Tesis de maestría

Hipocorísticas mediante un enfoque neuro-evolutivo para el ordenamiento dinámico de variables en problemas de satisfacción de restricciones

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

Muchos de los problemas de las Ciencias de la Computación y de la Inteligencia Artificial (IA) pueden ser caracterizados como problemas de Satisfacción de Restricciones. Un CSP, por sus siglas en inglés, está compuesto por un conjunto de variables, un conjunto dominio de posibles valores y una serie de restricciones entre variables a ser satisfechas. Encontrar una solución para un problema de satisfacción de restricciones consiste en encontrar una asignación consistente para todo el conjunto de variables de tal manera que satisfaga todas las restricciones. Los algoritmos de solución más conocidos son Backtracking, Foward Checking y otros híbridos los cuales están basados en la teoría de algoritmos de búsqueda en árboles. La solución de estos problemas cuando son considerados difíciles por métodos tradicionales se vuelve muy lento y tedioso puesto que el espacio de búsqueda es muy grande, es por ello que se han realizado muchas investigaciones para la optimización de la forma de solucionar estos problemas. Además, existen instancias de CSPs que son particularmente difíciles de resolver, ya que requieren una elevada cantidad de verificaciones de consistencia para encontrar una solución o demostrar que no existe alguna. El ordenamiento de las variables juega un papel de suma importancia en la búsqueda de la solución. Un buen ordenamiento de variables al momento de buscar una solución representa una menor complejidad en la búsqueda. Existen dos enfoques para el ordenamiento de variables. El primer enfoque es conocido como en ordenamiento estático el cual consiste en definir el orden en la cual las variables estarían instanciadas antes de empezar a solucionar el problema. El otro enfoque es conocido como ordenamiento dinámico el cual consiste en determinar la variable a instanciar en tiempo de solución. Para esto surgieron algunas heurísticas que ayudan en este proceso, de las cuales podemos nombrar Fail First, Rho, Kappa, entre otras, pero ninguna de ellas ha demostrado ser eficiente para todas las instancias. En este enfoque la heurística elegida es aplicada en todos los niveles del árbol sin importar las modificaciones del problema. Recientemente se ha empezado a trabajar con un enfoque basado en hiperheurísticas, el cual, dada las características del estado del problema determina que heurística debe ser aplicada para elegir la variable a ser asignada, en este modelo en cada nivel del árbol la heurística aplicada puede variar respecto a la anterior. Este modelo se compone de una etapa de entrenamiento y una de prueba. La fase de entrenamiento consiste en utilizar un algoritmo genético para evolucionar una población de redes neuronales. Las redes neuronales son entrenadas por medio del algoritmo de retroprogramación del error y después evaluadas con diferentes instancias de CSPs. La red neuronal tiene como entrada el estado del problema y como salida la heurística sencilla a aplicar. La intención de utilizar diferentes instancias de CSPs durante la etapa de entrenamiento es desarrollar procesos de solución generales que puedan ser aplicados para resolver un gran número de instancias, mías que encontrar buenas soluciones para instancias específicas. La idea general es la siguiente, dado el estado del CSP P es utilizado para alimentar la red neuronal de la cual se obtendrá como salida la heurística sencilla a aplicar. Una vez aplicada la heurística el CSP P cambia a un CSP P', el cual es una versión actualizada del anterior. El procedimiento se repite hasta resolver el problema completamente. Al terminar el entrenamiento de la población se toma el mejor individuo y es utilizado para solucionar tanto los problemas utilizados para su entrenamiento como problemas nuevos. Lo anterior para hacer comparaciones con los resultados de la aplicación individual de las heurísticas simples. Los resultados demuestran que es factible la creación de una hiperheurística bajo este modelo de solución puesto que las hiperheurísticas generadas se comportaron como la mejor heurística sencilla aplicada y con esto mejor que el promedio que ellas. La mejor heurística simple puede ser diferente en cada instancia del problema.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia