A novel functional tree for class imbalance problems
dc.audience.educationlevel | Investigadores/Researchers | es_MX |
dc.contributor.advisor | Monroy Borja, Raúl | |
dc.contributor.author | Cañete Sifuentes, Leonardo Mauricio | |
dc.contributor.cataloger | puemcuervo, emipsanchez | es_MX |
dc.contributor.committeemember | Morales Manzanares, Eduardo | |
dc.contributor.committeemember | Gutiérrez Rodríguez, Andrés Eduardo | |
dc.contributor.committeemember | Cantú Ortiz, Francisco | |
dc.contributor.committeemember | Conant Pablos, Santiago | |
dc.contributor.department | School of Engineering and Sciences | es_MX |
dc.contributor.institution | Campus Estado de México | es_MX |
dc.contributor.mentor | Medina Pérez, Miguel Angel | |
dc.creator | CAÑETE SIFUENTES, LEONARDO MAURICIO; 787723 | |
dc.date.accepted | 2022-12-02 | |
dc.date.accessioned | 2023-06-01T22:21:51Z | |
dc.date.available | 2023-06-01T22:21:51Z | |
dc.date.issued | 2022-11 | |
dc.description | https://orcid.org/0000-0002-3465-995X | es_MX |
dc.description.abstract | Decision trees (DTs) are popular classifiers partly because they provide models that are easy to explain and because they show remarkable performance. To improve the classification performance of individual DTs, researchers have used linear combinations of features in inner nodes (Multivariate Decision Trees), leaf nodes (Model Trees), or both (Functional Trees). Our general objective is to develop a DT using linear feature combinations that outperforms the rest of such DTs in terms of classification performance as measured by the Area Under the ROC Curve (AUC), particularly in class imbalance problems, where one of the classes in the database has few objects compared to another class. We establish that, in terms of classification performance, there exists a hierarchy, where Functional Trees (FTs) surpass Model Trees, that in turn surpass Multivariate Decision Trees. Having shown that Gama's FT, the only FT to date, has the best classification performance, we identify limitations that hinder its classification performance. To improve the classification performance of FTs, we introduce the Functional Tree for class imbalance problems (FT4cip), which takes care in each design decision to improve AUC. The decision of what pruning method to use led us to the design of the AUC-optimizing Cost-Complexity pruning algorithm, a novel pruning algorithm that does not degrade classification performance in class imbalance problems because it optimizes AUC. We show how each design decision taken when building FT4cip contributes to classification performance or to simple tree models. We demonstrate through a set of tests that FT4cip outperforms Gama's FT and excels in class imbalance problems. All our results are supported by a thorough experimental comparison in 110 databases using Bayesian statistical tests. | es_MX |
dc.description.degree | Doctor of Philosophy in Computer Science | es_MX |
dc.format.medium | Texto | es_MX |
dc.identificator | 7||33||3304||120318 | es_MX |
dc.identifier.citation | Cañete Sifuentes, L. M. (2022). A novel functional tree for class imbalance problems [Tesis Doctorado]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650793 | es_MX |
dc.identifier.cvu | 787723 | es_MX |
dc.identifier.orcid | https://orcid.org/0000-0003-3175-8917 | es_MX |
dc.identifier.uri | https://hdl.handle.net/11285/650793 | |
dc.language.iso | eng | es_MX |
dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
dc.relation.isFormatOf | publishedVersion | es_MX |
dc.relation.isreferencedby | REPOSITORIO NACIONAL CONACYT | |
dc.rights | openAccess | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE INFORMACIÓN, DISEÑO Y COMPONENTES | es_MX |
dc.subject.keyword | Supervised classification | es_MX |
dc.subject.keyword | Functional trees | es_MX |
dc.subject.keyword | Machine learning | es_MX |
dc.subject.keyword | Decision trees | es_MX |
dc.subject.lcsh | Science | es_MX |
dc.title | A novel functional tree for class imbalance problems | es_MX |
dc.type | Tesis de doctorado |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- main.pdf
- Size:
- 2.4 MB
- Format:
- Adobe Portable Document Format
- Description:
- Main thesis file
Loading...
- Name:
- Formato de declaración de acuerdo para uso de obra.pdf
- Size:
- 600.85 KB
- Format:
- Adobe Portable Document Format
- Description:
- Formato de declaración de acuerdo para uso de obra
Loading...
- Name:
- HojaFirmas_LeonardoCañete_05dic22.pdf
- Size:
- 307.42 KB
- Format:
- Adobe Portable Document Format
- Description:
- Hoja de firmas
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description: