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A New Methodology for Inverse Kinematics and Trajectory
Planning of Humanoid Biped Robots

by
Alejandro Rodrı́guez Said

Abstract

This dissertation presents a new methodology for Inverse Kinematics and Trajectory
Planning for small-sized humanoid biped robots. Regarding the Inverse Kinematics, this study
presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the
lower limb kinematics of the humanoid robot NAO. It starts by decoupling the position and
orientation analysis from the concatenation of Denavit-Hartenberg (DH) transformation ma-
trices. Here, the joint activation sequence for the DH matrices is mathematically constrained
to follow the geometry of a triangle. Furthermore, the implementation of a forward and a
reversed kinematic analysis for the support and swing phase equations is developed to avoid
the complexity of matrix inversion. The allocation of constant transformations allows the
position and orientation end-coordinate systems to be aligned with each other. Also, the re-
definition of the DH transformations and the use of constraints allows for the decoupling the
shared Degree of Freedom (DOF) located between the legs and the torso; and which activates
the torso and both of the legs when a single actuator (the hip-yaw joint) is activated. Further-
more, a three dimensional geometric analysis is carried out to avoid the singularities during
the walking process. Numerical data is presented along with experimental implementations
to prove the validity of the analytical results.

In relation to the trajectory planning, a method taken from manipulator robot theory is
applied to humanoid walking. Fifth and seventh order polynomials are proposed to define the
trajectories of the Center of Gravity (CoG) and the swing foot. The polynomials are designed
so that the acceleration and jerk are constrained to be zero particularly at two moments: at
the single support phase (when the robot is standing on a single foot), and at the foot landing
(to prevent foot-to-ground impacts); thus, minimizing internal disturbance forces. Computer
simulations are performed to compare the effects of the acceleration and jerk constraints.

In addition, the basics of the future work is given by providing a control model for robot
equilibrium. First, the analysis of this model starts with a static equilibrium model which
reacts to an ankle perturbation by using a hip actuation. Second, a dynamic model is proposed
which incorporates the ground perturbations into the robot model by representing the ground
tilt as an additional, passive, and redundant DOF located at the ankle. This procedure allows
for two separate models (the one corresponding to the humanoid and the one corresponding
to the ground) to be accounted into a single model, thus, minimizing complexity.

v



List of Figures

1.1 The robot NAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Humanoid walking layer hierarchy . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 General manipulator having the last three revolute axes intersecting . . . . . 9
2.2 Structure of a complex anthropomorphic kinematic chain . . . . . . . . . . . 10
2.3 Area of allowable positions of ZMP in both: single support phase (solid con-

tour) and double-support phase (shaded area) . . . . . . . . . . . . . . . . . 10
2.4 Reduced problem: A two-link planar leg . . . . . . . . . . . . . . . . . . . . 11
2.5 Left: The joints of NAO. Right: The navigation coordinate system used in

Graf et al. (2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Average fitness and maximum fitness during 28 generations . . . . . . . . . . 13
2.7 Kinematic configuration of the robot leg described by Hernández-Santos . . . 13
2.8 Right leg inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Right leg of a HUBO KHR-4 robot. (a) Forward decoupling, (b) Reverse

Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 A HUBO KHR-4 humanoid robot . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Link coordinate frames of the right leg of a Hubo KHR-4 robot . . . . . . . . 16
2.12 Using geometry in the triangle formed by the robot leg to derive the knee joint

angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.13 Paths generated by the robot using two different ANNs. . . . . . . . . . . . . 18
2.14 Simple symmetric simulations without reaching singularities. . . . . . . . . . 18
2.15 Front view of the right ankle joint. . . . . . . . . . . . . . . . . . . . . . . . 19
2.16 A prototype of dual-arm robot with two decoupled manipulators. . . . . . . . 20
2.17 Definition of Zero-Moment Point (ZMP) . . . . . . . . . . . . . . . . . . . . 21
2.18 Support leg exchange with a constant vertical distance . . . . . . . . . . . . 22
2.19 Walking pattern on flat floor based on 3D linear inverted pendulum . . . . . . 22
2.20 Coordinate frame gate trajectory . . . . . . . . . . . . . . . . . . . . . . . . 23
2.21 Controller block diagram for trajectory implementation . . . . . . . . . . . . 24
2.22 Swing-foot trajectory based in a cosine function . . . . . . . . . . . . . . . . 25
2.23 CoM trajectory consisting of a merging of a sine function s(ϕ), the square

root of a sine function r(ϕ) and a linear function l(ϕ) . . . . . . . . . . . . . 25
2.24 Cross section of the coordinate system used for the altered inverted pendulums 26
2.25 Two facing inverted pendulums . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.26 The inverted pendulum attached on a simulated model of the NAO. The red

square indicates the plain on which the center of mass moves. The red dot is
located in the position of the center of mass . . . . . . . . . . . . . . . . . . 27

vi



2.27 Parameters used in the trajectory periodic functions . . . . . . . . . . . . . . 28
2.28 CoM up and down motion during walking . . . . . . . . . . . . . . . . . . . 29
2.29 CoM up and down motion during walking . . . . . . . . . . . . . . . . . . . 30
2.30 Cubic polynomial trajectory for the swing-foot. . . . . . . . . . . . . . . . . 30
2.31 Foot trajectory with respect to the world coordinate system. . . . . . . . . . . 31
2.32 Velocity recovery process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Active joints of H21 NAO Robot . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Sequence of joint activations in the forward analysis based in the triangular

geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Forward position analysis of the humanoid leg . . . . . . . . . . . . . . . . . 36
3.4 Forward orientation analysis of the humanoid leg . . . . . . . . . . . . . . . 38
3.5 Sequence of joint activations in the reversed analysis based in the triangular

geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Reversed position and orientation analysis of the humanoid leg . . . . . . . . 40
3.7 Turn-in-place movement orientation analysis . . . . . . . . . . . . . . . . . 41
3.8 Position and orientation of the robot feet at the turn-in-place rotation . . . . . 44
3.9 Geometric analysis in the estimation of the humanoid step size . . . . . . . . 45
3.10 Maximum theoretical distance z for a desired step size . . . . . . . . . . . . 46
3.11 Maximum practical distance z for a desired step size . . . . . . . . . . . . . 46
3.12 Forward walking postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.13 Lateral walking postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.14 Turn-in-place walking postures . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Position and acceleration of a sinusoidal CoG y-axis trajectory . . . . . . . . 55
4.2 Position of a sinusoidal CoG y-axis trajectory and a cycloidal-like swing-foot

z-axis trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Acceleration-constrained position trajectories for the CoG in the x and y axes 58
4.4 Acceleration-constrained trajectories: y−axis (CoG) trajectory and z−axis

(swing-foot) trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Acceleration profile of the acceleration-constrained CoG trajectory in the y-axis 60
4.6 Jerk profile of the acceleration-constrained CoG trajectory in the y-axis . . . 61
4.7 Acceleration profile of the acceleration-constrained swing-foot trajectory in

the z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.8 Jerk profile of the acceleration-constrained swing-foot trajectory in the z-axis 62
4.9 Jerk-constrained trajectories for the CoG in the x and y axes . . . . . . . . . 65
4.10 Jerk-constrained trajectories: y− axis (CoG) trajectory and z− axis (swing-

foot) trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.11 Acceleration profile of the jerk-constrained CoG trajectory in the y-axis . . . 66
4.12 Jerk profile of the jerk-constraint CoG trajectory in the y-axis . . . . . . . . . 67
4.13 Acceleration profile of the jerk-constrained swing-foot trajectory in the z-axis 67
4.14 Jerk profile of the jerk-constrained swing-foot trajectory in the z-axis . . . . . 68
4.15 y-axis CoG trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.16 z-axis swing trajectory of the right foot . . . . . . . . . . . . . . . . . . . . . 69

vii



5.1 Static control model based on the double inverted pendulum with a hip strat-
egy control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Dynamic control model based on the double inverted pendulum with a hip
and ankle strategy control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.1 Link and articulation nomenclature . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Frame convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.3 Frame assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.4 Planar geometry associated with a 3 DOF robot . . . . . . . . . . . . . . . . 83
A.5 Free motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.6 Joint Space Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.7 (a) Cubic polynomial trajectory (b)Velocity profile (c) Acceleration profile . . 87
A.8 (a) Quintic polynomial trajectory (b)Velocity profile (c) Acceleration profile . 89

viii



List of Tables

3.1 Joint motion ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Limb dimensions [mm] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Link parameters used in the forward position analysis . . . . . . . . . . . . . 35
3.4 Link parameters used in the forward orientation analysis . . . . . . . . . . . 37
3.5 Link parameters used for a turn-place movement . . . . . . . . . . . . . . . 41
3.6 Forward walking end-effector coordinates (mm) . . . . . . . . . . . . . . . . 47
3.7 Forward walking angles (rad) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Lateral walking end-effector coordinates (mm) . . . . . . . . . . . . . . . . 48
3.9 Lateral walking angles (rad) . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.10 Turn-in-place coordinates (mm) . . . . . . . . . . . . . . . . . . . . . . . . 49
3.11 Turn-in-place angles (rad) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Initial and final time of the CoG walking stages . . . . . . . . . . . . . . . . 57
4.2 Acceleration-constrained coefficients for the CoG y-axis trajectory . . . . . . 57
4.3 Acceleration-constrained coefficients for the CoG x-axis trajectory . . . . . . 58
4.4 Initial and final times of the swing-foot walking stages . . . . . . . . . . . . 59
4.5 Acceleration-constrained coefficients for the swing-foot z-axis trajectory . . . 60
4.6 Jerk-constrained coefficients for the CoG y-axis trajectory . . . . . . . . . . 64
4.7 Jerk-constrained coefficients for the CoG x-axis trajectory . . . . . . . . . . 64
4.8 Jerk-constrained coefficients for the swing-foot z-axis trajectory . . . . . . . 65

A.1 Link parameters of a 3DOF mechanism . . . . . . . . . . . . . . . . . . . . 78

ix



Contents

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The Inverse Kinematic problem . . . . . . . . . . . . . . . . . . . . 6
1.2.2 The Trajectory Planning problem . . . . . . . . . . . . . . . . . . . 7

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 General Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Particular Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the Art on Humanoid Robotics 9
2.1 The State of the Art on Humanoid Inverse Kinematics . . . . . . . . . . . . . 9
2.2 The State of the Art in Humanoid Trajectory Planning . . . . . . . . . . . . . 21

3 Humanoid Inverse Kinematics 33
3.1 Joint and Dimension Nomenclature . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Direct and Inverse Kinematics in the Forward Analysis . . . . . . . . . . . . 34
3.3 Direct and Inverse Kinematics in the Reversed Analysis . . . . . . . . . . . . 39
3.4 Turn-In-Place Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Analysis of the Workspace of a Humanoid Step . . . . . . . . . . . . . . . . 45
3.6 Inverse Kinematics Experimentation . . . . . . . . . . . . . . . . . . . . . . 47

4 Humanoid Trajectory Planning 53
4.1 Acceleration and Jerk Constraints in Humanoid Trajectory Planning . . . . . 53
4.2 Fifth order polynomial: Acceleration-constrained Humanoid Trayectories . . 56
4.3 Seventh-order Polynomials: Jerk-constrained Humanoid Trayectories . . . . 63
4.4 Comparison of the fifth-ordered and seventh-order polynomials . . . . . . . . 68

5 Conclusions and Future Work 70
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



5.2 Contrast of the Related Work in Humanoid Kinematics and Trajectory Plan-
ning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Static Control Model for Humanoid Equilibrium . . . . . . . . . . . 73
5.3.2 Dynamic Control Model for Humanoid Equilibrium with Ground Per-

turbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Background Theory 76
A.1 Manipulator Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1.1 Direct Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.1.2 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.2.1 Cubic Polynomial Trajectories . . . . . . . . . . . . . . . . . . . . . 85
A.2.2 Quintic Polynomial Trajectories . . . . . . . . . . . . . . . . . . . . 88

B The Jacobian in Robotics 90
B.1 Inverse Kinematics Iterative Technique based in the Jacobian . . . . . . . . . 90

Bibliography 95

xi



Chapter 1

Introduction

Humanoid robotics has become a highly important subject for the academic community in
recent years due to its potential use in domestic, medical and industrial applications. Several
sophisticated humanoid robots have been developed; for example, the ASIMO robot [Sak-
agami et al. (2002)], created by the Honda Motor Company; the QRIO robot [Ishida (2004)],
manufactured by Sony; the HUBO robot [Park et al. (2012)], proposed by KAIST; and lastly,
the Atlas robot designed by Google. On the other hand, although small-sized robots are pro-
vided with simpler actuation mechanisms, there is an increasing trend in their development
because they are an accessible experimentation platform for students, researchers and hobby-
ists. There are some examples of this kind of robots: the DARwIn-OP [Robotis (2016)], ma-
nufactured by Robotis and the NAO robot [Aldebaran (2010)], created by Aldebaran Robotics
(see Fig.1.1).

Figure 1.1: The robot NAO

1



CHAPTER 1. INTRODUCTION 2

It is well-known in literature that legged locomotion provides several advantages when
compared to wheeled locomotion; for example, the length of the legs can be varied to match
the surface geometry [Todd (2013)]. However, the design of complex dynamic motions for
humanoids, is only achievable through the full understanding of kinematics [Kofinas et al.
(2013)]; namely, the Forward and Inverse Kinematics. The first concept concerns with the
determination of the position and orientation of the end-effector when the joint configurations
are given; the second concept deals with the determination of the joint variables for a particular
position and orientation of the end effector [Spong et al. (2006)].

In this study, new methodologies for the Inverse Kinematics and Trajectory Planning are
proposed where the NAO robot is used as experimentation platform. Regarding the Inverse
Kinematics, the Denavit-Hartenberg (DH) technique is used along with a geometrical proce-
dure based in triangular arrangements to find a closed-form solution for the humanoid lower
limb kinematics. This new procedure allows for the conciliation of both methods where simple
solutions can be obtained for robot position and orientation. In particular, the mathematical
decoupling of the joint shared by the two legs [Gouaillier et al. (2009)] is achieved. To accom-
plish this, the sequence of joint activations obtained by the geometrical procedure, is imposed
to the DH approach. Furthermore, a local coordinate system is placed in the end effector
(either the hip or the foot). This allows for the suppression of matrix inversion by solving
the kinematic chain in forward and reversed orders as first shown in [Park et al. (2012)]. The
insertion of constant DH matrices, allows for the end-effector coordinate systems of the foot
and hip to be aligned with the navigation reference system of the robot, and allow for the DH
joint activation sequence to coincide with the geometrical one. Finally, the motion constrains
performed in the DH kinematic chains, allow for decreasing the mathematical complexity of
the mechanical coupling, such that the humanoid is able to achieve the turn-in-place motion
(as described in [Abdolmaleki et al. (2011)]), by using the proposed analytical method.

To deal with the challenges above described regarding the Inverse Kinematics, some
authors have proposed different approaches. Donald Pieper in his PhD thesis [Pieper (1968)],
has described a method to solve the configuration of robot chains, where in the special case
of having three intersecting axes, the kinematics involves a reduced number of variables.
Although the work of Donald Pieper is not concerned with humanoid robotics directly, his
findings have helped in the analysis of humanoid robotic links. In addition, Miomir Vuko-
bratović in [Vukobratovic et al. (1990)] described the humanoid kinematics for the first time
introducing some important terms, such as the Single Support Phase and the Double Support
Phase, which refer to the walking positions where the robot is standing over a single foot or
both feet, respectively.

Some authors have proposed geometric approaches to deal with the direct decoupling
of the position and orientation of the foot, such as Zannatha in [Zannatha and Limón (2009)]
and Colin Graf in [Graf et al. (2009)] where the last author proposed to use a triangular
arrangement along with a virtual ankle yaw joint to find the solution of the Inverse Kinematics
of a humanoid leg; however, purely geometrical approaches miss out the advantages of the DH
systematic procedures.

Some other authors have proposed the use of Artificial Intelligence; for example, Ab-
bas Abddolmaki in [Abdolmaleki et al. (2011)] has used Genetic Algorithms to achieve the
turn-in-place movement where he optimized human data analyzed by the Fourier series; and
Ahmed R. J. Almusawi in [Almusawi et al. (2016)] has used Neural Networks to learn robot
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system characteristics and solve for the inverse kinematics of a 6 DOF robot arm.
Hernández-Santos in [Hernández-Santos et al. (2012)] has divided the humanoid body

in frontal and sagittal and frontal planes and has designed a foot with a toe to provide for
Inverse Kinematics redundancy. Hyungju Andy Park in [Park et al. (2012)] has solved the
Inverse Kinematics of a humanoid leg by using the DH technique in the forward and reverse
orders, which has allowed to obtain the position and orientation solution of the movement of
the foot and the hips. Nicolaos Kofinas in [Kofinas et al. (2013)] and [Kofinas et al. (2014)]
has used several techniques together such as: matrix elimination, manipulation of both sides,
constant matrices and geometric approaches to solve for humanoid kinematics. Salman Faraji
in [Faraji and Ijspeert (2017)] has analyzed the singularities when the hip, knee and ankle
joints are aligned. Kenji Kaneko in [Kaneko et al. (2019)] have expanded the actuation range
of the ankle joints, and Jiangping Wang in [Wang et al. (2019)] has proposed dual robotic arm
with orientation constraints.

Regarding the trajectory planning of a humanoid robot; one of the main concerns, is
how to move the Center of Gravity (COG, described in [Kaynov (2010)]) to accomplish the
walking motion. The inverted pendulum model has been extensively used to achieve this kind
of movement, as mentioned in [Kajita et al. (2002)]; however, one of the main drawbacks of
this model, is the limitation of the step size. In this study, fifth and seventh order polynomials
[Spong et al. (2006)] are proposed to define the trajectories of the center of gravity and the
swing foot, (in the y-axis and the z-axis respectively). The polynomials are designed so that
the acceleration and jerk are constrained to have zero value at the single support phase (the
most unstable walking stage of the robot); and at the foot landing in order to minimize the
impact of the foot on the ground [Kim et al. (2007)], thus, minimizing internal disturbances.
The zero-acceleration (fifth polynomial) and the zero-jerk (seventh polynomial) trajectory
profiles are compared and verified by means of computer simulations.

To deal with the design of the humanoid trajectory of the COG, some authors have
proposed some concepts and techniques. For example, Miomir Vukobratović has defined the
ZMP (Zero Moment Point) which refers to the point where the sum of all of the forces have
a zero moment or torque. Shuuji Kajita in [Kajita et al. (2002)], has demonstrated that when
the robot is standing over a single foot, its predominant dynamics can be modeled as a 3D
linear inverted pendulum which connects the supporting foot with the CoM (Center of Mass).
Later, in [Kajita et al. (2003)], the concept of ZMP was introduced into the inverted pendulum
model to create a walking patter generator.

Ill-Woo Park in [Park et al. (2006a)] has proposed a cycloid function for the swing
foot trajectory and a third degree polynomial for the movement of the CoG. A mixture of a
sinusoid, a triangular wave and the square root of a sinusoid for the trajectory planning of the
CoG have been proposed by Colin Graf in [Graf et al. (2009)]. Furthermore, the equations of
the 3D inverted pendulum have been applied to design the CoG trajectory of the Robot NAO
in [Graf and Röfer (2010)]. Hernández-Santos in [Hernández-Santos et al. (2012)] has used
local sinusoidal functions over separated frontal and sagittal planes to guide the trajectory of
humanoid lower-limb joints and links. Ren C. Luo in [Luo et al. (2013)] has designed a quasi-
natural foot gate generator by varying the height of the CoG. Tzuu-Hseng in [Li et al. (2017)]
has provided for a foot trajectory in the swing phase using sections of sinusoidal functions.
Chengju Liu, in [Liu et al. (2019)], has proposed a foot position compensator based in the
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Lyapunov function to recalculate the CoM trajectory.

Finally, as part of the future research, static and dynamic robot models for Equilibrium
Control have been developed. The static control model provides for a simple intuitive idea to
know the limits for humanoid equilibrium. Here, inertial forces and ground perturbations have
been neglected. On the other hand, the dynamic model mathematically describes the rotation
of the robot about the ground by making use of the IMU (Inertial Measure Unit) readings
and assuming that the foot height is negligible. This dynamic model considers the surface tilt
disturbance as and additional sub-actuated D.O.F. belonging to the robot itself, thus, allowing
for the external equilibrium disturbances to be included into the robot model in order to avoid
the modeling of two separate subsystems, namely: the robot and the surface.

The remainder of the document is organized as follows: Chapter 1, Section 1.1, presents
the motivation to develop this work, including the way it is subdivided. Section 1.2 expose the
principal challenges related to the most representative state of the art. Section 1.3 declares the
objectives to be reached in this study. In Chapter 2, the most relevant work is referenced. Sec-
tion 2.1 cites the state of the art regarding the humanoid kinematics and Section 2.2 show the
work related to humanoid trajectory planning. In Chapter 3 the mathematical approach to find
the solutions for the new proposal of humanoid kinematics is presented. Section 3.2 presents
the direct and inverse kinematics solution in the forward direction (i.e., the hip as seen by the
base reference system at the ankle). Section 3.3 analyzes the direct and inverse kinematics in
the reversed order (i.e., the ankle as seen as the base reference system at the hip). Section 3.4
reveals the analytical method to archive the rotation of the humanoid with respect the vertical
axis; i.e., the turn-in-place motion. Section 3.5 analyzes the reachable workspace regarding
humanoid walking, considering joint mechanical limitations. Section 3.6 shows the actual
Cartesian end-effector coordinates and inverse kinematics angles that where loaded into robot
NAO to validate the mathematical procedures; as well as pictures showing the walking pos-
tures. Chapter 4 presents the CoM and swing-foot trajectories proposed for humanoid robots.
Section 4.2 exhibit the acceleration-constrained trajectories and Section 4.3 expose the jerk-
constrained trajectories; then a comparison is given in Section 4.4. Finally, the conclusions
are carried out in Chapter 5. Section 5.1 performs an analysis of the main contributions, Sec-
tion 5.2 contrast the literature review with the present studies, and Section 5.3 suggest static
and dynamic equilibrium control models. Additionally, Appendix A includes the background
theory regarding robot kinematics, and Appendix B covers the theory of the matrix Jacobian.

1.1 Motivation
Regarding the Inverse Kinematics, although the Denavit-Hartenberg procedure has been exten-
sively used, very often this method is so complicated that many authors prefer to find the
solution by geometrical methods. However, is difficult for the geometrical procedures to be
solved systematically. The motivation for this research work is to find a new method that
combines the best of both worlds: the DH analytical approach and the geometrical one to find
simple solutions. In addition, given the particular configuration of the hip joints of the NAO
robot (where it is impossible to command a rotation for the hip joint without causing a torso
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movement); the motivation is to find a mathematical way to correct this undesirable movement
by performing an analytical compensation in the torso in order to correct the undesired pitch
movement at the hip caused by the hip-yaw configuration. Here, a suitable pitch movement
in the hip makes to look the torso and the hip to function independently although they are
interrelated. This is possible because the entire kinematic system is available, and assuming
that the hip-yaw movement is not necessary to perform neither the forward nor the lateral
walking, some constraints where able to be made to achieve the turn-in-place motion using an
analytical method.

Regarding the trajectory planning, although polynomial trajectories have been proposed
in former studies, non of them compares the zero-acceleration and the zero-jerk trajectories.
This analysis is particularly important to the swing movement because although the cycloidal
trajectory has been proposed by some authors and claimed that it has a soft start and a soft end,
this assumption relays on instantaneous velocity of the foot and not in the trajectory shape. It
is obvious that the cycloidal function is discontinuous at the start and end points meaning that
it has a intrinsic infinite velocity, acceleration, jerk, and n-derivative profile; for which in this
case, it can be demonstrated mathematically that a higher-degree polynomial trajectory has a
better performance.

Lastly, a dynamic control model is proposed as a future work to keep the equilibrium of
the humanoid. It consists of integrating the dynamic model of the ground into the robot model
itself. The motivation of this idea is to simplify the equilibrium control model of the robot by
mathematically describing the ground perturbation as and additional sub-actuated robot joint.

Another motivation to state the structure of this dissertation, is the distinction among the
topics regarding the humanoid walking: Inverse Kinematics, Trajectory Planning and Equili-
brium Control. It is common to find in literature that these topics are presented in an interlaced
manner which may complicate the understanding of the people once they are newly interested
in humanoid robotics. In this study, the main logic is as follows: The Equilibrium Control is
a Trajectory Planning modifier which adjusts the robot trajectory to preserve the equilibrium.
However, in order to make the robot to follow a certain trajectory, the Inverse Kinematics
is necessary to guide the robot end-effectors through the desired trajectory. In other words,
there is a hierarchy as can be seen in Fig. 1.2 where the most important layer is the Inverse
Kinematics layer, because without the Inverse Kinematics, the robot cannot simply move,
whereas by guiding the robot with smooth movements over a perfectly flat surface, the Trajec-
tory Planning design and the Equilibrium Control could be omitted. The proposal of a specific
shape for the trajectory planning curves helps to increment the walking velocity, whereas the
Equilibrium Control deals with the unexpected disturbances.
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Figure 1.2: Humanoid walking layer hierarchy

1.2 Problem Statement

1.2.1 The Inverse Kinematic problem
One of the main problems about Inverse Kinematics, is the mathematical complexity to obtain
closed-form analytic solutions. In general, closed-form solutions can only be obtained for 6
or less than 6-degree-of-freedom (DOF) systems with a specific structure [Ho et al. (2012)].
The computation of closed-form solutions require the performance of complex algebraic and
geometric tasks, where the challenge consists in finding the configurations in which a reduced
number of unknowns can be used to express the position and orientation of the end effector
[Siciliano et al. (2009)]. Analytical solutions are preferred to numerical ones for real-time
control applications because they are fast and reliable [Ho et al. (2012)]. A numerical method
may use of the Jacobian matrix (see Appendix B), but common problems such as singularity,
redundancy and computational complexity are the main drawbacks of using the inverse Jaco-
bian matrix approach. Since the Jacobian method is velocity based instead of being position
based, significant accumulation of error in position can result due to the iterative nature of
the algorithm. Furthermore, the Jacobian matrix is singular when a limb of the humanoid
robot is in a fully stretched position [Park et al. (2012)]; therefore, numerical methods may
fail even if a solution exists [Kofinas et al. (2014)]. Another commonly adopted method for
Inverse Kinematics is the geometric method [Graf et al. (2009); Zannatha and Limón (2009)];
however, the geometric method requires geometric intuition in solving the joint solution of
a manipulator, and it may become more difficult to obtain the joint solution when more than
five joints are involved [Park et al. (2012)].

Regarding the inverse kinematic problem, this work, aims to find analytic equations
capable of making the humanoid robot reach a desired position and orientation in a fast and
reliable manner in the walking process. The difference with previous works is that it inserts the
geometrical inverse kinematics procedure into the DH method to find compact solutions. In
addition, it finds an analytical hip compensation to undo the undesired hip yaw-pitch actuation
due to the coupled joint; this is achieved by redefining and constraining the orientation matrix
concatenations regarding the hip orientation.
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1.2.2 The Trajectory Planning problem
There exist many kinds of planned trajectories in humanoid robotics; i.e., a series of points
describing how a specific humanoid part must move in order to accomplish the walking pro-
cess. Particularly, there are two trajectories of interest in the humanoid walking: the CoG
and the swing-foot trajectories. In relation to the CoG trajectory, one of the most intuitive
approach is based in sinusoidal functions and their variations, as can be seen in some works
[Graf et al. (2009); Tay (2009)]. In addition, the inverted pendulum model has been described
in [Kajita et al. (2014,0)] to model the trajectory of the CoG. Regarding the trajectory planing
of the swing-foot, the cycloidal function has been used in some works [Olvera et al. (2009);
Park et al. (2006a); Strom et al. (2010)]. The main feature of the cycloidal function is a slow
start, a fast moving, and a slow stop; thereby reducing the speed burden of the actuators.
However, there exist some disadvantages regarding the mentioned trajectories. For example,
the main disadvantage of the trajectory planning based in sinusoidal functions, is that they
have a maximum absolute value of acceleration in their crests and troughs. If this kind of
movement is implemented for the CoG; then, a considerable acceleration will be present in
the least-stable walking stages of the humanoid; i.e., when the robot is in the single support
phase [Vukobratovic et al. (1990)], that is, when it is standing in a single foot. Moreover, if
the inverted pendulum model is used; then, the limitation in the step size of the humanoid is
the main drawback because it requires the double support phase to tend to a zero duration.
In addition, if cycloidal functions are used, then, they must be restricted regarding velocity at
the start and stop points, where the derivatives are infinite and may cause undesirable foot-to-
ground impacts, and thus, robot imbalance.

1.3 Objectives

1.3.1 General Objectives
To provide a new mathematical procedure for the walking process of humanoid robots. These
procedures include the analytical solution of the Inverse Kinematics of the lower limbs and
the trajectory planning for the feet and the CoG.

1.3.2 Particular Objectives
The particular objectives can be summarized as follows:

1. To solve for the lower-limb Inverse Kinematics of a small-sized humanoid robot by
providing analytic closed-form solutions.

(a) To conciliate both: the geometrical and the Denavit-Hartenberg procedures by
inserting the sequence of joint activations provided by the geometrical arrange-
ments (which are based on the shape of the triangle), into the DH matrices.

(b) To use constant transformation matrices to ensure the correct sequence of joint
activations. Moreover, to use the constant transformations to align the coordinate
systems of the end-effectors of the hip and the ankle with the navigation coordinate
system of the robot.
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(c) To perform a forward kinematic analysis (which starts at the ankle and finishes at
the hip), and a reversed kinematic analysis (which starts at the hip and finishes at
the ankle) to avoid the mathematical complexity of matrix inversion.

(d) To manipulate the DH matrices by using a reduced number of unknowns to mathe-
matically decouple the movement of the actuator shared by the two legs at the hip.

(e) To provide a simple three-dimensional geometric approach to avoid singularities
in the walking process.

2. To provide functions for humanoid trajectories with zero-acceleration and zero-jerk at
their end-points in order to restrict internal forces due to the presence of acceleration at
the most unstable walking stages; and thus, contribute to robot equilibrium.

(a) To provide for polynomial CoG functions restricted to zero-acceleration at their
end-points, in order minimize the internal disturbance forces at the single support
phase.

(b) To provide for polynomial CoG functions restricted to zero-jerk at their end-
points, in order minimize the internal disturbance forces at the single support
phase.

(c) To provide for polynomial swing-foot functions restricted to zero-acceleration at
their end-points, in order minimize the internal disturbance forces at foot landing.

(d) To provide for polynomial swing-foot functions restricted to zero-jerk at their end-
points, in order minimize the internal disturbance forces at foot landing.

(e) To compare both: the effects of zero-acceleration versus zero-jerk trajectories for
CoG and swing foot trajectories.

3. As a future work, to propose for a simple and efficient control model for humanoid
robot equilibrium.

(a) To propose a dynamic hip and ankle control model to compensate for ground
perturbations.

(b) To simplify the mathematical model of the ground perturbation by including it into
the same robot model as an additional under-actuated D.O.F.



Chapter 2

State of the Art on Humanoid Robotics

This section presents the most relevant works about Inverse Kinematics, Trajectory Planning,
and Balance Control that have been published regarding Humanoid Robotics and its related
fields.

2.1 The State of the Art on Humanoid Inverse Kinematics

1968 Donald Lee Pieper, The Kinematics of Manipulator under Computer Control, Pieper
(1968).

1. Several solutions are presented to the problem of finding the manipulator configuration
leading to a specified position and orientation.

2. In the special case where the last three joints are revolutes and their axes intersect, their
point of intersection is only a function of the motion of the first three joints and the
constant link parameters (see Fig. 2.1).

Figure 2.1: General manipulator having the last three revolute axes intersecting

9
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1990 Miomir Vukobratović, Biped Locomotion: Dynamics, Stability, Control and Applica-
tion, Vukobratovic et al. (1990)

1. The kinematics and dynamics of Humanoid Robots are first described. The structure
of and anthropomorphic active mechanism is a complex kinematic chain, thus, it is
partitioned into three kinematic chains. The first chain represents the legs; the second,
the upper part of the body; and third, the hands. See Figure 2.2.

2. The Single-support phase and the Double-support phase are defined. When the robot
is supported on one leg, the situation is recognized as single-support phase; and when
both feet are on the ground, as double-support phase. See Fig. 2.3.

Figure 2.2: Structure of a complex anthropomorphic kinematic chain

Figure 2.3: Area of allowable positions of ZMP in both: single support phase (solid contour)
and double-support phase (shaded area)
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2009 Ibarra Zannatha et. al., Forward and Inverse Kinematics for a Small-sized Humanoid
Robot, Zannatha and Limón (2009).

1. A geometrical approach is presented to solve the Inverse Kinematics of a small-sized
humanoid robot whose offset at the ankle joint prevents the direct decoupling of the
position and orientation of the foot. Even for singularity-free mechanisms, the presence
of some kinematic parameters (like offsets), prevents direct decoupling of the position
and orientation in the inverse kinematics problem.

Figure 2.4: Reduced problem: A two-link planar leg

2009 Colin Graf et. al., A Robust Closed-Loop Gait for the standart platform League Huma-
noid, Graf et al. (2009).

1. A solution to the Inverse Kinematics of robot NAO is presented. Here, a geometrical
approach is used to form triangular arrangements with the limbs of the leg. See Eqns.
2.1, 2.2, 2.3, 2.4, 2.5 and 2.6; where γ stands for the interior angle of the triangle formed
by the thigh (upper leg) and the tibia (lower leg).

2. The computation assumes that there is an independent hip yaw joint for each leg, and
leads to different computation values for the hip yaw joints of the left and right legs.
Only one leg can realize the desired target. Normally, for stability, the support leg is
supposed to reach the target.

3. A virtual foot yaw joint at the end of the kinematic chain of the leg was introduced to
make the five-variable system reach a 6 DOF pose.

γ = arccos
lupperLeg

2 + llowerLeg
2 − ltrans2

2 · lupperLeg · llowerLeg
(2.1)

δknee = π − γ (2.2)



CHAPTER 2. STATE OF THE ART ON HUMANOID ROBOTICS 12

δfootP itch1 = arccos
lupperLeg

2 + llowerLeg
2 − lupperLeg2

2 · llowerLeg · ltrans
(2.3)

δfootP itch2 = arctan 2(x,
√
y2 + z2) (2.4)

δfootP itch = δfootP itch1 + δfootP itch2 (2.5)

δfootRoll = arctan 2(y, z) (2.6)

Figure 2.5: Left: The joints of NAO. Right: The navigation coordinate system used in Graf
et al. (2009)

2011 Abbas Addolmaleki et. al., Robust humanoid Turning - In - Place Using Fourier Series
And Genetic Algorithm, Abdolmaleki et al. (2011).

1. Data is captured from the human motion, and then modified to be applied to the huma-
noid robot. The data is analyzed using Fourier series and then, Fourier parameters are
optimized using genetic algorithms.
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Figure 2.6: Average fitness and maximum fitness during 28 generations

2012 C. Hernández-Santos et. al., Kinematics and dynamics of a new 16 DOF humanoid
biped robot with active toe joint, Hernández-Santos et al. (2012)

1. A novel humanoid leg architecture is proposed by adding an active toe joint, providing
the necessary redundancy to avoid the singularity problem presented in humanoids (see
Fig. 2.7).

2. Closed-form equations for forward and inverse kinematics are developed by dividing
the walking gait into the sagittal and frontal planes. In particular, the sagittal plane is
used to find inverse kinematics of the leg, see Fig. (2.8).

Figure 2.7: Kinematic configuration of the robot leg described by Hernández-Santos
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Figure 2.8: Right leg inverse kinematics

2012 Hyungju Andy Park et.al., Close-Form Inverse Kinematic Position Solution for Hu-
manoid Robots, Park et al. (2012).

1. A novel reverse-decoupling method is developed by viewing the kinematic chain of a
limb of a humanoid robot in reverse order and then decoupling it into the positioning
and orientation mechanisms (see Fig. 2.9). Finally, the inverse-transform technique is
used to derive a consistent joint solution.

2. The proposed approach is applied to a Hubo KHR-4 humanoid robot, and the proposed
technique can also be applied to an ASIMO robot from Honda Motors, an HRP-2 robot
from Kawada Industries, and a HOAP-2 robot from Fujitsu Automation with slight
modifications. Unfortunately, for the limbs of these humanoid robots, the axes of the
last three joints do not intersect at a point (see Fig. 2.10); however, a closer examination
reveals that the joint axes of the first three joints do intersect at a point. This means that
viewing the inverse kinematics problem with the joint angles in reverse order; that is,
with the position/orientation of the base coordinate frame referenced to the end-effector
coordinate frame, the position is a function of only the three joint angles. To solve the
inverse kinematics problem in this reverse way, the inverse of the matrix multiplications
is taken.
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Figure 2.9: Right leg of a HUBO KHR-4 robot. (a) Forward decoupling, (b) Reverse Decou-
pling

Figure 2.10: A HUBO KHR-4 humanoid robot
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Figure 2.11: Link coordinate frames of the right leg of a Hubo KHR-4 robot

2014 Nikolaos Kofinas et. al., Complete Analytical Forward and Inverse Kinematics for the
NAO Humanoid Robot, Kofinas et al. (2014).

1. A complete forward and inverse kinematics solution is presented by dividing the huma-
noid robot into five chains: the head, the two arms and the two legs. The Denavit-
Hartenberg method is used along with the solution of the system of non-linear equations.

2. A summary of existent inverse kinematic techniques are used to provide analytical solu-
tions for humanoid robotics. Matrix elimination, manipulation of both sides of matrix
equations, constant matrices, and geometric approaches are used. The change in refe-
rence frame and matrix inversion are also applied; however, those techniques still led to
a mathematical procedure with considerable complexity.

Figure 2.12: Using geometry in the triangle formed by the robot leg to derive the knee joint
angle
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2015 Alejandro Said et. al., Decoupled Closed-Form Solution for Humanoid Lower Limb
Kinematics, Said et al. (2015)

1. The position analysis is approached using geometrical triangular arrangements. Fur-
thermore, the joint activation sequence resulting from this geometry is inserted into the
Denavit-Hartenberg analysis. This practice allows the conciliation of both analytical
and geometrical equations in order to solve the system of non-linear equations.

2. End-effector coordinate frames are placed at the hip and the foot with the same orien-
tation as the navigation frame of the robot. This allows the orientation functions to be
obtained by equating the corresponding elements of the position and orientation matrix
concatenations in a straight forward manner.

3. A forward and a reverse kinematic analysis are performed to avoid the use of matrix
inversion; thus, decreasing the mathematical complexity of the kinematic chains for
support and swing phases.

4. The kinematics of the joint that presents a mechanical dependency constraining the
motion of the two legs and the torso, is solved analytically by means of a mathematical
decoupling; thus, allowing the turn-in-place motion.

5. A simple geometrical approach is proposed to avoid in singularities in the walking
postures. Theoretical and practical workspaces are analyzed considering mechanical
actuation limitations.

2016 Ahmed R. J. Almusawi, L. Canan Dülger and Sadettin Kapucu. A New Artificial Neural
Network Approach in Solving Inverse Kinematics of Robotic Arm, Almusawi et al. (2016)

1. An Artificial Neural Network (ANN) was used to learn the robot system characteristics
rather than having to specify an explicit robot model.

2. An Artificial Neural Network trained with the Levenberg-Marquardt backpropagation
algorithm is proposed to solve for the Inverse Kinematics of a 6-DOF robot arm. In
addition to the target position and orientation, a feedback of the current joint angles
configuration is included in the input pattern of the Neural Network. In Fig. 2.13, two
paths are followed by the robot arm: the one using a traditional ANN, and the one
proposed in this work.
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Figure 2.13: Paths generated by the robot using two different ANNs.

2017 Salman Faraji and Auke Jan Ijspeert. Singularity-Tolerant Inverse Kinematics for Bipedal
Robots: An Efficient Use of Computational Power to Reduce Energy Consumption, Faraji and
Ijspeert (2017)

1. Stretched-leg postures are more convenient for the mechanical hardware of humanoid
robots, but they introduce two major difficulties to the control problem: 1) Singularities:
which mainly refer to the alignment of the hip, knee and ankle joints leading to ill-
conditioned Jacobians. 2) Joint position limits: which should be respected together
with velocity limitations to avoid impacts.

2. In this study, a nonlinear inverse kinematics formulation to solve for positions is propo-
sed. Compared to various other methods that integrate velocities, this formulation can
better handle singular-postured balancing tasks. In addition, joint position and velocity
boundaries are introduced as inequality constraints in order to ensure feasibility.

Figure 2.14: Simple symmetric simulations without reaching singularities.
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2019 Kenji Kaneko, Hiroshi Kaminaga, Takeshi Sakaguchi, Shuuji Kajita, Mitsuharu Mori-
sawa, Iori Kumagai, and Fumio Kanehiro. Humanoid Robot HRP-5P: An Electrically Actu-
ated Humanoid Robot With High-Power and Wide-Range Joints, Kaneko et al. (2019)

1. Humanoid HRP-5P has been designed with electrically actuated high-power joints with
wide movable range. In this new arrangement, the ankle joint has a lower height.

2. By adopting multiple motors instead of a huge motor with high power, the mounting
is easier. To trace the belt path, a double-sided belt, rather than a single-side belt, is
adopted.

Figure 2.15: Front view of the right ankle joint.

2019 Jiangping Wang, Shirong Liu, Botao Zhang and Changbin Yu. Inverse kinematics-based
motion planning for dual-arm robot with orientation constraints, Wang et al. (2019)

1. In this article, the focus relays on the dual-arm motion planning problem with end-
effector orientation constraints; that is, computing a collision-free path for both arms
between an initial state and a goal state while maintaining a specified orientation. It
directly calculates the constraint-satisfying configuration by analytical IK instead of
using the Jacobian pseudo-inverse projection methods.

2. Decoupled manipulators are frequently equipped with a humanoid spherical wrist from
the viewpoint of the anthropomorphic arm structure, which allows decoupling motion
of the position problem from the orientation problem. PR2 is designed with two 7-DOF
decoupled manipulators, which allows us to decouple planning for the main arm joints
(the first four joints) from the wrist joints (the last three joints).
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Figure 2.16: A prototype of dual-arm robot with two decoupled manipulators.
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2.2 The State of the Art in Humanoid Trajectory Planning

1990, Miomir Vukobratović, Biped Locomotion: Dynamics, Stability, Control and Applica-
tion, Vukobratovic et al. (1990).

1. Zero Moment Point (ZMP) is defined. ZMP refers to an equivalent reaction force acting
at a certain point of the foot where the sum of all moments is equal to zero (see Fig.
2.17). Obviously, the ZMP in single support-phase cannot be out of the supporting area
(are covered by the foot), while in double support phase, it can be anywhere inside the
dashed area (see Fig. 2.3). Within these areas the ZMP can move continuously or not,
depending on which gait type is performed.

2. A third characteristic is related to the periodical character of the mechanism motion in
the walking process. The positions and velocities at the beginning and at the end of
each step have to be the same, so that the walk can be performed continuously.

Figure 2.17: Definition of Zero-Moment Point (ZMP)

2002, Shuuji Kajita et. al., A real time pattern generator for biped walking, Kajita et al.
(2002).

1. The dynamics of a 3D linear inverted pendulum (with zero input torques), is analyzed
and used to provide the trajectories for a humanoid walking pattern generator. In this
study, it is demonstrated that when a biped robot is supporting its body on one leg, its
dominant dynamics can be represented by a single inverted pendulum which connects
the supporting foot and the center of mass (CoM) of the whole robot.

The differential equations 2.7 and 2.8 show the dynamics of the CoM in the sagittal and
lateral planes respectively. Using the solutions of the former differential equations, Fig.
2.19 shows a plot of the resulting trajectory described by the CoM and its projection
onto the ground (from the standstill to a stop along three steps).

ẍ =
g

z
x (2.7)
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ÿ =
g

z
y (2.8)

Figure 2.18: Support leg exchange with a constant vertical distance

Figure 2.19: Walking pattern on flat floor based on 3D linear inverted pendulum

2003, Shuuji Kajita et. al., Biped walking pattern generation by using preview control of
zero-moment point, Kajita et al. (2003).

1. A walking pattern generator that allows foot placements as a mixture of the ZMP and the
inverted pendulum approaches is proposed; i.e., the equations for ZMP are substituted
into the equations for the 3D linear inverted pendulum. The equations regarding the
ZMP coordinates are shown in Eqns. 2.9 and 2.10.

2. The proposed equations for CoM trajectory generation are compared to a cart-table
model yielding the same results.

py = y − zc
g
ÿ (2.9)
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px = x− zc
g
ẍ (2.10)

2006, Ill-Woo Park et al., Online free walking trajectory generation for biped humanoid robot
KHR-3(HUBO), Park et al. (2006a).

1. A cycloid function is used in the generation of the gait trajectory used by the swing-leg
ankle position. This function has a slow start, a fast moving and a slow stop. Figure
2.20 shows the coordinate frame used in the gate trajectory and sketch of of a cycloid
trajectory.

2. A third order polynomial is used for the pelvis trajectory. This function is continuous
in a defined time interval. Also, it is also easy to implement if the boundary conditions
are well-defined.

3. The trajectory on each axis of the global coordinate systemX−Y−Z, is decoupled of each
other. Figure 2.21 shows the controller block diagram for the trajectory implementation.

Figure 2.20: Coordinate frame gate trajectory
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Figure 2.21: Controller block diagram for trajectory implementation

2009, Colin Graf et. al., A Robust Closed-Loop Gait for the Standard Platform League Huma-
noid, Graf et al. (2009).

1. Foot-lifting and step-advance trajectories are generated using cosine functions. The
CoM movement is generated using a merging of a triangular, a sinusoidal and the square
root of a sinusoidal function. Figure 2.22 shows the trajectory for the foot lifting, and
Fig. 2.23 shows the trajectory for the CoM, where ϕ stands for parameterized units of
time.
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Figure 2.22: Swing-foot trajectory based in a cosine function

Figure 2.23: CoM trajectory consisting of a merging of a sine function s(ϕ), the square root
of a sine function r(ϕ) and a linear function l(ϕ)
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2010, Colin Graf et. al., A Closed-loop 3D-LIPM Gait for the RoboCup Standard Platform
League Humanoid, Graf and Röfer (2010).

1. The approach in this study is the further development of the method first described
in Kajita et al. (2003), in addition to the use of sensor feedback. The solutions of
the differential equations for the 3D inverted pendulum have been applied to humanoid
robot NAO. These solutions have the same mathematical form and they can be indicated
by Eqns. 2.11, 2.12, and 2.13; where g is the gravitational acceleration, t is the time and
z is the vertical distance from the supporting foot to the CoM assumed to be constant
(see Fig. 2.18).

2. The need of the double support phase is eliminated by dynamically adjusting the point
in time at which the support foot alternates. At the beginning of the single support
phase, the position and the velocity of the center of mass should be in a state that leads
to the proper position and velocity for the next single support phase, this problem is
solved by using an iterative method.

x(t) = x(0) cosh (t/Tc) + Tc ẋ(0) sinh (t/Tc) (2.11)

ẋ(t) = [x(0)/Tc] sinh (t/Tc) + ẋ(0) cosh (t/Tc) (2.12)

Tc =
√
z/g (2.13)

Figure 2.24: Cross section of the coordinate system used for the altered inverted pendulums
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Figure 2.25: Two facing inverted pendulums

Figure 2.26: The inverted pendulum attached on a simulated model of the NAO. The red
square indicates the plain on which the center of mass moves. The red dot is located in the
position of the center of mass
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2012, C.Hernández-Santos et al., Kinematics and dynamics of a new 16 DOF humanoid biped
robot with active toe joint, Hernández-Santos et al. (2012).

1. Local sinusoidal trajectories where defined in the sagittal and frontal planes of a 16
DOF humanoid robot.

x0(t) =
s

2π

(
2πt

Ts
− sin

(
2πt

Ts

))
(2.14)

z0(t) =
sh
2

(
2πt

Ts
− sin

(
2πt

Ts

))
(2.15)

x1(t) =
s

2π

(
2πt

Ts
− sin

(
2πt

Ts

))
(2.16)

z1(t) =
sh
2

(
1− sin

(
2πt

Ts

))
(2.17)

x3(t) =
d

2π

(
2πt

Ts
− sin

(
2πt

Ts

))
(2.18)

z3(t) = h (2.19)

y = s · sin(Tsπt) (2.20)

Figure 2.27: Parameters used in the trajectory periodic functions
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2013, Ren C. Luo et, al., Arbitrary Biped Robot Foot Gaiting Based on Variate CoM Height,
Luo et al. (2013).

1. A quasi-natural foot gait generator for biped walking with a varing CoM height is propo-
sed. Walking gaits with constant low height permit large strides, but make the knees to
bent heavily, so a large torque is required at the knees. Postures with a higher body
condition, limit the length of step due to kinematics limitation. This trade-off can
be solved by an up and down motion of the body. However, this method consumes
more time in order to generate the trajectory based on the conventional preview control.
To reduce time consumption, preview control with a particular design of COM height
trajectory is proposed.

2. The approach creates a turning pattern by adopting trajectory mapping without pre-
designing turning ZMP and foot trajectories.

Figure 2.28: CoM up and down motion during walking

2015, Jung-Woo Heo et. al., Biped Walking Pattern Generation Using an Analytic Method for
a Unit Step With a Stationary Time Interval Between Steps, Heo and Oh (2015).

1. An analytic solution for CoM trajectory is proposed using zero-velocity constraints at
the initial and final step times. This CoM constraint allows for a stationary time interval
between steps to stabilize the posture. The CoM trajectory was tested for providing
long-stride walking with the DRC-HUBO robot.

2. In this study, a new and simple analytic solution is proposed for the unit step walk-
ing pattern. Analytic methods commonly share the disadvantage that the analytically
obtained walking pattern cannot be changed during the unit step because it is already
formulated in closed-form analytic solutions. In spite of this drawback, analytic solu-
tions are still used for walking pattern generation because they do not require future
information, as presented earlier, and they can be easily implemented since solutions
are formulated in a closed form.
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Figure 2.29: CoM up and down motion during walking

2016, Ravi Kumar Mandava and Pandu Ranga Vundavilli Forward and Inverse Kinematic
based Full Body Gait Generation of Biped Robot, Mandava and Vundavilli (2016).

1. The full body gait generation of a 18-DOF two-legged robot was accomplished by using
the concept of forward and inverse kinematics. The trajectories for upper and lower
limbs are generated. The dynamic balance of the biped robot is determined by using the
concept of the ZMP.

2. The gait generation was possible by constraining the swing-foot and the wrists trajecto-
ries to follow a cubic polynomial (see Fig. 2.30).

Figure 2.30: Cubic polynomial trajectory for the swing-foot.
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2017, Tzuu-Hseng S. Li, Ya-Fang Ho, Ping-Huan Kuo, Yan-Ting Ye, and Li-Fan Wu Natural
Walking Reference Generation Based on Double-Link LIPM Gait Planning Algorithm, Li et al.
(2017).

1. This paper proposes a double-link LIPM (DLIPM) to eliminate the conflict about mass
distribution. In addition, a gait planning algorithm is proposed for natural walking
generation.

2. The foot trajectory generation can be divided into two parts according to the support
phase. In the double support phase, both feet stay at fixed points. In the single sup-
port phase, the supporting foot stays at the fixed point and the swing foot trajectory is
generated by sinusoidal functions (see Eqns. (2.21) and (2.22)).

Figure 2.31: Foot trajectory with respect to the world coordinate system.

footXj,n(t) =


0 if t ≤ t1
Lj,n

2π
(θ − sin θ) if t1 < t ≤ t2

Lj,n otherwise
(2.21)

footXj,n(t) =

{
H
2
(1− cos θ) if t1 < t ≤ t2

0 otherwise
(2.22)
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2019, Chengju Liu, Tong Zhang, Changzhu Zhang, Ming Liu, and Qijun Chen, Foot Place-
ment Compensator Design for Humanoid Walking Based on Discrete Control Lyapunov Func-
tion, Liu et al. (2019).

1. In this work, an online foot position compensator (FPC) is proposed for improving
the robustness of humanoid walking based on orbital energy conservation and Discrete
Control Lyapunov Function (DCLF), achieving foot placement. The online FPC is
developed based on linear model predictive control (MPC) by replanning the trajec-
tories of the center of mass (CoM) and properly placing the footsteps to resist external
disturbances to recover the walking posture.

2. During humanoid walking, the single support phase duration is usually much longer
than the double support phase and the supporting area is much smaller in the single
support phase. Thus, the FPC is triggered during the single supporting phase. Since
the foot of the robot already in contact with the ground cannot be changed, the FPC
actuates in the next single supporting phase.

Figure 2.32: Velocity recovery process.



Chapter 3

Humanoid Inverse Kinematics

This study uses robot NAO model H21 manufactured by Aldebaran Robotics as an experimen-
tation platform. Figure 3.1 shows the humanoid robot, including the navigation coordinate
system, where the x-axis is pointing to the forward walking direction, the y-axis is pointing
to the left side, and the z-axis is pointing upwards. Each leg of the robot has 5 DOF in addi-
tion to a special joint located between the hips; namely, the hip-yaw-pitch joint, where the
hip-yaw and the hip-pitch movements are coupled by a gearbox; i.e, the hip-pitch movement
is inevitable activated when a hip-yaw movement is executed. The results of this dissertation,
are focused in solving for the inverse kinematics for each humanoid leg considering the above
mentioned coupled joint. The problem of singularity is also addressed, by developing a simple
geometric approach.

Figure 3.1: Active joints of H21 NAO Robot

3.1 Joint and Dimension Nomenclature
Consider θar, θap, θkp, θhp, θhr, and θhy denote the ankle roll, ankle pitch, knee pitch, hip pitch,
hip roll, and hip yaw-pitch angles respectively. Table 3.1 includes the motion range used for
each joint in this work. Table 3.2 includes the dimensional parameters of the humanoid robot
where lft, ltb and ltg denote the foot hight, the tibia length and the thigh length, respectively.

33
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Table 3.1: Joint motion ranges

Joint Min Max

θar -22.27◦ 22.27◦

θap -67.97◦ 52.86◦

θkp 0◦ 121.04◦

Table 3.2: Limb dimensions [mm]

Limb Dimension

lft 45.11
ltb 102.75
ltg 100

From now on, following the same nomenclature as in [Wong and Liu (2013)], a letter L or R
is added to the variables to indicate their location at the left or right leg, respectively. Also, a
subscript s is added to the coordinates to indicate that they belong to the swing-leg analysis.

3.2 Direct and Inverse Kinematics in the Forward Analysis

The forward kinematic analysis describes the hip position and orientation at single and dou-
ble support phases; i.e., the hip position as seen by the ankle. The solution for the inverse
kinematics of the humanoid leg regarding position, can be obtained by following the geomet-
ric approach presented in [Graf et al. (2009)]. According to the above mentioned work, it is
possible to define a position vector r where the tibia, the thigh and the vector r form a triangle
which rotates an angular displacement θar about the ankle roll articulation (see Fig. 3.2).

The forward kinematic chain in the robot leg, has been split into position and orientation
formulations. According to [Pieper (1968)], breaking the kinematic analysis into position
and orientation formulations, allows the position column of the DH matrix concatenation to
consist of three equations, and thus, three unknowns; providing a solution to the kinematic
problem. This approach has been followed by Park in [Park et al. (2012)] to solve for the
kinematics of a humanoid leg. Additionally, in [Said et al. (2015)], the matrix inversion has
been avoided to decrease the mathematical complexity while obtaining the solutions. Figure
3.3, shows the analytical assignment of the coordinate systems based in the DH procedure.
Here, the hip joint variables have been not included; however, the distance from the knee joint
to the intersection of the hip joints has been considered to determine the end-effector position.

In the present study, in relation with the position formulation; the joint activation se-
quence used in the analytical DH approach (see Fig. 3.3) uses the same activation sequence
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Figure 3.2: Sequence of joint activations in the forward analysis based in the triangular geom-
etry

derived from the geometrical approach (see Fig. 3.2); i.e., the first joint variable to be activated
is θar, followed by θap, while θkp is activated at the end.

The sequence of joint activations can also be observed in Table 3.3, where it is important
to note that the constant coordinate systems number zero and six are aligned with the naviga-
tion coordinate system of the robot. Here, the constant coordinate system number six forces
the kinematic chain to have the desired end-effector orientation, while constant coordinate
system number one, obligates the kinematic chain to follow the desired joint activation order;
i.e., the sequence given by the angles: θar, θap, θkp. In the forward analysis, the Z unit vector
attached to the rotation center along every actuator, is pointing in the direction of a positive
rotation relative to the ground.

Table 3.3: Link parameters used in the forward position analysis

i αi−1 ai−1 θi di

1 0 0 −π/2 0
2 π/2 0 θar + π/2 0
3 π/2 0 θap 0
4 0 ltb θkp 0
5 π/2 ltg π/2 0
6 π/2 0 π/2 0

Using the parameters presented in Table 3.3, the position coordinates of the hip (as seen
by the ankle) can be extracted from the fourth column of the DH matrix concatenation, leading
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Figure 3.3: Forward position analysis of the humanoid leg

to Eqns. 3.1, 3.2 and 3.3. The software used for mathematical manipulation of matrices is
Maple [Maplesoft (2019)].

x = −ltg
[
S(θap + θkp) +

(
ltb
ltg

)
Sθap

]
(3.1)

y = ltgSθar

[
C(θap + θkp) +

(
ltb
ltg

)
Cθap

]
(3.2)

z = ltgCθar

[
C(θap + θkp) +

(
ltb
ltg

)
Cθap

]
(3.3)

Thus, the inverse kinematics regarding the hip position can be obtained by solving the
system of non-linear equations given by Eqns. 3.1, 3.2 and 3.3. The ankle roll angle θar is
obtained by dividing Eq. 3.2 by Eq. 3.3, (see Eq. 3.4).

θar = arctan
(y
z

)
(3.4)

Squaring and adding Eqs. 3.1, 3.2 and 3.3 results in Eq. (3.5)
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x2 + y2 + z2 = 2 · ltg · ltb · Cθkp + l2tg + l2tb (3.5)

Solving for the knee pitch angle θkp gives Eq. (3.6)

θkp = arccos

[
x2 + y2 + z2 − l2tb − l2tg

2 · ltb · ltg

]
(3.6)

Dividing Eq. (3.1) by the square root of the sum of the squares of Eqs. (3.2) and (3.3)
results in Eq. (3.7).

x√
y2 + z2

=
− S(θap + θkp) + (ltb/ltg)Sθap

C(θap + θkp) + (ltb/ltg)Cθap
(3.7)

Solving for the ankle pitch angle θap gives Eq.(3.8).

θap = − arctan

[ √
y2 + z2Sθkp + xCθkp + (ltb/ltg)x√

y2+z2Cθkp+(ltb/ltg)
√
y2+z2− xSθkp

]
(3.8)

After determining the hip position, the torso orientation must be solved. In the forward
orientation analysis, due to the fact that the hip yaw-pitch joint does not play any role during
the forward and the sideways gaits, the analysis of this joint is removed to reduce the number
of variables affecting the orientation equations. The chosen coordinate systems can be seen in
Fig. 3.4. The DH parameters used in the forward orientation analysis are shown in Table 3.4.

Table 3.4: Link parameters used in the forward orientation analysis

i αi−1 ai−1 θi di

7 π/2 0 θhp + π/2 0
8 −π/2 0 θhr + π/2 0
9 π/2 0 −π/2 0

To maintain the torso upright Eq. (3.9) is used to solve for θhp in Eq. (3.10). Also, Eq.
(3.11) is used to solve for θhr in Eq. (3.12).

7T9(1, 1) = −0T6(1, 1) (3.9)

θhp = −(θap + θkp) (3.10)
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Figure 3.4: Forward orientation analysis of the humanoid leg

7T9(2, 2) = −0T6(2, 2) (3.11)

θhr = −θar (3.12)
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3.3 Direct and Inverse Kinematics in the Reversed Analysis
In this subsection, the reversed kinematic analysis [Park et al. (2012)] describes the position
of the foot as it moves across the air; i.e., the foot position at the swing phase. Regarding the
present study, this means that the ankle position is analyzed as seen by the hip. Following a
similar approach as mentioned in the forward analysis, the revered geometric analysis can be
obtained as shown in Fig. 3.5. Gathering the information about position and orientation into
a single figure, Fig. 3.6 shows the assignment of the coordinate systems used in the reversed
analysis. Here, the Z unit vector along every actuator is aligned in the direction of a positive
rotation relative to the hip. The angles from the inverse kinematics solution are shown in
Eqns. (3.13), (3.14) and (3.15); and they take the position coordinates xs, ys and zs as inputs,
where the subscript s indicates that they describe the swing phase movement. The orientation
inverse kinematics solutions are shown in Eqns. (3.16) and (3.17).

Figure 3.5: Sequence of joint activations in the reversed analysis based in the triangular geom-
etry

θhr = arctan

(
−ys
zs

)
(3.13)

θkp = arccos

[
x2s + y2s + z2s − l2tb − l2tg

2 · ltb · ltg

]
(3.14)

θhp = − arctan

[ √
y2s + z2sSθkp + xsCθkp + (ltg/ltb)xs√

y2s+z
2
sCθkp+(ltg/ltb)

√
y2s+z

2
s−xsSθkp

]
(3.15)
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Figure 3.6: Reversed position and orientation analysis of the humanoid leg

Solving for the orientation joint variables θap and θar results in

θap = −(θhp + θkp) (3.16)

θar = −θhr (3.17)

Notice that the joint angles θap and θar have changed their roles from variables used for
position in the forward analysis to variables used for orientation in the reversed analysis.
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3.4 Turn-In-Place Analysis
To activate the hip yaw movement, the robot NAO includes a special mechanism located in the
hips, where only one actuator is needed for both legs, resulting in a reduction of the building
costs and space [Gouaillier et al. (2009)]. This special joint is called the hip-yaw-pitch joint.
The collateral effect caused by the configuration of this joint, is a hip pitch rotation affecting
both legs, when only a hip yaw rotation is desired.

In this section, the solutions for the mathematical decoupling the hip yaw and of the
hip pitch movements are presented, allowing the robot to perform a turn-in-place movement;
i.e., a rotation about the navigation z-axis while maintaining the torso in a vertical position
[Abdolmaleki et al. (2011); Zorjan and Hugel (2013)]. Figure 3.7 presents the joint activa-
tion sequence including the hip-yaw-pitch joint, and Table 3.5 shows the corresponding link
parameters . Note that the transformation 8T9 used in Table 3.4, has been modified from the
forward analysis to include the hip yaw-pitch into the kinematic chain.

Figure 3.7: Turn-in-place movement orientation analysis

Table 3.5: Link parameters used for a turn-place movement

i αi−1 ai−1 θi di

9 π/2 0 π/2 0
10 −π/4 0 θhy 0
11 π/4 0 −π/2 0
12 0 0 −π/2 0

The matrix concatenation of Euler angles RxRyRz is used in order to describe the hip
motion, as in [Graf et al. (2009)] and [Nunez et al. (2012)]. Note that the leg position is not
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considered in this section, therefore θar = θap = θkp = 0. Since the hip yaw-pitch joint
produces undesired motion only in the hip pitch axis, the constraint θhr = 0 is considered to
reduce the complexity of the equations. Multiplying the matrices of the forward kinematic
analysis (including the hip yaw-pitch joint) and considering the above mentioned constraints
results in Eq. 3.18.

0R12 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.18)

Where the elements of the matrix are described by the following equations.

r11 = CθhpCθhy −

(√
2

2

)
SθhpSθhy (3.19)

r12 = −

(√
2

2

)[
CθhpSθhy +

(√
2

2

)
SθhpCθhy

]
+

(
1

2

)
Sθhp (3.20)

r13 = −

(√
2

2

)[
CθhpSθhy +

(√
2

2

)
SθhpChy

]
−
(
1

2

)
Sθhp (3.21)

r21 =

(√
2

2

)
Sθhy (3.22)

r22 =

(
1

2

)
+

(
1

2

)
Cθhy (3.23)

r23 = −
(
1

2

)
+

(
1

2

)
Cθhy (3.24)

r31 = ShpCθhy +

(√
2

2

)
CθhpSθhy (3.25)

r32 = −

(√
2

2

)[
SθhpShy −

(√
2

2

)
CθhpChy

]
−
(
1

2

)
Cθhp (3.26)
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r33 = −

(√
2

2

)[
SθhpSθhy −

(√
2

2

)
CθhpCθhy

]
+

(
1

2

)
Cθhp (3.27)

Making RxRyRz=0R12 leads to Eqn 3.28.

r21
r22

=
SzCx
CzCx

=
(
√
2/2)Sθhy

(1/2) + (1/2)Cθhy
= tan (θz) (3.28)

Where θz represents the turn-in-place rotation. The equation 3.29 is solved for θhy in
order to determine the yaw rotation to be performed by the robot.

θhy = arctan

[
2
√
2 tan (θz)

tan2 (θz) + 2
,−tan2 (θz)− 2

tan2 (θz) + 2

]
(3.29)

Equation 3.30 is needed to correct the undesired pitch rotation θy

r13
r33

=
CxSy
CxCy

=
−(
√
2/2)
[
CθhpSθhy+(

√
2/2)SθhpCθhy

]
− (1/2)Sθhp

−(
√
2/2)
[
SθhpShy−(

√
2/2)CθhpCθhy

]
+(1/2)Cθhp

=tan(θy) (3.30)

The consideration in Eq. 3.31 is made to remove the navigation pitch rotation θy when
the hip yaw-pitch θhy is activated.

tan θy = 0 (3.31)

Equation 3.31 ensures that θy = 0 is valid. Furthermore, a compensation parameter
φhp is obtained from Eq. 3.30 by solving for θhp and rewriting it as φhp. The parameter φhp
is defined in Eq. 3.32 and it must be added to the hip pitch angle in order to eliminate the
undesired pitch motion due to the coupled hip yaw-pitch rotation.

φhp = − arctan

[ √
2Sθhy

1 + Cθhy

]
(3.32)

Thus, the compensated pitch angle θhpc for a turn-in-place rotation is denoted by Eq.
3.33, where the subscript c refers to the compensation.

θhpc = θhp + φhp (3.33)
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Certain practical aspects were considered for achieving the turn-in-place rotation. If the
analysis is made over the right foot as the support foot, then, θhy and θhp must have opposite
signs in their respective solutions. Also, the position of the swing foot should be considered
to achieve an effective robot rotation as can be seen in Fig. 3.8.

Figure 3.8: Position and orientation of the robot feet at the turn-in-place rotation

In addition, the motion at the turn-in-place rotation should be small in order to prevent
the legs of the robot from knocking against each other. Furthermore, Eq. 3.34 should be used
when it is desired that the sole of the swing foot remains parallel to the ground, where θapc is
the compensated ankle pitch angle of the swing foot. Finally, it is recommended to organize
the joint commands in tuples of right and left leg angles of the same kind of articulation, in
order to achieve optimal positioning.

θapc = θap + φhp (3.34)
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3.5 Analysis of the Workspace of a Humanoid Step
According to [Ogawa and Kanada (2010)], in the direct kinematics problem, the existence,
uniqueness and stability of the solution is guaranteed; in the case of the inverse kinematics
problem, however, it may be difficult to obtain a solution because these conditions are not
guaranteed. In this work, a simple 3D geometrical approach is presented to avoid singularities
in order to ensure the existence of a solution of a humanoid step. To achieve this goal, the
Center of Mass (CoM) is maintained at a defined height. Here, the coordinates of the swing
foot, xs and yx, are projected into a plane which is parallel to the ground and which intersects
the ankles of the support feet, as shown in Fig. 3.9. It can be easily shown that the step size s
is given by Eq. (3.35).

Figure 3.9: Geometric analysis in the estimation of the humanoid step size

s =
√
x2s + y2s (3.35)

From Fig. 3.9, it can be seen that the distance z, the thigh, the tibia, and the step s form
a triangle which restricts the height of z ( in Eq. 3.3), to the condition indicated by Eq. (3.36).

z 6
√
(ltb + ltg)2 − s2 (3.36)

Fig 3.10 shows the theoretical plot of the maximum displacement z that the robot must
satisfy in order to produce a step size s, i.e., the step workspace without considering the
mechanical joint limits. It can be seen that the longer the step is desired to be, the lower
the height of the hips must be. Considering the joint limitations, the practical workspace
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is shown in Fig. 3.11, where there is an important limitation at the lateral displacements.
In both workspace graphs, there is no dexterous workspace because only one possible robot
orientation is assumed [Jiang et al. (2009)], where the foot soles remain parallel to the ground
and the torso resides upright.

Figure 3.10: Maximum theoretical distance z for a desired step size

Figure 3.11: Maximum practical distance z for a desired step size
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3.6 Inverse Kinematics Experimentation
The validation of the formulas is accomplished by executing three basic motions: (1) Forward
Walking (see Fig. 3.12), (2) Lateral Walking (see Fig. 3.13) and (3) Turn-in-place motion
(see Fig.3.14).

For each kind of movement (i.e., forward walking, lateral walking and turn-in-place
movement), there are two types of tables. The first type, contains the end-effector Cartesian
coordinates which the NAO robot is requested to reach (see Tables 3.6, 3.8, and 3.10). The
second type, contains the solution angles that were found by using the inverse kinematic
equations obtained in Sections 3.2, 3.3, and 3.4; and solved using the Maple software package.
The NAO robot was programmed to execute the solution angles; i.e., it was not requested to
solve for the inverse kinematics equations (see Tables 3.7, 3.9, and 3.11).

The joint angles given by the formulas proposed in this work, have been written in a
table to form a sequence of walking postures. Then, the walking postures are executed to
perform a quasi-static walking [Kanoun et al. (2010)], i.e; the position of the CoG, is always
enclosed within the support polygon. The end effector coordinates are divided into two kind
of movements: the hip movement (using x, y, z coordinates), and the swing-foot movement
(using xs, ys, and zs coordinates). The end-effector coordinates used in the forward walking
are presented in Table 3.6, and the corresponding joint angles are shown in Table 3.7. For the
lateral walking, the end-effector coordinates are presented in Table 3.8 and the corresponding
joint angles are shown in Table 3.9. Regarding the turn-in-place motion, the movement is
performed counterclockwise, the end-effector coordinates are presented in Table 3.10, and
the corresponding joint angles are shown in Table 3.11.

Table 3.6: Forward walking end-effector coordinates (mm)

Stage Rx Ry Rz Lx Ly Lz Rxs Rys Rzs Lxs Lys Lzs Description

0 0 0 185.75 0 0 185.75 Bends down
1 0 62 185.75 0 62 185.75 Moves to left
2 50 -62 -155.85 Moves the right foot forward
3 50 -62 -185.75 Lands the right foot
4 0 -62 185.75 50 -62 185.75 Moves hips to the right and forward
5 -50 62 -155.75 Lifts the left foot from behind
6 50 62 -155.75 Moves the lifted left foot forward
7 50 62 -185.75 Lands the left foot
8 50 62 185.75 0 62 185.75 Moves hips to the left and forward
9 -50 -62 -155.75 Lifts the right foot from behind

10 50 -62 -155.75 Moves the lifted right foot forward
* Repeat stages 3,4 and 5

11 0 62 -155.75 Aligns the left foot
12 0 62 -185.75 Lands the aligned left foot
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Table 3.7: Forward walking angles (rad)

Stage Rθar Lθar Rθap Lθap Rθkp Lθkp Rθhp Lθhp Rθhr Lθhr

0 0.0 0.0 -0.406 -0.406 0.824 0.824 -0.418 -0.418 0.0 0.0
1 0.322 0.322 -0.258 -0.258 0.524 0.524 -0.265 -0.265 -0.322 -0.322
2 0.378 0.322 -0.232 -0.258 1.060 0.524 -0.827 -0.265 -0.378 -0.322
3 0.322 0.322 0.171 -0.258 0.159 0.524 -0.330 -0.265 -0.322 -0.322
4 -0.322 -0.322 -0.258 -0.328 0.524 0.159 -0.265 0.169 0.322 0.322
5 -0.322 -0.378 -0.258 -0.811 0.524 1.060 -0.265 -0.248 0.322 0.378
6 -0.322 -0.378 -0.258 -0.232 0.524 1.060 -0.265 -0.827 0.322 0.378
7 -0.322 -0.322 -0.258 0.171 0.524 0.159 -0.265 -0.330 0.322 0.322
8 0.322 0.322 -0.328 -0.258 0.159 0.524 0.169 -0.265 -0.322 -0.322
9 0.378 0.322 -0.811 -0.258 1.060 0.524 -0.248 -0.265 -0.378 -0.322

10 0.378 0.322 -0.232 -0.258 1.060 0.524 -0.827 -0.265 -0.378 -0.322
11 -0.322 -0.378 -0.258 -0.588 0.524 1.194 -0.265 -0.606 0.322 0.378
12 -0.322 -0.322 -0.258 -0.258 0.524 0.524 -0.265 -0.265 0.322 0.322

Table 3.8: Lateral walking end-effector coordinates (mm)

Stage Rx Ry Rz Lx Ly Lz Rxs Rys Rzs Lxs Lys Lzs Description

0 0 0 188.75 0 0 188.75 Bends down
1 0 62 188.75 0 62 188.75 Moves to left
2 0 -62 -176.75 Lifts the right foot
3 0 -45 -188.75 Lands the right foot
4 0 -62 188.75 0 -45 188.75 Moves hips to the right
5 -50 72 -176.75 Lifts left foot
6 0 72 -188.75 Lands the left foot
7 0 72 188.75 0 62 188.75 Moves hips to the left
8 0 -72 -176.75 Lifts the right foot
* Repeat stages 3 and 4
9 0 62 -176.75 Aligns the left foot

10 0 -62 188.75 Moves to right
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Table 3.9: Lateral walking angles (rad)

Stage Rθar Lθar Rθap Lθap Rθkp Lθkp Rθhp Lθhp Rθhr Lθhr

0 0.0 0.0 -0.368 -0.368 0.747 0.747 -0.379 -0.379 0.0 0.0
1 0.317 0.317 -0.198 -0.198 0.401 0.401 -0.203 -0.203 -0.317 -0.317
2 0.337 0.317 -0.385 -0.198 0.785 0.401 -0.398 -0.203 -0.337 -0.317
3 0.234 0.317 -0.290 -0.198 0.588 0.401 -0.298 -0.203 -0.234 -0.317
4 -0.317 -0.234 -0.198 -0.290 0.401 0.588 -0.203 -0.298 0.317 0.234
5 -0.317 -0.386 -0.198 -0.339 0.401 0.688 -0.203 -0.349 0.317 0.386
6 -0.317 -0.364 -0.198 -0.083 0.401 0.170 -0.203 -0.086 0.317 0.364
7 0.364 0.317 -0.083 -0.198 0.170 0.401 -0.086 -0.203 -0.364 -0.317
8 0.386 0.317 -0.339 -0.198 0.688 0.401 -0.349 -0.203 -0.386 -0.317
9 -0.317 -0.337 -0.198 -0.387 0.401 0.785 -0.203 -0.398 0.317 0.337

10 -0.317 -0.317 -0.198 -0.198 0.401 0.401 -0.203 -0.203 0.317 0.317

Table 3.10: Turn-in-place coordinates (mm)

Stage Rx Ry Rz Lx Ly Lz Rxs Rys Rzs Lxs Lys Lzs Description

0 0 0 191.75 0 0 191.75 Bends down
1 0 -62 191.75 0 -62 191.75 Moves to right
2 0 62 -179.75 Lifts the left foot
3 -10.766 61.058 -179.75 Positions the left foot
4 Rotates the left foot 10◦ ccw
5 -10.766 61.058 -191.75 Lands the left foot
6 14.772 -59.396 191.75 15 -62 191.75 Moves the hips forward
7 4.005 63.662 191.75 15 62 191.75 Moves hips to the left
8 -4.005 63.662 -179.75 Lifts the right foot
9 0 62 191.75 0 -62 -173.75 Aligns the right foot

10 0 -62 -191.75 Lands the right foot

Table 3.11: Turn-in-place angles (rad)

Stage Rθar Lθar Rθap Lθapc Rθkp Lθkp Rθhpc Lθhp Rθhr Lθhr Lθhy

0 0.0 0.0 -0.326 -0.326 0.661 0.661 -0.335 -0.335 0.0 0.0 0.0
1 -0.312 -0.312 -0.108 -0.108 0.220 0.220 -0.111 -0.111 0.312 0.312 0.0
2 -0.312 -0.332 -0.108 -0.349 0.220 0.709 -0.111 -0.359 0.312 0.332 0.0
3 -0.312 -0.327 -0.108 -0.406 0.220 0.709 -0.111 -0.302 0.312 0.327 0.0
4 -0.312 -0.327 -0.108 -0.406+0.174 0.220 0.709 -0.111+0.174 -0.302 0.312 0.327 -0.248
5 -0.312 -0.308 -0.108 -0.161+0.174 0.220 0.220 -0.111+0.174 -0.058 0.312 0.308 -0.248
6 -0.300 -0.312 -0.192 -0.154+0.174 0.239 0.162 -0.046+0.174 -0.008 0.300 0.312 -0.248
7 0.320 0.312 -0.099 -0.154+0.174 0.162 0.162 -0.062+0.174 -0.008 -0.320 -0.312 -0.248
8 0.340 0.312 -0.362 -0.154+0.174 0.692 0.162 -0.329+0.174 -0.008 -0.340 -0.312 -0.248
9 0.342 0.312 -0.421 -0.108 0.855 0.220 -0.434 -0.111 -0.342 -0.312 0.0

10 0.312 0.312 -0.108 -0.108 0.220 0.220 -0.111 -0.111 -0.312 -0.312 0.0
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Figure 3.12: Forward walking postures
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Figure 3.13: Lateral walking postures
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Figure 3.14: Turn-in-place walking postures



Chapter 4

Humanoid Trajectory Planning

In this work, a method taken from manipulator robot theory is applied to humanoid walking.
Fifth and seventh order polynomials are proposed to define the trajectories of the center of
gravity and the swing foot. The polynomials are designed so that the acceleration and jerk are
constrained to have a zero value particularly at two moments: at the single support phase and
at the foot landing, thus, minimizing internal disturbance forces.

These trajectories have been programmed using the numerical software package provi-
ded by [ESI-Group (2019)], which allowed to compare the acceleration and jerk waveforms
of both: the acceleration-constrained and jerk-constrained trajectories, where the acceleration
waveform is the most critical, because (as the force is proportional to it) abrupt changes in
its shape, can conduce to internal robot destabilization. These proposed trajectories were
designed from a mathematical point of view, i.e., they were not loaded into the robot NAO.

4.1 Acceleration and Jerk Constraints in Humanoid Trajec-
tory Planning

The trajectory planning is used to find the series of points that connects an initial and a final
configuration while satisfying the specified constraints at the endpoints [Spong et al. (2006)].
There exist several kinds of planned trajectories in humanoid robotics describing how a spe-
cific humanoid part must move in order to accomplish the walking process. Particularly, there
are two trajectories of interest in the humanoid walking: the Center of Gravity (CoG) and the
swing-foot trajectories [Kaynov (2010); Vukobratovic et al. (1990)]. In relation to the CoG
trajectory, one of the easiest and most intuitive approach is based in the sinusoidal function
and its variations, as can be seen in some works [Graf et al. (2009); Tay (2009)]. In addition,
the inverted pendulum model has been used in [Kajita et al. (2014,0)] to describe the trajectory
of the CoG.

Regarding the trajectory planing of the swing-foot, the cycloidal function has been studi-
ed in [Olvera et al. (2009); Park et al. (2006a); Strom et al. (2010)] where it has been claimed
that the features of the cycloidal function include a slow start, a fast moving, and a slow stop;
thereby reducing the speed burden of the actuators.

Consider that in this work, the x-axis, the y-axis and the z-axis trajectories refer to the
forward, lateral, and swing-foot movements of the humanoid robot; in accordance with the

53
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right-hand rule. Consider also that the double support phase refers to the instant when the
robot is supported by both feet, and the single support phase, the instant when it stands over
one foot [Vukobratovic et al. (1990)].

Figure 4.1, shows a sinusoidal CoG y-axis trajectory simulated using the software SciLab
[ESI-Group (2019)], i.e., the lateral movement of the CoG. Here, as in work described in [Said
et al. (2015)], a lateral amplitude of 6.2 cm has been chosen. It can be observed that the CoG
position must go from side to side due to the need of the robot to transfer its center of gravity
from one foot to the other (see [Park and Lee (2013)]). It can be seen that the sinusoidal
function has the maximum absolute acceleration in its crests and troughs, which are the least-
stable walking stages of the robot, because in those moments, the robot is standing on just one
foot.

Figure 4.2, shows an elliptical trajectory, (i.e., a modified cycloidal function) which
allows for the step size to have a different magnitude than its height. Here a maximum foot
elevation of 2.99 cm has been used. If a cycloidal-like function is used to execute the swing-
foot trajectory, then, the foot-to-ground impact [Park et al. (2006b)] could be aggravated by
the infinite n-derivatives at the start and stop points (as can bee seen at 0.2, 0.3, 0.7, and 0.8
seconds in Fig. 4.2), thus, leading to robot imbalance.

Finally, although a fast walking speed can be reached by using the inverted pendulum
model [Graf and Röfer (2010)]; the small available time to perform the double support phase,
the limitation in the step size, and the knee bending (in order to keep the CoM with a constant
height), are the main drawbacks [Shin and Kim (2015)].

In contrast, with the aforementioned advantages of trajectories based in sinusoidal and
cycloidal functions, as well as those based in the inverted pendulum model; the objective of
this study is to analyze fifth-order and a seventh-order polynomial trajectories, which allow
for the acceleration to be constrained particularly at the single support phase, and at the foot
landing; this, in order to reduce the internal forces which result in robot imbalance. This
approach can be applied particularly to affordable humanoid robots whose sensors, high preci-
sion actuators, and computational power are limited [Missura and Behnke (2014)].

Fifth-order polynomials allow for constraining the acceleration, whereas seventh-order
polynomials allow for constraining both: acceleration and jerk. Although third-order poly-
nomials have already been used in literature for humanoid trajectories [Park et al. (2006a,0)],
in this work, a comparison of the effects of acceleration and jerk constraints is provided by
means of computer simulations to analyze the CoG and the swing-foot trajectories, i.e., the
movements in the y-axis and the z-axis.

This chapter begins by presenting the fifth-order polynomials in Section 4.2 where the
acceleration and the jerk profiles are compared for the acceleration-constrained trajectories of
the CoG and the swing foot. Then, in Section 4.3 seventh-order polynomials are shown, where
the acceleration and the jerk profiles of the jerk-constrained trajectories are studied. Finally,
in Section 4.4 a comparison between the fifth and seventh order polynomials ir carried out.
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Figure 4.1: Position and acceleration of a sinusoidal CoG y-axis trajectory

Figure 4.2: Position of a sinusoidal CoG y-axis trajectory and a cycloidal-like swing-foot
z-axis trajectory
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4.2 Fifth order polynomial: Acceleration-constrained Hu-
manoid Trayectories

According to Newton’s second law, the force is proportional to the mass and the accele-
ration. Given the mass of a certain robot part, it is possible to make the assumption that the
greater its acceleration, the larger the internal force generated by that part. In consequence, by
constraining the CoG trajectory to have zero acceleration at the single-support phase (lapses
from 0.2 to 0.3 and from 0.7 to 0.8 in Fig. 4.5), then, the internal disturbance forces are
minimized at unstable robot configurations, thus, contributing to robot equilibrium.

The required fifth order polynomial q(t) to ensure that the acceleration can be restricted
is shown in Eq. (4.1), where a0, a1, a2, a3, a4, a5 are the polynomial coefficients, and t is the
time.

q(t) = a0 + a1(t) + a2(t)
2 + a3(t)

3 + a4(t)
4 + a5(t)

5 (4.1)

Considering the initial conditions, such as the initial position q(t0), the initial velocity
v(t0), and the initial acceleration α(t0); as well as the final conditions, such as the final posi-
tion q(tf ), the final velocity v(tf ), and the final acceleration α(tf ); and writing the appropriate
number of derivatives, we obtain the set of Eqns. in (4.2); where t0 and tf refer to the initial
and final times, respectively.

q(t0) = a0 + a1(t0) + a2(t0)
2 + a3(t0)

3 + a4(t0)
4 + a5(t0)

5

v(t0) = a1 + 2a2(t0) + 3a3(t0)
2 + 4a4(t0)

3 + 5a5(t0)
4

α(t0) = 2a2 + 6a3(t0) + 12a4(t0)
2 + 20a5(t0)

3

q(tf ) = a0 + a1(tf ) + a2(tf )
2 + a3(tf )

3 + a4(tf )
4 + a5(tf )

5

v(tf ) = a1 + 2a2(tf ) + 3a3(tf )
2 + 4a4(tf )

3 + 5a5(tf )
4

α(t0) = 2a2 + 6a3(tf ) + 12a4(tf )
2 + 20a5(tf )

3

(4.2)

The set of Eqns. in (4.2) can be written in matrix form:


1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f




a0
a1
a2
a3
a4
a5

 =


q0
v0
α0

qf
vf
αf

 (4.3)

Matrix Eq. (4.3) can be written in compact form as shown in Eq. (4.4), where M is the
coefficient matrix regarding time, a contains the vector of coefficients; and b consists of the
initial and final conditions. Finally, vector a is solved by using the Gauss-Jordan reduction
procedure, which can be found in [Nakos et al. (1999)].
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Table 4.1: Initial and final time of the CoG walking stages

stage t0 [s] tf [s]

s1 0.00 0.199

s2 0.20 0.299

s3 0.30 0.699

s4 0.70 0.799

s5 0.80 0.999

Table 4.2: Acceleration-constrained coefficients for the CoG y-axis trajectory

s1 s2 s3 s4 s5
a0 0 6.2 136.22 - 6.2 - 67384.06
a1 0 0 - 1617.61 0 380678.64
a2 0 0 7706.23 0 - 856908.01
a3 7867.42 0 - 17380 0 960516.68
a4 - 59302.17 0 18374.43 0 - 536103.61
a5 119200.36 0 - 7357.13 0 119200.36

M · a = b (4.4)

Figure 4.3 shows the y-axis and the x-axis CoG trajectories while the humanoid robot
is taking a single step. The y-axis trajectory has an oscillatory behavior because the robot’s
weight has to be supported by the left and right feet intermittently. In the other hand, the x-axis
trajectory is the one responsible of an effective forward movement. This humanoid step has
been divided into 5 stages whose initial and final times can be seen in Table 4.1. The sampling
period has been chosen to be 0.001 seconds. Following the work in [Said et al. (2015)], the
lateral amplitude has been chosen to be 6.2 cm regarding the y-axis trajectory, and 5 cm for
the step size, regarding the x-axis trajectory.

In relation to Figure 4.3, stage s1 corresponds to the time where the CoG moves from a
standstill position (on both feet) towards the left foot. In stage s2 the CoG remains over center
of the left foot while the right foot is lifted and moved forwards (see swing trajectories in Fig.
4.4). In stage s3 the CoG moves from the center of the left foot towards the center of the right
foot; in addition, CoG also moves forwards. In stage s4 the CoG remains over the center of
the right foot while the left foot is lifted and moved forwards (see swing trajectories in Fig.
4.4). In stage s5 the CoG moves from the center of the right foot to a standstill position on
both feet. Tables 4.2 and 4.3 show the specific polynomial coefficients for the y-axis and the
x-axis CoG trajectories, respectively.

Regarding Fig. 4.4, the swing-foot trajectory has been subdivided into four walking
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Figure 4.3: Acceleration-constrained position trajectories for the CoG in the x and y axes

Table 4.3: Acceleration-constrained coefficients for the CoG x-axis trajectory

s1 s2 s3 s4 s5
a0 0 0 - 52.43 5 5
a1 0 0 652.26 0 0
a2 0 0 - 3107.35 0 0
a3 0 0 7008.06 0 0
a4 0 0 - 7409.04 0 0
a5 0 0 2966.58 0 0
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Table 4.4: Initial and final times of the swing-foot walking stages

Foot stage t0 [s] tf [s]

right sa 0.20 0.249

sb 0.25 0.299

left sc 0.7 0.749

sd 0.75 0.799

stages: two for the right foot and two for the left one. The initial and final times of these
stages can be seen in Table 4.4. It can be seen that stage sa has the same initial time as stage
s2, that is, the right foot begins to be lifted when the robot is starts to be supported by the left
foot. In the other hand, the end of stage sb coincides with the end of stage s2, that is, the right
foot lands when the robot stops to be supported only by the left foot. The movement for the
left foot is defined similarly to the right foot swing trajectory,

Figure 4.4: Acceleration-constrained trajectories: y − axis (CoG) trajectory and z − axis
(swing-foot) trajectories

Figure 4.5 shows the acceleration profile of the CoG position trajectory when it is restric-
ted to be zero in the single support phase, particularly, at stages s2 and s4. It can be seen that
although the acceleration has been effectively constrained to be zero at these stages, there
still remain sudden changes in acceleration at 0.2, 0.3, 0.7, and 0.8 seconds. Here, a sudden
change in acceleration represents an impact that contributes to robot imbalance.
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Table 4.5: Acceleration-constrained coefficients for the swing-foot z-axis trajectory

sa sb sc sd
a0 - 34804.32 0 - 12629268 17640071
a1 787536.57 0 87291460 - 1.140×108
a2 - 7100480.3 0 - 2.412×108 2.948×108
a3 31882120 2.99 3.332×108 - 3.808×108
a4 - 71289963 0 - 2.301×108 2.459×108
a5 63509989 0 63509989 - 63509988

Figure 4.5: Acceleration profile of the acceleration-constrained CoG trajectory in the y-axis
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Figure 4.6 describes the jerk profile when the acceleration is constrained to be zero at the
single support phase (as shown in Fig. 4.5). Here jerk discontinuities can be observed at 0.2,
0.3, 0.7 and 0.8, which belong to the same places where sudden changes in the acceleration
take place.

Figure 4.6: Jerk profile of the acceleration-constrained CoG trajectory in the y-axis

Figures 4.7 and 4.8, show respectively the acceleration and jerk profiles of the swing
trajectory of the right foot when the fifth-order polynomial is used. In this trajectory, the
acceleration has been restricted to be zero at three points: first, at the beginning of the swing
movement; second, when the foot reaches its maximum height; and third, when it lands. It
can be seen that both profiles show acceleration and jerk discontinuities which contribute to
robot instability when the foot reaches its maximum height.
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Figure 4.7: Acceleration profile of the acceleration-constrained swing-foot trajectory in the
z-axis

Figure 4.8: Jerk profile of the acceleration-constrained swing-foot trajectory in the z-axis
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4.3 Seventh-order Polynomials: Jerk-constrained Humanoid
Trayectories

Although using a fifth order polynomial is effective to eliminate the acceleration at the single
support phase as well as for reducing the foot-to-ground impact at landing, the problem of
the acceleration discontinuities still remains. To solve this problem, it is possible to constrain
the jerk of the humanoid trajectories by using a seventh order polynomial, as in shown in Eq.
(4.5).

q(t) = a0 + a1(t) + a2(t)
2 + a3(t)

3 + a4(t)
4 + a5(t)

5 + a6(t)
6 + a7(t)

7 (4.5)

Considering the initial and final conditions of the jerk, γ(t0) and γ(tf ), respectively; and
taking the appropriate number of derivatives, we obtain the Eqns. in (4.6).

q(t0) = a0 + a1(t0) + a2(t0)
2 + a3(t0)

3 + a4(t0)
4 + a5(t0)

5 + a6(t0)
6 + a7(t0)

7

v(t0) = a1 + 2a2(t0) + 3a3(t0)
2 + 4a4(t0)

3 + 5a5(t0)
4 + 6a6(t0)

5 + 7a7(t0)
6

α(t0) = 2a2 + 6a3(t0) + 12a4(t0)
2 + 20a5(t0)

3 + 30a6(t0)
4 + 42a7(t0)

5

γ(t0) = 6a3 + 24a4(t0) + 60a5(t0)
2 + 120a6(t0)

3 + 210a7(t0)
4

q(tf ) = a0 + a1(tf ) + a2(tf )
2 + a3(tf )

3 + a4(tf )
4 + a5(tf )

5 + a6(tf )
6 + a7(tf )

7

v(tf ) = a1 + 2a2(tf ) + 3a3(tf )
2 + 4a4(tf )

3 + 5a5(tf )
4 + 6a6(tf )

5 + 7a7(tf )
6

α(t0) = 2a2 + 6a3(tf ) + 12a4(tf )
2 + 20a5(tf )

3 + 30a6(t0)
4 + 42a7(t0)

5

γ(tf ) = 6a3 + 24a4(tf ) + 60a5(tf )
2 + 120a6(tf )

3 + 210a7(tf )
4

(4.6)

Equations in (4.6) can be written in matrix form as shown in Eq. (4.7), whose vector of
coefficients a is also obtained by performing a Gauss-Jordan reduction.


1 t0 t20 t30 t40 t50 t60 t70
0 1 2t0 3t20 4t30 5t40 6t50 7t60
0 0 2 6t0 12t20 20t30 30t40 42t50
1 tf t2f t3f t4f t5f t6f t7f
0 1 2tf 3t2f 4t3f 5t4f 6t50 7t60
0 0 2 6tf 12t2f 20t3f 30t40 42t50





a0
a1
a2
a3
a4
a5
a6
a7


=



q0
v0
α0

γ0
qf
vf
αf
γf


(4.7)

Figure 4.9 shows the CoG y-axis trajectory when the jerk is constrained to be zero at
the single support phase. In addition, the CoG x-axis trajectory is also shown, where the jerk
has been restricted to be zero at the beginning and ending of the forward movement. Figure
4.10 shows the y-axis trajectory along with the swing trajectories of the right and left feet,
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Table 4.6: Jerk-constrained coefficients for the CoG y-axis trajectory

s1 s2 s3 s4 s5
a0 0 6.2 - 573.30 - 6.2 4539611
a1 0 0 9943.39 0 - 35852101
a2 0 0 - 71054.74 0 1.211×108
a3 0 0 273084.66 0 - 2.265×108
a4 138371.75 0 - 607606.95 0 2.537×108
a5 - 1668805 0 781358.12 0 - 1.701×108
a6 6988295.7 0 - 538610.66 0 63175597
a7 - 10033447 0 154042.8 0 - 10033447

Table 4.7: Jerk-constrained coefficients for the CoG x-axis trajectory

s1 s2 s3 s4 s5
a0 0 0 233.67 5 5
a1 0 0 - 4009.43 0 0.
a2 0 0 28651.10 0 0.
a3 0 0 - 110114.78 0 0.
a4 0 0 245002.8 0 0.
a5 0 0 - 315063.76 0 0.
a6 0 0 217181.72 0 0.
a7 0 0 - 62114.03 0 0.

where the jerk has been constrained to be zero at the beginning and at the ending of the swing
movement, as well as when the feet reach their maximum height.

The acceleration profile of the jerk-constrained CoG y-axis trajectory is shown in Fig.
4.11. Here, the acceleration discontinuities have been effectively removed. Figure 4.12 shows
the jerk profile of the jerk-constrained CoG y-axis trajectory, where it can be seen that the
jerk discontinuities have been reduced. Figures 4.13 and 4.14, show the acceleration and the
jerk profiles of the jerk-constrained swing trajectories of the right foot. It can be noticed that
the acceleration discontinuities have been effectively removed in Fig. 4.13, and that the jerk
discontinuities have been reduced in Fig. 4.14.

Tables 4.6 and 4.7 show the y-axis and the x-axis polynomial coefficients for the CoG
trajectory. Similarly, Table 4.8 shows the z-axis polynomial coefficients for the swing trajec-
tory of the right foot.
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Table 4.8: Jerk-constrained coefficients for the swing-foot z-axis trajectory

sa sb sc sd
a0 2409937.5 0 9.194×109 - 1.468×1010
a1 - 76228029 0 - 8.895×1010 1.328×1011
a2 1.031×109 0 3.688×1011 - 5.150×1011
a3 - 7.727×109 0 - 8.491×1011 1.109×1012
a4 3.467×1010 2.99 1.173×1012 - 1.433×1012
a5 - 9.310×1010 0 - 9.717×1011 1.111×1012
a6 1.386×1011 0 4.472×1011 - 4.780×1011
a7 - 8.817×1010 0 - 8.817×1010 8.817×1010

Figure 4.9: Jerk-constrained trajectories for the CoG in the x and y axes
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Figure 4.10: Jerk-constrained trajectories: y−axis (CoG) trajectory and z−axis (swing-foot)
trajectories

Figure 4.11: Acceleration profile of the jerk-constrained CoG trajectory in the y-axis
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Figure 4.12: Jerk profile of the jerk-constraint CoG trajectory in the y-axis

Figure 4.13: Acceleration profile of the jerk-constrained swing-foot trajectory in the z-axis



CHAPTER 4. HUMANOID TRAJECTORY PLANNING 68

Figure 4.14: Jerk profile of the jerk-constrained swing-foot trajectory in the z-axis

4.4 Comparison of the fifth-ordered and seventh-order poly-
nomials

In this section a comparison of the proposed fifth-order and seventh-order polynomials is
performed; i.e., the acceleration-constrained and the jerk-constrained trajectories. The trajec-
tory regarding the CoG movement in the y-axis is shown in Fig. 4.15. Figure 4.16, shows the
swing trajectory in the z-axis of the right foot.

From figures 4.15 and 4.16, it can be seen that although the acceleration-constrained
and the jerk-constrained trajectories are similar, the inclusion of higher degree terms in the
polynomial function has a severe impact when removing the acceleration discontinuities in
Figs. 4.5 and 4.7. In this manner, the internal destabilizing forces can be reduced. See Eqns.
(4.1) and (4.5).
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Figure 4.15: y-axis CoG trajectories

Figure 4.16: z-axis swing trajectory of the right foot



Chapter 5

Conclusions and Future Work

5.1 Conclusions
In regards to the humanoid kinematics, the following achievements and observations where
made:

• This dissertation has presented an analytical, omnidirectional, and closed-form solu-
tion for the lower limb kinematics for the small-sized humanoid robot NAO. The kine-
matics are analytical in the sense that the Denavit-Hartenberg matrix concatenations
rather than a pure geometrical procedure han been used; this allowed for the position
and orientation terms to be mathematically determined. Because the kinematic equa-
tions allow for the humanoid to go forwards, sideways and to perform a turn-in place
motion, they are omnidirectional. Finally, because there are no iterative approaches, the
kinematics are also in a closed-form.

• This study has determined the direct and inverse kinematics, as well as the forward
and reverse kinematics for the swing phase and the support phase. Here, the end-
effector coordinates were calculated for an specific set of joint angles (direct kinema-
tics), and the joint angles were calculated for a set of end-effector coordinates (inverse
kinematics). In the forward kinematic analysis, the position and orientation of the robot
hips were described as seen by the ankle, allowing for the body of the humanoid to be
moved. In the reversed kinematic analysis, the ankle was described as seen by the hips,
allowing for the foot to be moved across the air in the swing phase. The forward and
reversed kinematic analysis allowed to avoid the matrix inversion operations which
add mathematical complexity to the inverse kinematic equations.

• In this work, the position and orientation equations have been solved separately by
taking advantage of the fact that the robot leg has three joint axes intersecting at the end-
effectors (either the ankle or the hips). In the forward kinematic analysis, the kinematic
chain of the robot leg was solved up to the location of the hips without considering
the movement of the hip joints, allowing for the position matrix concatenations to be
obtained. After that, the orientation matrix concatenations were obtained by a kinematic
chain analysis which considered only the hip joints. That is, the forward kinematic
analysis, uses the joints of the ankle and the knee as position parameters; while the
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joints of the hips, are used as orientation parameters. A similar approach was followed
in the reversed kinematic analysis, where the joints of the hips and the knee were used
as position parameters, meanwhile the joints of the ankle, as orientation parameters.

• The inclusion of the joint order used in the triangular geometrical analysis within
the DH procedure helped to compact the position equations analytically. The constant
matrix transformations were crucial for this task because they allowed for the joint
coordinate systems in the matrix concatenations to be aligned in exactly the same order
and orientation as they would have had in a purely the geometrical analysis.

• Furthermore, the DH parameters were redefined and constrained in order to include the
hip-yaw-pitch joint, which is an articulation which is shared among both of the legs and
the hips; this method allowed for obtaining the solutions for the turn-in-place rotation
in an analytical manner. This procedure was carried out in the forward kinematic analy-
sis. Here, the position parameters such as the joint angles of the ankle and the knee,
were constrained to be equal to zero because they do not interfere with the turn-in-place
orientation analysis. In addition, the hip roll actuation was also set to zero because the
coupling only takes place in the yaw and pitch movements at the hip. After this, the
procedure consisted in matching a general Euler’s angle matrix concatenation to the
kinematic forward chain analysis which included the hip yaw-pitch (the coupled joint)
in order to solve for a hip pitch compensation to cancel the unwanted pitch movement.

• The insertion of constant coordinate systems allowed for the navigation and the end-
effector coordinate systems at the ankle and hips to be aligned with each other. In
addition, the end-effector reference system corresponding to the turn-in-place analysis,
is also aligned with the navigation coordinate system. This method, allowed for the
terms in the position and orientation matrix concatenations to match mathematically in
order to be equated directly and easily.

• The simple 3D geometric approach allowed for the singularities to be avoided regar-
ding the maximum possible humanoid step. The analysis was constructed from a trian-
gle which was formed by considering the height of the robot hips, the maximum length
of the leg when is fully stretched, and the size of the step. For a desired step size,
the hips of the robot have to be lowered so that the swing leg is able to reach the soil.
The workspace for a humanoid step is then described mathematically by the resulting
formulas.

In regards to the trajectory planning for humanoids, the following achievements and
observations where made:

• This dissertation has analyzed fifth-order and seventh-order polynomials to cancel the
acceleration and jerk of the center of gravity when the robot is standing on a single
foot, which is in fact, the most unstable stage of humanoid walking.

• These polynomials also removed the acceleration and jerk at foot landing, thus, redu-
cing the foot-to-ground impact to contribute to robot equilibrium. Unlike cycloidal
functions, polynomial trajectories do not have infinite derivatives at the start and stop
points, so that the foot can reach the soil smoothly.
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• It has been shown that although fifth-order polynomials can prevent the acceleration
disturbances during the single support phase and foot landing, the sudden modifications
in the function shape produces abrupt changes in acceleration which can degrade
stability. However, by using seventh-order polynomials; i.e., considering jerk restric-
tions, the sudden changes in acceleration can be reduced. As the force is proportional
to the mass and to the acceleration, by cancelling of the acceleration discontinuities, the
force discontinuities are also eliminated.

• From the presented graphical analysis, it can be concluded that despite the similari-
ties between the fifth-order and seventh-order polynomial trajectories, the inclusion of
higher-order terms has a great impact in the smoothness of the acceleration profiles. In
Addition, polynomial trajectories allowed for the allocation of a rest time, contributing
to human-like step movement.

5.2 Contrast of the Related Work in Humanoid Kinematics
and Trajectory Planning

To achieve the results in this dissertation, the related work has been crucial in the generation
of new ideas; for example, the work provided by Donald Lee Pieper in [Pieper (1968)], has
made possible to conceive the idea of the decoupling of position and orientation of a kinematic
chain. Although the problem of humanoid robotic limbs is not addressed in his PhD thesis,
the general idea was able to be applied to the lower limbs of humanoid NAO because the legs
have intersecting rotational axis at the end-effectors located and the ankle and hips. The work
done by Colin Graf in [Graf et al. (2009)] helped to realize that the geometry of the humanoid
leg of NAO could be analyzed by matching the geometry of a triangle with the angles formed
by the hip, the knee and the ankle. In the cited work, the position analysis was carried out from
a pure geometrical point of view. However, in the dissertation presented here, this geometry
was inserted into the Denavit-Hartenberg analysis, which allowed to manage the position and
orientation equations from a pure analytical point of view, thus, simplifying the kinematic
solutions. One of the most important related works, has been the one developed by Hyungju
Andy Park in [Park et al. (2012)] which decoupled the position and orientation kinematic
equations. To achieve this, they have analyzed the kinematic chain of a humanoid leg in
two directions: the forward and the reversed. However, they still had to implement decision
equations and some matrix inversion operations, adding complexity to the solutions. In the
present dissertation, the matrix inversion operations were able to be completely avoided. The
inverse kinematics procedure provided by Nikolaos Kofinas in [Kofinas et al. (2014)] makes
use of the entire kinematic chain of the leg of the robot NAO, leading to solutions which are
not explicit. In the present dissertation, we only have two base reference systems: the one
situated at the ankle (which depends on the x, y, z coordinates), and the one located at the
hip, (which depends on the xs, ys, zs coordinates). Although the work presented by [Kaneko
et al. (2019)] was presented after the publication of the work presented by Alejandro Said
in [Said et al. (2015)], it is important to notice that they have addressed the problem of the
limited range of actuation of the ankle joints by redesigning them to perform more human-like
tasks. It was mentioned in Chapter 3, Section 3.5 that the workspace for humanoid step has
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principally reduced by the limited actuation range of the ankle joints.
The work presented by Shuuji Kajita in [Kajita et al. (2002) and Kajita et al. (2003)],

present a walking patter generator based on a simplified model regarding an inverted pendu-
lum. The model is based in differential equations which have sinusoidal solutions dependable
of the initial conditions (see also [Graf and Röfer (2010)]). With this model, humanoids have
demonstrated to walk very fast, so it is the preferred choice for soccer games. However, the
limitation in the step size is the mayor drawback, since sinusoidal trajectories do not provide
for a rest stance lapse to perform large steps. In this dissertation, polynomial trajectories are
proposed which provide for sufficient rest time to perform a large step. The work presented
by Ill-Woo Park in [Park et al. (2006b)] 3rd order polynomials and cycloidal functions are
proposed for the CoM and swing-foot trajectories, respectively. However, in this dissertation
it has been demonstrated that polynomials which do not contemplate jerk constraints, tend
to have acceleration discontinuities affecting the balance of the robot. Similarly, although
cycloidal functions are simple to implement (see also [Mandava and Vundavilli (2016)]), they
limit the velocity of the swing-foot since they have infinite derivatives at the start and stop
points, which may produce foot-to-ground impacts. The jerk-constrained trajectories in this
dissertation do provide for mathematical certainty regarding the acceleration limitation (and
thus velocity), of the swing foot. In the work presented by Colin Graf in [Graf et al. (2009)], a
mixture of a sinusoid, a triangular function, and the square root of a sinusoid have been used
as a walking pattern generator. For the swing foot trajectory, they have proposed a cosine
function (as it was also proposed in [Li et al. (2017)]); however, in the case of the mixture
of functions, mathematical certainty is unavailable, while when using cosine functions with a
rest time, mathematical acceleration discontinuities are present.

5.3 Future Work

5.3.1 Static Control Model for Humanoid Equilibrium
A static control model approach for humanoid equilibrium is useful because it provides a
simple idea about the control strategy at small waking speeds because the inertial forces and
ground perturbations are neglected. This model can be represented by Figure 5.1.

In the static double inverted pendulum model of Figure 5.1, q1 represents the ankle angle,
q2 is the hip angle, m1 is the mass of both legs, m2 is the mass of the torso (including head,
arms and shoulders), L1 is the length of the legs (measured from the ground to the hips; i.e,
neglecting the foot height), Lc1 is the distance from the ground to the center of mass of the
legs, Lc2 is the distance from hips to the center of mass of the torso. The hip control strategy
is assumed to be able of being applied to both: the sagittal and frontal planes; i.e. the ankle
and hip angles can use rather the pitch or roll joints according to the plane being considered.
Here, the hip control strategy refers to the ability of the system to compensate equilibrium
perturbations by manipulating the hip joint angles; thus, modifying the torso inclination.
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Figure 5.1: Static control model based on the double inverted pendulum with a hip strategy
control

5.3.2 Dynamic Control Model for Humanoid Equilibrium with Ground
Perturbations

The Inertial Measure Unit IMU is a device capable of sensing the tilt of a humanoid robot.
Assuming the robot does not take off both feet at the same time, a tilt reading may be caused
by the actuation of the joints of the lower limbs or by the ground perturbations. Commonly,
an IMU comprises a collection of gyroscopes and accelerometers, which can provide velocity
and acceleration readings respectively. Position readings are also possible by using estimation
algorithms. These readings can be used to achieve a corrective action in the ankle and hip
joints of the robot against ground perturbations. Here, the knee joints are not used, because
they are only useful in the sagittal plane, whereas the goal is to design a universal controller
which is useful in both planes: sagittal and frontal.

The robot inclination, can be modeled including a rotation of the robot about the ground,
under the assumption that the foot height is negligible, as can be seen in Fig. 5.2. Because the
IMU is located in the chest of the NAO robot, the IMU angle reading qm includes the angle of
inclination of the ground qg, the angle of the ankle q1 and the angle of the hip q2, as shown by
Eq. 5.1.

qm = qg + q1 + q2 (5.1)

To estimate the angle of the ground, Eq. 5.2 has to be considered.

qg = qm − (q1 + q2) (5.2)



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 75

L1

Lc2

Lc1

m2

m1

q1

𝜏1

q2

qg

qg

qm

x

y

Figure 5.2: Dynamic control model based on the double inverted pendulum with a hip and
ankle strategy control



Appendix A

Background Theory

In this section, the mathematical fundamentals necessary to understand the work in this disser-
tation are reviewed. The background theory regarding the direct and inverse kinematics as
well as the trajectory planning are revised.

A.1 Manipulator Kinematics
Information in the following section can be found in [Craig (2005)]. The kinematics is the
science which analyzes the movement without considering the forces that causes it. To under-
stand the complicated geometry of the manipulator, typically, frames are added to the parts of
the mechanism and then relations among the frames are described. The central topic, is the
calculus of the position and orientation of the end-effector relative to the base, as a function
of the variables of the articulations.

A manipulator can be considered as a set of links connected into a chain-like form by
means of articulations. Generally, the articulations are designed to have only one degree of
freedom, but they can be modeled as n articulations with a single degree of freedom if they
have n degrees of freedom.

The links are named from the stationary base which can be named link 0. The first
mobile link is named link 1, and so on up to link n. To locate an end-effector into the 3D
space, six degrees of freedom are required as a minimum.

Figure A.1 shows the line mutually perpendicular over which the distance ai−1 of the
link is measured. The torsion of link i − 1, i.e., αi−1 can be measured by projecting axes
i− 1 and i into a plane whose normal direction is over the line ai−1 and estimating the angle
between such projections using the right-hand rule from axis i − 1 towards axis i. In the
especial case of having perpendicular axes, the torsion is measured in the plane containing
both axes, but the sign of αi−1 is lost. If so, we are free to choose the sign of αi−1 arbitrarily.

The signed displacement over the i axis is called di, and it is variable if the articulation
i is prismatic. The angle of the articulation θi, describes the amount of rotation over the i axis
between link ai−1 and ai.

In the case of an angular articulation, θi is variable and the other parameters are fixed.
There exists a convention to assign these quantities called the Denavit-Hartenberg conven-
tion.

76
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Figure A.1: Link and articulation nomenclature

A.1.1 Direct Kinematics
The information in the following subsection can be found in [Craig (2005)]. To be able to
describe the location of each of the links and their adjacent links, we define a frame for each
link. The chosen convention is defined as follows: The Ẑ axis of the frame i, called Ẑi, is
coincident with the articulation i axis. The origin of frame i is located where the perpendicular
line ai intersects with the axis of articulation i. X̂i is directed towards ai from articulation i to
articulation i+1. We define αi by measuring it in the sense of the right-hand rule over the X̂i.
Axis Ŷi is chosen to follow the right-hand rule to complete the i-th frame. Figure A.2 shows
the location of frames i− 1 and i for a general manipulator.

If the frames are assigned according to the Denavit-Hartenberg convention, the follow-
ing definitions are valid:

• ai = The distance from Ẑi to Ẑi+1 measured along X̂i.

• αi = The angle from Ẑi to Ẑi+1 measured along X̂i.

• di = The distance from X̂i−1 to X̂i measured along Ẑi.

• θi = The angle from X̂i−1 to X̂i along Ẑi.

Generally, we chose ai > 0; however, αi, di and θi are quantities with sign. The conven-
tion used in here, does not represent the only way to assign frames to the links. First of all,
when we align Ẑi with the articulation i axis, there are two possible directions in which Ẑi
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Figure A.2: Frame convention

could be pointing. Even more, in the case of having two intersecting articulation axes (i.e.,
ai = 0) there are two options to chose of the direction of X̂i.

As an example, Figure A.3 can be considered. It shows a planar arm comprised of three
links. As the all articulations are angular, it is known as a RRR mechanism. We start by
defining the reference frame, which it is called frame {0}. This frame is fixed to the base and
it is aligned with the frame {1} when the first articulation variable is θ1 is zero. Axis Ẑ0 is
aligned with the articulation 1. As the arm is located into a plane, all axes Ẑ are parallel and
all di are zero. When all articulations are set in zero degrees, all axes X̂ must be aligned.
Table A.1.1 shows the link parameters.

Table A.1: Link parameters of a 3DOF mechanism

i αi−1 ai−1 θi di

1 0 0 θ1 0

2 0 L1 θ2 0

3 0 L2 θ3 0

If it is desired to build the transformation which defines frame {i} relative to frame
{i− 1}, then, each one of these transformations will be a function on only one parameter and
simple enough so it can be written by inspection, as shown by Eq. (A.1).
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Figure A.3: Frame assignment

i−1
i T = RX(αi−1)DX(ai−1)RZ(θi)DZ(di) (A.1)

Carrying out the multiplication in Eq. (A.1) the general form of i−1i T is shown in Eq.
(A.2).

i−1
i T =


Cθi −Sθi 0 ai−1

SθiCαi−1 CθiCαi−1 −Sαi−1 −Sαi−1di
SθiSαi−1 CθiSαi−1 Cαi−1 Cαi−1di

0 0 0 1

 (A.2)

Once all frames and link parameters have been defined, the link transformations can be
multiplied to find the relation of frame {N} to frame {0}, as shown in Eq. (A.3).

0
NT = 0

1T
1
2T

2
3T . . .

N−1
NT (A.3)

A.1.2 Inverse Kinematics
Information in this subsection is taken from reference [Craig (2005)]. Here, the problem of
finding the set of variables which accomplish a given position and orientation of the end-
effector is addressed. The resulting equations are not-linear and transcendental, so they are
difficult to solve. Given the numeric value of 0

NT , we try to find values for θ1, θ2,...,θN . We
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must worry about the existence of the solutions, the case of multiple solutions and the solving
method.

The workspace is defined as the volumetric space in which is possible to drive the end-
effector. In order for the existence of a solution, the destiny location must relay into the
workspace. There are tow kinds of workspace: the dexterous and the reachable workspace.
The dexterous workspace refers to the space that the end-effector can reach with all possible
orientations. The reachable workspace is the space that the end-effector can reach with at least
one orientation.

Another possible problem is having multiple solutions because the system has to be
prepared to chose one. The criteria over the decision of taking one to other solution vary,
but a wise solution would be to chose the closest one. The presence of obstacles would
imply choosing the farthest solution. The physical limitations of the real articulations can
also be a problem; for example, the workspace of a robot can be limited when their rotational
articulations can not rotate up to 360 degrees.

Unlike linear equations, there are no general algorithms that can be applied to solve a
set of non-linear equations. The solutions of those equations can be divided into tow groups:
Analytic (closed-form solutions) and numeric. In the case of multiple solutions, the numerical
methods do not guarantee the finding of all the solutions; and because of their iterative nature,
the numeric solutions are slower. Consider that an analytic solution is the one which is based
on polynomial form with the need of no iteration. The analytic solutions can be sub-divided
into two methods: the algebraic and the geometric. They are similar in the sense that the
geometric approach make use of algebraic expressions. Only in special cases, the robots
with six degrees of freedom can be solved analytically. One sufficient condition so that the
manipulator has a solution in a closed form, is that three adjacent axes intersect in one point.

As an example, consider the manipulator in Fig. A.3. The link parameters can be used
to find the kinematic equation of this arm, as shown by Eq. (A.4).

0
3T =


C123 −S123 0.0 l1C1 + l2C12

S123 C123 0.0 l1S1 + l2S12

0.0 0.0 1.0 0.0
0 0 0 1

 =


Cφ −Sφ 0.0 x
Sφ Cφ 0.0 y
0.0 0.0 1.0 0.0
0 0 0 1

 (A.4)

If we want to use the analytic method, then four on-linear equations are obtained from
Eq. (A.4) which must be solved (see Eqns. (A.5) to (A.8)). Here, C123 stands for cos(θ1 +
θ2 + θ3). A similar situation is suggested for the additional terms.

Cφ = C123 (A.5)

Sφ = S123 (A.6)

x = l1C1 + l2C12 (A.7)
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y = l1S1 + l2S12 (A.8)

Squaring and adding Eqns. (A.7) and (A.8), we have:

x2 + y2 = l21 + 122 + 2 l1 l2C2 (A.9)

Solving for C2 in Eq. (A.9):

C2 =
x2 + y2 − l21 − 122

2 l1 l2
(A.10)

Assuming that the destiny is within the workspace, S2 can be calculated as:

S2 =
√
1− C2

2 (A.11)

At last, θ2 can be obtained as indicated by Eq. (A.12), where atan2 is the inverse
tangential function of two arguments.

θ2 = atan2(S2, C2) (A.12)

After solving θ2 we can write:

x = k1C1 − k2S1 (A.13)

y = k1S1 − k2C1 (A.14)

k1 = l1 + l2C2 (A.15)

k2 = l2S2 (A.16)

Performing a change of variable:

r = +
√
k21 + k22 (A.17)

γ = atan2(k2, k1) (A.18)

k1 = r cos(γ) (A.19)
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k2 = r sin(γ) (A.20)

The Equations (A.13) and (A.13) can be written as:

x

r
= cos(γ) cos(θ1)− sin(γ) sin(θ1) (A.21)

x

r
= cos(γ) sin(θ1) + sin(γ) cos(θ1) (A.22)

Therefore,

cos(γ + θ1) =
x

r
(A.23)

sin(γ + θ1) =
y

r
(A.24)

Using the two-argument inverse tangential function:

γ + θ1 = atan2
(y
r
,
x

r

)
= atan2(y, x) (A.25)

Therefore,

θ1 = atan2(y, x)− atan2(k2, k1) (A.26)

Finally we can solve for θ3 from:

θ1 + θ2 + θ3 = atan2(Sφ, Cφ) = φ (A.27)

In regard to the geometric method, we seek to decompose the spatial geometry of the
arm in several sub-problems of plane geometry. As an example, look at Fig. (A.4) where a
3DOF arm is shown. Here, the figure shows the triangle formed by L1, L2 and a line which
binds the frame {0} with the origin of the frame {3}. The dotted lines represent another
possible configuration that leads to the same position. Considering the solid triangle, we can
apply the cosine law and solve for θ2 as shown in Eq. (A.28). Now, cos(180+θ2) = − cos(θ2)
and obtain Eq. (A.29).

x2 + y2 = L2
1 + L2

2 − 2L1L2 cos(180 + θ2) (A.28)
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C2 =
x2 + y2 − L2

1 − L2
2

2L1L2

(A.29)

Figure A.4: Planar geometry associated with a 3 DOF robot

In order for the triangle to exist, the distance to the destiny point
√
x2 + y2 must be less

or equal to the sum of the dimensions of L1 + L2. A computer software should check this
issue. The other possible solution, can be found by symmetry when θ′2 = −θ2.

β = atan2(y, x) (A.30)

Again, we apply the cosine law to find ψ.

cos(ψ)
x2 + y2 + L2

1 − L2
2

2L1

√
x2 + y2

(A.31)

θ1 = β ± ψ (A.32)

We know that the angles in a plane are summed, that is why the orientation of the tool
is given by θ1 + θ2 + θ3.
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A.2 Trajectory Planning
The theory in the following subsection is taken from [Spong et al. (2006)]. A path from qinit
to qfinal is defined as a continuous map. A trajectory is a function of time q(t) such that
q(t0) = qinit and q(tf ) = qfinal, where q(t) could be referred to an angular or a Cartesian
position (according to the particular case). Since the trajectory is parameterized by time, we
can compute velocities and accelerations along the trajectories by differentiation.

A path planning algorithm will give only a sequence of points. In some cases, paths
are specified by giving a sequence of end-effector poses; in this case, the inverse kinematics
solution must be used to convert this to a sequence of joint configurations. A common way to
specify paths for industrial robots is to physically lead the robot through the desired motion
with a teach pendant: If no obstacles are present, the manipulator is essentially unconstrained:
it is often the case that a manipulator motion can be decomposed into segments consisting of
free motions, shown in Fig. A.5. During the free motion, the manipulator can move very fast
since no obstacles are nearby. In some cases, there may be constraints on the trajectory (e.g.
the robot must start and end with zero velocity). Nevertheless, it is easy to realize that there
are infinitely many trajectories that will satisfy a finite number of constraints on the endpoints.
It is common practice to choose trajectory from a finitely parameterizable family, for example,
polynomials of degree n, with n dependent constraints to be satisfied.

Figure A.5: Free motion

As described above, the problem here is to find a trajectory that connects an initial to a fi-
nal configuration while satisfying other specified constraints (e.g. velocity and/or acceleration
constraints).

Supposing that at time t0 the joint variable satisfies

q(t0) = q0 (A.33)

q̇(t0) = v0 (A.34)
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and we wish to attain the values at tf

q(tf ) = qf (A.35)

q̇(tf ) = vf (A.36)

Figure A.6 shows a suitable trajectory for this motion. In addition, we may wish to
specify the constraints on initial and final accelerations. In this case we have two additional
equations.

q̈(t0) = α0 (A.37)

q̈(tf ) = αf (A.38)

Figure A.6: Joint Space Trajectory

A.2.1 Cubic Polynomial Trajectories
Suppose that we wish to generate a trajectory between two configurations, and that we wish to
specify the start and end velocities for the trajectory. One way to generate a smooth curve such
as that shown in Figure A.6 is by a polynomial function of t. if we have four constraints to
satisfy, such as (A.33) to (A.38), we require a polynomial with four independent coefficients
that can be chosen to satisfy the constraints. Thus, we consider a cubic trajectory of the form

q(t) = a0 + a1t+ a2t
2 + a3t

3 (A.39)
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Then the desired velocity is given as

q̇(t) = a1 + 2a2t+ 3a3t
2 (A.40)

Combining Eqns. (A.39) and (A.40) with four constraints yields four equations and four
unknowns.

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (A.41)

v0 = a1 + 2a2t0 + 3a3t
2
0 (A.42)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (A.43)

vf = a1 + 2a2tf + 3a3t
2
f (A.44)

These four equations can be combined into a single matrix equation


1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f



a0
a1
a2
a3

 =


q0
v0
qf
vf

 (A.45)

It can be shown that the determinant for the coefficient matrix in Eq. (A.45) always has a
unique solution provided a nonzero time interval is allowed for the execution of the trajectory.

Writing Eq. (A.45) as

Ma = b (A.46)

The solution can be computed as

a = M−1b (A.47)

As an illustrative example, we may consider the special case that the initial and final
velocities are zero (i.e., v0 = 0 and vf = 0). Suppose we take t0 = 0 and tf = 1. Thus, we
want to go from the initial position q0 to the final position qf in 1 second, Then we obtain Eq.
A.48.
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1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3



a0
a1
a2
a3

 =


q0
0
qf
0

 (A.48)

Equation (A.48) can be solved to yield

a0 = q0 (A.49)

a1 = 0 (A.50)

a2 = 3(qf − q0) (A.51)

a3 = −2(qf − q0) (A.52)

The required cubic polynomial function is therefore

qi(t) = q0 + 3(qf − q0)t2 − 2(qf − q0)t3 (A.53)

Figure A.7 shows this trajectory with q0 = 10◦ and qf = −20◦. The corresponding
velocity and acceleration curves are given as well.

Figure A.7: (a) Cubic polynomial trajectory (b)Velocity profile (c) Acceleration profile
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A.2.2 Quintic Polynomial Trajectories
As can be seen in Fig. A.7, a cubic trajectory gives continuous positions and velocities at
the start and finish points, but is admits accelerations discontinuities. The derivative of the
acceleration is called the jerk. A discontinuity in acceleration leads to an impulsive jerk,
which may excite vibrational modes and reduce tracking accuracy. For this reason, one may
wish to specify constraints on the acceleration as well as on the position and velocity. In this
case, we have six constraints (one each for initial and final configurations, initial and final
velocities, and initial and final accelerations). Therefore, we require a fifth order polynomial

q(t) = a0 + a1(t) + a2(t)
2 + a3(t)

3 + a4(t)
4 + a5(t)

5 (A.54)

Considering the initial conditions, such as the initial position q(t0), the initial velocity
v(t0), and the initial acceleration α(t0); as well as the final conditions, such as the final posi-
tion q(tf ), the final velocity v(tf ), and the final acceleration α(tf ); and writing the appropriate
number of derivatives, we obtain the Eqns. in (A.55); where t0 and tf refer to the initial and
final time.

q(t0) = a0 + a1(t0) + a2(t0)
2 + a3(t0)

3 + a4(t0)
4 + a5(t0)

5

v(t0) = a1 + 2a2(t0) + 3a3(t0)
2 + 4a4(t0)

3 + 5a5(t0)
4

α(t0) = 2a2 + 6a3(t0) + 12a4(t0)
2 + 20a5(t0)

3

q(tf ) = a0 + a1(tf ) + a2(tf )
2 + a3(tf )

3 + a4(tf )
4 + a5(tf )

5

v(tf ) = a1 + 2a2(tf ) + 3a3(tf )
2 + 4a4(tf )

3 + 5a5(tf )
4

α(t0) = 2a2 + 6a3(tf ) + 12a4(tf )
2 + 20a5(tf )

3

(A.55)

Equations in (A.55) can be written in matrix form as shown in Eq. (A.56).


1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f




a0
a1
a2
a3
a4
a5

 =


q0
v0
α0

qf
vf
αf

 (A.56)

Figure A.8 shows a quintic polynomial trajectory with q(0) = 0, q(2) = 20 with zero
initial and final velocities and accelerations.
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Figure A.8: (a) Quintic polynomial trajectory (b)Velocity profile (c) Acceleration profile



Appendix B

The Jacobian in Robotics

B.1 Inverse Kinematics Iterative Technique based in the Ja-
cobian

As shown in [Jazar (2010)], the inverse kinematics problem can be interpreted as searching
for the solution qk of a set of non-linear algebraic equations

0Tn = T (q) =0 T1(q1)
1T2(q2)

2T3(q3)
3T4(q4) · · · n−1Tn(qn)

The most common iterative method is the Newton-Raphson method. For variables q, we
start with an initial guess q∗ for the joint variables.

q∗ = q + δq

Using the forward kinematics, we can determine he configuration of the end-effector for
the guessed joint variables.

T ∗ = T (q∗)

The difference between the configuration calculated with the forward kinematics and
the desired configuration T represents an error δT , which must be minimized.

δT = T − T ∗

A first Taylor expansion of the set of equations is:

T = T (q∗ − δq) = T (q∗) +
∂T

∂q
δq + O(δq2)

90
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Assuming δq � I allows for working with a set of linear equations

δT = Jδq

Where J is the Jacobian matrix of the set of equations. The change in the joint variables
can be written as

δq = J−1δT

Therefore, the unknown variables q are:

q = q∗ + J−1δT

Which can be used as a new approximation to converge to a solution

q(i+1) = q(i) + J−1(q(i)) δT (q(i))
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