Show simple item record

dc.contributor.advisorAhuett-Garza, Horacioen_US
dc.contributor.advisorKurfess, Thomas R.en_US
dc.contributor.authorCastro Martín, Ana Pamelaen_US
dc.date.accessioned2018-05-29T17:19:59Z
dc.date.available2018-05-29T17:19:59Z
dc.date.issued2018-05-11
dc.identifier.urihttp://hdl.handle.net/11285/629937
dc.description.abstractIndustry trends call for a change and adaptation of systems to be capable of connecting with their surroundings such as other machines, computers or smartphones. The automotive industry is continuously looking for improving its processes. An objective of the automotive industry is to start implementing new trends in industry 4.0. The present work develops a technological infrastructure for data acquisition of an in-line measurement system that is being used by a manufacturer of automotive parts. The measurement system inspects the quality of die-casting parts. In this work, the theoretical concept of Industry 4.0 is implemented in an industrial machine. This work deals with the design of a monitoring system for big data in two levels. First to monitor the quality of the workpieces, and second to monitor the online measuring machine. An architecture for IoT is implemented in the development of the monitoring system, and three subsystems: Collecting Subsystem, Processing and Transmission Subsystem; and Management and Utilization Subsystem. After building the architecture proposed, data is accessible by engineering staff for analyzing and operating conditions are available for study. The architecture for connecting the machine to the Internet was successfully implemented on the measuring machine.  Industry trends call for a change and adaptation of systems to be capable of connecting with their surroundings such as other machines, computers or smartphones. The automotive industry is continuously looking for improving its processes. An objective of the automotive industry is to start implementing new trends in industry 4.0. The present work develops a technological infrastructure for data acquisition of an in-line measurement system that is being used by a manufacturer of automotive parts. The measurement system inspects the quality of die-casting parts. In this work, the theoretical concept of Industry 4.0 is implemented in an industrial machine. This work deals with the design of a monitoring system for big data in two levels. First to monitor the quality of the workpieces, and second to monitor the online measuring machine. An architecture for IoT is implemented in the development of the monitoring system, and three subsystems: Collecting Subsystem, Processing and Transmission Subsystem; and Management and Utilization Subsystem. After building the architecture proposed, data is accessible by engineering staff for analyzing and operating conditions are available for study. The architecture for connecting the machine to the Internet was successfully implemented on the measuring machine. 
dc.language.isoengen_US
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyesp
dc.rightsOpen Accessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.titleDesign of the technological infrastructure for data acquisition of an in-line measuring Industry 4.0 compatible machineen_US
dc.typeTesis de Maestríaesp
thesis.degree.levelMaster of Science in Manufacturing Systemen_US
dc.contributor.committeememberUrbina Coronado, Pedro Danielen_US
dc.contributor.committeememberOrta Castañon, Pedroen_US
thesis.degree.disciplineSchool of Engineering and Sciencesen_US
thesis.degree.nameMaster of Science in Manufacturing Systemen_US
dc.subject.keywordIndustry 4.0en_US
dc.subject.keywordtechnological infrastructureen_US
dc.subject.keywordIn-line machineen_US
dc.subject.keywordengineeringen_US
thesis.degree.programCampus Monterreyen_US
dc.subject.disciplineIngeniería y Ciencias Aplicadas / Engineering & Applied Sciencesen_US
html.description.abstract<html> <head> <title></title> </head> <body> <p>Industry trends call for a change and adaptation of systems to be capable of connecting with their surroundings such as other machines, computers or smartphones. The automotive industry is continuously looking for improving its processes. An objective of the automotive industry is to start implementing new trends in industry 4.0. The present work develops a technological infrastructure for data acquisition of an in-line measurement system that is being used by a manufacturer of automotive parts. The measurement system inspects the quality of die-casting parts. In this work, the theoretical concept of Industry 4.0 is implemented in an industrial machine. This work deals with the design of a monitoring system for big data in two levels. First to monitor the quality of the workpieces, and second to monitor the online measuring machine. An architecture for IoT is implemented in the development of the monitoring system, and three subsystems: Collecting Subsystem, Processing and Transmission Subsystem; and Management and Utilization Subsystem. After building the architecture proposed, data is accessible by engineering staff for analyzing and operating conditions are available for study. The architecture for connecting the machine to the Internet was successfully implemented on the measuring machine.&#160; Industry trends call for a change and adaptation of systems to be capable of connecting with their surroundings such as other machines, computers or smartphones. The automotive industry is continuously looking for improving its processes. An objective of the automotive industry is to start implementing new trends in industry 4.0. The present work develops a technological infrastructure for data acquisition of an in-line measurement system that is being used by a manufacturer of automotive parts. The measurement system inspects the quality of die-casting parts. In this work, the theoretical concept of Industry 4.0 is implemented in an industrial machine. This work deals with the design of a monitoring system for big data in two levels. First to monitor the quality of the workpieces, and second to monitor the online measuring machine. An architecture for IoT is implemented in the development of the monitoring system, and three subsystems: Collecting Subsystem, Processing and Transmission Subsystem; and Management and Utilization Subsystem. After building the architecture proposed, data is accessible by engineering staff for analyzing and operating conditions are available for study. The architecture for connecting the machine to the Internet was successfully implemented on the measuring machine.&#160;</p> </body> </html>en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Open Access
Except where otherwise noted, this item's license is described as Open Access