
Instituto Tecnológico y de Estudios Superiores de
Monterrey

Campus Estado de México

School of Engineering and Sciences

A novel functional tree for class imbalance problems

A dissertation by

LEONARDO MAURICIO CAÑETE SIFUENTES

Submitted to the

School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Atizapán de Zaragoza, Estado de México

5th December, 2022

i

Instituto Tecnologico y de Estudios Superiores de Monterrey
Estado de México Campus

The committee members, hereby, certify that have read the dissertation presented by

Leonardo Mauricio Cañete Sifuentes and that it is fully adequate in scope and quality as

a partial requirement for the degree of Doctor of Philosophy in Computer Science.

————————————————– ————————————————–
Dr. Raúl Monroy Borja Dr. Miguel Angel Medina Pérez

Tecnológico de Monterrey, Campus Estado de México AEROENGY

Principal Advisor Co-Advisor

————————————————– ————————————————–
Eduardo Morales Manzanares Andrés Eduardo Gutiérrez Rodŕıguez

Instituto Nacional de Astrof́ısica, Óptica y Electrónica MAHLE Shared Services

————————————————– ————————————————–
Francisco Cantú Ortiz Santiago Conant Pablos

Tecnológico de Monterrey, Campus Monterrey Tecnológico de Monterrey, Campus Monterrey

————————————————–

Dr. Rubén Morales Menéndez

Dean of Graduate Studies

School of Engineering and Sciences

Tecnológico de Monterrey, Campus Monterrey

Atizapán de Zaragoza, Estado de México, 05th December, 2022

Declaration of Authorship

I, Leonardo Mauricio Cañete Sifuentes, declare that this thesis proposal titled, ‘A novel

functional tree for class imbalance problems’ and the work presented in it are my own. I

confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at this

University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

©2022 by Leonardo Mauricio Cañete Sifuentes

All Rights reserved

ii

iii

Abstract
A novel functional tree for class imbalance problems

by Leonardo Mauricio Cañete Sifuentes

Decision trees (DTs) are popular classifiers partly because they provide models that are easy to

explain and because they show remarkable performance. To improve the classification perfor-

mance of individual DTs, researchers have used linear combinations of features in inner nodes

(Multivariate Decision Trees), leaf nodes (Model Trees), or both (Functional Trees). Our gen-

eral objective is to develop a DT using linear feature combinations that outperforms the rest of

such DTs in terms of classification performance as measured by the Area Under the ROC Curve

(AUC), particularly in class imbalance problems, where one of the classes in the database has

few objects compared to another class.

We establish that, in terms of classification performance, there exists a hierarchy, where Func-

tional Trees (FTs) surpass Model Trees, that in turn surpass Multivariate Decision Trees. Hav-

ing shown that Gama’s FT, the only FT to date, has the best classification performance, we

identify limitations that hinder its classification performance.

To improve the classification performance of FTs, we introduce the Functional Tree for class

imbalance problems (FT4cip), which takes care in each design decision to improve AUC. The

decision of what pruning method to use led us to the design of the AUC-optimizing Cost-

Complexity pruning algorithm, a novel pruning algorithm that does not degrade classification

performance in class imbalance problems because it optimizes AUC. We show how each design

decision taken when building FT4cip contributes to classification performance or to simple tree

models.

We demonstrate through a set of tests that FT4cip outperforms Gama’s FT and excels in class

imbalance problems. All our results are supported by a thorough experimental comparison in

110 databases using Bayesian statistical tests.

Acknowledgements

Thanks to my advisors Dr. Raúl Monroy and Dr. Miguel Angel Medina-Pérez for their guidance

through my studies. Thanks to my professors and members of the GIEE Machine Learning

for their contribution to my formation as a researcher. Thanks to Bárbara Cervantes for her

support and for her feedback to this research. Finally, thanks to all my family and friends for

their support.

The research reported here is supported by a CONACYT grant.

iv

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 2

1.2 Recent applications of Functional Trees . 3

1.3 Objectives and contributions . 3

1.4 Organization . 4

2 Induction of functional trees 6

2.1 Common structure and construction of Decision Trees 6

2.1.1 A basic example of Decision Tree induction. 9

2.2 Family of Decisions Trees that use feature combinations 11

2.2.1 Multivariate Decision Trees . 11

2.2.2 Model Trees . 13

2.3 Functional Tree construction . 14

2.4 Why there are no new FT algorithms? . 15

2.5 Chapter conclusions . 17

3 A protocol for a fair comparison of DT algorithms 19

3.1 Experiments . 20

3.1.1 Experiment 1. Evaluating FT4cip design decisions 20

3.1.2 Experiment 2. Demonstrating that Model Trees outperform Multivariate
Decision Trees MDT ⊂ MT . 21

3.1.3 Experiment 3. Demonstrating that Functional Trees outperform Model
Trees MT ⊂ FT . 21

3.1.4 Experiment 4. Demonstrating that FT4cip has better classification per-
formance than Gama’s FT . 22

3.1.5 Experiment 5. Comparing FT4cip and Gama’s FT in imbalanced databases 22

v

Contents vi

3.2 Bayesian signed-rank test . 22

3.3 Databases . 24

3.4 Evaluation measures . 25

3.5 Chapter conclusions . 27

4 Improving Functional Trees: The Functional Tree for class imbalance prob-
lems 28

4.1 Design decisions for building FT4cip . 28

4.1.1 Generating candidate splits . 28

4.1.1.1 Nominal features . 29

4.1.2 Split evaluation function . 29

4.1.3 Stop conditions . 30

4.1.4 Approach to multi-class problems . 30

4.1.5 Pruning . 30

4.1.6 Split type . 31

4.1.7 Feature selection . 31

4.1.8 Classifier for the leaves . 31

4.2 FT4cip training algorithm . 32

4.3 Results of Experiment 1. Evaluating FT4cip design decisions 34

4.3.1 Using simple stop conditions . 35

4.3.2 Using binary splits for nominal features 35

4.3.3 Using linear multivariate splits . 35

4.3.4 Using the appropriate split evaluation measure 35

4.3.5 Using logistic models . 36

4.3.6 Using an appropriate pruning method . 36

4.4 Runtime . 36

4.5 Chapter conclusions . 38

5 Comparing FT4cip against the DT family that uses linear combinations 39

5.1 Results of Experiment 2. Demonstrating that Model Trees outperform Multi-
variate Decision Trees MDT ⊂ MT . 40

5.2 Results of Experiment 3. Demonstrating that Functional Trees outperform Model
Trees MT ⊂ FT . 41

5.3 Results of Experiment 4. Demonstrating that FT4cip has better classification
performance than Gama’s FT . 42

5.4 Results of Experiment 5. Comparing FT4cip and Gama’s FT in imbalanced
databases . 43

5.5 Chapter conclusions . 44

6 Conclusions 46

6.1 Future work . 47

6.2 Research papers published . 47

A List of databases 58

List of Figures

2.1 Decision Tree for an example database. 7

2.2 Basic example of DT induction. 10

2.3 Decision trees for the Iris database. 12

2.4 Comparisons between MDT algorithms . 17

3.1 Example of Bayesian signed-rank test. 24

4.1 Evaluating the relative importance of FT4cip’s design decisions. 34

4.2 DTs training time. 37

4.3 DTs inference time. 37

5.1 LMT vs. Gama: results of Bayesian signed-rank test. 42

5.2 Boxplot showing the distribution of AUC for FT4cip, Gama’s FT, and LMT. . . 42

5.3 FT4cip vs. Gama: results of Bayesian signed-rank test. 43

5.4 Comparison of FT4cip and Gama’s FT using the Bayesian signed-rank test in
subsets of databases by degree of class imbalance. 44

vii

List of Tables

2.1 Publication timeline of DTs with linear combinations. 16

3.1 Database distribution by number of features. 25

3.2 Database distribution by number of objects. 25

3.3 Database distribution by number of classes. 25

3.4 Database distribution by degree of class imbalance. 25

3.5 Example confusion matrix obtained by the J48 classifier for the iris database. . . 26

5.1 MDT algorithms compared and their design decisions. 40

5.2 Bayesian signed rank-test results of comparing LMT against each classifier MDT. 41

A.1 Details about 40 of the 110 databases used in the experimental comparison that
work with all MDTs. 58

A.2 Details about 17 of the 110 databases used in the experimental comparison that
work with a subset of the MDTs. 60

A.3 Details about the remaining 53 of the 110 databases used in the experimental
comparison. 60

viii

Chapter 1

Introduction

Decision trees (DTs) are popular classifiers that have evolved for nearly sixty years as stand-alone

and base classifiers for ensembles. One reason for the popularity of DTs is that their models are

considered interpretable. There is a trend toward using white-box models with high accuracy

because experts need to understand the models, and it is mandatory to explain the results in

several practical problems [57]. Another advantage is that stand-alone DTs have reasonably

good classification performance and fast computation speed [54]. Tree-based ensembles are

popular because they achieve highly competitive classification results; in a 2017 survey [93],

Random Forest [16] and XGBoost [22] are among the top-ranked algorithms; in a 2021 survey

[76] using synthetic databases, bagged CART and Gradient Boosted Trees were the top-ranked

algorithms in problems with few features and a high number of objects.

The original and most known type of DT is the Univariate Decision Tree (UDT), and probably

the most famous UDT is CART [15]. UDTs are the easiest type of DT to interpret; however,

they have the lowest classification performance among the family of DTs.

One way to improve the classification performance of UDTs is to allow DTs to use more than one

feature in the condition for splitting a node. The family of trees that allow feature combinations,

usually linear combinations, is composed of Multivariate Decision Trees (MDTs) [15], Model

Trees (MTs) [46], and Functional Trees (FTs) [34]. MDTs allow feature combinations in inner

nodes, MTs allow feature combinations in leaf nodes, and FTs allow feature combinations in all

nodes. Previous works show that MDTs outperform UDTs in classification performance [17].

Although trees allowing feature combinations have better classification performance over UDTs,

many algorithms have shortcomings when dealing with multi-class and class imbalance prob-

lems. The problem of class imbalance is critical because many real-world problems have class

imbalance and it is not taken into account by many classifiers. Databases with class imbalance

have a low proportion of objects of any class when compared to others [2]. Classifiers that

1

Chapter 1. Introduction 2

do not take into account class imbalance may classify almost every object with the majority

class and achieve high performance according to measures such as accuracy. However, in many

class imbalance problems, we are interested in correctly classifying objects of the minority class.

Therefore, it is important to design classifiers that consider the class imbalance problem and

evaluate them using appropriate measures for these problems, such as the Area Under the ROC

curve (AUC).

In this work, we present the first FT designed to deal with class imbalance problems of two or

more classes, which we call the Functional Tree for class imbalance problems (FT4cip). FT4cip

achieves an improved performance over Gama’s FT [34], the only FT to date, measured with the

Area Under the ROC Curve (AUC). The improved performance of FT4cip in class imbalance

problems is mainly due to the use of a split evaluation function that considers class imbalance

(Twoing) and a novel pruning algorithm that optimizes AUC.

1.1 Motivation

Although trees using linear combinations have shown to outperform UDTs in classification

performance [17], the best DTs cannot be easily identified due to a generalized lack of proper

statistical comparison of newer DT works with previous literature. We have alleviated this

problem by publishing the most extensive survey on MDTs to date, which includes a statistical

comparison of 19 MDTs in 57 databases [18].

To compare FT4cip against the top-performing DT, as measured by the Area Under the ROC

Curve (AUC), we first show that Functional Trees surpass Model Trees, that in turn surpass

Multivariate Decision Trees. We apply Bayesian statistical tests in 110 databases to identify if

a classifier outperforms another or if they are equivalent in terms of AUC. Previously, Gama’s

FT was the only of its kind [34] and did not outperform the top model tree, the Logistic Model

Tree (LMT) [46]. However, we will show that the latest implementation of Gama’s FT does

outperform LMT.

Although we will show that Gama’s FT has the highest classification performance among the

trees using linear feature combinations, it has limitations that hinder its classification perfor-

mance. One of the main limitations of Gama’s FT is that it does not consider class imbalance.

To deal with Gama’s FT limitations, each design decision for FT4cip aims to maximize AUC.

Wa aim to maximize AUC because it is a measure that takes into account class imbalance. We

searched for the best strategies available in the literature or proposed our own if this achieved

further improvement of AUC. The design decisions considered for a new FT are how to generate

candidate splits, how to evaluate candidate splits, when to stop splitting a node, how to approach

multi-class problems, what (if any) pruning method to use, what split types are allowed, what

Chapter 1. Introduction 3

(if any) feature selection method to use, and what (if any) classifier to use at the leaves. We

showed that each design decision taken is important through an experiment in which we modified

a single design decision to match LMT or Gama; by doing so, the classification performance

decreases, or the resulting model or algorithm is more complex than the one for FT4cip.

1.2 Recent applications of Functional Trees

Gama’s FT was published on 2004 [34] and no other Functional Tree has been published to

date. However, multiple authors have successfully applied Gama’s FT in classification problems

in recent years. In Section 2.4, we show that multiple MDT algorithms have been introduced

after Gama’s FT was published. We believe that this disparity in the development of FTs and

MDTs is due a lack of exposure of FTs in the community because, as we show in Chapter 5,

FTs achieve higher classification performance than MDTs.

Functional Trees have been applied in recent years in problems of landslide [70] susceptibility,

flash flood susceptibility [4], avalanche susceptibility [67], phishing website detection [6], and

attrition prediction in a population of very preterm infants [81].

In [70], an ensemble of Gama’s FT was used to predict landslide susceptibility. The ensemble

of Gama’s FT outperformed a single FT, NBTree [45], CART [15], and Bagging [15].

In [6], Gama’s FT and ensembles based on it were compared in the problems of website phishing

detection against Naive Bayes, Sequential Minimal Optimization [5], SVM, and Decision Table.

As a single tree, Gama’s FT achieved better AUC than the rest of the classifiers. The ensembles

of Gama’s FT improved the classification performance of a single tree.

In [81], several classifiers were compared in the problem of predicting loss of participants (at-

trition) at subsequent follow-ups in a study of very preterm infants. Incremental models were

trained at four different follow-ups. Overall, Random Forest achieved the best performance in

all follow-ups. However, Gama’s FT was ranked second in the fourth follow-up.

1.3 Objectives and contributions

The general objective of this research is to develop a DT using linear feature combinations that

outperforms the rest of such DTs in terms of classification performance as measured by the

AUC, particularly in class imbalance problems. To do so, we first show that the family of DTs

using linear feature combinations has an order in classification performance, with functional

trees at the top. Therefore, we designed a new functional tree, which we compared with the

top-performing one (Gama’s FT). Our specific objectives are:

Chapter 1. Introduction 4

� Demonstrate that the top-performing model tree, LMT, outperforms all MDTs of our

recent survey.

� Demonstrate that Gama’s FT, the only functional tree, has better classification perfor-

mance than LMT.

� Design a functional tree that achieves high classification performance in class imbalance

problems, that is FT4cip.

� Demonstrate that, in general, FT4cip has better classification performance, in terms of

AUC, than Gama’s FT.

� Demonstrate that the classification performance of FT4cip, in terms of AUC, is particu-

larly good in problems with class imbalance, when compared to Gama’s FT.

In this thesis, we make two key contributions. First, we demonstrate that, in terms of classi-

fication performance, there exists a hierarchy, where functional trees surpass model trees, that

in turn surpass multivariate trees. This result is supported by a set of statistical tests run over

a thorough experimental comparison.

Second, we introduce a new functional tree, the Functional Tree for class imbalance problems

(FT4cip), especially designed for class imbalance problems. We show that FT4cip has better

classification performance than Gama’s FT, the previous top-performing DT. Furthermore, we

show that FT4cip excels in class imbalance problems.

A third contribution is the introduction of the AUC-optimizing Cost-Complexity pruning. This

novel pruning algorithm is one of the elements that allows FT4cip to outperform Gama’s FT.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, we show how to build functional trees

and identify the key design decisions involved. We begin by showing the common structure of

DTs and how to build them; then, we discuss the family of DTs that uses feature combinations;

finally, we give a general algorithm for building FTs.

In Chapter 3, we present a protocol for a fair comparison of DT algorithms. We describe

the experiments, where we compare DTs, carried out in this work. We describe the Bayesian

statistical test used to compare DTs, the databases used, and the evaluation measure.

In Chapter 4, we introduce our Functional Tree for class imbalance problems (FT4cip). We

begin by describing the choices taken for each design decision identified in Chapter 2. Then, we

present the algorithm for training FT4cip. Next, we show the results of our first experiment,

Chapter 1. Introduction 5

which evaluates the importance of the design decision of FT4cip. Finally, we make an analysis

of the computational complexity and runtime of FT4cip.

In Chapter 5, we give the results of our second and third experiments, which show that functional

trees surpass model trees, that in turn surpass multivariate trees, in terms of classification

performance (AUC). Then, our fourth and fifth experiments show that FT4cip outperforms

Gama’s FT in classification performance, especially in class imbalance problems.

Finally, we give our conclusions in Chapter 6. In this chapter we outline future work and list

the research papers published as result of this work.

Chapter 2

Induction of functional trees

Gama [34] designed Functional Trees (FTs) as the most general type of Decision Tree (DT) that

uses linear combinations to separate objects of different classes; however, Gama’s FT is the only

one of its type to date. The most popular DTs, such as CART [15] and C4.5 [71], are specific

cases of an FT without linear combinations; these types of trees are called Univariate Decision

Trees (UDTs). The Multivariate Decision Tree (MDT) and Model Tree (MT) are two possible

DTs that result from limiting the nodes where linear combinations can be used in an FT.

Through this chapter, we will identify the design decisions involved in building FTs, some of

which are common to all DTs. This will allow us to introduce our new FT, FT4cip, in a well-

organized way, and to identify later what design decisions of FT4cip contribute more to its

classification performance.

We begin this chapter by describing the typical structure of DTs, how to build one, and the

design decisions involved in building any DT. A specific example of building a simple DT is shown

in Section 2.1.1. Then, Section 2.2 describes the family of DTs that use linear combinations.

We discuss why no new FTs have been developed in Section 2.4. Finally, Section 2.3 gives a

general algorithm for building FTs.

2.1 Common structure and construction of Decision Trees

Decision trees are commonly represented as directed graphs, as shown in Figure 2.1. In a

classification problem, we are given a training database D, with n objects and m features.

When training, the decision tree starts as a single root node, marked at the top of Figure 2.1,

which contains all objects in D. The nodes connected to any node in the tree are called children;

conversely, the node to which the children are connected is called the parent node. The arcs

connecting the parent and children are called branches.

6

Chapter 2. Induction of functional trees 7

1 2
3 4 5 6

1 2 3 4 5 6

3 4 5 6

� ≤ 2 � > 2

� ≤ 4 � > 4

Root Node

Le branch with test:

Le child of Root Node Right child of Root Node

Leaf

Leaf Leaf

Figure 2.1: Decision Tree for an example database. We have labeled the root node, its
children, an example of a branch, and the leaves.

A DT induction algorithm generates children by splitting the parent node, unless a stopping

criterion is met (e.g. all object in the node belong to the same class). Each child is assigned a

subset of the objects from the parent node, with the subsets forming a partition of the parent’s

objects. A function that partitions the objects into children is called a split. The split is

represented as a collection of tests that define the partition. The branches of a tree are tagged

with the corresponding test. For example, the tests (color(x) = blue, color(x) ̸= blue), where x is

an object, represent a split that partitions the objects into a subset of blue objects and a subset of

non-blue objects. The corresponding partition is ({x : color(x) = blue}, {x : color(x) ̸= blue}).

Most DTs generate only two children per parent, known as binary DTs. Non-binary DTs may

have more than two children per parent and can be transformed into binary DTs. In this work,

we assume that we work with binary DTs.

A DT induction algorithm will recursively split nodes unless a stopping condition is met. Once

a stopping condition is met in a node, it is marked as a leaf. A partition of database D is formed

when collecting the subsets of objects in all leaves of the tree.

Algorithm 2.1 shows a simple way of training a DT. The following notation is used in the

algorithm:

D. Database as an array of size n×m+1. The first m columns correspond to non-class features;

the additional feature is the class.

Chapter 2. Induction of functional trees 8

n. The number of objects in the database.

m. The number of features in the database.

Nt. Node t.

Dt. The objects at node Nt.

S. A candidate split.

eval(Dt,S). Split evaluation function, which evaluates the split S in node Nt. The return

value is a non-negative real number.

partition(Dt,S). Function that generates the left and right children Nl,Nr and assigns to

them the subset of objects from Dt according to split S.

Algorithm 2.1 Basic algorithm for building a decision tree.

Input:
Nt. Node t.
Dt. The objects at node Nt.
eval(Dt,S). Split evaluation function, which evaluates the split S in node Nt. The return

value is a non-negative real number.
BuildTree(Dt,Nt, eval):

1: if Nt = ∅ then ▷ 1. Create a root node and assign it all objects in the training database.
2: Nt = root

3: Dt = D
4: end if
5: if a stop condition is met then
6: return Nt ▷ 2a. Mark the node as a leaf if a stop condition is met.
7: end if

▷ 2b. If no stop condition is met, this node will be split.
8: S = GenerateCandidates(Dt) ▷ 3. Generate a set of candidate splits.
9: S∗ = argmaxs eval(Dt, s), s ∈ S ▷ 4. Select the split that maximizes the evaluation

function.
10: Nl, Nr = partition(Dt,S∗)
11: BuildTree(Dl, Nl, eval)
12: BuildTree(Dr, Nr, eval)
13: return Nt

From the main steps of our algorithm, marked as comments, we identify three design decisions

common to all DTs:

1. How to generate candidate splits. For numerical features, candidate splits are gener-

ated for each feature f ∈ F , usually of the form ({x : f(x) ≤ v}, {x : f(x) > v}), where
f(x) is the value of feature f for object x, and v ∈ ℜ is known as the split point. Generally,

DTs use exhaustive search to generate splits by varying v. Some exhaustive algorithms

Chapter 2. Induction of functional trees 9

test all values of feature f present in the database. In contrast, other exhaustive algo-

rithms reduce the number of tests by sorting the objects by feature f and testing only

when there is a class change between contiguous objects. As an alternative, DTs may use

the class distribution given a feature to do an analytical split.

2. What split evaluation function to use. The split evaluation function gives a numerical

evaluation of how well a split discriminates between classes. In this text, we will assume

that our objective is to maximize the split evaluation function. Some authors use impu-

rity measures that give higher values when children have objects of mixed classes (i.e.,

the nodes are impure). However, the minimization of impurity measures can be easily

converted into a maximization problem. Ties are usually solved arbitrarily; for example,

the first split with the highest evaluation is selected.

3. What stop conditions to use. The most common stop condition is that a node has only

objects of one class (i.e., the node is pure). Another widespread stop condition is that the

number of objects is below a minimum value; algorithms that do analytical splits may set

a minimum number of objects due to the use of statistical tools.

Once the tree is built, we can use it to classify new objects. At each node, starting from the root,

the new object x is tested with the tests tagging the branches. Once object x gives true for a

test, it is directed to the corresponding child. The process is repeated until a leaf is reached.

Once the object reaches a leaf, it is classified using the leaf’s most common class (majority

class).

Two additional design decisions that are not shown in the algorithm are:

4. Approach to multi-class problems. Some DT induction algorithms are designed to deal

with multi-class classification problems, but there are others that are not. From the DT

algorithms that work with multi-class problems, some of them need to transform the

problems into two-class problems.

5. What pruning method to use. Pruning is an optional step, carried out after building a

DT. Pruning is used to reduce the size of the tree while trying to preserve classification

performance.

2.1.1 A basic example of Decision Tree induction.

In Figure 2.2, we show a basic example of how to build a Decision Tree. Our example database

has six objects, a single feature f , and three classes. Objects with values f(x) ∈ {1, 2} belong

Chapter 2. Induction of functional trees 10

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

3. Generate candidate splits and evaluate them.

a)

b)

c)

d)

e)

Evaluation

0

1

0

1

0

1 2
3 4 5 6

1. Generate the root node and assign it all objects in the database.

2a. Stop condition NOT met (the node is not pure).

This node will be split.

1 2 3 4 5 6

1 2 3 4 5 6

� ≤ 2 � > 2

4. Split the node using the best-evaluated candidate split.

2b. Stop condition met.

This node is a leaf.

2a. Stop condition NOT met.

This node will be split.

1 2 3 4 5 6

1 2 3 4 5 6

3 4 5 6

� ≤ 2 � > 2

� ≤ 4 � > 4

5. All terminal nodes are leaves, we have finished building the tree.

2b. Stop condition met. 2b. Stop condition met.

a) b)

c) d)

Figure 2.2: Basic example of DT induction.

to the magenta square class, objects with values f(x) ∈ {3, 4} belong to the blue triangle class,

and objects with values f(x) ∈ {5, 6} belong to the yellow circle class.

For our example, the three design decisions are simple. To generate candidate splits, we use an

exhaustive search. Our split evaluation function assigns a value of 1 to splits that generate a

pure node; otherwise, it assigns a value of 0. Our only stop condition is that a node must be

pure.

Following Algorithm 2.1, we begin by generating the root node and assigning all objects of

our training database (Figure 1.1a). Since no stop condition is met, we continue to generate

candidate splits in line 8. In Figure 1.1b, we see the five candidate splits and their evaluations

with a tie for the best split between split b) and d). We arbitrarily select split b).

We show the tree resulting from the first split in Figure 1.1c. Following our algorithm, we

recursively call the BuildTree function with each child node. Since the left-hand side child

meets our stop condition (it is pure), it is marked as a leaf in line 6 and is not split. However,

Chapter 2. Induction of functional trees 11

the right-hand side child does not meet our stop condition, so it is split following the same

steps to split the root node. Splitting the right-hand side child generates two pure children,

resulting in the tree in Figure 1.1d. All the terminal nodes are leaves at this point, so the DT

construction ends. We can verify that the subsets of objects in the leaves form a partition of

our database.

2.2 Family of Decisions Trees that use feature combinations

The most popular DTs are Univariate Decision Trees (UDTs), which use a single feature to

split objects. The example trees of the previous section are UDTs. UDTs divide the feature

space with axis-parallel hyperplanes. However, UDTs generate suboptimal splits when a single

non-axis-parallel hyperplane may separate objects from different classes.

To improve the classification performance of DTs, authors have introduced DTs with feature

combinations. Three types of DTs using feature combinations exist, distinguished by where

the feature combinations occur. Multivariate Decision Trees (MDTs) allow splits combining

features in inner nodes. Model Trees (MTs) allow feature combinations in leaf nodes by having

a classifier, such as a logistic regression model, in each leaf that decides the class of objects

falling in the leaf. Finally, Functional Trees (FTs) are a generalization of MDTs and MTs,

allowing feature combinations in both inner and leaf nodes. The three types of trees improve

classification performance compared to UDTs. Figure 2.3 shows an example of each tree.

A linear combination is the most common feature combination used in MDTs, MTs, and FTs.

Tests with linear combinations may involve a subset of features. Let us assume that the database

has F features, and we are given a subset of features F ′ ⊆ F . The tests with linear combinations

take the form
∑

f∈F ′ wff(x) ≤ v or
∑

f∈F ′ wff(x) > v, where each wf ∈ ℜ is a weight coefficient

for feature f , f(x) is the value of feature f for object x, and v ∈ ℜ is the split point. In contrast

with UDTs, in addition to finding the split point v, MDTs, MTs, and FTs must search for the

weight coefficients wf for each feature f involved in the linear combination. Splits that use

feature combinations in inner nodes are known as multivariate splits.

We now discuss how MDTs and MTs add design decisions that we need to consider when

building a DT.

2.2.1 Multivariate Decision Trees

Introducing multivariate splits with MDTs adds more design decisions when building a DT.

The first design decision is whether to use multivariate splits. The literature supports using

Chapter 2. Induction of functional trees 12

Petal width

> 0.6
<= 0.6

Petal width

<= 1.7
> 1.7

Petal length

> 4.9
<= 4.9

Petal width

<= 1.5
> 1.5

VersicolorVirginica

Versicolor

Virginica

Setosa

(a) UDT

Petal Length

> 2.45 <= 2.45

0.13 Sepal Length

- 0.20 Petal Length

- 0.25 Petal Width

<=- 0.59 >- 0.59

0.04 Sepal Length

+ 0.11 Petal Length

+ 0.34 Petal Width

<= 1.36
> 1.36

- 1.24 Sepal Width

- 2.17 Petal Width

<=-6.82
>- 6.82

VirginicaVersicolor

Virginica

Versicolor

Setosa

(b) MDT
Petal width

> 0.6
<= 0.6

Petal width

<= 1.7
> 1.7

Petal length

> 4.9
<= 4.9

LM3

LM4

LM2

LM1
Setosa: 20.65

- 3.45 Petal Length
- 5.69Petal Width

Versicolor: -8.35

+ 0.95 Sepal Length
- 0.61 Sepal Width

- 0.12 Petal Length

- 0.67 Petal Width
Virginica: -32.29

- 2.24Sepal Width

+ 3.87 PetalLength
+ 8.37 Petal Width

(c) LMT

Petal Width

> 0.6 <= 0.6

- 3.92 Sepal Width

+ 2.90 Petal Length

+ 8.91 Petal Width

<= 17.75 > 17.75

VersicolorLM1

Setosa

(d) FT

Figure 2.3: Decision trees for the Iris database [29]. (a) Univariate Decision Tree (UDT); all
splits use a single feature, and the leaves are labeled with the majority class. (b) Multivariate
Decision Tree (MDT); unlike the UDT, some splits have feature combinations. (c) Model Tree;
unlike the UDT, the leaves have a classifier. In this example, the leaves have logistic models
(LM), resulting in linear feature combinations, as seen in the expanded model (LM1). (d)
Functional Tree (FT); this is a generalization of the previous trees. The FT can use both
univariate and multivariate splits, and the class in the leaves can be chosen with the majority

class or with a classifier. All trees were computed via Weka’s classifiers [30].

multivariate splits since multiple authors have shown that MDTs achieve better classification

performance than UDTs by using multivariate splits [68] [48].

There are several algorithms to build MDTs, with more than 30 algorithms introduced between

1977 and 2022. Yildiz et al. [92] proposed a taxonomy that groups the algorithms according

to split type, approach to multi-class problems, how they find the weight coefficients w, how

they find the split point v, branching factor, and split evaluation function. These are additional

Chapter 2. Induction of functional trees 13

design decisions to consider. We have already discussed the branching factor, approach to

multi-class problems, and split evaluation function in Section 2.1. We now discuss the rest of

the design decisions and include the feature selection strategy to be used, if any:

1’. How to generate candidate splits In Section 2.1, we described this as one of the design

decisions common to all DTs. When multivariate splits are considered, we must specifically

decide how to search for the linear split’s weight coefficients and split point.

1.1. Search for w . The search for the weight coefficients w can be either analytical or

iterative. Analytical algorithms generally consider the distribution of classes

1.2. Search for v . The search for the split point v can also be analytical or iterative.

6. Split type. There are three possible split types: univariate, multivariate with linear com-

binations, and multivariate with non-linear combinations. To be considered an MDT, the

algorithm must search for feature combinations. However, some MDT induction algo-

rithms use different split types in different nodes.

7. Feature selection. MDT induction algorithms use or do not use feature selection for mul-

tivariate splits. The algorithms that use feature selection find multivariate splits using

subsets of features. Most feature selection algorithms rely on a greedy search. For ex-

ample, Sequential Forward Selection (SFS) begins with an empty set of features F ′ = ∅;
then, it adds a feature one at a time, provided that a split improves the evaluation function

when using the feature in conjunction with all features already in F ′. Brodley et al. [17]

describe other prominent feature selection algorithms used in MDTs.

Our recent survey on MDTs compared 19 algorithms in 57 databases [20]. The top-performing

MDT was the Multi-class Hellinger Linear DT (MHLDT). MHLDT achieved this result by

using both univariate and multivariate linear splits, using feature selection (Sequential Forward

Selection), working directly with multi-class problems, and using an analytical method to find

the weight coefficients w.

2.2.2 Model Trees

Model Trees aim to combine the advantages of decision trees and other classifiers, such as logistic

regression models [46]. The most popular model tree is the Logistic Model Tree (LMT) [46],

which builds a UDT using C4.5 and, while building the tree, fits logistic regression models in

each node using the LogitBoost algorithm. The LogitBoost algorithm is an iterative algorithm

that adds a feature to the logistic regression model or modifies an already present feature. LMT

uses the iterative nature of LogitBoost to use the model of a parent node as an initial solution,

Chapter 2. Induction of functional trees 14

so logistic models in a parent node are refined in children using only the objects falling in each

child. Finally, LMT prunes the tree through Cost-Complexity pruning, which takes a trade-

off between tree size and misclassification rate. The resulting tree classifies objects using the

regression models at the leaves instead of the majority class.

The first design decision introduced by Model Trees is whether or not to use a classifier at

the leaves. The second design decision is what classifier to use. When first published, the

classification performance of LMT was better than that of MDTs and similar to that of Gama’s

FT, thanks to the logistic regression models generated by the LogitBoost algorithm. This makes

for a strong case for using models at the leaves and using LogitBoost to generate the models.

8. Use leaf models. We must decide whether to use leaf models and, if so, how to generate

them. When using leaf models, we assume that a logistic regression model is built with

LogitBoost, since it has shown the best classification performance.

The similar performance between the first implementation of Gama’s FT and LMT may discour-

age us from building the more complex FTs. However, the current implementation of Gams’s

FT in Weka achieves better classification performance than LMT, as we will show in Section

5.2.

2.3 Functional Tree construction

Functional Trees (FTs) combine the advantages of MDTs and model trees by allowing both

multivariate splits and other classification models at the leaves. The first and only FT was

presented by Gama [34]. This section describes the general steps for building a Functional Tree

in Algorithm 2.2.

When building FTs, we need to take into account all design decisions considered for building

general DTs, MDTs, and MTs. We have not identified any design decision specific to FTs.

The first difference between DT construction in Algorithm 2.1 and FT construction in Algorithm

2.2 is that a classification model, such as a logistic model with LogistBoost, is built at each node

in line 5. The second difference is that we generate multivariate splits in lines 10 to 15, possibly

using feature selection. The feature selection algorithms usually use the evaluation of the best

split found so far, S∗, and the current candidate splits S to decide when to stop.

Chapter 2. Induction of functional trees 15

Algorithm 2.2 General algorithm for building a Functional Tree.

Input:
Nt. Node t.
Dt. The objects at node Nt.
eval(Dt,S). Split evaluation function, which evaluates the split S in node Nt. The return

value is a non-negative real number.
FeatureSelection(F, F ′). Feature selection algorithm that returns a subset of features from

F , given that a subset of features F ′ has already been selected. If an algorithm does not
use feature selection, we assume that this function returns F when F ′ = ∅, and ∅ for any
other value of F ′.

BuildTree(Dt,Nt, eval):

1: if Nt = ∅ then
2: Nt = root

3: Dt = D
4: end if
5: LMt = LogitBoost(Nt) ▷ Build a logistic regression model.
6: if a stop condition is met then
7: return Nt

8: end if
9: S∗ = ∅

10: S = ∅
11: F ′ = ∅
12: while F ′ = FeatureSelection(F, F ′) do ▷ Loop while the feature selection function

returns candidate feature subsets.
13: S = GenerateCandidates(Dt, F

′) ▷ Generate multivariate candidate splits with
features F ′.

14: S∗ = argmaxs eval(Dt, s), s ∈ S ∩ {S∗}
15: end while
16: Nl, Nr = partition(Dt,S∗)
17: BuildTree(Dl, Nl, eval)
18: BuildTree(Dr, Nr, eval)
19: return Nt

2.4 Why there are no new FT algorithms?

In a recent survey, we gave an overview of 37 MDT induction algorithms published between 1977

and 2022 [20]. Although MDT induction algorithms have been introduced in recent years, no

new FT has been introduced after Gama’s FT. In Table 2.1, we show a timeline of publications

for DTs with linear combinations. Although many MDTs have been published after Gama’s

FT, no new FT algorithms has been introduced.

One possible reason for the lack of new FTs is that researchers have decided that their disad-

vantages outweigh the advantage of improved classification performance over MDTs. We do not

believe this to be the case, as the main disadvantage of FTs compared to MDTs is that they

add complexity by adding linear combinations at the leaves that may include many features.

Chapter 2. Induction of functional trees 16

Year Algorithm

1977 Friedman [31]
1984 CART-LC [15]
1991 LMDT [17]
1992 CTNNFE [35]
1993 SADT [37]
1994 OC1 [68]
1997 QUEST [52]
1998 BMDT [50]
1999 Ltree, Lgtree & Qtree [33]
1999 APDT [78]
2000 Dipolar [13]
2000 FAT & MOC1 [8]
2001 CRUISE [44]
2001 Omnivariate [91]
2003 LDTS [47]
2004 Gama’s FT [34]
2005 LMT [46]
2005 SURPASS [48]
2005 LDT [92]
2008 Cline [3]
2009 GUIDE [53]
2009 Geometric [64]
2010 VDT & CDT [10]
2011 oRF [65]
2013 FDT [56]
2014 HBDT [80]
2015 HHCART [88]
2015 Zhag’s MPSVM [93]
2017 Optimal [9]
2017 OmniGa [61]
2017 SBT & PT [51]
2018 Efficient [85]
2019 DTsvm [69]
2019 MHLDT [18]
2019 HHCART(G) [89]
2020 BDTKS [86]

Table 2.1: Publication timeline of DTs with linear combinations. We have highlighted Gama’s
FT and LMT, the rest of the algorithms are MDTs.

However, most MDT induction algorithms do not include feature selection for the splits with

linear combinations, in which case the complexity of the MDTs is equivalent to an FT.

A more plausible reason that there are no new FTs is that they are not widely known in the

community. This may be due to a problem of fragmentation in DT literature identified by

Rusch et al. [72] where many authors that propose DT algorithms are not aware or choose to

ignore similar works. In Figure 2.4, we show that authors compare new MDTs against at most

a couple of other ones; the most comprehensive study, compares their MDT against five others.

Chapter 2. Induction of functional trees 17

Furthermore, only CART-LC, OC1, QUEST, and LMDT are used as a reference for comparison

more than twice. Note that most MDTs have never been used in any experimental comparison.

Furthermore, the MDTs were not compared against Gama’s FT.

0 0

1 1

0

3

1

2 2 2

1 1 1

3

0

4

0

5

4

2 2

1

0 0

2

3

0 0 0

2

0 0

1

0

13

5

1 1

13

6

2

0 0 0 0 0

1

0 0 0 0 0 0 0 0 0

1

0 0 0 0 0 0

1

0 0
0

2

4

6

8

10

12

14

Fr
ie

d
m

an

C
A

R
T-

LC

LM
D

T

C
TN

N
FE

SA
D

T

O
C

1

Q
U

ES
T

Lt
re

e
/L

gt
re

e

B
M

D
T

A
P

D
T

Q
tr

ee

D
ip

o
la

r

FA
T/

M
O

C
1

C
R

U
IS

E

O
m

n
iv

ar
ia

te

LD
TS

SU
R

P
A

SS

LD
T

C
lin

e

G
U

ID
E

G
e

o
m

et
ri

c

V
D

T/
C

D
T

o
R

F

FD
T

H
B

D
T

H
H

C
A

R
T

Zh
an

g'
s

M
P

SV
M

O
p

ti
m

al

O
m

in
G

A

SB
T/

P
T

Ef
fi

ci
en

t

D
Ts

vm

B
D

TK
S

1977 1984 1991 1992 1993 1994 1997 1999 1998 1999 1999 2000 2000 2001 2001 2003 2005 2005 2008 2009 2009 2010 2011 2013 2014 2015 2015 2017 2017 2017 2018 2019 2020

Number of MDTs compared when the algorithm was published

Number of times the algorithm was compared in other works

Figure 2.4: Comparisons between MDT algorithms. For each algorithm, the blue bar repre-
sents the number of rival algorithms the authors used in their comparison study. The orange
bar represents the number of times the algorithm is compared in papers by other authors.

2.5 Chapter conclusions

In this chapter, we described basic DTs and how to build them. We identified five common

design decisions in DTs: how to generate candidate splits, what split evaluation function to

use, what stop conditions to use, how to approach to multi-class problems, and what pruning

method to use.

We also described the family of DTs that uses feature combinations, which is composed of

Functional Trees (FTs), Multivariate Decision Trees (MDTs) and Model Trees (MTs). We

identified three additional design decisions for the family of DTs that uses feature combinations:

what split types to use, what feature selection method to use, and what classification model to

use at the leaves. Identifying these design decisions allows us to make informed decisions by

searching the literature for the best choices for improving classification performance.

As mentioned before, multiple authors have shown that MDTs outperform UDTs. However,

MTs have not been compared with the most recent top-performing MDT induction algorithms.

Furthermore, the top-performing MT (LMT) has not been compared with the latest version

Chapter 2. Induction of functional trees 18

of Gama’s FT, which now also uses the LogitBoost algorithm that previously allowed LMT to

maintain a similar performance. In the following section, we will show that LMT outperforms

all MDTs tested in our recent survey and that Gama outperforms LMT.

Chapter 3

A protocol for a fair comparison of

DT algorithms

Our main goal is to show that our new classifier, FT4cip, has better classification performance

than the classifiers in the family of DTs that use linear feature combinations (described in Section

2.2). We also want to evaluate how our design decisions contribute to FT4cip’s classification

performance.

In Chapter 4, we introduce FT4cip, detailing each design decision. In order to evaluate the im-

portance of each design decision to classification performance, we generate variations of FT4cip

and compare them to the original algorithm. Each variation is related to a design decision.

When comparing a variation to the original FT4cip with statistical tests, we can measure the

importance of the design decision to classification performance.

In Chapter 5, we first demonstrate that there exists a hierarchy in classification performance,

where functional trees surpass model trees, that in turn surpass multivariate trees. We divide

our demonstration in two steps; first, we demonstrate that MTs surpass MDTs, and then we

demonstrate that FTs surpass MTs.

Having demonstrated that FTs are at the top of the hierarchy, we compare FT4cip against

the only previously published FT (Gama’s FT). Our aim is to show that FT4cip has better

classification performance than Gama’s FT in general, and that FT4cip outperforms Gama’s

FT in class imbalance problems. We describe with detail the experiments carried out in Section

3.1.

In this work, we only need to compare classifiers in multiple databases pairwise. We use the

Bayesian signed-rank test described by Benavoli et al. [7]. We describe this test in more detail

in Section 3.2. One advantage of this test is that it considers the effect size (i.e., the magnitude

19

Chapter 3. A protocol for a fair comparison of DT algorithms 20

of the difference in classification performance). A second advantage is that it gives actual

probabilities of when an algorithm outperforms the other or when the algorithms are equivalent.

To make our comparisons statistically sound, we have compared our algorithms in 110 publicly

available databases. However, due to the nature of some algorithms, we are forced to make some

comparisons in subsets of databases. Section 3.3 describes the 110 databases and the subsets

used in our experiment.

Finally, Section 3.4 describes the Area Under the ROC curve (AUC) evaluation measure, which

we will use to measure classification performance. We show how to calculate the AUC from a

confusion matrix and justify its use.

3.1 Experiments

When comparing a pair of algorithms, we execute them in each database d ∈ D using 5-fold

Distribution Optimally Balanced-SCV (DOB-SCV). The k-fold DOB-SCV [66] is an alternative

to the standard Stratified k-fold cross-validation (SCV). The standard SCV only places an

equal number of samples in each fold, while the DOB-SCV additionally tries to keep the data

distribution as similar as possible. Lopez et al. [55] suggest using k-fold DOB-SCV instead

of k-fold cross-validation to avoid having different distributions between testing and training

databases. For each algorithm execution a ∈ A in database d ∈ D, we obtain the AUC (see

Section 3.4) for each fold and calculate the mean AUC over the five folds.

For each experiment, we take each pairing of algorithms (ai, aj), i ̸= j considered in the ex-

periment and apply the Bayesian signed-rank test (see Section 3.2) for the subset of databases

considered in the experiment. The test gives three probabilities as a result: the probability that

ai is practically better than aj , in other words, the probability of ai winning; the probability

that aj is practically better than ai, in other words, the probability of aj winning or ai losing;

and the probability that ai and aj are practically equivalent, in other words, the probability of

a tie.

3.1.1 Experiment 1. Evaluating FT4cip design decisions

The objective of our first experiment is to show that all design decisions behind FT4cip con-

tribute to classification performance, in terms of AUC, or do not reduce the performance with

the advantage of keeping the model or algorithm simple.

We created modified versions of FT4cip by changing one of the design decisions to match LMT

or Gama. We compare each modified version of FT4cip with the baseline version using the

Bayesian signed-rank test in the 110 databases.

Chapter 3. A protocol for a fair comparison of DT algorithms 21

When the baseline has better performance than the variation, it means that the design decision

we took contributes to improving classification performance. When the baseline and variation

have equivalent performance, the choice for our design decision is justified by keeping the model

or algorithm simple. The probability that a variation has practically better performance than

the baseline is always zero.

3.1.2 Experiment 2. Demonstrating that Model Trees outperform Multi-

variate Decision Trees MDT ⊂ MT

The objective of this experiment is to show that MTs have better classification performance

than MDTs (MDT ⊂ MT). To do so, we show that the Logistic Model Tree (LMT) has

better classification performance than the 19 MDTs compared in our recent survey [20]. LMT

is compared against each MDT using the Bayesian signed-rank test in a subset of 57 or 40

numerical databases.

We selected the subset of 57 numerical databases because many MDT implementations cannot

handle nominal attributes. In addition, since some MDT implementations crashed when running

some of the 57 numerical databases, we further reduced the number of databases to 40 for those

algorithms.

Unfortunately, we have found it difficult to assess why a specific implementation failed in one

database. Some algorithms do not have publicly available source code, and the errors were not

ones handled by the developers that could provide some helpful message.

3.1.3 Experiment 3. Demonstrating that Functional Trees outperformModel

Trees MT ⊂ FT

The objective of this experiment is to show that FTs have better classification performance than

MTs (MT ⊂ FT). To do so, we show that Gama’s FT has better classification performance

than the top-performing MT, the Logistic Model Tree (LMT). We compare the algorithms with

the Bayesian signed-rank test using our whole set of 110 databases.

Let us say that we show that MTs have better classification performance than MDTs (MDT ⊂
MT) and FTs have better performance than MTs (MT ⊂ FT). It follows that FTs have the

best classification performance among the family of DTs that use linear feature combinations.

Then, if our objective is to maximize classification performance, we only need to compare new

algorithms against Gama’s FT since it is the only one of its type.

Chapter 3. A protocol for a fair comparison of DT algorithms 22

3.1.4 Experiment 4. Demonstrating that FT4cip has better classification

performance than Gama’s FT

The objective of this experiment is to show that our new classifier, FT4cip, has the best classi-

fication performance among the family of DTs with linear feature combinations. After carrying

out the previous experiments, we will have shown that Gama’s FT is the top-performing classi-

fier of the family. Therefore, we only need to compare FT4cip against Gama’s FT. We compare

FT4cip against Gama’s FT with the Bayesian signed-rank test using our whole set of 110

databases.

Additionally, we show that the performance of FT4cip is even better in databases with class

imbalance. To do so, we compare FT4cip against Gama’s FT in a subset of imbalanced databases

using the Bayesian signed-rank test.

3.1.5 Experiment 5. Comparing FT4cip and Gama’s FT in imbalanced

databases

The objective of this experiment is to show that FT4cip has particularly better performance in

class imbalance problems. In order to do so, we divide our databases in two groups according to

their degree of class imbalance. The first group, the balanced databases, consists of databases

with up to two objects of the majority class per object of the minority class. The second group,

the imbalanced databases, is composed of databases with more than two objects of the majority

class per object of the minority class.

We compare FT4cip against Gama’s FT with the Bayesian signed-rank test in the subsets of

balanced and imbalanced databases. The test will show that FT4cip has better classification

performance in the imbalanced databases.

3.2 Bayesian signed-rank test

Benavoli et al. [7] describe the different Bayesian tests for comparing classifiers in multiple

databases in a tutorial. When comparing two classifiers, instead of a p-value, the Bayesian tests

return the distribution of the mean difference of classification performance (AUC in this case)

between the two classifiers. To make automatic decisions, Benavoli et al. [7] suggest using a

lower limit for the probability, such as 0.95.

To compare two algorithms in multiple databases, we used the Bayesian signed-rank test de-

scribed in the tutorial by Benavoli et al. [7]. This test is the Bayesian counterpart to Wilcoxon’s

Chapter 3. A protocol for a fair comparison of DT algorithms 23

test. The Bayesian signed-rank test has two advantages. First, the test gives us actual proba-

bilities of either algorithm outperforming the other and the probability of the classifiers being

equivalent. The second advantage is that the test takes into account the effect size.

To understand this test, we briefly describe how to compare two classifiers in a single database.

The Bayesian tests described by Benavoli et al.[7] are based on three hypotheses: that classifier

A is practically better than B, that the classifiers are practically equivalent, and that classifier B

is practically better than A. The Bayesian correlated t-test is used to calculate the probabilities

of the hypotheses for a specific database.

The Bayesian tests calculate three probabilities: θl is the probability that classifier A is prac-

tically better than B, θr is the probability that classifier B is practically better than A, and

θe is the probability that the classifiers are practically equivalent. The probabilities θl, θe, θr

correspond to the integral of the distribution on different intervals: the region (−∞,−r), where

classifier A is practically better than B ; the region (r,∞), where classifier B is practically bet-

ter than A; and the region [−r, r], where the classifiers are practically equivalent. The interval

[−r, r] is known as the region of practical equivalence (rope). Benavoli et al. [7] use r = 0.01 for

accuracy; we will use the same value for AUC, given the similarity of the measure for balanced

databases.

We use the Bayesian signed-rank test to compare the classifiers on multiple databases. For this

test, a distribution of the probabilities θl, θe, θr is computed by Monte Carlo sampling. For a

given sample, there is a bias towards θi ∈ {θl, θe, θr} if θi > max(θj , θk), with θj ∈ {θl, θe, θr},
θk ∈ {θl, θe, θr} and θi ̸= θj ̸= θk. For example, if all our samples have θl > max(θr, θe), we

conclude with a probability of 1 that classifier A is practically better than classifier B.

We must take care with the interpretation of the Bayesian signed-rank test results. That

classifier B is practically better than classifier A with a probability of 1 does not imply that the

difference in AUC between classifiers B and A is always greater than 0.01. Instead, this means

that the probability θr is always greater than both θl and θe; in other words, there is always a

bias towards classifier B winning.

Let us say we conclude that classifier B is practically better than classifier A with a probability

equal to 1. This conclusion does not necessarily mean that the difference in AUC between

classifier B and A is always greater than 0.01. Instead, this means that the probability θr is

always greater than both θl and θe; in other words, there is always a bias towards classifier B

winning.

Benavoli et al. [7] visualize θl, θe, θr for each sample using a simplex with vertices {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
In Figure 3.1, we show one for a comparison between the classifiers CRUISE and CL2 on a sub-

set of databases with a high number of features. If a point falls in a vertex, it has θi = 1 for

the corresponding hypothesis i; in the figure, a point in the left corner is a sample where the

Chapter 3. A protocol for a fair comparison of DT algorithms 24

p(CRUISE) = 1.000

p(rope) = 0.000

p(CL2) = 0.000

Figure 3.1: Example of Bayesian signed-rank test. Comparison between CRUISE and CL2 in
a subset of the 57 databases with a high number of features.

difference in AUC between CRUISE and CL2 is greater than 0.01 with a probability equal to

1. There are three regions limited by θi > max(θj , θk), so the left region corresponds to the

case where there is a bias towards CRUISE. In each corner, we show the proportion of samples

falling in the corresponding region; since almost all samples fall in the region where CRUISE is

better, we have p(CRUISE) ≈ 1. Some samples fall in the region where CL2 is better; however,

the proportion of those samples is smaller than 1× 10−3.

3.3 Databases

We have obtained 110 databases from the UCI repository [25]. The databases are diverse,

with varying numbers of instances, features, classes, and degrees of imbalance, with or without

missing values, and with or without nominal features. We give a complete list of databases in

Appendix A.

As described in Section 3.1.2, our survey compared all MDTs in a subset of 40 databases and

15 of 19 MDTs in 17 more databases. We summarize the key characteristics of the databases

in Tables 3.1, 3.2, and 3.3, showing the distribution of databases in the different subsets used

to compare algorithms in this work.

Since we evaluate the classifiers using k-fold cross-validation, we divide the databases into five

folds using Distribution Optimally Balanced-SCV (DOB-SCV) [66]. DOB-SCV tries to keep

the data distribution as similar as possible in each fold, which is essential when dealing with

class imbalance because the degree of class imbalance in each fold will be close to that of the

whole database.

Chapter 3. A protocol for a fair comparison of DT algorithms 25

No. of features No. of databases (110) No. of databases (57) No. of databases (40)

< 10 27 19 17
10− 100 72 33 20
> 100 11 5 3

Table 3.1: Distribution of the databases under consideration according to their number of
features. We show the distribution for all databases, for a subset of 57 databases used when

evaluating some MDTs, and 40 of 57 databases used to evaluate all MDTs.

No. of objects No. of databases (110) No. of databases (57) No. of databases (40)

< 100 3 3 0
100− 1, 000 49 29 27
> 1, 000 58 25 13

Table 3.2: Distribution of the databases under consideration according to their number of
objects. We show the distribution for all databases, for a subset of 57 databases used when

evaluating some MDTs, and 40 of 57 databases used to evaluate all MDTs.

No. of classes No. of databases (110) No. of databases (57) No. of databases (40)

2 51 25 18
> 2 59 32 22

Table 3.3: Distribution of the databases under consideration according to their number of
classes. We show the distribution for all databases, for a subset of 57 databases used when

evaluating some MDTs, and 40 of 57 databases used to evaluate all MDTs.

Class imbalance No. of databases (110) No. of databases (57) No. of databases (40)

< 2 40 29 24
2− 10 33 22 11
> 10 37 6 5

Table 3.4: Distribution of the databases under consideration according to their degree of
class imbalance, measured as the number of objects of the majority class for each object of the
minority class. We show the distribution for all databases, for a subset of 57 databases used

when evaluating some MDTs, and 40 of 57 databases used to evaluate all MDTs..

3.4 Evaluation measures

To select an evaluation measure, we must consider the class imbalance problem because many

real-world databases are imbalanced. A database is highly imbalanced if it has many objects

of one class compared to the rest. In such cases, measures such as accuracy may give a high

evaluation value, close to 1, to a classifier that predicts that all objects belong to the majority

class. This behavior is undesirable because we are often interested in correctly classifying many

objects of the minority class.

We use the Area Under the ROC curve (AUC) to evaluate the classification performance of the

classifiers. We use the AUC because many real-world databases are imbalanced, and the AUC

is more insensitive to imbalanced databases than other evaluation measures, such as accuracy

[74].

Chapter 3. A protocol for a fair comparison of DT algorithms 26

We can calculate the AUC from the confusion matrix obtained from the classifier applied to a

testing database. The confusion matrix is a k×k matrix, where k is the number of classes. The

rows correspond to actual classes, and the columns to predicted classes. We show an example

of a confusion matrix in Table 3.5. From the row Iris-setosa, we conclude that 49 objects are

classified correctly as Iris-setosa, and one object is classified incorrectly as Iris-versicolor. Similar

remarks hold for the two other classes.

Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 49 1 0
Iris-versicolor 0 47 3
Iris-virginica 0 2 48

Table 3.5: Example confusion matrix obtained by the J48 classifier [71] for the iris database.

Let C be a confusion matrix of size k × k. Each cell cij in C counts the number of objects of

class i classified as class j.

C =

c11 c12 . . . c1k

c21 c22 . . . c2k
...

...
. . .

...

ck1 ck2 . . . ckk

For discrete classifiers, the AUC measure for two classes is defined using recall and specificity

[74]. Let (Ci, Cj), with i ̸= j, be any pair of classes, where Ci denotes the Positive class, and Cj

denotes the Negative class. The number of objects of the Positive class Ci correctly classified,

cii, is the number of True Positives. The number of objects of the Positive class Ci incorrectly

classified, cij , is the number of False Negatives. The number of objects of the Negative class Cj

correctly classified, cjj , is the number of True Negatives. The number of objects of the Negative

class Cj incorrectly classified, cji, is the number of False Positives.

The Recall is then defined as the proportion of objects of the positive class correctly classified:

rij(C) =
cii

cii + cij
(3.1)

Specificity is defined as the proportion of objects of the negative class correctly classified:

spij(C) =
cjj

cji + cjj
(3.2)

Finally, the AUC for two classes i, j is defined as the average between recall and specificity:

Chapter 3. A protocol for a fair comparison of DT algorithms 27

aucij(C) =
rij(C) + spij(C)

2
(3.3)

To extend the definition of AUC to multi-class problems, we take the recommended one versus

the others approach [74]. This approach consists of averaging the AUC of all possible pairs of

classes as follows:

auc(C) =
1(
k
2

) k−1∑
i=1

k∑
j=i+1

aucij(C) (3.4)

3.5 Chapter conclusions

In this chapter, we presented our protocol for making a fair comparison of DT algorithms. We

described the five experiments made in this work. In all experiments, we only make pairwise

comparisons of the classifiers, so we use the Bayesian signed-rank test to compare them.

With the first experiment, we show that all design decisions taken for FT4cip contribute to

improving classification performance, or to keep a simple model or algorithm.

The objective of the second and third experiments is to identify the relative performance of the

classifiers that use linear feature combinations. We show that functional trees surpass model

trees, that in turn surpass multivariate trees.

Finally, our fourth experiment shows that, in general, FT4cip has better classification perfor-

mance than Gama’s FT. The fifth experiment shows that FT4cip performs even better than

Gama’s FT in class imbalance problems.

Chapter 4

Improving Functional Trees: The

Functional Tree for class imbalance

problems

In this chapter, we introduce our new functional tree, the Functional Tree for class imbalance

problems (FT4cip). We begin by describing the design decisions for building FT4cip in Section

4.1, and show the full algorithm in Section 4.2.

In Section 4.3, we evaluate our design decisions by showing that changing any of them to

match the best-performing classifiers, MHLDT, LMT, or Gama’s FT, results in a reduction in

classification performance. Next, we evaluate the runtime of FT4cip in Section 4.4.

4.1 Design decisions for building FT4cip

In each of the following subsections, we describe each of the eight design decisions for building

Functional Trees identified in Chapter 2. As we recall, we need to define how to generate

candidate splits, which evaluation function to use, which stop conditions to use, how to approach

multi-class problems, which (if any) pruning method to use, which split types are allowed, which

(if any) feature selection method to use, and which (if any) classifier to use at the leaves.

4.1.1 Generating candidate splits

We use the multi-class version of Fisher’s linear discriminant (MFLD) [18] to split a node because

it is used by the top-ranked MDT (MHLDT) on our survey [20]. Additionally, MFLD allows us

to work directly with multi-class problems.

28

Chapter 4. Improving Functional Trees (FT4cip) 29

MFLD gives K−1 vectors that maximize class separability, where K is the number of classes [32].

The value of the function which measures class separability, when maximized, is equal to the sum

of the corresponding eigenvalues. This means that the eigenvector with the largest eigenvalue,

called the dominant eigenvector, is the one that contributes the most to the maximization of

the function.

To generate a split with MFLD, we project the objects onto the dominant eigenvector, sort them,

and find the best split point according to the split evaluation measure. We decided to use

the dominant eigenvector as w because when projecting the objects onto it, the classes can be

divided better than when projecting the objects onto the rest of the eigenvectors.

After projecting all objects onto w, we sort them and use exhaustive search to find the split

point v. We test values for v where two contiguous objects have different classes.

4.1.1.1 Nominal features

To generate splits using nominal features, we choose to do binary splits with a value and

complement approach. We generate a candidate split for each possible feature value, with all

objects matching the feature value going to the left node and those that do not match going

to the right node. For example, with the split (color = blue, color ̸= blue), all blue objects

go to the left child, and non-blue objects go to the right child. With this decision, we avoid

generating unnecessary child nodes when a single value of a nominal feature, but not the rest

of the values, helps to discriminate between classes.

The key difference is that LMT uses multi-way splits, creating a child node for each possible

value of a nominal feature, and FT4cip uses binary splits.

4.1.2 Split evaluation function

We use Twoing [15] to evaluate candidate splits since it considers class imbalance. As shown

in a 2021 survey on split evaluation measures [38], Twoing was the top-ranked split evaluation

measure for AUC.

Given a split that divides objects from C classes into left L and right R nodes, the proportion of

objects falling in the left node is pL and the proportion of objects falling in the right node is pR.

The proportion of objects with class c ∈ C falling in the left node is pc,L and the proportion of

objects with class c ∈ C falling in the right node is pc,R. The split evaluation function evaluates

split s at node t. The Twoing split evaluation function is defined as:

Chapter 4. Improving Functional Trees (FT4cip) 30

θ(s, t) =
pLpR
4

[
∑
c∈C

|pc,L − pc,R|]2 (4.1)

By maximizing this function, we attempt to have all objects of a class fall in one of the child

nodes since the term |pc,L−pc,R| is maximized when the proportion of objects of class c all fall in

the left or right node, and the number of objects assigned to each child node is similar because

the term pLpR is maximized when assigning the same number of objects to each child. For each

class, the term |pc,L − pc,R| takes values in the same range [0, 1] regardless of the number of

objects of each class, making the Twoing split evaluation function robust to class imbalance.

The key difference is that LMT and Gama’s FT use Information Gain as a split evaluation

function, while FT4cip uses Twoing.

4.1.3 Stop conditions

Since the stopping conditions did not significantly affect classification performance of FT4cip

when pruning the trees, we decided to keep them as simple as possible. We only stop growing

the tree if a node is pure. During the pruning procedure, the size of the tree will be reduced.

4.1.4 Approach to multi-class problems

We want to work directly with multi-class problems, because transforming them to two-class

problems by using heuristics may result in undesirable class groups. For example, the classes

may be grouped in a way that a multivariate split is needed when an univariate split suffices.

In contrast to using a heuristic, an exhaustive search of class groups is more time consuming.

FT4cip is able to work directly with multi-class problems thanks to the use of the multi-class

version of Fisher’s linear discriminant (MFLD). LMT and Gama’s FT can also work with multi-

class problems.

4.1.5 Pruning

We use a novel version of the Cost-Complexity pruning that optimizes AUC to prune the

tree. We use this method because the original Cost-Complexity pruning [15] achieves lower

AUC values than using no pruning at all, as we show in Section 4.3.6. After all, it optimizes

accuracy, which is inappropriate for class imbalance problems. In Section 4.3.6, we show that

Cost-Complexity pruning optimizing AUC does not degrade the classifier’s performance.

Chapter 4. Improving Functional Trees (FT4cip) 31

Cost-Complexity pruning estimates the error of a tree as the error in the training database plus

a factor α times the subtree size [14]. To optimize the parameter α describing the trade-off

between tree size and misclassification rate, five trees are built and pruned with candidates for

α through 5-fold cross-validation in a training database. The candidates for α are obtained with

a search procedure that computes the distinct values of α that reduce the tree size. The value

of α used to prune the tree built with the whole training database is selected by minimizing the

average misclassification rate on the five folds.

We noticed that the original Cost-Complexity pruning algorithm reduces classification perfor-

mance in terms of AUC. Therefore, we propose the AUC-optimizing Cost-Complexity pruning

that changes the objective of minimizing the misclassification rate to maximizing AUC.

The key difference is that LMT uses the original Cost-Complexity pruning, which optimizes

accuracy, while our modified version optimizes AUC. Gama uses the C4.5 pruning method,

which also optimizes accuracy.

4.1.6 Split type

FT4cip can generate univariate or linear multivariate splits. When the best split of one feature

uses a nominal feature, the split is univariate. Otherwise, the split may be univariate or linear

multivariate. In contrast, LMT only allows univariate splits.

4.1.7 Feature selection

We use Sequential Forward Selection (SFS) as feature selection method. We chose SFS because

it is also used by the top-ranked MDT (MHLDT) in our survey [20]. Furthermore, it is easier

to find short linear combinations by using SFS, which makes the tree easier to interpret. When

MHLDT was used in a contrast pattern-based classifier [18], most splits were univariate or had

only two features. Gama’s FT does not apply a feature selection method.

4.1.8 Classifier for the leaves

We use the same logistic classifier as LMT and Gama’s FT to label the objects falling in a leaf.

The logistic models allow LMT to achieve better classification performance than all MDTs from

a recent survey [20], as we show in Section 5.1.

The algorithm that trains the logistic models is called LogitBoost [46]. First, a logistic regression

model is built for the root node using LogitBoost. Then, the children node refine the parent’s

logistic model by running additional iterations of the LogitBoost model using only the objects

Chapter 4. Improving Functional Trees (FT4cip) 32

in the node. There is no difference in the classifier at the leaves; we use the same one as LMT

and Gama.

4.2 FT4cip training algorithm

In this section, we show how to build our new functional functional tree, FT4cip, in Algorithm

4.1. We describe the general steps for building the tree as comments and give more detailed

pseudocode to make it replicable. For readers seeking to use or modify FT4cip, we also provide

the implementation as a Weka package and the source code. We use the following notation in

the pseudocode of Algorithm 4.1.

D. Database as an array of size n×m+1. The first m columns correspond to non-class features;

the additional feature is the class.

n. The number of objects in the database.

m. The number of features in the database.

F . The set of features in the database.

Nt. Node t.

Dt. The objects at node Nt.

S. A candidate split.

Sf . Univariate split at node Nt with feature f ∈ F .

SF ′. Multivariate split at node Nt with features F ′ ⊆ F .

split(Dt, F
′, eval). A split function that splits the objects in Dt using features from F ′. The

split function uses the split evaluation function eval to select between candidate splits.

The function returns a split St, which may be a univariate split Sf when F ′ = {f}, or a
multivariate split SF ′ .

eval(Dt,S). Split evaluation function, which evaluates the split S in node Nt. The return

value is a non-negative real number.

partition(Dt,S). A function that generates the left and right children nodes Nl,Nr and as-

signs to them the subset of objects from Dt according to split S.

SFS(D, F ′,Nt, eval, split). Sequential Forward Selection algorithm.

Chapter 4. Improving Functional Trees (FT4cip) 33

Algorithm 4.1 FT4cip induction.

Input:
Nt. Node t.
Dt. The objects at node Nt.
Twoing(Dt,S). Split evaluation function, which evaluates the split S in node Nt. The return

value is a non-negative real number.
SFS(F, F ′). Sequential Forward selection algorithm that returns a subset of features from F ,

given that a subset of features F ′ has already been selected.
MFLD. Multi-class Fisher’s Linear Discriminant split function.
We call FT4cip(D, F, ∅) to build a tree.
After building the FT4cip tree, we prune it using AUC-optimizing Cost-Complexity pruning.
FT4cip(Dt, F,Nt):

1: if Nt = ∅ then
2: Nt = root ▷ Initialize the root node
3: end if
4: LMt = LogitBoost(Nt) ▷ Build a logistic regression model.
5: if the node is pure then ▷ We only stop if the node is pure.
6: return Nt

7: end if
8: S = GenerateUnivariateCandidates(Dt, F). ▷ Generate univariate splits.
9: S∗ = argmaxs Twoing(Dt, s), s ∈ S ▷ Evaluate the splits and keep the best.

10: f∗ = Feature(S∗) ▷ Store the feature of the best split.
Continued on next page.

11: if f∗ is a numerical feature then ▷ If the best split uses a numerical feature...
12: F ′ = {f∗}
13: while F ′ = SFS(F, F ′) do ▷ Generate subsets of candidate features of an increasing

size, as long as there is an improvement in split quality.
14: S = MFLD(Dt, F

′) ▷ Generate multivariate splits.
15: S∗ = argmaxs Twoing(Dt, s), s ∈ S ∪ {S∗}
16: end while
17: end if
18: Nl, Nr = partition(Dt,S∗)
19: FT4cip(Dl, F,Nl)
20: FT4cip(Dr, F,Nr)
21: return Nt

In Section 2.3, Algorithm 2.2 gave a general algorithm for building Functional Trees. We notice

that the general algorithm is very similar to the one of FT4cip. However, we now have a specific

method for generating multivariate splits (MFLD), a specific evaluation function (Twoing), and

a specific feature selection method (SFS).

Lines 1 - 8 of Algorithm 4.1 are mostly the same as the general algorithm, the only difference is

that our only stop condition is that we stop when the node is pure. Next, we generate univariate

candidate splits with each feature and keep the best in lines 9 - 10.

Chapter 4. Improving Functional Trees (FT4cip) 34

The next difference in FT4cip is at line 14, where we only begin to generate multivariate

candidate splits if the feature used by the best univariate split is numerical. Otherwise, we just

use the best split found, which uses a nominal feature.

4.3 Results of Experiment 1. Evaluating FT4cip design deci-

sions

In this section, we evaluate the relative importance of the design decisions described in Section

4.1. To do so, we created modified versions of FT4cip by changing one of the design deci-

sions. The only exception was removing both logistic models and pruning simultaneously in one

variation; we did so because the resulting tree is better without pruning.

Var 1: More complex stop conditions.

Var 2: Multi-way nominal splits.

Var 3: No pruning.

Var 4: No linear multivariate splits.

Var 5: Information gain as split evaluation measure.

Var 6: Removed logistic models from the leaves

and no pruning.

Var 7: Used accuracy-optimizing Cost-complexity

pruning0.00

0.25

0.50

0.75

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7

p
(b

a
s
e

lin
e

 >
 v

a
ri

a
ti
o

n
)

Ranking design decisions by importance to classification performance

Figure 4.1: Evaluating the relative importance of FT4cip’s design decisions. For each de-
sign decision described in Section 4.2, we generate a new version of FT4cip. We compare
the variations against the baseline version using the Bayesian signed-rank test. We show
the probability that the baseline version improves upon each variation. The dashed line at

p(baseline > variation) = 0.05 helps to notice negligible improvements.

By ranking the modified versions of FT4cip by their probability of losing against the original

version of FT4cip (baseline), we can evaluate the relative importance of the design decisions

by how much they fall in the ranking. We show this ranking in Figure 4.1, together with the

probability that the baseline is practically better than the variation p(baseline > variation).

It is sufficient to show this probability because, for all variations, we found that p(variation >

baseline) = 0.

As an example, from Figure 4.1, since the version using the accuracy-optimizing Cost-Complexity

pruning is at the bottom of the ranking, we can conclude that the design decision of using the

AUC-optimizing Cost-Complexity pruning is the most important to classification performance.

We can also see that the baseline optimizing AUC in pruning is better than the variation that

Chapter 4. Improving Functional Trees (FT4cip) 35

optimizes accuracy in 89.8% of the cases. Conversely, simple stop conditions are the least

important to classification performance, and the baseline and variation are practically equiva-

lent. Even when the classification performance is practically equivalent, we can still show an

improvement in other measures.

From the results of Figure 4.1, the relative importance for classification performance of our

design decisions, from most to least important, is: Using an appropriate pruning method, using

logistic models, using linear multivariate splits, using the proper split evaluation measure, using

simple stop condition, and using binary splits for nominal features. Now, from Section 4.3.6 to

4.3.2, we give recommendations on each design decision.

4.3.1 Using simple stop conditions

The baseline and the version using LMT’s stop conditions are practically equivalent. Since there

is no improvement from using more complex stop conditions, we prefer simple stop conditions.

4.3.2 Using binary splits for nominal features

The baseline and the version using multi-way splits are practically equivalent. We prefer a fully

binary tree because any multi-way split may be represented as a binary split. Furthermore,

when a binary split is enough to perfectly separate one class, multi-way splits still create more

than two children, making the tree more complex.

4.3.3 Using linear multivariate splits

The improvement of using linear multivariate splits is not as big as that of previous design

decisions. However, we notice that the probability of improvement is not negligible (greater

than 0.05), so we still recommend using linear multivariate splits.

4.3.4 Using the appropriate split evaluation measure

Using Information Gain, as LMT does, instead of Twoing results in a decreased classification

performance for imbalanced databases. In general, we can see that the baseline version using

Twoing is better in 10.5% of the cases, so we recommend using it instead of Information Gain.

Chapter 4. Improving Functional Trees (FT4cip) 36

4.3.5 Using logistic models

Without using logistic models, FT4cip transforms into an MDT. The FT is more complex

because the logistic models use many features; however, the FT is better in 75% of the cases in

terms of AUC. To solve the complexity issue, we suggest feature selection in logistic models as

future work.

4.3.6 Using an appropriate pruning method

The version using no pruning is practically equivalent to the baseline; however, by using pruning,

we can obtain smaller trees that are easier to interpret. Therefore, we recommend using an

appropriate pruning method.

We emphasize using an appropriate pruning method because some methods may decrease clas-

sification performance. Specifically, the accuracy-optimizing Cost-Complexity pruning used by

LMT is worse than using no pruning, according to the difference in ranks (see variations 3 and

7 in Figure 4.1). Since the probability of the baseline being practically better than the variation

is 89.8%, we recommend using our AUC-optimizing Cost-Complexity.

4.4 Runtime

In terms of computational complexity, in the worst case, the Sequential Forward Selection

Algorithm adds all features to the set of selected features, which involves comparingm candidate

splits, then m − 1 candidate splits, m − 2, and so on until no candidate features remain.

The number of comparisons is
∑m

i=1 i =
m(m−1)

2 , so the computational complexity is O(m2).

However, given the early stop heuristic of SFS, the number of comparisons is often lower. For

example, the average linear combination length of multivariate items from the MHLDT tree

[18], which also uses SFS, in the same 110 databases used in this study is 1.5. Therefore, most

of the time, the SFS algorithm selected splits with at most two features, which involves about

2m comparisons.

Regarding the computational complexity of FT4cip, at each node, we need to consider the

logistic regression models and the multivariate splits built. The asymptotic complexity for

building logistic regression models is O(m2 · n), where n is the number of objects, and m

is the number of features [46]. To select a candidate split given m features from SFS takes

O(m3 · n+m · n log n), which reduces to O(m · n log n) for m ≪ n. Overall, the computational

complexity at a node is O(m3 · n log n) when considering the computational complexity of SFS.

Chapter 4. Improving Functional Trees (FT4cip) 37

In Figure 4.2, we show with a boxplot the training time distribution of FT4cip, LMT, Gama,

and the variations of FT4cip described in Section 4.3. Likewise, Figure 4.3 shows the inference

time distribution. Surprisingly, Gama is the classifier with the lowest training time, although

LMT does not use linear splits.

Gama

Var 6

Var 3

LMT

Var 4

Var 5

Var 2

Var 1

Var 7

FT4cip

0 50 100 150 200

Training time (seconds)

Figure 4.2: Training time, measured in seconds, of FT4cip, LMT, Gama, and the variations
of FT4cip described in Section 4.3. The algorithms are sorted by their median runtime. The

outliers were removed in order to visualize the key statistics shown in the boxplot.

Var 4

LMT

Var 5

Var 7

Var 2

Var 1

FT4cip

Var 6

Var 3

Gama

0.00 0.05 0.10 0.15 0.20 0.25

Inference time (seconds)

Figure 4.3: Inference time, measured in seconds, of FT4cip, LMT, Gama, and the variations
of FT4cip described in Section 4.3. The algorithms are sorted by their median runtime. The

outliers were removed in order to visualize the key statistics shown in the boxplot.

The most time-consuming algorithm is FT4cip. However, there is little difference between the

runtime of FT4cip and the variations using more complex stop conditions, multi-way splits, and

accuracy-optimizing Cost-complexity pruning.

Gama is the least time-consuming algorithm, followed by variations that do not use pruning.

Therefore, we identify the Cost-complexity pruning algorithm as the most time-consuming step.

Since we can see LMT and the FT4cip variation without multivariate splits are the next least

Chapter 4. Improving Functional Trees (FT4cip) 38

time-consuming algorithms, the second most time-consuming step is building FT4cip multi-

variate splits. The third most time-consuming step is calculating the Twoing split evaluation

function, as we see from the runtime drop when using Information Gain instead of Twoing.

4.5 Chapter conclusions

In this chapter, we presented our new functional tree, FT4cip. The key differences from previous

works that contribute to the performance of FT4cip are how it generates candidate splits and

the pruning method. FT4cip uses the multi-class version of Fisher’s linear discriminant (MFLD)

to generate candidate splits, together with Sequential Forward Selection as feature selection

method; this allows FT4cip to work directly with multi-class problems and to generate splits

with few features. Our novel pruning method, AUC-optimizing Cost Complexity pruning, does

not reduce the classification performance by optimizing the AUC. Other differences simplified

the algorithm or resulting tree without affecting classification performance.

The most time-consuming step in FT4cip is Cost-complexity pruning. There is little difference

in runtime between the accuracy-optimizing and the AUC-optimizing Cost-complexity pruning.

Since the FT4cip variation using accuracy-optimizing Cost-complexity pruning is the worst, we

suggest optimizing AUC. Since Gama is the fastest algorithm, it may be worth exploring an

AUC-optimizing version of its pruning method.

Although the second most time-consuming step is building multivariate splits with FT4cip,

removing multivariate splits from FT4cip degrades its classification performance. We also prefer

our multivariate splits over Gama’s multivariate splits because we use feature selection, which

results in shorter linear combinations and seems to be the reason for improved performance in

databases with many features.

One limitation of FT4cip, shared with LMT and Gama, is that the logistic regression models

generate linear combinations with many features, making them harder to interpret. Another

limitation of LMT and FT4cip is that leaves always have a logistic model, while Gama simplifies

the trees by tagging some leaves with the majority class during the pruning procedure.

We conclude that the following design decisions improved the performance of FT4cip: using our

AUC-optimizing pruning algorithm, using logistic models at the leaves, using a split evaluation

measure that considers class imbalance (Twoing), and using multivariate splits. The rest of the

design decisions do not reduce classification performance and simplify the models by pruning,

building binary trees, and using simple stop conditions.

Chapter 5

Comparing FT4cip against the DT

family that uses linear combinations

This chapter aims to show that FT4cip has the best classification performance among the DTs

in the family that uses linear combinations. In order to do so, we first establish an order in the

performance of the DTs in the family. Then, we show that FT4cip outperforms Gama’s FT

[34], which has the best classification performance in the family.

We described the family of DTs with linear combinations comprising Multivariate Decision

Trees, Model Trees, and Functional Trees in Section 2.2. However, the literature does not show

that any of the three types of DT has better classification performance than the others. We

will apply our evaluation protocol to compare MDTs, MTs, and FTs. As a result, we show that

MTs outperform MDTs, and FTs have the best performance (MDTs ⊂ MTs ⊂ FTs).

Over 30 MDT induction algorithms were published between 1977 and 2022. However, due to

lack of statistical comparison between the algorithms, their relative performance was unknown.

We recently published a survey where we compared 19 MDT algorithms following different

approaches to building MDTs [20]. With these results, we can properly compare the top-

performing MDTs against the top-performing MT (LMT) [46] and Gama’s FT [34].

Gama’s FT has already been compared against LMT [46], showing no statistical differences in

classification performance. However, the latest implementation of Gama’s FT takes advantage

of the LogitBoost algorithm used by LMT. Our statistical comparison will show that the latest

implementation of Gama’s FT does outperform LMT.

The chapter is organized as follow. We begin this chapter with Section 5.1, showing that the top-

performing MT, the Logistic Model Tree (LMT), has better classification performance than all

MDTs on our survey. These results indicate that MTs outperform MDTs (MDT ⊂ MT). Next,

Section 5.2 shows that Gama’s FT has better classification performance than LMT. Having

39

Chapter 5. Comparing FT4cip 40

shown that FTs outperform MTs (MT ⊂ FT) and also MDTs (MDT ⊂ MT ⊂ FT), we

only compare FT4cip against Gama’s FT. Section 5.3 compares the classification performance

of FT4cip against Gama in all our databases, and Section 5.4 compares their classification

performance in balanced and imbalanced databases.

5.1 Results of Experiment 2. Demonstrating that Model Trees

outperform Multivariate Decision Trees MDT ⊂ MT

In this section, we show the results of applying our evaluation protocol to compare LMT against

all MDTs from the experimental comparison of our survey. As mentioned in Section 3.1.2,

executing some MDTs in some databases resulted in execution errors. Therefore, the comparison

of MDTs was done in a subset of databases.

We compared 19 MDT induction algorithm in the review, which follow different strategies for

generating multivariate splits. Table 5.1 lists eight algorithms and two families of algorithms,

with their strategies for building MDTs. The first family of algorithms, Zhang’s MPSVM, is

composed of MPSVMlda, MPSVMpca, MPSVMparallel, MPSVMtikhnov, and MPSVMsub-

space. Ths second family of algorithms, Cline, is composed of CLMIX, CLDA, CLM, CLLVQ,

CL4, and CL2.

As we mentioned in Section 3.1.2, the MDTs were tested in 57 numerical databases. However,

CART, OC1, LDT, and Omnivariate were only tested in a subset of 40 databases due to runtime

errors.

Algorithm Search of w Search of v Evaluation measure Multi-class Split type Feature selection

QUEST [52] Discriminant functions Discriminant functions - Transforms the problem Uni/Lin -
CRUISE [44] Discriminant functions Discriminant functions - Works directly Uni/Lin -
LDT [92] Fisher’s discriminant Fisher’s discriminant - Transforms the problem Lin -
Cline [3] Analytical Analytical - Only two class Lin -

Zhang’s MPSVM [93] MPSVM MPSVM Gini index Transforms the problem Uni/Lin -
MHLDT [18] Fisher’s discriminant Exhaustive Hellinger distance Works directly Uni/Lin SFS

CART-LC [15] Backfitting Exhaustive Impurity Works directly Lin SBE1

OC1 [68] Hill climbing Exhaustive Info Gain Works directly Uni/Lin -
Omnivariate [91] Perceptron Perceptron Impurity Transforms the problem Uni/Lin/Non -

OCT [9] MIO2 MIO Missclassification Works directly Uni/Lin MIO

1 SBE: Sequential Backward Elimination
2 MIO: Mixed-integer optimization

Table 5.1: MDT algorithms compared and their design decisions. We do not include stop
conditions or pruning methods. The top six algorithms are analytical algorithms, and the

bottom four are iterative algorithms.

Table 5.2 shows the results of comparing LMT against the MDTs using the Bayesian signed

rank-test. We indicate if the comparison between LMT and a given MDT was done in the

subset of 40 or 57 databases.

Chapter 5. Comparing FT4cip 41

MDT Number of databases win lose

CRUISE 57 0.92246 4.00E-05
MHLDT 57 0.97688 0.00628
QUEST 57 0.9996 0
MPSVMlda 57 0.99968 0.00032
MPSVMpca 57 0.99996 4.00E-05
CLMIX 57 0.99998 2.00E-05
CLDA 57 1 0
MPSVMparallel 57 1 0
CLM 57 1 0
MPSVMtikhnov 57 1 0
OCT 57 1 0
CLLVQ 57 1 0
MPSVMsubspace 57 1 0
CL4 57 1 0
CL2 57 1 0

CART 40 0.9973 0
OC1 40 0.99848 0.00034
LDT 40 0.99996 4.00E-05
Omni 40 1 0

Table 5.2: Bayesian signed rank-test results of comparing LMT against each classifier MDT.
The second column shows if the comparison was done with all 57 numerical databases without
missing values, or with a subset of 40 of those databases. The third column shows the probability
of LMT outperforming the MDT in the row. Finally, the fourth column shows the probability
that the MDT in the row outperforms LMT. The top algorithms are analytical, and the four

bottom algorithms are iterative.

We notice that the probability that LMT has better classification performance than a given

MDT is always greater than 0.92. Furthermore, the probability of any MDT outperforming

LMT is always smaller than 0.0003. Therefore, we conclude that LMT, a Model Tree, has

better classification performance than MDTs.

5.2 Results of Experiment 3. Demonstrating that Functional

Trees outperform Model Trees MT ⊂ FT

In this section, we show the results of applying our evaluation protocol to compare Gama’s FT

against LMT, which is the best-performing MT. As described in Section 3.1.3, this experiment

is carried out with all 110 databases.

Figure 5.1 shows the results of comparing Gama’s FT against LMT using the Bayesian signed

rank-test. Gama’s FT has better classification performance than LMT in 94.2% of cases, and

LMT only outperforms Gama’s FT is of 0.3% of cases. Therefore, we conclude that Gama’s FT

has better classification performance than LMT.

Chapter 5. Comparing FT4cip 42

Figure 5.1: LMT vs. Gama: results of Bayesian signed-rank test. The mean difference of
the AUC is visualized with 150,000 Monte Carlo samples plotted in barycentric coordinates.
Brighter areas have more samples falling in them. According to the Bayesian signed-rank test,

Gama is better in 94.2% of cases, and equivalent to LMT in 5.5% of cases.

5.3 Results of Experiment 4. Demonstrating that FT4cip has

better classification performance than Gama’s FT

Figure 5.2 shows the AUC distribution for FT4cip, Gama, and LMT in the 110 databases

described in Section 3.3. Since we want to maximize AUC, a small box to the right side suggests

good classification performance. FT4cip has the best classification performance in terms of the

median AUC. We also notice that the first and third quartiles for FT4cip are higher than for

the other classifiers. To confirm that FT4cip has better classification performance, we now show

the results of the statistical tests.

FT4cip

GamaFT

LMT

0.2 0.4 0.6 0.8 1.0

AUC

Figure 5.2: Boxplot showing the distribution of AUC for FT4cip, Gama’s FT, and LMT.

Chapter 5. Comparing FT4cip 43

Figure 5.3 compares FT4cip with Gama using the Bayesian signed-rank test. Here, we conclude

that FT4cip is practically better than Gama in 27.7% of cases and practically equivalent in

72.3%.

p(FT4cip) = 0.277

p(rope) = 0.723

p(Gam a) = 0.000

Figure 5.3: FT4cip vs. Gama: results of Bayesian signed-rank test. The mean difference of
the AUC is visualized with 150,000 Monte Carlo samples plotted in barycentric coordinates.
Brighter areas have more samples falling in them. According to the Bayesian signed-rank test,

FT4cip is better in 27.7% of cases, and equivalent to Gama’s FT in 72.3% of cases

Our main finding here is that FT4cip has practically better classification performance than

Gama’s FT according to the Bayesian signed-rank test. Since Gama’s FT outperformed the

rest of the DTs that use linear combinations, if the main concern is classification performance,

we recommend using FT4cip.

5.4 Results of Experiment 5. Comparing FT4cip and Gama’s

FT in imbalanced databases

Since FT4cip is designed to deal with class imbalance problems, our hypothesis is that it will

have better performance than Gama’s FT in those problems. To confirm this, we compare

FT4cip and Gama in balanced and imbalanced problems.

In Figure 5.4, we compare the performance of FT4cip against Gama’s FT in subsets of databases

according to their degree of class imbalance. The first subset of databases has up to two objects

of the majority class per each of the minority class. The second subset of databases has more

than two objects of the majority class per object of the minority class.

We notice that the probability of Gama’s FT outperforming FT4cip is smaller than 0.001 in all

cases. For databases with low imbalance, the FT4cip and Gama’s FT are practically equivalent

in 98.6% of cases. However, for databases with high imbalance, FT4cip is practically better

Chapter 5. Comparing FT4cip 44

Imbalance <= 1:2 Imbalance > 1:2

p(FT4cip) = 0.014

p(rope) = 0.986

p(Gam a) = 0.000 p(FT4cip) = 0.815

p(rope) = 0.185

p(Gam a) = 0.000

Figure 5.4: Comparison of FT4cip and Gama’s FT using the Bayesian signed-rank test in
subsets of databases by degree of class imbalance. The left plot shows results for databases
with up to two objects of the majority class per object of the minority class and the right plot
shows results for databases with more than two objects of the majority class per object of the

minority class.

than Gama’s FT in 81.5% of cases. We conclude that FT4cip outperforms Gama when there

are more than two objects of the majority class per object of the minority class.

5.5 Chapter conclusions

The results of our first experiment confirms that LMT outperforms all MDTs tested in our

survey. Therefore, we conclude that MTs have better classification performance than MDTs

(MDT ⊂ MT).

With our second experiment, we confirm that the latest implementation of Gama’s FT outper-

forms LMT, which is the top-performing Model Tree. Therefore, we conclude that FTs have

better classification performance than MTs (MT ⊂ FT).

We have confirmed that there is an order in the classification performance of the DTs in the

family of trees that uses linear combinations. MDTs show the lowest classification performance

and FTs show the highest classification performance (MDT ⊂ MT ⊂ FT). Since Gama’s FT

is the only FT, we only need to compare our new classifier, FT4cip, against it.

Our third experiment showed that, FT4cip outperforms Gama’s FT in 27.7% of cases, and the

classifiers are equivalent in the remaining 72.3%. This shows a clear improvement of FT4cip

over Gama’s FT in some databases.

Since FT4cip was designed to deal with class imbalance problems, our hypothesis was that the

classification performance of FT4cip compared to Gama’s FT should be better in imbalanced

databases. The results of our fourth experiment show that FT4cip outperforms Gama’s FT in

Chapter 5. Comparing FT4cip 45

81.5% of cases when there are more than two objects of the majority class per object of the

minority class.

Chapter 6

Conclusions

In this work, we presented a new Functional Tree for class imbalance problems (FT4cip). Our

objective was to improve the classification performance of Decision Trees (DTs) that use linear

feature combinations, particularly in class imbalance problems. We selected this objective be-

cause DTs that use linear feature combinations manage to outperform those that do not, but

many have shortcomings that reduce their performance in class imbalance problems.

In this work, we described the family of DTs that uses linear feature combinations, which

has three members that allow feature combinations in different nodes. Multivariate Decision

Trees (MDTs) allow feature combinations in inner nodes, Model Trees (MTs) allow feature

combinations in leaf nodes[46], and Functional Trees (FTs) allow feature combinations in all

nodes. However, there was no proper statistical comparison that shows that any of these trees

outperforms the others.

Our first contribution is to show that functional trees surpass model trees, that in turn surpass

multivariate trees. This way, we can compare FT4cip against the top-performing DT, which is

Gama’s FT, the only FT.

We identified eight key design decisions for building an FT: how to generate candidate splits,

how to evaluate candidate splits, when to stop splitting a node, how to approach multi-class

problems, what (if any) pruning method to use, what split types are allowed, what (if any)

feature selection method to use, and what (if any) classifier to use at the leaves. From these

design decisions Gama’s FT uses a suboptimal split evaluation measure and a pruning method

that optimizes accuracy, lowering the classification performance in class imbalance problems.

Our second contribution is the introduction of the Functional Tree for class imbalance problems

(FT4cip), especially designed for class imbalance problems. To deal with Gama’s FT limitations,

each design decision for FT4cip aims to maximize AUC. We show with statistical tests that

46

Chapter 6. Conclusions 47

all design decisions taken contribute to classification performance, or they do not hinder the

performance while keeping a simpler model or algorithm.

The main advantages of FT4cip over Gama’s FT4cip are that we use the method for generating

multivariate splits used by the top-performing MDT (the multi-class version of Fisher’s linear

discriminant), which also uses feature selection to keep short linear combinations [18]; we use

Twoing as split evaluation measure, which has shown better classification results when max-

imizing AUC in the literature [38]; and we introduce a new pruning method that maximizes

AUC, the AUC-optimizing Cost-Complexity pruning.

We show through a statistical comparison on 110 databases that FT4cip has better classification

performance than Gama’s FT. Furthermore, we show that FT4cip excels in class imbalance

problems.

6.1 Future work

As future work, we suggest to include FT4cip in DT ensembles to improve their classification

performance. We have preliminary results that show that a Random Forest of FT4cip outper-

forms a Random Forest of MDTs.

Contrast pattern-based classifiers based on DTs, such as PBC4cip [58], have shown great classifi-

cation performance and produce interpretable models. Specifically, PBC4cip has been designed

to deal with class imbalance problems. We suggest to use FT4cip as base classifier in PBC4cip

to improve its classification performance.

We also suggest using an effective feature selection method when building logistic models to

obtain shorter linear combinations. This would make the FT4cip trees easier to interpret.

To measure how good are our strategies for dealing with class imbalance, we suggest to compare

Gama’s FT after applying data level approaches for dealing with class imbalance. First, a

balanced database is obtained by either oversampling the minority class or undersampling the

majority class. Then, Gama’s FT can be trained on the balanced database.

6.2 Research papers published

To identify the best DTs in terms of classification performance, we had to deal with the general-

ized lack of proper statistical comparison of newer DT works with previous literature. Our first

step was making the largest survey on MDTs to date, which includes a statistical comparison

of 19 MDTs in 57 databases. We published this contribution in:

Chapter 6. Conclusions 48

Leonardo Cañete-Sifuentes, Raúl Monroy, and Miguel Angel Medina-Pérez. A review and ex-

perimental comparison of multivariate decision trees. IEEE Access, 9:110451–110479, 2021.

In our second paper, we introduced our new Functional Tree, the Functional Tree for class

imbalance problems (FT4cip). We showed how a careful design that takes into account class

imbalance results in a better classification performance than the top-performing DT (Gama’s

FT). The results were published in:

Leonardo Cañete-Sifuentes, Raúl Monroy, and Miguel Angel Medina-Pérez. Ft4cip: A new func-

tional tree for classification in class imbalance problems. Knowledge-Based Systems, 252:109294,

2022.

Bibliography

[1] Nuno Gonçalo Costa Fernandes Marques de Abreu et al. Analise do perfil do cliente Recheio

e desenvolvimento de um sistema promocional. PhD thesis, 2011.

[2] Aida Ali, Siti Mariyam Shamsuddin, and Anca L Ralescu. Classification with class imbalance

problem. Int. J. Advance Soft Compu. Appl, 5(3), 2013.

[3] Mehmet Fatih Amasyali and Okan K. Ersoy. Cline: A new decision-tree family. IEEE

Transactions on Neural Networks, 19(2):356–363, 2008.

[4] Alireza Arabameri, Sunil Saha, Wei Chen, Jagabandhu Roy, Biswajeet Pradhan, and

Dieu Tien Bui. Flash flood susceptibility modelling using functional tree and hybrid en-

semble techniques. Journal of Hydrology, 587:125007, 2020.

[5] Mustafa Aydin and Nazife Baykal. Feature extraction and classification phishing websites

based on url. In 2015 IEEE Conference on Communications and Network Security (CNS),

pages 769–770. IEEE, 2015.

[6] Abdullateef O. Balogun, Kayode S. Adewole, Muiz O. Raheem, Oluwatobi N. Akande, Fa-

tima E. Usman-Hamza, Modinat A. Mabayoje, Abimbola G. Akintola, Ayisat W. Asaju-

Gbolagade, Muhammed K. Jimoh, Rasheed G. Jimoh, and Victor E. Adeyemo. Improving

the phishing website detection using empirical analysis of function tree and its variants. He-

liyon, 7(7):e07437, 2021.

[7] Alessio Benavoli, Giorgio Corani, Janez Demsar, and Marco Zaffalon. Time for a change:

a tutorial for comparing multiple classifiers through bayesian analysis. Journal of Machine

Learning Research, 18:77:1–77:36, 2017.

[8] Kristin P. Bennett, Nello Cristianini, John Shawe-Taylor, and Donghui Wu. Enlarging the

margins in perceptron decision trees. Machine Learning, 41(3):295–313, 2000.

[9] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,

106(7):1039–1082, 2017.

[10] Marco Better, Fred Glover, and Michele Samorani. Classification by vertical and cutting

multi-hyperplane decision tree induction. Decision Support Systems, 48(3):430 – 436, 2010.

49

Bibliography 50

New concepts, methodologies and algorithms for business education and research in the 21st

century.

[11] Rajen Bhatt and Abhinav Dhall. Skin segmentation dataset. UCI Machine Learning

Repository, 2012.

[12] R Bhatt. Fuzzy-rough approaches for pattern classification: Hybrid measures, mathe-

matical analysis, feature selection algorithms, decision tree algorithms, neural learning, and

applications. In Decision Tree Algorithms, Neural Learning, and Applications. 2017.

[13] Leon Bobrowski and Marek Kretowski. Induction of multivariate decision trees by us-

ing dipolar criteria. In Principles of Data Mining and Knowledge Discovery, 4th European

Conference, PKDD 2000, Lyon, France, September 13-16, 2000, Proceedings, pages 331–336,

2000.

[14] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley. Pruning

decision trees with misclassification costs. pages 131–136, 1998.

[15] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth, 1984.

[16] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[17] Carla E. Brodley and Paul E. Utgoff. Multivariate decision trees. Machine Learning,

19(1):45–77, 1995.

[18] L. Cañete-Sifuentes, R. Monroy, M. A. Medina-Pérez, O. Loyola-González, and F. Vera

Voronisky. Classification based on multivariate contrast patterns. IEEE Access, 7:55744–

55762, 2019.

[19] Laurent Candillier and Vincent Lemaire. Design and analysis of the nomao challenge

active learning in the real-world. In Proceedings of the ALRA: Active Learning in Real-world

Applications, Workshop ECML-PKDD. Citeseer, 2012.

[20] Leonardo Cañete-Sifuentes, Raúl Monroy, and Miguel Angel Medina-Pérez. A review and

experimental comparison of multivariate decision trees. IEEE Access, 9:110451–110479, 2021.

[21] Leonardo Cañete-Sifuentes, Raúl Monroy, and Miguel Angel Medina-Pérez. Ft4cip: A

new functional tree for classification in class imbalance problems. Knowledge-Based Systems,

252:109294, 2022.

[22] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceed-

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Francisco, CA, USA, August 13-17, 2016, pages 785–794, 2016.

Bibliography 51

[23] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling

wine preferences by data mining from physicochemical properties. Decision Support Systems,

47(4):547–553, 2009.

[24] Jacek Czerniak and Hubert Zarzycki. Application of rough sets in the presumptive diagnosis

of urinary system diseases. In Artificial intelligence and security in computing systems, pages

41–51. Springer, 2003.

[25] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[26] M. Elter, R. Schulz-Wendtland, and T. Wittenberg. The prediction of breast cancer biopsy

outcomes using two cad approaches that both emphasize an intelligible decision process.

Medical Physics, 34(11):4164–4172, 2007.

[27] Elaine Fehrman, Awaz K. Muhammad, Evgeny M. Mirkes, Vincent Egan, and Alexander N.

Gorban. The five factor model of personality and evaluation of drug consumption risk. In

Francesco Palumbo, Angela Montanari, and Maurizio Vichi, editors, Data Science, pages

231–242, Cham, 2017. Springer International Publishing.

[28] Kelwin Fernandes, Jaime S. Cardoso, and Jessica Fernandes. Transfer learning with par-

tial observability applied to cervical cancer screening. In Lúıs A. Alexandre, José Salvador

Sánchez, and João M. F. Rodrigues, editors, Pattern Recognition and Image Analysis - 8th

Iberian Conference, IbPRIA 2017, Faro, Portugal, June 20-23, 2017, Proceedings, volume

10255 of Lecture Notes in Computer Science, pages 243–250. Springer, 2017.

[29] Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals

Eugenics, 7:179–188, 1936.

[30] Eibe Frank, Mark A. Hall, and Ian H. Witten. The WEKA Workbench. Online Appendix

for “Data Mining: Practical Machine Learning Tools and Techniques”. Morgan Kaufmann,

4th edition, 2016.

[31] Jerome H Friedman. A recursive partitioning decision rule for nonparametric classification.

IEEE Transactions on Computers, (4):404–408, 1977.

[32] Keinosuke Fukunaga. Chapter 10 - feature extraction and linear mapping for classifica-

tion. In Keinosuke Fukunaga, editor, Introduction to Statistical Pattern Recognition (Second

Edition), pages 441–507. Academic Press, Boston, second edition edition, 1990.

[33] João Gama. Probabilistic linear tree. In Proceedings of the Fourteenth International Con-

ference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997,

pages 134–142, 1997.

[34] João Gama. Functional trees. Machine Learning, 55(3):219–250, 2004.

Bibliography 52

[35] Heng Guo and Saul B. Gelfand. Classification trees with neural network feature extraction.

IEEE Transactions on Neural Networks, 3(6):923–933, 1992.

[36] Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the

NIPS 2003 feature selection challenge. In Advances in Neural Information Processing Systems

17 [Neural Information Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver,

British Columbia, Canada], pages 545–552, 2004.

[37] David G. Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees. In

Proceedings of the 13th International Joint Conference on Artificial Intelligence. Chambéry,

France, August 28 - September 3, 1993, pages 1002–1007, 1993.

[38] Vı́ctor Adrián Sosa Hernández, Raúl Monroy, Miguel Angel Medina-Pérez, Octavio Loyola-

González, and Francisco Herrera. A practical tutorial for decision tree induction: Evaluation

measures for candidate splits and opportunities. ACM Computing Surveys, 54(1), January

2021.

[39] Brian A Johnson and Kotaro Iizuka. Integrating openstreetmap crowdsourced data and

landsat time-series imagery for rapid land use/land cover (lulc) mapping: Case study of the

laguna de bay area of the philippines. Applied Geography, 67:140–149, 2016.

[40] Brian Johnson and Zhixiao Xie. Classifying a high resolution image of an urban area using

super-object information. ISPRS Journal of Photogrammetry and Remote Sensing, 83:40–49,

2013.

[41] Brian Johnson, Ryutaro Tateishi, and Zhixiao Xie. Using geographically weighted variables

for image classification. Remote Sensing Letters, 3(6):491–499, 2012.

[42] Brian Alan Johnson, Ryutaro Tateishi, and Nguyen Thanh Hoan. A hybrid pansharpening

approach and multiscale object-based image analysis for mapping diseased pine and oak trees.

International Journal of Remote Sensing, 34(20):6969–6982, 2013.

[43] Hamdi Tolga Kahraman, Seref Sagiroglu, and Ilhami Colak. The development of intuitive

knowledge classifier and the modeling of domain dependent data. Knowledge-Based Systems,

37:283–295, 2013.

[44] Hyunjoong Kim and Wei-Yin Loh. Classification trees with unbiased multiway splits.

Journal of the American Statistical Association, 96(454):589–604, 2001.

[45] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In

Second International Conference on Knoledge Discovery and Data Mining, pages 202–207,

1996.

[46] Niels Landwehr, Mark A. Hall, and Eibe Frank. Logistic model trees. Machine Learning,

59(1-2):161–205, 2005.

Bibliography 53

[47] Xiao-Bai Li, James R. Sweigart, James T. C. Teng, Joan M. Donohue, Lori A. Thombs,

and S. M. Wang. Multivariate decision trees using linear discriminants and tabu search. IEEE

Transactions on Systems, Man, and Cybernetics, Part A (Systems and Humans), 33(2):194–

205, 2003.

[48] Xiao-Bai Li. A scalable decision tree system and its application in pattern recognition and

intrusion detection. Decision Support Systems, 41(1):112 – 130, 2005.

[49] Max Little, Patrick McSharry, Stephen Roberts, Declan Costello, and Irene Moroz. Exploit-

ing nonlinear recurrence and fractal scaling properties for voice disorder detection. Nature

Precedings, pages 1–1, 2007.

[50] Huan Liu and Rudy Setiono. Feature transformation and multivariate decision tree in-

duction. In Discovery Science, First International Conference, DS ’98, Fukuoka, Japan,

December 14-16, 1998, Proceedings, pages 279–290, 1998.

[51] Weiwei Liu and Ivor W. Tsang. Making decision trees feasible in ultrahigh feature and

label dimensions. Journal of Machine Learning Research, 18:81:1–81:36, 2017.

[52] Wei-Yin Loh and Yu-Shan Shih. Split selection methods for classification trees. Statistica

sinica, pages 815–840, 1997.

[53] Wei-Yin Loh. Improving the precision of classification trees. The Annals of Applied Statis-

tics, pages 1710–1737, 2009.

[54] Wei-Yin Loh. Fifty years of classification and regression trees. International Statistical

Review, 82(3):329–348, 2014.

[55] Victoria López, Alberto Fernández, and Francisco Herrera. On the importance of the

validation technique for classification with imbalanced datasets: Addressing covariate shift

when data is skewed. Information Sciences, 257:1–13, 2014.

[56] Asdrúbal López Chau, Jair Cervantes, Lourdes López-Garćıa, and Farid Garćıa-Lamont.

Fisher’s decision tree. Expert Systems with Applications, 40(16):6283–6291, 2013.

[57] Octavio Loyola-González. Black-box vs. white-box: Understanding their advantages and

weaknesses from a practical point of view. IEEE Access, 7:154096–154113, 2019.

[58] Octavio Loyola-González, Miguel Angel Medina-Pérez, José Fco. Mart́ınez-Trinidad,

Jesús Ariel Carrasco-Ochoa, Raúl Monroy, and Milton Garćıa-Borroto. Pbc4cip: A new

contrast pattern-based classifier for class imbalance problems. Knowledge-Based Systems,

115:100–109, 2017.

[59] D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang.

Failure analysis of parameter-induced simulation crashes in climate models. Geoscientific

Model Development, 6(4):1157–1171, 2013.

Bibliography 54

[60] R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, and J. D. Knowles. Fifty years

of pulsar candidate selection: from simple filters to a new principled real-time classification

approach. Monthly Notices of the Royal Astronomical Society, 459(1):1104–1123, 04 2016.

[61] Arturo Magana-Mora and Vladimir B Bajic. Omniga: Optimized omnivariate decision

trees for generalizable classification models. Scientific reports, 7(1):3898, 2017.

[62] Olvi L. Mangasarian, W. Nick Street, and William H. Wolberg. Breast cancer diagnosis

and prognosis via linear programming. Oper. Res., 43(4):570–577, 1995.

[63] Kamel Mansouri, Tine Ringsted, Davide Ballabio, Roberto Todeschini, and Viviana Con-

sonni. Quantitative structure-activity relationship models for ready biodegradability of chem-

icals. Journal of Chemical Information and Modeling, 53(4):867–878, 2013.

[64] Naresh Manwani and P. S. Sastry. Geometric decision tree. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 42(1):181–192, 2012.

[65] Bjoern H. Menze, B. Michael Kelm, Daniel Nicolas Splitthoff, Ullrich Köthe, and Fred A.

Hamprecht. On oblique random forests. In Machine Learning and Knowledge Discovery in

Databases - European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011,

Proceedings, Part II, pages 453–469, 2011.

[66] Jose G. Moreno-Torres, José A. Sáez, and Francisco Herrera. Study on the impact of

partition-induced dataset shift on k -fold cross-validation. IEEE Transactions on Neural

Networks and Learning Systems, 23(8):1304–1312, 2012.

[67] Amirhosein Mosavi, Ataollah Shirzadi, Bahram Choubin, Fereshteh Taromideh,

Farzaneh Sajedi Hosseini, Moslem Borji, Himan Shahabi, Aryan Salvati, and Adrienn A

Dineva. Towards an ensemble machine learning model of random subspace based functional

tree classifier for snow avalanche susceptibility mapping. IEEE Access, 8:145968–145983,

2020.

[68] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique

decision trees. Journal of artificial intelligence research, 2:1–32, 1994.

[69] Feiping Nie, Wei Zhu, and Xuelong Li. Decision tree SVM: an extension of linear SVM for

non-linear classification. Neurocomputing, 401:153–159, 2020.

[70] Tao Peng, Yunzhi Chen, and Wei Chen. Landslide susceptibility modeling using remote

sensing data and random subspace-based functional tree classifier. Remote Sensing, 14(19),

2022.

[71] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Bibliography 55

[72] Thomas Rusch and Achim Zeileis. Discussion on fifty years of classification and regression

trees. International Statistical Review, 82(3):361–367, 2014.

[73] Betul Erdogdu Sakar, M. Erdem Isenkul, Cemal Okan Sakar, Ahmet Sertbas, Fikret

Gürgen, Sakir Delil, Hulya Apaydin, and Olcay Kursun. Collection and analysis of a parkin-

son speech dataset with multiple types of sound recordings. IEEE Journal of Biomedical and

Health Informatics, 17(4):828–834, 2013.

[74] Guzmán Santafé, Iñaki Inza, and José Antonio Lozano. Dealing with the evaluation of

supervised classification algorithms. Artificial Intelligence Review, 44(4):467–508, 2015.

[75] Miriam Seoane Santos, Pedro Henriques Abreu, Pedro J. Garćıa-Laencina, Adélia Simão,

and Armando Carvalho. A new cluster-based oversampling method for improving survival

prediction of hepatocellular carcinoma patients. J. Biomed. Informatics, 58:49–59, 2015.

[76] Michael Scholz and Tristan Wimmer. A comparison of classification methods across differ-

ent data complexity scenarios and datasets. Expert Systems with Applications, 168:114217,

2021.

[77] Semeion, Research Center of Sciences of Communication. Steel plates faults data set, 2010.

dataset provided by Semeion, Research Center of Sciences of Communication, Via Sersale

117, 00128, Rome, Italy. www.semeion.it.

[78] S. Shah and P. Shanti Sastry. New algorithms for learning and pruning oblique decision

trees. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 29(4):494–505, 1999.

[79] Pedro F. B. Silva, André R. S. Marçal, and Rubim M. Almeida da Silva. Evaluation of

features for leaf discrimination. In Mohamed Kamel and Aurélio J. C. Campilho, editors,

Image Analysis and Recognition - 10th International Conference, ICIAR 2013, Póvoa do

Varzim, Portugal, June 26-28, 2013. Proceedings, volume 7950 of Lecture Notes in Computer

Science, pages 197–204. Springer, 2013.

[80] Rastislav J. R. Struharik, Vuk Vranjkovic, Stanisa Dautovic, and Ladislav A. Novak. In-

ducing oblique decision trees. In IEEE 12th International Symposium on Intelligent Systems

and Informatics, SISY 2014, Subotica, Serbia, September 11-13, 2014, pages 257–262, 2014.

[81] Raquel Teixeira, Carina Rodrigues, Carla Moreira, Henrique Barros, and Rui Camacho.

Machine learning methods to predict attrition in a population-based cohort of very preterm

infants. Scientific reports, 12(1):1–10, 2022.

[82] Athanasios Tsanas, Max A. Little, Cynthia Fox, and Lorraine O. Ramig. Objective auto-

matic assessment of rehabilitative speech treatment in parkinson’s disease. IEEE Transactions

on Neural Systems and Rehabilitation Engineering, 22(1):181–190, 2014.

www.semeion.it

Bibliography 56

[83] Turing Institute. Statlog (vehicle silhouettes) data set. This dataset comes from the Turing

Institute, Glasgow, Scotland.

[84] Priscilla Koch Wagner, Sarajane Marques Peres, Renata Cristina Barros Madeo,

Clodoaldo Aparecido de Moraes Lima, and Fernando de Almeida Freitas. Gesture unit

segmentation using spatial-temporal information and machine learning. In William Eberle

and Chutima Boonthum-Denecke, editors, Proceedings of the Twenty-Seventh International

Florida Artificial Intelligence Research Society Conference, FLAIRS 2014, Pensacola Beach,

Florida, USA, May 21-23, 2014. AAAI Press, 2014.

[85] Fei Wang, Quan Wang, Feiping Nie, Weizhong Yu, and Rong Wang. Efficient tree classifiers

for large scale datasets. Neurocomputing, 284:70–79, 2018.

[86] Fei Wang, Quan Wang, Feiping Nie, Zhongheng Li, Weizhong Yu, and Fuji Ren. A linear

multivariate binary decision tree classifier based on k-means splitting. Pattern Recognition,

107:107521, 2020.

[87] J. Weinstein, E. Collisson, and et al. The cancer genome atlas pan-cancer analysis project.

Nature Genetics, 45(10):1113–1120, Oct 2013.

[88] D. C. Wickramarachchi, B. L. Robertson, Marco Reale, C. J. Price, and J. Brown. HH-

CART: an oblique decision tree. Computational Statistics & Data Analysis, 96:12–23, 2016.

[89] DC Wickramarachchi, Blair L Robertson, Marco Reale, CJ Price, and JA Brown. A

reflected feature space for cart. Australian & New Zealand Journal of Statistics, 61(3):380–

391, 2019.

[90] I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting. Knowledge discovery on RFM model

using bernoulli sequence. Expert Syst. Appl., 36(3):5866–5871, 2009.

[91] Olcay Taner Yildiz and Ethem Alpaydin. Omnivariate decision trees. IEEE Transactions

on Neural Networks, 12(6):1539–1546, 2001.

[92] Olcay Taner Yildiz and Ethem Alpaydin. Linear discriminant trees. International Journal

of Pattern Recognition and Artificial Intelligence, 19(3):323–353, 2005.

[93] Chongsheng Zhang, Changchang Liu, Xiangliang Zhang, and George Almpanidis. An

up-to-date comparison of state-of-the-art classification algorithms. Expert Systems with Ap-

plications, 82:128–150, 2017.

[94] Fang Zhou, Claire Q, and Ross D. King. Predicting the geographical origin of music. In Ravi

Kumar, Hannu Toivonen, Jian Pei, Joshua Zhexue Huang, and Xindong Wu, editors, 2014

IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, December

14-17, 2014, pages 1115–1120. IEEE Computer Society, 2014.

Bibliography 57

[95] Maciej Zikeba, Sebastian K Tomczak, and Jakub M Tomczak. Ensemble boosted trees with

synthetic features generation in application to bankruptcy prediction. Expert Systems with

Applications, 2016.

Appendix A

List of databases

Here we show the number of objects, features, classes, and degree of class imbalance of the

110 databases used in our experimental comparison. Table A.1 shows the first 40 databases

used in the experimental comparison of all MDTs in our recent survey [20]. In table A.2, we

show 17 additional databases used in the experimental comparison of some MDTs of the same

survey. The need to divide the databases is explained in Section 3.1.2. In Table A.3, we show

53 databases that were not used in the MDT survey. All databases, except dataset3d, come

from the UCI repository [25], and in each table, we show the names exactly as found on the

repository. We also include additional citations for each database when requested by the owners.

Table A.1: Details about 40 of the 110 databases used in the experimental comparison. These
are the databases that worked with all MDTs. We show each database’s number of objects,
features (without the class), and classes. The column Imbalance shows the number of objects
of the majority class for each object of the minority class. References for the databases with a

citation request are included.

Database #Objects #Features #Classes Imbalance

Balance Scale 625 4 3 5.88

QSAR biodegradation [63] 1055 41 2 1.96

Breast Tissue 106 9 6 1.57

Climate Model Simulation Crashes

[59]

540 20 2 10.74

Cloud 108 4 4 1.33

CNAE-9 1080 856 9 1.00

Vertebral Column - two class 310 6 2 2.10

Vertebral Column - three class 310 6 3 2.50

dataset3d [18] 120 3 2 1.00

Pima Indians Diabetes 768 8 2 1.87

Continued on next page.

58

Appendix A. List of databases 59

Database #Objects #Features #Classes Imbalance

Ecoli 336 7 8 71.50

Glass Identification 214 9 6 8.44

Haberman’s Survival 306 3 2 2.78

Ionosphere 351 34 2 1.79

Iris 150 4 3 1.00

User Knowledge Modeling [43] 403 5 4 2.58

Letter Recognition 20000 16 26 1.11

Liver Disorders 345 6 2 1.38

LSVT Voice Rehabilitation [82] 126 310 2 2.00

Madelon [36] 2600 500 2 1.00

Libras Movement 360 90 15 1.00

Optical Recognition of Handwritten

Digits

5620 64 10 1.03

Parkinson Speech Dataset with Mul-

tiple Types of Sound Recordings [73]

1208 26 2 1.32

Parkinsons [49] 195 22 2 3.06

Pen-Based Recognition of Handwrit-

ten Digits

10992 16 10 1.08

seeds 210 7 3 1.00

Image Segmentation 2310 19 7 1.00

Connectionist Bench (Sonar, Mines

vs. Rocks)

208 60 2 1.14

Spambase 4601 57 2 1.54

SPECTF Heart 267 44 2 3.85

Low Resolution Spectrometer 531 100 4 3.63

Statlog (Image Segmentation) 2310 19 7 1.00

Statlog (Vehicle Silhouettes) [83] 846 18 4 1.10

Connectionist Bench (Vowel Recogni-

tion - Deterding Data)

990 10 11 1.00

Breast Cancer Wisconsin (Diagnostic) 569 30 2 1.68

Wholesale customers [1] 440 7 2 2.10

Wilt [42] 4839 5 2 17.54

Wine 178 13 3 1.48

Wine Quality - red [23] 1599 11 6 68.10

Yeast 1484 8 10 92.60

Appendix A. List of databases 60

Table A.2: Details about 17 of the 110 databases used in the experimental comparison. These
are the databases used in the experimental comparison that some MDTs could not process.
We show each database’s number of objects, number of features (without the class), number
of classes. The column Imbalance shows the number of objects of the majority class for each
object of the minority class. References for the databases with a citation request are included.

Database #Objects #Features #Classes Imbalance

Quality Assessment of Digital Colpo-

scopies - Green [28]

98 62 2 2.16

Quality Assessment of Digital Colpo-

scopies - Hinselmann [28]

97 62 2 5.47

Quality Assessment of Digital Colpo-

scopies - Schiller [28]

92 62 2 2.68

Cardiotocography 2126 41 3 9.40

Geographical Original of Music [94] 1059 68 33 6.27

Geographical Original of Music -

Chromatic [94]

1059 116 33 6.27

Steel Plates Faults [77] 1941 27 7 9.73

Forest type mapping [41] 523 27 4 2.35

Gesture Phase Segmentation - Pro-

cessed [84]

9873 32 5 2.96

Hill-Valley - without noise 1212 100 2 1.02

HTRU2 [60] 17898 8 2 9.92

MAGIC Gamma Telescope 19020 10 2 1.84

Ozone Level Detection 2534 72 2 14.84

Urban Land Cover [40] 675 147 9 4.21

Waveform Database Generator (Ver-

sion 1)

5000 21 3 1.03

Waveform Database Generator (Ver-

sion 2)

5000 40 3 1.02

Wireless Indoor Localization [12] 2000 7 4 1.00

Table A.3: Details about the remaining 53 of the 110 databases used in the experimental
comparison. We include this 53 databases that were not used in the experimental comparison
of MDTs.We show each database’s number of objects, number of features (without the class),
number of classes. The column Imbalance shows the number of objects of the majority class
for each object of the minority class. References for the databases with a citation request are

included.

Database #Objects #Features #Classes Imbalance

Internet Advertisements 3279 1558 2 6.14

Continued on next page.

Appendix A. List of databases 61

Database #Objects #Features #Classes Imbalance

Thyroid Disease 3772 23 3 257.79

Arcene [36] 200 10000 2 1.27

Arrhythmia 452 279 16 122.50

Statlog (Australian Credit Approval) 690 14 2 1.25

banknote authentication 1372 4 2 1.25

Breast Cancer Wisconsin (Original)

[62]

699 9 2 1.90

Car Evaluation 1728 6 4 18.62

Cervical cancer (Risk Factors) -

Biopsy [28]

858 32 2 14.60

Cervical cancer (Risk Factors) - Cy-

tology [28]

858 32 2 18.50

Cervical cancer (Risk Factors) - Hin-

selmann [28]

858 32 2 23.51

Cervical cancer (Risk Factors) -

Schiller [28]

858 32 2 10.59

Crowdsourced Mapping [39] 300 28 6 2.17

Credit Approval 690 15 2 1.25

Acute Inflammations - d1 [24] 120 6 2 1.03

Acute Inflammations - d2 [24] 120 6 2 1.40

Drug consumption (quantified) - alco-

hol [27]

1885 12 7 22.32

Drug consumption (quantified) - am-

phet [27]

1885 12 7 16.00

Drug consumption (quantified) - ben-

zos [27]

1885 12 7 11.90

Drug consumption (quantified) - caff

[27]

1885 12 7 138.50

Drug consumption (quantified) -

cannabis [27]

1885 12 7 3.31

Drug consumption (quantified) - choc

[27]

1885 12 7 269.00

Drug consumption (quantified) - coke

[27]

1885 12 7 54.63

Drug consumption (quantified) -

crack [27]

1885 12 7 813.50

Continued on next page.

Appendix A. List of databases 62

Database #Objects #Features #Classes Imbalance

Drug consumption (quantified) - ec-

stasy [27]

1885 12 7 48.62

Drug consumption (quantified) -

heroin [27]

1885 12 7 123.46

Drug consumption (quantified) - ke-

tamine [27]

1885 12 7 372.50

Drug consumption (quantified) -

legalh [27]

1885 12 7 37.72

Drug consumption (quantified) - lsd

[27]

1885 12 7 82.23

Drug consumption (quantified) - meth

[27]

1885 12 7 36.64

Drug consumption (quantified) -

mushrooms [27]

1885 12 7 245.50

Drug consumption (quantified) - nico-

tine [27]

1885 12 7 5.65

Drug consumption (quantified) - se-

mer [27]

1885 12 5 1877.00

Drug consumption (quantified) - vsa

[27]

1885 12 7 207.86

gene expression cancer RNA-Seq [87] 801 20531 5 3.85

Gisette [36] 7000 5000 2 1.00

HCC Survival [75] 165 49 2 1.62

Hill-Valley - with noise 1212 100 2 1.00

ILPD (Indian Liver Patient Dataset) 583 10 2 2.49

Leaf [79] 340 14 36 2.00

Mammographic Mass [26] 961 5 2 1.16

Nomao [19] 34465 118 2 2.50

Page Blocks Classification 5473 10 5 175.46

Polish companies bankruptcy data -

1year [95]

7027 64 2 24.93

Polish companies bankruptcy data -

2year [95]

10173 64 2 24.43

Polish companies bankruptcy data -

3year [95]

10503 64 2 20.22

Continued on next page.

Appendix A. List of databases 63

Database #Objects #Features #Classes Imbalance

Polish companies bankruptcy data -

4year [95]

9792 64 2 18.01

Polish companies bankruptcy data -

5year [95]

5910 64 2 13.41

Statlog (Landsat Satellite) 6435 36 7 2.45

SECOM 1567 590 2 14.07

Skin Segmentation [11] 245057 3 2 3.82

Blood Transfusion Service Center [90] 748 4 2 3.20

Wine Quality - white [23] 4898 11 7 439.60

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Recent applications of Functional Trees
	1.3 Objectives and contributions
	1.4 Organization

	2 Induction of functional trees
	2.1 Common structure and construction of Decision Trees
	2.1.1 A basic example of Decision Tree induction.

	2.2 Family of Decisions Trees that use feature combinations
	2.2.1 Multivariate Decision Trees
	2.2.2 Model Trees

	2.3 Functional Tree construction
	2.4 Why there are no new FT algorithms?
	2.5 Chapter conclusions

	3 A protocol for a fair comparison of DT algorithms
	3.1 Experiments
	3.1.1 Experiment 1. Evaluating FT4cip design decisions
	3.1.2 Experiment 2. Demonstrating that Model Trees outperform Multivariate Decision Trees MDT MT
	3.1.3 Experiment 3. Demonstrating that Functional Trees outperform Model Trees MT FT
	3.1.4 Experiment 4. Demonstrating that FT4cip has better classification performance than Gama's FT
	3.1.5 Experiment 5. Comparing FT4cip and Gama's FT in imbalanced databases

	3.2 Bayesian signed-rank test
	3.3 Databases
	3.4 Evaluation measures
	3.5 Chapter conclusions

	4 Improving Functional Trees: The Functional Tree for class imbalance problems
	4.1 Design decisions for building FT4cip
	4.1.1 Generating candidate splits
	4.1.1.1 Nominal features

	4.1.2 Split evaluation function
	4.1.3 Stop conditions
	4.1.4 Approach to multi-class problems
	4.1.5 Pruning
	4.1.6 Split type
	4.1.7 Feature selection
	4.1.8 Classifier for the leaves

	4.2 FT4cip training algorithm
	4.3 Results of Experiment 1. Evaluating FT4cip design decisions
	4.3.1 Using simple stop conditions
	4.3.2 Using binary splits for nominal features
	4.3.3 Using linear multivariate splits
	4.3.4 Using the appropriate split evaluation measure
	4.3.5 Using logistic models
	4.3.6 Using an appropriate pruning method

	4.4 Runtime
	4.5 Chapter conclusions

	5 Comparing FT4cip against the DT family that uses linear combinations
	5.1 Results of Experiment 2. Demonstrating that Model Trees outperform Multivariate Decision Trees MDT MT
	5.2 Results of Experiment 3. Demonstrating that Functional Trees outperform Model Trees MT FT
	5.3 Results of Experiment 4. Demonstrating that FT4cip has better classification performance than Gama's FT
	5.4 Results of Experiment 5. Comparing FT4cip and Gama's FT in imbalanced databases
	5.5 Chapter conclusions

	6 Conclusions
	6.1 Future work
	6.2 Research papers published

	A List of databases

