Show simple item record

dc.contributor.authorTariq, Rasikh
dc.contributor.authorCasillas Muñoz, Fidel Antonio Guadalupe
dc.contributor.authorWaqar, Muhammad Ashraf
dc.contributor.authorRamírez Montoya, María Soledad
dc.date.accessioned2024-07-12T19:45:39Z
dc.date.available2024-07-12T19:45:39Z
dc.date.issued2024-05
dc.identifier.urihttps://hdl.handle.net/11285/675892
dc.description.abstractThe study focuses on discerning between human and AI-generated essays, highlighting the ethical implications of AI in academia. It employs various algorithms like logistic regression, Support Vector Machine (SVM), decision trees, random forests, KNN, and LSTM to develop models for essay classification. The TF-IDF technique (Term Frequency-Inverse Document Frequency) is applied to assess document word importance, with rigorous parameter tuning ensuring model accuracy. Findings revealed SVM's exceptional precision and recall, highlighting its robustness in accurately classifying essays, while decision trees offer simplicity but increased misclassification risk. KNN strikes a balance and random forests as well. LSTM excels in contextual understanding, albeit with higher computational demands. The research emphasizes the significance of algorithm selection in maintaining academic integrity and fostering genuine student creativity. SVM emerges as a robust and accurate choice for essay classification, ensuring fair assessment and upholding academic honesty.es_MX
dc.format.mediumTextoes_MX
dc.language.isoenges_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.urlhttps://ieeexplore.ieee.org/document/10581394es_MX
dc.rightsrestrictedAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.lcshEducationes_MX
dc.titleDetecting generative artificial intelligence essays using large language models: Machine and deep learning approacheses_MX
dc.title.alternative2024 International Conference on Engineering & Computing Technologies (ICECT)es_MX
dc.typeConferencia/Lecturees_MX
dc.rights.embargoreasonAccess to this document requires a subscription.es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-3310-432Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-1969-3516es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-1841-7659es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-1274-706Xes_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keyworddeep learninges_MX
dc.subject.keywordlong short-term memoryes_MX
dc.subject.keywordsupport vector machinees_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.keywordgenerative artificial intelligencees_MX
dc.subject.keywordhigher educationes_MX
dc.contributor.institutionIEEEes_MX
dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.affiliationhttps://ror.org/02jx3x895es_MX
dc.subject.countryPakistán / Pakistanes_MX
dc.identificator4||58||5801es_MX
dc.date.embargoenddate2024-05


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

restrictedAccess
Except where otherwise noted, this item's license is described as restrictedAccess