A data-driven modeling approach for energy storage systems

dc.audience.educationlevelEmpresas/Companies
dc.audience.educationlevelOtros/Other
dc.contributor.advisorValdez Resendíz, Jesús Elías
dc.contributor.advisorRosas Caro, Julio César
dc.contributor.authorSilva Vera, Edgar Daniel
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberEscobar Valderrama, Gerardo
dc.contributor.committeememberGuillén Aparicio, Daniel
dc.contributor.committeememberSoriano Rangel, Carlos Abraham
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2024-12-02
dc.date.accessioned2025-01-15T15:32:28Z
dc.date.embargoenddate2026-01-15
dc.date.issued2024-11
dc.descriptionhttps://orcid.org/0000-0002-1889-1353
dc.description.abstractThis disertation presents a versatile data-driven modeling methodology designed for various energy systems, including battery-based power systems, DC-DC power electronic converters, Lithium-Ion batteries, and Proton-Exchange Membrane Fuel Cells (PEMFC). The proposed approach captures the non linear dynamics of each system by leveraging fundamental measurements and operational data, thus eliminating the need for explicit theoretical models and significantly simplifying the modeling process. Specifically, the methodology allows for the identification of essential parameters by constructing state-space representations that describe both fast and slow system dynamics, which are crucial for accurately modeling transient behaviors and implementing adaptive control strategies. The models were validated across different applications, showing their ability to replicate real system behaviors with high precision. For instance, in the case of DC-DC converters, the models demonstrated an average error deviation of approximately 2% for current signals and 4% for voltage signals, confirming their capacity to track the actual converter dynamics. Similarly, the Lithium-Ion battery models enabled accurate estimation of state of charge (SoC) and opencircuit voltage using a modified recursive least-squares algorithm, achieving close alignment with real discharge curves. In the PEMFC stack modeling, the methodology utilized real-physic model operational data to refine model accuracy, yielding improved predictive capabilities over traditional approaches. These results underscore the efficacy and robustness of the data-driven approach in enhancing the design, control, and optimization of diverse energy systems. By providing a framework that can be readily adapted to different components and configurations, this methodology supports advancements in sustainable energy technologies, enabling the interconnection of multiple energy storage and conversion systems with minimal computational cost and measurement requirements.
dc.description.degreePhD in Engineering Sciences in Power electronics
dc.format.mediumTexto
dc.identificator330703
dc.identifier.citationSilva Cera, E. D. (2024). A data-driven modeling approach for energy storage systems [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703040
dc.identifier.orcidhttps://orcid.org/0009-0009-6338-3831
dc.identifier.urihttps://hdl.handle.net/11285/703040
dc.identifier.urihttps://doi.org/10.60473/ritec.116
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.embargoreasonDebido a que existe información dentro del documento la cual es parte de dos trabajos de investigación. Estos trabajos se encuentran en revisión y aún no se han publicado.
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ENERGÉTICA::GENERACIÓN DE ENERGÍA
dc.subject.keywordData driven model
dc.subject.keywordBlack box
dc.subject.keywordBattery model
dc.subject.keywordPEMFC models
dc.subject.keywordRenewable energy
dc.subject.lcshTechnology
dc.titleA data-driven modeling approach for energy storage systems
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
SilvaVera_TesisDoctoradopdfa.pdf
Size:
5.96 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
SilvaVera_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
416.43 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
SilvaVera_CartaAutorizacionpdf.pdf
Size:
173.8 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia