 

 The MAV developed in [6] uses Gumstix Overo® to develop the whole system. 

While this is practical, since the electrical development is done and only requires 

integration, it also elevates the price since are bought modules and not completely 

designed. This document also allows a vision of how the PCB can work as the main frame 

of all the vehicle. 

 

 The current work in the development of this project is given on [3] at the Monterrey 

campus of Tecnológico de Monterrey. The drone at that stage of development counted 

with the basic pin configurations, the connection of the peripheral sensor modules, the 

placement of LED indicators, power stage and voltage regulation to feed the electronic 

components. The drone has as a characteristic that the main mechanical structure is at 

the same time the electronic board, reducing the complexity of the drone assembly 

process, and the components are from low cost, including the MCU and the sensors. This 

allows the development of a low-cost MAV capable of a steady flight. 

 

1.4 Problem statement 

 

Redesign a previous model of a Quadrotor Micro Aerial Vehicle with low cost components 

following a systematic procedure for design, manufacturing and testing, capable of lift its 

weight to later be programed to accomplish more complex tasks on indoor and outdoor 

environments. In consequence of above Developing MAV is a difficult and costly activity. 

As originally the MAV must be redesigned to reduce the complexity on the electronic 

design, built with low cost elements, follow the open-source philosophy and programed 

to receive the data from the sensors, the communication module and control the 

propulsion system ensuring the functional integration of all the components. 

 

1.5 Objective 

 

The objective of this thesis is, using a functional description and a not completely 

designed prototype, to systematically redesign the MAV, build a prototype with low cost 

components and following the open-source philosophy, allowing it to be modified for more 

specific purposes and develop the embedded software to ensure the functional 

integration of all the components. 

 

 The specific objectives of the project include the following points:  
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• Hardware design: 

o Review the design of the MAV 

o Modification of the electronic layout making it simpler to allow a faster 

identification of damages in the circuit and reduce the possibility of error 

occurrence in the prototype PCB. 

o Reduction of the number of electronic components to reduce the weight of 

the vehicle and update the discontinued components or modules. 

o Manufacture a functional prototype using the specialized equipment for the 

PCB manufacturing and assembling the surface mount devices (SMD) as 

well as the through-hole components, using the welding iron, heat gun, 

welding and flux. 

• Embedded software design: 

o Develop an embedded software based on a finite state machine to reduce 

the potential bugs or error and ensure the good integration of the 

component’s functions. 

o Establish the communication chain between components to ensure the 

correct data transmission to the MCU. 

o Program the controller to stabilize the hover function of the vehicle. 

 

1.6 Methodology 

 

This project takes as base a previous version of the vehicle developed by members of 

the School of Science and Engineering at ITESM [3]. It consists on the analysis of the 

status and performance of the previous prototype and reduce the number of components 

and complexity of the pads. This allows a small reduction of the cost and the weight that 

will act over the MAV when there is no other payload to be carried. All the elements must 

be integrated to the PCB that also works as the mainframe of the drone. 

 

The main structure of the MAV is the one of a quadcopter with a wingspan smaller than 

15 centimeters. 

 

This Thesis Methodology can be seen in Figure 1.3, for the optimization of the 

functionality in the embedded system, as well as in the simplification of the electronic 

design for an easier assembly of the parts and reduce the error margin on the 

manufacturing of the prototype. 

 

1 The electronic diagram and PCB template is generated using a CAM software 

specialized in this function, ensuring the layouts have all the proper connections and 

distribution of the components between layer and have an appropriate design. 

2 After the design of the electronic template using the computer software, the circuit 

and its connections are tested in a protoboard to ensure the viability of the electronic 

design and that the paths are designed in the most adequate way according to the 

requirements of the project. For the elements that where replaced by the new version 
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or where added, each one is tested individually to understand the behavior of each 

one to avoid compromising the testing circuit integrity. 

3 The manufacturing process is started after all the components are tested by separate 

at first and latter all together connected as in the final prototype (integration). The 

manufacturing of the PCB is done through a CNC machine that must be adjusted 

through a series of test-and-check steps to avoid the interruption of the process or 

reworkings that could damage a potential circuit. The soldering of the components is 

done after the top and bottom layer have continuity in the indicated places and there 

is no short in the circuit. 

4 The program of each module (main controller, sensors and communication antenna) 

is tested at the end of the software development phase while the IMU module, the 

electronic configuration and the voltage regulator are tested at the end of the 

electronic development phase at the testing circuit to debug and clean all the potential 

errors. Once the program is ensured, it is loaded into the prototype to conduct to the 

experiments, gather the results and do the experimental analysis to improve the 

embedded code, electronic circuit or adjust the internal algorithms for stabilization. 

 

The Figure 1.3 illustrates the development process followed. On the green cycle is the 

development of the embedded software that will be uploaded to the main processor unit. 

Every time a new step of the embedded code is added, it is tested individually to ensure 

a correct functionality and if any error is found then the software must be redesigned. The 

blue cycle shows the development of the electronic board. After the selection and new 

design of the board connection concludes, a testing process is followed to avoid 

communication errors or wrong connections among the components. If any test is failed, 

the board must be redesigned. The yellow cycle contains the manufacturing process, that 

includes the assembly and programing of the board. After the printing of the board finishes 

or every time a component is mounted, a continuity verification and capacitance 

measuring is done to verify the correct assembly of the prototype. After the drone is 

assembled the embedded software is programed inside the main processing unit and it 

is verified using the debugging tool. The Figure 1.3 has red arrows that indicates the path 

to follow in case of failure of the test. In case of failure of the prototype testing, the whole 

path must be done considering now the limitations that were found in the testing. 
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Figure 1.3 Methodology of the Quad-MAV development 
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1.7 Achievement and contributions 

 

The contribution relies on a whole process for the manufacturing of an open source Quad-

MAV, capable of take-off and perform a stable hover or flight. 

 

The achievements of the project are a pair of prototypes capable of react to a command 

sent through a wireless communication, process the reference, read and process the 

current state given by the sensors, compare the reference and the current state and 

regulate the PWM that control the propulsion system speed. 

 

The electronic design: composed by an open source project to be modified by anyone 

that want to develop a Quad-MAV. The electronics provide a stable energy source to all 

the components to avoid the interruption in the communication between the ground 

station and the drone, fluctuations in the process of the embedded system, or misfunction 

of the components leading to an early replacement. The devices used meet the 

specifications in size and weight to allow the vehicle to move freely through the air. The 

PCB where all the components and modules are connected works as the body of the 

drone. 

 

The prototype: a functional prototype with SMD components to reduce the weight of the 

board and with pinholes to place the Wi-Fi communication module and the IMU sensor, 

allowing a fast removal in case that any of these components require to be reprogramed 

or replaced for a new version. A set of pin headers must be placed with the purpose of 

connecting the programing device to upload new firmware developed for the main 

processor unit. The prototype can be divided into modules allowing an easier analysis of 

any possible failure at the circuit and making a faster reparation process. The Modules 

can be divided: 

 

• Voltage regulation. 

• Sensor module. 

• Communication module 

• Processing module. 

• Power stage and propulsion module. 

 

The embedded code: based in freeware that can be downloaded and read by 

anyone that have a computer and the adequate IDE to program microcontrollers of the 

PIC32 family. The configuration of the drivers and peripherals of the microcontroller must 

be clear to allow a translation of the code between different microprocessors platforms. 

 

1.8 Composition 

 

The thesis is organized as follows: 
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Chapter 2 gives information about what is a UAV, a MAV, classifications, the 

theoretical development of the project and the configuration of the system. 

 

Chapter 3 holds the information about the selection of the components replaced, 

how where added or removed some elements, the coding of the main firmware, the 

manufacturing process and how the adjustment of parameters of the final prototype. 

 

Chapter 4 makes emphasis on the process of experimentation of the prototype as 

well as the code debugging process, final testing of the prototype and results of 

experimentation. 

 

Chapter 5 is about the conclusions of the project, limitations of the project and 

recommended future work. 

 

Appendix A contains the configuration, steps and main functions employed on the 

embedded code. 

 

Appendix B delivers the changes on the manufacturing process. 

 

Appendix C gives information about the cost of every element on the drone board. 

 

Appendix D shows the graphics obtained from the measurement of the force 

delivered by the motors during the experiments phase. 
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Chapter 2 
 

2 Quad-MAV Behavior and Control 
 

The chapter gives general information about the Quad-MAV: a detailed configuration is 

given. A general explanation of the behavior of the vehicle in attitude and altitude is 

addressed. Finally, the information about the controller employed and the equations used 

to stabilize the hover of the vehicle is delivered. 

 

2.1 Vehicle’s configuration 

 

To develop the control equation that can stabilize the vehicle during the flight is necessary 

to understand the dynamic behavior of the Quad-MAV vehicle, detect the inputs, 

references and outputs. 

 

Additionally, the general information about the possible configurations of the quadrotors 

and the difference between them is provided. 

 

2.1.1 2.1.1 Quadrotor configuration 

 

A quadrotor can have one of the 2 following configurations: the plus (“+”) configuration 

and the cross (“x”) configuration. The ‘+’ configuration has a rotor on the tip, one in the 

back and one on each side. This configuration advantage is found on the modeling and 

design of the control since only a pair of motors needs to be adjusted to move the vehicle 

over a single axis of the plane ‘XY’. The ‘x’ configuration in contrast requires the use of 

both pair of motors to accomplish the same movement, making more complex the 

modeling but reducing the stress and energy on each motor for movements on the axis 

‘𝑋’ or ‘𝑌’due the share of payload among both pair actuators. Another advantage is that 

the cross configuration does not creates a 𝑌𝑎𝑤 caused by the 𝑅𝑜𝑙𝑙 or 𝑃𝑖𝑡𝑐ℎ control inputs 

[7]. 

 

 
 

Figure 2.1 Quadrotor configurations 
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The drone developed in this thesis, shown in the Figure 2.2, is a UAV of the quadrotor 

type that uses the cross configuration for the maneuvering of the vehicle. Also, it enters 

on the classification of the Micro Aerial Vehicles (MAV) according to the characteristics 

of the vehicle. It has an average of 13.1 cm of wingspan and a GTOW of 71 grams after 

modifications made on the vehicle. 

 

 
 

Figure 2.2 Final Functional Prototype 

 

2.2 Quadrotor attitude, orientation and altitude behavior 

 

The quadrotor is a underactuated robotic system due to the characteristics that has as 

vehicle. Every drone could be able to rotate over and through the three axes of the space, 

since there is no joint that impedes the movements, having in total 6-DOF (Degrees of 

freedom). In the case of the quadrotor, as the name indicates it, it has 4 rotors on the 

structure of the robotic system. 

 

According to robotic theory as explained in [8], a robot is overactuated when the quantity 

of actuators is more than the degrees of freedom that the mechanism has, a fully actuated 

robot has one actuator for each DOF that it has while an underactuated robotic system 

has less actuators than degrees of freedom, therefore, not all can be controlled and have 

dependencies over others. In the case of a quadrotor, there are 6 DOF and only 4 

actuators, meaning that 4 of the 6 positions can be controlled and the other two will have 

dependencies in the positions that can be controlled. 

 

Every multirotor vehicle can control in an independent way the rotation over the ‘Z’ axis, 

called 𝑌𝑎𝑤(𝜓), and the position or displacement through the same axis, being this the 

altitude position controlled by the 𝑇ℎ𝑟𝑢𝑠𝑡 delivered by the spinning velocity of the motors. 
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The quadrotors can control all the angular positions at the same time. The rotation over 

the “𝑋” axis is called 𝑅𝑜𝑙𝑙(𝜙) and the rotation over the “𝑌” axis is called 𝑃𝑖𝑡𝑐ℎ(𝜃). The 

rotation over this last two axes has effects on the position through both axis. While 

controlling the 𝑅𝑜𝑙𝑙 angle, the drone will start to move through the “𝑌” axis and controlling 

the 𝑃𝑖𝑡𝑐ℎ angle will cause as an effect the movement through the “𝑋” axis. 

 

 
 

Figure 2.3 Aircraft angles and referential frame 
 

In contrast to other robotic systems, the aerial vehicles have a different inertial frame. On 

the robotic systems and ground vehicles the “𝑋” axis is looking toward the observer of the 

system, the “Z” is directed upward being the “Y” orthogonal to both. On the Aerial vehicles 

the “X” axis points toward the front of the vehicle and the “𝑍” axis points downward directly 

to the ground, meaning that the takeoff is a negative displacement and the landing a 

positive displacement. 

 

For a positive movement along the “𝑋” axis the quadrotor requires a positive 𝑃𝑖𝑡𝑐ℎ angle, 

then the rotor labeled with the numbers 3 and 4 (Figure 2.4) needs to increase the 

spinning speed to deliver a higher force, in contrast to the motors 1 and 2 (Figure 2.4), 

that need to reduce the velocity to compensate the extra force delivered by the first pair 

of motors. The same occurs with the 𝑅𝑜𝑙𝑙 angle. To produce a positive movement on the 

“𝑌” axis, the inclination angle must be negative, requiring the speed increment on the 

motors 2 and 4 to deliver a higher force to make the drone to spin over the “𝑋” axis, and 

the reduction on the motors 1 and 3 to produce a countereffect for the extra force 

delivered by the motors  pair located at the left side of the vehicle. The Table 2.1 

compares the angular position with the displacement over the plane “𝑋𝑌” using the model 

of the drone found in this thesis.
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1. HS: High Speed Motor. 
2. LS: Low Speed Motor. 

 
 

Figure 2.4 Motor labeling  and rotation for cross configuration in this thesis 
 

Table 2.1 Motor-Direction-Orientation relationship over the space 
 

Displacement Axis Displacement Direction Rotation Angle Rotation Direction 1 2 3 4

X + Pitch + LS LS HS HS

X - Pitch - HS HS LS LS

Y + Roll - LS HS LS HS

Y - Roll + HS LS HS LS

Z + HS HS HS HS

Z - LS LS LS LS

Yaw + HS LS LS HS

Yaw - LS HS HS LS

Motor

N/A

N/A

 
 

To make the vehicle to spin over the “𝑍” axis on certain direction it is necessary to 

increase the speed on the pair of that moves in the opposite direction since this spinning 

produces a torque on the opposite direction of the spinning and reduce the velocity of the 

pair that rotates in the same direction of the desired spinning. 

 

The altitude position also depends on the 𝑇ℎ𝑟𝑢𝑠𝑡 of the four motors working at the same 

time, but in this case all four motors collaborate in the same acting direction. Each motor 

delivers a force that goes towards the ground having a reaction on the opposite direction 

that counters the effect of the gravity over the mass of the drone. To have a VTO (vertical 

takeoff) it is necessary that the force delivered by all the motors become greater than the 

weight of the drone, since this causes an upward acceleration. To hover the force must 
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be equal to the weight since this causes a balance on the forces sum that allows a static 

position in the middle of the air when no other force is acting over the vehicle. For the VL 

(vertical landing) the force produced by the motors needs to be smaller, this having an 

opposite reaction respecting to the VTO. Since the motors collaborate in the same 

direction, for hovering each motor must deliver the same force to avoid a moment that 

causes a movement on the 𝑅𝑜𝑙𝑙, 𝑃𝑖𝑡𝑐ℎ or 𝑌𝑎𝑤 angles. 

 

2.2.1 Roll and movement along the “𝒀” axis 

 

To produce a positive 𝑅𝑜𝑙𝑙, as explained previously, the motor 2 and the motor 4 must 

produce a higher force to rotate the vehicle until the desired angle is reached by the 

MAV’s state. To counter the extra force delivered by the motors 2 and 4, the other pair 

(motors 1 and 3) must reduce the force to avoid a difference on the 𝑇ℎ𝑟𝑢𝑠𝑡 that can 

produce a movement along the “𝑍” axis. 

 

This difference of forces delivered by the motors causes the drone to tilt toward the “𝑌” 

axis and simultaneously changes the direction of the force produced by the motors as 

shown in the Figure 2.5 The force produced now on the “𝑌” axis creates an acceleration 

that moves the vehicle through the positive direction of such axis. 

 

 
 

Figure 2.5 Roll viewed from the front of the drone 
 

2.2.2 Pitch and movement along the “𝑿” axis 

 

The 𝑃𝑖𝑡𝑐ℎ behaves like the 𝑅𝑜𝑙𝑙, since both rotations are executed over a horizontal axis 

that is orthogonal to the other horizontal axis and the vertical axis. The motors that 

produce a higher force are 1 and 2 while the motors 3 and 4 must reduce their spinning 

speed, until the desired angle is reached. 

As in the previous rotation, the movement will start with a small angle. When the 

drone rotates in a negative direction over the ‘𝑌’ axis the displacement will be produced 

along the “𝑋” axis in the negative direction as it can be observed on the Figure 2.6. 
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Figure 2.6 Pitch viewed from the right side of the drone 
 

2.2.3 Yaw motion 

 

The 𝑌𝑎𝑤 is characterized in the way that, at difference from the previous rotations, it does 

not produce a movement along any other axis. This is due the nature of the movement. 

 

On the previous rotations the direction of the force produced by the motors changed 

according to the angular position. “𝑍”While in both cases the force before rotating over an 

axis the force has effect only over the axis. After the drone tilted the force started to act 

over the “𝑌” axis when it is a 𝑅𝑜𝑙𝑙 rotation, and over the “𝑋” axis when it is a 𝑃𝑖𝑡𝑐ℎ rotation. 

 

The 𝑌𝑎𝑤 does not produce any change on the direction of the force, only the orientation 

of the vehicle. To produce a positive twist over the “𝑍” axis it is necessary to increase the 

velocity of the motors that spins on the opposite direction of the desired rotation. The 

Figure 2.7 shows a negative rotation in 𝑌𝑎𝑤, this caused by the increase on the rotation 

speed delivered by the motors 2 and 3 according to the Figure 2.4. To counter the extra 

force delivered by the previous motors mentioned, the other pair must reduce the spinning 

speed to keep the balance on the 𝑇ℎ𝑟𝑢𝑠𝑡 delivered by the four motors. 

 

 
 

Figure 2.7 A negative yaw seen from above the drone 
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2.2.4 Altitude and movement along “𝒁” axis 

 

The previous mentioned angular positions work based on a difference between the 

𝑇ℎ𝑟𝑢𝑠𝑡 𝐹𝑜𝑟𝑐𝑒 delivered by two pairs of motors. In the case of the altitude and the 

movement along the “𝑍” axis, the four motors must deliver the same force at the same 

time to avoid any angular movement. 

A difference with the other displacements and movement, the movement along the “𝑍” 

axis deals with the force caused by the gravity as can be seen on the Figure 2.8. To 

perform a hover the sum 𝑇ℎ𝑟𝑢𝑠𝑡 delivered by the motors must counter the effect of gravity. 

To perform a Vertical Take-Off the sum of the forces delivered by the motors must be 

greater than the weight of the vehicle, this countering the effect of gravity and generating 

an acceleration that causes a negative displacement along the “𝑍” axis (Figure 2.8). The 

Vertical Landing is performed when the sum of the 𝑇ℎ𝑟𝑢𝑠𝑡 delivered by each motor is 

smaller than the weight of the UAV, in this case, causing an acceleration that goes 

downward to the ground (Figure 2.8). 

 

 
 

Figure 2.8 VTOL and Hover 
 



Chapter 2. Quad-MAV Behavior and Control  18 

 

2.3 Control equations 

 

To achieve a stabilization of the position in the space, a control law must be applied to 

the vehicle. This is a series of equations that uses the error of the current state using a 

reference given by a monitor system, in the case of an UAV it could be a program that 

indicates the flight or a pilot. The Figure 2.9 illustrates a closed-loop controller diagram 

indicating where the equations must be located to control the next state of the plant. 

 

 
 

Figure 2.9 PD Controller Closed- Loop Diagram 
 

The control law to be employed is a PD controller. This is a linear control characterized 

by the simplicity of the equation and at the same time by the robustness. 

 

It consists on a proportional gain 𝐾𝑃 that multiplies the error. This gain helps the system 

to pass over the stabilization point, the higher the value the faster it will reach such value, 

but as a disadvantage it causes higher oscillation into the system to the point that can 

make it unstable. The other element is the derivative gain 𝐾𝐷 that multiplies the derivative 

of the error and smooths the response, the bigger the value the smoother is the response, 

but this causes that the time it takes to reach the stabilization value to be longer. The 

general equation is the next. 

 

 𝑈𝑎 = 𝐾𝑃 ∙ 𝑒 + 𝐾𝐷 ∙ 𝑒̇ (1) 
 

Each variable to be controlled requires a control equation, having a total of four equations 

as can be seen on equations (2) - (5), where each controller calculates a deviation of the 

desired velocity for hover in steady state, this means that Δ𝜔𝐹, Δ𝜔𝜙, Δ𝜔𝜃 and Δ𝜔𝜓 are 

values of the motors velocity to produce a movement along the “𝑍” axis in the case of the 

equation (2), or to produce a 𝑅𝑜𝑙𝑙, 𝑃𝑖𝑡𝑐ℎ or 𝑌𝑎𝑤 angles from (3) to (5) respectively 

 

Δ𝜔𝐹 = 𝐾𝑃 ∙ 𝑒𝑇 + 𝐾𝐷 ∙ 𝑒̇𝑇 (2) 

Δ𝜔𝜙 = 𝐾𝑃 ∙ 𝑒𝜙 + 𝐾𝐷 ∙ 𝑒̇𝜙 (3) 

Δ𝜔𝜃 = 𝐾𝑃 ∙ 𝑒𝜃 + 𝐾𝐷 ∙ 𝑒̇𝜃 (4) 

Δ𝜔𝜓 = 𝐾𝑃 ∙ 𝑒𝜓 + 𝐾𝐷 ∙ 𝑒̇𝜓 (5) 
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Using [9] as a basis, a hover constant (𝜔𝐻) must be added after the 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 control 

equation, it is required to stabilize the drone on a hover steady state, where this constant 

must ensure to countereffect the gravity effect. As result, and using the matrix for 

quadrotors in cross configuration from [7], the equation to obtain the desired velocity of 

each motor can be written as follows. 

 

 [

𝐻𝑒𝑖𝑔ℎ𝑡
𝜙
𝜃
𝜓

] = [

𝜔1

𝜔2

𝜔3

𝜔4

] = [

1
1
1
1

1
−1
1

−1

−1
−1
1
1

1
−1
−1
1

] ∙

[
 
 
 
Δ𝜔𝐹 + 𝜔𝐻

Δ𝜔𝜙

Δ𝜔𝜃

Δ𝜔𝜓 ]
 
 
 

 (6) 

 

The hover constant is the required velocity of the motor required to perform a hover in 

steady state. This velocity must deliver a force equal to the weight of the vehicle to counter 

the effect of the gravity over the vehicle. Using the equation found in [9], this constant can 

be calculated using the equation (7), where 𝑘𝜏 is a thrust constant proper of the motors, 

𝑚 is the mass of the UAV and 𝑔 is the standard acceleration due to gravity. 

 

 𝜔𝐻 = √
𝑚 ∙ 𝑔

4 ∙ 𝑘𝑡
 (7) 
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Chapter 3 
 

3 Design and Manufacture 
 

This chapter addresses the practical development of the main vehicle, first delivering the 

state of the project and the analysis to re-design the electronic system, focusing the 

second section on the addressing the information about the changes on the 

manufacturing process. The third section presents the design of the embedded software 

and the configuration required on the microcontroller. The fourth section specifies the 

process to find some parameters that must be loaded on the model for simulation, on the 

control system and the embedded software.  
 

3.1 Electronic design 

 

Most of the electronic development was conducted by the MSc. Edgar Espinoza on 

previous works at the Robotics Laboratory at ITESM [3]. The electronic work developed 

in this project had as main purpose of reducing the possibility of error during the 

manufacturing process by placing some elements in different order, reducing the number 

of elements that were not used anymore by the main processing unit, the communication 

or sensing modules or the power phase required for the control of the motors, 

replacement of obsolete or not adequately chosen components. 

 

3.1.1 Electronic diagram and interactions 

 

The interaction of the different components of the drone is made through the electronic 

connections between them. 

 

The power source is a lipo battery that delivers in average 3.7 [𝑉] of nominal voltage, 

having a range of a maximum of 4.2 [𝑉] and a minimum of 3.2 [𝑉]. This battery delivers 

the energy to make the drone work and is connected to the regulator and the four rotors 

with their respective diodes and capacitors in parallel. 

 

The regulator is a step-up/step-down circuit that helps to maintain the voltage delivered 

by the lipo battery on a constant value of 3.3 [𝑉] of output. This voltage is delivered in 

parallel to the MCU, the sensors and the antenna of the drone. 

 

The altitude sensor, fed by the voltage delivered by the regulator and the common line, 

is connected by the communication protocol I2C to the Inertial Measurement Unit (IMU), 

component that is connected in parallel to the altitude sensor. 

 

The communication module and the IMU sensor are connected in parallel to the Main 

Controller Unit to the Vcc and common lines, and simultaneously both are connected to 
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the MCU through the lines of the RS-232. Each component is connected by their 

respective communication lines to the main controller unit. 

 

The MCU is connected through the PWM paths to the pull-down resistor connected to the 

gate pin of each one of the MOSFET that helps to amplify the output of the microcontroller 

to regulate the velocity of the motors. The MOSFET are connected to the motors, diodes 

and capacitors at the drain pins, while the source pin is connected to the common line of 

the circuit. 

 

The figure 3.1 shows a basic diagram and connections of the components for energy 

feeding. 

 

 
 

Figure 3.1 Elements and connections of the quadrotor 
 

3.1.2 Replaced Elements 

 

The first electronic component to be analyzed is the voltage regulator LD1117XX33 in a 

SOT-223 package. This element is placed stabilize and regulate the voltage supplied by 

the battery to the main microcontroller, WiFi module and the IMU sensor, that require a 

3.3 voltage supply to work properly. This first element is located right next to the switch 

to turn “ON/OFF” the Quad-MAV as it can be seen on Figure 3.2. This component 

required replacement since, according to the datasheet, this device requires a constant 

feeding source of 5.3 [𝑉]. The battery at maximum charge only delivered a maximum of 

4.2 [𝑉] for few moments for latter be stabilized as 3.7 [𝑉] of nominal charge. 

 

This lack of voltage, as well as unstable delivery of difference in potential, can cause 

unstable functionality of some elements as well as the total failure of some components 

as the communication module. 

 

To replace this component, another module was used, the Step-Up/Step-Down U1V11F3. 

This circuit helps to regulate the voltage to 3.3 [𝑉], working as a step-down then the 

voltage is higher than the required, reducing the output voltage but delivering a higher 

output current than the input current. When the input voltage is lower, the component 
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switches to a step-up functionality, where the input voltage is raised to reach the required 

output voltage, but reducing the input current to compensate this change, having a lower 

output current. 

 

 
 

Figure 3.2 Early version of the MAV PCB 
 

The 9-DoF (Degrees of Freedom) Razor IMU was selected since the beginning since this 

is a low-cost option of the sensor required to measure the attitude and orientation of the 

Quad-MAV at every moment. This circuit has an advantage of having an open-source 

philosophy, leading to a great diversity of developed programs that could be loaded to the 

main circuit of the component with a high performance and capability of being calibrated 

for the vehicle where it is going to be used. 

 

 The original model of the IMU, the SEN-10736, was taken out of the market, 

leading to the search of a possible new component. This, along other disadvantages lead 

to the model SEN-14001, a cheaper model offering with similar characteristics. The Table 

3.1 compares the characteristics that leaded to the full replacement of the IMU model. 

 

 Even if the weight and dimensions of the replacement were not favorable as 

specifications, the internal components, the communication protocols, the programing 

method and the price were important factors to take the decision. A big advantage was 

also on the software development, since the SEN-14001 had implementations to measure 

the orientation using the Euler angles, and the firmware employed on the SEN-10736 was 

adapted for the new versions of the IMU module. 
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Table 3.1 Comparison of the different IMU boards 
 

SEN-10736 SEN-14001

Bootloading FTDI Direct to the PC

UART communication Yes Yes

SPI communication No Yes

I2C communication No Yes

Power Supply 5 [V]/3.3 [V] 3.3V

μC ATmega328 SAMD21G18A

Base Price $74.95 USD $35.95 USD

ITG-3200

ADXL345

HMC5883L

Dimensions 24x41 [mm] 32x32 [mm]

Characteristics
Model

Sensors MPU-9250

 
 

3.1.3 Modification of the electronic layout 

 

The previous version of the PCB board had numerous elements that where no longer 

required on the circuit because of the new developed embedded software. As it can be 

seen on the Figure 3.3, previously five LED indicators where stablished on the left side of 

the board.  

 
 

Figure 3.3 New LEDs and power phases placement 
 

The use of this LED as indicators of the functionality of the motors in this position has no 

direct relationship. While in the firmware of the microcontroller the PWM could be 
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activated and running, it was not possible to detect if the corresponding output pin used 

to generate the pulse was working correctly, since it can be badly welded or the PWM 

module could have been damaged at some point of the manufacturing or testing process. 

 

Using this reason as a base, 4 of the LED where placed parallel to the power phase of 

each motor as it can be seen on the Figure 3.3, allowing a fast response to the question 

“Is the PWM module working correctly?” when the corresponding motor is not working 

properly or not spinning with the difference of the “Duty Cycle” of the corresponding PWM 

output pin. The fifth LED, that gave information about the “ON/OFF” status of the 

microcontroller was eliminated, since the WiFi module and the IMU sensors already give 

feedback of that status. 

 

Other element analyzed is the voltage regulator in a SOT-223 package. This element 

helps to stabilize and regulate the voltage supplied by the battery to the main 

microcontroller, WiFi module and the IMU unit. This element is a surface mounted device, 

having a simpler soldering process in comparison to the replacement that is a through-

hole plate, requiring the modification of the original mounting place to add holes where 

the U1V11F3 is welded. The use of this new board lead to the elimination of the capacitors 

required by the LD1117XX33 to avoid voltage peaks on the input and output pins, 

simplifying the routing of the path as can be seen on the Figure 3.4. 

 

 
 

Figure 3.4 Comparison of the input and output paths between regulators 
 

To validate the component, it was tested using the battery employed on the Quad-MAV, 

the IMU, the ESP8266 and the MUC to simulate the functionality of the drone. The output 

voltage was constantly monitored (Figure 3.5) to ensure that even when the battery 

voltage is under 3.3 volts, it worked as a Step-Up regulator. 
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Figure 3.5 Verification of the voltage regulator. 
 

To reduce the complexity of the paths and the number of vias, the path that delivered the 

voltage from the battery to the motors and from the voltage regulator to the main circuit 

where rerouted creating two surrounding rings, the external to deliver the voltage from 

the LIPO battery to each motor, and the inner ring to feed the other components with the 

voltage delivered by the regulator. 

 
 

Figure 3.6 Top layout with the surrounding paths 
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This change on the path route conducted to move the placement of the power phases 

(Figure 3.2) from the top layout to the bottom layout but allowing a more direct connection 

to the negative pole of the battery and a more symmetrical and simplified design for a 

faster identification of possible electronic failures. The top layer can be seen on the Figure 

3.6. 

 

3.2 Manufacturing process 

 

The manufacturing process in this project has suffered from a set of minor changes, 

mainly due the change of the layout and the reduction of components over the board. The 

main changes can be appreciated on the process of connecting the Top and the Bottom 

layout on specific places, this due the use of a new process to reduce the risk of having 

a bad transmission of the data or the signal from the source to the goal pin of the 

corresponding element. 

 

The Table 3.2 shows the comparison of the process established by Edgar Espinoza in 

[3]. Different stages of the process remain equal, but the production method changed, or 

the order presented is different. 

 

Table 3.2 Process comparison table 
 

Original Method New Method

1 Copper roughing Copper roughing

2 Vias placing Copper tinned

3 Copper tinned ProConduct placing

4 Solder plaster placing Proconduct baking process

5 Component placing Solder tin placing

6 PCB baking process Component welding

Step
Process

 
 

The Copper Roughing process consist on the removal of the excess of the copper over 

the board to form the paths, holes, vias connectors and pads for the through-hole 

components. On the first stage of the task, the machine places the fiducials over the main 

board to have a reference of the machine position over the board during the process. 

 

The second stage of the Copper Roughing is the drilling of the holes where the vias and 

the through-hole components are welded. The third and four stages are repeated for the 

top and the bottom layout of the circuit. The third stages remove the copper surrounding 

the place where the holes were made, around the paths that connect the elements and 

the pads where the circuits must be welded. The fourth stage gives a smooth finish over 

the board removing the excess of the copper that is not used by the circuit, this to reduce 

the final weight of the board. After the fourth stage ends, the plate is turned over the 

horizontal axis and the stages 3 and 4 are repeated for the next layer. 
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The second process is different from the previous methodology. The tinned process is 

the second phase of the overall method since the ProConduct needs to be baked to get 

fixed to the conducting material. If the plate is baked without the tin, the paths that are 

thin enough could be damage by the heat and the plate will be ruined. The tin process 

takes over 5 minutes to be completed. The PCB is submerged into the Liquid Tin and 

then is cleaned with distilled water to avoid impurities that could damage the tin cover. 

 

The third process consist on the fulfilling with the ProConduct of the holes were the vias 

and the through-hole components are placed. This chemical helps to connect and keep 

continuity of the board from the top to the bottom layout. Not all the holes must be fulfilled, 

only the ones corresponding to the vias and where a through-hole electronic component 

is welded, and the main signal path is in the opposite layout where it is welded. The Figure 

3.7 shows surrounded by a black circle the holes where the ProConduct must be injected. 

The process to place this chemical is to pour into a syringe with a very fine needle, and 

using pressure fulfill the holes. 

 

 
 

Figure 3.7 Places to fulfill with ProConduct 
 

To fix the ProConduct into the board it is necessary to be submitted into a heat treatment. 

This process dries and solidifies the chemical that gets added to the wall of the holes. A 

continuity test is made using a multimeter to ensure that the bottom and top layers are 

connected (Figure 3.8). This process reduces the probability of error since the vias must 
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be placed using pressure, and in some cases the coper tube does not make full contact 

with the copper part on both sides of the plate. 

 

 
 

Figure 3.8 Continuity verification process 
 

The fifth process also changed since the layout was modified. In the original method in 

the fourth process, a soldering plaster is placed using a stencil. The replacement of some 

electronic components, the change of position of other components and the change of 

some copper paths caused that the available stencil to become obsolete. Another 

problem that presented this process is that the components must be placed within a range 

of time since the plaster dries and cannot be used in that state. In the new process a layer 

of flux plaster is placed and with a soldering iron the welding tin is melted and fixed over 

all the pads of the SMD electronic components. 

 

To weld all the components a heat gun is used to melt the tin over the pads and with 

tweezers the SMD element are placed, the heat gun is removed, and the component is 

verified to be fixed (Figure 3.9). The through-hole devices are welded using the iron and 

the tin. 

 
 

Figure 3.9 Component assembly verification step 
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3.3 Physical parameters of the drone 

 

To approximate the behavior of any plant to be used and introduce the adequate data on 

the embedded code, it is necessary to characterize the system to model and get all the 

parameters that can affect the way the system may react or move in response to any 

environmental or systematic stimulation over the space. 

 

The Table 3.3, extracted from [10], gives all the information about the parameters 

regarding the vehicle, obtained by direct and indirect measurements. This information is 

employed to adjust the embedded parameter of the drone on the embedded software. 

 

Table 3.3 Parameters of the MAV 
 

Parameter Value Unit 

𝑚 0.071 [𝑘𝑔] 

𝑘𝑇 2.64 × 10−8 [
𝑁𝑠2

𝑟𝑎𝑑2
] 

 

3.4 Development of the embedded firmware 

 

The embedded firmware is developed using the MPLAB® IDE as the main development 

environment, the compiler is the XC32 that is employed for the microcontrollers of 32 

memory bits, the configuration tool MPLAB® Harmony that helps to define the input and 

outputs of the system as well as the kind of signal for each pin of the main processor unit, 

and to load the firmware to the circuit the PICkit 3 is connected to the computer with the 

developed program and to the board to update all the internal processes to the 

PIC32MZ2048ECM100. Every software employed in this task, the programmer and the 

microcontroller come from the Microchip company. 

 

The electronic layout designed in [3] gives the configuration of the microcontroller pins, 

stablishing if are inputs or outputs, communication bus or if the main function is for the 

control of the motor speed through the use of a PWM. Even if the electronic layout was 

modified for an easier interpretation and reduction of possible error during the 

manufacturing process, the configuration of each pin remained as it was planned from 

the beginning in exception for the LEDs used as indicators. 

 

To develop an efficient firmware to be programed on the MCU, the tasks that it must do 

and the order of how it must be implemented was defined and ordered, designing a Finite-

State Machine (FSM) to avoid collision between tasks. The use of the MPLAB® Harmony 

tool is convenient since the main function of the app file is presented as an FSM where 

more states can be added in the adequate files. 
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The firmware development is characterized by the adjustment of the PWM period and the 

change of the PWM instances order in the first subsection, and the design of the FSM is 

addressed in the last subsection. 

 

3.4.1 PWM Implementation 

 

The electronic board has a design with some components that restricts the characteristics 

that the PWM must have. 

 

According to the study of the presented in [11], the optimum frequency of the PWM to 

control the motors using the MOSFET and the Schottky diode employed on the project is 

about 20 [𝐾𝐻𝑧]. 
 

To adjust the PWM to that frequency it is necessary to review the datasheet of the 

PIC32MZ2048ECM100, where the operation standard and the adjust of the adequate 

parameter for the correct functionality of the microcontroller are given. 

 

The parameter to be adjusted for the PWM frequency is the period of the timer 2, since 

this clock gives the counting tics to reset and adjust the signal of the pins signal. To adjust 

this data, it is necessary to know the main clock frequency from the MCU. According to 

the specifications, the it works at 200 [𝑀𝐻𝑧]with the internal oscillator. 

 

The second characteristic to stablish the period of the timer 2 is a prescale value that 

helps to reduce the frequency of the main oscillator. The minimum prescale value is 1, 

this causes that the main frequency of the internal oscillator will be divided by two, since 

the timer 2 switches between high and low state every time the main clock signal sends 

a rising signal, ignoring the falling signal. The selected value is 1. 

 

The calculus of the timer 2 𝑃𝑅𝑥 parameter is given by a formula found in [12], where the 

𝑃𝑅2 is the period to be found and adjusted, the 𝑇𝑃𝐵 is the period of the main clock, and 

𝑇𝑀𝑅𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 is 1, since it helps to reach the desired value and allows a better 

precision on the adjustment of the PWM Duty Cycle . 

 

 𝑃𝑊𝑀 𝑃𝑒𝑟𝑖𝑜𝑑 = [(𝑃𝑅2 + 1) ∙ 𝑇𝑃𝐵 ∙ 𝑇𝑀𝑅𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑉𝑎𝑙𝑢𝑒] (8) 
 

To continue with the adequate order of the instance order of the PWM in the controller 

configuration, it is necessary to define the order of the motor numbering since it defines 

the equation of control later discussed in this chapter. The Figure 3.10 shows the order 

defined for this project on a quadrotor with cross configuration and the corresponding pins 

that control each motor on the board. 

 

The MPLAB® Harmony tool has the possibility to define the quantity of the Output 

Compare (OC) instances that will be set and how it will work, being defined as PWM Edge 
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Aligned on the main configuration page. This interface numbers and identifies each PWM 

with a number to name each function related to that instance, each one having the format 

of DRV_OCx_FunctionDescription(), where the “x” is the number of the instance of the 

Output Compare. 

 
 

Figure 3.10 Quadrotor motor numbering and corresponding pins 
 

At the same time, the microcontroller has some restrictions. It can control up to 9 OC 

modules at the same time, that can be mapped to any of the 9 OC instances. Each OC 

module is numbered and can only be assigned to certain pins of the MCU. This limits the 

modules that can be used, since the electronic board has paths assigned to each motor. 

 

Since the control equations relate the speed of a specific motor in order of the position 

that it has in the main structure in relation with the center of mass of the vehicle, to avoid 

a wrong interpretation, the number of the instance and the motor must be related. In the 

Table 3.4 it can be appreciated the final relation between the pin, OC module, OC 

instance and motor. 

 

Table 3.4 Assigment of the Ìnstance, Module and Pin for each motor 
 

Motor OC Instance OC Module Microcontroller Pin

1 0 3 77

2 1 1 56

3 2 2 7

4 3 9 39  
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This mapping helps to define inside the final firmware the instance number and how will 

interact with the other instances to control the orientation and attitude of the Quad-MAV 

in the air. 

 

3.4.2 FSM definition 

 

The MPLAB® Harmony produces a series of header and application files optimizing the 

code generation and reducing the error margin at the time of producing the main code. In 

the main application file, it starts a Finite-State Machine that helps to decompose the 

whole set of functions that the microcontroller must accomplish into a set of simple 

functions that can be scheduled in a specific order to avoid a misinterpretation of the data 

or entering into an infinite loop inside a function since it does not accomplish the 

requirements to finish the task. 

 

The first step was to identify the main functions in the most general form to be performed 

by the Main Controller Unit in the exact order and as follows: 

• Initialize variables. 

• Initialize peripheral drivers. 

• Establish communication with the external modules. 

• Read current state. 

• Read current reference. 

• Solve control equation. 

• Adjust PWM width. 

 

To each one of this set of tasks is assigned a state inside the program, and afterwards 

must be decomposed into more simple tasks or joining some tasks to reduce the memory 

employed for each state. 

 

The initialization tasks can be merged into a simple state without altering the order listed 

before, this due to the influence that many variables and constants play mainly in the 

preestablished functions of the PWM, the communications and how this could affect the 

functionality of the control equations. 

 

The communications between the peripheral modules is established in other state that 

must be divided into two tasks denominated handshakes. The purpose of this sub-states 

is to establish communication and start the process of data reception from the WiFi 

module and from the IMU unit. This process is necessary, since the IMU has an internal 

initialization process, where it needs to filter and process the sensor information to 

measure the initial state and later send the data in Euler angles through the UART bus 

for an internal calibration. At the same time, it must wait the communication from the 

ground station to the WiFi module. This connection must be enabled before starting the 

loop of send-receive data, this to avoid communication and connection issues. If it is no 

implemented in this way and the microcontroller starts to send the information to the WiFi 
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module through the data bus, the communication can’t be stablished since the module 

gets saturated in the tasks and ignores the client for a handshake. 

 

After the tasks of the communication establishment are successfully accomplished, the 

control equation, adjust PWM and read tasks are enabled. Each communication 

initialization enables the corresponding reading task while the control and PWM tasks are 

only enabled when both communication tasks are accomplished, since the control task 

requires the information of the current state provided by the IMU and the reference 

provided by the WiFi antenna. The read tasks are enabled after the communication is 

established successfully since each module sends information through the respective bus 

periodically. The reading tasks helps to clean the buffer of both UART modules and avoid 

the saturation of the buffers allowing a better performance of the Quad-MAV. 

 

The reading tasks in both cases must be separated into three subtasks: 

• Data read. 

• Data storage. 

• Data interpretation. 

 

These subtasks are necessary since the data provided by the modules cannot be used 

by the microcontroller due to the format. The first task is to read the buffer where the data 

is temporary stored by the MCU into a variable that matches the data type. 

 

The IMU module sends the Euler angles in a range of data that varies in the length, the 

Figure 3.11 gives the example of the longest and the shortest chain of data. The data 

given by the first character that sends is a “#” that helps to identify the start of the chain 

data and the last character is a “\n”, in ASCII code it means an end of line. After the first 

character, the IMU reveals the order of the data that will be sending in the form of “TYPR”, 

this indicates that the first value to be visualized is the altitude of the vehicle, the second 

value is the yaw, followed by the pitch and ending with the roll state. After the order of the 

data it sends a character “=” that indicates that the transmission of the values of the state 

will be start. The Euler angles vary in length, going from −180 ° to 179.99 °. The shortest 

chain of data that indicates the value of the angle consist of only 4 characters, being only 

one character for the integer part, followed by a “.” and two characters for the fractional 

parts. An example could be the initial angle of “0.00”, where all the parts in the worst case 

can be appreciated. The longest chain of data consists of 7 characters, where the first 

character indicates a negative value of the angle, followed by 3 characters of the integer 

part, the “.” to separate the integer from the fractional part, and two characters of the 

fractional part. An example of this chain can be “−180.00”, indicating that the vehicle is 

flipped in a determined angle. Each angle is stored in an array of characters that has 4 

rows by 8 columns. Each Euler angle and the altitude of the vehicle are separated by the 

previous value by a “,” that is not stored in the array, instead it is replaced by “\0”, that 

means the end of the data to be transformed into a floating value. The end of line is 
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processed as the comma, since this indicates the end of the roll value and the end of the 

data transmitted to indicate the current state of the drone. 

 

 
 

Figure 3.11 Data chains a) The longest case b) The shortes case 

 

All the previous process are necessary since the data is later processed by an embedded 

function called atof(), this function converts the ASCII values stored in an array into 

floating values that will be used by the MCU in the controller found in the third state of the 

loop. 

 

The WiFi module has the same initial characters chain as the IMU module, starting with 

a hash and ending with an equal sign. The chain that reveals the reference is different, 

since this chain depends on the number of buttons that the control on the ground station 

has or the number of characters defined by the app, but the order of the thrust, yaw, pitch 

and roll remains as the first four values of the chain. 

 

The value of each byte represents the state of each button of the remote control, and the 

first four values can go from 0 to 255, where the first value is mapped in a value between 

0 and 2, being 2 [𝑚] the maximum altitude that the vehicle can reach. The second byte is 

mapped in a range from −180 ° to 179.99 °, being the values that the yaw can reach. The 

bytes 3 and 4 are mapped each one in a range that goes from -3 to 3 degrees, since the 

inclination in pitch and roll modifies the velocity, and a big inclination in these values can 

cause a destabilization in the vehicle dynamics. The rest of the bytes has a value of “𝐻” 

or “𝐿”, meaning high value or low value, translated in values of 2 to “𝐻” or 0 to “𝐿”. In some 

cases, there is a switch instead a button that could have 1 pole but 3 states, in these 

cases it can be seen the values of “𝐻”, “𝑋” or “𝐿” that are mapped to the values of 2, 1 

and 0 respectively, where “𝑋” indicates a neutral value mapped as 1. 

 

Since the data sent by the WiFi module is constant in the size of the chain, it is updated 

in the code and initialized before loading the program to the microcontroller since each 

control has a different number of buttons and switches and the joysticks have different 

logic function and different value range of values in the maximum, minimum and initial 

position. 

 

After defining all the functionalities of the first 2 reading tasks, the state to adjust the Duty 

Cycle of each PWM is defined. In the first of these two states, the control equations are 

programed using the mapped values of the reference and the processed values of the 

current state. The state first updates the current values of the thrust and the angular 
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position of the Quad-MAV, calculates the error and its derivative and solves the equations 

(2)-(5) in their discrete form respectively. 

 

The control used in this project was a PD controller, where the gains are defined as 

universal floating constants inside the code. 

 

This state calculates the spinning velocity required by each motor to later be transformed 

by a linear mathematical formula into a parameter that is used by the Adjust PWM width, 

where it takes an integer value and is set using the internal functions given by the syntax 

DRV_OCx_width(value). 

 

 
 

Figure 3.12 Simplified flow chart 
 

Once defined the steps for each state, the loop must be defined. The initialization tasks 

and the establishment of the communications must be done only once after the Quad-

MAV is turned on; the other 4 tasks must be done in a cycle of 10 [𝑚𝑠] due the constrains 

of the peripheral modules. The final cycle starts when the PIC32MZ2048ECM100 reads 

the value of the current stat from the IMU, proceeds to read the reference from the WiFi 

module received from the ground station, afterwards the control law is solved and then 
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the final values of the PWM width is written to adjust the motors velocity. In the Figure 

3.12 can be observed the simplified final flow chart of the FMS. 

 

3.5 Adjustment of the real model embedded parameters 

 

Many adjustments of the parameter needed employ the real period of the microcontroller 

or the relationship between the duty cycle of the PWM and the maximum force that each 

motor can deliver to enable the basic hovering function of the drone. 

 

3.5.1 Adjustment of the periods of the timers 

 

The scope of this adjustment process was to adjust the duty cycle of the PWM to run 

each one at 20 [𝐾𝐻𝑧]  of frequency. These measurements where needed since the 

microcontroller main oscillator was the inner one. 

 

To follow a KIS (Keep It Simple) manufacturing and firmware configuration methodology, 

the inner microcontroller was selected, since it represents no extra weight to the Quad-

MAV and simplifies the electronic circuit and the configuration process to develop the 

embedded code using the MPLAB® Harmony. 

 

A disadvantage of using the internal clock of the microcontroller is the lack of precision 

and stability, at high frequencies and can vary depending the environmental conditions, 

the temperature of the microcontroller and the board and the usage time it has. This timer 

needs to be adjusted along the lifetime of the MCU of the drone due it deteriorates along 

the time. 

 

According to [13], the microcontroller has an inner oscillator of 200 [𝑀𝐻𝑧], meaning a 

𝑇𝑃𝐵 = 5 × 10−9 [𝑠]. After replacing this value on the equation  

(9), where the timer 2 period from equation 1 is cleared, the result is equal to 𝑃𝑅2 = 9999. 

 

The second timer to be selected depends on the value of the period needed. This second 

timer task is to ensure the repeatability of the control task on a periodic way. Since the 

simulations were made every 10 [𝑚𝑠], then 𝑇𝑃𝐵 = 0.01 [𝑠]. This value is substituted on 

the equation (9), giving a result of 𝑃𝑅4,5 = 1999999. Since the result requires a higher 

resolution than 216 can provide, then the timer 3 can’t be used, being substituted by the 

timer 4 with a configuration of 232 of resolution bits. 

 

The value of the timer 2 and the resolution bits of the timer 4 are updated on the MPLAB® 

Harmony configurator, while the 𝑃𝑅4 value selected is equal to 4,294,967,295, to allow 

the timer to reach the calculated value, that is defined as a constant inside the embedded 

code and  define the period of the cycle of the FSM. 
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3.5.2 Adjustment of constants in control equations 

 

As mentioned on a previous section, the control system designed and that is programmed 

on the Quad-MAV main controller is a PD. This controller, as mentioned before, requires 

a compensation to counter the effect of the acceleration due to gravity. 

 

According to [9] the compensation must be set after the altitude control to function as a 

countereffect to the force produced by the Quad-MAV mass and the gravity. For a better 

comprehension for this adjustment on the control law it is necessary to solve the 

equations and observe the behavior when the error is equal to zero on every reference. 

 

By solving the equations from (2) - (5) when all errors are equal to 0 and replacing these 

values on the equation (6) the following equation is stated. 

 

 [

𝜔1

𝜔2

𝜔3

𝜔4

] = [

1
1
1
1

1
−1
1

−1

−1
−1
1
1

1
−1
−1
1

] ∙ [

𝜔𝐻

0
0
0

] (9) 

 

As mentioned on a previous chapter, the hover force must be equal to the weight of the 

drone. Solving the equation (7), using the physical parameters of the vehicle, the final 

value of the hovering constant to linearize the plant is equal to 2.5678 × 103  [
𝑟𝑎𝑑

𝑠
]. 

 

A second factor to consider is the direction is the orientation of the positive “𝑍” axis on 

the inertial frame. To elevate the drone over the ground level using the coordinated 

system proper of the aerial vehicles, the reference must be negative. 

 

This has a consequence over the control system. The PD uses gains to reach the 

reference. Since the references of the 𝑇ℎ𝑟𝑢𝑠𝑡 control is on the negative coordinated axis, 

it requires negative gains to have a positive output on the 𝜔𝐹 value. 

 

While the gains of the 𝑇ℎ𝑟𝑢𝑠𝑡 control must be negative, the gains of the 𝑅𝑜𝑙𝑙 and 𝑃𝑖𝑡𝑐ℎ 

controls will take the same values on the simulation. These values are the same since 

the behavior of the quadcopters is the same on both angles. This is possible due the 

symmetry that have over the “𝑋” and “𝑌” axes. 
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Table 3.5 Control gains values. 
 

Controled Variable Gain Value

Proportional -80

Derivative -200

Proportional 5

Derivative 5

Proportional 5

Derivative 5

Proportional 4

Derivative 5

Thrust

Roll

Pitch

Yaw
 

 

The gains corresponding to the Yaw variable are the smaller of all. Since this angle has 

no effect over the rotation of the any axis and the stabilization in this spinning is easier, 

the gains can be small to avoid overshooting and control loose of the spinning over the 

“𝑍” axis. The final values of the gains are shown on the Table 3.5. 

 

3.6 Discrete control equations and motor velocity calculus 

 

The control equations used on the modeling of the system are represented on continuous 

time and using matrix to simplify the model and reduce the error possibility between each 

step since each variable has effect over different stages of the position of the drone within 

the space. 

 

A limitation within the project is the programming language and the main processing unit 

device. The ‘C’ language and the MPLAB® Harmony provided by Microchip® have no 

native libraries regarding differential equations for derivatives and integration processes. 

At the same time the PIC32MZ2048ECM100 has a limited processing capability due the 

hardware characteristics. This properties of the software and hardware leads to the use 

of the basic definition of a derivative equation. 

 

The basic form of a derived is of a slope where the difference of a step over the dependent 

variable is divided by the difference of the same step at the independent variable as 

shown the following equation.  

 

 𝑚 =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

Δ𝑦

Δ𝑥
 (10) 

 

Substituting the variables using the concepts of the slope equation, the current state of 

the drone changes continuously every instant, meaning that the dependent variable is the 

position of the drone and the independent variable is the step of time between each 

measurement. Substituting these concepts on the equation (10) the it can be established: 
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 𝑒̇ =
𝑒1 − 𝑒0

𝑡1 − 𝑡0
=

Δ𝑒

Δ𝑡
 (11) 

 

The measurement carried by the IMU module is not constant with a variation from 9 to 11 

milliseconds between the transmission of the current state of the drone. To simplify the 

process and avoid errors on the microcontroller buffer and timesteps between the solution 

of the sampling the period of the FSM was set to be 10 milliseconds, meaning that the 

declared value is Δ𝑡 = 0.01 inside the code. 

 

Solving the control equations from (2)-(5) using the definition of the equation (11) the 

equations (12)-(15) are defined where the subscripts 𝑘 means the current state and 𝑘 − 1 

previous state. These equations are programed into the Control state inside the FSM of 

the embedded code and immediately the value of 𝑒𝑘 is transferred to 𝑒𝑘−1. 

 

 Δ𝜔𝐹 = 𝐾𝑃 ∙ 𝑒𝑘 + 𝐾𝐷 ∙
𝑒𝑘 − 𝑒𝑘−1

0.01
 (12) 

 Δ𝜔𝜙 = 𝐾𝑃 ∙ 𝑒𝑘 + 𝐾𝐷 ∙
𝑒𝑘 − 𝑒𝑘−1

0.01
 (13) 

 Δ𝜔𝜃 = 𝐾𝑃 ∙ 𝑒𝑘 + 𝐾𝐷 ∙
𝑒𝑘 − 𝑒𝑘−1

0.01
 (14) 

 Δ𝜔𝜓 = 𝐾𝑃 ∙ 𝑒𝑘 + 𝐾𝐷 ∙
𝑒𝑘 − 𝑒𝑘−1

0.01
 (15) 

 

The values to be adjusted inside the code are the corresponding to the motor angular 

velocity. To obtain the value of the motors, the equation (6) is solved. Since this equation 

multiplies a 4 × 4 matrix by a column vector of 4 elements, it delivers a total of 4 equations 

to adjust the speed, one for each motor, as can be seen in the next set of equations. 

 

 𝜔1 = Δ𝜔𝑇 + Δ𝜔𝜙 − Δ𝜔𝜃 + Δ𝜔𝜓 + 𝜔𝐻 (16) 

 𝜔2 = Δ𝜔𝑇 − Δ𝜔𝜙 − Δ𝜔𝜃 − Δ𝜔𝜓 + 𝜔𝐻 (17) 

 𝜔3 = Δ𝜔𝑇 + Δ𝜔𝜙 + Δ𝜔𝜃 − Δ𝜔𝜓 + 𝜔𝐻 (18) 

 𝜔4 = Δ𝜔𝑇 − Δ𝜔𝜙 + Δ𝜔𝜃 + Δ𝜔𝜓 + 𝜔𝐻 (19) 

 

Since there is no sensor to measure the spinning velocity of the propellers, some data 

must be gathered corresponding to the angular velocity it can reach and the voltages. 

According to the page of Ready Go, a supplier of the selected motors and similar 

equipment, the values of the voltage, spinning velocity and other data were obtained.  
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Table 3.6 Motor characteristics at 3.2 V 
 

Characteristic Value Unit Tolerance

Speed 35000 [RPM] ±15%

Current 0.48 [A] 0.58 Max

Torque 0.35 [mNm] 0.28 Min  
 

The motors have a linear relationship voltage-torque it can deliver, having as an effect a 

linear relation with the force it can deliver. To find the angular velocity and Duty Cycle 

required on the code, the equation (20), where 𝐹 is the force delivered by the motor, 𝜔 is 

the speed it reached and 𝑘𝜏 is the thrust constant, was solved using the value of the 

speed at 3.2 [𝑉] provided in the Table 3.5 and converted into 3665.191429 [
𝑟𝑎𝑑

𝑠
], then the 

slope equation (21) was employed to find the relationship Voltage-Force of the motor, 

where 𝑉 is the feeding voltage of the motor. 

 

 𝐹 = 𝜔2 ∙ 𝑘𝑇 (20) 

 𝑚𝐹𝑉 =
𝐹

𝑉
 (21) 

 

The battery has a nominal voltage of 3.7 Volts, having a maximum of 4.2 Volts when 

completely charged. Since the velocity of motors is regulated using a PWM, the 100% 

was stablished as 4.2, the corresponding force was calculated using the equation (21) 

and later the squared velocity of the motor employing the equation (20) to develop the 

equation (22) to calculate the duty cycle of any motor according to the ideal model, 

simplifying the equation using a constant as seen on the equation (23). The values of the 

parameters found are on the Table 3.7. 

 

 𝐷𝐶𝑥% =
𝜔𝑥

2 ∙ 𝐷𝐶100%

𝜔4.2𝑉
2  (22) 

 𝐷𝐶𝑥% = 𝜔𝑥
2 ∙ 𝑚𝐷𝐶−𝜔2 (23) 
 

Table 3.7 Constants parameters employed to find the equation 42 
 

Parameter Value Unit 

𝐹3.2𝑉 0.354648 [𝑁] 

𝑚𝐹𝑉 0.110827 [
𝑁

𝑉
] 

𝐹4.2𝑉 0.465475 [𝑁] 

𝜔4.2𝑉
2  1.7631637 × 107 [

𝑟𝑎𝑑2

𝑠2
] 

𝑚𝐷𝐶−𝜔2 0.0002835811 [
𝐵𝑖𝑡𝑠 ∙ 𝑠2

𝑟𝑎𝑑2
] 
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Chapter 4 
 

4 Experiments and analysis 
 

This section addresses all the process for the development of the experiment and 

discusses the results obtained from the experimentation and how it leads for an 

adjustment of parameter needed for the integration of the embedded software and the 

electronic system. The set up for each experiment is stated at the beginning, establishing 

the conditions to determine if the tested section accomplishes the requirements and if the 

parameter previously established are adequate. If the test is not accomplished or the 

parameter are not adequate, it shows the procedure to solve the issue and continue the 

final integration of the project. 

 

The equipment used for the experimentation was: 

• Multimeter: measure continuity, capacitance and voltage. 

• Oscilloscope: used to measure the PWM frequency and width of the duty cycle 

• Balance: to measure the real weight of the drone and the force delivered by the 

motor. 

• Protoboard: used to test the functionality of the electronic devices. 

• Arduino Uno and FTDI: used as a 𝑅𝑆232 communication interface with the 

computer. 

• IMU SEN-14001: board with the sensor for the orientation sensing. 

• ESP8266: wireless compact communication module. 

• U1V11F3: step-up/step-down to be used on the drone to regulate the voltage. 

• Power source or drone battery: to energize the circuit for the testing. The power 

supply is used exclusively for the protoboard while the battery is employed for 

durability test on the protoboard and final tests. 

• Prototype: used for the final tests of functionality 

• Ground station: a computer or other device to send the reference to the drone. 

 

The software and electronic hardware test were made in parallel. The electronic 

functionality hardware and software where made before the prototype electronic 

hardware where done to avoid reworks and wrong prototypes. 

 

Each test presented in this chapter deliver the information in form of a small report, where 

the objective is presented, the list of the tools, components and equipment used, followed 

by an image or picture of the setup of the testing, small description of the procedure and 

the result. In the case where the test fails to meet the acceptance criteria, an adjustment



Chapter 4. Experiments and Analysis  44 

 

of parameters is done, and the test runs again into a new iteration to deliver a new 

judgment about the test status. 

 

4.1 Data collection test 

 

The data collection test is used to gather the information regarding the electronic and the 

embedded systems. It is necessary since gives the information about the cycle time and 

that the proper integration of the different modules can be achieved. 

 

4.1.1 Data reception and transmission from between the IMU, WiFi and 

microcontroller 

 

Objective. Understand the functionality of the WiFi and IMU modules, the data 

gathering inside by the microcontroller and ensure the data transmission from IMU to 

the main controller unit and from the WiFi antenna to the PIC32MZ2048ECM100 and 

determine the time it takes to accomplish this task to determine the time required for the 

FSM to complete a cycle . This test procedure was divided into three different validation 

stages. 

 

Equipment: 

• Protoboard 

• Power source 

• Ground station 

 

First stage. The IMU module was mounted on the protoboard and connected to the 

testing microcontroller on the respective 𝑅𝑥 and 𝑇𝑥 pins. An Arduino Uno board without 

the ATMEGA328P was connected to another 𝑅𝑆232 communication pins destined to the 

WiFi module to transmit the data gathered from the IMU by the microcontroller to the 

ground station. The protoboard was fed with 3.3 [𝑉] directly from the power source. The 

Arduino IDE was used to receive the data on the computer (Figure 4.1). 

 
Figure 4.1 IMU-PIC32-GND station commmunication setup 
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Result. The data transmission was successful, the PIC32 received and processed the 

data from the IMU and resent it to the ground station (Figure 4.2). 

 
 

Figure 4.2 Data received from the PIC32 into the computer 
 

Second Stage. The Arduino board was replaced by the WiFi module to transmit the data 

to the ground station. The IDE was replaced by the PuTTY software, it is as a client for 

different telecommunication protocols (Figure 4.3). 

 

 
 

Figure 4.3 Second stage setup 
 

Result. The procedure failed. The IMU is continuously sending data to the microcontroller 

that sends it to the WiFi module at the same rate it is received, saturating this module and 

preventing the wireless communication. To avoid this issue the firmware was modified 

such that the main processing unit only sends the data from the IMU under request. 
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New result. The communication was successful; the microcontroller receives the data 

from the IMU and processes it and is capable to act as a response to a command received 

from the WiFi module (Figure 4.4). 

 

 
 

Figure 4.4 Console command and response from the PIC32 using PuTTY 
 

Third stage. Send a command through the wireless communication to modify the Duty 

Cycle of the four PWM or receive data. The setup of the second and the third stages are 

the same. 

 

Result. The PWM of each motor could be modified. A LED and a resistor were placed 

after each pin regarding a motor to identify the change of the pulse width using certain 

preestablished commands (Figure 4.5). The main processing unit also responded to a 

command to send the current IMU status to the ground station (Figure 4.6). 

 

 
 

Figure 4.5Adjustment of PWM with command transmission. 
 

 
 

Figure 4.6 PWM regulated on the LEDS (motor pins) 
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Fourth stage. Determine the time it must take to the MCU unit to complete the cycle of 

the FSM to control all the tasks in the embedded code. 

 

Result. The cycle of the FSM was determined using the rate of the tasks that takes more 

time to be completed. This task is the read of the processing and transmission of the data 

from the IMU to the MCU. This task varies from 9 [𝑚𝑠] to a value over 12 [𝑚𝑠]. Using the 

data collected and transmitted to the ground station from the MCU (Table 4.1), the data 

was evaluated and graphed (Figure 4.7) to obtain the following results: 

• Maximum time: 12.712 [𝑚𝑠] 

• Minimum time: 9.803 [𝑚𝑠] 

• Average: 10.6763 [𝑚𝑠] 

• Mode: 10.79 [𝑚𝑠] 

• Standard deviation: 0.434 [𝑚𝑠] 
 

Table 4.1 Data from the normal distribution 
 

Ranges
Bottom Value

[μs]

Top Value

[μs]
Samples

Range 1 9803 10236.77825 470

Range 2 10236.77825 10670.5565 856

Range 3 10670.5565 11104.33475 860

Range 4 11104.33475 11538.113 385

Range 5 11538.113 11971.89125 57

Range 6 11971.89125 12405.6695 0

Range 7 12405.6695 12712 1  
 

 
 

Figure 4.7 Normal Distribution of the sample of times 
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Using this data and simplifying the selection of the timers 4 and 5 𝑃𝑅𝑥 parameter avoiding 

the effect of the lack of stability from the internal oscillator MCU, the value of 10 

milliseconds was selected. 

 

4.2 Timers testing 

 

The testing of the timer helps to release the most recent version of the code needed to 

make the drone to function properly. This test helps to adjust the frequency of the PWM 

and the period of the timer to ensure the functionality of the FSM. 

 

4.2.1 PWM frequency and timer 4 period 

 

Objective. To verify the PWM frequency delivered from the microcontroller to each motor 

and measure the frequency of the timer to schedule the reset of the FSM cycle in the 

code. 

 

Equipment: 

• Oscilloscope 

• Power source 

• Protoboard 

 

Description of the testing. Supplying the circuit with the power source, it was turned on 

the circuit, uploaded the firmware with the setup enabling the PWM and the timers 2 and 

4 of the microcontroller, a 50 [%] duty cycle, the output pins for the PWM with LEDs and 

the output pin for the LED to measure the period of the timer 4 to ensure the duration of 

the FSM loop for10 milliseconds connecting the corresponding pins to the oscilloscope 

(Figure 4.8). 

 

 
 

Figure 4.8 Experiment setup for ferquency of the PWM and timer 4 period 
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Result. The test failed on this first trial. The configuration on the Harmony tool for the 

microcontroller was ok, but the PWM frequency was the half of the desired (Figure 4.9) 

and the period of the timer 4 was doubled (Figure 4.10). The reason is due the use of a 

wrong data. The 𝑇𝑃𝐵 used in the calculus of the 𝑃𝑅𝑋 register of both timers is from the 

main oscillator, corresponding to the timer 1 from the microcontroller. The 𝑇𝑃𝐵 

corresponding to the other timers is equal to the half of the period from the timer 1. 

 

Notes. The periods marked even numbers being 9,999 and 1,999,999 for timers 2 and 4 

respectively using the formula. For a more exact calculus inside the microcontroller 

regarding the Duty Cycle of the PWM both were replaced by 10,000 and 2,000,000. 

 

Discussion for a new test. The period of both timers must be decreased. Since the 

frequency of both measurements is the half of the desired, the 𝑃𝑅𝑋 parameter of both 

timers must be reduced in a 50 [%] from the original calculated value. 

 

 
 

Figure 4.9 First PWM frequency measurement. 



Chapter 4. Experiments and Analysis  50 

 

 
 

Figure 4.10 First Timer 4 frequency measurement 
 

New result. Both, the PWM frequency was set at 20 [𝐾𝐻𝑧] (Figure 4.11) and the timer 4 

period met the value of 10 [𝑚𝑠] (Figure 4.12). Both measurements have small deviations 

from the desired output, but it does not affect the functionality of the vehicle. 

 

 
 

Figure 4.11 PWM frequency at 20 kHz 
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Figure 4.12 Period of the timer 4 for the FSM tasks 
 

4.3 Prototype testing 

 

After the release of an effective prototype is done, the prototype motors must be tested 

in an individual way to ensure the functionality and correct the error on the force that can 

be delivered and the adequate slope to transform the velocity of the motor calculated with 

the control equation into the information required by the main controller unit. 

 

After the corrections are done, the flying test is carried with the prototype. The flight test 

was done first using a platform where the drone was anchored and then finally run a test 

with the drone free of movement restrictions. 

 

4.3.1 Slope for the control of motor velocity 

 

Objective. To find the duty cycle where each motor starts to spin and the maximum force 

it delivers at the battery maximum voltage. 

 

Equipment: 

• Ground station 

• Prototype 

• Balance 

 

Description. The drone is placed over the balance with a foam base to avoid it to move 

out of the balance. Each motor has a propeller with the inverted design to lift the flight, it 

means that if the motor spins clockwise it has a propeller that is designed to the motor 

that spins counterclockwise direction, to deliver the propulsion force towards the balance. 
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Each motor is measured one by one. The balance is set to zero when the drone is on the 

board to measure the propulsion of each motor (Figure 4.13). 

 

 
 

Figure 4.13 Testing setup to measure the force delivered by the motors 
 

Result. Each motor showed different properties, at different Duty Cycle each motor starts 

to spin, while at the maximum velocity each motor similar forces. The Table 4.1 shows 

the different Duty Cycles for each motor. This information is used to calculate the 

adequate slop to transform the velocity calculated for each motor into the adequate Duty 

Cycle of the PWM. 

 

Table 4.2 Values obtained from the motor force measurement 
 

Motor
Duty Cycle Before 

Spinning [bits]

Maximum Force 

Delivered [N]

Motor velocity at 

maximum force [rad/s]

m_(DC-ω^2 )

[(bits∙(s^2))/(ω^2)]

1 352 0.20874 2811.906503 0.002484944

2 357 0.2058 2792.034123 0.002519802

3 354 0.20874 2811.906503 0.002484691

4 344 0.21364 2844.718658 0.002428938  
 

Using the values obtained from the measurement, the maximum payload that the 

quadrotor can carry with the maximum battery voltage is 0.1274 [𝑁] or about 13 [𝑔]. 
Another factor to consider ins the minimum battery charge at which the vehicle can work 

correctly. If the battery voltage falls below 3.2 [𝑉], the drone fails to perform the hover in 

steady state and gradually will start to fall to the ground. 

The data obtained from these experiments allows to define new equations to 

transform the angular velocity into PWM Duty Cycle in Bits. The respective equations 

programed on the embedded code are shown in equations (24)-(27). 
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 𝐷𝐶1 = 𝜔1
2 ∙ 𝑚𝐷𝐶−𝜔1

2 + 352 (24) 

 𝐷𝐶2 = 𝜔2
2 ∙ 𝑚𝐷𝐶−𝜔2

2 + 357 (25) 

 𝐷𝐶3 = 𝜔3
2 ∙ 𝑚𝐷𝐶−𝜔3

2 + 354 (26) 

 𝐷𝐶4 = 𝜔4
2 ∙ 𝑚𝐷𝐶−𝜔4

2 + 344 (27) 

   
4.3.2 Full prototype test 

 

Objective. to confirm, condition or neglect the hypothesis of this thesis. Understand the 

behavior of the drone and define future work to improve the Quad-MAV. Define the future 

corrections on the prototype, find possible working failures 

 

Equipment: 

• Finished prototype 

• Ground station 

 

 
 

Figure 4.14 a) Drone anchored b) Drone free for final test 
 

Description. The vehicle is anchored into a platform (Figure 4.14 a) to avoid damage in 

case of malfunction, some motor does not work properly, or bad calibration is done. If the 

drone can take off on the platform the ties are released, and a final flight is performed 

(Figure 4.14 b). 

 

Result. The Quad-MAV was able to take off from the base. The ties destabilized it since 

they executed a force in multiple directions not contemplated into the model, making it 

non-linear with no compensation available. 

 

After the drone was released, it hovered over the ground a small distance. It could not be 

measured since the flight was not completely stable. The main issue present was that the 

𝑌𝑎𝑤 equations were not considered, since the values obtained were not stable when the 

IMU was mounted over the board. 

 

The 𝑃𝑖𝑡𝑐ℎ and 𝑅𝑜𝑙𝑙 equations were more stable even if the drone was spinning over the 

“𝑍” axis. During the flight it was observed that the take-off angle was not lost or varied 

over the time. 
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Chapter 5 
 

5 Conclusion  
 

This document addressed a methodology for the design and analysis of the modeling of 

a Micro Aerial Vehicle type Quadrotor with a cross configuration where navigation in 

closed spaces, where other kind of vehicle cannot navigate or maneuver due the 

conditions of the terrain or the space is the purpose. 

 

The prototype has the characteristics of being designed with low cost and commercial 

components with an open-source philosophy, allowing the end user to modify and adapt 

it to the necessities that needs to be covered at that moment. 

 

The electronic components are of the SMD kind to optimize space in the board and reduce 

the weight of the vehicle, allowing it to take-off with low power motors. 

 

The general objective regarding the design and prototype manufacturing of the low-cost 

vehicle was achieved. However, the vehicle electronic design and the embedded code 

can still be optimized. 

 

In the case of the electronics the voltage delivered to the motors received must be 

stabilized to avoid issues discussed on a section of this chapter. 

 

The embedded code can be optimized to deliver better response and reduce the cycle of 

the FSM programed in the Main Controller Unit firmware. 

 

The hypothesis can be declared as truth. Some objectives as a stable flight could not be 

reached due time and test environment limitations. 

 

5.1 Contributions 

 

Part of the contributions given is an analysis of the Quad-MAV to implement control 

equations inside an embedded system where the use of integrals and derivatives are 

limited. 

 

The design of the firmware was analyzed and implemented as a finite-state machine to 

make a more readable code where a state can be added or removed to adjust it to the 

capabilities of the code designer and to the architecture of the MCU, more centered on 

the PIC32 family of the Microchip® brand. 

 

The manufacturing process and the go/nogo testing for the prototype were provided. The 

methodology was modified since some elements of the micro robotics laboratory were 
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not available for the manufacturing process at the time. Visual guides and acceptance 

criteria during the assembly process were defined. 

 

The electronic system was simplified and improved with new components for a more 

stable power source. 

 

5.2 Limitations 

 

The prototype was made with the use of equipment designed for rapid prototyping. Some 

of the equipment like the adequate stencil for a faster placement of the SMD components 

was obsolete and could not be updated properly. 

 

Most of the electronic components were adequate. A limitation of the project is the time it 

required to assemble a prototype. The time it takes to do only the board is approximately 

2 [ℎ], this to remove the excess of copper. The placement of the ProConduct plaster on 

the proper places and curing the material took 40 [𝑚𝑖𝑛] to be completed. The soldering 

of the components takes over 2 [ℎ] to be finished and tested. 

 

5.3 Future Work 

 

The electronic design must be improved regarding the voltage delivered to the motors. 

Due weight and electronic limitations a step-up/step-down to deliver constantly 5 [𝑉] to 

the motors was not implemented. The lack of this element causes variations of the 

maximum force delivered by the motors when at the 100 [%] of the Duty-Cycle. Since the 

embedded code uses a slope equation where the maximum duty cycle corresponds to 

4.2 [𝑉], with the drain of the battery over the use this mathematical relationship is lost. 

Some elements like a camera to transmit visual information of the vehicle is still 

pending and must be reviewed due the weight and electronic requirements to be met. 

The embedded software code could be improved to reduce the loop time of the 

Finite-State Machine and improve the performance of the drone. The filters of the sensors 

must be improved to reduce the noise in the lectures, allowing the habilitation of the 

𝑇ℎ𝑟𝑢𝑠𝑡 and 𝑌𝑎𝑤 control equations. In the case of the barometer, if the lectures cannot be 

stabilized, the sensor must be replaced for one of better resolution or precision. 

The embedded code must be able to process video information to transmit images 

using a camera that must be implemented on the future. Electronic and mechanical 

analysis and design must be carried to install the camera. 

The manufacturing process can be improved by the production of a stencil 

adequate to the new board model and the proper selection of the tools for the copper 

roughing process, especially on the selection of the end mill, that requires a tool with a 

diameter bigger than 4 [𝑚𝑚] to finish the process faster and avoid the tool wear. 
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Appendix A 

 

MPLAB® Configuration and Code Functions 
 

The development of this project was made using a Microchip PIC32MZ. To avoid 

compatibility and library problems the main code was made using the company’s 

Integrated Development Environment and the current embedded tools available. 

 

The PIC32 family requires the installation of the following software in the listed order: 

• MPLAB® X IDE. The main interface to develop the firmware code to be uploaded 

to the MCU. 

• XC32. Main compiler focused on the 32-bit microcontrollers of the brand. 

• MPLAB® Harmony. Development tool used to autogenerating code and developed 

by Microchip. Simplifies the use of the registers and proper configuration of the pin 

functionality and mode, the configuration of the peripherals and internal devices of 

the microcontroller. 

 

It is necessary to link all the software before starting the project. The new libraries for the 

development of the main firmware for the PIC32 family do not work without the use of 

Harmony. 

 

MPLAB® configuration 

 

After the proper installation of the software, it is necessary to link the IDE to the 

development software installed. The XC32 compiler is linked to the X IDE through the 

Tools menu, on the section of Options. On the emerging window it is necessary to select 

the tab “Build Tools” on the “Embedded” menu. The Figure A.1 shows the window where 

the setting is done. 

 

To link the Harmony, it is required to first configure an initial project on the X IDE. To start 

an initial project the menu File must be opened and on the emerging menu select the 

proper options as can be seen on the Figure A.2. On the next window the path to the 

Harmony installation folder must be indicated on the bar indicated by the circle on the 

Figure A.3. It must be noted that if more than one version of Harmony is installed, the one 

must select the version that fits better to the project. 
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Figure A.1 Setting the XC32 compiler on th X IDE 
 

 
 

Figure A.2 Staring the project 
 

 
 

Figure A.3 Selecting the adequate path to the Harmony installation folder 
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Once the project is created, the main window of the X IDE, as the shown in the Figure 

A.4, will show a list to select the most adequate configuration of the vehicle, where the 

peripherals, interrupt functions and other settings can be configured. At the right margin 

of the main window is a secondary one screen that provides basic information of the 

setting being configured as well as the functions and registers used in that setting and the 

basic use of them. On the bottom of the window is a peripheral table, where the selected 

peripherals are assigned to a specific pin. Each single pin can be assigned to a single 

peripheral each time. Once assigned the peripheral and the pin the system blocks the 

row and the column unless the assignation is undone. 

 

 
 

Figure A.4 Configuration of the functions and pins to be used on the project 
 

To configure the PWM, the RS323 communication protocol and the Timers required, the 

“Harmony Framework” configuration must be opened, followed by the subsection of 

drivers, as can be seen marked on the Figure A.5. 

 

The first driver to be modified is the Output Compare (OC). The main function of this driver 

is to generate the PWM function required to regulate the velocity of the motors. The 

interrupt mode must be disabled, since no interruption service is used in the project. On 

the option labeled as “Number of OC Driver” must be filled with quantity of PWMs to be 

used. 
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Figure A.5Options to be modified are highlighted in blue 
 

 
 

Figure A.6 Defining the number of instances 
 

The information to be modified on each instance is shown highlighted on blue on the 

Figure A.6. It is important to note that the option “OC module ID” must be different on 

each instance to avoid errors or redefining a module with a different characteristic and 

initialize it in two different instances. If two instances have the same module ID, the text 

will be highlighted red. The option of “OC Pulse Width” must be equal to 0, this with the 

purpose to avoid the motor spinning when the drone is turned on. This option indicates 

the Duty Cycle of the PWM in bits. This configuration can be seen on the Figure A.7. 
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Figure A.7 Defining the OC instances and their properties 
 

The timers option needs to be modified for two reasons. The first one is that the OC works 

using a defined timer as a base, in this case, the selected timer was the timer 2 as can 

be seen on the Figure A.8. The second reason is to have a timer counter to limit the cycle 

time of the FSM to have a constant execution time. The interrupt option must be disabled 

to avoid possible undesired cycle interruptions. 

 

 
 

Figure A.8 Defining the number of timer instances 
 

On the option of “Timer Module ID” the adequate timer must be selected. The prescaler 

can be selected to the preferred and most suitable to the function it will perform. The 

“Operation Mode” allows to select the maximum period the timer can reach, it can be of 

16 or 32 bits (Figure A.9). For the PWM timer it can be the first option and for the second 

timer it must be second option, since the period of the timer will have a long period. The 

periods of each timer are calculated using the equation 25, located on the chapter 3. 

 

 
 

Figure A.9 Adjustment f timer Parameters 
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The last driver to be configured is the serial communication driver. The number of 

instances is 2, one used for the reception of information from the IMU and the other one 

used for the reception of data from the WiFi module. The configuration can be seen on 

the image A.10. 

 

 
 

Figure A.10 Definition of the USART instances and disabling the interrupts 
 

The two options to be modified on each instance are “USART Module ID”, where the 

adequate module is selected according to the defined pins for each peripheral. The 

second option to be modified is the “Baud Rate”, this helps to define the communication 

speed, on both cases the value is equal to 115200. The Figure A.11 shows the 

configuration of the first USART instance. 

 

 
 

Figure A.11 Adjustment of the USART instance options 
 

Main autogenerated functions 

 

The MPLAB® Harmony tool helps to reduce the time expended on the configuration by 

the employment of a visual tool to assign the adequate parameters and selecting the input 

and output pins for each peripheral. 



Appendix A. MPLAB® Configuration and Code Functions 64 

 

After the configuration is done the tool generates code, header files and application files 

with the adequate syntax and simultaneously generates a set of functions that the end 

user can employ for the development of the main layer of the firmware. 

 

The Table A.1 offers the set of functions and the employment of them on the main code 

of the program. 

 

Table A.1 Autogenerated functions employed 
 

Peripheral Function Specific use 

OC 

DRV_OCx_Start () 
Initiates the function of the PWM 

on the respective driver pin. 

 
Adjust the Duty Cycle of the 

respective PWM, value in bits 
related to the Timer 2 period. 

Timer 

DRV_TMRx_Start () 
Initiates the function and counting 

of the respective timer. 

DRV_TMRx_CounterValueGet () 
Gets the counting value of the 

respective timer. Used to generate 
delays. 

DRV_TMRx_CounterClear () 
Resets the value of the respective 
counter. Used to restart the timer 
count after the FSM cycle ends. 

USART 

DRV_USARTx_ReadByte () 

Reads the byte found on the top of 
the respective serial receiving 

buffer. Used for handshakes and 
read the information on the 

peripherals. 

DRV_USARTx_WriteByte () 

Writes the value of the byte found 
on the top of the respective serial 

transmitting buffer. Used for 
handshakes. 

DRV_USARTx_ReceiverBufferIs 
Empty () 

Delivers a true value if no data is 
available on the receiving buffer of 
the respective serial buffer. Used 
to know if there is data to read on 

the peripherals. 

DRV_USARTx_TransmitterBufferIs 
Full () 

Delivers a true value if any data is 
available on the transmitting buffer 

of the respective serial buffer. 
Used to avoid overlap on the 
signals for the handshake. 
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Appendix B 

 

Changes on the Manufacturing Process 
 

The manufacturing suffered from small variations. The first one is the change of the 

placement of the vias for the use of the ProConduct plaster to connect the Top and the 

Bottom layers. The second change is the use of the soldering iron, welding plaster, heat 

gun and solder reel for the placement of the components on the PCB of the drone. 

Copper Roughing Process 

 

Using the CircuitPro specialized software for the manufacture using the LPKF ProtoMat 

S63, the Gerber files are imported to the manufacture CAM environment. The first step 

is to place the fiducials (Figure B.1), this to allow the machine to locate the position of 

the board. 

 

 
 

Figure B.1 Fiducials Placement 
 

After this, the selection of the tools available must be carried. The tools are selected on 

the software and must be placed manually in the designed slot of the Tool Magazine. 

 

The process continues with the selection of the Insulation Method and Contour Routing 

(Figure B.2). This is done in the Technology Dialog window, where the selection of the 

tools available on the magazine is done for each process previously mentioned. 
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Figure B.2 Selection of the Insulation and Contour Ruting 
 

The next step is the use of the Board Production Wizard (Figure B.3), where the system 

guides step by step the procedure to place the board on the machine, select the quantity 

of PCBs to be produced (Figure B.4), and feedbacks to the user the phase of the process 

and the remaining time, until the process is finished. This whole set-up and production 

phase can take up to 2 [ℎ]. 

 

 
 

Figure B.3 Board Production Wizard starting page 
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Figure B.4 Quantity of boards to be produced. 
 

 
 

Figure B.5 Finished product 
 

ProConduct Process. 

 

The process of the ProConduct is done after the process of roughing of copper from the 

board is finished. Then the plaster is placed on the holes indicated on the Figure B.6 using 

a syringe and avoiding placing an excess to avoid the creation of a short on the board. 

The Figure B.6 show how it is placed. 
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Figure B.6 Placement of the ProConduct 
 

After all the holes are filled then the plaster is cured receiving a heat treatment as in the 

Figure B.7. This helps to dry and solidify the plaster. The process is done in an oven for 

over 40 [𝑚𝑖𝑛]. 

 
 

Figure B.7 Heat treatment of the ProConduct 
 

Placement of the components 

 

The process of placing the components was changed since the stencil required needed 

to be designed and manufactured due the updates on the drone design. 
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The new process consisted on the placement of flux on all the pads where the 

components were going to be mounted and then place the solder from the reel using the 

soldering iron as can be seen on the Figure B.8. The final product is a board with soldering 

on the appropriate places ready to be welded as shown on Figure B.9 

 

 
 

Figure B.8 Placement of the soldering 
 

 
 

Figure B.9 Plate with all the component  pads with solder 
 

To assemble the board and have a final prototype ready for experiments the use of a heat 

gun is necessary along with a pair of tweezers. The heat gun helps to make the solder 

liquid again, allowing the placement of the component using the tweezers and fixing it to 

the board as show in the Figure B.10. It is important to note that the process needs to be 
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fast to avoid the damage of the tined path, since the heat can cause the copper to get 

burned and lift from the board, ruining the prototype. Doing the assembly properly takes 

up to 2 [ℎ] and 30 [𝑚𝑖𝑛] 
 

 
 

Figure B.10 Placement of the components 
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Appendix C 

 

Cost of the Components. 
 

The objective of this project is to deliver a prototype of a Quad-MAV made with low cost 

components. The Table C.1 delivers all the unitary cost of each component, the quantity 

used on the drone and the total cost of the drone. The quantities are in USD dollars. 

 

Table C.1 Cost of the components of the drone 
 

Component Details Quantity per MAV Unitary Price Total per MAV

220 [μF] 4 0.85$              3.40$                 

4.7 [μF] 10 0.03$              0.28$                 

1 [μF] 1 0.01$              0.01$                 

0.1 [μF] 1 0.17$              0.17$                 

10 [kΩ] 9 0.03$              0.23$                 

2.4 [kΩ] 2 0.01$              0.02$                 

1 [kΩ] 1 0.07$              0.07$                 

Blue 2 0.33$              0.66$                 

Green 2 0.34$              0.69$                 

Mosfet FDN339AN 4 0.19$              0.77$                 

Schottky DB2430700L 4 0.59$              2.36$                 

μC PIC32MZ2048ECM100 1 17.77$           17.77$               

WiFi ESP8266 1 6.95$              6.95$                 

IMU Razor 9 DOF 1 34.95$           34.95$               

Barometer MPL115A2 1 14.95$           14.95$               

Battery Lipo, 3.7 [V],750 [mAh], 60cc 1 7.70$              7.70$                 

Regulador 3.3 [V] U1V11F3 1 5.00$              5.00$                 

Step-Up/Down 5 [V] U1V11F5 1 5.00$              5.00$                 

Botón Push-Button 1 0.68$              0.68$                 

Pin Header Macho 2.3 0.18$              0.41$                 

Switch Switch deslizante 1 1.82$              1.82$                 

Propellers Parrot Rolling Spider Propeller 4 13.90$           1.99$                 

Motor 3.7 [V] 66000 [RPM] Coreless 4 4.40$              3.52$                 

109.38$            

Capacitors

Resistors

LEDs

Total Cost   
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Appendix D 

 

Motor Force Measurement. 
 

This appendix contains the graphs obtained from the measurement of the force delivered 

by the motors on the experiment of the subchapter 4.3.1. 

 

This data from the Table D.1 is used to verify the linear relation between the duty cycle 

delivered to the MOSFET by the MCU, and the velocity of the motors. The Figures D.1 to 

D.4 show the difference between the estimated behavior of each motor and the real 

velocity as a response to a certain value of Duty Cycle 

 

Table D.1 Measurement obtained from the motors 
 

Motor 1 Motor 2 Motor 3 Motor 4

10 0.5 0.6 0.7 0.7

20 2.7 2.8 2.7 3

30 5 5.2 5 5.4

40 7.4 7.3 7.5 7.8

50 9.9 9.5 10 10.1

60 12.3 12 12.1 12.2

70 14.6 14.3 14.2 14.5

80 16.7 16.5 16.9 17.1

90 19 18.7 19.1 19.5

100 21.3 21 21.3 21.8

Motor Measurement [g]

Duty Cycle [%]

 
 

 
 

Figure D.1 Graph showing the real and ideal behavior of the Motor 1 
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Figure D.2 Graph showing the real and ideal behavior of the Motor 2 
 

 
 

Figure D.3 Graph showing the real and ideal behavior of the Motor 3 
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Figure D.4 Graph showing the real and ideal behavior of the Motor 4 
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