Show simple item record

dc.contributor.authorRamírez Montoya, María Soledad
dc.contributor.authorMorales Menendez, Ruben
dc.contributor.authorTworek, Michael
dc.contributor.authorEscobar Díaz, Carlos Alberto
dc.contributor.authorTariq, Rasikh
dc.contributor.authorTenorio Sepúlveda, Gloria Concepción
dc.date.accessioned2024-07-25T20:44:23Z
dc.date.available2024-07-25T20:44:23Z
dc.date.issued2024-07-21
dc.identifier.doihttps://doi.org/10.1080/2331186X.2024.2378508
dc.identifier.urihttps://hdl.handle.net/11285/676196
dc.description.abstractFuture education requires fostering high-level competencies to enhance student talent, and artificial intelligence (AI) can help in profile analysis. The aim was to determine the variables that predict the GPA of students in the ‘Leaders of Tomorrow’ program through an integrated methodology of data analytics, machine learning modeling, and feature engineering in order to generate knowledge about the application of AI in social impact programs. This research focused on 466 graduates of a ‘Leaders of Tomorrow’. A regression analysis was performed to model the relationship between the dependent variable and multiple independent variables. The findings revealed: (a) Analysis of variance (ANOVA) demonstrated exceptional model fit for predicting ‘student.term_Grade Academic Performance (GPA)_program’ with an R-squared of 0.999; (b) Visual analysis showed that significant variables like age and origin-school Grade-Point Average (GPA) affect term GPA; (c) Kendall tau correlation revealed a positive correlation of origin-school GPA with term GPA and a slightly negative one with age; (d) Support Vector Machine (SVM) regression aligned actual and predicted GPAs closely, indicating high accuracy; and (e) Recursive Feature Elimination (RFE) identified ‘student_originSchool.gpa’ as the most predictive feature. This study is intended to be of value to academic communities interested in enhancing the academic profiles of students with complex competencies, as well as communities interested in applying AI in education for predictions that contribute to trajectories for training.es_MX
dc.format.mediumTextoes_MX
dc.language.isoenges_MX
dc.publisherTaylor @ Francis Onlinees_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.urlhttps://www.tandfonline.com/action/showCopyRight?scroll=top&doi=10.1080%2F2331186X.2024.2378508es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.lcshEducationes_MX
dc.titleComplex competencies for leader education: artificial intelligence analysis in student achievement profilinges_MX
dc.typeArtículo/Articlees_MX
dc.identifier.journalCogent Educationes_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-1274-706Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-0498-1566es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-3580-0887es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-7234-8175es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-3310-432Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-3858-6708es_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.keywordhigher educationes_MX
dc.subject.keywordleaders of tomorrow programes_MX
dc.subject.keywordartificial intelligencees_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keywordR4C&TEes_MX
dc.identifier.volume11es_MX
dc.identifier.issue1es_MX
dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.affiliationhttps://ror.org/03vek6s52es_MX
dc.subject.countryReino Unido / United Kingdomes_MX
dc.identificator4||58||5801es_MX


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

openAccess
Except where otherwise noted, this item's license is described as openAccess