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We study the dynamical response of an asymmetric forced, dampedHelmholtz-Duffing oscillator by using Jacobi elliptic functions,
the method of elliptic balance, and Fourier series. By assuming that the modulus of the elliptic functions is slowly varying as a
function of time and by considering the primary resonance response of theHelmholtz-Duffingoscillator, we derived an approximate
solution that provides the time-dependent amplitude-frequency response curves.The accuracy of the derived approximate solution
is evaluated by studying the evolution of the response curves of an asymmetric Duffing oscillator that describes the motion of
a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use
the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory
amplitudes.

1. Introduction

Since most of the nonlinear differential equations that char-
acterized the motion of several physical systems do not
have closed-form solution, we have to use numerical or
perturbation techniques to study the dynamical response of
these systems. However, most of the perturbation techniques
such as multiple scales, averaging, and harmonic balance, to
say a few, focus on only the determination of steady-state
approximate solutions because of the complexity involved in
finding transient solutions of nonlinear differential equations
[1, 2].

The aim of this paper is to investigate the influence on
the dynamical behavior of the transient and steady-state
solutions of the system

�̈� + 2]�̇� + 𝐴𝑥 + 𝐵𝑥

2
+ 𝜀𝑥

3
= 𝐹 cos (𝜔

𝑓
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close to the primary resonance region. Here, 𝑥 denotes the
displacement of the system, 𝐴 is the natural frequency, ]
is the damping coefficient, 𝜀 is a dimensionless nonlinear
parameter, 𝜔

𝑓
is the driving frequency, 𝑡 is the running time,

𝐹 is the amplitude of the driving force, and 𝐵 is a system
parameter. To solve the homogeneous Helmholtz-Duffing
oscillator for which 𝐹 = 0 in (1), Hu used the harmonic
balancemethod to calculate the first-order approximations to
the periodic solutions of this equation [3]. Belhaq and Lakrad
used the harmonic balancemethod involving Jacobian elliptic
functions to obtain the approximate solution of (1) by taking
] = 0 and 𝜔

𝑓
= 0 [4]. Tamura [5] and Hu [6] developed

the exact solution of a quadratic nonlinear oscillator that is
part of (1) by using an elliptic function. Cao and coworkers
investigated in [7] the various symmetry breaking phenom-
ena associated with the Helmholtz-Duffing oscillator (1) in
the case for which 𝐵 = 1 − 𝜀 and for different values of the
so-called symmetric parameter 𝜀. They also used the second-
order averaging method to investigate its local bifurcation
behavior. By considering a rational form elliptic solution to
(1) when 𝐹 = 0, Eĺıas-Zúñiga derived its analytical solution
which is similar in form to that of its exact solution when
] = 0 [8].

Recently, Kovacic and coworkers studied the primary
resonance response of (1) by applying the harmonic bal-
ance method and derived nonlinear algebraic equations for
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the steady-state system response [9], while Jeyakumari et al.
analyzed how the potential well of an asymmetric Duffing
oscillator affects the vibrational resonance response [10].

Here the approximate solution of (1) is derived by
taking into account the transient and the steady-state
responses without the simplifications regarding undamped
and unforced system included in previously developed solu-
tions such as [4, 6]. The approximate solution is based
on trigonometric and Jacobi elliptic functions with slowly
varying parameters that will help us to obtain amplitude-
frequency response curves that evolve with time. Then, the
influence of the nonlinear transient responses is investigated
since recent studies show that transient vibrations can not
only provide additional information to fully predict the
system stable behavior [11], but also can be used to predict
the system overshoot value [12, 13].The determination of this
value is of practical interest in understanding the importance
of time in controlling the dynamical behavior of oscillatory
systems [14, 15] therefore, the percentage overshoot value
will be computed by considering the influence of the system
parameters such as nonlinear and damping effects.

In the next section, the approximate general solution of
(1) is derived by using Jacobi elliptic functions.

2. Approximate Solution

In order to obtain the general solution of (1) in the region
of the primary resonance, we will consider that this equation
can be written in equivalent form as
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where cn(𝜔
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a period in 𝜔
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elliptic integral of the first kind for the modulus 𝑘
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[16, 17].

Note that 0 ≤ |𝑘

2

𝑓
| < 1 must hold, and when the modulus

of cn(𝜔
𝑓
𝑡, 𝑘

2

𝑓
) is zero, then cn(𝜔

𝑓
𝑡, 𝑘

2

𝑓
) and the trigonometric

function cos(𝜔
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we make the assumption that (2) has an approximate general
solution of the form
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order are small enough to be ignored [18]. Also, for simplicity,
we will use the following notation cn
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for the functions sn and dn. Thus, substitution of (3) into (2)
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in which the following identities sn2 + cn2 = 1 and dn2 +
𝑘

2

𝑗
sn2 = 1 have been used [19].
Notice that (4) depends on elliptic functions with differ-

entmodulus. To simplify (4), we first compute its averagewith
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+ (higher harmonics) = 0.

(10)

Since our original system (1) is subjected to a driving force of
sinusoidal type, then the modulus 𝑘

𝑓
≡ 0 and the following

identities hold: cn
𝑓
= cos

𝑓
, sn
𝑓
= sin
𝑓
, 𝐼
𝑓
= 1/2, 𝐻

1
= 1,
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and𝐻

2
= 1. If we also assume that 0 < |𝑘

2

1
| < 1/2, then, from

(A.1), 𝐼
1
≃ 1/2 and (6) becomes exactly the same as (8). This

provides the following simplifications for (10):

cos𝜑
1
[𝐴𝑐 +

3

4

(𝜀𝑐

3
− 2𝜔

2

1
𝑘

2

1
𝑐) + 2𝑏𝐵𝑐

+ 3𝑏

2
𝜀𝑐 +

3

2

𝜀𝑐 (𝐷

2

1
+ 𝐷

2

2
) − 𝜔

2

1
𝑐

+ 2𝑘

2

1
𝜔

2

1
𝑐 + 2] ̇𝑐 + ̈𝑐] − 2𝜔

1
sin𝜑
1 [
]𝑐 + ̇𝑐]

+

1

4

cos 3𝜑
1
[𝜀𝑐

3
− 2𝜔

2

1
𝑘

2

1
𝑐]

+ (higher harmonics) = 0,

cos
𝑓
[−𝐹 + 𝐴𝐷

1
+ 2𝑏𝐵𝐷

1
+ 3𝑏

2
𝜀𝐷

1
+

3

2

𝜀𝑐

2
𝐷

1

− 𝜔

2

𝑓
𝐷

1
+ 3𝜀𝐷

1
𝐷

2

2
+ 2]𝜔

𝑓
𝐷

2

+

3

4

(𝜀𝐷

3

1
− 3𝜀𝐷

1
𝐷

2

2
)]

+ sin
𝑓
[𝐴𝐷

2
+ 2𝑏𝐵𝐷

2
+ 3𝑏

2
𝜀𝐷

2

+

3

2

𝜀𝑐

2
𝐷

2
− 𝜔

2

𝑓
𝐷

2
+ 𝜀𝐷

3

2

− 2]𝜔
𝑓
𝐷

1
−

1

4

(𝜀𝐷

3

2
− 3𝜀𝐷

2

1
𝐷

2
)]

+ (higher harmonics) = 0.

(11)

We then follow the harmonic balance procedure and
ignore higher harmonics terms in (11), to find the following
expressions:

𝐴𝑐 +

3

4

(𝜀𝑐

3
− 2𝜔

2

1
𝑘

2

1
𝑐) + 2𝑏𝐵𝑐 + 3𝑏

2
𝜀𝑐

+

3

2

𝜀𝑐 (𝐷

2

1
+ 𝐷

2

2
) − 𝜔

2

1
𝑐 + 2𝑘

2

1
𝜔

2

1
𝑐 + 2] ̇𝑐 + ̈𝑐 = 0,

(12)

− 𝐹 + 𝐴𝐷

1
+ 2𝑏𝐵𝐷

1
+ 3𝑏

2
𝜀𝐷

1
+

3

2

𝜀𝑐

2
𝐷

1
− 𝜔

2

𝑓
𝐷

1

+

3

4

𝜀𝐷

1
𝐷

2

2
+ 2]𝜔

𝑓
𝐷

2
+

3

4

𝜀𝐷

3

1
= 0,

(13)

𝐴𝐷

2
+ 2𝑏𝐵𝐷

2
+ 3𝑏

2
𝜀𝐷

2
+

3

2

𝜀𝑐

2
𝐷

2
− 𝜔

2

𝑓
𝐷

2

+

3

4

𝜀𝐷

3

2
− 2]𝜔

𝑓
𝐷

1
+

3

4

𝜀𝐷

2

1
𝐷

2
= 0,

(14)

𝜀𝑐

3
− 2𝜔

2

1
𝑘

2

1
𝑐 = 0, (15)

]𝑐 + ̇𝑐 = 0. (16)

Notice that the variable 𝑐 may be determined by integration
of (16); this yields

𝑐 (𝑡) = 𝐶 exp (−]𝑡) , (17)

where 𝐶 is a constant of integration. Substitution of (17) into
(8), as well as (12)–(15), yields

−

𝐷

2

2

2

(𝐵 + 3𝑏𝜀) = 𝐴𝑏 + 𝑏

2
𝐵 + 𝑏

3
𝜀

+

1

2

𝐶

2 exp (−2]𝑡) (𝐵 + 3𝑏𝜀)

+

𝐷

2

1

2

(𝐵 + 3𝑏𝜀) ,

(18)

𝜔

2

1
= 𝐴 + 2𝑏𝐵 + 3𝑏

2
𝜀 +

3

2

𝜀 (𝐷

2

1
+ 𝐷

2

2
)

+ 𝜀𝐶

2 exp (−2]𝑡) − ]2

4

,

(19)

−

3

4

𝜀 (𝐷

2

1
+ 𝐷

2

2
) = −

𝐹

𝐷

1

+ 𝐴 + 2𝑏𝐵 + 3𝑏

2
𝜀

+ 2]𝜔
𝑓

𝐷

2

𝐷

1

+

3

2

𝜀𝐶

2 exp (−2]𝑡)

− 𝜔

2

𝑓
,

(20)

−

3

4

𝜀 (𝐷

2

1
+ 𝐷

2

2
) = 𝐴 + 2𝑏𝐵 + 3𝑏

2
𝜀

+

3

2

𝜀𝐶

2 exp (−2]𝑡) − 𝜔

2

𝑓

− 2]𝜔
𝑓

𝐷

1

𝐷

2

,

(21)

𝑘

2

1
=

𝜀𝐶

2 exp (−2]𝑡)
2𝜔

2

1

. (22)

Then, for given parameters values of ], 𝜀, 𝐴, 𝐵, 𝐹, and 𝜔

𝑓
,

the unknown parameters 𝜙
1
, 𝜔
1
, 𝐶, 𝐷

1
, 𝐷
2
, 𝑏, and 𝑘

1
can be

found from (18)–(22) and from the initial conditions (I. C.)
𝑥(0) = 𝑥

10
, �̇�(0) = �̇�

10
. If we assume that the value of the

initial velocity �̇�(0) = �̇�

10
is such that 𝜙

1
= 0 in (3), then our

approximate solution for (2) can be written as

𝑥 = 𝑏 (𝑡) + 𝐶 exp (−]𝑡) cn (𝜔
1
𝑡, 𝑘

2

1
)

+ 𝐷

1
(𝑡) cos (𝜔

𝑓
𝑡) + 𝐷

2
(𝑡) sin (𝜔

𝑓
𝑡) .

(23)

Since 𝑥(0) = 𝑥

10
at 𝑡 = 0, we get from (23) that

𝐶 = 𝑥

10
− 𝑏 (0) − 𝐷

1
(0) . (24)

We next use (20) and (21) to find 𝑏(𝑡) and𝐷

2
(𝑡) as

𝐷

2
(𝑡) =

𝐹 ∓

√

𝐹

2
− (4]𝜔

𝑓
𝐷

1
)

2

4]𝜔
𝑓

,

(25)
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𝑏 (𝑡) =

1

384𝐷

1
𝜀]2𝜔2
𝑓

× ( − 128𝐵𝐷

1
]
2
𝜔

2

𝑓

∓ [256𝐷

1
]
2
𝜔

2

𝑓

× (64𝐵

2
𝐷

1
]
2
𝜔

2

𝑓
+ 3𝜀

× (32]
2
𝜔

2

𝑓
(𝐹 ± 𝑅

1
)

× −𝐷

1
(6𝜀𝐹

2
∓ 6𝜀𝐹𝑅

1
+ 32]
2
𝜔

2

𝑓

× (2𝐴 + 3𝐶

2 exp (−2]𝑡) 𝜀

−2𝜔

2

𝑓
))))]

1/2

) ,

(26)

𝑅

1
=
√
(𝐹 − 4𝐷

1
]𝜔
𝑓
) (𝐹 + 4𝐷

1
]𝜔
𝑓
),

(27)

where the sign in (25) and (26) must be appropriately chosen
to ensure that the higher elliptic terms in (23) have small
amplitudes relative to the leading ones [23]. Substituting (25)
and (26) into (18), we can easily prove, after some algebraic
computations, that the values of 𝐷

1
(𝑡) are determined from

a ninth-order polynomial equation. Once the values of𝐷
1
(𝑡)

are known, we may use (19) to determine 𝜔
1
(𝑡). Notice that

when the running time 𝑡 increases, the term 𝑒

−]𝑡 approaches
to zero, and thus (18), (19), and (22)–(26) become time-
independent. In this case, the values of 𝑏, 𝐷

1
, 𝐷
2
, 𝜔
1
, and

𝑘

1
in (23) will remain constant. This condition provides the

steady-state solution of (1).
We will next discuss the accuracy of our derived approx-

imate solution by studying the dynamical response of an
asymmetric Duffing oscillator by plotting the amplitude-
frequency and the percentage overshoot response curves
and show how the evolution of time influences the systems
behavior.

3. Numerical Simulations

In order to verify the accuracy of our proposed solution
described in (23), we study the dynamical response of a rigid
body supported symmetrically by a simple shear spring that
is sliding over a smooth inclined bearing surface [24]. The
system under consideration contains the following critical
conditions: (a) finite amplitude forced vibration and (b)
damping, demonstrating the general nature of the proposed
solution for the resonance response of an asymmetricDuffing
oscillator. In accordance with Eĺıas-Zúñiga and Beatty [24],
the equation for the dampedmotion of the load is a nonlinear,
ordinary differential equation of the forced Duffing type with
a constant static shift term of the form

�̈� + 2]�̇� + 𝜎 + 𝜀𝜎

3
= 𝜎

𝑒
(1 + 𝜀𝜎

2

𝑒
) + 𝐹 cos𝜔

𝑓
𝑡, (28)
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Figure 1: Evolutive amplitude-frequency response curves of a rigid
body supported symmetrically by a simple shear spring and sliding
over a smooth inclined bearing surface with moderate static shear
deflection 𝜎

𝑒
= 0.497 and parameter values of 𝜀 = 0.02, 𝐹 = 0.1, ] =

0.01, and initial conditions 𝑥
0
= 1 and �̇�

0
= −0.0091. At 𝑡 = 0, the

initial values of 𝑏, 𝐶,𝐷
1
,𝐷
2
, 𝑘
1
, and 𝜔

1
are given as 𝑏(0) = −0.0121,

𝐶 = 0.9951,𝐷
1
(0) = 0.0962,𝐷

2
(0) = 0, 𝑘

1
(0) = 0.0902, and 𝜔

1
(0) =

1.0154. The blue dot curves represent unstable system response.

where the dot denotes the derivative with respect to 𝑡,
𝜎 represents the amount of simple shear deformation, 𝜎

𝑒

denotes the amount of static shear deflection of the load, ] is
the damping ratio, 𝐹 is a dimensionless driving force, and 𝑡 is
the dimensionless running time. If we transform (28) relative
to 𝜎

𝑒
by using 𝑥 = 𝜎 − 𝜎

𝑒
, then (28) becomes similar to the

Helmholtz-Duffing equation (1) where the parameters 𝐴 and
𝐵 are described by

𝐴 ≡ 1 + 3𝜀𝜎

2

𝑒
, 𝐵 ≡ 3𝜀𝜎

𝑒
. (29)

To find the amplitude-frequency response curves of (1),
we select the following parameter values: 𝜀 = 0.02,𝜎

𝑒
= 0.497,

𝐹 = 0.1, ] = 0.01, 𝑥
0

= 1, and �̇�

0
= 0.022, and plot

these curves at the values of 𝑡 = 1, 15, 30, 80, and 100.
Figure 1 shows the evolution of these amplitude-frequency
curves with time. In the curves showed in Figure 1, we have
plotted 𝐴

𝑚
(𝑡) = |𝑏(𝑡) + 𝐷

1
(𝑡) + 𝐷

2
(𝑡)| versus 𝜔

𝑓
. These

curves characterize the evolution of the general motion of
the system for the selected set of system parameter values.
In these curves, the blue dots represent unstable system
behavior determined by following the bifurcation analysis
described in [9, 24]. Notice from Figure 1, that when the
running time 𝑡 increases, that is, 𝑡 ≈ 100, the unstable
regions in the amplitude-frequency response curves become
smaller since the influence of time in (18), (19), and (22)–
(26) is almost negligible. In Figure 1, the brown dots represent
the stable steady-state amplitude-frequency response curve
that characterizes the damped, forced nonlinear motion of a
body supported by viscohyperelastic shear mountings [24].
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Figure 2: Phase portraits and amplitude-time response curves for parameter values of 𝜀 = 0.02, 𝜎
𝑒
= 0.497, ] = 0.01, 𝐹 = 0.1, 𝜔

𝑓
= 1.1,

𝐷

1
(0) = −0.541, 𝐷

2
(0) = 0.0653, 𝑏(0) = −0.0086, 𝑘

1
(0) = 0.05418, 𝜔

1
(0) = 1.0144, 𝐶 = 0.5496, and initial conditions 𝑥(0) = 0 and

�̇�(0) = 0.0663. (a) Amplitude-time transient curves on 𝑡[0, 31.5]; (b) amplitude-time response curve on 𝑡[0, 700]; (c) transient response phase
portrait; (d) steady-state system response phase portrait on 𝑡[650, 700]. The solid lines represent the numerical solution, and the dashed lines
represent the proposed EBM solution.

Figure 2 illustrates the amplitude versus time response curve
by considering the parameters values of 𝜎

𝑒
= 0.497, 𝜀 = 0.02,

] = 0.01, 𝐹 = 0.1, and 𝜔

𝑓
= 1.1 and the initial conditions

𝑥

0
= 0 and �̇�

0
= 0.0663 forwhich𝜙

1
= 0.There, the solid lines

represent the numerical integration solution of (28) while the
dashed lines represent the approximate solution provided by
(23). In this case, the values of 𝑏, 𝐶, 𝐷

1
, 𝐷
2
, 𝑘
1
, and 𝜔

1
were

obtained from (18), (19), (22), (24), (25), and (26). In fact, at
𝑡 = 0, we get that 𝑏(0) = −0.0086, 𝐶 = 0.5496, 𝐷

1
(0) =

−0.541, 𝐷
2
(0) = 0.0653, 𝑘

1
(0) = 0.05418, �̇�(0) = 0.0663, and

𝜔

1
(0) = 1.0144. As shown in Figures 2(a) and 2(c), the highest

vibration amplitudes occur during the transient oscillations.
This transient oscillatory behavior provides information to
ensure that the system design constraints are not exceeded,
even if the shear suspension system performs well during
its steady-state behavior. Figure 2(b) shows the phase plane
of the transient oscillatory motion on the time interval 0 ≤

𝑡 ≤ 31 plotted by considering the following initial conditions
of 𝑥
0

= 0 and �̇�

0
= 0.0663. It is clear from Figure 2(b)

that the transient oscillations experience a fast increase in
their amplitude values followed by a decrease when 𝑡 > 31,

as illustrated in Figure 2(c). When the system reaches its
steady-state behavior, the system phase portrait, depicted in
Figure 2(d), exhibits stable behavior about the steady-state
equilibria condition.

We next investigate the influence of the transient solution
on the dynamics response of (28) by introducing the
percentage of overshoot which is defined as

% overshoot = (

𝑥tran − 𝑥st
𝑥st

) × 100, (30)

where 𝑥trans and 𝑥st represent the peak transient and steady-
state amplitudes of the system, respectively, that can be esti-
mated by setting to zero the time derivative of (23). Figure 3
shows the calculated system overshoot plotted against the
system angular frequency, 𝜔

𝑓
, by considering the following

system parameter values: 𝜎
𝑒
= 0.497, 𝐹 = 0.1, ] = 0.01,

and 𝑥

0
= 0. As we can see from Figure 3, the influence

of the transient solution on the system response is evident
since the percentage of overshoot values is close to a 100%
at the approximate frequency values of 0.1, 0.5, 1.5, and 2.
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Figure 4: Transient and steady-state amplitude ratio (𝑥tran/𝑥st)

versus the driving frequency. Here the parameter values are 𝜎

𝑒
=

0.497, 𝐹 = 0.1, ] = 0.01, 𝑥
0
= 0, and 𝜀 = 0.02, 0.1, and 0.25.

Here the blue, the red, and the purple dashed lines were
calculated by considering the nonlinear parameter values of
𝜀 = 0.02, 0.1, and 0.25, respectively. It is interesting to observe
in Figure 3 the influence of the nonlinearity of the system in
the overshoot qualitative and quantitative curves behavior.
In fact, one can conclude from Figure 3 that the smallest
percentage values of the overshoot occur with 𝜀 = 0.02 and
near to the resonance frequency. Furthermore, the predicted
overshoot curves oscillate about the value of 92% on the
interval 1.5 ≤ 𝜔

𝑓
≤ 2.7 that corresponds to the region

depicted in Figure 4 at which the ratio of the transient and the
steady-state amplitudes has almost the constant value of 52%.

To examine damping effects on the system overshoot,
we next use the parameter values of 𝜎

𝑒
= 0.497, 𝐹 = 0.1,

𝜀 = 0.02, and 𝑥

0
= 0 and consider the damping ratio values

of ] = 0.01, 0.05, and 0.1. The influence of the transient

response on the peak overshoot values for the curve in which
𝜀 = 0.02, ] = 0.01, 𝜔

𝑓
= 0.5 and 1.5 is illustrated

in Figures 5(a) and 5(b). Figure 5(c) shows the percentage
overshoot curves plotted against the driving frequency 𝜔

𝑓
.

As me can see from Figure 5(c) and for a damping value
of ] = 0.1, the overshoot values do not exceed 73%. It
is also observed that for increasing damping values, the
percentage of the system overshoot becomes smaller. Figures
5(d) and 5(e) illustrate, by using the Continuous Wavelet
Transform, the influence of the transient and the driving
frequencies on the nonlinear behavior of the system. It is
evident from Figures 5(d) and 5(e) that at the beginning of
the system motion, the transient frequency 𝜔

1
influences the

fast increase of the system oscillations. Then, its effects on
the system non-linear motion decrease when the running
time exceeds the value of 𝑡 ≈ 200. Based on these findings,
it is concluded that transient amplitude values are bigger
than those of the steady-state ones as showed in Figures 3
and 5. Therefore, if one wants to reduce the impact of the
transient oscillations amplitudes, we need, when possible, a
fast tuning of the system to its operating bandwidth frequency
region which can be achieved by using suitable control
algorithms.

4. Conclusions

In this paper, we have used elliptic functions to obtain the
transient and the steady-state solutions of an asymmetric
Duffing oscillator and studied its influence on the region of
the primary resonance response. The theoretical predictions
of our derived solution given by (23) are based on the
assumption that the physical parameters 𝜔

1
(𝑡), 𝐷

1
(𝑡), 𝐷

2
(𝑡),

𝑘

1
(𝑡), and 𝑏(𝑡) are slowly varying as a function of time. To

obtain computational tractable expressions to determine the
aforementioned parameters, we have computed the average
of the corresponding equations with respect to the complete
elliptic integral of the first kind for the moduli 𝑘

1
and

𝑘

𝑓
. Then, we have used Fourier series and followed the

harmonic balance method to balance the lowest harmonic
terms. These steps plus the assumption that 0 < |𝑘

2

1
| < 1/2

provide us with the time-dependent equations to determine
the unknown parameters. The effect of the running time
on the shapes of the amplitude-frequency response curves
becomes evident during the study of the dynamical oscillator
response with no linear stiffness term and with hardening
characteristics. We have also shown that when the running
time increases, the frequency range at which unstable motion
occurs becomes smaller. Furthermore, we have obtained
the percentage overshoot charts to address the influence
of the nonlinear and damping terms on the transient and
steady-state system responses when the system is suddenly
switched on. We have found that when the nonlinearity is
small, the percentage overshoot values becomes smaller at
the overshoot bandwidth regions closer to the resonance
frequency with increasing values of the steady-state and the
transient amplitudes ratio. The usage of Continuous Wavelet
Transform helps to identify the influence of the transient
response signal on the system behaviour as time evolve.
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Figure 5: System nonlinear dynamic behavior for parameter values of 𝜎
𝑒
= 0.497, 𝐹 = 0.1, 𝜀 = 0.02, 𝑥

0
= 0. Here, (a) and (b) show the

amplitude versus time response curves for which the solid black and the dashed black lines represent the numerical and the EBM solutions,
respectively; (c) illustrates the percentage overshoot versus the driving frequency for damping values of ] = 0.01, 0.05, and 0.1; (d) and (e)
exhibit the influence of the transient and driving frequencies on the nonlinear system motion by using the Continuous Wavelet Transform.

We also found that by adding damping to the system, the
percentage of overshoot in the system does not exceed, in the
case of ] = 0.1, 52% if the system is tuned into the overshoot
bandwidth region of 0.5 ≤ 𝜔

𝑓
≤ 1.5.

Based on these findings, we can conclude that if one really
wants to have a better understanding of the system dynamical
behavior, transient oscillations amplitudes must be estimated
to avoid undesirable system effects such as peak transient
amplitude values that could violate design constraints or
unstable system behavior when the excitation is suddenly
switched on. In this case, the percentage overshoot charts
could be used to identify the frequency bandwidth region at
which the system can be tuned to have a reliable dynamical
response.

Appendix

The terms 𝐼
𝑗
in (6) can be computed from

𝐼

𝑗
≡

1

4𝐾

𝑗

∫

4𝐾𝑗+𝜙𝑗

𝜙𝑗

cn2
𝑗
𝑑Ψ

𝑗

= 1 −

1

𝑘

2

𝑗

(1 −

𝐸

𝑗

𝐾

𝑗

) ; Ψ

𝑗
≡ 𝜔

𝑗
𝑡 + 𝜙

𝑗
,

(A.1)

where 𝐸

𝑗
represents the complete elliptic integral of the

second kind for the modulus 𝑘
𝑗
[20, 21].
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The terms𝐻
1
,𝐻
2
, and𝐻

3
in (9) are defined as

𝐻

1
=

1

𝜋

∫

2𝜋

0

sn𝑢dn𝑢 sin𝜑𝑑𝜑 =

1

𝜋

∫

4𝐾

0

sn𝑢2dn𝑢2d𝑢

=

4

3𝑘

2

𝑓
𝜋

[(2𝑘

2

𝑓
− 1) 𝐸

𝑓
+ 𝐾

𝑓
(1 − 𝑘

2

𝑓
)] ,

𝐻

2
=

1

𝜋

∫

2𝜋

0

cn𝑢dn𝑢 cos𝜑𝑑𝜑 =

1

𝜋

∫

4𝐾

0

cn𝑢2dn𝑢2d𝑢

=

4

3𝑘

2

𝑓
𝜋

[(1 + 𝑘

2

𝑓
) 𝐸

𝑓
− 𝐾

𝑓
(1 − 𝑘

2

𝑓
)] ,

𝐻

3
=

1

𝜋

∫

2𝜋

0

sn𝑢cn𝑢2 sin𝜑d𝜑

=

1

𝜋

∫

4𝐾

0

sn𝑢2cn𝑢2dn𝑢d𝑢 =

1

4

.

(A.2)

Here 𝜑

𝑗
= am(𝜔

𝑗
𝑡; 𝑘

2

𝑗
) is called the amplitude for Jacobi

elliptic functions.
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