Artículo

Forecasting gender in open education competencies: A machine learning approach

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

This article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its sub-competencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia