Tesis
Permanent URI for this communityhttps://hdl.handle.net/11285/345119
Colección de Tesis y Trabajos de grado (informe final del proyecto de investigación, tesina, u otro trabajo académico diferente a Tesis, sujeto a la revisión y aceptación de una comisión dictaminadora) presentados por alumnos para obtener un grado académico del Tecnológico de Monterrey.
Para enviar tu trabajo académico al RITEC, puedes consultar este Infográfico con los pasos generales para que tu tesis sea depositada en el RITEC.
Browse
Search Results
- Electrical-thermal characterization of a hybrid parabolic concentrator with spectral beam splitting(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-05-26) Garcia Ramos, Rafael Alejandro; Rivera Solorio, Carlos Iván; emipsanchez; Gijón Rivera, Miguel Ángel; Acosta Pazmiño, Iván Patricio; School of Engineering and Sciences; Campus MonterreyElectrical and thermal energy use has increased exponentially in recent years, mostly coming from intensive-use activities such as industrial and commercial areas. Also, typical energy (fossil fuels) to produce electricity and heat generates gases that are harmful to our planet, contributing to global warming. Solar energy is an excellent source of renewable energy and a solution to the mentioned problems. Photovoltaic-thermal (PVT) technologies allow to remove heat from PV cells, harnessing it as thermal energy and increasing electrical efficiency which usually decreases by 0.5%/°C over 25°C. Moreover, Low Concentrating PVT (LCPVT) collectors improve electrical and thermal power, reaching higher temperatures that can be used for industrial processes but preserving the integrity of the PV cells by keeping them below 100 °C. Many challenges arise from these collectors that, even when are well-studied, there are still gaps in commercial and scientific fields. LCPVT collectors lack a specific international standard for their characterization due to their hybrid nature, making the comparison and introduction to the market a complicated task. Furthermore, recently the application of the Spectral Beam Splitting (SBS) method has been the object of research. This method consists of dividing the sun’s electromagnetic spectrum into two parts, where the thermal part (ultraviolet and near infrared light) is reflected/absorbed by the filter, and the other part (visible light) is transmitted to the PV cells. The implementation of this method in LCPVT collectors is complex due to the geometry adjustments, being almost no experimental research on this field up to date. In this way, this work implements an LCPVT test bench, and its characterization is done by hybridizing the international standards ISO 9806 and IEC 62670-3. Also, its results are compared to numerical models and other collector geometries in the market. Moreover, an SBS filter liquid container was designed and preliminary tests applying liquids and solid in PV panels were done to check results in the electrical and thermal behavior of the panel. Lastly, the latter tests were taken as considerations for the design of an SBS filter applied to the LCPVT collector, and suggestions for future improvements were proposed. Such advances are useful for the scientific community by producing real values that support the validation of mathematical models and a better understanding of these technologies, thus being able to improve future designs.
- Numerical investigation on the heat transfer enhancement by the combination of wavy tape, dimples and nanofluids in a PTC receiver.(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-09-10) Cuevas Iturbe, Luis Donaldo; RIVERA SOLORIO, CARLOS IVAN; 121148; Rivera Solorio, Carlos Iván; tolmquevedo; Bretado de los Ríos, Mariana Soledad; Morales Menéndez, Rubén; School of Engineering and Sciences; Campus Monterrey; Gijón Rivera, Miguel ÁngelParabolic trough collector (PTC) is the most developed concentrating solar technology. It represents a viable way to substitute fossil fuels in the production of heat process, however higher thermo-hydraulic performance is needed to be more competitive. This study presents a numerical investigation of dimples, wavy tape and nanofluids (Al2O3, TiO2 and Al2O3-TiO2 dispersed in water at 4% concentration) in combination, in a PTC receiver. Fluent was used to solve the fluid dynamics and heat transfer characteristics inside the PTC receiver with the different heat transfer enhancement techniques for Reynolds numbers ranging from 1.48x104 to 1.77x105. The study showed that dimples with Al2O3/water nanofluid lead to a higher thermo-hydraulic performance evaluated with the Thermal Performance Index with values as high as 1.78. It was also proven that the highest thermal enhancement is obtained when the three heat transfer augmentation techniques are used in combination (wavy tape, dimples, and Al2O3/water nanofluid) with a heat transfer coefficient enhancement of 3.12 times that of a plain PTC receiver with no thermal enhancement. Nonetheless, the combination of techniques also come with a high cost of pressure drop increase from 8.52 to 12.59 compared to the plain PTC receiver. The combination of all the techniques proved more useful at low Reynolds numbers because the flow is not as turbulent. As Reynolds number increases, the thermal increase is not proportional to the mean pressure drop increase, then leading poor performances at high Reynolds numbers. On the other hand, wavy tape with nanofluids proved to have better thermal performances at high Reynolds numbers. The use of nanofluids always leads to the higher thermal performance values. Regarding the different nanofluids, the difference among them is non-significant compared to each other in terms of mean pressure drop, however in terms of heat transfer coefficient improvement, there is about 1.34% difference between the highest thermal performance nanofluids (Al2O3, and Al2O3-TiO2) and TiO2/water nanofluid.
- Passive cooling strategies and performance of low energy residential buildings in semi-arid climate conditions(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-06-15) Mousavi, SeyedehNiloufar; RIVERA SOLORIO, CARLOS IVAN; 121148; Rivera Solorio, Carlos Iván; hermlugo, emipsanchez; Lopez Salinas, Jose Luis; School of Engineering and Sciences; Campus Monterrey; Gijón Rivera, Miguel ÁngelThis numerical study compares annual energy consumption of three building prototypes under semi-arid climate conditions of Monterrey. These common cases were selected based on Mexican housing classification of houses including, one story house, apartment of 4 story house, double story house, named C1, C2, and C3, which were simulated using DesignBuilder software. Based on literature reviews and availability of materials, 6 scenarios were defined for walls component, similarly 6 scenarios for the roof of all cases with the application of phase change material (PCM), reflective paint, and insulation. Regarding the opening envelope of cases 5 scenarios were defined including the application of double clear glazing, double low-e glazing, and reflective glazing coupled with shading. Selection factor to find the most efficient combination were based on annual energy and material cost of scenarios against each other and base case. Firstly, for wall component of envelope results showed that PCM with insulation (PI) outperformed other scenarios for all cases however with regards to its cost reflective paint with insulation (Ir) was more efficient, similar pattern was found for roof component for all cases where Ir scenario outperformed in term of cost and energy. Secondly, with regards to the opening scenarios loE double glazing coupled with horizontal shading outperformed others, consequently three selected scenarios were combined for all cases and formed the energy efficient configuration (EEC) to analyze the improvement in indoor thermal comfort, thermal improvement, carbon emission reduction, and economic benefit of their application. Various actions are carried out to perform these analyses; calibration of the model with experimental data and comparative ASHRAE benchmark case study 600FF, climate data simulations with TRNSYS software, and sensitivity analysis for PCM selection. Also, it was found that PCM was effective strategy if the thickness of material increases to similar thickness as insulation it could save up to 57% of energy for C1 which is the highest saving rate as compared to all other scenarios, however due to its high cost it is not economically efficient in local context. The results demonstrate that EEC cases achieved total annual energy saving of around 53%, 55%, and 58% for C1, C2, and C3 cases, furthermore, concerning the thermal comfort improvement were around 45%, 33%, and 38% respectively. With regards to thermal performance during hottest day temperature, improvement was observed with averages of 5.9°C and 3.2°C for C1 and C3 whereas C2 had no improvement during this period, however during coldest day all cases had an average improvement of 2.4°C, 2°C, and 2.6°C. Concerning the Carbon footprints, reduction of emission for each case of C1, C2 and C3 were around 1578 Kg, 2798 Kg, and 3004 Kg annually, with 6 years, period of return for C1 and almost 3.5 years for C2 and C3. To conclude, the scenarios studied could be integrated with renewable sources of energy supply such as PV panels and result in net-zero building envelope, as all cases almost saved more than 50% of energy.
- Integrated concentrating photovoltaic-thermal solar collector and membrane distillation system for desalination and vinasse treatment(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-11-17) Santana González, Juan Pablo; Rivera Solorio, Carlos Iván; puemcuervo; Gijón Rivera, Miguel Ángel; García Cuellar, Alejandro Javier; Escuela de ingeniería y Ciencias; Campus MonterreyThis study presents the evaluation to integrate hybrid Concentrating Photovoltaic Thermal (CPVT) collectors with a Vacuum Membrane Distillation (VMD) module as a green alternative to produce freshwater. The CPVT collector provides the thermal and electrical energy required for the VMD to desalinate water. The performance of these integrated solar-assisted desalination technologies is numerically evaluated using TRNSYS. Parametric studies were conducted to find optimal operating conditions regarding the collector’s surface area and the brine’s set point temperature, from which a configuration using 4-collector units and a set point temperature of 55°C was chosen for a multi-city study. Annual weather conditions and specific information about the characteristics and operating conditions of a real CPVT collector and VMD module are considered in the dynamic simulation for 4 coastal cities: Acapulco, MX; La Paz, MX; Nadi, FJ; and Singapore, SG. The system can convert almost 50% of the solar radiation it receives into useful energy (8.2% into electricity and 41.4% into heat). The permeate production varied from 170.365 m3/m2_VMD in Singapore, SG, to 209.415 m3/m2_VMD in Acapulco, MX, showing a clear correlation between the solar radiation received and the performance of the system. Moreover, in a comparative study against a non-solar system, the specific energy cost for every m3 of freshwater produced could be decreased by 80% by implementing the CPVT collector. Additionally, an alternative application for this innovative system was tested, simulating the treatment of vinasses from the tequila production process. During the months with larger incident solar radiation, the performance of the system was optimal, with the peak specific permeate production achieved was 17.33 m3/m2_VMD during May, while the lowest SEC was 0.50 kWh/m3. The results of the simulations showed the exciting potential to use solar energy from hybrid CPVT collectors for a VMD process, not only for desalination in coastal cities but also as a viable technology to contribute to the production of freshwater demanded by industry and society.
- Estudio de la coción y enfriamiento de alimentos implementando nanofluidos en sistemas térmicos(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-12-06) Chadid Gutiérrez, Maria Alejandra; RIVERA SOLORIO, CARLOS IVAN; 121148; Rivera Solorio, Carlos Iván; puemcuervo, emipsanchez; Gijón Rivera, Miguel Ángel; López Salinas, José Luis; Escuela de Ingeniería y Ciencias; Campus MonterreyLos últimos descubrimientos en nanotecnología han permitido el desarrollo de partículas con tamaño menor a 100 nm, y con ello, el desarrollo de los nanofluidos. Los nanofluidos son la mezcla de un fluido base y partículas de tamaño menor a 100 nm o nanopartículas. Los nanofluidos han reportado gran potencial para aumentar la eficiencia energética de sistemas térmicos debido a la mejoría en las propiedades térmicas de los fluidos. En el presente trabajo se analiza el comportamiento de la transferencia de calor en dos equipos para el calentamiento y enfriamiento de alimentos comúnmente usados en la industria alimenticia: Vertical griddle y Maketable respectivamente. El vertical Griddle es un equipo que utiliza energía eléctrica para generar vapor que circula a través de una plancha en la cual se calientan hamburguesas y el Maketable o mesa para la preparación de alimentos es un equipo que mantiene frescos los alimentos en compartimientos inmersos en glicol refrigerado. Nanofluidos con base en agua y glicol fueron caracterizados para ser implementados en los respectivos equipos. Mediciones de conductividad térmica y calor específico fueron realizadas para nanofluidos de Al2O3, TiO2, MWCNTs y GNP, en concentraciones de 10\%, 6\% y 3.5\% y 3\% en peso. Los nanofluidos con las mejores propiedades térmicas fueron seleccionados para ser implementados en cada equipo según corresponda. Para al realización de los experimentos, prototipos del vertical griddle y Maketable fueron construidos e instrumentados. Mediciones de temperatura, presión y flujo másico fueron realizadas en los diferentes prototipos. El análisis de los datos obtenidos experimentalmente fue enfocado en la reducción de consumo de energía, remoción de calor, reducción porcentual de temperatura y reducción de constante de tiempo. Se pudo concluir que la implementación de nanofluidos de grafeno con base en agua con concentración en peso del 6\% en el vertical Griddle logró reducir el consumo de energía durante la marcha en un 30\% y de 4\% en total en comparación al consumo energético hallado para la prueba con agua. Además, se logró mantener la temperatura de las placas necesaria para la cocción del alimento obteniendo dichos ahorros en el consumo de energía. \\ Por otro lado, también se encontró que con la implementación de nanofluidos de Al2O3 con base en glicol al 20\% de concentración en peso en el Maketable, fue posible alcanzar mayores porcentajes de reducción de temperatura que los alcanzados con el fluido habitual de trabajo: glicol. Mientras que las reducciones de temperatura en el glicol fueron del 69\% al 75\%, las reducciones de temperatura alcanzada con el nanofluido de Al2O3 con base en glicol al 20\% de concentración van desde 73\% al 86\%. De la misma manera, la constante de tiempo encontrada para la prueba con nanofluido fue 20\% menor a la obtenida con glicol. Lo que implica que el 63\% del cambio de la temperatura se logró 20\% más rápido implementando nanofluido respecto al fluido base. Otros aspectos como la diferencia de presiones y remoción de calor fueron analizados para los equipos correspondientes. Por último, se proponen áreas de oportunidad para futuros estudios que puedan ser realizados en el vertical griddle y Maketable relacionados con la eficiencia energética de los equipos utilizando nanofluidos.
- Modelación del comportamiento térmico y extracción de energía de un estanque solar con inversor de flujo helicoidal y nano fluidos(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021) Villanueva Boone, Fernando; RIVERA SOLORIO, CARLOS IVAN; 121148; Rivera Solorio, Carlos Iván; tolmquevedo, emipsanchez; Gijón Rivera, Miguel Angel; García Cuellar, Alejandro Javier; Escuela de Ingeniería y Ciencias; Campus MonterreySe realizó un modelo matemático para estudiar el comportamiento de un estanque solar. Se estudió la transferencia de calor dentro del estanque, así como la extracción de calor con un inversor de flujo helicoidal instalado en el fondo del estanque. Se tomaron las condiciones ambientales locales, como la velocidad del viento, humedad, radiación incidente y temperatura ambiente, para correr la simulación del modelo. El estanque fue dividido en 3 zonas. Se calcularon las ganancias y pérdidas de calor por absorción de la radiación, pérdidas por convección, evaporación, radiación, por las paredes y el suelo, utilizando diferentes modelos y correlaciones. Además, se añadió al modelo la extracción de calor con el uso de nano fluidos, por lo que se usaron correlaciones para calcular sus propiedades. Se resolvió el modelo discretizando las ecuaciones diferenciales y resolviendo para la temperatura del siguiente nodo temporal. El modelo arroja las temperaturas del estanque para diferentes alturas cada 10 minutos, así como la temperatura de salida del intercambiador de calor y el calor extraído. Para validar el modelo, se compararon los datos de la simulación con los datos experimentales de 2 estanques previamente construidos y se construyó uno nuevo de 5 m3. Se instaló un CFI de 8 metros en la zona convectiva inferior y se corrieron 3 pruebas totales, una con agua y las otras dos con el nano fluido Al2O3/agua a 2% y 3% en volumen. Por último, se compararon los datos experimentales y los de la simulación, y se hizo una comparación de la extracción con agua y con nano fluidos.
- Hydrodynamic and thermal evaluation of nanofluids for heat exchangers and solar applications(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-12-06) Bretado de los Ríos, Mariana Soledad; Rivera Solorio, Carlos Iván; puemcuervo; Gijón Rivera, Miguel Ángel; López Salinas, José Luis; García Cuéllar, Alejandro Javier; Luis Alfredo, Payán Rodríguez; School of Engineering and Sciences; Campus MonterreyThis doctoral research presents a thermal and hydrodynamic experimental evaluation of water-based nanofluids in a coiled flow inverter heat exchanger (CFI-HE) and solar thermal applications. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) nanoparticles were used to prepare samples from 1% to 3% volume concentrations (% v/v). The experimental analysis is for laminar and turbulent flow under steady state. The performance evaluation criteria (PEC) based on the Nusselt number and the Fanning friction factor is used to evaluate the CFI-HE, multitube HE, and coiled HE. According to PEC values, the results show that all nanofluids over perform the base fluid. The 3% v/v Al2O3/H2O and TiO2/H2O water-based nanofluids achieved maximum increases of 53% and 59% under turbulent flow conditions, respectively. CFI-HE presented higher PEC values and better stability of nanofluids compare to coiled HE and multitube HE. Moreover, Nusselt number and Fanning friction factor correlations based on the experiments are proposed in this investigation. The CFI-HE using Al2O3/H2O and TiO2/H2O water-based nanofluids was incorporated to a salt gradient solar pond (SGSP) for heat extraction, in which the thermal efficiency of the SGSP is 15% and 25% higher compared to base fluid, with 3% v/v Al2O3/H2O and TiO2/H2O, respectively. Furthermore, Al2O3/H2O nanofluids were evaluated in a parabolic trough solar collector (PTSC) and the maximum efficiency was obtained for Al2O3/H2O 1% v/v reaching to 58% at the smallest incidence angle, finding that the efficiency had a strong dependence on the incidence angle. Long-term stability of nanofluids, lowering the cost of manufacturing nanoparticles, and optimizing operational parameters are areas of opportunity that require attention to obtain high-potential nanofluids. It is conclusive that, thermal and hydrodynamics results for heat exchange and solar thermal applications demonstrates the strength of nanofluids to enhance the performance in heat transfer applications.
- Numerical Analysis of Heat and Mass Transfer in Emerging Technologies of Cooling Systems(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06-15) Mitz Hernández, Enrique; MITZ HERNANDEZ, ENRIQUE; 881783; Rivera Solorio, Carlos Iván; ilquio, emipsanchez; Huertas Cardozo, José Ignacio; School of Engineering and Sciences; Campus Monterrey; Gijón Rivera, Miguel AngelWe numerically analyze two distinct technologies for air cooling systems: (1) Dew-Point Evaporative Cooling (DPEC) Systems, and (2) Nanofluids in Helical Coils Heat Exchangers (HCHE). For the first technology, we developed a 1D model with thermophysical properties dependent on the temperature, humidity ratio and atmospheric pressure. The model was evaluated under different conditions in a parametric analysis. Then, a regression maintaining the same atmospheric pressure and channel length was found for the DPEC model. The regression shows a good fit with modeled data, having a RMSE of 1.4 and R2adj of 93%. Also, the model was evaluated in 4 climates (Very arid, arid, warm, and mild). On the other hand, the Nanofluids in HCHE model was implemented in the commercial software Fluent. The optimal mesh consists of 3.529 Million of elements using a structured mesh. The model implemented was set in a turbulent regime, with thermophysical properties dependent on temperature and constant wall temperature and uniforms inlet velocity and temperature. The thermophysical properties for the nanofluids were set from thermophysical properties dependent on the temperature of the base fluid and constant thermophysical properties of the nanoparticle. Then, a case analysis varying the geometry, Dean number, nanofluid (base fluid and nanoparticle) and nanoparticle volume concentration was developed. Finally, from the data modeled we found a correlation for Nusselt number of the Water / Alumina nanofluid.