Design and Development of Conducting Polymer and Carbon Nanostructure based Efficient Thermoelectric Materials

Citation
Share
Abstract
Thermoelectric materials present a promising renewable energy technology for directly converting thermal energy into electricity and vice versa. However, their practical application is hindered by low conversion efficiencies, quantified by the dimensionless figure of merit, 𝑍𝑇 = 𝑆 2 𝜎 𝑘 𝑇 , where 𝑆,𝜎, and 𝑘 are the Seebeck coefficient, electrical onductivity, and thermal conductivity, respectively. Achieving a high 𝑍𝑇 is challenging because enhancing one parameter often degrades the others. Various nanoscale strategies have been explored, yet a comprehensive framework for improving 𝑍𝑇 remains elusive. Recently, polymer-based nanocomposites, particularly carbon nanotubes (CNTs) dispersed in polyaniline (PANI), have gained attention due to their flexibility, non-toxicity, and processability, key traits for next-generation flexible electronic devices. Despite this potential, optimizing thermoelectric performance in PANI-CNT systems is complex, as it depends on numerous factors, including CNT dimensions, functionality, and PANI's doping and morphology. This research employs machine learning (ML) and genetic algorithms (GA) to model and optimize the thermoelectric properties of PANI-CNT nanocomposites. By analyzing structural and compositional variables—such as CNT length, diameter, type, and PANI morphology—we identified strategies that enhance electrical conductivity and the Seebeck coefficient while minimizing thermal conductivity. Our ML models revealed that selecting appropriate dopants for PANI and using single-walled CNT (SWCNT) improves overall thermoelectric performance. Multi-objective GA optimization further refined these findings, demonstrating that SWCNTs help reduce thermal conductivity and that CNT length plays a dual role: shorter CNTs decrease 𝑘, while longer ones enhance both 𝑆 and 𝜎. Experimental validation was performed by fabricating PANI-CNT nanocomposite pellets, but achieving high 𝑍𝑇 remained elusive due to limitations in dataset quality and the variability introduced by diverse synthesis techniques. The synthesis method influences PANI dimensionality (e.g., 0D, 1D, 2D) and the morphology of PANI-CNT composites (core-shell vs. dispersed), complicating performance consistency. While the experiments confirmed the general trend of model predictions, they highlighted the necessity of cleaner, more comprehensive datasets for future research. Ultimately, this study lays the groundwork for designing high-efficiency thermoelectric nanocomposites and outlines the next steps in developing more accurate predictive models and synthesis methods for improved thermoelectric performance.
Description
0000-0001-8173-1857