Evaluating Pre-trained Neural Networks in Deep Learning for Early Detection and Enhanced Screening of Cervical Pathology

dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.audience.educationlevelInvestigadores/Researchers
dc.contributor.advisorMuñoz Ubando, Luis Alberto
dc.contributor.authorGonzález Ortiz, Orlando
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberRaymundo Avilés, Arturo
dc.contributor.committeememberCerón López Universidad, Arturo Eduardo
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorOchoa Ruiz, Gilberto
dc.date.accepted2024-12-02
dc.date.accessioned2025-01-10T21:05:36Z
dc.date.issued2024-12
dc.description.abstractThis document presents a research thesis for the Master in Computer Science (MCC) degree at Tecnologico de Monterrey. Cervical cancer remains a leading cause of mortality among women, particularly in low-resource regions where screening tools such as the Pap smear often fall short in early detection. This research explores the application of deep learning and pre-trained neural networks for the binary classification of cervical pathology, focusing on detecting dysplasia, specifically CIN2 and CIN3, as a potential prevention tool. We im- plemented multiple neural network models, including DenseNet, EfficientNet, MobileNet, and ResNet. The models were evaluated on two distinct datasets: one from the International Agency for Research on Cancer (IARC) and another from the Zambrano Hospital. To as- sess the generalization capacity of these models, we employed a sequential training approach where the first batch was trained with IARC data and tested on a Zambrano Hospital batch, with subsequent tests progressively incorporating prior results. Each experiment was repeated over 10 iterations to calculate confidence intervals for the performance metrics. Our results demonstrate that DenseNet and EfficientNet outperformed other models, achieving superior sensitivity and accuracy compared to conventional Pap smear tests. These findings indicate that deep learning models hold promise as an affordable, effective cervical cancer screening tool in low-resource communities. Future work will focus on augmenting datasets through collaboration with healthcare institutions and exploring generative models such as GANs to improve model robustness and generalization.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator320799||320711
dc.identifier.citationGonzález Ortiz, O. (2024). Evaluating Pre-trained Neural Networks in Deep Learning for Early Detection and Enhanced Screening of Cervical Pathology [Tesis maestría]. Instituto Tecnologico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703010
dc.identifier.urihttps://hdl.handle.net/11285/703010
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::PATOLOGÍA::NEUROPATOLOGÍA
dc.subject.keywordCervical cancer
dc.subject.keywordDeep learning
dc.subject.keywordNeural networks
dc.subject.keywordBinary classification
dc.subject.keywordCIN2
dc.subject.keywordCIN3
dc.subject.keywordDenseNet
dc.subject.keywordEfficientNet
dc.subject.keywordSensitivity
dc.subject.keywordAccuracy
dc.subject.lcshMedicine
dc.titleEvaluating Pre-trained Neural Networks in Deep Learning for Early Detection and Enhanced Screening of Cervical Pathology
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Orlando González Ortiz Carta Autorización.pdf
Size:
115.85 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
Orlando González Ortiz Tesis.pdf
Size:
5.11 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
GonzálezOrtizOrlandoFirmasdecartadeautorizacion.pdf
Size:
128.08 KB
Format:
Adobe Portable Document Format
Description:
Firmas de carta de autorizacion

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia