Tesis

Permanent URI for this communityhttps://hdl.handle.net/11285/345119

Colección de Tesis y Trabajos de grado (informe final del proyecto de investigación, tesina, u otro trabajo académico diferente a Tesis, sujeto a la revisión y aceptación de una comisión dictaminadora) presentados por alumnos para obtener un grado académico del Tecnológico de Monterrey.

Para enviar tu trabajo académico al RITEC, puedes consultar este Infográfico con los pasos generales para que tu tesis sea depositada en el RITEC.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de doctorado
    Real-time monitoring and diagnosis in dynamic systems using particle filtering methods-Edición Única
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2003-05-01) Morales-Menéndez, Rubén; Cantú Ortiz, Francisco J.; Nolazco Flores, Arturo; Ramírez Mendoza, Ricardo; Sucar Succar, Enrique; ITESM
    Fault diagnosis is a critical task for many real-world processes. The diagnosis problem is that of estimating the most probable state of a process over time given noisy observations. For many applications, the complex dynamics of the process requires reasoning with both discrete and continuous variables, so a hybrid model such as the jump Markov linear Gaussian (JMLG) model is needed. The JMLG model has a set of discrete modes to represent the fault states and a set of continuous parameters for the continuous variables. Although diagnosis is a simple procedure in principie, it is quite costly even for processes that are compactly represented, because the belief state is typically exponential in the number of state variables. Computing exact diagnosis is an intractable problem. Therefore, we must use numerical approximation methods such as Particle Filtering (PF). PF is a state-of-the-art Markov chain Monte Cario method which can diagnose dynamic systems by approximating the belief state as a set of particles. PF sequentially computes an approximation to the posterior probability distribution of the process states given the observations. This nonparametric approach has several advantages; it can approximate any probability distribution and consequently can be used to monitor systems with changing or uncertain structure. Rao-Blackwellized Particle Filtering (RBPF) is a Particle Filtering variant that combines a PF for sampling the discrete modes with Kalman Filters for computing the distributions of the continuous states. This reduces the computational cost because the continuous states are represented by the sufficient statistics of the continuous distributions. In this research, we show that it is possible to enhance the RBPF algorithm to sample the discrete modes directly from the posterior probability distribution. It is also possible to select the futes! particles before the sampling step. These improvements result in a more efficient algorithm, look-ahead Rao-Blackwellized Partióle Filtering (la-RBPF). La-RBPF essentially performs one-step look-ahead to select good sampling regions. We show that the overhead of the extra processing per particle is more than compensated for by the decrease in diagnosis error and variance. La-RBPF provides several additional advantages. It requires fewer particles to achieve the same approximation accuracy. Moreover, because the discrete modes are sampled from the posterior probability distribution, if a fault state appears, la-RBPF will detect the fault no matter how low its prior probability distribution. Another additional result of this research is a leaming method for the JMLG parameters. This modelling procedure combines the Least Squares Estimation and Expectation-Maximization algorithms. The proposed algorithms were intensively tested in several real-world systems having industrial characteristics, and compared with the existing PF and RBPF algorithms. The results consistently demonstrated la-RBPF's advantages.
En caso de no señalar algo distinto de manera particular, los materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://creativecommons.org/licenses/by-nc-nd/4.0
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia