A stacking ensemble machine learning method for early identification of students at risk of dropout

dc.contributor.affiliationTecnologico de Monterreyes_MX
dc.contributor.authorTalamás Carvajal, Juan Andrés
dc.contributor.authorCeballos Cancino, Héctor Gibrán
dc.date.accessioned2023-04-24T22:32:42Z
dc.date.available2023-04-24T22:32:42Z
dc.date.issued2023-03-07
dc.description.abstractEarly dropout of students is one of the bigger problems that universities face currently. Several machine learning techniques have been used for detecting students at risk of dropout. By using sociodemographic data and qualifications of the previous level, the accuracy of these predictive models is good enough for implementing retention programs. In addition, by using grades of the first semesters, the accuracy of these models increases. Nevertheless, the classification errors produced by these models cause undetected students to be discarded from the retention programs, whereas students with no actual risk consume additional resources. In order to provide more accurate models, we propose the use of a stacking ensemble technique to obtain an improved combined dropout model, while using relatively few variables. The model results show values on the expected ranges for an early dropout model, but with considerably fewer features and historical information, and we show that deploying the models would be cost-efficient for the institution if applied towards an intervention program.es_MX
dc.format.mediumTextoes_MX
dc.identificator4||58||5801es_MX
dc.identifier.citationTalamás-Carvajal, J.A., Ceballos, H.G. A stacking ensemble machine learning method for early identification of students at risk of dropout. Educ Inf Technol (2023). https://doi.org/10.1007/s10639-023-11682-zes_MX
dc.identifier.cvu840053es_MX
dc.identifier.doihttps://doi.org/10.1007/s10639-023-11682-z
dc.identifier.eissn1573-7608
dc.identifier.issn1360-2357
dc.identifier.journalEducation and Information Technologieses_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-6140-088Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-2460-3442es_MX
dc.identifier.scopusid58126519600es_MX
dc.identifier.scopusid6602559714es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650418
dc.language.isoenges_MX
dc.publisherSpringeres_MX
dc.relationProject ID # I004 - IFE001 - C2-T3 – T.es_MX
dc.relation.isFormatOfsubmittedVersiones_MX
dc.relation.urlhttps://link.springer.com/article/10.1007/s10639-023-11682-zes_MX
dc.rightsrestrictedAccesses_MX
dc.rights.embargoreasonAccess via institution subscription.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.countryMéxico / Mexicoes_MX
dc.subject.keywordEducational Innovationes_MX
dc.subject.keywordEducational Data Mininges_MX
dc.subject.keywordHigher educationes_MX
dc.subject.keywordR4C&TEes_MX
dc.subject.keywordDropoutes_MX
dc.subject.lcshEducationes_MX
dc.titleA stacking ensemble machine learning method for early identification of students at risk of dropoutes_MX
dc.typePreprint

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint.pdf
Size:
367.22 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.17 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia