

Dedication

I would like to dedicate this thesis to my family. Thanks for all your unconditional confidence,
support, patience, and encouragement. You were my main motivation when pushing through
this work.

v

Acknowledgements

I would like to express my deepest gratitude to all those who have been side by side with
me. My friends which supported me on many steps of the way. My family that was really
helpful to me in many of the stages I went through. My thesis advisor who helped me on the
making of this thesis and was also understanding of the problems I encountered. Thanks to
Tecnológico de Monterrey for support on tuition and CONACyT with the support for living.

vii

Towards the Generation of Heuristics for the Job Scheduling
Problem via Crowd Computing: A Video Game Approach

by
José Martı́n Mendoza Leal

Abstract

This thesis was conducted for the Master’s in Computer Science Program within the research
line of Bio-inspired algorithms with the objective of demonstrating that heuristics for the Job
Shop Scheduling Problem (JSSP) can be generated from strategies used by humans when
solving the same type of problem, and that this can be done by crowdsourcing using video
games. Heuristics are discussed in the computer science field and the psychological field.
In both, a heuristic is a quick strategy for decision making when solving a problem which
gives up the accuracy of the solution in exchange for obtaining an answer faster. Given that
humans tend to use heuristics naturally, an analysis of their behavior can be done to identify
these heuristics. The JSSP is an optimization problem within the Scheduling domain where
different jobs, composed of activities of different types, must be completed by assigning each
of them a position in time in any of the different available machines that are of the same
type than the activity, with the intention of finalizing all jobs in the minimum time possible.
Scheduling problems including the JSSP are seen in many manufacturing processes and sup-
ply chain systems, making them of high interest for companies. Computationally, the JSSP
is a hard problem of non-deterministic polynomial time (problems that in order to find the
optimal answer, a large amount of computational time is required, making it unfeasible to find
a solution when these problems are large) which is why techniques like heuristics are needed
to solve big versions of this problem. If people are given the JSSP, in many cases, they will
naturally start using heuristics to try to solve it. With this in mind, an analysis designed for
identifying heuristics was applied on the behavior of 21 individuals when solving the JSSP.

Crowdsourcing is the use of external people to a project in which the intention is to
obtain goods or, in our case, data from a group of participants. In this thesis, the generation of
data from humans solving JSSPs was crowdsourced using a video game by making people to
solve JSSPs inside the game. For this, different JSS problems were gamified, which means to
add typical elements of a game like points and score to an activity, so these could be presented
as features in a video game. The gamification of activities has been proven to motivate and
increase engagement from the participants, being an important factor that influenced the use
of a video game for this thesis. A video game that included the gamified JSSPs was given to
play to 21 students. The movements that the players used to solve the JSSPs while playing
were collected to be later analyzed. This research shows how video games can be used to
gather data from humans when solving JSSPs, and then transforming those solution processes
into heuristics by using Machine Learning (ML) algorithms.

Machine Learning algorithms use experience to create models that simulate a behav-
ior and make decisions, which means that analyzing the movements of human players will
create methods intended to emulate their behavior. In order to complete this project, first,

ix

experimentation was made on ML algorithms to test their capacity to replicate the behavior
of existing heuristics in the literature by training ML models with data generated using those
heuristics and under different scenarios. ML algorithms used to create the models were: De-
cision Trees, Multi-Layer Perceptron, K-neighbors Algorithm, Support Vector Machines and
Random Forest Algorithm. After knowing the effectiveness of training and testing these ML
algorithms, Decision Trees, Support Vector Machines and Random Forest Algorithms were
selected as the better algorithms for continuing the research, and then used to train models
with the data collected from the players of the video game. An analysis was conducted on
the accuracy on the ML algorithms emulating the players, and aiming at understanding their
behavior and strategies for solving problems that can be used as heuristics. The behavior
of the ML models were visualized and interesting patterns on how humans solved the JSSP
were detected, and promising results were obtained. Some of the heuristics obtained from
humans were compared against common heuristics, and interesting conclusions were drawn.
This thesis provides the initial steps for generating heuristics from humans when solving dif-
ficult computational problems, and leaves and open space for future research to enhance and
produce new solution models.

x

List of Figures

3.1 Solution Model. 20
3.2 Graphical JSSP. 21

6.1 Graphical JSSP. 48
6.2 Graphical JSSP Job Restriction. 48
6.3 4D-Tetris. 49
6.4 Monster Hunters. 50
6.5 Graphical JSSP moves. 53
6.6 Video Game moving activities. Case 1. 55
6.7 Video Game moving activities. Case 2. 55
6.8 Video Game Showing Solution. 55
6.9 Video Game Shop. 56
6.10 Video Game Story. 56
6.11 Video Game Tutorial Story. 56
6.12 Video Game Tutorial for solving JSSP. 57

7.1 Activity heuristic generated for player 11 with information ”After movement”
from the group of ”All Games”. 73

7.2 Machine heuristic generated for player 11 with information ”After move-
ment” from the group of ”All Games”. 73

7.3 Activity heuristic generated for player 29 with information ”Before move-
ment” from the group of ”Very Good Games”. 74

7.4 Machine heuristic generated for player 29 with information ”Before move-
ment” from the group of ”Very Good Games”. 75

xi

List of Tables

5.1 ML models used and their abbreviations. 31
5.2 Taillard’s random number generator. 32
5.3 Example of a 3x3 JSSP instance. 33
5.4 Example of data after three steps without normalizing. 36
5.5 Example of normalized data after three steps. 36
5.6 Training problems. 38
5.7 Accuracy of each method using ”Before movement” information. 39
5.8 Accuracy of each method using ”After movement” information. 40
5.9 Accuracy of each method using ”Before movement” information with applied

results. 42
5.10 Accuracy of each method using ”After movement” information with applied

results. 43

6.1 Example of game file named ”97 37 468 100.csv”. 59
6.2 Example of JSSP file named ”JSSP 97 info.txt”. 59

7.1 Data from players collected in the video game (described in Chapter 6). . . . 62
7.2 Abbreviations from ML algorithms tested. 64
7.3 ML algorithms tested with All games ”Before movement” activity information. 65
7.4 Best accuracy from all games by player. 66
7.5 Best accuracy from good games by player. 67
7.6 Best accuracy from best games by player. 68
7.7 Best accuracy from the 10 last good games by player. 69
7.8 JSSPs for comparison. 76
7.9 Comparison of total makespan obtained after heuristics solved JSSPs. 77

xiii

Contents

Abstract ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement and Motivation . 3
1.2 Hypothesis . 5
1.3 Objectives . 5
1.4 Solution Overview . 6
1.5 Contributions . 6
1.6 Thesis Organization . 7

2 Background 9
2.1 Heuristics . 9

2.1.1 Heuristics in Psychology . 9
2.1.2 Heuristics in Computer Science . 10

2.2 Job Shop Scheduling Problem (JSSP) . 10
2.3 Video Games . 12
2.4 Crowdsourcing . 14
2.5 Machine Learning . 14
2.6 Player Behavioral Modelling for Video Games 15
2.7 Related work . 16
2.8 Summary . 17

3 Solution Model 19
3.1 JSSP . 19
3.2 Humans . 19
3.3 Video Game . 20
3.4 Data Analyzer . 21
3.5 Summary . 21

4 Methodology 23
4.1 Summary . 25

xv

5 Creating and Testing the Basic Model 27
5.1 Heuristics . 27
5.2 Used Machine Learning (ML) Algorithms 28

5.2.1 Decision tree . 28
5.2.2 K-Nearest Neighbors . 29
5.2.3 Multi-Layer Perceptron . 30
5.2.4 Support Vector Machines . 30
5.2.5 Random Forest . 30

5.3 Job-Shop Scheduling Problem (JSSP) instances 32
5.4 Data composition . 33

5.4.1 Descriptive Features . 34
5.4.2 State Features . 36

5.5 Application and Results . 37
5.5.1 Resulting Models . 38
5.5.2 Results from Applying the ML Algorithms 41
5.5.3 Conclusions . 44

5.6 Summary . 44

6 Developing the Video Game 45
6.1 Designing the Video Game . 46

6.1.1 Graphical JSSP . 47
6.1.2 4D-Tetris . 49
6.1.3 Monster Hunters . 50

6.2 First Version of the Video Game . 52
6.2.1 Video Game Description . 52
6.2.2 Experimentation and Results . 53

6.3 Final Version of the Video Game . 54
6.3.1 Analysis using Desurvire’s characteristics 57
6.3.2 Video Game Release . 58

6.4 Conclusions . 60
6.5 Summary . 60

7 Process for Generating Heuristics 61
7.1 Analysis of Data using ML algorithms . 61

7.1.1 First Experiments . 63
7.1.2 All Games by Player . 65
7.1.3 Portraying Heuristics . 69
7.1.4 Comparing Human Heuristics obtained by Decision Trees with Basic

Heuristics . 75
7.2 Conclusions . 78
7.3 Summary . 78

8 Conclusions and Future Work 79

Bibliography 86

xvi

Chapter 1

Introduction

In the computer science field there are problems of “Non-deterministic polynomial time”
which can be solved in polynomial time by a non-deterministic Turing machine [30] but no
algorithm has been found yet that can solve them in polynomial time on a deterministic com-
puter. The problem with algorithms that are not of polynomial time is that the computational
effort needed to solve them grows exponentially relative to the size of the problem. The solu-
tions of many of these problems are very helpful to many other fields of study, but the optimal
answers can not always be obtained as problems become large and need a big and unavail-
able amount of computer power. As there is still the need for a solution to the problems but
considering that the optimal answer is unattainable, strategies were created that can obtain
“good enough” solutions instead. Strategies of this kind are called heuristics, which consist
of simple and quick instructions to choose between available movements when facing a given
problem. Heuristics obtain a solution to a problem using fewer operations than the algorithm
designed to solve the problem optimally.

The Job Shop Scheduling Problem (JSSP) is a domain of scheduling problems. Schedul-
ing problems consist on allocating activities or processes at a determined place and time con-
sidering some restrictions of various types. The most relevant machine environments of the
deterministic scheduling form, which are given by Springer [35], include: Flow-shop, Flexible
Flow-Shop, Job Shop, Flexible Job and Open-Shop. In this thesis the Job Shop Scheduling
Problem will be used to continue the work from Garza et al. [19]. The JSSP consists of
completing different jobs composed of activities by assigning each one a time in an specific
machine so the activity can be processed; common rules include that a machine can only do
one activity at once and that the activities must be done in order, meaning that one must be
completed before starting the next one, if these are from the same job. Garza et al. [19] re-
mark that supply-chain based industries and many manufacturing processes use scheduling
in their operations in a way that some of their proceedings can be transformed into a JSSP.
This means that finding approaches to solve JSSPs will optimize the companies’ operation.
The improvement of these systems causes reduction in overhead and costs, which makes the
refinement of solutions for the JSSP of high interest. Finding an optimal solution for a JSSP
has a computational cost of non-deterministic polynomial time (NP-Hard), which means that
when problems are large it is not feasible to obtain the optimal answer. Strategies such as
heuristics were created for generating approximate answers to the optimal, by giving up find-
ing the best one, in exchange for finding a “good enough” one.

1

2 CHAPTER 1. INTRODUCTION

Heuristics are also defined in the psychology field similarly to the computer science
field, and hey are described as simple and efficient rules to make a decision when confronted
with a problem. Heuristics are usually used by humans when confronted with problems where
they lack information or simply when the problem is too complex. Gigerenzer [23] states that
heuristics explain the human processes of intuition and habit, and that these heuristics are
often unconscious. Solving a JSS problem can be a complex activity when the problem is
large, thinking on all possible combinations cannot be done in a short amount of time. This
would mean that a common response from a human confronted with a JSSP would be to use
heuristics. The quality of their heuristics will depend on the experience and understanding
that the human has with the problem, and on the human itself (own experience, creativity,
etc..).

To gather people for solving any problem there is usually a need to give something in
exchange, which can be money, prestige, entertainment, etc. Games are an activity in which,
in many cases, humans must solve problems but can also be a source of entertainment at the
same time. There is a technique called gamification which consists of adding game elements
to a problem to motivate solvers to work/collaborate with it. This thesis consists of using
a video game where JSSPs need to be solved, and people will be asked to play the game in
exchange for entertainment. One of the goals of this research was to gamify the JSSPs, and the
resulting video game was used to gather data that was eventually analyzed to try to replicate
humans’ behavior when solving the JSSP in form of a heuristic.

Generating models of how players from a game behave is a study presented by Bakkes
[3] called ”Player Behavioral Modelling”. Studies from this topic have had many uses, in-
cluding the generation of heuristics from players data. Silva et al. [38] transformed players
data into regular expressions by matching sequences of movements to get heuristics for the
2D bin packing problem. Ross et al. [37] used decision trees to store the behavior from human
players when helping an evolutionary algorithm which was also solving the 2D bin packing
problem. Johns et al. [26] also used a decision tree for finding heuristics for helping an evo-
lutionary algorithm but in this case it was solving water distribution optimization problems.
Data to train the decision tree was also obtained from humans doing the same activity. These
researchers express that ”. . . most decisions made by an expert user will be based on intuition
and ‘feel’ rather than explicit rules. Therefore, in this paper we introduce the use of machine
learning as a mechanism to learn user behavior from interaction and to embed knowledge
within the EA.”. They explain that Machine Learning (ML) is a technique that teaches com-
puters what comes naturally from humans and learn from experience, and that is why it is a
good idea to use them for this kind of problems.

ML is a technique for creating systems that learn automatically through data by identi-
fying patterns in it. Witten [44] explains how many machine learning algorithms are needed
since no single one of these is able to identify all possible patterns of interest in data. ML
algorithms were used for this project to try to identify the pattern that the humans use while
solving JSS problems and replicate it. If the human that the ML algorithm was mimicking
used a heuristic when solving the JSSP, then the pattern that the ML algorithm identifies can
be labeled as a heuristic. This is how a heuristic would be obtained from human behavior in
this thesis. The specific ML technique to use should depend on the data distribution, but the
data distribution is unknown as it will depend on the features and the heuristic. ML techniques
use different approaches to try to accommodate the data and predict the labels of new points.

1.1. PROBLEM STATEMENT AND MOTIVATION 3

As stated by Bonaccorso [4], these methods are usually based on statistical analysis, like us-
ing linear regression, hyperplane bisection or divisions by information gain, etc. Technique
examples are Neural Networks, K-Neighbors, Support Vectors, Decision Trees, among others.
As the labels from the data that will be used for training are already known, ML algorithms
will be used with supervised training.

As the objective of this project is to find ways to obtain heuristics that come from hu-
mans, the best ML technique to use should be the one that behaves more similarly to humans.
Neural Networks are inspired on the brain, but the actual operations and reading of it is far
from what humans, at least consciously, do. K-Neighbors uses all the data at the same time
to decide, but humans are not able to do this when the amount of data is too large. Support
Vectors make a division through the hyperplane, but humans can hardly imagine a space that
has more than three dimensions and the hyperplane has n dimensions where n is the number
of features. On the other hand, decision trees resolve the problem by making decisions per
feature and, depending on the characteristic of the feature it chooses, makes different deci-
sions which can be used to further analyze other features and their effect on the data, or to
conclude. This last technique is the one that could better resemble a human’s way of thinking.

Even if decision trees could better resemble humans, these would need to have all the
features that the human thinks of when solving the JSSP to imitate them completely. There is
no way to assure that all possible features that a human can think of were considered in this
project. Also, there is no guarantee that all humans made decisions that can be replicated with
a decision tree; therefore, many ML techniques were tested.

1.1 Problem Statement and Motivation

Heuristics are not capable of always obtaining the optimal answer, so there is always room
for improvement, but there is no defined method for getting better heuristics as these come
in many shapes and forms. The only way to obtain better heuristics is to create more of
them using different methods and compare them to the ones that already exist, then there is
a possibility to find a better one. It is important to mention that just generating heuristics at
random, or without any focus on solving the problem, naturally reduces the probability of
obtaining a good heuristic, and consequently good solutions. This is why getting a method
that generates heuristics that are created with the objective of solving a specific problem is of
high value. The hypothesis of this thesis is that heuristics can be obtained from human players
by analyzing how they solve a problem, in this case the Job Shop Scheduling Problem (JSSP).
Humans are a good source of heuristics as we are intelligent beings that already use heuristics
naturally. We think that exposing humans to solving JSSPs will likely trigger good solving
strategies and heuristics like in many cases.

The reason the JSSP was chosen for this thesis was to continue an internal university
research by Garza et al. [19] who solved JSSPs using hyper-heuristics. As heuristics are
the main components of hyper-heuristics creating more can be used to get different hyper-
heuristics and results which can be better. The JSSP also continues to be a problem of high
interest for the industry because there are multiple real-life problems that can be directly
transformed into a JSSP. Finally, the JSSP has a good level of complexity for this kind of ex-
periment, as it is hard enough to have many different answers, but not too complex for humans

4 CHAPTER 1. INTRODUCTION

to get confused when solving it.

JSSPs were gamified for creating the video game that was used to obtain the data. Gami-
fication has been used for many purposes, one of them being collecting data from crowdsourc-
ing (CS). Results from gamifying activities in crowdsourcing are expressed by Morschheuser
et al. [32] who analyzed various studies and different gamification implementations. They
found out that all of these studies had positive results in the four types of crowdsourcing
(crowd-processing, -rating, -solving, and -creating). Studies compared the non-gamified ap-
proaches with the gamified ones and the reports showed an increase on engagement, output
quality, etc. For this thesis, quality work from people is important as heuristics generated
come directly from the strategies the players are using, and the more humans engage with the
game and try to get better solutions for the JSSPs the better their strategies become as well as
the heuristics we could generate, which shows the importance of gamification in this project.
Knowing the importance of the video game, key points proposed by Desurvire et al. [10] were
considered; these included:

• Minimize player’s fatigue by varying activities and pacing during the game.

• Provide clear goals.

• Game play should have multiple ways to win.

• Player should not be penalized repeatedly for the same failures.

• Pace of the game should apply pressure but not frustrate the player, this for being able
to entertain the user and for him to want to give the best answer he can.

• Vary the difficulty so players are able to gain mastery of the game (this part is very
important as we want players to use new strategies to solve the problem).

• Game should react in a consistent, challenging and exciting way to the players actions
(appropriate music).

• Shorten learning curve by following trends set by the gaming industry.

• Controls should be intuitive but also customizable.

• Provide immediate feedback for user actions.

• The player should be able to turn on and off the game.

These characteristics were evaluated for the game created to analyze its playability.

The data that can be obtained from the video game are the decisions a player took in each
state of the game. In order to transform this information into a heuristic, ML algorithms were
used as they make decisions based on what they learn from experience. There are many ML
algorithms available, and to choose the best one for a case the distribution of the data should
be known. As this is not known, many algorithms were tested. There was a prediction that the

1.2. HYPOTHESIS 5

data will more likely be better fitted on a decision tree as it makes multiple small decisions
as a human usually does, but in order to work properly it must consider all the variables that
the human does. As there is no way to ensure that all features that the human brain considers
consciously and unconsciously are obtained, ML algorithms that change the perspective on
how the features are viewed were used. This way transformations and combinations of fea-
tures may create the features required. Data from humans was analyzed with decision trees,
neural networks, support vector machines, k-neighbors algorithm among other techniques.
Visualizing the trained ML algorithms showed how the players were solving the JSSPs.

1.2 Hypothesis
A model using video games and crowd-sourcing can be a way towards the generation of
heuristics for the JSS problem by using the information from playing records of human play-
ers and analyzing it with a variety of Machine Learning methods.

These are the questions to solve:

• How can a video game be used to get information on how humans solve JSSPs?

• What is an effective way to gamify the JSSP in a way that it is engaging to participants?

• How can ML algorithms use data obtained from JSSPs being solved to generate heuris-
tics?

• How can applying ML algorithms to analyze information obtained from the game be
used to generate heuristics from humans?

• What kind of strategies do humans use to solve JSSPs? What is the type of data that
can be obtained from them? What are the differences between heuristics human use and
commonly used heuristics for the JSSP?

1.3 Objectives
The general objective of this thesis is to work on the initial steps towards the generation
of heuristics for the Job Shop Scheduling Problem (JSSP) using data obtained from crowd-
sourcing via video games and analyzed with Machine Learning techniques.

Particular objectives:

• Demonstrate that ML algorithms can replicate behavior from existing heuristics by an-
alyzing data of their movements.

• Show that the JSSP can be represented in a video game which is engaging to human
users

6 CHAPTER 1. INTRODUCTION

• Show that data obtained from a video game in which the JSSP is solved can be used
with ML algorithms to replicate human behavior and generate heuristics.

• Provide an analysis on ML algorithms on their capacity to accomplish the objective of
the thesis.

• Prove that doing video games and gathering data from players is a feasible way to get
heuristics for the Job Shop Scheduling Problem.

1.4 Solution Overview
The problem in this thesis is to produce a method that is able to generate heuristics using
data obtained from humans solving a problem in a video game. The solution proposed was
to use ML algorithms as these are able to define a behavior by learning from experience. The
intention consists on obtaining data of what action was chosen on a given state by the player
and make the ML algorithm try to choose the same options when given the same states. To
do this, the first step was to define the features that compose the data obtained from solving
the JSSPs. ML algorithms used were Decision Trees, Multi-Layer Perceptrons, K-neighbors
algorithm, Support Vector Machines and Random Forests. Decision Trees were used as these
have been used before in similar researches like the one from Johns et al. [26] or the one from
Ross et al. [37]. But as Witten [44] expressed, when there is no knowledge of the distribution
of the data, there is no way of getting the right answer on which ML algorithm is the better
one to use, which is why others were also tested. These ML algorithms were then analyzed
with data generated from common heuristics (existing methods in the literature), trying to
prove that these can replicate the heuristics’ behavior. With this, it was demonstrated that the
features that make up the data are enough to detect at least common heuristics, and that the
ML algorithms are capable of imitating them.

JSSPs were then gamified and distributed inside a video game focusing on making an
easy-to-follow game so players were able to understand the problem they were solving. Many
game designs were considered and the one with the best fit to this project was chosen. To
gamify the JSS problems, a story was designed and integrated into the environment and placed
in their original form, using them to set scores and gain upgrades in the video game.

Data from 21 members an university (students and some faculty) was obtained through
the game and then used with the ML algorithms tested at the beginning. Different clusters
were created with the data to test multiple options, these clusters extracted the good games
from the players with the intention of grouping the games where the same strategy was used.
The ML algorithms trained to imitate human behavior were used and declared as the humans’
heuristics. Some of these heuristics were visualized for analysis and described in a human
understandable way. Also, some heuristics were compared with basic heuristics when solving
the JSSP.

1.5 Contributions
The main contributions generated in this thesis are the following:

1.6. THESIS ORGANIZATION 7

• The main content of the thesis is a basis on JSSP heuristic gathering through data from
humans playing video games. Being able to exploit data from video games has a great
advantage as these are a common activity which produce large amounts of data. Also,
many video games make players solve difficult scenarios as part of the game. Because
of this, this thesis could work as a step forward to develop new projects to grow and take
advantage of one of the biggest sources of data coming from problems being solved by
intelligent beings.

• For completing the current project, a video game platform was created which had the
purpose of collecting data of human players solving JSSPs. This platform helps to
establish a method for others doing the same or something similar and it can also be
used by the community to obtain their data. Also, other video game design options
were proposed.

• ML methods were analyzed on their capacity of imitating heuristics for the JSSP and
a way of analyzing data from humans to obtain their heuristics based on their strategy
when solving the JSSP was created. This is a new concept and it will be relevant for the
generation of new methods with the same objective.

• Some heuristics that humans use when solving the JSSP were recognized, analyzed and
compared.

1.6 Thesis Organization
This paper is organized as follows: Chapter 2: “Background” shows information on the main
topics of this thesis and how these have been used in relevant ways to this thesis , Chapter
3: “Solution Model” explains the pieces which form the project and the relationship between
them, Chapter 4: “Methodology“ explains the steps that where followed in order to do this
research, Chapter 5: “Creating and Testing the Basic Model” talks about the first experiment
that was done, Chapter 6: “Making the Video Game” gives the steps followed when making
the video game for obtaining the JSSP data and also includes an analysis on how games for
problems should be made, Chapter 7: “Process for Generating Heuristics” give the results
obtained after analyzing the data with the ML algorithms, which includes the capacity of the
ML algorithms to imitate human behavior and building the heuristics, and also the comparison
between human heuristics and common heuristics, Chapter 8: Conclusions gives information
on what was learned on this project and what can be done in the future.

Chapter 2

Background

This chapter includes information about important topics for the development of this thesis.
This information gives an insight into what has been done before that could help on testing
the hypothesis. These topics include: Heuristics, Job Shop Scheduling Problem, Video Games
Characteristics, Crowd-sourcing, Player Behavioral Modelling, Machine Learning and other
related works.

2.1 Heuristics

Heuristics are inspired on a concept in the field of psychology which describes a theory on
how humans think. Knowing more about heuristics in psychology was necessary as heuristics
are going to be obtained from humans.

2.1.1 Heuristics in Psychology

Gilovich [24] wrote: ”This work, like the heuristics and biases program, stresses the fact
that much of the mental life is not the product of deliberate processing, but of quicker, more
reflexive processes that are less available to conscious intervention.” In this text Gilovich
expresses one of the main concepts that inspired the approach of this thesis, which is that most
processes that human make are ”quicker”, ”reflexive” and ”less available to the conscious”.
The words quicker and reflexive are the ones that better describe heuristics, and these should
be the heuristics that will be looked for. As it is a reflexive process, complex heuristics would
not be expected, which is why basic heuristics will be used as a basis. The ”less available to
the conscious” phrase is really important to give a reason to why not ask the humans for their
strategies they used directly. This is because the might not be aware of the actual strategy that
their brain is using.

After understanding a little more about heuristics and how these are in the human mind,
the next step is to understand what to expect from heuristics. Gingerenzer [23] explains how:
”heuristics are evaluated against divine ideals, which makes them appear to be all-too-human
failures. They refer to three ideals: omniscience, optimization, and universality. Omniscience
is the ideal of full knowledge, which is often assumed in theories of human rationality; its
modest sister is the ideal that more information is always better, or cannot hurt. Optimization

9

10 CHAPTER 2. BACKGROUND

is the ideal that a best solution for each problem exists and that we know how to find it. Uni-
versality is the ideal that this best strategy, such as maximizing expected utility, is universally
the same for all problems. Heuristics run counter to these ideals, in that they assume limited
knowledge rather than omniscience, their goal is to find a good solution without the fiction
of an optimal one, there is no universal heuristic, but an adaptive toolbox with many build-
ing blocks from which new heuristics can be constructed.” This text shows the main limits of
heuristics, and in computer science these limits are similar. This text is a complete definition
of why and how are heuristics used (why? because limits, how? by expecting only good
solutions and with a toolbox), the ”adaptive toolbox” description on the psychology field can
describe how humans use a different heuristic for different situations, but, How about different
situations in the same problem? Because of this the use of different heuristics on the same
problem should be expected from humans. Gingerenzer [23] also explains that heuristics are
constructed by: a priority rule, which is the order (gain or probability of gain); a stopping rule,
which is when the program will stop searching for options; decision rule, which is to choose
the gamble with the more attractive gain.

2.1.2 Heuristics in Computer Science

As in all fields, in computer science there is a discussion of what exactly can be called a
heuristic. If it is too complicated can it still be defined as a heuristic?, Who sets the limits of
when something becomes too complicated? Gere [22] described heuristics as rules of thumb
when he used them for solving the JSSP. This simple definition will be the one taken for this
thesis. A rule of thumb as a decision made based in experience.

In this thesis, heuristics were created through data. Edelkamp and Lomuscio [12]
worked on pattern databases and heuristics. They defined pattern databases as dictionaries
for heuristic estimates that store state-to-goal distances in state space abstractions. They ex-
plain that this process’ effectiveness is dependent on the manual selection of patterns. This
process is made to create an automatic model for the creation of heuristics, which means that
is similar to what was done in this thesis.

They also proposed to use a genetic algorithm for the training part of their program in
order to select heuristics on an abstract space, transforming patterns of the best cases into
a function. This work is important as it expresses the features that they needed in order to
achieve their goals, which could have been used in this thesis.

2.2 Job Shop Scheduling Problem (JSSP)
In this section the JSSP is explained and after many researches where some approaches with
heuristics or elements similar to heuristics were used to solve the JSSP, are cited to see how
the JSSP is being solved.

To explain the job-shop scheduling problem we first have to formulate it as follows:
we have n jobs (J1, J2...Jn) and m different machines (M1,M2...Mm). Each job has a
different number c of activities (A1, A2...Ac) which have to be processed sequentially on that
order. Each activity has a scheduling time of k, which is the time the activity takes to be
completed.Ai must have been completely processed before Aj if i < j. Activity Ai can be

2.2. JOB SHOP SCHEDULING PROBLEM (JSSP) 11

processed by only one machine, and has to be completed from start to finish for k time once
assigned. So we can see that a machine can only process 1 activity at a point in time, and
also one activity can only be processed by one machine at a time. Activities and Machines
have a type t, an Activity can only be processed on Machines with the same type t. With this
restrictions in mind, the objective of the JSSP problem is to find the order and machines in
which all activities A have to be done in order to finish all of the jobs in the minimum possible
time.

Other variations for the JSSP which are machine environments of the deterministic
scheduling form, are given by Springer [35]. These include:

1. Flow-shop: In this version, each job has the same sequence of processing on the ma-
chines where the ith activity of a Job most be processed by the ith machine.

2. Flexible Flow-Shop: In this variation there are stages in which a number o identical
machines (machines of the same type) become available for activities to be done. Each
job has its own sequence of processing on stages and each machine can only process
one activity.

3. Job Shop: Each Job has its own sequence of processing in machines.

4. Flexible Job Shop: Similar to the Flexible Flow-Shop with its stages, but there is a
predefined sequence to be followed.

5. Open-Shop: Each activity from a job has to be processed on a machine in any order.

The JSSP has been tested with heuristics and hyper-heuristics with positive results as
shown by Garza, et al. [19] and [20]. They also tested new heuristics comparing them to
the best solution found by the following common heuristics (the best solution of a group of
common heuristics is called an oracle):

• 1) Put the next available activity into the first available time.

• 2) Most Loaded Machine (MLMACH): Get the machine with the maximum total pro-
cessing time and place there the activity that will have the least possible scheduling
time when placed there. If there is not an activity available for that machine try another
machine.

• 3) Maximum Remaining Time (MRTIME): Select the job that takes the most time and
get the first activity from it, assign this activity to a machine and continue the same
process.

• 4) Earliest Start Time (EST): Find the job that could start first in the current state of the
problem, then start the first activity of said job.

Another research done also by Garza et al. [21] tested the use of simulated annealing
for creating the hyper-heuristics that they constructed.

A branch and bound algorithm has also been proposed by Brucker et al. [7], where
after experimenting with the 10X10 JSS problem they found out that for this a heuristic based

12 CHAPTER 2. BACKGROUND

on a priority dispatching rule got the best results. Results where compared against some
benchmarks and only obtained good CPU time results on JSSPs with 10 machines or less.
This heuristic is applied as follows:

• First get all the operations that are able to be scheduled next (meaning that their prede-
cessors have already been done), put them on a set and name it C.

• Select the operation with the minimum calculation for (node value R + processing time)
for every type of machine.

• Calculate for each of the operations selected the lower bound for the makespan of the
schedule if it is chosen, and choose the one with the minimum lower bound.

• After adding the new item, update your set C with the operations that can be scheduled
next (the successors of the operation you added).

Naikunth, et al. [1], proposed computational grids and using what they call ”Nature’s
Heuristics” for solving the Job Shop Scheduling Problem. They tried to combine the heuristics
named Genetic Algorithm (GA), Simulating Annealing (SA) and Tabu Search (TS) for JSSP.
Their research showed that compared to pure GA, GA-SA should have better convergence,
and GA-TS should have better search efficiency. They also explained how at least 8 other
related researches have shown that hybrid heuristics do have a better performance.

Another perspective on heuristics for the JSSP is presented by Colorni et al. [8] where
they presented their own original heuristic called ”ant system”. As it names implies, this
heuristic is based on the way ants work. This heuristic uses different agents called ”ants”, and
the effectiveness of the algorithm depends on the cooperation of these ants, which they do by
the periodical modification of a global trail matrix.

For the JSSP, multiple ants are sent to follow a greedy heuristic, and depending on the
individual performace of every ant (if these are having positive or negative results) the path
they are following will receive more trail which will mean that more ants will follow that ant.
The reason we want more ants following a trail is that each ant will search within the trail’s
different paths, that way we are able to try different methods.

Another recent research which includes the comparison of various algorithms for solv-
ing the JSSP was done by Syarif et al. [40] where a Genetic Algorithm (GA) they devel-
oped was compared to Particle Swarm Optimization (PSO), Upper-level algorithm (UPLA),
Differential-based Harmony Search (DHS), Grey Wolf Optimization (GWO), Ant Colony Op-
timization (ACO), Bacterial Foraging Optimization (BFO), Parallel Bat Optimization (PBA),
and Tabu Search (TS). ”The experimental results of the 28 benchmark test problems validated
that the algorithms, except ACO, can provide the optimal solution of JSSP. PBA delivers the
most impressive performance that solves 26 cases optimally, with the average error equal to
0.05%.” [40]

2.3 Video Games
It was important to establish the characteristics of the video game, as we want to make a
playable and entertaining game from different JSSP problems. This means we need to know

2.3. VIDEO GAMES 13

what a game is in order to convert problems into mini-games. Also, in order to be success-
ful in this method of crowd-sourcing we need to define the characteristics that will make it
distributable.

Fabricatore, Rosas and Nussbaum [15] give their ”design prescription” for making a
game ”playable”. Their main points are shown below:

• Goals must always be understandable and unambiguous, and should not be too repetitive
to avoid monotony and sustain motivation.

• The relationships and dependencies between stages of alternative branches of the game,
and between different stages of the same branch must always be clearly understandable
by the player.

• Whenever non-linear developments are possible, it must be possible to backtrack after
a decision has been made, especially if the decision is wrong and leads to negative
consequences.

• Finding alternative branches in a non-linear hierarchy of goals should not be excessively
time consuming.

• Linearity is a better option in contexts in which non-linearity could make players go
through visited places over and over again, trying to figure out what must be done.

• Minimum information regarding progress should include data about failures, in order to
allow the player to learn from his/her own errors.

• Temporarily freezing the game-flow while the player is reading a map may benefit be-
ginners, but compromises the realism of the game.

• Providing help during customization processes regarding the gaming world may reduce
game-flow disruptions.

Fabricatore [14] expresses three activities that a game needs to follow in order to involve
a player with the game:

• The first one would be to let the player explore the mechanics of the game by himself.

• Next will be to make the player understand when he has to use the different mechanics
of the game given a situation.

• The final step for involving the player in the game would be to change common me-
chanics and affect the player depending on new situations the game proposes.

Federoff [16] gave some important heuristics for evaluating usability in games:

• Game and play mechanics get the player involved quickly and easily.

• Use visual and audio effects to arouse interest.

14 CHAPTER 2. BACKGROUND

• Controls should be intuitive and mapped in a natural way.

• Include a lot of interactive props for the player to interact with.

• Design for multiple paths through the game.

Gamification is an strategy that is still being used, as said in the paper from Romanov
[36]: “At the same time, gamification has been identified as a viable teaching and learning
method in higher education, which might be also appealing to non-professionals and might
bridge their knowledge gap in DH.”

2.4 Crowdsourcing
Crowdsourcing as described by Brabham [5] is ”...an online, distributed problem-solving and
production model that leverages the collective intelligence of online communities to serve spe-
cific organizational goals. Online communities, also called crowds, are given the opportunity
to respond to crowdsourcing activities promoted by the organization and they are motivated
to respond for a variety of reasons”. In this thesis the activity was to play a video game in
which the JSSP is being solved, and the motivation would be to get entertained. Strategies
for distribution, and the effects of using a game for crowdsourcing were be analyzed in this
section.

Juho et al. [32] explained the success of gamification used in crowd-sourcing. They
explored multiple cases where gamification was used. Their statistics included information
such as how much of the gamification implementation used points and leader-board on their
game, and how this improved competition and quality of players. They also showed how
all the studies of impact of gamification on crowd-sourcing had positive results. These results
come from increase of different features like engagement of participants, quality of the output,
reduction of ”cheating”, as well as users of the game denoting that they preferred the gamified
style than the non-gamified of what they where using.

Vannella et al. [43] explain the characteristics that a game needs in order to be successful
in a crowd-sourcing environment: First, making game-play natural and with familiar video
game mechanics. This first step also included using common actions to play the game, like
collecting items, mini puzzles, among others, rather than extrinsic tasks.
The second objective is to make the game playable by single player, and that you add some
reinforcement for playing the game correctly.
The third one is that the game design should be general in order that any change needed
because of linguistic phenomena can be accomplished by simply changing game data.

2.5 Machine Learning
Bonaccorso [4] describes the main goal of machine learning as to study, engineer and improve
mathematical models that can be trained with context related data to infer the future and make
decisions. Another description he gives is ”In other words, an agent (which is a software
entity that receives information from an environment, picks the best action to reach a specific

2.6. PLAYER BEHAVIORAL MODELLING FOR VIDEO GAMES 15

goal, and observes the results of it) adopts a statistical learning approach, trying to determine
the right probability distributions and use them to compute the action (value or decision) that
is most likely to be successful (with the least error).”

Ayodele [2] states that: ”Machine learning is about designing algorithms that allow a
computer to learn. Learning is not necessarily involves consciousness but learning is a matter
of finding statistical regularities or other patterns in the data. Thus, many machine learning al-
gorithms will barely resemble how human might approach a learning task. However, learning
algorithms can give insight into the relative difficulty of learning in different environments.”

Both authors express how machine learning is a predictor that learns from experience
as it is needed for this thesis, but they also state that ML algorithms don’t work as humans,
but as statistics analyzers. It is true that answers that were obtained in this project might not
resemble exactly how humans think, in reality the only classifier that has a possibility to do
that is the binary tree. The reason this project still used machine learning is because even if
heuristics obtained from humans are not readable it is important to know that a pattern does
exist, so in future projects these can grab on to this fact and continue to research using better
methods.

”Feature Engineering Is The Key At the end of the day, some machine learning projects
succeed and some fail. What makes the difference? Easily the most important factor is the
features used. Learning is easy if you have many independent features that each correlate well
with the class. On the other hand, if the class is a very complex function of the features, you
may not be able to learn it.” this was written by Domingos [11], and its really important to
consider that the definition of the features its of high impact on the development of this thesis.

A problem in mind is to know which specific ML algorithm to use in this scenario where
the type of data is unknown, Witten [44] states that”In the infinite variety of possible datasets
there are many different kinds of structures that can occur, and a data mining tool—no matter
how capable—that is looking for one class of structure may completely miss regularities of
a different kind, regardless of how rudimentary those may be. The result is a baroque and
opaque classification structure of one kind instead of a simple, elegant, immediately compre-
hensible structure of another”. This means that many ML models should be tested to see how
each one adapts to the data and serach for the one that ”fits”.

2.6 Player Behavioral Modelling for Video Games

“Player behavioural modelling is a research area in game playing that is gaining attention
from both game researchers and game developers. It concerns generating models of player
behaviour and exploiting the models in actual play” (Bakkes et al.) [3].

Player behavioral modelling has been used for many things, including the improvement
of AI in video game as in researches from Pfau et al. [33] [34]; the recollection of solutions
to problems as done by Mavandadi et al. [31] who collected labels from players to blood
cells images, or the study from Estrada et al. [13] where information for decision making in
refugee aid deployment was made by learning from players making decisions on a simulation.

Analysis in video games has also been used to obtain heuristics for solving optimization
problems as what is being done for this thesis, it can be seen in studies from Silva et al. [38]
and Ross et al. [37] where heuristics for solving the 2D bin packing problem are looked for.

16 CHAPTER 2. BACKGROUND

Silva et al. [38] used data from players to detect patterns and build regular expressions by
matching sequences that were established with the movements from players in a mini game
that was created by Silva. Ross et al. [37] used data from players to find heuristics for
an evolutionary algorithm which is made to solve the bin packing problem, a decision tree,
that uses as an input simple features, was trained with human decisions over the problem to
substitute them with the decision tree when solving new problems.

Another paper that uses decisions trees is the one from Johns et al. [26]. These are used
similarly, which is to substitute decision making that humans commonly make over results
from an evolutionary algorithm to guide the evolutionary process, with decision making from
a decision tree. In this case the problem that the evolutionary algorithm was solving was
the optimization of a design for a water distribution where there are people that guide an
evolutionary algorithm to get to a better solution, solving minor conflicts in the solutions
proposed by the algorithm. Johns does mention that using ML algorithms for this types of
problems is the logical step as these have the ability to replicate complex decision making.

Player modelling has also been used to predict outside game behavior of the user, as in
the study from Loria et al. [28] who trained a random forest model using players behavioral
data to know if that player was about to stop playing the game. It can be seen that ML
algorithms based in decision trees are widely selected for behavior interpretation of players.

2.7 Related work

In this section, work similar to what is being done in this thesis is discussed. It is important
to note that some researchers define hyper-heuristics as a creation of heuristics, and many
methods for this have been created using multiple machine learning techniques, but the main
difference between the creation of hyper-heuristics and the method proposed is that the main
focus in this thesis is the description of the problem using features and the identification of
the features that affect the most the decision and not the identification of heuristics in data.
Even if features detected are then used to detect heuristics, the difference is that in this project
unknown heuristics are also being looked for. The method proposed is able to detect hyper
heuristics, but it is also designed to be able to detect unknown heuristics.

This research is a continuation from the research from Garza et al. [19] who made
an analysis on using Hyper-Heuristics for solving the JSSP. Hyper-heuristics is an strategy
where a different heuristic is used depending on the state of the JSSP being solved. A variety
of heuristics means more possibilities of hyper-heuristics, which may become better than the
hyper-heuristics already obtained.

The research “Discovering Heuristics And Metaheuristics For Job Shop Scheduling
From Scratch Via Deep Reinforcement Learning” from Ekeris et al. [42] has many simi-
larities with what is being done in this thesis, as they also obtain heuristics for the JSSP using
data from it. In this research Deep Networks were trained by making them solve JSSPs and
feedback is received punishing larger makespan. Some of the features used in this research
were also obtained based on what the basic heuristics needed. The main difference is that this
thesis did not used players to obtain its data, but it did experimented with its deep network to
see if it could replicate basic heuristics.

The way Ekeris et al. [42] replicated heuristics using Deep Networks was by training

2.8. SUMMARY 17

them with only the features specific to the heuristic, and in most cases the features were from
two different heuristics i.e. longest job first and shortest job first, and the network inclined
to replicate the one with the lowest makespan as that is what it was trained to do. In the
current thesis, the method used should be able to replicate the heuristics without changing its
architecture, which is why features cannot be removed as it was done in this other research.

Good et al. [25] made a video game for getting data from players. This is similar to
this project as a game that will be crowd-sourced was also developed with the purpose of
collecting information. Their program is called ”Foldit” and they used common missions
of popular games to try to gather people to solve problems of protein folding with similar
missions. This is a very important note as we want players to enjoy the game we make. In
order for them to actually try to solve the problems, we need to make our game similar to
something they already like.

Foldit is a visual puzzle game in which the player has a sequence of a protein that is
partially folded. The challenge is to find its lowest-energy three dimensional structure. To do
this, players can pull, twist, tug the protein as they see how their movements affect the results.

Eurisko by Lenat [27] is a program with many similarities with what we want to do with
the data. This program gets heuristics by creating short-cuts through the code by analyzing
how the program used functions to get an answer and detecting how many variables change
in the process. It also uses a strategy of playing with ANDs and ORs in IFs in order to know
if there is a shortcut to get the same answer.

Another topic of interest is the automatic creation of heuristics for games. The paper
from Mesentier [9] talks about the generation of ”heuristics for novice players” in games, but
does it from data generated by a computer. This is not the same as what is being done is
this thesis as in this thesis heuristics are obtained from humans, but it is connected to what is
being done here. This paper was important as it showed a method that generated heuristics
from game data.

2.8 Summary

In this chapter, information about heuristics was learned, how these might be an unconscious
or intuitive human behavior, and how these are simple. Many approaches on how the JSSP
is solved were described. Information about video games and crowdsourcing was obtained.
This information gave precise items to evaluate on this project. Characteristics from the game
developed were considered and evaluated.

The information above covered the idea that the game must give the players a chance
to practice slowly increasing the difficulty. Because of this, an experiment should be done
where the first tries of the players are not analyzed as a heuristic, as players might have not
yet developed their strategy.

Machine Learning was also covered. The most important element to consider about ML
algorithms are the features defined at the beginning as it was mentioned that features are the
most important element for ML. Features tried to cover as much information as possible in
order to be able to describe as many heuristics as possible. Many ML algorithms have to be
tested to find the right one for this type of problem. Studies where decision trees have been
used to generate heuristics based on human players behavior were showed, and these were

18 CHAPTER 2. BACKGROUND

taken for validation of what was done in this thesis.

Chapter 3

Solution Model

The pieces that conform this project are the following: Job Shop Scheduling Problems (JSSP),
Humans, a Video Game, and a Data Analyzer. The relationship between them is shown on the
diagram in Figure 3.1, which explains how JSSPs were used on the Video Game on a gamified
way (solving JSSPs gave players points to advance within the game), and how Humans were
the ones solving these JSSPs when playing the Video Game. Data of the players’ movements
was gathered by the Video Game and this was sent to the Data Analyzer so it could generate
heuristics by trying to imitate Humans’ behavior with machine learning algorithms.

3.1 JSSP

Job Shop Scheduling, which is the problem explained before about jobs which needed to be
completed on machines, was used as the challenge for the Humans playing the Video Game.
The JSSPs were gamified by converting the description of the machines, jobs and activities,
into a simple graphical representation as shown in Figure 3.2. The player was able to move
activities into a machine as long as the JSSP rules were followed. Gamification also included
adding a score mechanism based on how many activities were placed correctly so players
were motivated to solve the problems as best as they can. These problems were generated
with Taillard‘s method [41] using some of the examples that were used on the paper cited, but
also generating more simple examples to adapt to the players necessity.

3.2 Humans

Humans are the intelligence from which the heuristics created were based on. Their purpose
was to play the Video Game and solve the JSSPs. Their data on how they solve the JSSPs was
analyzed to obtain the heuristics based on their strategy. The expectation was for them to try
their best when playing the game. This is why the game was presented as a challenge with
points and inner game upgrades to motivate them.

The plan was to get support from various students in the campus in order to make the
tests.

19

20 CHAPTER 3. SOLUTION MODEL

Figure 3.1: Solution Model.

3.3 Video Game

This video game was made with the purpose of getting Humans to solve JSSPs willingly in
exchange for entertainment. Entertainment was added by creating a virtual world which play-
ers oversaw, and as the players solved JSSPs they obtained points and were able to upgrade
their world unlocking stories where they were able to see the changes they created. The Video
Game was also made highly accessible by making it usable in most browsers (coding it using
HTML, JS and CSS) as well as simplifying the distribution, with the purpose of generating
commodity between the people that were asked to play it. The game collected data from each
movement of an activity that players made and saved it in a way that it was simple to identify
the player, the JSSP that was being solved and the order in which each movement was done.
Each movement included the activity selected and to which machine and which position it
was moved to.

3.4. DATA ANALYZER 21

Figure 3.2: Graphical JSSP.

3.4 Data Analyzer
Using the data obtained from the game, different Machine Learning algorithms were used
to try to find a model which imitates the strategy that humans used to solve the JSSP in the
game. The data contained information to replicate humans’ movements in the JSSP which
was used to obtain two new sets of data. The first set was a “before movement” set which
trained the ML algorithms to try and replicate a human’s behavior using information of the
activities available in a state of a JSSP and information of the current state. The second state
was called “after movement” which trained the ML algorithms to imitate the same behavior
and also used information of the activities available in a state but with information of what
the state of the JSSP would be after each activity would be selected. Results of using both
data models were then analyzed. These results contain the heuristics that were planned to be
obtained from humans.

3.5 Summary
This thesis consists on two main components, a Video Game and a Data Analyzer. The Video
Game was made as a way of connecting Humans with the JSSP, as this thesis requires data on
how humans solve the JSSP. The Video Game was made by gamifying many JSS problems
and adding a narrative so humans can be entertained while playing the game and solving
the problems. The second main component is a Data Analyzer which is a component for
analyzing the data that was obtained from humans. To create the Data Analyzer different ML

22 CHAPTER 3. SOLUTION MODEL

algorithms were tested and also different ways of analyzing the data were defined. At the end,
some heuristics were obtained by analyzing with the Data Analyzer, data of Humans solving
the JSSP which was collected by the Video Game.

Chapter 4

Methodology

This chapter explains the process that was followed for the development of this thesis in
order to achieve its objectives. Sections include: “Analyzing the problem” which talks about
the literature review and the logical process behind some decisions, “basic model” which
was about the first experiments that were done to test some machine learning algorithms for
making them imitate heuristics, “Developing the video game” where it explains the process
on how the game was made, “Generating Heuristics” explains how the data obtained from the
video game was used and “Paper writing” which was a step that was done in parallel with the
others and elaborates on how this thesis was written.

1. Analyzing the problem
As for every scientific problem, analysis and research was done for this one. The first
step consisted of analyzing each of the components of the problem which had a similar
description as the hypothesis. The main idea was to obtain heuristics for the JSSP using
human information obtained from video games. The first concept to analyze was heuris-
tics, which included what are the main characteristics of the heuristics, and the answer
to the questions: Do humans use heuristics? And how do humans use heuristics? After
knowing that humans do use heuristics and their characteristics the next important ques-
tion was to know if it was relevant to obtain heuristics from human behavior, as most
heuristics that are already described came from humans. Because of this it was impor-
tant to know that some heuristics are unconscious and that humans may sometimes not
know the heuristic that their mind is using.

Using a video game to get data is an innovative idea to test out, as the development of
this concept can be very beneficial to the science field considering that it can evolve to
be useful for getting large amounts of data. This problem was analyzed using the JSSP
as this problem seemed to have fitting characteristics for trying it with the objective,
such as being difficult enough to have many ways of solving it or being relevant in the
computer science field. It was also used to continue the work from Garza et al. [19]
who tested the use of hyper-heuristics with the JSSP, so obtaining new heuristics can
get to different and better results to that research.

After understanding the reasons for this project and knowing that there is a possibility of
getting heuristics from humans, the next step was to plan how this project was going to
be done. As the project consisted of analyzing data of movements from human players

23

24 CHAPTER 4. METHODOLOGY

and trying to obtain an agent that replicates their behavior (their heuristic), the better
fit in the computer science field were the machine learning (ML) algorithms. Other
strategies were considered, for example defining a form for heuristics, which should be
an object with values where every heuristic could be represented with the changing of
these values, and with the movements of the players to the JSSP, adapt the values of the
object so both make the same decisions. The problem with this method would be that
it would be difficult to define an object that can represent all heuristics, but also this
won’t assure that not known heuristics could also be represented. Thus, ML was the
final decision. The next thing that was considered was the definition of the features that
composed the data. It was decided for the data composition to test using features that
could directly identify simple heuristics, for example for the heuristic shortest job first,
there should be a feature which is able to identify uniquely the shortest job. Features
that identify the state were also added, these were obtained from the thesis of Garza et
al. [19].

2. Creating and Testing the Basic Model (Chapter 5)

After it was defined that Machine Learning (ML) algorithms were going to be used and
how the features were going to be identified, the next step consisted of defining these
features. The general features were already defined, but for the specific ones, simple
heuristics had to be specified. Heuristics from the thesis of Garza et al. [19] were the
ones used, and from them other features were determined.

With the features defined, the next thing to consider between using the data ”before
a movement” or ”after a movement”. Heuristics usually work before a movement; an
example is the heuristic of selecting the smallest activity first where for knowing which
is the smallest activity, there is no need to know the effect of selecting said activity. On
the other hand, ML algorithms are commonly used analyzing data after the movement,
as all features are considered and when analyzing different states it is convenient that
most of the feature values are different. As this investigation was trying to get heuristics
but using ML it was decided to use both.

ML algorithms that were going to be used also had to be defined. Many common ones
were tested as there was no initial idea of how any would work. ML methods tested
are: Decision Trees, Multilayer Perceptrons, K-neighbors classifier, Support Vector Ma-
chine and Random Forest. As features were obtained from heuristics, it was expected
from the ML algorithms to have high accuracy.

JSSPs were created using Thaillard’s method [41], these were solved by using the
heuristics defined, and data with the determined features was generated during that
process. ML algorithms analyzed the data and good results were obtained as expected
in some of them, which after selecting some of the ML algorithms, gave the green light
to continue with the planned strategy.

3. Developing the Video Game (Chapter 6)

The first step in developing the video game was to design it. The main characteristics
like usability, availability and difficulty were defined considering the use that this game

4.1. SUMMARY 25

will have. After this, different methods of representing the JSSP in a game were ana-
lyzed, and it was decided that a simple representation was the best one for the current
project.

In the process, a simple version of the game was created to test and get feedback from a
few people. This was important feedback to analyze as people feeling comfortable and
engaged with the game was a main point in this thesis.

The final version was then created adding some visual cues and improving the design
considering comments from the first version. Also, the game was converted to a story
game, this means that we added a story and a shop where upgrades that affect the story
could be bought with points obtained from solving JSSPs. This game was used to
collect data from players solving the JSSP which was then analyzed for obtaining the
heuristics.

4. Process for Generating Heuristics (Chapter 7)

ML algorithms tested in Chapter 5 were used to analyzed data generated in the video
game described in Chapter 6. In chapter 5, “pre-movement” and “post movement”
data were analyzed; but here, there was a need to create ML classifiers for getting
positions from the machine because players could assign activities in any position of
the machine when heuristics only placed them at the end. ML algorithms showed a
moderate accuracy but were able to recognize strategies that humans were probably
using.

Multiple clusters were done to the data to test the ML algorithms in many forms and to
obtain new results. Heuristics obtained were visualized, analyzed and compared against
the basic heuristics on their capacity to give good solutions for the JSSP. With this it was
concluded that ML algorithms are able to obtain heuristics from humans, but that the
heuristics acquired were not able to outperform simple heuristics.

5. Thesis Writing

This thesis was written alongside the development of the experiments. It was a compli-
cating step as it not only had to include everything that was done, but also openings to
what future projects could be. As this is the first time analyzing this approach, it was
important to show possible paths to the readers to have multiple options if the current
path is not good enough.

4.1 Summary
The thesis was conducted first by doing research on the concepts and defining how each of the
objectives were going to be accomplished. The objective is to get heuristics for the Job Shop
Scheduling Problem (JSSP) using data obtained from crowd-sourcing via video games. After
recognizing the viability of the objective, an approach for how heuristics were going to be
obtained from data was defined which was to use ML algorithms. The next step of the thesis
consisted on testing ML algorithms to see if these were able to replicate basic heuristics. After
obtaining a positive answer, this approach was approved. The next step was to develop the

26 CHAPTER 4. METHODOLOGY

video game to obtain the data. In this step, many game designs that could accomplish this
objective were made, and a story game which uses a graphical version of the JSSP for players
to solve was developed. The video game was distributed among some students on the campus
and data of how they solved the JSSPs was collected. This data was then analyzed with the
ML algorithms to obtain a simulation model for the players’ behavior which was analyzed to
recognize heuristics used by players.

Chapter 5

Creating and Testing the Basic Model

The objective of this thesis is to obtain heuristics for the JSSP using data obtained from crowd-
sourcing via video games and then analyzed with Machine Learning (ML) techniques. This
chapter focuses on analyzing the method proposed to accomplish this objective and its ability
to obtain ML models that imitate common existing heuristics and some hyper-heuristics.

This method was evaluated with its capacity of creating ML models that can be used to
replicate the behavior of single common existing heuristics and hyper-heuristics. The method
consists on creating models capable of identifying if a single activity of the JSSP on a specific
state would have been chosen by the heuristic or hyper-heuristic to replicate. To do this, ML
algorithms needed to recognize the characteristics or features of an activity that were relevant
to the decision making of the heuristic.

In order to generate the ML models, these were trained using information of single
activities in different states of the JSSP. Each row of data represented an activity, and were
labeled in accordance with what the decision from the common existing heuristic to replicate
would have been (If the activity would have been chosen by the heuristic or not on the state
of the JSSP from which data for the row was obtained). To obtain this data different JSSPs
were solved with the common existing heuristics, and from each step information about the
activities available for choosing was collected and labeled accordingly. The data collected
was then used for training and testing the models.

5.1 Heuristics
The common existing heuristics used for this experiment were obtained from Garza et al.
[19] and [20]. The hyper-heuristics were simple examples with random values. These were
tested to see how the ML algorithms reacted to more complex decision making as players
decision making is also expected to be complex. The heuristics and hyper-heuristics used are
the following:

1. Shortest Processing Time (SPT): Select the activity that will take the shortest time to be
done, in case of a tie choose the one with the shortest job id.

2. Longest Processing Time (LPT): Select the activity that will take the longest time to be
done, in case of a tie choose the one with the shortest job id.

27

28 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

3. Maximum Job Remaining Time (MRT): Select the next available activity from the Job
that has more pendant activities’ time.

4. Most Loaded Machine (MLM): Compare the least loaded machines from each type and
get the most loaded one from them. Get an activity that can be placed the earliest on the
chosen machine, if there is no possible activity apply the same process with the rest of
the machine types.

5. Least Loaded Machine (LLM): from each machine choose one that is the least loaded,
then get the activity that can be placed the earliest on the chosen machine. If there is no
possible activity apply the same process with the rest of the machine types.

6. Earliest Start Time (EST): choose the activity that can be placed the earliest on either
machine, in case of a tie choose the one with the shortest job id.

7. Hyper Heuristic (HH) that chooses one of the previous six heuristics based on the Eu-
clidian distance between the following features (described below on the feature section)
which depended on the state of the problem: ATP, DPT, SLACK, DNPT and NATP;
and a table of 5(features)X6(heuristics) with random values assigned to each cell; the
heuristic row with the smallest Euclidian distance chose which heuristic to use.

8. Simple Hyper Heuristic (s-HH) 1-3: These where 3 hyper heuristics that each one de-
pending of the value of two of these features: (ATP, DPT, SLACK, DNPT and NATP),
selected between 4 of the common existing heuristics mentioned above. This meant that
the heuristic used depended on the state of the problem.

5.2 Used Machine Learning (ML) Algorithms
The objective of this experiment is to find algorithms that can use data from a common existing
heuristic solving the JSSP to create a model able to decide if an activity on a given state of
a JSSP should be chosen, trying to replicate the behavior of the common existing heuristic
used to create the data. The model should be able to receive a single vector with information
about the activity and would give as an output a simple ”yes” or ”no” to know if the activity
should be chosen. Six different ML techniques were used for training models with the data
and are described below. These are all from the supervised area as the data is already labeled.
Algorithms used can be seen in Table 5.1.

5.2.1 Decision tree

The decision tree is a tree-like graph (composed of nodes and branches) which helps to decide
with which label to classify a row of data. Nodes from the tree lead you to a label and consist
of decisions based on events (features and their values) as described by Magee [29]. For
example, a node would have: “red color < 100”, this means that in the event where the red
color has a value ”x”, this node leads you to left or right depending if its condition of x being
less than a hundred is True or False. This process continues through the nodes until it finishes

5.2. USED MACHINE LEARNING (ML) ALGORITHMS 29

on a label. The Decision Tree method was used since the model generated by the tree is easy
to read which means that it has a better output for this thesis.

The decision tree algorithm used is the one from scikit learn called DecisionTreeClassi-
fier. Many trees were made using all combinations with the following changes to the hyper-
parameters:

• Max leaf nodes: defines the maximum number of leaf nodes a node can have, it was set
to 3 in all trees to establish a small limit for their width.

• Max depth: defines a maximum depth for the tree, this was only tested with depth of 4
and depth of 3. The reason for this is that we want results to be easy to interpret and
the longer the tree the more difficult it is to read. Also, heuristics should not need that
much depth in a decision tree, which would mean that creating a longer tree than that
would be overfitting the data.

• Criterion: Name of the function that would be used to measure the quality of the split.
Both options were used (“gini” and “entropy”). Both gave similar answers but it helps
to test options.

• Min impurity decrease: Defines a value that will give a restriction of how much impu-
rity decrease does a split need to create to be transformed into a new node. The values
tested are the default setting which is 0 and a value of 0.2.

5.2.2 K-Nearest Neighbors
This method takes all the test data already labeled as part of its model. It consists on deter-
mining Kwhich will be the number of clusters and taking K random points from the data to
assign these points as the initial centers of the clusters. The K means algorithm will take three
steps until convergence as described by Ayodele [2]:

• Determine the center coordinate (the center of all points of the cluster)

• Determine the distance of each object to the center (Commonly using Eucledian Dis-
tance)

• Group the objects based on minimum distance (With K centers)

After the K clusters are created, every new point that gets to be classified calculates its
distance to each of the K centers and the one with the least distance determines the cluster
where it belongs.

As Sutton [39] suggests, this method is used when the data points are separated into
several different classes. This would mean that there should be a clear line across different
dimensions (each feature being a dimension) where everything in the bound of that line is of
a certain class. K-Nearest Neighbors algorithm was used to identify if the heuristics act over
the data in an easily classifiable matter.

The K-Neighbors algorithm used is the one from scikit learn called KNeighborsClassi-
fier. Many classifiers were made using different values for the parameter Nneighbors which
defines the number of groups that are created (the number of neighbors). Values tested were
2, 3, 4, 5 and 8.

30 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

5.2.3 Multi-Layer Perceptron
Artificial neural networks are composed of a multitude of neurons representing elements that
operate in parallel [17]. The Multi-Layer Perceptron is a type of neural network that uses
the feed-forward method. It includes at least one hidden layer between the input and output
layers and this makes it possible for the network to replicate non-linear functions. The reason
this algorithm was used is because it is able to recognize different distributions better than the
methods used for decision trees, which helps to test if there is a distribution in the features
that a decision tree was not able to get but this network can.

The Neural Network algorithm used is the one from scikit learn called MLPClassifier,
it uses log-loss as the squashing function. Many networks were made using all combinations
with the following changes to the hyper-parameters and 350 max iterations:

• Solver: defines a solver for the weight optimization change, solvers chosen where
LBFGS and ADAM.

• Hidden layer sizes: defines length of the inner layers of neurons, each n number placed
is a new layer of n nodes. The layers used are small (5,2), medium (10,10,10), mixed
(20,5,20,5) and big (100,50,20,10,5).

5.2.4 Support Vector Machines
The SVM consists of mapping all points on a hyper plane and creating a plane with the
dimensions equal to the hyper plane that best divides classes of the points. This means to
create a plane that with the division that it makes, it maximizes the width between the points
considering their categories. One class will be classified above the plane and the other one
below it. Once the plane is placed, in order to predict the class of a new point, it is mapped
on the hyper-plane and then its position relative to the plane is checked and used to define its
class (over the plane means it is from one class and under for the other one). As the SVM uses
a simple division for the data without affecting the points distribution, there is a technique
in which kernels are used. Kernels are operations that are made over features of a point so
the distribution of the points inside the hyperplane changes. This method could be compared
with the K-neighbors method as both divide data using their position in the hyper-plane, but
as it does this differently it is important to test both methods to increase variety. It could
be important to mention that Ayodele [2] describes the method as being a close cousin to
Multilayer Perceptrons.

The Support Vector Machine algorithm used is the one from scikit learn called SVM.SVC.
Many Support Vector Machines were made using all combinations with the following changes
to the hyper-parameters:

• Kernel: defines the kernel used. Options tested were: “rbf”, “linear”, and “poly”.

5.2.5 Random Forest
Random forest is a method that uses multiple decisions trees. Each decision tree is created
individually using a random vector sampled independently as described by Breiman [6]. The

5.2. USED MACHINE LEARNING (ML) ALGORITHMS 31

forest classifier ends up with many different trees (as the features each used for its creation
were random) and to make a decision the mean/average of the result of each decision tree is
obtained. Results from each decision tree have a value which depend on the accuracy of the
individual tree on the data set from which the tree was made, and this value is used to define
the importance of the decision given by that tree.

The random forest algorithm used is the one from scikit learn called RandomForestClas-
sifier. Many classifiers were made using all combinations with the following changes to the
hyper-parameters:

• N estimators: this parameter defines the number of trees that the forest will have.
Amounts tested were: 3, 5 and 10.

• Criterion: Name of the function that would be use to measure the quality of the splits in
trees. Both options were used (“gini” and “entropy”).

• Max depth: defines a maximum depth for each tree, this was only tested with depth
of 3. The reason for this is that we want results to be easy to interpret and the more
depth the tree has, the more difficult it is to read, also heuristics should not need that
long of a decision tree, which would mean that creating a longer tree than that would be
overfitting the data.

Tree with gini and max depth 4 TG4
Tree with gini max depth 4 and impurity decrease TG4P
Tree with entropy and max depth 4 TE4
Tree with entropy max depth 4 and impurity decrease TE4P
Tree with gini and max depth 3. TG3
Tree with gini max depth 3 and impurity decrease TG3P
Tree with entropy and max depth 3 TE3
Tree with entropy max depth 3 and impurity decrease TE3P
Small NN with lbfgs SNNL
Medium NN with lbfgs MNNL
Mixed NN with lbfgs MxNNL
Big NN with lbfgs BNNL
Small NN with adam SNNA
Medium NN with adam MNNA
Mixed NN with adam MxNNA
Big NN with adam BNNA
K-Neighbors (2 groups) KN2
K-Neighbors (3 groups) KN3
K-Neighbors (5 groups) KN5
K-Neighbors (8 groups) KN8
Linear Division SVC SVC L
Polynomial Division SVC SVC P
RBF Division SVC SVC RBF
Random Forest with gini (3 trees) GRF3
Random Forest with gini (5 trees) GRF5
Random Forest with gini (10 trees) GRF10
Random Forest with entropy (3 trees) ERF3
Random Forest with entropy (5 trees) ERF5
Random Forest with entropy (10 trees) ERF10

Table 5.1: ML models used and their abbreviations.

32 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

5.3 Job-Shop Scheduling Problem (JSSP) instances
The JSSPs that were used are composed of n jobs and m machines, where each job has a c
number of activities. The constraints considered for the problems are the following:

1. Activities from a Job have an order, and that order must be respected as no activity can
be scheduled to start before the other activities with higher precedence from the Job
have been completed.

2. Machines can only process one activity at a time.

3. An activity that is scheduled to start on a machine must be completed on the same
machine without interruption.

4. Activities and machines have an assigned type t, an activity can only be scheduled on a
machine of the same type.

In order to create the JSS problems that were used for training and testing the ML algo-
rithms, Taillard‘s method [41] was used. A random number generator, as seen in Table 5.2,
was created. The algorithm receives a seed as input and outputs numbers between 0 and 1,
these numbers are uniformly distributed because of the values of the constants ‘a’, ‘b’, ‘c’,
and ‘m’.

0)
Initial seed and constants:

X0 (0 <X0 <231 - 1)
a = 16 807, b = 127 773, c = 2 836, m = 231 - 1

1)
Modification of the seed:

k := [Xi/b]
Xi+1 := a(Xi mod b) - kc
If Xi+1 <0 then let Xi+1 := Xi+1 + m

2)
New value of the seed:

Xi+1

Current value of the generator:
Xi+1/m

Table 5.2: Taillard’s random number generator.

The algorithm for creating the instances is described in Algorithm 1 and it consists
on getting as an input the amount of jobs, the amount of machines that were created and
two seeds. In this algorithm UNIF is the random number generator and floor is used to
remove extra decimals. This algorithm works by generating one activity per machine for
job, and assigning with the random number generator the time in which this activity needs
to be completed (using the time seed). After that, each activity is assigned a machine, where
first a number equal to the activity’s position in the job represents the machine (Each job has
the same number of activities as there are machines) and then a swapping function using the
random number generator (and the machine seed) swaps the type (an activity can only be
placed on a machine of the same type) between activities from the same job. An example of a
JSSP obtained is shown in Table 5.3.

5.4. DATA COMPOSITION 33

Algorithm 1: Taillard’s instance generator.
1 Let m be the number of machines and n the number of jobs.
2 T ← n×m array which represents the processing times of the jth operation of job i.
3 M ← n×m array which represents the machine in which an activity i, j it to be

processed.
4 tseed ← seed for times.
5 mseed ← seed for machines.
6 for i = 1 to n do
7 for j = 1 to m do
8 tij ← floor(99∗UNIF((tseed))

9 end for
10 end for
11 for i = 1 to n do
12 for j = 1 to m do
13 maij ← j

14 end for
15 end for
16 for i = 1 to n do
17 for j = 1 to m do
18 Swap ma[i, j] and ma[i, j + floor((m− j + 1)∗UNIF(mseed))]

19 end for
20 end for

Machines Times
job 1 1 2 3 8 25 12
job 2 2 3 1 43 98 1
job 3 3 1 2 22 12 32

Table 5.3: Example of a 3x3 JSSP instance.

5.4 Data composition

A JSSP has Jobs and Machines, each Job is composed of a number of activities. Each activity
has two characteristics: a ”complete time”, which is the time it would take for a machine
to complete the activity; and a ”machine type” which is a number which identifies in which
machine must the activity be done, as an activity can only be processed by a machine of the
same type.The JSSP in Table 5.3 is composed of three jobs and each one has three activities.
In each row of jobs there is a column named “machines” where values of ”machine type” are
presented and one named “times” which is for showing the ”complete time” values of each
activity. Each column has 3 values which are the values for each of the 3 activities from each
job. The first value of column “machines” corresponds to the first value of the column “times”,
the second to the second one and so forth. One example is that in job 2 the first activity must
be done in machine 2 and has a time size of 43.

34 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

Activities from each job were numbered from 0 to n−1, where n is the number of
activities in the job. This value will be called the ”activity id”, and it is unique between
activities from the same job, but can be repeated between activities of different jobs. The
”activity id” establishes the order in which activities from a job must be done, where an
activity cannot start unless activities that have lower ids and are from the same job have
already been completed. Activities in Table 5.3 are in order of the ”activity id” where activities
from column 1 of column ”machines” start with an id of 0.

The JSSP was looked at in states (for better visualization a recommendation could be to
see the graphical version of the JSSP shown on the solution model in Figure 3.2 from Chapter
3). The initial state for a JSSP is when none of the activities have been assigned to a machine.
Activities can only be assigned to a machine of their same type in a time that complies with
the restrictions that a machine can only be working on one activity at a time and activities
from jobs must be done in order. Any valid combination of assigned and unassigned activities
to machines is called a state. Each assignment of an activity to a machine is called a step and
it always change the state of the JSSP. Unassigning activities from a machine would also be
another step, but this was not be considered for this thesis.

In this thesis an activity cannot be assigned to a machine unless activities from the
same job with higher precedence have already been assigned. Also, once activities have been
assigned to a machine, their allocation cannot change. Because of this, only one activity from
each job can be placed on each state. These activities must be the ones that have the lowest id
of the activities that have not been assigned from each job and are called ”available activities”.
In Table 5.3, on the beginning state the available activities are the first activities from each job.
If the first activity of job 2 is assigned to a machine, the available activities will now be the
first activities from job 1 and 3 but the second activity from job 2 as it is the next one to be
assigned.

For each step (assignment of an activity to a machine) a set of data was generated, each
set was composed of different rows conformed of the features defined. Each row contained
information from an available activity of the step, and are labeled as True if the activity de-
scribed was the one assigned to a machine in that step and False otherwise. So, in the dataset
every row has information of the available activities on a state and a label to know if the ac-
tivity was selected on said state, with the purpose of making Machine Learning methods learn
which activities could be selected on each state of the JSSP.

5.4.1 Descriptive Features
Some features were made to uniquely identify each activity. Heuristics were used to define
features that could be used by a ML algorithm to replicate the behavior of the heuristic. For ex-
ample, for the heuristic “shortest processing time” there should be a feature that can uniquely
identify if the activity is the shortest one from the available ones or not. This way it should
be possible for the ML algorithms to label activities correctly by using features that directly
connect to the heuristics. As activities are represented individually in each row and have no
connection between the rows of other activities from the same step, some of the features were
normalized between information of activities from the same step. Normalization is useful as
it helps ML algorithms to understand the difference between the options available in each
step of the JSSP, as now it is able to identify which of the activities had the lowest or highest

5.4. DATA COMPOSITION 35

values on a feature. For example, for time size not normalized values from one step can be
of 3, 35, 67, and from other step 5, 19, 33, but when normalized values from the first step
mentioned will now be 0, 0.5, 1 and from the second one 0, 0.5, 1. With normalization the
ML algorithm can know that the activities with the less costs are the ones with 0, and the ones
with the highest cost are the ones with 1.

Defined features are explained below, for a better understanding, Tables 5.4 and 5.5 can
be used as a guide.

1. Job id: Number of the activity’s job. This value is normalized so ML algorithm could
know if the activity chosen was from the first jobs available or the last ones.

2. Activity id: The id of the activity normalized, it can be helpful for identifying the
progress of the activity’s job against the others in terms on number of activities done
(not in time values).

3. Cost: Time it takes to complete an activity normalized in two ways: one, with all the
other of the possible activities to choose from (cost), and the other with the cost of all
activities of the problem (total cost -TC). This feature is useful for recognizing SPT and
LPT heuristics.

4. Time Left Job (TLJ): Total time of activities from the activity’s job that have not been
assigned. Feature used for the heuristic: Maximum Job Remaining Time.

5. Earliest time activity (ET): Earliest time an activity could be assigned, which is the end
time of the previous activity from the same job.

6. Earliest possible time (EPT): Earliest time an activity can be assigned if placed at the
end of any machine of its same type. This feature can be used to select activities as the
EST heuristic.

7. Wasted time: considering EM is the lowest end time of the last activity placed on ma-
chines of the same type than the activity of the row, this feature would be the result of
Earliest time minus EM. It will be the time wasted either because the activity could have
been placed earlier but there was no machine available for that time (negative value); or
because there was available position on a machine, but job restrictions did not permit
the activity to be placed earlier (positive value).

8. Time taken by the machines of the activity’s type (TTMT): the lowest end time of the
last activity placed on machines of the same type than the activity of the row. It is a way
of giving information on how the type of the activity is doing. This feature is useful for
MRT, MLM and LLM heuristics.

9. Final Time: End time the activity would have if placed at the end of the machine.
Calculated by summing the earliest possible time plus the activity’s time cost.

Tables 5.4 and 5.5 show the data generated by three steps taken by the ”Longest Pro-
cessing Time” heuristic over the JSSP represented by Table 5.3. All features except Total
Cost (TC) are normalized considering the values of the same step. On the other hand, TC has

36 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

Step Job Id Activity Id Cost TC ET EPT Wasted Time TTMT Label
1 1 1 8 8 0 0 0 0 FALSE
1 2 1 43 43 0 0 0 0 TRUE
1 3 1 22 22 0 0 0 0 FALSE
2 1 1 8 8 0 0 0 0 FALSE
2 2 2 98 98 43 43 43 0 TRUE
2 3 1 22 22 0 0 0 0 FALSE
3 1 1 8 8 0 0 0 0 FALSE
3 2 3 1 1 141 141 141 0 FALSE
3 3 1 22 22 0 98 -98 98 TRUE

Table 5.4: Example of data after three steps without normalizing.

Step Job Id Activity Id Cost TC ET EPT Wasted time TTMT Label
1 0 0 0 0.0722 0 0 0 0 FALSE
1 0.5 0 1 0.433 0 0 0 0 TRUE
1 1 0 0.4 0.2165 0 0 0 0 FALSE
2 0 0 0 0.0722 0 0 0 0 FALSE
2 0.5 1 1 1 1 1 1 0 TRUE
2 1 0 0.155 0.2165 0 0 0 0 FALSE
3 0 0 0.333 0.0722 0 0 0.695 0 FALSE
3 0.5 1 0 0 1 1 1 0 FALSE
3 1 0 1 0.2165 0 0.695 0 1 TRUE

Table 5.5: Example of normalized data after three steps.

been normalized considering all the time values from activities. In the normalized table it can
be seen how activities labeled with true also have a Cost value of one, which is the feature
and value that represented the ”Longest Processing Time” heuristic. This is how Machine
Learning algorithms should be able to use feature values, and not only to make these simple
decisions but also to later be able to recognize more complex patterns to understand human
behavior.

5.4.2 State Features

The next list of features were obtained from the thesis written by Garza et al. [19] and [20].
These features were called ”state features” as they were used to describe the state of the JSSP
and have the same purpose on this thesis.

Data that was used consisted on two different sets with different objectives; one of these
sets had information “before movement” and the other one “after movement”. These names
refer to the state from which ”state features” values were obtained. “Before movement” data
has ”state features” in the state of the JSSP before the step (assignment of an activity) was
applied. In the “after movement” data ”state features” are calculated in the state in which
the JSSP would be if the activity that the row represents was assigned at its ”earliest possible
time” (earliest time at the end of a machine). Considering that this data is used for training ML
algorithms, the objective of a ML algorithm with “before movement” information would be
to try to choose an activity given the current state of the problem. On the other hand, using the

5.5. APPLICATION AND RESULTS 37

“after movement” information would make the ML algorithm choose based on how assigning
available activities change the state. Both methods were tested, as ”before movement” data
requires less operations to obtain, but ”after movement” gives more unique information on the
activity.

1. Average Processed Times (ATP): This feature is the percentage on how many activities
have been processed by machines. It is calculated by obtaining the sum of all processing
times for already processed activities divided by the sum of all processing times from
all activities.

2. Dispersion of processing time index for scheduled activities (DPT): This feature is cal-
culated by using processing times of already scheduled activities (activities which have
been assigned to a machine) and calculating their standard deviation divided by their
mean.

3. Percentage of slack in make-span (SLACK): Time from machine which is not being
used to process activities, between initial time to makespan divided by total makespan
of machines (the makespan is the maximum value from times taken by machines).

4. Dispersion of processing time index for pending activities (DNPT): This feature is cal-
culated by using processing times of pending activities (activities which haven’t been
assigned to a machine) and calculating their standard deviation divided by their mean.

5. Average Not Processed Times (NATP): This feature is the percentage on how many
activities have not been processed by machines. It is calculated by obtaining the sum
of all processing times for pending activities divided by the sum of all processing times
from all activities.

6. Average pending processing time per job (NJT): To obtain this feature it is needed to
sum all pending job’s times and divide by the total number of activities.

5.5 Application and Results
The experiments consisted of using the heuristics and hyper-heuristics defined in Section 5.1
to solve JSSPs and collecting data while the JSSPs were being solved. The JSS problems
used were created using Taillard’s [41] generator as described in the JSSP instances section
(Section 5.3). The input values for generating these problems are showed on Table 5.6. For
each of the heuristics and hyper-heuristics a set of data was generated as described on the Data
Composition section (section 5.4). For each of these sets one of each model defined by the ML
algorithms described in the Machine Learning Algorithms section (Section 5.2) was trained
using cross-validation of 4 splits with the data of each heuristic. This created multiple models
where each of the models was trained using one of the possible ML algorithms and had the
intention to emulate the behavior of one of the possible heuristics. Models are designed to
receive a vector composed of the characteristics of a single activity in a state of a JSSP as an
input, and to give as an output either True or False depending on if that particular activity on
that specific state should be the next one to assign a time in a machine to, the accuracy of the
model will depend if this output makes the same decision that the heuristic to replicate makes.

38 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

Jobs # Machines Time Seed Machine Seed
4 4 1166510396 164000672
4 4 840612802 398197754
4 4 1314640371 386720536
4 4 1227221349 316176388
5 4 533484900 317419073
5 4 1894307698 1474268163
5 4 874340513 509669280
3 3 1344106948 1868311537
3 3 425990073 1111853152
3 3 666128954 1750328066
4 4 342269428 1806358582
4 4 1603221416 1501949241
4 4 1357584978 1734077082
5 4 1124986343 1209573668
5 4 1463788335 529048107
5 4 1056908795 25321885
3 3 442723456 1369177184
3 3 2033800800 1344077538
3 3 964467313 1735817385

Table 5.6: Training problems.

5.5.1 Resulting Models
Results Tables 5.7 and 5.8 show the average obtained after applying the 4-splits cross valida-
tion to each of the models. These tables are color labeled, where the green color represents
the higher percentages, the red color the lower percentages and yellow the ones in the middle.
Values are compared between values of the same row (or values that come from evaluating
the same heuristic). These colors can be helpful to visualize which algorithms did better as it
can be seen with data in Tables 5.7 and 5.8, where Decision Trees (the columns that start with
T as ”TG4” or ”TE3”) and Random Forests (the columns that start with GR) can be clearly
identified to have more green values that other columns. With this information, it is possible
to see how results do vary between algorithms, and to detect which are the better ones for the
problem in hand.

As heuristics that were tested directly used at least one of the features to make a decision,
on could have expected to see an accuracy of (100%) with some of the models. This was not
the case because ML algorithms consider each row from the data that was used as input as
independent even if these were created in the same step, and in some cases knowing the
information of the other activities was also necessary. For instance, if the heuristic being used
is the “Longest Processing Time” (LPT) there could be a scenario where two activities have
the same cost and are both the longest processing time. The activity selected in this scenario
should be the one with the lowest job id, but as rows are independent and there is no feature
that can identify the lowest id from two specific activities, ML algorithms are not able to label
one of these rows correctly (The job id feature only identifies the lowest id from all available
activities but cannot be used to compare between specific activities).

5.5. APPLICATION AND RESULTS 39

H/ML TG4 TG4P TE4 TE4P TG3 TG3P TE3 TE3P
EST 95.76% 88.43% 93.06% 88.43% 95.66% 88.43% 93.06% 88.43%
SPT 99.76% 99.65% 99.65% 99.65% 99.76% 99.65% 99.65% 99.65%
LPT 97.25% 94.27% 94.50% 94.27% 96.90% 94.27% 94.50% 94.27%
MRT 98.65% 97.21% 98.94% 97.21% 98.94% 97.21% 98.94% 97.21%
MLM 86.25% 83.85% 83.85% 83.85% 87.02% 83.85% 83.85% 83.85%
LLM 87.39% 75.38% 82.24% 75.38% 87.59% 75.38% 82.24% 75.38%
HH 83.77% 69.86% 73.13% 69.86% 77.34% 69.86% 73.13% 69.86%
s-HH1 92.29% 72.76% 75.62% 72.76% 87.43% 72.76% 75.62% 72.76%
s-HH2 98.50% 90.22% 94.36% 94.36% 97.70% 90.22% 94.36% 94.36%
s-HH3 81.67% 76.08% 80.78% 71.96% 82.65% 76.08% 80.78% 71.96%
Avg 92.13% 84.77% 87.61% 84.77% 91.10% 84.77% 87.61% 84.77%

H/ML SNNL MNNL MxNNL BNNL SNNA MNNA MxNNA BNNA
EST 89.39% 95.56% 92.67% 94.70% 27.58% 89.10% 91.90% 89.97%
SPT 88.76% 98.34% 66.19% 98.47% 33.81% 95.98% 97.05% 96.69%
LPT 85.44% 91.51% 88.88% 93.00% 32.80% 92.66% 94.72% 93.81%
MRT 84.99% 89.70% 91.44% 89.41% 27.53% 90.96% 90.28% 89.80%
MLM 83.65% 82.69% 83.75% 84.23% 27.50% 83.65% 84.33% 83.17%
LLM 80.02% 83.95% 83.55% 83.96% 28.86% 82.24% 83.45% 82.95%
HH 73.44% 76.61% 69.34% 71.97% 30.14% 75.66% 70.18% 74.29%
s-HH1 78.95% 79.72% 77.62% 81.72% 27.24% 82.76% 83.05% 85.33%
s-HH2 81.23% 89.52% 87.91% 87.91% 32.91% 89.06% 90.10% 88.26%
s-HH3 77.94% 79.51% 80.59% 80.10% 28.04% 80.59% 81.27% 81.67%
Avg 82.38% 86.71% 82.19% 86.55% 29.64% 86.27% 86.63% 86.59%

H/ML KN2 KN3 KN5 KN8 SVC L SVC P SVC RBF
EST 73.58% 72.13% 74.16% 72.81% 92.09% 86.11% 88.62%
SPT 81.32% 83.69% 83.69% 80.97% 98.35% 94.80% 95.63%
LPT 76.72% 79.59% 76.72% 74.08% 91.97% 92.09% 94.27%
MRT 73.24% 73.63% 73.34% 75.17% 89.12% 86.53% 90.28%
MLM 80.48% 80.96% 81.06% 80.77% 84.13% 86.73% 86.44%
LLM 71.84% 72.86% 73.16% 73.66% 83.96% 83.05% 84.46%
HH 72.60% 67.65% 68.39% 70.71% 71.44% 77.56% 79.03%
s-HH1 72.76% 71.62% 74.19% 74.09% 79.72% 81.52% 85.33%
s-HH2 74.91% 75.95% 74.22% 72.73% 87.34% 87.80% 90.79%
s-HH3 79.02% 78.73% 79.31% 79.02% 81.08% 85.29% 83.43%
Avg 75.65% 75.68% 75.82% 75.40% 85.92% 86.15% 87.83%

H/ML GRF3 GRF5 GRF10 ERF3 ERF5 ERF10 Avg
EST 93.73% 93.64% 93.15% 93.15% 93.83% 93.64% 86.99%
SPT 97.75% 97.99% 99.65% 98.34% 98.34% 99.65% 92.51%
LPT 96.33% 96.79% 98.28% 96.67% 97.02% 97.71% 89.70%
MRT 97.78% 96.82% 98.36% 97.59% 98.27% 97.98% 89.19%
MLM 85.96% 85.96% 86.15% 85.29% 85.48% 85.87% 82.23%
LLM 82.34% 84.16% 84.97% 82.44% 84.26% 85.07% 79.18%
HH 74.39% 74.39% 74.61% 75.24% 75.45% 75.03% 71.89%
s-HH1 88.67% 85.90% 87.05% 90.00% 87.90% 86.76% 78.76%
s-HH2 97.82% 97.36% 96.89% 97.93% 97.01% 97.24% 87.90%
s-HH3 82.75% 82.75% 82.16% 83.53% 83.53% 83.33% 78.47%
Avg 89.75% 89.58% 90.13% 90.02% 90.11% 90.23% 83.68%

Table 5.7: Accuracy of each method using ”Before movement” information.

40 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

H/ML TG4 TG4P TE4 TE4P TG3 TG3P TE3 TE3P
EST 94.79% 88.43% 92.77% 88.43% 94.79% 88.43% 92.77% 88.43%
SPT 99.53% 99.65% 99.65% 99.65% 99.06% 99.65% 99.65% 99.65%
LPT 98.05% 94.27% 95.76% 94.27% 98.28% 94.27% 95.76% 94.27%
MRT 98.75% 97.21% 99.04% 97.21% 99.04% 97.21% 99.04% 97.21%
MLM 87.60% 83.85% 83.85% 83.85% 88.08% 83.85% 83.85% 83.85%
LLM 87.19% 75.38% 82.14% 75.38% 84.76% 75.38% 82.14% 75.38%
HH 79.45% 69.86% 72.92% 69.86% 74.08% 69.86% 72.92% 69.86%
s-HH1 90.67% 72.76% 75.62% 72.76% 85.91% 72.76% 75.62% 72.76%
s-HH2 97.58% 92.06% 94.36% 94.36% 96.89% 92.06% 94.36% 94.36%
s-HH3 83.24% 76.08% 80.98% 71.96% 82.75% 76.08% 80.98% 71.96%
Avg 91.68% 84.95% 87.71% 84.77% 90.36% 84.95% 87.71% 84.77%

H/ML SNNL MNNL MxNNL BNNL SNNA MNNA MxNNA BNNA
EST 90.94% 95.08% 94.21% 94.80% 27.58% 88.91% 91.13% 90.36%
SPT 98.70% 96.22% 66.19% 98.58% 33.81% 96.10% 97.40% 95.39%
LPT 93.00% 93.92% 92.78% 94.15% 32.80% 93.35% 94.38% 92.89%
MRT 84.32% 93.75% 95.28% 95.38% 27.53% 92.78% 93.84% 87.30%
MLM 76.06% 83.08% 83.27% 83.94% 27.50% 83.56% 84.33% 83.56%
LLM 82.64% 83.55% 82.95% 83.75% 28.86% 82.44% 81.84% 81.64%
HH 70.92% 73.23% 71.12% 71.65% 30.14% 75.03% 71.55% 75.34%
s-HH1 76.96% 80.38% 79.72% 81.71% 27.24% 81.72% 82.95% 81.53%
s-HH2 90.45% 90.33% 89.64% 88.72% 32.91% 90.45% 90.44% 91.02%
s-HH3 75.00% 79.71% 79.71% 80.49% 28.04% 81.76% 81.57% 81.67%
Avg 83.90% 86.93% 83.49% 87.32% 29.64% 86.61% 86.94% 86.07%

H/ML KN2 KN3 KN5 KN8 SVC L SVC P SVC RBF
EST 74.93% 73.29% 73.58% 74.64% 91.71% 85.92% 88.33%
SPT 80.26% 82.03% 81.32% 78.61% 98.35% 94.44% 95.75%
LPT 80.39% 80.39% 79.13% 77.64% 93.81% 92.55% 94.38%
MRT 75.56% 74.21% 75.56% 75.84% 91.72% 88.26% 90.47%
MLM 79.04% 80.38% 81.44% 80.87% 84.23% 87.50% 86.06%
LLM 73.36% 71.04% 72.96% 73.36% 83.05% 82.95% 83.55%
HH 70.18% 67.23% 69.23% 71.55% 71.76% 75.98% 76.92%
s-HH1 74.95% 72.96% 75.52% 75.81% 79.43% 82.29% 84.95%
s-HH2 76.64% 75.72% 75.38% 74.57% 88.61% 88.61% 91.37%
s-HH3 77.65% 78.33% 78.24% 78.73% 80.39% 84.61% 83.63%
Avg 76.30% 75.56% 76.24% 76.16% 86.30% 86.31% 87.54%

H/ML GRF3 GRF5 GRF10 ERF3 ERF5 ERF10 Avg
EST 91.71% 92.67% 92.38% 91.61% 91.81% 91.90% 86.77%
SPT 97.76% 97.87% 99.65% 98.94% 97.04% 99.41% 92.42%
LPT 96.44% 93.00% 96.67% 96.79% 94.61% 97.02% 90.52%
MRT 98.84% 95.86% 97.88% 95.28% 94.13% 96.34% 89.82%
MLM 86.06% 86.15% 86.63% 86.44% 85.87% 86.15% 82.10%
LLM 83.05% 83.75% 84.97% 83.05% 83.96% 84.66% 78.94%
HH 73.23% 74.18% 74.29% 73.76% 74.39% 74.29% 71.20%
s-HH1 88.09% 83.05% 85.14% 86.19% 81.72% 84.38% 78.12%
s-HH2 94.71% 91.37% 95.05% 95.40% 94.94% 95.97% 88.22%
s-HH3 82.75% 82.75% 83.33% 82.16% 82.55% 83.82% 78.31%
Avg 89.26% 88.07% 89.60% 88.96% 88.10% 89.40% 83.64%

Table 5.8: Accuracy of each method using ”After movement” information.

5.5. APPLICATION AND RESULTS 41

5.5.2 Results from Applying the ML Algorithms
Results from Subsection 5.5.1 tested accuracy considering only how many activities were la-
beled correctly. These values might be useful for evaluating the machine learning algorithms,
but might be misleading as most of the activities are labeled as False (around two thirds).
Because of this, a test was made in which the models created were used to choose a single ac-
tivity for each step of the JSSP. Most steps of the JSSP have multiple activities from which to
choose, and the models can only label each one of the activities individually as True or False,
so it can happen that on the same step more than one activity is labeled as True or that all
activities are labeled as False. So, this experiment tested each of the models (the one with the
highest accuracy from the Cross-validation) by taking as their selection the first activity (the
one with the lowest job id) that was labeled as True, and if all of them were labeled as False
then its selection would be the first activity of the available ones. Using all the JSSPs gener-
ated in this section each of the models was compared with the heuristics to imitate on their
selection of an activity on each of the steps when solving each of the JSSPs. The accuracy
represents how often does the model select the same activity than the heuristic.

Results are shown on Tables 5.9 and 5.10, where it can be seen that for some models
the accuracy decreased but for others a perfect accuracy was obtained. This is because now
whenever there was a tie between two values on the main feature, the selection method used
for this experiment selected the activity that the heuristic would have also chosen. This is the
case for the Shortest Activity First heuristic for example, as if the two lowest cost activities
have the same size, the heuristic would choose the one with the lowest job. On the other hand,
the Most Loaded Machine heuristic, whenever two machines are equally loaded, it would
choose the activity that can be placed the earliest on that machine, but ML algorithms were
not able to replicate this behavior. Another interesting thing to notice on the data is that there
is a difference between the results of the random forest between “Before Movement” and
“After Movement” data on the simple hyper-heuristics data, this might be due to the fact that
the simple hyper-heuristics used “Before Movement” state information to make decisions, but
decision trees did not seem to have the same problem.

42 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

H/ML TG4 TG4P TE4 TE4P TG3 TG3P TE3 TE3P
EST 85.66% 100.00% 83.22% 100.00% 86.36% 100.00% 83.22% 100.00%
SPT 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
LPT 98.95% 100.00% 95.45% 100.00% 100.00% 100.00% 95.45% 100.00%
MRT 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MLM 69.93% 70.98% 70.98% 70.98% 67.13% 70.98% 70.98% 70.98%
LLM 77.27% 74.48% 73.08% 74.48% 77.27% 74.48% 73.08% 74.48%
HH 73.43% 40.21% 40.21% 40.21% 64.69% 40.21% 40.21% 40.21%
s-HH1 91.96% 33.22% 76.22% 33.22% 83.92% 33.22% 76.22% 33.22%
s-HH2 100.00% 94.41% 94.06% 94.06% 97.55% 94.41% 94.06% 94.06%
s-HH3 75.52% 37.06% 69.23% 37.06% 74.83% 37.06% 69.23% 37.06%
Avg 87.27% 75.03% 80.24% 75.00% 85.17% 75.03% 80.24% 75.00%

H/ML SNNL MNNL MxNNL BNNL SNNA MNNA MxNNA BNNA
EST 93.36% 94.06% 91.61% 88.81% 36.36% 69.58% 90.56% 79.72%
SPT 44.06% 92.31% 44.06% 99.30% 44.06% 91.96% 96.85% 93.36%
LPT 87.06% 86.71% 88.11% 87.41% 48.95% 89.16% 95.80% 89.51%
MRT 75.52% 86.36% 89.16% 80.42% 33.57% 86.71% 75.87% 84.97%
MLM 66.08% 62.94% 67.48% 63.99% 33.22% 70.63% 69.93% 70.28%
LLM 70.28% 70.28% 73.43% 71.68% 41.26% 70.28% 75.17% 74.48%
HH 40.21% 45.80% 48.25% 47.90% 40.21% 48.95% 40.56% 39.51%
s-HH1 54.20% 52.80% 52.45% 55.59% 33.22% 56.64% 63.64% 61.54%
s-HH2 81.47% 88.46% 82.87% 84.97% 47.55% 87.06% 84.27% 83.92%
s-HH3 60.49% 61.54% 63.99% 59.44% 37.06% 64.34% 68.88% 65.03%
Avg 67.27% 74.13% 70.14% 73.95% 39.55% 73.53% 76.15% 74.23%

H/ML KN2 KN3 KN5 KN8 SVC L SVC P SVC RBF
EST 57.34% 65.73% 59.09% 42.66% 82.52% 68.53% 81.82%
SPT 75.87% 81.12% 78.32% 73.43% 98.25% 95.10% 96.85%
LPT 75.87% 83.22% 76.92% 65.38% 87.06% 87.06% 92.66%
MRT 55.24% 65.38% 50.70% 42.66% 81.82% 78.32% 90.91%
MLM 68.18% 74.48% 69.58% 62.24% 65.38% 77.27% 76.92%
LLM 61.89% 69.23% 62.24% 58.74% 70.63% 66.43% 73.43%
HH 55.24% 62.94% 54.20% 44.76% 40.91% 59.09% 62.59%
s-HH1 52.10% 61.89% 55.94% 41.96% 50.70% 59.09% 73.08%
s-HH2 73.43% 79.72% 73.43% 62.24% 81.82% 83.57% 88.81%
s-HH3 67.48% 73.78% 67.48% 59.44% 65.03% 75.17% 73.43%
Avg 64.27% 71.75% 64.79% 55.35% 72.41% 74.97% 81.05%

H/ML GRF3 GRF5 GRF10 ERF3 ERF5 ERF10 Avg
EST 93.01% 94.76% 95.45% 89.51% 94.76% 95.10% 82.86%
SPT 91.96% 91.61% 100.00% 90.91% 96.85% 100.00% 88.84%
LPT 98.60% 98.95% 98.95% 99.65% 100.00% 98.60% 90.54%
MRT 93.01% 85.31% 97.55% 95.80% 96.50% 97.90% 84.27%
MLM 74.48% 73.78% 73.43% 71.33% 73.43% 72.73% 68.99%
LLM 75.17% 76.92% 74.83% 75.17% 76.92% 77.97% 71.21%
HH 44.06% 45.45% 46.50% 67.13% 50.00% 49.30% 48.72%
s-HH1 83.57% 78.67% 70.63% 88.46% 78.67% 70.28% 60.56%
s-HH2 99.65% 99.30% 98.95% 99.65% 99.30% 97.90% 87.62%
s-HH3 70.63% 72.38% 69.58% 72.03% 72.38% 72.38% 63.07%
Avg 82.41% 81.71% 82.59% 84.97% 83.88% 83.22% 74.67%

Table 5.9: Accuracy of each method using ”Before movement” information with applied
results.

5.5. APPLICATION AND RESULTS 43

H/ML TG4 TG4P TE4 TE4P TG3 TG3P TE3 TE3P
EST 82.87% 100.00% 83.57% 100.00% 82.87% 100.00% 83.57% 100.00%
SPT 99.65% 100.00% 100.00% 100.00% 99.65% 100.00% 100.00% 100.00%
LPT 100.00% 100.00% 99.30% 100.00% 100.00% 100.00% 99.30% 100.00%
MRT 99.65% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MLM 72.73% 70.98% 70.98% 70.98% 73.08% 70.98% 70.98% 70.98%
LLM 70.98% 74.48% 74.83% 74.48% 69.23% 74.48% 74.83% 74.48%
HH 75.87% 40.21% 43.71% 40.21% 58.74% 40.21% 43.71% 40.21%
s-HH1 87.76% 33.22% 76.22% 33.22% 80.42% 33.22% 76.22% 33.22%
s-HH2 98.95% 94.41% 92.66% 92.66% 98.95% 94.41% 92.66% 92.66%
s-HH3 77.62% 37.06% 69.23% 37.06% 75.87% 37.06% 69.23% 37.06%
Avg 86.61% 75.03% 81.05% 74.86% 83.88% 75.03% 81.05% 74.86%

H/ML SNNL MNNL MxNNL BNNL SNNA MNNA MxNNA BNNA
EST 73.78% 92.31% 91.96% 91.26% 36.36% 72.03% 71.68% 77.97%
SPT 98.25% 98.60% 44.06% 98.95% 44.06% 94.41% 96.15% 92.66%
LPT 95.10% 90.56% 87.41% 91.26% 48.95% 91.26% 94.41% 91.26%
MRT 96.50% 93.36% 91.61% 93.36% 33.57% 89.86% 92.31% 80.07%
MLM 33.22% 63.29% 64.34% 64.69% 33.22% 62.24% 70.98% 60.49%
LLM 66.08% 67.83% 66.78% 67.83% 41.26% 69.58% 65.38% 57.69%
HH 43.01% 43.71% 40.21% 46.85% 40.21% 50.70% 40.91% 40.91%
s-HH1 57.34% 56.99% 59.79% 59.79% 33.22% 62.94% 64.34% 70.63%
s-HH2 85.31% 85.31% 86.01% 82.52% 47.55% 87.41% 88.81% 93.01%
s-HH3 37.41% 62.59% 68.18% 63.29% 37.06% 67.13% 67.83% 67.13%
Avg 68.60% 75.45% 70.03% 75.98% 39.55% 74.76% 75.28% 73.18%

H/ML KN2 KN3 KN5 KN8 SVC L SVC P SVC RBF
EST 58.39% 68.88% 62.24% 49.65% 84.62% 70.98% 79.02%
SPT 79.37% 83.22% 79.37% 70.28% 98.25% 93.71% 96.50%
LPT 74.48% 79.37% 75.52% 69.23% 92.66% 89.86% 93.36%
MRT 55.24% 67.13% 55.59% 40.21% 86.01% 80.07% 90.91%
MLM 63.29% 69.93% 65.03% 61.54% 65.03% 76.22% 74.48%
LLM 68.18% 73.43% 66.08% 56.64% 68.53% 66.08% 72.03%
HH 58.04% 60.14% 55.59% 48.25% 40.21% 55.94% 57.34%
s-HH1 55.59% 62.59% 54.90% 45.10% 53.15% 59.79% 73.78%
s-HH2 71.33% 75.17% 72.03% 66.08% 82.87% 84.97% 89.51%
s-HH3 63.99% 69.23% 66.08% 61.54% 63.64% 73.43% 72.73%
Avg 64.79% 70.91% 65.24% 56.85% 73.50% 75.10% 79.97%

H/ML GRF3 GRF5 GRF10 ERF3 ERF5 ERF10 Avg
EST 89.16% 91.96% 94.76% 89.16% 91.96% 95.10% 81.59%
SPT 98.95% 94.76% 100.00% 98.60% 93.01% 100.00% 91.46%
LPT 99.30% 95.80% 98.60% 99.30% 96.15% 98.60% 91.42%
MRT 98.60% 89.86% 98.60% 92.66% 82.87% 94.06% 86.28%
MLM 72.73% 72.73% 73.43% 71.33% 71.33% 71.33% 66.64%
LLM 67.83% 70.28% 74.48% 67.83% 70.28% 74.83% 68.51%
HH 46.50% 46.85% 46.50% 46.15% 46.15% 46.15% 47.70%
s-HH1 64.69% 58.39% 57.69% 60.49% 57.69% 65.03% 58.19%
s-HH2 95.80% 87.76% 93.01% 95.80% 96.50% 96.15% 86.91%
s-HH3 66.08% 68.88% 70.28% 67.13% 67.48% 71.33% 61.82%
Avg 79.97% 77.73% 80.73% 78.85% 77.34% 81.26% 74.05%

Table 5.10: Accuracy of each method using ”After movement” information with applied re-
sults.

44 CHAPTER 5. CREATING AND TESTING THE BASIC MODEL

5.5.3 Conclusions
Data showed how decision trees with impurity decrease did better on the common existing
heuristics than the ones without it, but when it came to more complex situations as the simple
hyper-heuristics, trees with impurity decrease did badly. This happened because trees without
impurity decrease over-fitted with the common existing heuristics but because of the same
thing, when it came to the hyper-heuristics, they were able to detect more information. Be-
cause of the data generated in this chapter it is possible to select from the ML algorithms
tested the ones that are better for this project. The three ML algorithms selected were: De-
cision Trees, SVMs and Random Forests as these were the ones with higher values in their
accuracy percentages. From Decision Trees only the ones without the impurity decrease as
these did better with the hyper heuristics, from the SVMs the Polynomial and the RBF divi-
sions were selected as these two had interesting accuracies and because of their kernels data is
handled differently than with decision trees. And from the random forests the ones composed
by 3 trees and by 10 trees. giving a total of 10 selected ML algorithms.

5.6 Summary
In this chapter, ML algorithms were tested to see if these were capable of replicating heuris-
tics. For this JSSPs were solved using basic heuristics obtained from the thesis of Garza et
al. [19] and [20], and some hyper heuristics created. While the heuristics and hyper heuristics
were solving the problem, from each movement done, data of the state of the JSSP was being
collected. The data was composed by the features that were defined based on the the same
heuristics together with some state features which also came from the thesis of Garza et al.
[19] and [20]. This data was then used to train and test different ML algorithms to see if these
were able to accurately choose the same options as heuristics. Good results were obtained,
Decision Trees, SVMs and Random Forests were selected as the main algorithms to use in this
thesis, and it was concluded that some ML algorithms are capable of replicating heuristics.

Chapter 6

Developing the Video Game

This chapter includes the process of building the video game that was used to collect the
data from humans solving JSS problems. Using a video game was a decision made with
the intention of making people solve problems willingly by giving them entertainment in
exchange for their time. The research from Morschheuser et al. [32] shows that gamifying
a problem also increases engagement and quality of results, which is of high value for this
research as better results can lead to better heuristics.

After analyzing the objective of building the video game, some characteristics were
defined before its making, these were:

• It must be of easy access. This game was distributed among many people with little
background consideration, the only expectations are for them to have common computer
handling abilities and common problem-solving capabilities. Given this, complications
for accessing and interacting with the game were planned to be reduced, which included
avoiding installation of software and giving easy login access. This was done by making
the game runnable on a web page so it could be accessed and used in most browsers, and
making the log-in to only require a username and a password which is a small amount
of information.

• It must be understandable. The JSSP is a complex problem, and it can be complicated
to explain it to players. For the purpose of getting people to get good solutions for
the JSS problems it is of high priority for them to understand the problem correctly.
To accomplish understandability two main steps were done when making the video
game. The first one was to test out a beta-version of the game where the difficulties
that humans encountered while solving the JSSPs were analyzed. After learning what
confused people visual cues were added in the game to help future players avoid these
difficulties. The second step was to build a tutorial where a step by step guide on how
to solve the JSS problem in the game was explained, including errors you can make and
all type of moves that can be done.

• It must gather enough data to replicate human behavior. Even if the features that were
used for this project were defined in the last chapter, being able to replicate the move-
ments that the player made when playing instead of getting the needed features directly
has a higher value. This is because if there is any change in the features needed there

45

46 CHAPTER 6. DEVELOPING THE VIDEO GAME

will be no need to collect new data from users, but only to replicate their movements
and collect the data with the new features. This was achieved by collecting information
of the “when”, “what” and “where” from any movement of an activity that the player
did.

6.1 Designing the Video Game

The process followed for designing the video game started with establishing how the proper-
ties of the JSS problem would be used in the game. The main objective consisted of creating
a game in which actions done while playing it could be transformed and used to get a solution
for a JSSP. This can be done in many ways; a simple method would be to create a game by
applying simple modifications to JSSP concepts transforming them into game elements with-
out removing the important rules that make the JSSP its own problem. This simple method
is easy to understand, it pushes to transform the elements of the JSSP into elements of a
game, making them move similarly and with the same set of rules than those of the JSSP. A
second option to complete the objective is to solve pieces of the JSSP throughout the game
without worrying about any order or a direct translation of the elements in the game to JSSP
components.

A quick comparison of the two methods is to consider for the simple one a game where
players must manage a virtual company and for that they need to solve a JSSP for the schedul-
ing of their in-game business. The JSSP is given to the player with a graphical representation
of it and the player solves the problem directly to gain points. For the second method, consider
an adventure/shooting game where decisions made by the player in the adventure, like where
to go first or what to do next, can be translated into movements of what should a next move
be at the beginning of the JSSP. This can be done if making these decisions has similar or the
same restrictions and characteristics as those that a JSSP has at its beginning. Then, decisions
made in the shooting section where the player must shoot different types of targets with dif-
ferent types of gun depending on the type, could be used to translate them into decisions of
what movement to do at the end of the JSSP. An interesting consideration is that in this game
the player might not know that a JSSP can be solved with the decisions that are being made
as it is not shown directly.

Both methods are relevant for projects with the objective of getting humans to solve a
problem in the form of a video game. The simple method is the easiest and fastest to work
with, but the second method can open up more possibilities of what the game could be, and it
could even lead to finding out a current popular game that is already making players solve the
problem in hand. Because of this, the more complex method has a greater potential of getting
the gathering of heuristics from video game data into the commercial world rather than just
keeping it in the experimentation and study field.

The definition for the JSSP includes jobs composed of activities that must be done in
machines. This definition was simplified to obtain the main characteristics of the JSSP, which
is: the JSSP includes elements with a size that must be “done” by something taking up a
number of units proportional to the size of the elements to be done. Restrictions like the order
in which elements must be done, how the types of the elements define what has to do them,
or that the “somethings” cannot be doing more than one element at a time are also part of the

6.1. DESIGNING THE VIDEO GAME 47

generalized definition. Even if the new definition looks like a more informal and subjective
version of the original one, it is important to take away the limitations that the words gave.
Now that there is not a specification that there are machines completing activities, the activities
can now be viewed as for example “mining ore” where the time an activity took to complete
can now be represented by the size of the ore, and instead of using machines “miners that have
to mine the ore” can be used. This helps to expand the possible elements that can constitute
the game, which is a relevant step for transforming the JSSP into a game as it helps to imagine
different possibilities for game design.

6.1.1 Graphical JSSP
The simplest method to transform the JSSP into a game is to take a graphical representation of
it, add its rules to the movements of each object, and gamify it. An option for a graphical rep-
resentation of the JSSP can be composed of only rectangles of different colors and outlines,
composed of big rectangles with no inner color to represent machines, and smaller rectangles
to represent activities as seen in Figure 6.1. The inner color of the activity rectangles repre-
sents their job. This means that all activities from the same job will have the same color. The
outline of both the activity rectangles and the machine rectangles represent their type. In the
JSSP activities can only be done by machines of their type, so in this case activity rectangles
can only be placed on machine rectangles with the same outline color.

The width of all rectangles can be the same (machine rectangles are a little wider so
activity rectangles can fit inside them), but the length of activity rectangles were used to
represent the time it takes to complete the activity they correspond to. Machine rectangles
could also have a length which could be a maximum amount of time that the player will have
to complete all activities, this can be the time of the optimal solution, or an average time, etc.

In this representation the horizontal or x-axis is being used to represent time, this should
be considered while complying with the JSSP restrictions. These include that activities of the
same job must be done in order, this would mean that the end of a previous activity must be
at the left of the start of the next activity considering their “x-axis” (see in Figure 6.2); also
machines can only do one activity at once, which would mean that activity rectangles cannot
overlap.

The design just described was the one used when creating the video game. Other designs
were considered but it was decided that this one was the easiest to build. It can also be argued
that by showing players a direct representation of the JSSP, the strategies generated by them
will be directed to solving JSS problems, which can be beneficial for this thesis. In this chapter
other designs are described even if these were not applied. As the information that was gained
by their creation can be helpful for further study.

48 CHAPTER 6. DEVELOPING THE VIDEO GAME

Figure 6.1: Graphical JSSP.

Figure 6.2: Graphical JSSP Job Restriction.

6.1. DESIGNING THE VIDEO GAME 49

6.1.2 4D-Tetris

One of the most relevant designs created was called 4D-Tetris. This was an idea inspired from
the original Tetris game but does not use most of the relevant characteristics from the original
game. While in the original Tetris there is an area where blocks of different shapes and sizes
fall and are placed one over another, in this version there is more than one area, each one
representing a machine of a JSSP. Pieces are representing activities and only have one shape,
the stick form, all with the same width but varying in length depending on their time values.
These pieces are called activities to make the description of the game more understandable.
See Figure 6.3 for reference. An easy way to understand this transformation is to view it as
solving the JSSP sideways.

Each activity that falls on the same area than other activities will fall over them and
cannot go through them. This will always be true, but an activity will not always fall exactly
on top of the upmost activity on the area as there are other restrictions to also consider. The
lowest an activity can go on an area is called its final position. When an activity starts to fall,
before it touches its final position on the area, there is the option to change it and try to place
another available activity instead (available activities are from each job the first activity of the
ones that haven’t been placed yet in one of the fall areas). This can be seen in Figure 6.3 with
the blue arrow.

Figure 6.3: 4D-Tetris.

50 CHAPTER 6. DEVELOPING THE VIDEO GAME

When an activity is falling on an area its final position does not only depend on the
activities below, but also on the limits set by other activities from the same job, where each
activity from each job will create a line of its color on all areas and any activity of the same
color cannot go below the line generated. (This can be seen on Figure 6.3)

In the JSSP a rule of types exist, where an activity of a type can only be done by a ma-
chine of the same type. As areas represent machines it is important to mention that activities
should only automatically appear over areas of its type. All fall areas have an upper limit, if
any of the activities are above the limit while being on their final position then the game ends.
The final score should be relative to the number of activities placed on their area.

This game was not made as it was considered that the fall-time limit could become
distracting for players making them lose focus on the main objective which is to solve the
JSSP. Still, in comparison with the game design chosen, this one was more likely to force the
player to think on a heuristic kind of way by making them make quick decisions using only
the next available activities and placing them on top of activities that were already placed.

6.1.3 Monster Hunters

With the intention of making a more typical game, another idea that was explored for the
design was a multiplayer game that consisted of each player completing different missions
which could also be viewed as multiple minigames (in this case these minigames would be
attacking monsters). The JSSP is manifested as players can be used to represent machines and
each mission could represent the activities.

The game starts with a room with different doors, each door can have a specific monster
which has to be attacked multiple times, each time by a specific type of player. Each monster
represents a job, defeating a monster takes multiple steps (the missions) where each one rep-
resents an activity, this shows a job that consists of different activities of the JSSP. This can
be seen in Figure 6.4. These steps should be completed by specific types of players just like
activities must be done by specific machines.

Figure 6.4: Monster Hunters.

6.1. DESIGNING THE VIDEO GAME 51

At the start of the game each player can go to any of the doors that need a player of
their type to complete the missions. There must be a way for players to know which steps are
needed to defeat each monster and what type of player must do it. This is important as it is
how players would interact with the JSS problem. There should be a time limit for defeating
all the monsters, and the more the monsters are attacked the more points players get. This
would encourage players to form a strategy on the best order to attack the monsters.

Each mission for each monster should take some time similar to the activity it represents,
the mission does not have to last the exact amount of time than that of the activity, but it must
be relatively similar. This means that the time for completion of a mission can be dependent
on the skill of the player. However, the average time for completion must be representative of
the time of the activity this mission represents relative to the other missions/activities in the
game.

As there will be times where players will not have a mission of their type available,
activities without any time limitations can be added so these players can keep playing while
waiting for their teammates. These activities could give extra points, but attacking monsters
need to give enough points to motivate the players to focus on attacking the monsters rather
than completing the extra activities.

There is a game called League of Legends (LoL) which was developed and published by
Riot Games[18]. An oversimplified description of it is that it consists on a multiplayer versus
game where players must destroy the main tower of the opposing group of players. There are
different towers of each team that can also be destroyed by the opposing team, which is done
as these generate attacking minions that attack the enemy. The relevant part of this game to
this section is that there are also monsters that can be defeated to gain buffs. Another relevant
fact is that players choose characters that are of different types. The main idea here is that
this game and monster hunters (the game that was being described for the JSSP) could be
combined. This could be done by adding the JSSP rules that were added to the monsters in
monster hunters to LoL monsters. In the actual game, LoL’s main objective is to defeat the
enemy tower and not really to defeat the monsters, also the way players play the game gives
each type of player a specific objective when playing (one defends the top, other the center
etc). To make the players focus on the monsters, buffs obtained by defeating them must be of
high significance to the game. The official release of LoL was on 2009 and it is still a relevant
and popular game to this day, this game is also played competitively which means that players
strive to be good at it. The fact that there is a way to transform or insert a typical optimization
problem in computer science into a well known video game (the JSSP into LoL) shows the
potential of being able to use game data to obtain new heuristics.

This solution is really interesting and of high value, but its making requires a high
amount of resources (time, players, money) that are not available for this thesis, which is
why this design was not implemented.

52 CHAPTER 6. DEVELOPING THE VIDEO GAME

6.2 First Version of the Video Game

A first version of the game was created for testing it out with different people. The objec-
tive was to see how humans interacted with the JSS problem and knowing if there were any
complications on understanding the game and its interactions. This first version included the
options of user creation and saving capacity together with the gamified graphical JSSP. It was
also capable of collecting data of players’ movements.

The graphical representation of the JSSP described above was used in this version. It is
the one in which activities are represented by colored rectangles where their inner color stands
for the job these belong to and their outline color illustrates the machine these go into.

This design was implemented using Ruby on Rails which is a server-side web applica-
tion framework that uses the Ruby coding language. The game itself was written in HTML,
JS and CSS so it could be accessed and used in most browsers, including many cellphone
browsers.

6.2.1 Video Game Description

In the video game, players are able to move the activities by clicking on them and dragging
them to a machine and clicking again to drop them. If the player tries to place an activity on a
position it cannot be placed because of any of the restrictions, this activity will be returned to
its last position before being dragged and an error message will appear. An example of these
restrictions could be being placed on a machine of a different type.

When an activity is placed on a machine it cannot be placed over another activity as a
machine can only do one activity at a time, and the “x-axis” position it must be placed in has
to be after the last “x-axis” position the previous activity from the same job has (as activities of
the same job must be done in order which means that a previous activity must be completed
before starting the next one). If an activity is placed by the player over another activity or
before that other activity, the activity placed will be moved towards the left-most “x-axis”
position it can be placed, pushing forward, if it must, the other activities from the position
where it was placed. If an activity is placed after another activity, the other activity will keep
its position, and the activity placed will move to the left-most possible position which would
be the maximum or right-most “x-axis” position between the last position from the other
activity and the position from the previous activity from the same job than the activity being
placed. A visual explanation can be seen on Figure 6.5.

Another rule added for the players was that once an activity was placed, they will not be
able to change its position. This was done with the intention of people making decisions in a
more heuristic-like way of thinking, where decisions were known before knowing their exact
results.

The size of the rectangles that represent machines is the time limit in which the activities
can be done. In this case, this size was equal to the size that the time of the optimal solution
represents. So, unless players gave the optimal solution for the JSSP they will not be able to
place all activities correctly. The game ended when all activities are placed or when an activity
placed pushed other activities or itself outside the size limit of the machine rectangles. Points
were calculated relative to the number of activities placed correctly.

6.2. FIRST VERSION OF THE VIDEO GAME 53

Figure 6.5: Graphical JSSP moves.

6.2.2 Experimentation and Results

10 JSS problems were created using Taillard‘s method [41], 5 of 3 Jobs and 3 Machines; 3
of 4 Jobs and 4 Machines and 2 of 4 Jobs and 5 Machines. These were the problems used in
this first version of the game. Small numbers for jobs and machines were used as if not JSSPs
could have become too difficult to humans to answer.

The JSS problems were given to 6 different people from different groups: 3 man of ages
13, 24 and 53; and 3 women of ages: 18, 23 and 48. These players were asked to solve the
10 JSS problems twice, finishing them all first and then giving them another try. This was a
small and controlled group as there was an intention of viewing an interacting closely with
each of the players so that the difficulties that these had were fully understood, also there were
no resources for fully interacting the same way with a larger number of players. An interview
with them revealed the following:

• All players described the game as solvable. This is fine as it would be bad if players
considered the game as impossible to play because of its difficulty.

• Players were not able to come up with the right solution on many of the difficult prob-
lems (fill the machines with more than 80% of activities’ time cost). This is important
to consider as humans might be bad at solving JSSPs so their heuristics might also be
bad (bad meaning to not be able to get a close solution to the optimal).

• Two of them when seeing too much information to process decided to place activities
randomly without thinking properly on a strategy. It is good that these were not most
of the players, but we can now consider that some of the humans will not use a strategy
while playing.

54 CHAPTER 6. DEVELOPING THE VIDEO GAME

• Five out of six described the problem as interesting and as a way they could sometime
use to waste time, which means that it is good enough for using it as it is in a game.

Players also commented on how it was difficult for them to understand the game. These
included viewing and understanding what the outline colors meant or trying to predict were
an activity was going to end up after placing it as dependencies were not understood well.
Five out of six ended up understanding the game completely after some experimentation and
explaining of it. Still, with the final version of the game, players should be able to understand
the rules easier and without further intervention. With this in mind, the game design was
changed so it became more intuitive.

The new version of the game will also now start with low difficulty problems. JSSPs
give players points relative to how good it was solved. Players will get more difficult JSSPs as
they get more points (The number of machines and jobs define the difficulty of a JSSP). This
was done so players can feel more comfortable with the amount of information given to them
and by this trying to keep humans from using random movements to solve the JSSP because
the problem seemed too large.

6.3 Final Version of the Video Game
The necessary changes to the interface of the game were discovered thanks to the information
obtained on the first version of the video game. These included adding more visual cues.
One example is that a line was added which connects the activity selected with the previous
activity of the same job as seen in Figure 6.6. This way players were able to more easily
recognize after which x-axis position the held activity will be placed. Another visual cue was
a change in the outline color of positions where an activity can be placed. These turn yellow
like in Figure 6.7 to indicate where the activity will be dropped if the player decides to release
it. Colors used were also changed, but most importantly the outline color was no longer the
only indicator for the machine and activity types, as now an image of an alien was used to
also represent this. After players solved a JSSP, an optimal solution of it was shown to them
simultaneously with their own answer with the intention of showing them their mistakes and
that maybe they could improve by analyzing them (see in Figure 6.8). Points obtained by
players are proportional to the amount of activities placed correctly, but also if the percentage
of area from activities placed was below 85% no points are given to the user. This was done to
keep players from making the bare minimum (like only placing one activity on many JSSPs)
to get the amount of points needed.

The gamified graphical JSSP was transformed into a story-game by adding a narrative
around the problem. This story consists on a world that the player is in charge of, where its
inhabitants are able to evolve. Because of the story, players now solved the JSSPs with the
intention to organize activities for the inhabitants of their planet. Solving these JSSPs earned
them points which they could used in the shop to evolve the planet’s population (Figure 6.9).
After evolutions, players were able to see a story on how the new evolution affected their
planet, making them feel in control of what happens to their world.(Figure 6.10)

6.3. FINAL VERSION OF THE VIDEO GAME 55

Figure 6.6: Video Game moving activities. Case 1.

Figure 6.7: Video Game moving activities. Case 2.

Figure 6.8: Video Game Showing Solution.

56 CHAPTER 6. DEVELOPING THE VIDEO GAME

An introduction tutorial was added to the video game in which the story of the game
and instructions to how to solve a JSSP in this game step by step where explained (Figures
6.11 and 6.12). With this the final version of the video game was completed as it is now
able to make the players solve JSS problems, has a design and a tutorial that helps players
understand how to solve a JSSP, gives them entertainment using storytelling and stores their
data correctly.

Figure 6.9: Video Game Shop.

Figure 6.10: Video Game Story.

Figure 6.11: Video Game Tutorial Story.

6.3. FINAL VERSION OF THE VIDEO GAME 57

Figure 6.12: Video Game Tutorial for solving JSSP.

6.3.1 Analysis using Desurvire’s characteristics
With the intention of creating a good game, characteristics described by Desurvire et al. [10]
were considered. In this section an analysis of them in the video game is made.

• Minimize player’s fatigue by varying activities and pacing during the game. In this
video game there is only one main activity which is to solve the graphical JSSP, the
characteristic was not done as it was considered that the game could be completed in a
short time and that the stories varied enough so that it was not needed.

• Provide clear goals. It was made clear for the user in the tutorial and in the point earning
system that the objective was to fill with the most activities possible the machines from
the JSSP.

• Game play should have multiple ways to win. Each JSS problem had multiple ways
of being solve, even if not all the ways lead to the optimal solution players still earned
points with good solutions. Also, activities of the JSSP can sometimes be placed in
different order but still end in the same position, so this characteristic was achieved.

• Player should not be penalized repeatedly for the same failures. There were not actual
penalizations in this video game, but there were JSSP rules that could not be broken.

• Pace of the game should apply pressure but not frustrate the player. There was no time
limit for solving any of the JSSPs, the player could even log out and log in later and the
state of their last JSSP problem would be kept.

• Vary the difficulty so players are able to gain mastery of the game. The difficulty of the
JSSPs was incremented as players gained points.

• Game should react in a consistent, challenging and exciting way to the players actions
(appropriate music). It was considered that sound could be bothering for players be-
cause of the type of game, so music and sound was not added. The game did have some
visual cues for the player, and the stories had some mild animation.

• Shorten learning curve by following trends set by the gaming industry. Using the mouse
to drag activities was intuitive, also buttons had known symbols for their use.

58 CHAPTER 6. DEVELOPING THE VIDEO GAME

• Controls should be intuitive but also customizable. Controls were simple, you could
only move activities with the mouse and click the buttons with it, so there was not an
option to customize them as there was no need.

• Provide immediate feedback for user actions. Many visual cues and warnings were
added to help the player recognize the JSSP rules.

• The player should be able to turn on and off the game. This was done without even
needing a save button, each movement players made was saved automatically and they
could close the browser and login again another day and the state of the JSSP will be as
they left it.

6.3.2 Video Game Release
Jssps used in the video game were made using Taillard’s [41] method as in the first version
of the game. In this previous version, the length of the machines (which translates to the
maximum time to complete activities) had the optimal time for completing the JSSP as a
limit. This meant that players had to place activities optimally to get all points. For this
version a percentage of time was added to the optimal time to give players some space to
make mistakes. JSSPs were divided by difficulty and had different characteristics because of
it.

Easy levels were composed of: 20 games of 3 Jobs and 3 Machines with 1% extra time
to the optimal time and 10 games of 4 Jobs and 4 Machines with 5% extra time.

Medium levels were composed of: 20 games of 4 Jobs and 4 Machines with 3% extra
time, 5 levels of 3 Jobs and 3 Machines with 0% extra time and 5 levels of 4 Jobs and 5
Machines with 10% extra time.

Hard levels were composed of: 20 games of 4 Jobs and 4 Machines with 0% extra time
and 10 games of 4 Jobs and 5 Machines with 5% extra time.

The game can be found in the following link https://thesis-game.herokuapp.com/, and
the code for it in https://github.com/electricdrago/thesis game. 30 players were asked to play
the game, after 2 weeks, usable data from 21 players was obtained (other players ignored the
request or did not play enough). With this, information from 393 games was collected.

For each JSSP a player interacts with the game saves the id of the JSSP being solved
(inner id to identify it in the game), the player id and the game id. And for each movement the
player makes the game stores the number of step the movement is, the id of the activity that
was moved, the machine where it was placed, in which position it was placed and the time
when the movement was done. When the player finishes solving the JSSP the game saves the
score the player got. Admins of the video game are able to download files which have the
information collected. Each file has as a name “[JSSP id] [User id] [Game id] [score].csv”
and contains information of the movements inside it. An example of this type of file can be
seen in Table 6.1. The name of the columns in the table do not appear on the file, activity
ids reference the JSSP and the machine column is for knowing in which machine the activity
was placed, -1 means that it was unassigned (In the game this only happened when the user
grabbed the activity but did not placed it on any machine). It is also important to know that all
moves ”valid and invalid” from the player are documented on the file, so it is the responsibility
of the one reading the file knowing the effects of each step (invalid moves can be ignored).

6.3. FINAL VERSION OF THE VIDEO GAME 59

Admins are also able to download JSSP information to be able to set it up and simulate
players movements. An example of a file can be seen in Table 6.2. The activity Id is for a
reference of the activity, but the job it belongs to and in which order it has to be completed is
obtained from the job id and the position values.

Step Activity Id Machine Position Time
0 1411 2 0 2020-11-20 20:38:43 UTC
1 1412 -1 0 2020-11-20 20:38:45 UTC
2 1408 2 0 2020-11-20 20:38:48 UTC
3 1405 0 0 2020-11-20 20:38:50 UTC
4 1409 -1 0 2020-11-20 20:38:52 UTC
5 1412 -1 0 2020-11-20 20:38:54 UTC
6 1406 1 0 2020-11-20 20:38:57 UTC
7 1407 2 0 2020-11-20 20:39:00 UTC
8 1410 -1 0 2020-11-20 20:39:03 UTC
9 1409 1 0 2020-11-20 20:39:06 UTC
10 1410 0 0 2020-11-20 20:39:09 UTC
11 1412 0 2 2020-11-20 20:39:15 UTC
12 1413 1 2 2020-11-20 20:39:19 UTC

Table 6.1: Example of game file named ”97 37 468 100.csv”.

Act Id Job Id Position Time cost Type
1405 0 0 60 0
1406 0 1 33 1
1407 0 2 74 2
1408 1 0 78 2
1409 1 1 40 1
1410 1 2 90 0
1411 2 0 79 2
1412 2 1 67 0
1413 2 2 97 1

Table 6.2: Example of JSSP file named ”JSSP 97 info.txt”.

60 CHAPTER 6. DEVELOPING THE VIDEO GAME

6.4 Conclusions
The analysis in this chapter is important for future projects with similar objectives, as the
focus was not only on using a game for obtaining data, but also looking on the possibility
of creating or using popular games to collect data. The future planned for this project is not
meant to be creating small games that can only be given to limited sets of people, but finding
a way to take advantage of the growing market of video games and the large amount of data
that these can generate to produce new information (heuristics in this case). Another use of
transforming known problems into games is that instead of using the video games to find
strategies they can also be used to solve specific problems with specific parameters directly.
This should take into consideration the final size of the problem and the ability of humans to
solve problems of that size.

6.5 Summary
This chapter explained the process that was followed when developing the video game. The
first step was to define the main characteristics that it had to have. These were that it had
to be of easy access, understandable and must gather the data necessary to be used in this
project. After this many game designs were made, some of this, designs showed the great
potential that this approach has, as problems could be placed in popular games and obtain a
big amount of data from them. After this, a simple design was chosen to accommodate to the
limited resources this project had. A first version of the game was made to collect data on how
players interacted with the game and to be able to make improvements with the main intention
of finding out if the game was understandable or not. After improving the first version of the
game, a narrative was added to create a story game. This final version was distributed among
some students in the campus and data which described how players solved the JSSPs was
collected.

Chapter 7

Process for Generating Heuristics

In this Chapter human heuristics were obtained using the data collected from the video game
described in Chapter 6 and the Machine Learning (ML) methods that were analyzed and
selected in Chapter 5. Table 7.1 shows information about the data analyzed indicating the
amount of games collected from each player. ”Good Games” are all the games from the player
that had a score above 80% and ”Very Good Games” are the ones with a score greater than
90% (”Very Good Games” are also included in ”Good Games” as these have a score above
80%). As explained in the last chapter, the score represented the percentage of activities
that were placed on machines, the more activities players placed on machines the better the
strategies they used for doing so should be. With the results of this chapter it was concluded
that ML algorithms were capable of giving an insight of which were the heuristics used by
some humans for solving the problem.

As seen in Chapter 6, the data collected from the video game only included features
to replicate the players’ steps and not the ones described in Chapter 5. To obtain the fea-
tures selected in Chapter 5, movements in the data were simulated in their corresponding
JSSP collecting the needed features. The code for this can be found in the following link
https://github.com/electricdrago/thesis JSSP simulator.

7.1 Analysis of Data using ML algorithms

Similar to what was done in Chapter 5, data “Before movement” and “After movement” with
activity information was also analyzed, but in this case it was not enough to predict which
activity to choose, as it was also necessary to predict the position in the machine to place the
activity selected. This is because, previously, heuristics only selected an activity and placed it
at the end of the machine, but now, humans had the chance to select the activity and place it in
any position of the machine. Because of this, machine learning algorithms were also used to
choose a position on a machine, for this, “before movement” and “after movement” data sets
had their corresponding machine data for training the ML algorithms to choose a position in
a machine where to place the activity selected.

The process for generating data to select a machine was similar to that of selecting
activities, but instead of each row representing an activity on a step, each row represents a
position of a machine on which the selected activity can be placed in the state of the step. The

61

62 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

Player id Good Games Very Good Games Total Games
2 20 19 20
3 19 13 20
9 4 2 4

11 6 3 6
14 5 3 7
20 18 12 21
23 23 14 57
26 17 12 20
29 10 6 20
32 8 4 12
34 16 14 26
36 4 4 8
37 6 6 6
38 14 8 40
44 10 7 15
47 26 18 35
50 7 3 11
51 4 4 5
52 22 13 24
61 18 12 19
63 16 15 17

Total 273 192 393

Table 7.1: Data from players collected in the video game (described in Chapter 6).

features used for the machines’ data were: the general characteristics from Garza et al. [19]
(ATP, DPT, SLACK, DNPT, NATP and NJT) which were described in section 5.4.2. and the
following features (note: all features were normalized using the values from the same step):

• Will Move: It contains the amount of activities that are at the right of the position
selected.

• Wasted Time from Machine: Time that the machine will spend unused if the activity is
added in the selected position. Lets consider EM is the end time of the previous activity
in the position where the new activity will be placed, if it would be placed in the first
position the value would be 0. The value of this feature would be the max amount
between 0 or the Earliest time of the activity to be placed minus EM

• Wasted Time from Activity: With the same description as the feature ”Wasted Time
from Machine”, but the opposite, which is the max value between 0 and EM minus the
earliest time from the activity.

• Total Cost: Time it takes to complete an activity normalized with the cost of all activities
of the problem.

• Time Taken Machine: End time of the last activity in the machine selected.

• Position Weight: Time were the position selected is able to start (does not considers the
activity selected only activities already in the machine).

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 63

• New Makespan: This feature is only considered when analyzed ”after movement”, and
it is the value of the new makespan (The maximum values between the times taken by
machines) of the JSSP.

7.1.1 First Experiments
Different clusters were created using the data obtained from the video game (data of how
players solved their JSSPs) with the idea to get different heuristics from the same player. The
reason why only using all games available from the player is not enough, is because humans
may, and most commonly do, change their approach to the problem as they advance through
the game as most of them, if not all, had never have to solve a JSS problem before. This would
mean that their first games could have mainly been used for learning and experimentation,
and so, the pattern/heuristic that ML algorithms are trying to recognize might not be in all the
games from the player, but only in a specific portion of them.

Each group of data was analyzed using every ML algorithm selected in Chapter 5. For
each group, four different sets of data were used to train the ML algorithms, one contains in-
formation from activities in the ”After movement” state, one with information from positions
in machines in the ”After movement” state also, and the other two using again the information
from activities and machines but now in the ”Before movement” state. The methodology was
similar to what was done in Chapter 5, but instead of analyzing data from heuristics solving
JSSPs, the data obtained from the video game of humans solving JSSPs was used. A sample of
the accuracy from the models predicting which activity to choose can be viewed in Table 7.3.
Each experiment conducted contains the same amount of data for each of the ”Before move-
ment” and ”After movement” sets, but complete tables are not shown as the total amount of
data would be too large. Instead, tables with only relevant players data and the ML algorithm
that produced the highest accuracy for each player is shown, as seen in Table 7.4.

To read these tables, it is important to understand what the accuracy means. First re-
member that data is obtained by simulating the JSSPs and creating rows of data for each step
that the player takes when solving the problem. Each row may represent either an activity or
a position in a machine depending on what the ML algorithm is trying to learn. After obtain-
ing the data, 4-split cross-validation was performed and then the average of the accuracy was
obtained.

The accuracy of each model is a value which represents how many rows from the testing
set did the ML algorithm labeled correctly after being trained. In this setting, however, each
row represents an activity or a position in a machine

What it means is that the accuracy does not directly represent how many ”steps” from
the player did the ML algorithm replicated correctly, but instead, given information of a state
and an activity, the accuracy represents how many activities were labeled correctly. This is
an important difference, as when it comes to evaluating activities individually from each step,
there are more activities labeled as ”false” than ones labeled as ”true”. Even if the accuracy
does not directly represent the steps, it is still useful to compare algorithms and players, as
all had the same limitations. An advantage of having the data in this way is that values from
the ML algorithms (like weights or divisions of features) are generalized for the choosing
of ”true” values. This happens as in many instances the weight of special cases from the
”true” values will not have enough weight to compete with ”false” values while an ML is

64 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

trying to label an area in the hyper-plane which would make most special cases considered
as ”false”. Generalizing this way can be beneficial, as humans are rational, intuitive and
emotional beings, which makes it difficult for them to work in recognizable patterns for every
movement they make. This would mean that in order to recognize their main behavior when
solving a problem generalization is important.

As in Chapter 5, accuracy of how many ”steps” from the player can the ML model
replicate correctly was also obtained. In this case the models were compared to what the
players selected on all the games they played (from the specific cluster). This means that
the activity and position that the player selected was compared to which activity and position
did the models selected given the same state of the JSSP in which the player was (Models
for choosing activity and for choosing machines tested as one, putting together the ones with
the same algorithm and training set). On the next tables ”DA” will mean ”Direct Accuracy”,
which would be the value obtained directly by the 4-fold cross validation for either the activity
heuristic or the machine heuristic. and ”AA” stands for ”Application Accuracy” which gets
the accuracy when comparing an actual selection over a group of activities. The ”Activity
AA” only checks if the ML model selected the same activity as the player, but the ”Total
Accuracy” (Total AA) checks if both, the activity and the position on the machine, were
selected correctly. Both accuracies are relevant, the direct accuracy shows if the important
features where recognize by the ML model, and the applied accuracy shows if the model
is able to substitute the human in its decision making. If the direct accuracy is high but the
applied accuracy is low then an analysis should be made over the model to distinguish between
over-fitted values and useful ones.

Table 7.3 has the direct accuracy (DA) obtained from analyzing data of all games played
by each player using the ”Before movement” state. This table is color coded, where accuracy
is painted greener the larger the value is, redder the lower and yellow if it is in the middle.
Accuracy values that will be shown in these tables can only be compared against other values
in the same table as there is no previous work that can be compared against. Some of the
models with higher accuracy will be visualized to see if these can be used to accomplish the
objective of this thesis.

Tree with gini and max depth 4 TG4
Tree with entropy and max depth 4 TE4
Tree with gini and max depth 3. TG3 TG3
Tree with entropy and max depth 3 TE3
Polynomial Division SVC SVC P
RBF Division SVC SVC RBF
Random Forest with gini (3 trees) GRF3
Random Forest with gini (10 trees) GRF10
Random Forest with entropy (5 trees) ERF5
Random Forest with entropy (10 trees) ERF10

Table 7.2: Abbreviations from ML algorithms tested.

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 65

Player Id TG4 TE4 TG3 TE3 SVC P SVC RBF GRF3 GRF10 ERF3 ERF10
61 0.764545 0.7203 0.748839 0.7203 0.726161 0.708969 0.771648 0.764545 0.763101 0.763109
63 0.71 0.682857 0.7 0.682857 0.731429 0.737143 0.724286 0.73 0.727143 0.737143
3 0.704036 0.679372 0.706278 0.679372 0.713004 0.711883 0.690583 0.702915 0.695067 0.707399
2 0.763948 0.734979 0.773605 0.734979 0.757511 0.771459 0.777897 0.7897 0.772532 0.795064
14 0.776042 0.6991 0.736979 0.6991 0.830019 0.799479 0.782907 0.860559 0.775095 0.784328
11 0.87037 0.898148 0.87963 0.898148 0.898479 0.935516 0.871362 0.963294 0.889881 0.962963
9 0.8375 0.705921 0.747368 0.705921 0.759868 0.747368 0.705921 0.732237 0.693421 0.758553
20 0.723856 0.738914 0.742259 0.738914 0.751476 0.755659 0.735559 0.754809 0.742279 0.757337
23 0.803666 0.779361 0.822188 0.779361 0.807149 0.813518 0.759673 0.800206 0.759673 0.797893
26 0.641385 0.66337 0.640042 0.66337 0.70615 0.696451 0.67993 0.679937 0.684081 0.67993
34 0.728003 0.682725 0.682701 0.682725 0.779035 0.781868 0.706841 0.71672 0.713895 0.71672
38 0.797752 0.723599 0.779779 0.723599 0.815734 0.793262 0.750606 0.762943 0.753984 0.75958
32 0.735983 0.628008 0.66001 0.628008 0.788018 0.740079 0.744112 0.775666 0.683948 0.759665
29 0.841463 0.813008 0.829268 0.813008 0.821138 0.821138 0.75813 0.802846 0.76626 0.808943
36 0.833333 0.742424 0.772727 0.742424 0.863636 0.878788 0.795455 0.840909 0.80303 0.856061
37 0.796875 0.578125 0.640625 0.578125 0.796875 0.796875 0.710938 0.8125 0.710938 0.796875
52 0.705198 0.700353 0.681089 0.700353 0.705183 0.698422 0.692646 0.714813 0.689768 0.711928
47 0.711448 0.723457 0.724656 0.723457 0.728861 0.733654 0.716865 0.722258 0.725258 0.721059
50 0.693966 0.685345 0.711207 0.685345 0.676724 0.693966 0.689655 0.706897 0.646552 0.676724
44 0.753065 0.720211 0.757181 0.720211 0.703648 0.724207 0.705731 0.740669 0.69955 0.72624
51 0.600369 0.573892 0.635468 0.573892 0.721675 0.721675 0.633621 0.634544 0.625308 0.677648

Table 7.3: ML algorithms tested with All games ”Before movement” activity information.

7.1.2 All Games by Player
This cluster consisted of dividing the data by player and analyzing all games from each one
using the ML algorithms. Results are shown on Table 7.4. Multiple observations can be
made in this table, beginning with results from player 9 who obtained 100% accuracy in the
”Activities AA” model of ”Before movement”, but the table also shows that this player only
played 4 games. The model generated for player 9 might be able to replicate the behavior that
was used in the games, but as these were few, there were not enough scenarios to confirm that
the player could have acted differently in other situations encountered in the JSSP.

As there is no basis to define what a ”good accuracy” means, top results obtained will
be the ones considered ”good accuracy”. ”Good accuracy” values will be the ones colored as
green in the tables. Other results shown on Table 7.4 are the ones from players 23 and 61 which
had a large amount of games (57 and 19) and still obtained green numbers on accuracy. This
means that the models generated for these players are more complete and have the potential
to give a better insight of the players’ strategy.

Player 51 shows that a low amount of games will not result with a better accuracy.
Accuracy of the models depend on the player and how recognizable are their patterns using
the features defined for the ML models.

66 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

All Games Before Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

2 20 77.15% 95.12% 58.71% 50.28% SVC RBF
3 20 70.40% 85.81% 52.04% 44.20% TG4
9 4 87.04% 82.08% 100.00% 81.36% TG4

11 6 83.00% 78.42% 48.97% 28.97% SVC P
14 7 83.75% 83.79% 50.00% 42.65% TG4
20 21 73.89% 92.74% 40.78% 28.43% TE4
23 57 80.71% 72.74% 77.00% 52.67% SVC P
26 20 64.14% 77.77% 51.56% 39.84% TG4
29 20 76.29% 73.87% 67.39% 53.80% GRF10
32 12 84.15% 83.93% 70.94% 54.70% TG4
34 26 77.90% 86.96% 59.71% 48.20% SVC P
36 8 83.33% 91.30% 59.09% 45.45% TG4
37 6 79.69% 100.00% 71.05% 63.16% TG4
38 40 78.80% 86.90% 48.03% 25.20% SVC P
44 15 75.31% 89.86% 61.71% 53.14% TG4
47 35 73.37% 87.46% 39.66% 31.58% SVC RBF
50 11 69.40% 78.11% 52.11% 35.21% TG4
51 5 67.76% 83.04% 52.00% 38.67% ERF10
52 24 69.84% 91.08% 39.37% 30.77% SVC RBF
61 19 76.45% 93.64% 64.92% 60.48% TG4
63 17 71.00% 96.98% 52.72% 49.79% TG4

Average 76.35% 86.27% 57.99% 45.65%

All Games After Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

2 20 76.29% 95.12% 59.83% 51.40% SVC RBF
3 20 68.27% 89.09% 52.35% 43.57% TG4
9 4 93.52% 90.04% 98.31% 86.44% GRF10

11 6 81.51% 85.67% 48.97% 32.41% TG4
14 7 83.75% 85.30% 50.00% 42.65% TG4
20 21 73.89% 90.22% 43.82% 30.96% TG4
23 57 80.77% 78.34% 76.41% 59.05% SVC P
26 20 62.76% 88.66% 50.39% 42.19% TG4
29 20 82.13% 78.89% 69.02% 56.52% SVC P
32 12 84.15% 88.10% 66.67% 58.97% TG4
34 26 77.05% 90.00% 59.71% 51.08% SVC RBF
36 8 89.39% 91.30% 61.36% 50.00% TG4
37 6 84.38% 91.44% 73.68% 65.79% GRF10
38 40 66.80% 94.05% 54.33% 29.13% TG4
44 15 70.37% 86.15% 58.86% 50.86% GRF3
47 35 73.37% 88.38% 38.53% 30.26% SVC RBF
50 11 66.38% 78.06% 54.23% 36.62% GRF10
51 5 54.77% 75.65% 46.67% 38.67% TG4
52 24 66.09% 88.96% 39.37% 30.32% TG4
61 19 76.59% 93.86% 67.34% 62.90% TG4
63 17 71.29% 99.25% 52.72% 48.54% TG4

Average 75.41% 87.93% 58.22% 47.54%

Table 7.4: Best accuracy from all games by player.

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 67

Good Games by Player

The second group consisted of only good games from players (Games with a score greater
than 80%). This cluster was made as it could be assumed that games that had good results
could contain better strategies. Some of the relevant results can be seen in Table 7.5, players
that had the same amount of games in ”All games” and ”Good games” do not appear as these
generated the same models. When comparing Table 7.5 with Table 7.4 it can be seen how
players like numbers 23, 26, 29, 34, 38 and 44 got an increase in accuracy. Mainly players
23 and 38 show a great reduction of games analyzed but an improvement on their accuracy
because of this. This behavior is the one expected if the player refined the strategy used while
playing, but the fact that this was the behavior to look for does not prove this is true, but it
could be considered a theory as for why. These results also show that this clustering did not
benefited the other players, as the accuracy obtained stayed the same or got lower for them.
This does not mean that clustering this way is wrong, just that it would not bring the same
benefit for every player.

Good Games Before Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

3 19 67.89% 87.41% 48.72% 39.74% TG3
14 5 88.00% 76.07% 50.00% 30.77% TG4
20 18 73.80% 90.61% 32.89% 23.19% TG4
23 23 83.49% 77.20% 79.14% 55.83% SVC RBF
26 17 67.19% 78.92% 53.42% 41.55% TG4
29 10 88.02% 90.43% 72.86% 60.00% TG4
32 8 73.57% 100.00% 57.95% 31.82% TG4
34 16 73.50% 95.36% 65.93% 58.24% TG4
38 14 85.03% 82.81% 78.57% 62.86% SVC P
44 10 74.43% 94.20% 65.38% 60.00% GRF10
47 26 73.98% 89.89% 39.72% 32.39% SVC RBF
50 7 69.74% 76.50% 55.32% 39.36% TG4
52 22 68.07% 89.84% 43.10% 33.74% TG4
61 18 75.99% 95.07% 65.13% 60.92% TG4
63 16 72.73% 94.87% 51.50% 48.50% SVC P

Average 77.16% 88.04% 59.21% 47.45%

Good Games After Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

3 19 68.34% 89.81% 49.36% 41.03% TG4
14 5 89.00% 93.99% 50.00% 32.31% TG4
20 18 77.50% 92.05% 44.30% 31.56% TG4
23 23 73.71% 90.76% 78.83% 64.72% TG4
26 17 91.73% 97.87% 52.51% 45.21% TG4
29 10 79.90% 85.49% 72.86% 61.43% TG4
32 8 64.89% 88.84% 54.55% 30.68% TG4
34 16 75.87% 98.41% 67.03% 57.14% SVC RBF
38 14 85.67% 88.28% 82.86% 77.14% TG4
44 10 66.38% 92.86% 62.31% 58.46% TE4
47 26 72.98% 90.91% 39.01% 31.44% SVC P
50 7 69.08% 72.72% 55.32% 40.43% TG4
52 22 67.66% 87.58% 45.57% 35.96% TG4
61 18 74.22% 94.37% 67.65% 63.45% TG4
63 16 73.17% 99.23% 52.36% 48.07% TG4

Average 77.14% 90.90% 77.14% 50.01%

Table 7.5: Best accuracy from good games by player.

68 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

Very Good Games by Player

With the same objective as with the group of good games, games with more than 90% were
grouped by player and analyzed with the ML algorithms. It is important to consider that for
some players these groupings might contain the same games as the one that had all games,
while for others the amount of games could be reduced to very small amounts depending on
how each player solved their problems. Important players to compare against tables from
previous clusters like Table 7.5 are shown in Table 7.6 where players like numbers 47 and 52
had a slight improvement in accuracy, and numbers 3 and 26 show that even if the amount of
games analyzed from them decreased the accuracy can stay the same. But the most relevant
player in Table 7.6 was number 23 from which the accuracy obtained increased greatly com-
pared to previous clusters (This means that the grouping made is having a positive effect in
analyzing some players).

Very Good Games Before Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

2 19 76.73% 93.55% 58.19% 50.00% TG4
3 13 73.44% 89.14% 51.08% 43.72% SVC P

20 12 72.30% 88.68% 35.58% 22.60% TG4
23 14 74.89% 67.75% 85.50% 62.00% TG4
26 12 63.92% 76.45% 52.70% 43.92% TG4
29 6 95.08% 94.23% 72.50% 57.50% TG4
34 14 78.77% 87.31% 67.50% 53.75% SVC P
38 8 84.41% 73.91% 86.11% 75.00% TG4
44 7 75.41% 81.87% 62.77% 57.45% ERF3
47 18 69.74% 89.79% 48.95% 40.56% TG4
52 13 70.22% 90.47% 44.58% 37.92% GRF3
61 12 75.56% 94.37% 69.03% 63.87% TG4
63 15 71.15% 95.77% 50.00% 46.73% SVC P

Average 77.86% 85.58% 60.64% 49.48%

Very Good Games After Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

2 19 75.96% 93.54% 58.19% 50.58% TG4
3 13 68.56% 92.52% 53.68% 47.62% TE4

20 12 70.32% 91.18% 41.04% 29.61% TG4
23 14 82.01% 83.24% 83.00% 68.50% TG4
26 12 60.82% 89.13% 54.73% 47.97% TG4
29 6 91.80% 100.00% 75.00% 62.50% TG4
34 14 77.09% 88.06% 68.75% 60.00% SVC P
38 8 90.91% 95.65% 94.44% 88.89% TG4
44 7 65.57% 92.50% 64.89% 60.64% TG4
47 18 72.01% 89.79% 42.31% 36.71% TG4
52 13 69.88% 91.27% 50.00% 43.75% TG4
61 12 74.42% 95.42% 69.68% 65.16% TG3
63 15 69.67% 99.16% 54.67% 52.34% TG4

Average 77.02% 90.94% 62.76% 53.05%

Table 7.6: Best accuracy from best games by player.

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 69

Last Good Games by Player

The last group, created with the notion that humans were building a strategy throughout their
first games and that this strategy was not fully developed until their last games, consists on
groups composed of the last 10 good games from each player. In Table 7.7 results are shown,
where mainly player 3 and 34 had a good increase in accuracy when compared with Table
7.6. It might have been expected that this group would show more improvements, but it is
important to remember that it will always depend on the player and if they actually used an
strategy, and also that the last games from players where the most difficult.

Last Games Before Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

2 10 73.91% 96.79% 58.02% 50.94% TE4
3 10 73.84% 84.58% 57.36% 51.27% TG4

20 10 74.73% 88.37% 31.38% 19.35% TG4
23 10 73.52% 74.69% 68.94% 47.20% SVC RBF
26 10 63.70% 74.23% 51.95% 43.51% TG4
34 10 69.06% 93.14% 67.86% 62.50% SVC P
47 10 70.18% 80.09% 35.68% 28.11% TG4
52 10 70.07% 88.24% 33.83% 25.87% TG4
61 10 75.05% 87.84% 65.22% 61.49% TG4
63 10 67.77% 94.21% 53.42% 51.55% TG4

Average 72.51% 82.28% 58.42% 46.73%

Last Games After Movement
Player ID Total Games Activities DA Machines DA Activities AA Total AA ML Alg

2 10 77.17% 93.57% 58.02% 52.36% TG4
3 10 72.40% 93.10% 59.39% 55.33% TG4

20 10 73.97% 91.01% 33.14% 22.58% TG4
23 10 76.22% 81.56% 70.19% 57.14% TG4
26 10 65.43% 87.61% 45.45% 42.21% TG4
34 10 64.70% 94.12% 73.21% 67.86% ERF3
47 10 70.17% 86.05% 39.46% 32.43% TG3
52 10 70.07% 90.29% 38.31% 30.85% TG4
61 10 73.44% 92.91% 64.60% 60.25% TG4
63 10 68.62% 99.22% 49.69% 47.83% TG4

Average 73.32% 89.71% 58.53% 49.31%

Table 7.7: Best accuracy from the 10 last good games by player.

7.1.3 Portraying Heuristics
Each of the models and accuracy shown in the tables above represent an attempt of an ML
to simulate a player. These models were already used to make decisions in JSSPs when
obtaining the ”Total Accuracy” (TA) value. Each of the trained models can be considered as
a heuristics ready to be used to solve JSSPs. But understand what the models assumed the
player was doing there is a need to visualize and analyze these models. Between the ML
algorithms used, decision trees are the easiest ones to visualize and understand their process.
On the other hand SVMs that use kernels can get into many complications that could make it
impossible to understand as features are modified with the kernel and also has a division in
each of the features. The other algorithm that was use was the random forest algorithm, in this

70 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

algorithm a decision is made by multiple decision trees. Because of all of this, only decision
trees will be visualized and used to understand what the player that the tree was trying to
replicate was doing.

To understand results from the Decision Trees, and also any other visualization of the
ML algorithms used, it is important to understand what it could mean to consider specific
features to make decisions. For this, features have to be explained on what information each
one gives from the activity or machine and from the state of the problem. It is important to
remember that each row can represent either an activity or a position of a machine, on a state
of the JSSP, and that features were normalized with rows of the same step which made them
comparable with the other available activities of the state.

1. Job id: For a computer the id of the job should be negligible as it does not give relevant
information on the characteristics of the job, but for players of the video game it repre-
sented position in the graphical representation of the JSSP. Jobs with the lower id were
at the top, and the ones with the highest ids in the bottom. Players for whom this feature
was relevant, usually completed the JSS problem job per job from top to bottom, as
there was no restriction that made the players place activities in machines in order, this
was not a bad strategy. Rows with a job id near 0 are activities on the top, and activities
near 1 are activities at the bottom.

2. Activity Id: This variable can be used to interpret how many activities have been as-
signed from the activity’s job compared to others. Players for whom the ML algorithms
gave importance to this feature usually selected activities with an id close to 0. This
meant that they solved the problem selecting the activities from which less activities
have been assigned from their job.

3. Cost: Costs near to 1 are the ones with the greatest cost, and close to 0 with the lowest
cost. Players could have selected the highest cost activities or the lowest cost activities
and it will be seen on how ML algorithms considered this feature.

4. Time Left Job: Relevant to identify which of the jobs have more or which have less
time from activities pending.

5. Earliest Time: This feature can tell which activity from the available ones can be placed
first or last, but it was usually used in combination with other features to make decisions.

6. Earliest Possible Time: This feature considers the time where an activity would be
placed if placed at the end of a machine of its type. Values in this feature can tell which
activity from the ones available can be placed the earliest or latest.

7. Wasted Time: It helps to compare which activity when placed at the end of a machine
will waste more time.

8. Time Taken by the Machines of the Activity’s type / Time Taken Machine: considers
which machines are the least and most filled.

9. Final time: Considers which activity will end the earliest or latest if placed at the end
of its machine.

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 71

10. Will Move: Values close to 0 means that the position is close to the end of the machine,
and close to one the opposite.

11. Wasted Time from Machine: Values close to 0 mean that the player tries to place the
activity as earliest as possible but without wasting time from the machine.

12. Wasted Time from Activity: Values close to 0 mean that the player does cares about the
”earliest time” of the activity.

13. Position Weight: Values close to 1 means that the position is close to the end of the
machine, and close to 0 the opposite.

14. New Makespan: A value close to 0 means that the machines ended up with the minimum
time possible after placing the activity.

15. Average Processed Times (ATP): It gives information on what stage of the JSSP the
activity is in, the lower the value will mean that it is in a beginning stage. The value can
only be from 0 to 1.

16. Dispersion of Processing Time Index for Scheduled Activities (DPT): This feature gives
information on the state of how different are the activities that have been assigned.

17. Percentage of Slack in Make-span (SLACK): Gives information on how much time is
being wasted on machines in general, a smart objective would be to minimize this value.

18. Dispersion of Processing Time Index for Pending Activities (DNPT): This feature gives
information on the state of how different are the activities that have not been assigned.

19. Average Not Processed Times (NATP): This feature is inversely correlated to ATP, so it
has the same purpose but with the meaning of values reversed.

20. Average Pending Processing Time per Job (NJT): Gives information of the average size
of pending jobs.

Figure 7.1 shows one of the activity models obtained from player 11. The tree is com-
posed of nodes (squares) and edges (lines), to read a tree you start from the top-most node
and if the condition inside the node is True you move to the Left and if it is False you move
to the Right until you get to a leaf node. Each of the nodes has inside different information
about itself, the first line is a condition, which checks the value of a feature and it determines
if you need to now read the node to the Left or to the Right. The second row contains the
gini or entropy value in that node, which gives you an insight of how well divided was the
data that the node received while training. The next row is the number of training samples
that the node received. The “Value” row shows how many samples of each class were in that
node when training, and the final row shows which was the class with more samples. The
two possible classes are “Choose” and “Do not choose” to decide if the activity should be the
one to move next to a machine (Choose) or not (Do not choose). Let us remember that this
tree is trying to replicate the behavior of player 11, so the decision it takes is the decision that
it assumes player 11 would have made. Trees are color coded by how dominant is one class

72 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

over another in the training data that went through that node, this dominance can also be seen
in the “value” row.

To understand what Figure 7.1 is saying about how player 11 moved, it is important to
remember what the objective of the tree is, which is to decide if a single activity, on a state
of the JSSP, should be the next one to assign a machine to. It is also important to remember
that “descriptive features” were normalized against activities of the same state, this means
that the ones with values close to 0 on a feature are the ones that had the lowest values of that
feature between the activities of the same step, and values close to 1 the largest. With this
information it is possible to know how a tree can be used to understand what where the rules
that the player, either consciously or unconsciously, used to decide which activity to select
next.

At the top of Figure 7.1, “Job ID” can be seen as the first feature to use for making a
decision, there is an important thing to consider when it comes to normalization and divisions
made by the ML algorithms, and this feature can be used to explain this. A common case
on a step of a 3 job JSSP is to have 3 activities as available (one for each job) with the job
ids of 0, 1 and 2, when normalized these values become 0, 0.5 and 1. When ML algorithms
decide how to divide a feature to decide which values belong to one class or another, this is
made by a theoretical line between the training sample positions over that feature. So, when
receiving data from a player who chose the activities with the lowest job id available, the
ML model would get in the training data many activities with the value of 0 in the job id,
and labeled as True or as “Choose”, and many other activities with the values of 0.5 and 1
labeled as False or “Do not choose”. So, when the ML algorithm decides which value to use
to make a division on the Job Id feature to decide when to label an activity as True or False,
even if all the activities that were labeled as True had exactly 0 as their Job ID value, the ML
algorithm will set the value of the division in a number between 0 and 0.5 which will depend
on random variables, and it could be for example 0.25. This value seems to divide the data
correctly, but the problem will be when the same tree is tested with JSSPs of 11 machines,
where the job ids of the activities would be 0, 1, 2, 3, 4. . . 9, 10 and the normalized values
would be 0, 0.10, 0.20. . . 0.90, 1, in this case activities with the normalized values of 0.10 and
0.20 will be selected as True even if the intention of the player was to only select activities
with the lowest job id, which normalized should always be a value of 0. This is important to
consider when understanding strategies of the players from reading these trees as players only
solved JSSPs with a number of machines between 3 and 5.

After all these considerations, it is possible to understand the strategy that Figure 7.1 is
showing. Starting from the top-most node, it can be seen that it checks if the Job ID is lower
than 0.25, but as it was discussed, this probably means that activities with the lowest Job ID
were selected. The next step would be to check how well divided the data ended after the first
decision, for this it is only needed to see the ”Value” row of the resultant nodes. In the tree of
Figure 7.1 it can be seen that after the first decision classes are mostly divided, and that the 3
samples from each side that are not from the same class could be ignored, with this in mind
it is possible and recommendable to ignore the rest of the tree and only use the first node to
make the decision. This would mean that the strategy or ”heuristic” obtained from player 11
would be to ”From the available activities choose the one with the lowest Job ID”.

The strategy to select an activity obtained from player 11 is to simple for it to be useful
to solve JSSPs, but the complex decision on how to solve the problem can still be on the

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 73

Figure 7.1: Activity heuristic generated for player 11 with information ”After movement”
from the group of ”All Games”.

Figure 7.2: Machine heuristic generated for player 11 with information ”After movement”
from the group of ”All Games”.

74 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

selection of a position in a machine. The way player 11 selected a machine can be seen in
Figure 7.2. In this tree, similarly the tree in Figure 7.1, the first node can be seen as the only
one relevant. In this case it classifies as “Choose” the position with the lowest new makespan,
this means that the position to place the activity is the one that will end up generating the
lowest makespan. And the complete heuristic for player 11 would be ”Choose the activity
with the lowest job ID and place it where it would generate the lowest makespan”.

Figure 7.3: Activity heuristic generated for player 29 with information ”Before movement”
from the group of ”Very Good Games”.

A more complex tree can be seen in Figure 7.3 which is the activity selection heuristic
for player 29. It starts again with the job id feature, but in this case there is not a class that
out-values the other in each of the nodes to the sides. At the Left the next condition tells to
”Choose” the activity if the activity ID is low, but if it is high, the next feature to check is
the DNPT which is a value that represents the variety of sizes of activities that do not have a
machine assigned to them, if the variety is high and the activity id is not one of the lowest,
then the activity would not be selected even if the job ID was low. On the Right side of the first
node, which an activity goes there when the job id is not one of the lowest, the next feature to
check is “final time” which would be the end time of an activity if placed at the end of one of
its machines, if this value is not high then it can be said that the activity wont be selected as
the leaf node from that side that ends in “Choose” is not relevant, but if it is one of the highest,
it can be said that it would be chosen. Taking into account the next node can be done even if
the “Do not chose” node also seems irrelevant, just consider that least loaded machine time
(which is the same as the time taken from machine) is the end time from the machine where
the activity will be placed.

Player 29 also has a machine heuristic, and it can be seen in Figure 7.4. A quick inter-
pretation of its heuristic for choosing a position in a machine made by following the nodes of

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 75

the Figure, is that it will choose a position with one of the lowest waste from machine time,
but if the SLACK from the machines is not low, then it will also be checking the waste from
the activity time, and if both are from the lowest possible the activity would be chosen.

Figure 7.4: Machine heuristic generated for player 29 with information ”Before movement”
from the group of ”Very Good Games”.

7.1.4 Comparing Human Heuristics obtained by Decision Trees with
Basic Heuristics

Some of the heuristics obtained were compared against basic heuristics using Taillards [41]
method (Described in Chapter 5). The values used for creating the JSSPs are shown in Table
7.8. Each of the heuristics was used to solve each of the JSSPs to compare the makespan
that was obtained with each heuristic on each JSSP. The makespans obtained are shown in
Table 7.9 and are color coded by column so the lowest values (which is good for makespan)
appear greener and the highest ones redder. In this table there is an ”Average” row which
is the average of the makespans of only the basic heuristics. This row was created as the

76 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

intention of this table is to compare basic heuristics to the ones obtained from humans, so a
fair comparison would be with the average. For the comparison a column named ”Count” was
placed at the end, were it shows the number of JSSPs in which each heuristics got a value
which is less or equal than the average, this way heuristics could be compared. It can be seen
only one human heuristic of the ones tested got a good number on the column ”count” this is
because it was above the average from the basic heuristics.

Results do show that basic heuristics were superior to the human heuristics that were
compared against. T-tests were done between values from basic heuristics and values of hu-
man heuristics, and values obtained do show that there is a significant difference that is not due
to random chance between results obtained. Still, human heuristics showed variety, against
basic heuristics and also themselves as none got the same or similar results on the makespan.
This makes this thesis a success, as not only these can be considered new heuristics, but also,
as the one from player 63, there seems to be a possibility of obtaining ”good” heuristics. Ex-
periments done have a long path to go before it being used at its full potential. But for now,
it proved its capacity to generate different heuristics inspired on human movements, and the
possibility to generate useful heuristics.

JSSP ID # Jobs # Machines Time Seed Machine Seed
1 4 4 1166510396 164000672
2 3 3 840612802 398197754
3 3 3 1314640371 386720536
4 3 3 1227221349 316176388
5 4 4 533484900 317419073
6 4 4 1894307698 1474268163
7 4 4 874340513 509669280
8 5 5 1344106948 1868311537
9 5 5 425990073 1111853152
10 5 5 666128954 1750328066
11 15 15 342269428 1806358582
12 15 15 1603221416 1501949241
13 15 15 1357584978 1734077082
14 20 15 1124986343 1209573668
15 20 15 1463788335 529048107
16 20 15 1056908795 25321885
17 10 10 442723456 1369177184
18 10 10 2033800800 1344077538
19 10 10 964467313 1735817385

Table 7.8: JSSPs for comparison.

7.1. ANALYSIS OF DATA USING ML ALGORITHMS 77

JSSP ID 1 2 3 4 5 6 7
Earliest Start Time (EST) 307 304 244 304 300 378 384

Shortest Processing Time (SPT) 489 288 464 331 526 470 475
Longest Processing Time (LPT) 498 258 487 527 568 593 577

Maximum Job Remaining Time (MRT) 337 327 279 304 494 389 505
Most Loaded Machine (MLM) 344 309 244 266 300 519 341
Leas Loaded Machine (LLM) 333 309 244 304 300 378 384

Average (Avg) 384.7 299.2 327 339.3 414.7 454.5 444.3
All by player 11 after movement 406 304 364 266 427 523 421

Very Good by player 29 before movement 501 257 487 492 534 614 437
All by player 36 after movement 664 345 487 376 663 620 609

Last by player 61 before movement 476 304 244 387 740 531 509
Last by player 63 before movement 357 309 279 384 449 463 406

T-test 0.074684 0.392938 0.26613 0.227684 0.047925 0.03941 0.2792

JSSP ID 8 9 10 11 12 13
Earliest Start Time (EST) 487 527 490 1575 1457 1528

Shortest Processing Time (SPT) 912 693 969 6146 6801 6642
Longest Processing Time (LPT) 1116 1018 1006 6401 7319 7269

Maximum Job Remaining Time (MRT) 493 540 487 1946 1725 1739
Most Loaded Machine (MLM) 603 511 639 5393 5664 4537
Leas Loaded Machine (LLM) 487 540 537 1678 1645 1545

Average (Avg) 683 638.2 688 3856.5 4101.8 3876.7
All by player 11 after movement 613 688 644 5685 5196 4614

Very Good by player 29 before movement 750 1036 801 4216 4699 4775
All by player 36 after movement 1330 1346 1337 9955 9986 10507

Last by player 61 before movement 699 868 543 7748 7624 5535
Last by player 63 before movement 677 671 613 3204 3570 3308

T-test 0.229549 0.040136 0.284629 0.082902 0.113673 0.141632

JSSP ID 14 15 16 17 18 19 Count
Earliest Start Time (EST) 1812 1788 1825 1001 1070 810 18

Shortest Processing Time (SPT) 8402 9415 9190 1906 2662 2650 2
Longest Processing Time (LPT) 9248 8668 10245 3055 3643 2949 1

Maximum Job Remaining Time (MRT) 2313 2335 2089 1081 1223 988 16
Most Loaded Machine (MLM) 7081 7660 7399 2150 2782 2136 8
Leas Loaded Machine (LLM) 1732 1834 1872 1081 1229 903 18

Average (Avg) 5098 5283.3 5436.7 1712.3 2101.5 1739.3 10.5
All by player 11 after movement 7698 6183 7276 2507 2158 1509 5

Very Good by player 29 before movement 5358 5658 5220 2114 2767 2289 3
All by player 36 after movement 12844 13458 14316 4113 4824 4163 2

Last by player 61 before movement 10619 9659 7853 3035 2859 3703 2
Last by player 63 before movement 3762 3903 4670 1710 1827 1637 14

T-test 0.104495 0.149198 0.165388 0.047309 0.137124 0.095726 0.1146

Table 7.9: Comparison of total makespan obtained after heuristics solved JSSPs.

78 CHAPTER 7. PROCESS FOR GENERATING HEURISTICS

7.2 Conclusions
In this chapter it was possible to see how accuracy obtained from each of the models varied
depending on the player. In general the accuracy obtained did not seemed high, but as demon-
strated with the visualization of the heuristics, the strategy used by the human players was
somewhat identified by the ML model, which means that these are serving their purpose. It
was also seen that clustering the data affected some of the results and it is expected that if
data obtained from each player increases the clustering would have a higher effect. It is also
important to notice the great advantage that decision trees have over the other algorithms in
this thesis, as these are possible to visualize and understand and also got the better accuracy
results, because of this it is recommended that further studies focus more on the use of de-
cision trees to obtain results. Some of the human heuristics obtained with the decision trees
were compared with the basic heuristics, the analysis concluded that in general basic heuris-
tics were better, but some of the human heuristics are comparable to basic ones and because
of this useful to use in hyper-heuristics. Overall this chapter was a success as some insight
on how players played was obtained, which means that this might be a correct approach but
some improvements are needed.

7.3 Summary
In this chapter, ML algorithms that were analyzed and selected in Chapter 5 were tested to see
if these were able to obtain heuristics from human players. This was a difficult task as there
is no way to know if the players actually had an intuitive, unconscious or conscious strategy
while playing, or if it was used in all their games or only on a few. Because of this, many
clusters for dividing data were defined to try to find heuristics on different groups of games.
Data obtained from the video game was analyzed and many ML algorithms were used to train
ML models. The accuracy from each model varied, but some of these were visualized to get
an insight of what players thought when solving the JSSPs. It was possible to get a glance of
what the players were doing while playing so their heuristics could be assumed. Some of the
heuristics obtained were compared against basic heuristics and most of the human heuristics
tested did not do well against the basic heuristics. This was not that relevant as the main
objective of this thesis was to know if new heuristics could be obtained by analyzing data
from humans solving the JSSP, which seems achievable thanks to the results.

Chapter 8

Conclusions and Future Work

This thesis was developed with the idea of obtaining heuristics for the JSSP by making people
solve them using crowdsourcing via video games. Heuristics used in the computer science
field are a bio-inspired algorithm which come from an idea in the psychology field were
heuristics are one way humans try to solve complex problems. This led us to assume that
humans would use heuristic when solving a JSSP. The original idea did not contemplate how
the heuristics would be generated from player interaction with the video game. For this, a
method was designed to be able to transform information obtained from a video game into
heuristics. The approach selected was to use Machine Learning (ML) algorithms and make
them learn the behavior of the players, with the expectation that the pattern recognized by the
ML can be interpreted as a heuristic.

The design of the method consisted of creating features based on defined basic heuris-
tics, generating the data and analyzing it with ML algorithms. Thanks to the features defined,
some of the ML algorithms analyzed were able to almost completely imitate the behavior of
basic heuristics, but these were not perfect. Because of this, there are areas of opportunity in
this method. One of these is the generation of more features. This method is completely based
on features, and the more the features are able to describe the state of the JSSP, the better the
method would become to recognize heuristics. Another area of opportunity is the improve-
ment of the main reason of why ML algorithms were not able to perfectly imitate heuristics
even when the features for this to be possible were defined. The reason was that each activ-
ity available was considered individually (a row only contained one activity) and information
contained in other activities was sometimes necessary (activities from the same steps and their
information were in other rows). To avoid this, it is necessary to use methods that can analyze
data in groups (a group would be the rows generated for a step). It is important to remember
that being able to visualize the process used to emulate the heuristics and infer the heuristic
from the parameters of the same process can be of high value as it will be easier to use good
heuristics created in other problems or to understand and study them.

After the main method for analyzing data was tested, the process to develop the video
game started. Many designs for the video game were considered but the one that better con-
formed with the resources available was chosen. The game was made and distributed among
players proving to be successful on collecting data from humans solving the JSSP. An area
of opportunity comes from the fact that the JSSP is complex problem, and with this level of
difficulty, a longer period of interaction is required by the players to improve and develop their

79

80 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

strategies, as well as to achieve consistency in the results. For this reason, it is proposed as a
project for future research to test the other designs (4D-Tetris and Monster Hunters), giving
players the opportunity for a longer period to develop their skills and generate more valuable
information. Something learned from this stage was that transforming a problem to a game is
not only useful for this type of research were heuristics are obtained from the data generated,
but also by representing the JSSP graphically and interacting with it, it facilitates the thinking
and creation of heuristics directly from the player. With this, it is possible to experiment with
different ways of approaching the JSSP or any problem, other than data analysis.

In the last section of this thesis the method proposed in Chapter 5 was used with the data
collected from the video game. The intention of this chapter was to recognize the strategy
used by the players for solving the JSSP using ML algorithms. As it is known humans evolve
and learn it was considered that their behavior and strategy between games could change.
Because of this different propositions for grouping data of their games were defined with the
intention of obtaining the games were the player used the same strategy. These groups were
made by basic conditions as ”last games from a player” as the amount of data obtained was
not enough to test with more complex approaches. This is something where further work
can be made, as the preprocessing of data and groups created with the games obtained from
each player could improve to generate better emulations of humans’ heuristics from the ML
algorithms.

Data was analyzed in many ways and the heuristics were visualized using the decision
trees generated with some of the players’ data. With this, it was possible to get an insight
on what type of activities players placed and where, getting with that a better description of
the strategy used by them. If improvements from future work are made, like improving the
method used for analyzing the data, obtaining more data from the game and upgrading the
preprocessing of data, a more refined heuristic might be able to be visualized. Features used
for creating machine heuristics can also be improved. In this chapter it was also concluded
that decision trees are the ML algorithm with most potential, with better accuracy results and
the possibility of understanding the strategy obtained, because of this it is recommended to
focus more on the use of this algorithm when researching this kind of project.

This thesis has two elements that can become of high importance. The first one is the
obtainment of heuristics from data analysis. This one is important as it does not have to
be limited to the analysis of human data, but it can also be used to analyze data obtained
differently. An idea on how to use a method able to obtain heuristics from data, would be to
use it to analyze data of steps that lead to optimal solutions, which could lead to interesting
results. A more specific analysis that could be made is to analyze steps of optimal solutions
but from problems with specific characteristics which have a higher probability of being able
to be solved with the same strategy. This could be more useful in real life as it is common that
entities that need to solve problems get problems with similar characteristics. In Chapter 5
and 7 a method for doing this was proposed, and this method could be improved and polished
so it is able to accomplish its objective.

The second one is in Chapter 6 were many designs for the video game were made, and
with one of them it was proved that some problems can be transformed and combined into a
slightly different version of a typical popular game. This is meaningful for the approach that
was proposed, as using video games is not only a fresh and innovative idea to keep studying,
but also a beneficial one. Video games are a growing industry in which large amount of data

81

can be collected. If a method like the one proposed in this thesis is successful on taking
advantage of the data generated by the video game, the available data to exploit would be in
the size of Big Data. This thesis could also be a next step for new projects to grow that can
take advantage of one of the biggest source of data of problems being solved by intelligent
beings (video games generate problems for humans, which they solved because problems are
presented on an entertaining way).

The main accomplishment of this thesis was the generation of a starting point to the pro-
posed approach, as not only a method with prospects was defined, but also many approaches
and changes were proposed. There is still a very important question that has yet to be an-
swered, which is, do humans always solve complex problems in patterns that could be recog-
nizable? If the answer is yes, then there is a huge potential in this project and its continuation,
if not, this project can still generate important models for problem solving as it faces different
difficulties that can lead to the creation of innovative ideas. The main paths for future work
are the enhancement of methods to obtain heuristics from data, the application and analysis
of different designs that transform the JSSP into a video game, and the improvement of the
preprocessing of data obtained from the video game.

Bibliography

[1] ABRAHAM, A., BUYYA, R., AND NATH, B. Nature’s heuristics for scheduling jobs on
computational grids. In The 8th IEEE international conference on advanced computing
and communications (ADCOM 2000), pp. 45–52.

[2] AYODELE, T. O. Types of machine learning algorithms. New advances in machine
learning 3 (2010), pp. 19–48.

[3] BAKKES, S. C., SPRONCK, P. H., AND VAN LANKVELD, G. Player behavioural mod-
elling for video games. Entertainment Computing 3, 3 (2012), pp. 71–79.

[4] BONACCORSO, G. Machine learning algorithms. Packt Publishing Ltd, (2017).

[5] BRABHAM, D. C. Crowdsourcing. Mit Press, (2013).

[6] BREIMAN, L. Random forests. Machine learning 45, 1 (2001), pp. 5–32.

[7] BRUCKER, P., JURISCH, B., AND SIEVERS, B. A branch and bound algorithm for the
job-shop scheduling problem. Discrete applied mathematics 49, 1-3 (1994), pp. 107–
127.

[8] COLORNI, A., DORIGO, M., MANJEZZO, V., AND TRUBIAN, M. Ant system for
job-shop scheduling. Belgian Journal of Operations Research 34 (1994), pp. 39–53.

[9] DE MESENTIER SILVA, F., ISAKSEN, A., TOGELIUS, J., AND NEALEN, A. Generating
heuristics for novice players. In 2016 IEEE Conference on Computational Intelligence
and Games (CIG) (2016), IEEE, pp. 1–8.

[10] DESURVIRE, H., CAPLAN, M., AND TOTH, J. A. Using heuristics to evaluate the
playability of games. In CHI’04 extended abstracts on Human factors in computing
systems (2004), ACM, pp. 1509–1512.

[11] DOMINGOS, P. A few useful things to know about machine learning. Communications
of the ACM 55, 10 (2012), pp. 78–87.

[12] EDELKAMP, S., AND LOMUSCIO, A. Automated creation of pattern database search
heuristics. In International Workshop on Model Checking and Artificial Intelligence
(2006), Springer, pp. 35–50.

83

84 BIBLIOGRAPHY

[13] ESTRADA, L. E. P., GROEN, D., AND RAMIREZ-MARQUEZ, J. E. A serious video
game to support decision making on refugee aid deployment policy. Procedia Computer
Science 108 (2017), pp. 205–214.

[14] FABRICATORE, C. Gameplay and game mechanics: a key to quality in videogames.
(2007).

[15] FABRICATORE, C., NUSSBAUM, M., AND ROSAS, R. Playability in action
videogames: A qualitative design model. Human-Computer Interaction 17, 4 (2002),
pp. 311–368.

[16] FEDEROFF, M. A. Heuristics and usability guidelines for the creation and evaluation
of fun in video games. PhD thesis, Citeseer, (2002).

[17] GALLANT, S. Extracting rules from networks. In Neural Network Learning and Expert
Systems. The MIT Press, 03 (1993).

[18] GAMES, R. League of legends. Riot Games 25 (2009).

[19] GARZA SANTISTEBAN, F. Feature transformations for improving the performance of
selection hyper-heuristics on job shop scheduling problem. Master’s thesis, Instituto
Tecnológico de Estudios Superiores de Monterrey, (2019).

[20] GARZA-SANTISTEBAN, F., AMAYA, I., CRUZ-DUARTE, J., ORTIZ-BAYLISS, J. C.,
ÖZCAN, E., AND TERASHIMA-MARÍN, H. Exploring problem state transformations to
enhance hyper-heuristics for the job-shop scheduling problem. In 2020 IEEE Congress
on Evolutionary Computation (CEC) (2020), IEEE, pp. 1–8.

[21] GARZA SANTISTEBAN, F., SANCHEZ PÁMANES, R., PUENTE RODRÍGUEZ, L. A.,
AMAYA, I., ORTIZ BAYLISS, J. C., CONANT-PABLOS, S., AND TERASHIMA MARÍN,
H. A simulated annealing hyper-heuristic for job shop scheduling problems. In 2019
IEEE Congress on Evolutionary Computation (CEC) (2019), IEEE, pp. 57–64.

[22] GERE JR, W. S. Heuristics in job shop scheduling. Management Science 13, 3 (1966),
pp. 167–190.

[23] GIGERENZER, G. Heuristics. Mit Press, (2006).

[24] GILOVICH, T., GRIFFIN, D., AND KAHNEMAN, D. Heuristics and biases: The psy-
chology of intuitive judgment. Cambridge university press, (2002).

[25] GOOD, B. M., AND SU, A. I. Games with a scientific purpose. Genome biology 12, 12
(2011), pp. 135.

[26] JOHNS, M. B., MAHMOUD, H. A., WALKER, D. J., ROSS, N. D., KEEDWELL, E. C.,
AND SAVIC, D. A. Augmented evolutionary intelligence: combining human and evolu-
tionary design for water distribution network optimisation. In Proceedings of the Genetic
and Evolutionary Computation Conference (2019), pp. 1214–1222.

BIBLIOGRAPHY 85

[27] LENAT, D. B. Eurisko: a program that learns new heuristics and domain concepts: the
nature of heuristics iii: program design and results. Artificial intelligence 21, 1-2 (1983),
pp. 61–98.

[28] LORIA, E., AND MARCONI, A. Exploiting limited players’ behavioral data to predict
churn in gamification. Electronic Commerce Research and Applications 47 (2021).

[29] MAGEE, J. F. Decision trees for decision making. Harvard Business Review, (1964).

[30] MARION, B. Turing machines and computational complexity. The American Mathe-
matical Monthly 101, 1 (1994), pp. 61–65.

[31] MAVANDADI, S., FENG, S., YU, F., DIMITROV, S., YU, R., AND OZCAN, A.
Biogames: a platform for crowd-sourced biomedical image analysis and telediagnosis.
GAMES FOR HEALTH: Research, Development, and Clinical Applications 1, 5 (2012),
pp. 373–376.

[32] MORSCHHEUSER, B., HAMARI, J., AND KOIVISTO, J. Gamification in crowdsourc-
ing: a review. In 2016 49th Hawaii International Conference on System Sciences
(HICSS) (2016), IEEE, pp. 4375–4384.

[33] PFAU, J., LIAPIS, A., VOLKMAR, G., YANNAKAKIS, G. N., AND MALAKA, R. Dun-
geons & replicants: automated game balancing via deep player behavior modeling. In
2020 IEEE Conference on Games (CoG) (2020), IEEE, pp. 431–438.

[34] PFAU, J., SMEDDINCK, J. D., AND MALAKA, R. Towards deep player behavior mod-
els in mmorpgs. In Proceedings of the 2018 Annual Symposium on Computer-Human
Interaction in Play (2018), pp. 381–392.

[35] PINEDO, M., AND HADAVI, K. Scheduling: theory, algorithms and systems develop-
ment. In Operations Research Proceedings. Springer, (1991), pp. 35–42.

[36] ROMANOV, D., AND HOLLER, S. District heating systems modeling: A gamification
approach. Energy Reports 7 (2021), 491–498.

[37] ROSS, N., KEEDWELL, E., AND SAVIC, D. Human-derived heuristic enhancement of
an evolutionary algorithm for the 2d bin-packing problem. In International Conference
on Parallel Problem Solving from Nature (2020), Springer, pp. 413–427.

[38] SILVA-GÁLVEZ, A., MONROY, R., RAMIREZ-MARQUEZ, J. E., AND ZHANG, C. A
video game-crowdsourcing approach to discover a player’s strategy for problem solution
to housing development. IEEE Access 9: 10.1109/ACCESS.2021.3103930 (2021).

[39] SUTTON, O. Introduction to k nearest neighbour classification and condensed nearest
neighbour data reduction. University lectures, University of Leicester (2012), 1–10.

[40] SYARIF, A., PAMUNGKAS, A., KUMAR, R., AND GEN, M. Performance evaluation of
various heuristic algorithms to solve job shop scheduling problem (jssp) (2021).

86 BIBLIOGRAPHY

[41] TAILLARD, E. Benchmarks for basic scheduling problems. european journal of opera-
tional research 64, 2 (1993), pp. 278–285.

[42] VAN EKERIS, T., MEYES, R., AND MEISEN, T. Discovering heuristics and meta-
heuristics for job shop scheduling from scratch via deep reinforcement learning. ESSN:
2701-6277 (2021).

[43] VANNELLA, D., JURGENS, D., SCARFINI, D., TOSCANI, D., AND NAVIGLI, R. Val-
idating and extending semantic knowledge bases using video games with a purpose. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers) (2014), vol. 1, pp. 1294–1304.

[44] WITTEN, I. H., FRANK, E., HALL, M. A., AND PAL, C. J. Practical machine learning
tools and techniques. Morgan Kaufmann (2005), pp. 578.

