Tesis
Permanent URI for this communityhttps://hdl.handle.net/11285/345119
Colección de Tesis y Trabajos de grado (informe final del proyecto de investigación, tesina, u otro trabajo académico diferente a Tesis, sujeto a la revisión y aceptación de una comisión dictaminadora) presentados por alumnos para obtener un grado académico del Tecnológico de Monterrey.
Para enviar tu trabajo académico al RITEC, puedes consultar este Infográfico con los pasos generales para que tu tesis sea depositada en el RITEC.
Browse
Search Results
- Synthesis and Characterization of FAPbI3 Perovskite and its Incorporation into a Photovoltaic Heterostructure(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-10) Miró Zárate, Jorge Luis; Elias Espinosa, Miilton Carlos; emimmayorquin; Rosas Meléndez, Samuel Antonio; Melo Máximo, Dulce Viridiana; Flores Ruíz, Francisco Javier; School of Engineering and Sciences; Campus Ciudad de México; Diliegros Godines, Carolina JananiConsidering the importance of having the α-FAPbI3 as it is the photoactive and functional phase for the use of this perovskite in a solar cell and understanding the growth process by incorporating an additive. In this work, it is presented a methodology that combine a method for deposition called sequential deposition with the incorporation of a pseudo halogen additive NH4SCN at various concentration of moles into the PbI2 solution, in order to have α-FAPbI3 perovskite deposited at open atmosphere. This research focuses on the mechanisms of growth of the FAPbI3 perovskite films over glass with the NH4SCN additive. Subsequently, the incorporation of the FAPbI3 perovskite into a heterostructure is presented. The architecture FAPbI3/ETL/ITO/Glass is presented, where the ETLs used are TiO2 and SnO2. The incorporation of FAPbI3 into a heterostructure allows us to evaluate the perovskite's properties for its photovoltaic application. Based on the outstanding electrical properties, WS2 was incorporated into the heterostructure through interface engineering, forming the heterostructure FAPbI3/WS2/ETL/ITO/Glass. Both architectures are compared in terms of their optoelectronic and morphological properties to determine the best FAPbI3-based heterostructure for improved photovoltaic application.
- Instant deliveries in Mexico City: a socio-economic analysis and profit maximization framework for couriers(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-11-27) Galindo Muro, Ana Bricia; Mora Vargas, Jaime; emipsanchez; Dablanc, Laetitia; Ugalde Monzalvo, Marisol; De Unanue Tiscareno, Adolfo Javier; School of Engineering and Sciences; Campus Ciudad de México; Cedillo Campos, Miguel GastónThis thesis introduces an engineering approach to understanding instant delivery operations within the platform economy. During the first step, through two surveys, the study highlighted couriers’ significant risks and challenges, shedding light on their precarious working conditions and financial pressures. The results emphasize the glaring disparity between the platform economy’s promise of flexibility and independence and the harsh reality experienced by most couriers. Furthermore, the study presents an assignment model to support technological advancements, which can lead to more effective decision-making, benefiting all actors involved in the urban instant delivery platform. By incorporating a fee algorithm and operational cost calculations, the quantitative model developed in this study demonstrates that a 20% increase in couriers’ income compared to traditional assignment models is advantageous for all parties. This approach seeks to raise awareness about the socioeconomic implications of emerging technologies such as Instant Deliveries and their regulation, particularly in rapidly developing urban areas. It offers valuable insights to build a more socially responsible and environmentally sustainable optimization approach in engineering.
- Influence of human error and situational awareness in decision-making in complex tasks. Case of study: forklifts operators(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-11-19) Arias Portela, Claudia Yohana; Mora Vargas, Jaime; emipsanchez; Castillo Martínez, Juan Alberto; González Mendoza, Miguel; Thierry Aguilera, Ricardo; School of Engineering and Sciences; Campus Ciudad de México; Caro Gutiérrez, Martha PatriciaThis dissertation investigates situational awareness (SA) and human errors in logistics operations, using a multiphase and multifactorial approach as an innovative approach. The research responds the question of how SA errors can be assessed, along with their influence on decision-making in complex tasks, by considering a comprehensive HFE approach to various triggering factors. Characterization of the process with ethnography and process mapping, analysis of visual attention with Eye-tracking and retrospective think-aloud (RTA), an Error taxonomy and the bases of a data science approach were used to study the diverse cognitive, behavioral, and operational aspects affecting SA. Analyzing 566 events across 18 tasks, the research highlights eye-tracking's potential by offering real-time insights into operator behavior, and RTA as a method for cross-checking the causal factors underlying errors. Critical tasks, like positioning forklifts and lowering pallets, significantly impact incident occurrence, while high cognitive demand tasks such as hoisting and identifying pedestrians/obstacles, reduce SA and increase errors. Driving tasks are particularly vulnerable and are the most affected by operator risk generators (ORG), representing 42% of events with a risk of incident. The study identifies driving, hoisting and lowering loads as the tasks most influenced by system factors. Limitations include the task difficulty levels, managing physical risk, and training. Future research is suggested in autonomous industrial vehicles and advanced driver assistance systems (ADAS). This study provides valuable insights for improving safety in logistics operations by proposing a multiphase and multifactorial approach to uncover patterns of attention, perception and cognitive errors, and their impact on decision-making in the logistic field
- The impact of loading-unloading zones for freight vehicles on the last-mile logistics for nanostores in emerging markets(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-11) Mora Quiñones, Camilo Andrés; Cárdenas Barrón, Leopoldo Eduardo; emimmayorquin; Fransoo, Jan C.; Smith Cornejo, Neale Ricardo; Loera Hernández, Imelda de Jesús; School of Engineering and Sciences; Campus Monterrey; Veláaquez Martínez, Josue CuauhtémocEvery year, more than 26 billion deliveries are made globally to serve nanostores, the largest grocery retail channel in the world. At each stop, company representatives face a persistent challenge: finding a place to park. While the problem seems simple, it is remarkably complex and far from easy to solve. In emerging markets, where cities have grown rapidly and often without proper planning, fragmented markets and inadequate infrastructure exacerbate the issue. Multiple stakeholders compete for limited curb space, and the lack of dedicated parking disrupts last-mile efficiency, forcing drivers to either cruise for parking or resort to illegal parking. These behaviors lead to increased vehicle emissions, noise pollution, and additional costs. This dissertation provides key insights into last-mile logistics for nanostores in emerging markets, contributing to academic literature and offering practical implications to address the parking problem. The first study addresses the parking challenges faced by freight vehicles serving nanostores, identifying key factors affecting dwell time efficiency and suggesting operational improvements. In the next study, the focus shifts to the implementation of Loading-Unloading Zones (LUZs) as a targeted intervention, analyzing their impact on reducing air and noise pollution in urban areas. The last study extends this analysis by exploring the effects of LUZs on traffic flow, evidencing how their introduction can improve vehicle speed and reduce congestion in densely populated city streets. Together, these studies provide a detailed exploration of the operational, environmental, and infrastructural challenges of last-mile logistics, while offering concrete strategies to improve urban logistics in emerging markets. This dissertation contributes by expanding the body of knowledge and offering actionable managerial insights with the potential to drive meaningful impact. These include enhancing air quality, reducing noise pollution, lowering carbon emissions, improving traffic flow, and achieving substantial cost savings for companies distributing goods to nanostores in emerging markets.
- A data-driven modeling approach for energy storage systems(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-11) Silva Vera, Edgar Daniel; Valdez Resendíz, Jesús Elías; Rosas Caro, Julio César; emipsanchez; Escobar Valderrama, Gerardo; Guillén Aparicio, Daniel; Soriano Rangel, Carlos Abraham; School of Engineering and Sciences; Campus MonterreyThis disertation presents a versatile data-driven modeling methodology designed for various energy systems, including battery-based power systems, DC-DC power electronic converters, Lithium-Ion batteries, and Proton-Exchange Membrane Fuel Cells (PEMFC). The proposed approach captures the non linear dynamics of each system by leveraging fundamental measurements and operational data, thus eliminating the need for explicit theoretical models and significantly simplifying the modeling process. Specifically, the methodology allows for the identification of essential parameters by constructing state-space representations that describe both fast and slow system dynamics, which are crucial for accurately modeling transient behaviors and implementing adaptive control strategies. The models were validated across different applications, showing their ability to replicate real system behaviors with high precision. For instance, in the case of DC-DC converters, the models demonstrated an average error deviation of approximately 2% for current signals and 4% for voltage signals, confirming their capacity to track the actual converter dynamics. Similarly, the Lithium-Ion battery models enabled accurate estimation of state of charge (SoC) and opencircuit voltage using a modified recursive least-squares algorithm, achieving close alignment with real discharge curves. In the PEMFC stack modeling, the methodology utilized real-physic model operational data to refine model accuracy, yielding improved predictive capabilities over traditional approaches. These results underscore the efficacy and robustness of the data-driven approach in enhancing the design, control, and optimization of diverse energy systems. By providing a framework that can be readily adapted to different components and configurations, this methodology supports advancements in sustainable energy technologies, enabling the interconnection of multiple energy storage and conversion systems with minimal computational cost and measurement requirements.
- Design and Development of Conducting Polymer and Carbon Nanostructure based Efficient Thermoelectric Materials(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-02) Ebrahimibagha, Dariush; Mallar, Ray; emimmayorquin; Aguirre Soto, Héctor Alán; Niladri, Banerjee; Gallo Villanueva, Roberto Carlos; School of Engineering and Sciences; Campus Monterrey; Datta, ShubhabrataThermoelectric materials present a promising renewable energy technology for directly converting thermal energy into electricity and vice versa. However, their practical application is hindered by low conversion efficiencies, quantified by the dimensionless figure of merit, 𝑍𝑇 = 𝑆 2 𝜎 𝑘 𝑇 , where 𝑆,𝜎, and 𝑘 are the Seebeck coefficient, electrical onductivity, and thermal conductivity, respectively. Achieving a high 𝑍𝑇 is challenging because enhancing one parameter often degrades the others. Various nanoscale strategies have been explored, yet a comprehensive framework for improving 𝑍𝑇 remains elusive. Recently, polymer-based nanocomposites, particularly carbon nanotubes (CNTs) dispersed in polyaniline (PANI), have gained attention due to their flexibility, non-toxicity, and processability, key traits for next-generation flexible electronic devices. Despite this potential, optimizing thermoelectric performance in PANI-CNT systems is complex, as it depends on numerous factors, including CNT dimensions, functionality, and PANI's doping and morphology. This research employs machine learning (ML) and genetic algorithms (GA) to model and optimize the thermoelectric properties of PANI-CNT nanocomposites. By analyzing structural and compositional variables—such as CNT length, diameter, type, and PANI morphology—we identified strategies that enhance electrical conductivity and the Seebeck coefficient while minimizing thermal conductivity. Our ML models revealed that selecting appropriate dopants for PANI and using single-walled CNT (SWCNT) improves overall thermoelectric performance. Multi-objective GA optimization further refined these findings, demonstrating that SWCNTs help reduce thermal conductivity and that CNT length plays a dual role: shorter CNTs decrease 𝑘, while longer ones enhance both 𝑆 and 𝜎. Experimental validation was performed by fabricating PANI-CNT nanocomposite pellets, but achieving high 𝑍𝑇 remained elusive due to limitations in dataset quality and the variability introduced by diverse synthesis techniques. The synthesis method influences PANI dimensionality (e.g., 0D, 1D, 2D) and the morphology of PANI-CNT composites (core-shell vs. dispersed), complicating performance consistency. While the experiments confirmed the general trend of model predictions, they highlighted the necessity of cleaner, more comprehensive datasets for future research. Ultimately, this study lays the groundwork for designing high-efficiency thermoelectric nanocomposites and outlines the next steps in developing more accurate predictive models and synthesis methods for improved thermoelectric performance.
- Advanced modeling techniques in electric vehicles for battery sizing and Vertical Dynamic Control with CARSIM® and ADAMS(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12) Drivet González, Aline Raquel Lily; Cespi, Riccardo; emipsanchez; Vargas Martínez, Adriana; Lozoya Santos, Jorge de Jesús; School of Engineering and Sciences; Campus Monterrey; Tudón Martínez, Juan CarlosThis thesis addresses the rapidly accelerating shift from internal combustion engine vehicles to electric vehicles (EVs), a transition driven not only by market demands but also by the urgent need to mitigate climate change. As electrification reshapes the automotive landscape, the importance of advanced modeling techniques are essential to accelerate the adoption of EV technologies, ensuring competitiveness, and addressing environmental urgency. This research begins with a review of vehicle dynamics changes, highlighting the challenges and opportunities introduced by this swift transition to EV technology. The first contribution of this thesis is the application of modeling and simulation techniques using CARSIM®where real-world telemetry is used to optimize EV battery performance and battery sizing. This optimization focuses on maximizing efficiency while maintaining safety and reliability. The second contribution is the development of a model for EV suspension systems using ADAMS®which can be a platform to test critical dynamic behavior of EVs under various conditions. Together, these contributions advance the design and performance of electric vehicles, introducing advanced modeling tools to accelerate development processes, speeding design processes, and addressing the urgent challenges of vehicle electrification in the context of climate change. As a result of the research presented in this thesis, which includes methodologies for battery pack design and the modeling and control of active suspension systems for electric vehicles, two journal articles have been published, and four additional articles have been presented in conference proceedings, contributing significantly to the academic discourse in these areas.
- Modelling and Control Methodologies for Automated Systems Based on Regulation Control and Coloured Petri Nets(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-02) Anguiano Gijón, Carlos Alberto; Vázquez Topete, Carlos Renato; emimmayorquin; Navarro Gutiérrez, Manuel; Navarro Díaz, Adrán; Mercado Rojas, José Guadalupe; School of Engineering and Sciences; Campus Monterrey; Ramírez Treviño, AntonioIndustry 4.0 and smart manufacturing have brought new interesting possibilities and chal-lenges to the industrial environment. One of these challenges is the large-scale automation of increasingly complex systems with minimal set-up time and flexibility, while allowing the in-tegration of components and systems from different manufacturers for production customiza-tion. To face this challenge, control approaches based on Discrete Event Systems (DES), such as Supervisory Control Theory (based on either, automata or Petri nets), Generalized Mutual Exclusions Constraints (GMEC) and Petri net-based Regulation Control, may provide con-venient solutions. However, few works have been reported in the literature for the case of complex systems and implementation in real plants. The latter opens up an important area of research opportunities. In this dissertation work, methodologies for modelling and control of automated systems based on the Regulation Control approach using interpreted Petri nets are studied. Using this approach, it is possible to capture the information of a system through its inputs and outputs, which allows to force sequences and generate more efficient controllers that can be directly translated to a Programmable Logic Controller (PLC). Through case studies, the effective-ness of these methodologies when implemented in more complex systems is demonstrated. Furthermore, the use of coloured Petri nets is proposed for the modelling of customized pro-duction systems. For this purpose, a new approach based on tensor arrays is introduced to express the colored Petri nets, allowing the use of algebraic techniques in the analysis of these systems.
- Social innovation processes in dignity-centered organizations: evidence from hybrid and indigenous enterprises(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-11-14) Islas Calderón, Selene; Guerra Leal, Eva María; emipsanchez; Quintanilla Domínguez, Claudia María; López Lira Arjona, Alfonso; Amorós Espinosa, José Ernesto; EGADE Business School; Campus MonterreyThe social and environmental issues that humanity is currently facing demand solutions that challenge current organizational practices. Such practices have also been blamed for increasing some of these problems, and different stakeholders are more strongly demanding that organizations seek different, more innovative approaches to sustainability, wellbeing and the generation of profits. One of the approaches that is gaining tremendous attentions is social innovation. However, this concept has also different approaches and scholar are still looking for frameworks that foster more social inclusion and enhance well-being. In this sense, the concepts of dignity and dignity-centered organizations have recently gained traction as a form of organizing that prioritizes the inherent worth of individuals, offering pathways to human flourishing. This new form of organizing may constitute a social innovation that is based on the principle of dignity. How these concepts intersect to generate processes that shape effective organizational practices and generate positive societal outcomes is a literature gap worth exploring and with important implications for managerial practices. The first study emphasizes the central role of dignity in shaping social innovation process. Humanistic management theory constitutes a promising framework that provides a different, more-human approach to how a social innovation generates and consolidates. The authors examined four Indigenous enterprises in Latin America and proposed a four-stage process of social innovation (origin, mobilization, execution, and integration) based on a four-case qualitative study that explores how the notions of dignity and humanistic management practices are present at every stage of the social innovation process. This study is one of the first to explore the relationship between humanistic management principles, dignity, and social innovation processes, a literature gap with important praxeological implications.
- Optimization and sustained release of green lentil polyphenols through instant controlled pressure drop and encapsulation in PLGA nanoparticles(2024-12-03) Tienda Vázquez, Mario Adrián; Almanza Arjona, Yara C.; emimmayorquin; Cardador Martínez, Anabertha; Quintus Scheckhuber, Christian; Téllez Pérez, Carmen; School of Engineering and Sciences; Campus Monterrey; Lozano García, OmarThroughout history, legumes have been part of human consumption for their nutritional content and because is an easy crop to cultivate, it can grow in both cold and warm climates. One type of legumes are lentils, consumed worldwide. In Mexico, lentils are consumed by 70% of Mexican adults. Among the lentil varieties, green lentils stand out for having the highest polyphenol content, which makes them an excellent candidate for human consumption. However, the traditional way of cooking lentils requires prolonged times in boiling water. This causes a significant loss of the number of polyphenols present in lentils. Polyphenols have the ability to reduce the prevalence of suffering from chronic degenerative diseases, because they have antioxidants and anti-inflammatories properties. However, the chemical stability of polyphenols is compromised by different factors like the chemical structure, temperature, pH, isomerizations, enzymes, degradation, and oxidation, among others. This study subjected the green lentils to instant controlled pressure drop (DIC) and measured the polyphenol amount, flavonoids and antioxidant capacity 1,1 -diphenyl-2-picrylhydrazyl (DPPH) and Trolox equivalent antioxidant capacity (TEAC and DPPH), with 13 different treatments by varying pressure and time. The results showed that the polyphenols were the only parameter affected by DIC and the best conditions were less than 160 s and less than 0.1 MPa, and the best treatment was the DIC treatment 11, with 0.1 MPa for 135 s. Surprisingly, apparently new polyphenols appeared in the treated lentils due to the physical stress secondary to DIC, and in consequence the biosynthesis of polyphenols. After DIC, the best green lentil treatment was selected (DIC 11). The polyphenolic extract was obtained and nano encapsulated in poly lactic-co-glycolic acid (PLGA) using five different extract volumes (100, 250, 500, 750 and 1000 𝜇L). The nanoparticles were spherical in shape, with negative zeta potential charge (~ 20 mV), and all the syntheses produced particles, with average sizes ranging between 300 to 1100 nm. The polyphenol released was evaluated in PBS at pH 5.5 and 7.4. The release followed a triphasic controlled release, a lag phase of 24 h, a burst and diffusion phase from 24 h to 372 h, up to 15 days, and finally the saturation phase. The combination of the DIC technology as a pretreatment for green lentils and the nanoencapsulation in PLGA nanoparticles, improved the extraction and preserved the polyphenols profile of green lentils, on the other hand, nanoencapsulation protected the polyphenols and reached a controlled polyphenol release for up to 15 days.