Tesis

Permanent URI for this communityhttps://hdl.handle.net/11285/345119

Colección de Tesis y Trabajos de grado (informe final del proyecto de investigación, tesina, u otro trabajo académico diferente a Tesis, sujeto a la revisión y aceptación de una comisión dictaminadora) presentados por alumnos para obtener un grado académico del Tecnológico de Monterrey.

Para enviar tu trabajo académico al RITEC, puedes consultar este Infográfico con los pasos generales para que tu tesis sea depositada en el RITEC.

Browse

Search Results

Now showing 1 - 9 of 9
  • Tesis de maestría / master thesis
    Design and evaluation of heat exchangers for cooling thermoelectricdevices using additive manufacturing
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-11) Gonzáles Garibay, Ángel Bernardo; Rodríguez González, Ciro Ángel; emipsanchez; Cedeño Viveros, Luis Daniel; School of Engineering and Sciences; Campus Monterrey; Martínez López José Israel
    Thermoelectric modules is a relatively new technology for air conditioning systems en abled by solid state semiconductor base, with major challenges in implementation such as efficiency and high implementation costs. This thesis focuses on the design and manufactureof heat exchangers (HXs)generated using additive manufacturing (AM) that take advantage of the use of free form geometries impossible to manufacture using conventional technologies. Specifically, tryply periodic minimal surface (TPMS) based structures, were tested. For the assessment, diverse gyroid designs with stretched axes were compared against a standard (not stretched) design and a traditional extruded flat fins heat exchanger. Computational fluid dy namics (CFD) simulations and experimental testing were conducted using a custom designed wind tunnel to characterize the temperature drop for these designs. Experimental data suggest that the charactersic high surface area-to-volume ratio of standard gyroids provides a limited performance compared to the stretched configuration. A stretched 4-row gyroid demonstrated the best temperature gradient of 9.21◦C, while the regular gyroid and the stretched 1-row gyroid performed the worst, with gradients of 6.44◦C and 6.05◦C, respectively. However, the convective heat transfer coefficient for the stretched 4-row gyroid was 188.41 W/m2 · K, lower than that of the extruded flat fins design, which was 197.18 W/m2 · K. This indicates that, although the stretched 4-row gyroid design exhibited the most efficient heat absorption, resulting in a significant improvement in the thermoelectric assembly’s efficiency, it still has room for optimization to enhance its convective efficiency. Such improvements could fur ther boost the overall performance of thermoelectric modules. This underscores the potential of optimized complex geometries to significantly enhance both the thermal and overall effi ciency of thermoelectric systems and opens the possibilities to see additive manufactured heat exchangers as feasible for enhancing thermoelectric modules for air conditioning systems.
  • Tesis de maestría
    4d printing research trends and applications in the medical field: a scientometric analysis
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-07-28) Padilla Aguirre, Karen Marcela; RODRIGUEZ SALVADOR, MARISELA; 20562; Rodríguez Salvador, Marisela; emijzarate, emipsanchez; Urbina Coronado, Pedro Daniel; Elizondo Noriega, Armando; Escuela de Ingeniería y Ciencias; Campus Monterrey
    Innovation plays a key role on a company’s either success or failure. But innovation is not just the creating or adopting new technologies; it is also directly connected with a solid strategic planning. Competitive technology intelligence is based on the systematic and ethical process of gathering, analyzing and transforming information into actionable knowledge. It aims to support decision making and strategic planning, because the knowledge produced by this methodology constitutes an early warning for research, development and innovation [19]. Three-dimensional (3D) printing is a technique of additive manufacturing that has revolutionized engineering, product design and manufacturing, as it allows the rapid conversion of digital 3D model information into physical static objects [45]. However, in the last few years a new possibility has been introduced to add ’time’ as a new dimension to create 4D printing. The medical field keeps changing and progressing at a high speed with new technologies emerging every day. 4D printing on the medical field is an area where it is necessary to provide decision makers with an overview of technological knowledge that helps them generate innovation opportunities. On this thesis, a Competitive technology intelligence approach was executed to identify trends in 4D printing technologies applied to the medical field, in order to provide relevant information through a technological landscape to support decision makers to uncover innovation opportunities. The results of the analysis revealed that most of the research developed is on the materials category, which relates completely to the fact that smart materials are the key difference between 3D and 4D printing. Most of the researches focus on shape memory polymers, hydrogels and liquid crystal elastomers. On the processes category researched is focused on the physical configuration of the printing model, printing parameters and adapting machines to modify the printing configurations. As for the applications, three main subcategories were identified, hollow tubes/stents, tissue engineering and drug delivery. According to the growth kinetics it is a field that although is fairly new, keeps growing and will keep gaining attention.
  • Tesis de doctorado
    Implementation of advanced design and additive manufacturing techniques for the development of medically relevant devices
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2023-06-20) Olivas Alanis, Luis Héctor; OLIVAS ALANIS, LUIS HECTOR; 855190; Rodríguez González, Ciro Ángel; puemcuervo, emipsanchez; Vázquez Lepe, Elisa Virginia; García López, Erika; López Botello, Omar Eduardo; School of Engineering Science; Campus Monterrey; Dean, David
    The application of Computer-aided Design (CAD), Engineering (CAE), and Manufacturing (CAM) has brought many benefits to a wide range of sectors. For the healthcare sector, it has enabled the development of complex and enhanced devices which offers promising solutions to current problems. The main applications can be seen in the planning, training, and designing stages. By conducting the design and validation stages in the digital world, prediction of the device manufacturing and performance can be accurately obtained, thus producing the optimized version with engineered properties. Furthermore, novel behavior, geometries, and materials can be achieved, which was not possible by conventional means. In this work, the application of the Design for Additive Manufacturing (DfAM) technique is highlighted for surgical training and planning, as well as load-bearing implant design. The development of smart laparoscopic surgery training devices is presented. The inclusion of force and motion sensors into custom-made 3D-printed parts fitted to common laparoscopic surgical tools enables the objective training and classification of users based on their performance quality. Furthermore, the use of force sensors in varying stiffness sensors is presented as a base for the application of biomimetic models which offer digital information about their elasticity, which could be translated to tissue properties. The second study case presents the different approached for the development of stiffness-matched devices. Novel more-elastic materials, engineered porosity, and planning of implant location can be employed to tailor the mechanical behavior of load-bearing devices. We present the effect of unit cell rotation for tailoring the mechanical properties of strut-based porosity. Also, the application of engineering porosity in addition to Nickel-Titanium alloys is studied as a promising case for stress-shielding effect reduction. Finally, it assessed the effect of changing the location of personalized fixation on the mechanical behavior of bone reconstruction before and after healing. Results show that these three factors play a crucial role in reducing the stress concentration on the implant, hence, enlarging its life-span.
  • Tesis de doctorado
    A safe and efficient path planning framework for conformal fused filament fabrication using a manipulator arm
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-12-02) Rodríguez Padilla, Ma. Consuelo; ROMAN FLORES, ARMANDO; 46077; Román Flores, Armando; puemcuervo, emipsanchez; Cuan Urquizo, Enrique; González Hernández, Hugo Gustavo; Ramírez Cedillo, Erick Guadalupe; School of Engineering and Sciences; Campus Monterrey; Vázquez Hurtado, Carlos
    As opposed to flat or planar extrusion additive manufacturing, the benefits of multi-plane and curved fused deposition of material are conclusive; however, several issues need to be considered and solved when a robotic manipulator is used for the deposition of material. The path and motion planning for printing using robotics need considerations to guarantee adequate results. This work presents the projection of a printing trajectory on a tessellated surface and a Reinforcement Learning strategy that optimizes the angular displacement of joints. The validation of the strategy is presented under simulated conditions inserting different obstacles for a projected zigzag printing pattern on a curved surface. Results show that this approach can choose the optimal inverse kinematic solution to optimize the movement of the main joints of a robot with six degrees of freedom while avoiding different obstacles. The strategy was tested on several actual printings of complex patterns on different curved surfaces using a manipulator arm UR3. Even thought the applicability of lattice manufacturing suggested here, the framework developed and software implemented and validated may be used for any application where a very precise conformal trajectory needs to be followed using a manipulator arm or any multi-axis system saving programming time.
  • Tesis de doctorado
    An analysis of the technical challenges to produce a Digital Twin of FDM parts
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-08-05) Guajardo Treviño, Alan Mauricio; GUAJARDO TREVIÑO, ALAN MAURICIO; 886471; Ahuett Garza, Horacio; puemcuervo, emipsanchez; Urbina Coronado, Pedro Daniel; Carrillo Martínez, Luis Antonio; Román Flores, Armando; School of Engineering and Sciences; Campus Monterrey; Orta Castañon, Pedro Antonio
    A Digital Twin (DT) is a digital representation containing all relevant information of a physical entity with synchronization between the entity and its virtual representation. The Digital Twin is mainly used to monitor, control and predict a part or process. Many challenges exist in implementing Digital Twins in the Additive Manufacturing (AM) fabrication process. However, recent advancements in sensorization and simulation make DT more useful for AM processes and ease its adoption. While FDM parts are commonly used in non-load bearing functions, with the aid of DT, it is possible to improve the mechanical properties and geometrical accuracy of the parts, which can help expand their use in engineering applications. This work evaluates the challenges and benefits of creating a Digital Twin for FDM products and proposes a methodology for gathering the relevant information.
  • Tesis de maestría
    Parametric modelling of a biomimetic propulsion system using additive manufacturing for autonomous underwater vehicles
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-12-01) Lima Rodríguez, Biali Fernando; Martínez López, José Israel; puemcuervo; Vázquez Lepe, Elisa Virginia; Chuck Hernandez, Cristina Elizabeth; School of Engineering and Sciences; Campus Monterrey
    This work presents a novel pseudorandom algorithm for generating in-silico biomimetic models of caudal fins for additive manufacturing for flexible materials. The methodology provides a tool to develop caudal fin models for different morphologies (within rounded, truncated, forked, and lunate), geometrical features and, considering randomness to improve the lifelikeness of the model. The capability of the algorithm to generate designs with customized hydrodynamic features was evaluated in-silico using computational fluid dynamics comparing the maximum velocity and the angle of attack. Numerical data shows that customization of key dimensional can be integrated into a flexible and dynamic design process. This work is a step towards reproducing more robust and lifelike engineering systems.
  • Tesis de maestría
    Optimization of Dimensional Variation for Additive Manufacturing Using Response Surface Methodology Technique for Lattices Structure
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-12-02) Betancourt Chacón, Diego Antonio; Sandoval Robles, Jesús Alejandro; puelquio/tolmquevedo; Hernández Luna, Alberto Abelardo; Rodríguez González, Ciro Angel; School of Engineering and Sciences; Campus Monterrey; Vázquez Lepe, Elisa Virginia
    In this work, metal powder bed fusion selective laser fusion (SLM) process was used for the fabrication of 3 different lattices structures because of its high resolution for complex geometries, there are plenty of research works in the parameter optimization for solid pieces, however, there is a lack of research for pieces with porosity and a micrometric scale where most of the measurements are not reported. To achieve this, different lattice geometries such as cubic, diamond and fluorite were manufactured, these were produced with different parameters, mainly varying the laser power, the scanning speed or exposure time, and scanning strategy using Surface Response Methodology to optimize the results. The struts from each lattice were measured in the Z and X axis, as well as the porosity of each piece. Additionally, compression test was performed to obtain the stress from the diamond a flourite lattice structure. The results are the parameters to manufacture pieces in micrometric scale for Renishaw AM400 with Stainless Steel 316L with a reduced dimensional difference from the CAD.
  • Tesis de maestría
    A proof of concept system for the implementation of path planning strategies in the context of additive manufacturing of composites
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06-05) Salinas Sáenz, Sergio Alejandro; Ahuett Garza, Horacio; ilquio/tolmquevedo; Orta Castañón, Pedro; Urbina, Pedro; School of Engineering and Sciences; Campus Monterrey
    In recent years, the use of additive manufacturing (AM) technologies has increased significantly in industrial applications. In AM processes, which can produce complex shapes layer by layer, the end-product presents anisotropic properties that depend mostly on the deposition trajectory. The problem is that there is a bottleneck in research and improvement of these properties, due to limitations on the deposition trajectory control. In the case of commercial systems, the end-product mechanical properties are not taken into consideration, and the limited selectable options impedes the designer’s tool-path strategies to be implemented. This thesis presents a proof of concept system integrated by an adapted machine system and a software framework that allows the designer to implement and test the path planning strategies for the deposition trajectory control. An overview of the hardware conditioning is explained, and a proof of concept strategy is proposed for increasing the deposition trajectory continuity, as a proof of use of the system in the context of additive manufacturing of composites.
  • Tesis de maestría
    Volumetric bioprinting for medical applications
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06-05) López Franco, Arturo; VARGAS ROSALES, CESAR; 33901; Vargas Rosales, César; RR; Zhang, Yu Shrike; School of Engineering and Sciences; Campus Monterrey; Galaviz Aguilar, José Alejandro
    Additive manufacturing (3D printing) has been a widely used tool in a lot of different industries. Among these industries can be found tissue engineering and regenerative medicine, since bioprinting is one of the main techniques applied. The implementations of new technologies for additive manufacturing, have been adapted into the bioprinting area for medical purposes. Additive manufacturing technologies have been evolving from printing point-to-point, layer-by-layer, and more recently volumetric printing, which represents printing a whole volume simultaneously. In this thesis is presented a new technique for bioprinting, the Computed Axial Lithography (CAL) printing, which is a recently additive manufacturing technology based on reconstruct- ing a volume simultaneously, has demonstrated to have advantages against other additive manufacturing techniques, improving the printing speed, the resolution, minimum material waste, and more, and its application in the medicine industry has not been explorer looking very promising for this research field with limitless applications. The bioink used in the experiments presented is a GelMA-based hydrogel, and the 3D structures achieved should be capable of present biocompatibility with living organisms. For this thesis, the reproduction of the CAL printing for biomaterials, in this particular case GelMA, is proved, opening the doors for applying the same concept to different biomaterials, which could have limitless applications in many distinct research areas.
En caso de no señalar algo distinto de manera particular, los materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://creativecommons.org/licenses/by-nc-nd/4.0
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia