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Abstract 

 

Ambient air pollution is considered the greatest environmental threat to human 
health. Air quality models (AQM) describe the atmospheric dynamics of air 
pollutants and can help identify source contributions to air quality. Deterministic 
AQM estimate the relationship between sources of pollution and their effects on 
ambient air quality by simulating the evolution over time of three-dimensional fields 
of concentrations of pollutant species. However, a key input to deterministic AQM 
are detailed, spatially and temporally-resolved emission inventories, which are 
known to carry large uncertainties. On the other hand, recent advances in data 
science allows for the use of supervised machine learning methods, such as 
Multivariate Linear Regression Model (MLRM) along socioeconomic historical data 
to explore the evolution of pollution sources through time. In this work, the use of 
inverse modeling mathematical tools to improve emission inventories for 
deterministic air quality modeling applications, and the application of supervised 
machine learning tools to quantify the contribution of energy and economic factors 
to air pollution are explored. An analysis performed on emission inventories 
developed for the Monterrey Metropolitan area exhibited large differences (in the 
range of -3.6% to +51.7%) for recent published criteria pollutant inventories and 
demonstrated the need to assess techniques to reduce emission inventories 
uncertainty. A literature review on regularization methods showed that these 
mathematical techniques are increasingly being used in the atmospheric sciences 
in inverse modeling contexts. As study case, some regularization methods 
(namely, Tikhonov regularization, Truncated Singular Value Decomposition, and 
Damped Singular Value Decomposition) in combination with regularization 
parameter selection methods (Generalized Cross Validation, L-Curve, and 
Normalized Cumulative Periodograms), along a Bounded Variable Least Squares 
method, were used with a deterministic photochemical air quality model to compute 
scaling factors for the correction of a criteria-pollutant emission inventory for 
Guadalajara Metropolitan Area, Mexico. The inverse modeling with regularization 
approach was able to adequately resolve ozone concentrations, a secondary 
pollutant, by adjusting its precursor emissions, obtaining Daily Indices of 
Agreement up to 0.95 (compared to 0.89 of the base case). Also, the non-
systematic error was reduced. However, results also reflected that regularization 
methods alone cannot resolve all uncertainties, and that incorporating known 
available data could be useful to better understand pollution sources. Therefore, 
MLRM were developed by correlating long-term economic and energy indicators, 
routinely reported by Mexican government agencies, with monthly-averaged air 
pollution data for the Monterrey, Guadalajara and Mexico City Metropolitan Areas. 
Although socioeconomic variables do not explain all variance in the observed 
pollutant concentrations, they allow the identification and analysis of activities with 
impact in air quality. Moreover, the resulting MLRM models displayed similar 
statistical performance and compared favorably to other studies found in literature. 
It is concluded that both approaches (deterministic and machine-learning models) 
are data-driven at core and can help design relevant public policies.  
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Chapter 1 
 
Introduction 
 
1.1 Background 
 
Air quality modeling estimates the relationship between sources of pollution and 

their effects on ambient air quality. Air quality models describe the atmospheric 

dynamics of air pollutants, can help identify source contributions to air quality, and 

one of their main applications is in the development of strategies to reduce their 

concentration (Environmental Protection Agency, 2022). In the last decades, a 

variety of different air quality models have been developed, ranging from those 

based upon simple to the most sophisticated approaches. Because models differ 

one of another, different model attributes can be used for their classification. Table 

1.1 lists some of the most important types of air quality models. The most 

significant factor, however, which divides air pollution models into two independent 

groups is the basic model structure: deterministic and non-deterministic models 

(Juda-Rezler, 1991). 

 

Table 1.1 Types of air quality models based on their attributes (Juda-Rezler, 1991) 

Attribute Size Time 
horizon 

Pollutant of 
concern 

Basic model 
structure 

• Deterministic 
• Non-deterministic 

o Statistical 
o Physical (fluid) 

• Local 
• Regional 
• National 
• Global 

• Hour 
• Day 
• Month 
• Year 
• Decade 

• Criteria 
pollutants 
(e.g. SO2, 
NOx, HC, 
PM, CO) 

• Photoche-
mical 
oxidants 

• Secondary 
pollutants 

• Greenhouse 
gases 

Time resolution • Steady-state 
• Time-dependent 

Frame of reference • Eulerian 
• Lagrangian 

Dimensionality of 
computational 
domain 

• 1D 
• 2D 
• 3D 
• Multilevel 

Methods of model 
equations resolution  

• Analytical 
• Numerical (various 

methods) 
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In general, deterministic air quality models attempt to simulate the evolution over 

time of three-dimensional fields of concentrations of pollutant species. The 

chemical species described by these models can be inert or reactive, and the 

models can be applied at local (close to emissions), regional or continental scales. 

 

If ci represents the concentration of the species i in gas phase, its evolution over 
time is governed by a differential equation of reaction-diffusion-advection: 

 
𝝏𝒄𝒊

𝝏𝒕
+  𝒅𝒊𝒗 (𝑽𝒄𝒊) =  𝒅𝒊𝒗 (𝝆𝑲𝜵

𝒄𝒊

𝝆
) + 𝑿𝒊(𝒄, 𝒙, 𝒕) − 𝜦𝒊(𝒙, 𝒕) 𝒄𝒊 + 𝑺𝒊(𝒙, 𝒕)             (1.1) 

 

where c represents concentration, x stands for position, t is the time, V is the 

average wind speed, ρ is the density of the air, K is the matrix of turbulent 

dispersion coefficients, Λi is the drag coefficient, Si is the term representing 

emissions by point sources (volumetric), as given by emission inventories, and Χi is 

the chemical source term that describes chemical reactions and whose response is 

nonlinear for many reactive species.  

 

One of the most important components of air quality models is the photochemical 

mechanism that describes how volatile organic compounds (VOCs) and nitrogen 

oxides (NOx) interact to produce ozone (O3) and other oxidizing species (Yu et al., 

2010). Thus, for air quality modeling applications, different mechanisms have been 

developed. One example is the chemical mechanism Carbon Bond (CB05) 

(Yarwood et al., 2005) which includes 59 species (between organic and inorganic) 

and 156 chemical reactions (Yu et al., 2010). Among the chemical species that 

CB05 can treat are ethane, olefins, terpenes, formic acid, acetic acid, methanol, 

ethanol, peroxyacetic acid, among others. Another alternative chemical mechanism 

is SAPRC99, which simulates the photochemistry of 80 species through 214 

reactions. Although studies have been conducted comparing its performance in 

predicting specific type of pollutants, e.g., ozone, it has been concluded that no 

mechanism – among CB5, CB4 and SAPRC99 – performs systematically better 

than another (Yu et al., 2010).  
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Likewise, air quality models need to be fed with detailed meteorological 

information, particularly for parameters such as wind speed and direction, 

temperature, humidity, pressure and solar radiation. Typically, this information is 

generated using mesoscale meteorological models such as the Meteorological 

Mesoscale Model (MM5) (Grell et al., 1994) or the Weather Research Forecasting 

Model (WRF) (Skamarock et al. 2005). Despite the general uncertainties 

associated with the application of these models, they have been widely used and 

validated for air quality applications.  

 

In addition to a robust chemical mechanism and reliable meteorological 

information, deterministic air quality models require detailed emission inventories, 

which even today carry great uncertainty despite the constant efforts made to 

improve them (Napelenok et al., 2011). Figure 1.1 (Li et al. 2021) presents a typical 

air pollution modeling system. 

 

 

Figure 1.1. Air quality model and its inputs (From: Li et al. 2021). 

 

Emission 
inventories 
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On the other hand, non-deterministic models can be further divided in two groups: 

statistical and physical (fluid) models (Juda-Rezler, 1991). Statistical models 

calculate pollutants´ concentration by statistical methods from meteorological and 

other parameters after a statistical relationship has been obtained empirically from 

measured concentrations, while physical models are those in which nature is 

simulated on a smaller scale in the laboratory. 

 

Most statistical models proposed in air pollution are applications of well-known 

statistical methods used in meteorology. They vary from simple contingency tables 

through univariate and multiple regression models to time-series techniques. The 

statistical models are essentially empirical, because even the most complex ones 

are based on a group of observations (Juda-Rezler, 1991).  

 

Lately, the development of computer science and the continuous improvement and 

innovation of statistical prediction methods, has allowed the combination of 

traditional regression methods and spatial statistical methods into more complex 

analysis methods, such as machine learning (ML) approaches. ML refers to the 

automated detection of meaningful patterns in data, and strictly rely on historical 

data to make predictions. Machine learning algorithms can be classified according 

to the desired outcome of the algorithm. Supervised learning generates a function 

that maps inputs to desired outputs. The supervised learning task can be 

formulated as a classification problem: The learner is required to “learn”, in other 

words, to approximate the behavior of a function which maps a vector into one of 

several classes by looking at several input-output examples of the function 

(Osinsawo et al. 2017).  

 

Some examples of supervised ML techniques include linear classifiers, logistic 

regression, Naïve Bayes classifier, perceptron, Support Vector Machine (SVM), 

quadratic classifiers, K-means clustering, boosting, decision trees, random forest 

(RF), neural networks (NN), and Bayesian networks (Osinsawo et al. 2017), which 

have emerged in the atmospheric sciences in recent years with promising results 
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(Carmona et al. 2021, Taheri Shahraiyni et al. 2016, Liao et al. 2021). Figure 1.2 

presents a simplified representation of a typical supervised ML algorithm. 

 

 
Figure 1.2. Simplified representation of a supervised machine learning algorithm. 

(From: Javatpoint, 2022). 

 

Among supervised LM techniques, multivariate linear regression (MLR) models are 

one of the simplest algorithms. Regression analysis is a statistical tool that 

investigates relationships between variables. Usually, researchers seek to 

ascertain the causal effect of independent variables y upon dependent variables xi. 

When a model is used to forecast 𝒚 for a particular set of values of xi, it is important 

to measure how large the error of the forecast might be. All these elements, 

including dependent and independent variables and error, are part of a regression 

analysis, and the resulting forecast equation is often called a regression model. 

Regression analysis is a basic technique in air pollution forecasting (Bai et al. 

2018). Univariate linear regression can be expressed as: 

 

   𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙 + 𝒆                                                     (1.2) 

 

Multiple-linear regression (MLR) models are given as: 
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𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙𝟏 + 𝒃𝟐𝒙𝟐 + ⋯ + 𝒃𝒊𝒙𝒊 + 𝒆𝒊                                  (1.3) 

 

where 𝒚 is the dependent variable, 𝒙 and 𝒙𝒊 are the independent variables, 𝒃 and 

𝒃𝒊are the regression coefficients, and 𝒆 is the error. It has a normal distribution with 

a mean of 0, which implies the conditional probability of 𝒚 given 𝒙 is normal too. 

 

Wilks (2006) presents a thorough review of basic statistical tools and methods 

applied in atmospheric sciences, from empirical distributions and exploratory data 

analysis to statistical forecasting and multivariate statistics. Maçaira et al. (2018) 

performed a systematic literature review on time series analysis with explanatory 

variables, which encompasses methods to model and predict correlated data 

considering additional information. In the literature, multiple applications of MLR 

models to study air quality have been documented, e.g. Rosenlund et al. (2008) 

Ganesh et al. (2017), Bai et al. (2018), Ganesh et al. (2019), Abdullah et al. (2020), 

Shams et al. (2021), He et al. (2022).  

 

Computational advances have also spurred the use of Computational Fluid 

Dynamics (CFD) models to study microscale pollutant dispersion (e.g. Pantusheva 

et al. 2022). CFD models can be classified as a type of deterministic models as 

they solve the Navier-Stokes equation and can be used to explicitly calculate 

turbulences at very fine grid resolution and in complex geometries, although they 

require large computational power (Leelőssy et al. 2014) 

 

1.2 Problem Statement and Context 
 
The potential uses of deterministic air quality models are all very important and 

convenient, for example, in the assessment of emission change impacts, 

identification of source impacts, support of potential regulatory direction changes, 

evaluation of impacts of climate change on surface level air quality, design of 

monitoring and observation networks, and providing spatial pollutant fields for 

health and exposure assessments. However, the uncertainty inherent in emissions 
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inventories has significantly reduced the models´ ability to diagnose and forecast 

air quality and its impacts (Lindley et al., 2000).  Thus, of the entire atmospheric 

modeling system, the generation of emission inventories remains the process that 

(by far) provides the greatest uncertainty in the applications of such modeling 

systems. 

This is relevant since the emission control strategies that arise from the use and 

analysis of the results derived from air quality models could be erroneous by 

employing an emissions inventory that is intrinsically flawed, or the associated 

uncertainties are so considerable that it is not possible to decide based on the 

results of the modeling. 

Emission inventories are usually developed from the bottom-up method, which is 

based on the analysis of historical statistics by activity (such as energy 

consumption and industrial production) or on emission factors specific to source or 

region. Although inventories constructed in this way represent the direct method for 

estimating existing emissions, it is difficult to calculate the characteristic uncertainty 

of statistics, emission factors, random errors in measurement devices, poorly 

determined processes, time profiles, and spatial placement factors. Moreover, 

estimating current emissions by this method is particularly difficult because the 

publication of the statistics necessary for their calculation usually presents a lag 

period of between two and five years with respect to their sampling and/or 

calculation (Cheng et al. 2021). For example, in Mexico, national criteria pollutant 

emission inventories have been published for base years 2005, 2008, 2013 and 

2016, only (Secretaría de Medio Ambiente y Recursos Naturales, 2022). 

 
1.4 Solution Overview 
 
One way to reduce the uncertainty of the output results of air quality models is to 

use inverse modeling or data assimilation to improve the quality of information 

provided in emissions inventories. The general idea of this technique is to use data 

measured of ambient air pollutants to feed back into the air quality model and 

"force" it to properly reproduce the concentration fields by modifying certain input 
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data or parameters of the model, typically those that are considered the most 

uncertain. See Figure 1.3 for details.  

 

Figure 1.3. Inverse modeling approach for a photochemical modeling application. 

 

There are numerous applications of using inverse modeling to suggest changes in 

emission inventories, from global (Pétron et al., 2002) or continental (Elbern et al., 

2007) scales to local or urban scales (Quélo et al., 2005). Examples of these 

applications include: estimation of NOx emissions from satellite observations 

(Jaeglé et al., 2005; Martin et al., 2006; Wang et al., 2007), the assimilation of 

chemical concentrations in the calculation of inventories of O3 and reactive 

nitrogen (Pierce et al., 2007), the estimation of NH3 emissions in the United States, 

and the modeling of dynamic particle growth by condensation (Henze et al., 2004; 

Sandu et al., 2005).  

In this context, assimilation techniques such as three-dimensional variational 

methods (3DVAR) (Barker et al., 2004; Li et al. 2013; Hu et al. 2022) or four 

dimensions (4DVAR) (e.g. Meirink et al., 2008; Cao et al. 2020), the Kalman filter 

(e.g. Kong et al. 2019), or the use of the air quality model adjunct (e.g. Hakami et 

al., 2005) have been applied in solving inverse modeling problems. Additionally, 

techniques such as Green's function (Dougherty and Rabbitz 1979; Kramer et al., 

1984), Automatic Differentiation in Fortran (ADIFOR) (Bischof et al., 1992), and the 

Emission inventories 
(area, mobile, point 

sources) 

Observed concentrations 
at monitoring sites 

New emission values that 
minimize the difference 
between observed and 

simulated concentrations 

Direct model 
d = G m ± e 

Inverse model 

Spatial and temporal 
distribution of pollutant 

concentrations Other input data 
 

 (This data remains as in 
the base case) 
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Direct Decoupled Method (DDM) (Dunker, 1984; Dunker et al. 2002, Arter and 

Arunachalam, 2021) have been used in the sensitivity analysis of these same air 

quality models. Recently, Cheng et al. (2021) developed a new inversion method 

for emission sources modeling, based on the three-dimensional decoupled direct 

(DDM-3D) sensitivity analysis module in the Community Multiscale Air Quality 

(CMAQ) model and the 3DVAR data assimilation technique. 

Although most applications use the variational approach (3DVAR or 4DVAR), it is 

necessary to make some modifications to traditional methods, such as solving the 

minimization function with constraints, in such a way as to ensure that we obtain 

positive solutions (there can be no negative emissions), balance errors or add 

terms that taken account for co-location of sources and observations (Saide et al., 

2009). Another approach is performing inverse modeling from regularization 

techniques, a formal method that has been little explored. 

Given the above, this work aims to explore the use of mathematical tools of inverse 

modeling based on matrix regularization in conjunction with air quality models with 

the aim of studying their possible advantages in applications that seek to identify 

possible improvements in the emission inventories required by the air quality 

model, and thus reduce the uncertainty in these emissions and improve the overall 

performance of the atmospheric modeling system.   

On the other hand, with the increasing availability of large amounts of historical 

data, it has been possible to complement the benefits of deterministic models with 

the use of empirical models to answer questions related to air pollution. MLR 

models are globally and widely used over many years as a method for air pollution 

forecasting, which can help to attempt the uncertainty of the future simply by 

relying on past and current data for decision-making.  

 
1.3 Research Questions 
 
In this work, the following research questions are addressed: 
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1. Does uncertainty exist in emission inventories in Mexican metropolitan areas?  

2. Are there significant differences among emission inventories in Mexican 

Metropolitan Areas? 

3. Can a deterministic quality model accurately reproduce pollutant 

concentrations in a Mexican metropolitan area? 

4. Are matrix regularization techniques adequate tools for improving air 

emissions inventories? 

5. Does the use of mathematically “corrected” emission inventories improve air 

quality models performance? 

6. What energy and economic indicators are structurally related to air pollution in 

Mexican cities? 

7. Can multivariate linear regression models based on energy and economic 

variables accurately represent air quality in Mexican metropolitan areas? 

8. What are the main economic activities influencing air quality in Mexican 

metropolitan areas? 

 
1.4 Objectives 
 

The purpose of this research is to explore data-driven based tools, in specific 

inverse modeling mathematical tools to improve emission inventories for air quality 

modeling applications, and to quantify the contribution of energy and economic 

factors to air pollution.  

The specific objectives are: 

1. To identify inverse modeling mathematical tools based on matrix regularization 

that can be implemented in conjunction with air quality models to improve 

emission inventories and air quality models performance. 

2. To build and assess multivariate linear regression models based on energy 

and economic variables to estimate air quality in Mexican metropolitan areas. 

 
1.6 Dissertation Organization 
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This dissertation is organized as follows: 

This Chapter 1 serves as an introduction to the problem object of this thesis. It 

describes what an air quality model consists of, its advantages and disadvantages, 

and the information requirements they have, emphasizing the importance of having 

detailed and accurate emissions inventories. It also introduces the possibility of 

using inverse modeling and matrix regularization tools for the mathematical 

correction of currently available inventories, and reflects on the use of probabilistic 

models, such as Multivariate Linear Regression Models, as complementary tools to 

deterministic models, to better understand urban air pollution main drivers and 

emission sources. 

Chapter 2 presents an exploratory analysis of existing air pollution inventories for 

criteria pollutants in Mexico, specifically for the Monterrey Metropolitan Area, and 

discusses on the differences among inventories produced by different agencies, 

and their implications for air quality modeling applications. A study case is 

described, in which the statistical performance of the Community Multiscale Air 

Quality Model (CMAQ) is tested using different emission inventories for a modeling 

domain centered in the Monterrey Metropolitan Area.  

Chapter 3 consists of a review of matrix regularization methods and their 

applications in atmospheric sciences. The chapter presents an overview of existing 

regularization methodologies, with special emphasis on direct methods, such as 

Tikhonov regularization, ridge regression, truncated singular value decomposition, 

and damped singular decomposition, which differ from each other according to the 

mathematical form that this functional has. It also briefly discusses some of the 

most common regularization parameter selection methods, such as the 

discrepancy principle, the unbiased predictive risk estimator, generalized cross-

validation, the L-curve method, normalized cumulative periodograms and hybrid 

methods, which are briefly described. It also presents the concept of regularization 

with restrictions and describes some efforts in this regard. Finally, as an example, 

some applications of direct regularization methods in the field of atmospheric 

sciences are listed. 



12 

 

Chapter 4 is a preliminary application of inverse modeling and some of the 

methods identified in Chapter 3, in conjunction with an exploratory air quality 

model, to identify that combination of regularization method and regularization 

parameter selection technique that identifies and corrects more rightly the possible 

errors within the emissions inventory. This preliminary application is made for a 

domain centered in the Guadalajara Metropolitan Area.  

Chapter 5 investigates the regional air quality characteristics and its drivers in 

three Mexican metropolitan areas: Monterrey, Guadalajara and Mexico City, and 

analyzes the spatial and temporal characteristics of air quality, as well as the 

influence of energy and economic variables, routinely recorded by government 

agencies on a monthly basis, by using statistical analysis methods. The study 

provides a theoretical basis for identifying and quantifying the causes of urban air 

pollution and allows the formulation of pollution control measures in Mexico. (Yang 

et al., 2022). 

Finally, Chapter 6 presents the conclusions and recommendations of this study. 
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Chapter 2 
 
Analysis of anthropogenic emission inventories available for the 
Monterrey Metropolitan Area 

 

2.1 Introduction 
 
An emission inventory is a structured set of emission data distinguishing different 

pollutants and source categories, for a certain geographical location and period, 

and is a key input to deterministic air quality models, as it provides the chemical 

forcing component (Pouliot et al. 2015). However, emission inventories have been 

identified as one of the most important sources of uncertainty in air quality 

modeling applications (Guevara et al. 2017).  

 

The estimation of emissions requires information concerning activity factors (e.g. 

total amount of fuel consumed) and emission factors per activity (e.g. amount of 

pollutant emitted per activity unit), and can be computed as the product of emission 

factors times the activity data: 

 

𝑬𝑰 =  ∑ (𝑬𝑭𝒊 × 𝑨𝑭𝒊)𝒊                                                (2.1) 

 

Where 𝑬𝑰 is the total emission inventory, 𝑬𝑭𝒊 is the emission factor for the 

emissions of a given pollutant from source category i, and 𝑨𝑭𝒊 is the activity factor 

for source category i. Emission factors and activity data are classified into three 

tiers to differentiate their reliability and methodological complexity. Tier 1 is the 

basic method, while Tier 3 involves the use of the most specific data to produce 

more accurate emission estimates. 

 

There are two main approaches for estimating emission inventories: bottom-up and 

top-down methods, both of which have have advantages and disadvantages. For 
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example, bottom-up approaches rely on specific information for each sector or 

source category, allowing for higher spatial and temporal detail but requiring larger 

amounts of data and resources. For example, local emission inventories are 

usually constructed using bottom-up methodologies, based on local energy and 

fuel consumption data which are aggregated to the required spatial scale (e.g., 

Hestia et al. 2019). 

 

On the other hand, top-down approaches are based on the disaggregation of 

variables defined at regional or national level in smaller areas based on variables 

thar serve as proxies for specific activities. National Inventory Reports (NIR) 

(UNFCCC, 2019) are country-level, yearly emissions typically estimated through a 

top-down approach, based on energy statistics. NIR can be spatially and 

temporally disaggregated (scaled-down) to a certain level using proxies. Ultimately, 

the selection of method depends on the emission source considered, data 

availability and spatial coverage (Guevara et al. 2017).  

 

As described above, the generation of emission inventories is a complex task that 

requires capacity building, collection of large amounts of data and development of 

methodologies for the estimation of emissions from different sources. Therefore, 

inventories are not updated frequently, and commonly, the methodologies used to 

build them are revised and changed from one period to another. For these 

reasons, during the compilation of an emission inventory, uncertainties are 

introduced at different levels (e.g., methodology, magnitude, timing, locations), and 

increasingly more attention is given to this topic.  

 

For greenhouse gases inventories, parties of the United Nations Framework 

Convention on Climate Change (UNFCCC) require that NIR include an 

assessment of the uncertainties in the underlying data and an analysis of the 

uncertainties in the total emissions following Intergovernmental Panel on Climate 

Change (IPCC) guidelines. The simplest uncertainty analysis is based on simple 

equations for combining uncertainties from different sources, e.g., Tier 1 approach. 
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A more advanced approach is a Monte Carlo simulation, which allows for non-

normal uncertainty distributions (Tier 2 approach). Monte Carlo simulations for 

uncertainty analysis take as inputs the uncertainty distribution for each variable and 

an equation for the calculation of a desired quantity. The desired quantity is 

repeatedly (usually, more than 100 times) calculated by randomly drawing from the 

specified uncertainty distributions of the input variables, with new random drawings 

each time, until a resulting uncertainty distribution of the calculated value is 

obtained (Albert, 2020). The Tier 2 approach has been used for estimating 

uncertainty of national emission inventories of Finland (Monni et al., 2004) and 

Denmark (Fauser et al., 2011, Super et al. 2020). 

 

The uncertainties in emission inventories are important to understand for several 

reasons. First, knowledge of uncertainties helps to pinpoint emission sources or 

areas that require more scrutiny (Monni et al., 2004). Second, knowledge of 

uncertainties in prior emission estimates is an important part of inverse modelling 

frameworks, which can be used for emission verification and in support of decision-

making (Andres et al., 2014). If uncertainties are not properly considered, there is a 

risk that the uncertainty range does not contain the actual emission value. In 

contrast, if uncertainties are overestimated, the initial emission inventory gives little 

information about the actual emissions and more independent observations are 

needed.  

 

Although the estimation of uncertainty intervals remains a complex task, some 

emission inventories have tried to estimate them. For example, Streets et al. 

(2003) estimated that the uncertainties of Chinese emissions varied from −12% 

∼13% for SO2 to −83% ∼495% for organic carbon (expressed as the lower and 

upper bounds of a 95% confidence interval, CI, around a central estimate). Zhao et 

al. (2011) reported uncertainties (95% CI around the central estimates) of Chinese 

emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC), and organic 
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carbon (OC) in 2005 to be −14%∼13%, −13%∼37%, −11%∼38%, −14%∼45%, 

−17%∼54%, −25%∼136%, and −40%∼121%, respectively.  

 

In Mexican inventories, emission estimates for specific sources have also reported 

large degrees of uncertainty. For example, when preparing the BRAVO emissions 

inventory (BRAVO-EI), Southern California Edison and the US Environmental 

Protection Agency estimated that the Carbón power plant -the largest SO2 source 

in the state of Coahuila, Mexico, emitted approximately 241,000 ton/year of SO2, 

which differed in 58.5% from the 152,000 ton/year estimate provided by Secretariat 

of Energy of Mexico (Secretaría de Energía) (Kuhns et al. 2005). Discrepancies 

also arose once the National Emission Inventory for the Six Norther Border States 

of Mexico (NBS-EI) was completed in April 2004 and compared to the 1999 

BRAVO-EI. Overall, SO2 emissions were a factor of 1.4 lower in the BRAVO-EI 

than in the NBS-EI, for regions outside of Coahuila. Emissions of NH3 and PM10 

were lower in the BRAVO EI than in the NBS-EI by 15 and 32%, respectively. 

However, with regards to CO and VOC emissions, the BRAVO-EI values exceeded 

the NBS-EI values by factors of 3.8 and 1.8, respectively, and NOx and PM2.5 

emissions were within 10% of each other for the two inventories (Kuhn et al. 2005). 

The use of different estimation methodologies and source classification criteria 

(e.g. point and area sources) may explain some of the exhibited differences (Kuhn 

et al. 2005). 

 

The BRAVO-EI was also compared with non-U.S. emissions from the EDGAR v3 

Emission Database for Global Atmospheric Research (EDGARv3-EI), an 

anthropogenic emissions inventory generated for global atmospheric and global 

climate modeling. Details can be found in Kuhn et al. (2005). The exercise focused 

on SO2 emissions, and concluded that the EDGARv3-EI SO2 emissions in the 10 

northernmost Mexico states within the BRAVO-EI were 70% higher than the 

BRAVO-EI. 
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Regarding greenhouse gases (GHG) emissions estimations, most of Mexico’s 

emissions have been calculated using the default Tier 1 methods from the 

Intergovernmental Panel on Climate Change (IPCC) with generic emission factors, 

which entails a large degree of uncertainty for some sectors. For example, 

Mexico’s methane emissions from oil and gas have 56% and 40% uncertainty, 

respectively, according to the national inventory (Scarpelli et al. 2020). Overall, the 

Instituto Nacional de Ecología y Cambio Climático reports uncertainty estimates for 

national emissions by subsector as ±2σ relative error standard deviations (INECC, 

2018). 

 

More recently, Scarpelli et al. (2020) prepared a gridded inventory of Mexico's 

anthropogenic methane emissions for 2015 with 0.1°×0.1° resolution (≈10×10 km2) 

and detailed sectoral breakdown. One of the major findings was that large 

differences between their inventory and previous gridded emission inventories for 

Mexico, in particular EDGAR v5, existed. EDGAR v5 estimated total CH4 

emissions 25% higher than the national inventory. Particularly, solid waste disposal 

emissions were a factor of two greater, coal emissions 81% lower, and oil/gas 

emissions 78% higher. Of interest, the Mexico City GHG 2016 Emission Inventory 

reported that 70% of CH4 emissions originated from solid waste, consistent with 

Scarpelli et al.´s CH4emission inventory (74%), while EDGAR v5 reported 74% of 

its emission from wastewater. 

 

2.2 Research framework 
 
This section presents a comparison of the emission inventories published for the 

Metropolitan Area of Monterrey (MMA) and the state of Nuevo León with the aim of 

discerning if significant differences exist among Nuevo León´s emissions 

inventories and their suitability for air quality modeling applications. This activity 

was carried out in three stages: A first stage, where the inventories available until 

the base year 2005 were explored and compared one to another.  
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In a second stage, as study case, a modeling application centered in the Monterrey 

Metropolitan Area, was executed to analyze the implications of using different 

emission inventories on an air quality model´s response. The results of stages 1 

and 2 served as justification for the development of the following sections of this 

dissertation, including inverse modeling applications.  

 

However, a third stage, namely an update of the inventory analysis was later 

carried out to consider inventories developed for base years after 2005, and thus 

confirm the ongoing relevance of this research. See Figure 2.1. 

 

 
Figure 2.1. Research framework for Chapter 2 of this dissertation. 

 

 

2.3 Area and period of study 
 
The state of Nuevo Leon is home to 5,784,442 people, of which 5,341,171 (92.3%) 

live in the Monterrey Metropolitan Area (MMA) (INEGI, 2020), encompassing 18 

municipalities, namely, Abasolo, Apodaca, Cadereyta Jiménez, El Carmen, 

Ciénega de Flores, García, San Pedro Garza García, General Escobedo, General 

Zuazua, Guadalupe, Juárez, Monterrey, Pesquería, Salinas Victoria, San Nicolás 

de los Garza, Hidalgo, Santa Catarina and Santiago. 

 

Despite being considered the industrial capital of Mexico, the second most 

populous metropolitan area in the country, and listed as the second-most polluted 

city in Latin America (e.g. Gouveia et al. 2021), there is a lack of air quality 

modeling studies for the MMA. Some isolated modeling efforts are Vivanco-Moreno 
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Up to 2005

Stage 2
NL & MMA EI 

evaluation using 
AQM (CMAQ)

Base year:  2005

Stage 3
Exploratory 

analysis of NL & 
MMA emission 

inventories
Base years: After 

2005
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and Ramírez-Lara (2007), who applied the HYSPLIT model to evaluate air 

trajectories and their impact on the dispersion of pollutants to atmospheric 

pollutants; and Mendoza-Domínguez (1996, 2000), who utilized the California 

Institute of Technology (CIT) (Russell et al. 1988, Harley et al. 1993) 

photochemical model to study the impact of anthropogenic and biogenic emissions 

in the Mexico-United States border area. 

 

Later, Sierra et al. (2013) applied the Community Multiscale Air Quality (CMAQ) 

photochemical model to simulate environmental chemistry and transport of 

pollutants – particularly ozone – during an episode of high pollution in northeastern 

Mexico, incorporating a broad region that encompassed sections of the states of 

Nuevo León, Coahuila and Tamaulipas, as well as southern Texas in the United 

States. However, although the model favorably simulated ozone concentrations 

within the domain, particular situations were identified where model performance 

was unfavorable, presumably due to the influence of the topography and box 

resolution used (8×8 km) (Sierra et al. 2013). 

 

2.4 Emission Inventory 
 
2.4.1 Comparison of emission inventories, up to base year 2005. 

Table 2.1 presents the criteria pollutants inventories analyzed in Stage 1 of this 

study. The revised inventories were: National Inventory of Emissions of Mexico 

1999 (SEMARNAT, 2006), the Program to Improve the Air Quality of the 

Metropolitan Area of Monterrey PROAIRE 2008-2012 (Gobierno del Estado de 

Nuevo León, 2009), and the National Atmospheric Emissions System (SINEA, 

2011), as well as the results condensed in the document "Exploitation of the results 

of the National Inventory of Emissions of Mexico INEM 2005" (Landa Fonseca, 

2012).  These inventories were publicly available with base years up to 2005 and 

had a spatial coverage of the MMA and/or the State of Nuevo León. 
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Table 2.1. Emission inventories considered in this study. 

Acronym Emission Inventory Author Base 
Year 

Year of 
publication 

INEM99 Mexico National Emissions 
Inventory 1999 

SEMARNAT-
INE 1999 2006 

PROAIRE05 
Management Program to Improve 
Air Quality of the Metropolitan Area 
of Monterrey 2008-2012 

Gobierno del 
Estado de 

Nuevo León-
SEMARNAT 

2005 2009 

SINEA05 National System of Emissions to the 
Atmosphere  SEMARNAT 2005 2011 

INEM05 National Emissions Inventory of 
Mexico 2005 

SEMARNAT-
INE 2005 2011-2012 

LANDA05 
Exploitation of the results of the 
National Inventory of Emissions of 
Mexico INEM 2005 

Landa 
Fonseca 2005 2012 

 

Emission inventories consider different categories of sources: mobile, stationary, 

area, and natural. A direct comparison was made among the emission values 

reported per category for the inventories listed in Table 2.1. Because the national 

inventories prepared by SEMARNAT were built with a “bottom-up” approach, in 

which state emissions were either estimated through aggregating municipal data or 

disaggregating state data into municipal resolution, two spatial domains were 

considered: State of Nuevo Leon, which would include emissions generated in the 

whole state, and the MMA, which only included emissions from the municipalities 

geographically located within the MMA. Tables 2.2 and 2.3 show the comparison 

for mobile and area sources.  

 

For example, for the AMM, SINEA05 reported gaseous emissions from mobile 

sources, up to almost 6 times higher than those previously reported in PROAIRE05 

(Table 2.2). It is worth mentioning that in the case of mobile sources, the results 

published in SINEA05 and those reported in LANDA05 were equivalent. The 

different inventories prepared for area sources within the MMA also present severe 

discrepancies with each other (Table 2.3). For area sources, the most substantial 

difference corresponds to the estimates of SO2 emissions of SINEA05 with respect 
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to those published in PROAIRE05 where the former are almost 800 times greater 

than the latter, going from 23.3 to 18,187.9 tons of SO2. This large difference can 

be attributed to the emissions of SO2 reported from industrial combustion of fuel oil 

in Monterrey (4995 ton), Apodaca (3148 ton), San Nicolás (2885 ton), Guadalupe 

(2082 ton), Santa Catarina (1879 ton), in addition to the smaller contributions of 

other municipalities. On the other hand, although both INE1999 and PROAIRE 

contain additional categories of point sources and mobile non-road mobile, SINEA 

does not explicitly include them.  

Table 2.2 Comparison of emission inventories for on-road mobile sources 

(ton/year). 
Coverage MMA State of Nuevo León 

Inventory SINEA05 PROAIRE05 INEM99 INEM99 SINEA05 LANDA05 

NOX 164,410 31,762 39,209 40,350 177,206 177,206 

SO2 1,694 879 2,080 2,145 1,831 1,831 

COV 248,126 51,868 51,081 52,458 282,848 282,848 

CO 3,315,153 491,863 380,366 391,398 3,783,994 3,783,994 

PM10 903 818 1,749 1,804 969 969 

PM2.5 546 568 1,603 1,653 584 584 

NH3 1,565 ND 605 621 1,696 1,696 

 
 

Table 2.3  Comparison of emission inventories for area sources (ton/year). 
Coverage MMA State of Nuevo León 

Inventory SINEA05 PROAIRE05 INEM99 INEM99 SINEA05 LANDA05 

NOX 7,372 2,364 5,847 7,699 8,167 8,840 

SO2 18,188 23 16,068 17,357 19,576 19,688 

COV 65,708 47,752 61,294 72,793 75,266 73,723 

CO 25,682 2,499 14,825 25,929 41,560 105,601 

PM10 8,360 42,790 2,853 5,334 13,532 24,021 

PM2.5 4,757 9,414 1,992 3,558 7,473 16,025 

NH3 19,097 ND 4,800 24,847 28,091 776 
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2.5 Air quality modeling 
 
Because AMM emission estimates presented large differences among the 

available inventories, an air quality modeling experiment was instrumented to i) 

evaluate the performance of an air quality model under different emission 

scenarios, and ii) identify the “best” emission inventory for air quality modeling 

applications in the AMM among a set of alternative emission inventories.  

 

The Models-3 Computational Framework, integrated by the Fifth Generation 

Meteorological Model (MM5) (Grell et al. 1994), Sparse Matrix Operator Kernel 

System (SMOKE) (Houyoux and Vukovich, 1999), and Community Multiscale Air 

Quality (CMAQ) chemical transport model was chosen as the modeling system, 

and will be described in the following sections (Figure 2.2). 

 

 
 

Figure 2.2 Modules required to run the CMAQ Models-3 Computational 
Framework (From: Byun and Shere, 2006) 
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2.5.1. Emission inventory processing 

 

Three-dimensional, photochemical, transport models, such as CMAQ require 

detailed, spatially-gridded emission data. The SMOKE (Houyoux and Vukovich, 

1999), emission processor engine was developed in the United States and 

redesigned by the US Environmental Protection Agency to support air quality 

modelling activities. Emission data is then chemically speciated, temporally 

allocated, spatially gridded, and merged into model-ready emissions (see Figure 

2.3). Further details on the SMOKE processor can be found in CMAS (2022). 
 

 

Figure 2.3 SMOKE methodology. (From CMAS, 2022). 

 

At the timing of this research, INE99 was the only AQM-formatted emission 

inventory, suitable for SMOKE processing. Therefore, the INE99 emission 

inventory was selected as the base inventory to be updated to year 2005 with the 

help of the CNTLMAT tool, which generates a matrix of growth factors for all 

emission sources, from which revised inventories are generated.  

 

Thus, based in the analysis of section 2.4.1, the scaling factors that would be 

applied to the INE99 emission inventory to update it to the year 2005 were 

calculated.  These scaling factors are, in other words, the percentages in which the 

emissions reported in the INE99 needed to be increased or decreased to total the 

emissions reported in the different inventories. Table 2.4 presents a summary of 

the scaling factors that were defined for the different inventories (or combinations 

thereof) that were evaluated. As can be seen, in most cases NH3 emissions were 

not escalated due to insufficient data. The case INE99-

SINEA05/PROAIRE05/LANDA05 consists of using SINEA05 for area and mobile 

sources that circulate on the road, PROAIRE05 for non-road mobile sources and 

the emissions reported in LANDA05 for stationary sources. 



30 

 

It is important to remember that the use of these scaling factors in updating 

emissions within the modeling domain is subject to the "gross assumption that the 

entire Northeast region had socioeconomic dynamics similar to that experienced by 

the AMM in the period 1999 to 2005" (Sierra, 2011).  
 

Table 2.4 Scale factors calculated for the different inventories available. 
 

Scale-up factors for emission inventories INE99-PROAIRE05  
Source NOX SO2 VOC CO PM10 PM2.5 NH3 
Area -0.59577 -0.99856 -0.22095 -0.83147 13.99876 3.72643 0.00000 
Mobile -0.18993 -0.57735 0.01540 0.29313 -0.53232 -0.64557 0.00000 
Non-road 
mobiles -0.05984 -0.06241 0.02695 -0.03828 -0.02860 -0.02901 0.00000 

Fixed 0.01785 -0.34518 -0.62412 -0.55992 -0.25909 -0.49699 0.00000 
  

Scale-up factors for emission inventories INE99-SINEA05/PROAIRE05/Landa09  
Source NOX SO2 VOC CO PM10 PM2.5 NH3 
Area 0.26081 0.13190 0.07201 0.73229 1.93044 1.38817 2.97866 
Mobile 3.19318 -0.18559 3.85751 7.71569 -0.48348 -0.65940 1.58809 
Non-road 
mobiles -0.05984 -0.06241 0.02695 -0.03828 -0.02860 -0.02901 0.00000 

Fixed 0.27546 -0.54269 -0.23581 -0.48692 -0.72079 -0.87133 0.00000 
  

Scale-up factors for emission inventories INE99-Landa12  
Source NOX SO2 VOC CO PM10 PM2.5 NH3 

Area 0.14828 0.13426 0.01278 3.07269 3.50322 3.50359 -
0.96877 

Mobile 3.39169 -0.14615 4.39186 8.66790 -0.46290 -0.64661 1.73148 
Non-road 
mobiles* -0.05984 -0.06241 0.02695 -0.03828 -0.02860 -0.02901 0.00000 

Fixed 0.68082 0.41253 -0.29536 2.47504 0.36597 0.29258 0.00000 
  

Scale-up factors for emission inventories INE99-INE05 
Source NOX SO2 VOC CO PM10 PM2.5 NH3 
Area 0.07034 0.12787 0.03444 0.62251 1.54565 1.11254 0.13098 
Mobile 3.39170 -0.14626 4.39187 8.66790 -0.46287 -0.64669 1.73184 
Non-road 
mobiles* -0.05984 -0.06241 0.02695 -0.03828 -0.02860 -0.02901 0.00000 

Fixed 0.36859 -0.53214 -0.30052 2.43467 -0.04080 -0.10949 0.00000 
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2.5.2 Meteorological model and parameterization 

Meteorological parameters such as wind speed and direction, temperature, 

humidity, pressure and solar radiation were estimated using the fifth-generation 

mesoscale weather model (MM5) version 3.7 developed by Pennsylvania State 

University (PSU) and the National Center for Atmospheric Research (NCAR) (Grell 

et al., 1994).  Details on the configuration of physical options and parameterization 

used can be found in Vanoye and Mendoza (2009) and Sierra et al. (2013).  

 

2.5.3 Chemical transport model 

In the present application, CMAQ version 4.7.1 (Byun and Ching, 1999) chemistry 

and transport module was chosen for the simulation of chemical transformation 

and fate of pollutants. CMAQ is a Eulerian model that simulates complex 

interactions between different air pollutants at regional and urban scales (Dennis et 

al., 1996). CMAQ can model horizontal advection processes, vertical advection, 

mass conservation settings for advection processes, horizontal diffusion, vertical 

diffusion, gas phase reaction, gas-particle transformation processes, photocatalytic 

reaction calculation, among others. In this application, CMAQ simulated the 

transport and chemical transformation of tropospheric ozone (O3) and its 

precursors for a modeling domain centered in the MMA during the period from 22 

to 26 August 2005 (Figure 2.4). O3 was selected because it is a secondary 

pollutant, produced in non-linear processes, which makes it a good proxy for 

overall model performance evaluation. 

 
One of the most important components of air quality models is the photochemical 

mechanism that describes how volatile organic compounds (VOCs) and nitrogen 

oxides (NOx) interact to produce O3 and other oxidizing species (Yu et al., 2010). In 

this application, the chemical mechanism Carbon Bond (CB05) was used 

(Yarwood et al., 2005). CB05 characterizes for employing a "clumping" structure to 

condense the reactions of individual VOCs. CB05 is an updated version of the CB4 

mechanism and includes 59 species and 156 reactions, with updated reaction 

constants, additional inorganic reactions, and a greater number of organic species 

than the CB4 version (Yu et al., 2010). Among the chemical species that CB05 can 
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treat are ethane, olefins, internal, terpenes, formic acid, acetic acid, methanol, 

ethanol, peroxyacetic acid. Although there are alternative chemical mechanisms 

such as SAPRC99 -which contains 80 species and 214 reactions-, studies have 

been conducted comparing its performance in ozone prediction finding that no 

particle mechanism -between CB5, CB4 and SAPRC99- performs systematically 

better than another (Yu et al., 2010). Therefore, CB05 was selected, in addition to 

being the mechanism used by the Environmental Protection Agency (EPA) of the 

United States in its modeling platform. A major assumption is that the uncertainty 

provided by the chemical mechanism is negligible. 

 

 

 

Figure 2.4. Location of the modeling domain centered in the Metropolitan Area of 

Monterrey. 
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2.6 Air quality model performance of different emission inventories 
The SMOKE-processed inventories were fed into the CMAQ program, keeping the 

rest of the execution variables as in Sierra et al. (2013). Figure 2.5 presents the 

dispersion plots for the observed ozone concentrations (computed as the average 

concentration of O3 of the 5 monitoring sites within an 8 km x 8 km cell containing 

the MMA) with respect to the concentrations simulated by CMAQ using the 

different scaled inventories. The best model performance was obtained with the 

INE99-INE05 emission inventory, with a R2 = 0.52, in contrast to other emission 

inventories with R2 ranging from 0.41 (INE99-PROAIRE05) to 0.49 (INE99-

SINEA05 /PROAIRE05/Landa05). It can also be noted that the presented 

simulations tend to slightly overestimate the observed concentrations.  

 
 

SIERRA11 

 

INE99-PROAIRE05 

 

INE99-INE05 

   
 

INE99-SINEA05/PROAIRE05/Landa05 
 

          INE99-Landa05 

  
 

Figure 2.5 Observation dispersion plots vs simulation for the CMAQ photochemical 
model using different emission inventories. 
 

 

The differences can be attributed to the use of different methodologies, for 

example, mobile emissions can be estimated through top-down approaches, based 
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on state-wide sales of fuels (e.g. gasoline and diesel); or through bottom-up 

approaches involving the application of models such as MOBILE, a software 

developed model by the US EPA for estimating pollution from highway vehicles. 

Another possible source of discordance is source classification. However, while 

differences are evident, it is difficult to pinpoint a major source of uncertainty as 

Mexican published inventories do not usually detail all procedures. 

 

2.7 Analysis of available inventories for base years from 2013 to 2018. 
 
The Government of Mexico updated the National Emissions Inventory 1999-2005 

for base years 2008, 2013 and 2016, from now on referred to as INEM08, INEM13 

and INEM16 emission inventories. On the other hand, the Government of the State 

of Nuevo León published in September 2016 the Program to Improve Air Quality of 

the State of Nuevo León 2016-2025 (ProAire 2016-2025), which included an 

update of the emissions inventory for base year 2013 (referred as PROAIRE13). 

Tables 2.5 to 2.8 show the estimated emissions, by category, for each of the 

different criteria pollutant inventories available for the territory of Nuevo León. The 

inventories presented in Tables 2.5 to 2.8 include the inventories listed in Table 

2.1, but complemented with INEM13, INEM16 and PROAIRE13 information. 

 
Table 2.5 Emission inventories for mobile sources (including on-road and non-
road), in tons/year. 
Coverage State of Nuevo Leon  

Inventory INEM99 SINEA05 LANDA05 INEM13 INEM16 PROAIRE13 

NOx 54,636 177,206 177,206 62,104 69,473 37,857 

SO2 2,335 1,831 1,831 2,124 271 436 

VOC 54,009 282,848 282,848 12,720 22,109 27,267 

CO 398,760 3,783,994 3,783,994 187,987 209,941 287,239 

PM10 3,482 969 969 2,654 1,862 836.8 

PM2.5 3,280 584 584 2,546 1,704 787.7 

NH3 621 1,696 1,696 871 426 1,093 

 
 



35 

 

Table 2.6 Emission inventories for area sources in Nuevo León, in tons/year. 
Coverage State of Nuevo Léon 

Inventory INEM99 SINEA05 LANDA05 INEM13 INEM16 PROAIRE13 

NOx 7,699 8,167 8,840 4403 1,904 4,061 

SO2 17,357 19,576 19,688 233 56 176 

VOC 72,793 75,266 73,723 73937 56,535 69,088 

CO 25,929 41,560 105,601 17460 11,575 9,984 

PM10 5,334 13,532 24,021 5984 8,105 16,476 

PM2.5 3,558 7,473 16,025 3419 2,524 4,423 

NH3 24,847 28,091 776 18436 18,350 19,146 

 

Table 2.7 Emission inventories for stationary sources in Nuevo León, in tons/year. 

Coverage State of Nuevo León 

Inventory INEM99 LANDA05 INEM13 INEM16 PROAIRE13 

NOx 22,647 38,065 30,020 30,952 19,619 

SO2 90,401 127,694 23,040 16,679 36,640 

VOC 24,624 17,351 9,291 8,256 7,998 

CO 24,380 84,720 8,875 27,552 8,366 

PM10 11,741 16,038 7,911 9,791 7,793 

PM2.5 10,386 13,425 5,861 7,208 6,055 

NH3 Nd 776 388 196.9262 172.3 

 
Table 2.8 Comparison of total emissions (all sources) in tons/year. 

Coverage State of Nuevo León 

Inventory INEM99 INEM13 INEM16 PROAIRE13 

NOx 84,982 96,527 102,329 61,537 

SO2 110,093 25,397 17,006 37,252 

VOC 151,426 95,948 86,900 104,354 

CO 449,069 214,322 249,068 305,589 

PM10 20,557 16,549 19,757 25,105 

PM2.5 17,224 11,825 11,436 11,266 

NH3 25,468 19,695 18,973 20,412 
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As an example, Table 2.9 presents the percentage differences between the 

estimates of the INEM13 vs INEM16, as well as the INEM13 vs PROAIRE13, 

finding differences of up to 51.7% for PM10, 46.7% for SO2 and 42.6% for CO 

emissions published in PROAIRE13 with respect to those reported in the INEM13. 

On the other hand, PROAIRE13 reports 36.2% less NOx emissions than INEM13; 

while, according to federal data, NOx emissions followed an increasing trend, and 

grew 6% in the period 2013 to 2016.  

 

Table 2.9 Percentage differences between INEM vs PROAIRE inventories. 

Pollutant NOx SO2 VOC CO PM10 PM25 NH3 
INEM13vs16 6.0% -33.0% -9.4% 16.2% 19.4% -3.3% -3.7% 

INEM13vsPRO13 -36.2% 46.7% 8.8% 42.6% 51.7% -4.7% 3.6% 

        
 

To explain the observed differences, the relevant activity data needs to be 

examined. For example, according to the National Institute of Statistics and 

Geography (INEGI, 2022), the number of vehicles in Nuevo León decreased 13.1% 

in 2016 with respect to 2013, which might explain part of the decreasing VOC 

emissions in INEM16 when compared to INEM13 but would not solely explain the 

increased CO and NOx emissions.  

 

Moreover, although specific economic sectors exhibited different behaviors in the 

period 2013-2016, overall, the State of Nuevo Leon showed sustained economic 

growth during the same period, as measured by its Gross Domestic Product (GDP) 

(Secretaría de Economía del Estado de Nuevo León, 2022). In the case of INEM13 

vs PROAIRE13, the differences must arise from use of different estimation 

methodologies, source classification, and/or different databases as they relate to 

the same base year. 

 

In January 2022, the Government of the State of Nuevo León presented, in 

conjunction with the Nuevo León Council for Strategic Planning (Consejo Nuevo 

León), the Monterrey Metropolitan Environmental Fund (Fondo Ambiental 



37 

 

Metropolitano de Monterrey), and the Clean Air Institute, an emissions inventory 

covering the 18 municipalities of the MMA, and base year 2018. Although the 

absolute amounts by type of pollutant were not publicly reported, a summary table 

was published with the percentage contribution of each type of emission source to 

the total emission of each pollutant (Fondo Ambiental Metropolitano de Monterrey, 

2022). This information is presented in Table 2.10 under columns labeled NL2018. 

For comparison, columns INEM16 and PROAIRE13 were added, with their 

respective contributions by type of source and pollutant.  

 
Table 2.10 Percentage contributions of pollutants in emission inventories. 

Pollutant NL2018 INEM16 PROAIRE13 
Stationary Mobile Area Stationary Mobile Area Stationary Mobile Area 

NOx 44% 53% 3% 30% 68% 2% 32% 62% 7% 
SO2 89% 10% 1% 98% 2% 0% 98% 1% 0% 
VOC 29% 4% 68% 10% 25% 65% 8% 26% 66% 
CO 9% 87% 4% 11% 84% 5% 3% 94% 3% 
PM10 57% 18% 25% 50% 9% 41% 31% 3% 66% 
PM25 65% 14% 20% 63% 15% 22% 54% 7% 39% 
NH3 5% 6% 89% 1% 2% 97% 1% 5% 94% 
          

 
 
The largest differences between the contributions reported in the different 

inventories are observed for PM10 from stationary sources, which according to the 

PROAIRE13, in 2013, stationary sources contributed with 31% of PM10 emissions 

while -according to NL2018- in 2018, 57% of PM10 emissions came from stationary 

sources. Accordingly, area sources contributed with 66% of PM10 emissions in 

2013 (PROAIRE13) but only 25% in 2018 (NL2018). The contribution of stationary 

sources and mobile sources to VOC emissions also shows a difference between 

the inventories analyzed, varying between 8% and 29%, and 4% and 26% 

respectively. 
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2.8 Conclusions 
 
The analysis presented in this chapter demonstrates that emission inventories can 

exhibit large uncertainties, hindering the ability of air quality models to accurately 

predict pollutant concentrations and other intended applications. These 

uncertainties are mainly derived from the lack of i) bottom-up information -which 

can be very complex and costly to acquire-, ii) standardized methodologies, and iii) 

capacity building. 

 

The existence of uncertainties in emission inventories remains a current issue, as 

exemplified by experiences documented in literature, and is especially relevant for 

emission inventories developed in the MMA and the State of Nuevo Leon during 

years 2005 to 2019. For example, emission inventories with base year 2005, 

presented differences up to +600% in the case of gaseous mobile emissions, 

among other discrepancies. More recent emission inventories prepared by different 

government agencies still showed differences ranging from -3.6% to +51.7% for 

total emissions of specific pollutants, as in the case of the INEM13 and 

PROAIRE13 PM10 estimates. 

 

Differences also emerged when comparing source contributions to total emissions 

of specific pollutants, even in recent inventories (e.g., NL2018, INEM16 and 

PROAIRE13). This can have important implications in the development of public 

policies for pollution abatement, because based on the information presented by a 

sole inventory, policy makers could pinpoint a certain activity as a major polluter 

and disregard other emission sources, when in reality this information is subject to 

a large degree of uncertainty. 

  

Therefore, evidence shows that techniques and strategies to reduce emission 

inventories must be assessed. These techniques might include mathematical 

approaches, data-driven techniques such as regularization. 
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Chapter 3 
 
Review of Direct Regularization Methods and their Applications in 
Atmospheric Sciences 
 
This is the English translation of the extended abstract “Revisión de Métodos de 

Regularización Directa y sus Aplicaciones en las Ciencias Atmosféricas” by Ana 

Yael Vanoye García and Alberto Mendoza Domínguez, as presented in the L 

Convención Nacional del Instituto Mexicano de Ingenieros Químicos, during June 

2010, in Monterrey, Mexico. The motivation of this work arises from the need to 

improve emission inventories for air quality modeling applications described in 

Chapter 2.  

 
3.1 Abstract 
 

Regularization is a mathematical technique for providing numerical stability to an 

ill-posed problem via the addition of a penalizing term to its formulation. Here an 

overview of some regularization techniques is presented, with special focus on 

direct regularization methods, such as Tikhonov regularization, ridge regression, 

and singular value decomposition. A common feature shared by these 

regularization techniques is that all of them require the use of a regularization 

parameter, which controls the weight given to the penalizing term, while seeking a 

balance between the minimization and regularization errors. Therefore, a 

description of some of the main methods for choosing this regularization parameter 

is also presented, including the discrepancy principle, generalized cross-validation, 

the L-curve method, and normalized cumulative periodogram, as well as some 

hybrid methods. Regularization with restrictions is also briefly discussed. Finally, 

typical applications of regularization methods in atmospheric sciences are listed, 

emphasizing the need to exploit the techniques discussed here in applications 

where emission strengths are reconstructed or corrected through inverse modeling. 

 

Key words: regularization, Tikhonov, regularization parameter, atmospheric model. 
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3.2 Introduction 
 

It is common in science and engineering to come across “inverse problems,” where 

the objective is to determine the value of an unknown parameter by way of 

measurements (experimental data) indirectly related to the parameter. Thus, while 

a “direct problem” would be represented as: 

 

𝐛𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 = 𝐀𝐱𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭     (3.1) 
 

where b is the prediction, x is the observation vector, and A is the physical model 

or mathematical function that relates observations b with parameter x, an inverse 

model would be represented as: 

 

       𝐱𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 = 𝐀−𝟏𝐛𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭     (3.2) 
 

Nonetheless, in resolving an inverse problem it is possible for a small amount of 

error in the measurements or rounding thereof to produce an enormous error in the 

estimates. This phenomenon of instability in the solution –known as “poor 

conditioning”– is extremely inconvenient given that, in practice, all measurements 

taken contain some degree of error, which often is not directly quantifiable. In 

addition to stability, a well-conditioned linear problem must also meet the 

conditions of existence and uniqueness (Menke et al., 1989). 

 

Mathematical techniques have been developed for solving poorly conditioned 

problems. These techniques, based on the incorporation of known properties of the 

solution x, improve the conditioning of the inverse problem and tend to provide 

better solutions. Three methods for incorporating information are: i) definition of an 

initial solution, ii) relative weighting of the terms, and iii) regularization techniques. 

Moreover, these methods can be combined among themselves (Santamarina and 

Fratta, 1998). This document focuses on the description of certain regularization 

techniques, in which regularization means that some restrictions shall be 

incorporated during the process of building interpolation function A which, given x, 
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best fits b, with the aim of stabilizing the problem, reducing the generalization error 

and finding a stable, physically plausible solution to the inverse problem. 

 

The regularization of an inverse problem is carried out through the addition of a 

functional (term) that restricts the weighting of the components of the 

approximation function in accordance with an a priori distribution of the weighting, 

where the regularization matrix is that which imposes such a distribution of the 

weighting. The regularization technique can be applied with different 

methodologies for function approximation. However, in almost all of them the 

magnitude of the regularization depends on regularization parameter λ, which 

attempts to establish a balance between fitting the desired function to the data set 

and fulfilling the restrictions imposed by the penalizing functional. The selection of 

the regularization parameter is a crucial step; many methods have been developed 

for this purpose. Nonetheless, today there is still a need for efficient and reliable 

methods for selecting this parameter (Krawczyk-StanDo and Rudnicki, 2007). 

 

The present work provides a general overview of the existing regularization 

methodologies, with special emphasis on direct methods, such as Tikhonov 

regularization, ridge regression, truncated singular value decomposition (TSVD), 

and reduced singular value decomposition. Subsequently, a brief compendium is 

made of the most commonly used regularization parameter selection methods: 

discrepancy principle, unbiased predictive risk estimator, generalized cross-

validation, the L-curve method, the error consistency method, normalized 

cumulative histograms, and hybrid methods. The concept of regularization with 

restrictions is also presented and a few efforts on its use are described. Finally, 

some general applications on the use of direct regularization methods within the 

field of atmospheric sciences are listed. Special emphasis is set on the increasing 

need to use of the techniques described here when inverse-derived emissions are 

estimated coupling chemical-transport models and inverse modeling techniques. 
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3.3 Regularization Methods 
 

Regularization is a versatile and useful methodology capable of providing adequate 

solutions even when faced with errors in the data and model, and which is widely 

applicable when the unknown solution x refers to discreet values which vary when 

in three dimensions, in a plane or in a line. A variety of regularization methods 

have been developed for solving poorly- conditioned problems, which are classified 

as direct and indirect methods. The direct methods comprise procedures where the 

estimated solution can be calculated in a single step (which is not exempt from the 

involvement of some iteration to find the root of a given equation). A characteristic 

common to all the direct methods is that all of them require a regularization 

parameter. 

 

The indirect regularization methods tend to be based on the self-regularization 

property of the specific solution method. The iterative methods possess this 

property in that the anticipated end of the iterative process has a regularizing 

effect, as can be seen, for example, in Landweberts iteration formula (Binder et al. 

2002), where the iteration index constitutes the regularization parameter. These 

methods exhibit semi-convergence, which means that the solution improves during 

the first iterations but deteriorates due to error in the later stages. The iterative 

regularization methods represent an alternative when methods such as Tikhonov 

and TSVD do not perform adequately, as sometimes happens with large-scale 

problems (parameters of ~106).  

 

An example of large-scale systems would be the numerical models for weather 

prediction, which may have as much as 107 components in the model vector and 

105 components in the state vector, resulting in large-scale matrices (Bouttier, 

1997). Some iterative methods include: the minimum residual method and its 

variants (Saad and Schultz, 1986; Jensen and Hansen, 2007), the iteratively 

regularized Gauss-Newton method (which basically consists of a regularization of 

Tikhonov with a variable regularization parameter) which has been proven to be 
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computationally efficient (Binder et al. 2002), the Landwebert method and the 

Levenberg-Marquardt method (Binder et al. 2002, Doicu et al. 2004). 

 

One of the principal differences between the direct and indirect methods is that 

while the direct methods demand the explicit calculation of the matrix Ā = AL−1 by 

means of standard methods such as QR factorization, iterative methods only 

require the efficient calculation of the product 𝐀̅𝐱̅ (Hansen, 1994), which is simpler 

from a numerical perspective. Nonetheless, one of the principal disadvantages of 

the indirect or iterative methods lies in the difficulty of establishing the point at 

which the iteration should end. The regularly used methods for well-conditioned 

iterative problems, such as those based on the residual, tend not to work 

adequately for poorly- conditioned problems. Moreover, an imprecise estimation of 

the iteration´s end point can produce a solution with a relative error that is 

significantly greater than that of the optimal solution (Chung and Nagy, 2010). 

 

3.4 Direct Regularization Methods 
 

Following is a more detailed description of some commonly used direct 

regularization methods. 

 

3.4.1 Tikhonov Regularization 

The most common and frequently used regularization method is Tikhonov 

regularization (Willoughby, 1979; Neumaier, 1998). Tikhonov regularization is a 

powerful tool for solving poorly-conditioned linear systems and for linear least 

squares problems. It consists of the substitution of 2-norm minimization problem, 

which corresponds to the least squares problem: 

 

𝐦𝐢𝐧
𝒖∈𝑪𝒏

‖𝐀𝐱 − 𝐛‖𝟐                                                            (3.3) 
 

–where x is the unknown vector, b is the observation vector, and A is an 𝒎 × 𝒎 

matrix, with a large condition number and 𝒎 ≥ 𝒏 (𝒏 is the number of parameters 
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and 𝒎 is the number of data points)– for a problem that includes a Tikhonov 

functional: 

 

𝐱𝛌 = 𝐦𝐢𝐧 {‖𝐀𝐱 − 𝐛‖𝟐 + ‖𝚪𝐱‖𝟐 }                                      (3.4) 

 

In Equation (3.4), 𝚪 = 𝛌𝐋, L tends to be the identity matrix and λ ∈ ℝ represents 

the regularization parameter. The Tikhonov functional is a measure of the 

“smoothness” of solution x and penalizes its discontinuities. In the Tikhonov 

regularization, the regularized solution 𝐱𝝀 results from minimizing the weighted 

combination of the residual norm and an additional restriction. Regularization 

parameter λ controls the weight given to the minimization of the additional 

restriction as relates to the minimization of the residual norm and as was 

mentioned, the perturbation error and the regularization error must be balanced in 

the regularized solution. Thus, a large λ (equivalent to a large amount of 

regularization) favors a semi-norm of the lesser solution at the expense of a large 

residual norm, while a small λ (little regularization) will have the opposite effect. λ 

also controls the sensitivity of the regularized solution 𝐱𝝀 to perturbations in A and 

b.  

 

Lewis et al. (2006) present algebraic proof as to how, under certain conditions, 

Tikhonov regularization corresponds equally to the solution of the minimum 

residual as to the minimum norm. The regularized solution to the problem 

presented in Equation (3.4) will be: 

 

𝐱𝝀 = (𝐀𝐓𝐀 + 𝚪𝐓𝚪)−𝟏𝐀𝐓𝐛                                                    (3.5) 

 

Nonetheless, in the case that L is equal to the identity matrix, it is also possible to 

solve the least squares problem using filter factors and the generalized singular 

value decomposition (GSVD) explicitly, or singular value decomposition (SVD). Let 

A be a matrix whose SVD is: 
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𝐀 = ∑ 𝝈𝒊𝒖𝒊𝒗𝒊
𝑻𝒏

𝒊=𝟏 = 𝐒 𝐔 𝐕𝐓                                            (3.6) 

 

where the singular left and right vectors 𝒖𝒊  and 𝒗𝒊, respectively, are orthonormal, 

while the singular values 𝝈𝒊 are non-negative and non-incremental numbers (i.e., 

𝝈𝟏 ≥ 𝝈𝟐 ≥ ⋯ ≥ 𝝈𝒏 ≥ 𝟎). Using the SVD of A, it is easy to prove that the solution to 

the ordinary least squares (LSQ) problem denoted in Equation (3.3) can also be 

represented as: 

𝒙𝑳𝑺𝑸 = ∑
𝜶𝒊

𝝈𝒊
𝒗𝒊

𝒏
𝒊=𝟏 = ∑

𝒖𝒊
𝑻𝒃

𝝈𝒊
𝒗𝒊

𝒏
𝒊=𝟏 =

𝐔𝐓𝐛

𝐬
𝐕                                       (3.7) 

 

The problem of using the least squares solution 𝒙𝑳𝑺𝑸   consists in that the error in 

the directions corresponding to the small singular values (𝝈𝒊) is amply magnified 

and opaque the information contained in the directions corresponding to the larger 

singular values (Hansen and O’Leary, 1993). The regularization methods thus 

incorporate filter factors fi, transforming the solution to:  

 

𝒙𝒇𝒊𝒍𝒕𝒓𝒐 = ∑ 𝒇𝒊
𝜶𝒊

𝝈𝒊
𝒗𝒊

𝒏
𝒊=𝟏                                                    (3.8) 

 

and differ in the selection method of said parameter. For example, a filter factor 

equal to 1 corresponds to the ordinary least squares solution. The filter factor for 

Tikhonov regularization consists of: 

 

                                                             𝒇𝒊 =
𝝈𝒊

𝟐

𝝈𝒊
𝟐+𝝀𝟐                          (3.9) 

 

3.4.2 Ridge Regression 

Tikhonov regularization can also be formulated from a statistical perspective, 

known as ridge regression (Hoerl and Kennard, 1979), which proposes an 

estimation procedure based on: 

 

𝐱∗ = ⌊𝐀´𝐀 + 𝐊⌋−𝟏𝐀´𝐛                                                   (3.10) 
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Where x* is the “regularized” solution and K is a diagonal matrix of non-negative 

constants, and analogous to the Tikhonov functional when the L matrix is equal to 

the identity: 

𝐊 = 𝒌𝐈,       𝒌 ≥ 𝟎                                                     (3.11) 
 

3.4.3 Truncated Singular Value Decomposition (TSVD) 

The Picard condition (Hansen, 1990) ensures the stability of the solution of the 

inverse problem, and it is met when the dot products of the columns U and the data 

vector b fall to zero faster than the singular values 𝝈i. Under this condition, no 

instability will be observed due to small singular values (Aster et al. 2005). 

Nonetheless, even when the Picard condition is not met, it is possible to recuperate 

a useful model by truncating the sum in Equation (3.7) to produce a solution 

through TSVD (Aster et al. 2005). TSVD is a common regularization method which 

consists of simply truncating the sum in Equation (3.12) in a higher limit k < n, 

before the small singular values begin to dominate (Hansen and O’Leary, 1993). It 

is possible to note that when k = n (i.e., when the small singular values are 

included), the solution obtained through the TSVD method is identical to that 

produced through the ordinary least squares method. Nonetheless, according to 

the theory, a solution obtained through TSVD where k < n would be more stable 

(Aster et al. 2005). In terms of the SVD, the filter factor for the TSVD would be 

between 0 and 1 (Hansen, 2008). 

 

3.4.4 Reduced Singular Value Decomposition 

Reduced singular value decomposition (RSVD) (Ekstrom and Roads, 1974) is 
considered to be a regularization method similar to Tikhonov, in terms of its SVD, 

with the difference that the filter factor fi for RSVD is (Chung and Nagy, 2010):  

𝒇𝒊 =
𝝈𝒊

𝝈𝒊+𝝀
  when L = In, and  𝒇𝒊 =

𝝈𝒊

𝝈𝒊+𝝀𝝁𝒊
 , when L ≠ In . 

 

3.4.5 Other Direct Regularization Methods 

There are other direct regularization methods, such as maximum entropy (Smith 

and Grandy, 1985), total least squares (Fierro et al. 1997), and the Lagrange 
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method (Landi, 2008), among others. Kitagawa et al. (2001), for example, 

proposed a method based on QR factorization which has the advantage of being 

less computationally demanding than SVD, though it also requires estimating a 

regularization parameter such as that required in Tikhonov regularization. 

Furthermore, studies have been done on regularization error estimates (Doicu et 

al. 2007; Lorenz and Rösch, 2010) 

 

3.4.6 Hybrid Methods 

The hybrid methods are an alternative that seeks to attenuate the disadvantages 

inherent to the direct and indirect methods (e.g., the computational inefficiency of 

direct methods such as Tikhonov regularization in large-scale applications and the 

semi-convergence of the iterative methods). Two categories of hybrid methods can 

be distinguished: those using iterative methods to solve the regularized problem 

and those that couple the regularization with an iterative scheme (Chung, 2009). 

An example of this type of method is that proposed by Kilmer and O´Leary (2001), 

which reprojects the problem in smaller dimensions, to then proceed with the 

solution. 

 

3.5 Selection of Regularization Parameters 
 

There are algorithms that automatically analyze the problem and select the 

adequate regularization parameter 𝛌 based on different criteria. However, there is 

no systematic evaluation and comparison on how these parameter-selecting 

algorithms perform in the solution of different problems (Doicu et al. 2010). Ideally, 

𝛌 should establish an adequate balance between precision and resolution and be 

determined through direct methods (Ceccherini, 2005). The key to successful 

regularization lies in selecting a parameter that is sufficiently large as to stabilize 

the inversion with respect to the amplification of the perturbation, but not so large 

that it dominates the original governing equations of matrix A with the smoothing 

matrix of 𝛌L. The complexity of finding an adequate parameter lies in the difficulty 

of separating the exact data error along with the physical significance of that error, 
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which is unknown in both quantity and correlation, as well as the discretization 

error (Åkesson and Daun, 2008). The different methods for selecting the 

regularization parameter tend to be classified in two categories: those requiring 

prior knowledge of the variance of the error and those methods that do not require 

it. Likewise, most of the methods for regularization parameter selection have been 

designed for use with the Tikhonov functional, and few efforts have been made for 

other functionals such as that of total variation (Landi, 2008). A few commonly 

studied methods are: 

 

3.5.1 Discrepancy Principle 

The discrepancy principle (Morozov, 1966) is probably the simplest method for 

selecting the regularization parameter (Hansen and O’Leary, 1993) and consists 

solely of defining the parameter at such a value that the residual vector norm is 

less than or equal to a determined tolerance: 

 

‖𝐀𝐱 − 𝐛‖𝟐 ≤ 𝜹                                                         (3.12) 

 

In other words, it is based on the reasoning that the least squares residual must 

have at least the same order of magnitude as the error, so that the regularization 

parameter must be as large as possible (Åkesson and Daun, 2008). When the 

number of parameters n is greater than or equal to the number of data m, there is 

no distribution 𝝌𝟐 with a negative number of degrees of freedom. In practice, a 

common heuristic is to require that ‖𝐀𝐱 − 𝐛‖𝟐be less than √𝒎, given that the 

approximate median of a distribution 𝝌𝟐 with m degrees of freedom is m (Aster et 

al. 2005). A characteristic (and possible disadvantage) of the discrepancy principle 

is that it requires prior knowledge of the error or variance (Kilmer and O’Leary). It is 

important to note that, as 𝜹 tends towards zero, the regularized solution based on 

the discrepancy principle is convergent but is based on difficult to obtain or 

erroneous information. Even with a correct estimate of the variance, the solutions 

tend to be overly smoothed (Kilmer and O’Leary, 2001). 
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3.5.2 Unbiased Predictive Risk Estimator 

The UPRE method requires some prior knowledge about the error. It is based on 

the minimization of the predictive error, defined as (Lin and Wohlberg, 2008): 

 
𝟏

𝒏
‖𝐏𝝀‖𝟐 =

𝟏

𝒏
‖𝐀𝐱𝝀 − 𝐀𝐱𝒓𝒆𝒂𝒍‖

𝟐                                         (3.13) 

 

where 𝒙𝝀 is the solution calculated for parameter 𝝀, and 𝐱𝒓𝒆𝒂𝒍 is the real solution. 

Given that 𝐱𝒓𝒆𝒂𝒍 is, in practice, unknown, it is necessary to define an estimator to 

estimate the value of optimal 𝛌𝐨𝐩𝐭. Vogel (2002) showed that: 

 

𝐔𝐏𝐑𝐄𝑻𝒊𝒌𝒉(𝛌) =  
𝟏

𝒏
‖𝐫𝛌‖𝟐 +

𝟐𝝈𝟐 

𝒏
𝐭𝐫𝐚𝐳𝐚 (𝐀𝝀) − 𝝈𝟐                        (3.14) 

 

giving way to: 

𝝀𝒐𝒑𝒕 = 𝐦𝐢𝐧  {𝐔𝐏𝐑𝐄𝑻𝒊𝒌𝒉(𝝀)} .                                          (3.15) 

 

Although the computation of de 𝐔𝐏𝐑𝐄𝑻𝒊𝒌𝒉(𝝀) is relatively straightforward if the SVD 

of A is available, said calculation is computationally costly for large-scale problems. 

In particular, the computation of the trace of the influence matrix is especially 

demanding, trace{A(AT A+λI) - 1AT }  (Lin and Wohlberg, 2008). Methods have 
been developed that seek to solve this problem, such as that developed by Kilmer 

and O’Leary (2001), which uses Lanczos’ procedure to approximate the 

eigenvalues of the large-scale system´s matrix to a smaller-scale matrix, while Lin 

and Wohlhberg (2008) combine procedures to calculate the approximate trace, 

obtaining similar results to those obtained using the exact trace but significantly 

reducing the computational requirements. 

 

3.5.3 Generalized Cross-validation 

Generalized cross-validation (GCV) (Golub et al. 1979; Haber and Oldenburg, 

2000) is a technique derived from ordinary cross-validation (OCV), the basic idea 

of which is as follows: If you eliminate a given observation bi, and calculate a 
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solution xλ,i, then the estimate of bi calculated based on xλ,i should thus be a good 

estimate. While OCV depends on the particular way the data is ordered, GCV is 

invariant to the orthogonal transformations and permutations of the data vector b 

(Hansen and O’Leary, 1993). The GCV function to be minimalized is: 

 

𝑮(𝝀) ≡
‖(𝐀𝐱(𝝀)−𝐛)‖𝟐

𝟐

(𝐭𝐫𝐚𝐳𝐚 (𝐈−𝐀𝐀(𝛌)𝑰))𝟐                                                         (3.16) 

 

where 𝐀(𝝀)𝑰 is any matrix that maps the b right-side to the solution 𝐱(𝝀), for 

example, 𝐱(𝝀) =  𝐀(𝝀)𝑰𝐛. Upon deriving, it is assumed that the errors on the right 

side are normally distributed with a median of zero and a covariance matrix of σ2I.  

An advantage of this method is that it does not require prior knowledge about the 

error variance (Kilmer and O’Leary). Nonetheless, difficulties may arise when the 

matrix G possesses a “very flat” minimum, thereby making the numerical 

determination of parameter λ difficult. Likewise, another inconvenience lies in the 

fact that sometimes the GCV method can confuse variance correlated with a 

signal. The method can produce unsatisfactory results when the errors are highly 

correlated amongst one another. Variations of this technique have been 

developed, such as the weighted GCV method (Chung, 2009). 

 

3.5.4 L-curve Method 

The L-curve method consists in graphing the regularized solution´s norm against 

the corresponding residual´s norm for each set of regularization parameter values 

(Hansen and O’Leary, 1993), which in effect results in an L-shaped curve. The L-

curve is basically composed of two parts: the more horizontal part corresponds to 

the solutions where the regularization parameter is very large, and the solution is 

dominated by the regularization errors, while the vertical part corresponds to the 

solutions where the regularization parameters are dominated by the approximation 

errors (Krawczyk-Stando and Rudnicki, 2007). 

 

Thus, the L-curve allows for analysis of how the regularized solution changes as 
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the regularization parameter changes. The corner of the L-curve can be interpreted 

as the point closest to the origin or as the point where the curvature is greatest 

(Hansen and O’Leary, 1993). Hence, the best regularization parameter must be 

located at the corner of the L-curve, given that for superior values the residual 

increases without significantly reducing the solution´s norm, while for inferior 

values, the solution´s norm increases rapidly without a significant change in the 

residual. In practice, only a certain number of points are evaluated, and the corner 

is located by calculating the point of greatest curvature (Hansen and O’Leary, 

1993; Kilmer and O’Leary, 2001). 

 

Obtaining the L-curve is a numerically manageable method, in addition to it not 

requiring prior knowledge about the error (Li and Wohlberg, 2008) Nonetheless, 

some of its limitations consist in that the solution does not achieve convergence 

with the real solution as n tends toward infinity or as the error´s norm approaches 

zero (Kilmer and O’Leary, 2001). In fact, all the methods that do not suppose prior 

knowledge of the error present the latter property. Another difficulty arises when 

the solution is very “smooth” or “wrinkly,” such that the corner may not represent 

the optimal regularization parameter, such as when, under certain circumstances, 

the L-curve may simply not have an absolute corner (Åkesson and Daun, 2008). 

 

3.5.5 Error Consistency 

This is based on the statement that the regularization must be as strong as 

possible but should not introduce more smoothing than there is error. Strong 

regularization is obtained when the smoothing is consistent with the non-

regularized profile errors, while regularization is weak when the smoothing is 

consistent with the regularized profile errors. Ceccherini (2005) showed that the 

regularization parameter λ can be analytically obtained from the non-regularized 
profile and its variance-covariance matrix: 

 

𝝀 = [
𝒏

(𝐱𝐚−𝐱̂)𝐓𝐑 𝐒𝐱̂ 𝐑 (𝐱𝐚−𝐱̂)
]

𝟏/𝟐

                                                (3.17) 
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where  𝐱𝐚 is the a priori state vector, 𝐑 is the regularization matrix, 𝐱̂ is the non-

regularized state vector obtained when only the first term of f(x) is minimized,   𝐒𝐱̂  

is its variance-covariance matrix and n is the number of elements in the state 

vector. Due to its analytical formulation, this method can be used in iterative 

regulation and in operational analysis (Ceccherini, 2005). 

 

3.5.6 Normalized Cumulative Periodogram 

The normalized cumulative periodogram (NCP) was first introduced by Rust (1998, 

2000) to distinguish the signal from the error in an extension of the truncated SVD 

algorithm. The regularization parameter selection method for NCP (Rust and 

O’Leary, 2008) is based on making the magnitude of the residuals come as close 

as possible to the “white” error, using a diagnostic test based on the periodogram. 

 

Based on the properties of the true residual 𝜼, Rust suggested the following set of 

diagnostic tests for evaluating the acceptability of a regularized solution 𝒙̃ with 

residual 𝒄̃. A formal test of the diagnostics proposed by Rust and O´Leary (2008) is 

based on the periodogram´s graph, which is an estimate of the potency spectrum 

of a signal. To build the periodogram, a signal is extended with zeros (zero-

padding) at a convenient longitude N (preferably with potency of 2), the Fourier 
transform is calculated for this augmented series, and squares are taken of the 

absolute values of the first half of the coefficients. The cumulative periodogram will 

be the vector of the partial summations of the normalized periodogram by the sum 

of all the elements. 

 

As a result of the properties of the white noise, a graph of the elements c against 

their frequencies will be a straight line passing through the origin with slope 2/NT, 

where T is the spacing of the samples for the time variable. Finally, although the 

graph of the residual vector, its periodogram and its cumulative periodogram 

together with the diagnostic tests provides a good regularization parameter, it is 

necessary to have numerical criteria that allow for automated selection. In 

accordance with the established diagnostics, it would be possible to select the 
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parameter in agreement with some of the rules proposed by Rust and O´Leary 

(2008). 

 

There is evidence that the use of residual periodogram has produced better results 

when compared with other standard techniques such as the discrepancy principle, 

the L-curve, and the GCV (Rust and O’Leary, 2008). Hansen et al. (2007) and 

Mead (2008) also have used properties of the distribution of the residual for 

selecting the regularization parameters. 

 

3.5.7 Hybrid Methods 

Other hybrid algorithms include those proposed by Frommer and Maass (1999), 

who sought to approximate λ so as to meet the discrepancy principle by way of 

focusing on the truncated conjugated gradient, Baglama et al. (1998), who 

imposed superior and inferior limits to the L-curve using Lanczos´ process of 

bidiagonalization, and Kaufman and Neumaier (1997), who also used the 

conjugated gradient for Tikhonov with an L-curve, but maintaining a restriction of 

non- negativity (Kilmer and O’Leary, 2001). Kilmer and O´Leary (2001) also 

presented a comparison of the computational requirements for different 

regularization methods, including Tikhonov and the hybrid projection method. 

There is also a set of works developed with the purpose of performing a direct 

comparison between the different regularization parameter selection techniques. 

These works use the collection of problems presented by Hansen (1998), and 

among them are those performed by Krawczyk-Stańdo and Rudnicki (2007), 

Kilmer and O´Leary (2001), Rust and O´Leary (2008), Wu (2003), Viloche-Bazán 

(2008), and Rezghi and Hosseini (2009). 

 

3.6 Regularization with restrictions 
 

Even when the regularization methods produce more stable and precise solutions, 

these solutions often lack physical sense or violate some restriction imposed by the 

nature of the problem. Methodologies have thus been investigated for incorporating 
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additional restrictions that limit the solution to the problem to a determined set of 

values or that incorporate some other additional information about the solution.  

 

Many of these methodologies have been developed as special cases of the least 

squares problem and taking the Tikhonov regularization as a base (Friedrich and 

Hofmann, 1987). Other techniques for the solution of poorly-conditioned problems 

with restrictions include the method of penalized maximum likelihood (Bardsley and 

Goldes, 2009), the Bayesian methods, which are commonly known as stochastic 

versions of Tikhonov (Hansen, 2008), and the method of maximum entropy (Smith 

and Grandy, 2013; Wang et al. 2007), which ensures the positivity of the solution. 

Doicu et al. (2010), Stark and Parker (1995), and Calvetti and Reichel (2004) have 

also developed relevant works in this regard. 

 

3.7 Application of regularization techniques in atmospheric sciences 
 

As in other fields of science and engineering, poorly-conditioned inverse problems 

are ubiquitous in atmospheric sciences. Thus, the necessity has arisen to make 

use of regularization techniques to solve problems such as the reconstruction of 

vertical profiles of concentrations of atmospheric constituents (Doicu et al., 2007, 

Doicu et al. 2010, Fedorova et al. 2009; Osterloh et al. 2009, Koner and 

Drummond, 2008a; Koner and Drummond, 2008b; Ceccherini et al., 2007; 

Rozanov et al., 2007; Meijer et al, 2006; Ceccherini, 2005; Doicu et al. 2005a; 

Doicu et al., 2005b; Doicu et al., 2003; Hasekamp and Landgraf, 2001; Englert et 

al., 2000; Shimpf and Shreier, 1997; Gaikovich, 1994) and other atmospheric 

parameters (Doicu et al. 2004; Arikan et al., 2003; Zhao et al., 2003; Qin et al., 

2002; Eriksson, 2000; Shimpf y Shreier, 1997) based on spectrometric 

measurements and remote sensing, estimation of particle size distributions of 

atmospheric aerosols (Cuccia et al., 2010; Wang et al., 2010; Riefler and Wriedt, 

2008; Wang, 2008; Wang et al., 2007; Böckmann and Kirsche, 2006; Wang et al., 

2006; Lemmety et al., 2005; Talukdar and Swihart, 2003; Voutilainen, 2001; 

Voutilainen et al., 2000; Wolfenbarger and Seinfeld, 1990), analysis and 
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reconstruction of climatic series (Horenko, 2010; Christiansen et al. 2009; Drignei 

et al. 2008), determination of the concentration of chemical species in the 

environment (Lau et al., 2009; Salcedo-Sanz et al., 2009), location of sensors for 

monitoring atmospheric contamination (Haber et al. 2008), determination of the 

global distribution of lightning (Ando and Hayakawa, 2007), inverse modeling of 

global species cycles (Bergamaschi et al. 2000), estimation of the total vertical 

content of electrons (Arikan et al., 2003), among other applications. 

 

In solving such problems, diverse regularization techniques have been employed, 

such as: Tikhonov regularization (e.g., Wang, 2008; Eckhardt et al., 2008; Haber et 

al., 2008; Nikoukar et al., 2008; Riefler y Wriedt, 2008; Ando and Hayakawa, 2007; 

Ceccherini, 2005; Lemmety et al, 2005; Krakauer et al, 2004; Talukdar and 

Swihart, 2003; Zhao et al, 2003; Eriksson, 2000; Goikovich, 1994), Twomey-

Tikhonov regularization (Fedorova et al., 2009), Phillips-Twomey regularization 

(Wang, 2008; Riefler and Wriedt, 2008), Phillips-Tikhonov regularization (Meijer et 

al., 2006; Hasekamp and Landgraf, 2001; Englert et al., 2000; Shimpf and Shreier), 

Phillips-Tikhonov-Twomey regularization (Qin et al. 2002), as well as certain other 

variations thereof (Cuccia et al., 2010; Wang et al., 2010;  Doicu et al., 2010; 

Henze et al., 2009;  Wang et al., 2006; Doicu et al., 2003; Wolfenbarger and 

Seinfeld, 1990), hyperviscous and pseudo-parabolic regularization (Gustafsson 

and Protas, 2010), ridge regression (Christiansen et al., 2009), and Bayesian 

regularization (De Vito et al., 2009; Kopacz et al., 2009; Lau et al., 2009; Salcedo-

Sanz et al., 2009; Stohl et al., 2009). 

 

Within the atmospheric sciences there is an inverse problem where, in the solution 

thereof, the regularization techniques described above have yet to be fully 

employed. This inverse problem includes the inverse modeling of emission sources 

strengths and the estimation of the distribution of sources and sinks of atmospheric 

chemical species. Here, typically a chemical-transport model (the “forward” model) 

is coupled with an inverse modeling technique to derive a corrected emissions field 

based on the minimization of the error between the model- derived concentrations 
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and available observations. Although there are many applications reported on the 

use of inverse modeling to improve emissions inventories, whether globally (e.g. 

Pétron et al., 2002) or continentally (e.g., Elbern et al., 2007), or even locally (e.g., 

Quélo et al., 2005), and with the exception of some particular works, the use of 

regularization techniques for the optimization of such inventories has yet to be fully 

exploited. 

 

The “top-down” analysis of emissions inventories has been formulated (and 

attempted to be solved) as an inverse problem for the estimation of chemically 

unreactive (or relatively unreactive) or reactive species. There exists a vast number 

of applications of such diversity, including the estimation of emissions of 

stratospheric ozone depletion substances (e.g., Xiao et al., 2010), greenhouse 

gases (e.g., Stohl et al., 2009), tropospheric ozone precursors (e.g., Napelenok et 

al., 2008), aerosol precursors (e.g., Gilliland et al., 2006), specific biogenic species 

(e.g. Chang et al., 1996), and other atmospheric trace gases such as CO (e.g. 

Pétron et al., 2002). 

In these efforts, two foci have traditionally been used for optimizing such emission 

inventories: the assimilation of data through Kalman or ensemble Kalman filtering 

(KF or EnKF) and 4-D variational assimilation (4-DVar). Despite their frequent 

application, these methods present the disadvantages of, in the case of 4-DVar, 

requiring the computation of the adjoint model and the objective function gradient 

(which are difficult to obtain for complex three- dimensional chemistry-transport 

models), or erroneously supposing a Gaussian error distribution in the case of KF 

or EnKF (Kalnay et al., 2007). Li et al. (2010) has also used genetic algorithms for 

optimizing inventories, but their application is still limited due to the necessary 

computational requirements. 

 

Fewer examples exist on the use of regularization techniques to obtain inverse-

derived emissions inventories. In particular, few formal methods have been applied 

to obtain the value of the regularization parameters. For example, Mendoza-

Dominguez and Russell (2000, 2001) used ridge regression to deduce, separately, 
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the emissions of anthropogenic and biogenic tropospheric ozone precursors. In 

their proposed method, a stepwise approach to calculate matrix K in equation (10) 

is taken. First, the ridge parameter λ is estimated based on the work of the Hoerl 

and Kennard (1976). Then, a length parameter (l), which expands or shrinks the 

ridge regression solution vector, is computed based on the work of Aldrin (1997). If 

the solution obtained by the application of the above process is beyond what is 

expected to be a plausible solution, Mendoza-Dominguez and Russell (2000) apply 

differentiated further penalization to each of the diagonal elements of K. This same 

technique was further explored to correct emissions inventories of primary aerosols 

and ozone precursors simultaneously (Mendoza-Dominguez and Russel, 2005).  

 

In the same way, Henze et al. (2009) used the L-curve technique and an analysis 

of the total error and its components to establish the best value of  in their 

application, Chai et al. (2009) used TSVD, Saide et al. (2009) defined  as the ratio 

of the mean value of the error variances of the observations and the parameters 

and obtained it through the L-curve method, Krakauer et al. (2009) used GCV, and 

Fan et al. (1999) compared the use of three different regularization techniques, 

including Bayesian inversion and TSVD. 

 

Even though others have acknowledged the value of regularization in attempting to 

obtain inverse-derived emission estimates, some still follow the strategy of 

assigning values to the regularization parameter subjectively or empirically. This 

includes the case of 4-DVar applications where in the cost function to be minimized 

a regularization parameter can be stated. For example, Eckhardt et al. (2008) used 

Tikhonov regularization to estimate SO2 emissions from volcanic eruptions. 

However, the weight of the smoothness condition “was determined subjectively as 

ten times the average standard error of the a priori values”. In this context, the 

application of regularization techniques and formal establishment of the 

regularization parameter in this type of problems is worth investigating more 

deeply. 
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3.8 Conclusions 
Regularization is a mathematical technique that offers numerical stability to a 

poorly-conditioned problem through the addition of a penalizing functional is its 

formulation. Regularization techniques differ among themselves according to the 

mathematical form of said functional and the quantity of information to be 

incorporated, and can be classified in direct, indirect or hybrid. A common 

characteristic among the direct regularization techniques (of which Tikhonov 

regularization is the most widely used) is that they all require a regularization 

parameter, which seeks to balance the minimization error and the regularization 

error. Among the most frequently used techniques for the selection of this 

parameter are the discrepancy principle, the L-curve, GCV and NCP, which have 

produced positive results when compared to the traditional methods. Hybrid 

methods and regularization methods with restrictions have also been developed.  

 

The regularization methods described here are applicable in multiple fields of the 

atmospheric sciences, including the estimation of emissions inventories. In this 

last, inverse modeling techniques have favored the use of Kalman or Ensemble 

Kalman Filtering, or 4-D variational assimilation, though some efforts have been 

documented on the use of ridge regression or Tikhonov regularization. The 

methodologies that have been derived to determine the best regularization 

parameter can be extended to the practice of obtaining inverse- derived emission 

strengths of atmospheric constituents. 

 

In the following chapters, some regularization methods will be used along a 

deterministic photochemical air quality model to compute scaling factors for the 

correction of a criteria-pollutant emission inventory for Guadalajara Metropolitan 

Area, Mexico. The regularization methods to be examined are Tikhonov 

Regularization (TIKH), TSVD, and DSVD, in combination with the regularization 

parameter selection methods GCV, LC, and NCP, along a Bounded Variable Least 

Squares (BVLS) method.  
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Chapter 4 
 
Application of direct regularization techniques and bounded-
variable least squares for inverse modeling of an urban emissions 
inventory 
 
This chapter was published in its current form, as a research article by Ana Yael 

Vanoye García and Alberto Mendoza Domínguez, in journal Atmospheric Pollution 

Research, Volume 5, Issue 2, April 2014, pages 219-225, 

doi.org/10.5094/APR.2014.027. The regularization techniques used in this article 

were selected based on the information presented in Chapter 3 of this dissertation. 

 
4.1 Abstract 
 

Inverse modeling, coupled with comprehensive air quality models, is being 

increasingly used for improving spatially and temporally resolved emissions 

inventories. Of the techniques available to solve the corresponding inverse 

problem, regularization techniques can provide stable solutions. However, in many 

instances, it is not clear which regularization parameter selection method should be 

used in conjunction with a particular regularization technique to get the best 

results. In this work, three regularization techniques (Tikhonov regularization, 

truncated singular-value decomposition, and damped singular-value 

decomposition) and three regularization parameter selection methods (generalized 

cross validation, the L-curve method [LC], and normalized cumulative 

periodograms) were applied in conjunction with an air quality model with the aim of 

identifying the best combination of regularization technique and parameter 

selection method when using inverse modeling to identify possible flaws in an 

urban-scale emissions inventory. The bounded-variable least-squares method 

(BVLS), which is not usually considered a regularization method, was also 

investigated. The results indicate that the choice of the regularization parameter 

explains most of the differences between the regularization techniques used, with 

the LC method exhibiting the best performance for the application described here. 
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The results also show that the BVLS scheme provides the best agreement 

between the observed and modeled concentrations among the mathematical 

techniques tested. 

 

Keywords: air quality model, photochemical modeling, emissions evaluation, 

inverse problem 

 

4.2 Introduction 
 

Three-dimensional comprehensive air quality models (AQMs) describe the 

atmospheric transport and transformation of trace species and are routinely used in 

the development of pollution-reduction strategies and other air quality management 

policies. However, to produce accurate, trustworthy results, AQMs rely on the use 

of detailed emission inventories that, even today, convey a great degree of 

uncertainty (Miller et al., 2006; Russell, 2008). This translates into model 

applications in which discrepancies between model-derived concentrations and 

observations of air pollutants can be quite large. In this description, we are 

assuming that the AQM is perfect, and the emissions are one of the most uncertain 

input parameters in the modeling effort (e.g. Russell and Dennis, 2000; Tian et al., 

2010). 

 

One way of reducing emission inventory uncertainty is to use inverse modeling or 

data assimilation techniques to identify possible flaws in the construction of such 

emission inventories. Applications of inverse modeling range from global (e.g., 

Pétron et al., 2002) or continental (e.g., Elbern et al., 2007) to regional or urban 

scales (e.g., Quélo et al., 2005) for a variety of atmospheric species such as 

stratospheric ozone depletion substances (e.g., Xiao et al., 2010), greenhouse 

gases (e.g., Stohl et al., 2009), radioactive material (e.g., Winiarek et al., 2012), 

and tropospheric ozone and aerosol precursors (e.g., Gilliland et al., 2006; 

Napelenok et al., 2008; Henze et al., 2009). In this context, several mathematical 

techniques have been used to find solutions for the corresponding inverse 
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problems, including four-dimensional data assimilation (e.g., Meirink et al., 2008), 

Kalman or ensemble Kalman filtering (e.g., Napelenok et al., 2008), and the use of 

adjoint models (e.g., Hakami et al., 2005). Li et al. (2010) used genetic algorithms 

for optimizing inventories, but their application was limited because of the 

necessary computational requirements. 

 

One approach for performing this top-down emissions inventory evaluation is to 

first use a forward model (the AQM) to compute both the simulated concentration 

fields of pollutants and their responses to changes in emissions (sensitivity fields). 

With this, a linear model of the form Gm = d can be constructed, where d is a 

vector containing the difference between modeled and observed concentrations, G 
is a matrix containing the sensitivity coefficients of all pollutant species to changes 

in the emission strengths, and m is a vector of emission strength changes that 

brings the observations and model-derived concentrations into agreement. Then, if 

an over-determined least-squares problem is solved, the corresponding inverse 

model can be represented as mest = (GTG)−1GTd, where GT is the transpose of G. 

However, inverse problems are typically ill conditioned, and this is an 

inconvenience because in practice, observations often possess a certain degree of 

error or noise (Aster et al., 2005). 

 

Several mathematical techniques based on the incorporation of known properties 

about the solution have been developed with the aim of improving the conditioning 

of direct inverse problems, including regularization. However, there are few 

examples of the use of regularization techniques to obtain inverse-derived 

emissions inventories. In particular, few formal methods have been applied to 

obtain the value of the regularization parameters. This paper addresses the issue 

of performing inverse modeling of an urban air-pollutant emission inventory by 

applying direct regularization techniques. Three regularization techniques and 

three regularization parameter choice methods were assessed. An additional 

technique investigated, which is not usually considered a regularization method, 

was the bounded-variable least-squares (BVLS) method. 
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4.3 Methods 
 

4.3.1 Regularization methods 

Three regularization methods were explored in this work: Tikhonov regularization 

(TIKH), truncated singular-value decomposition (TSVD), and damped singular-

value decomposition (DSVD). Tikhonov’s method consists of substituting the least-

squares problem for a problem of the form (Neumaier, 1998): 

 

 
22

min LmdGmm +−=est      (4.1) 

 

where L = I, I is typically the identity matrix, and   ℝ is a regularization 

parameter that controls the weight given to the minimization of the additional 

restriction relative to the minimization of the residual norm. Thus, TIKH seeks a 

solution that minimizes a criterion made up of the sum of two components: a 

weighted least-square term and a quadratic penalty term on the solution. 

 

The singular-value decomposition of matrix G with r = rank(G), as in the following 

equation: 
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can be used to obtain the Moore-Penrose pseudo-inverse of G. However, the 

generalized inverse solution can become unstable when some of the singular 

values, 𝝈i, are small (Aster et al., 2005). Therefore, in TSVD, it is assumed that it is 

possible to recover a useful model by truncating the sum in Equation (4.2) in an 

upper-bound k < r before the smallest singular values start dominating (Hansen, 

1990). When k = r, the solution of TSVD is identical to the solution obtained by 

ordinary least-square methods. However, a solution obtained from TSVD with k < r 

will tend to be more stable (Aster et al., 2005). Finally, DSVD (Ekstrom and 

Rhodes, 1974) may be regarded as a regularization method that follows Tikhonov 

in terms of its TSVD, with the difference being that DSVD introduces a smoother 
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cutoff by means of filter factors that decay slower than the Tikhonov method, 

overall requiring less filtering (Hansen, 1998; Lin et al., 2011). 

 

4.3.2 Regularization parameter choice methods 

Although the proper choice of the regularization parameter (either the continuous 

parameter λ or the discrete parameter k) is essential for the effectiveness of the 

regularization methods applied (Hansen, 1998), the optimal determination of this 

parameter remains an open issue (Krawczyk-Stando and Rudnicki, 2007; Lin et al., 

2011). Some previous studies where inverse modeling has been applied to 

evaluate emissions inventories have used formal methods to obtain the value of 

the regularization parameter (Fan et al., 1999; Mendoza-Dominguez and Russell, 

2001; Krakauer et al., 2004; Chai et al., 2009; Henze et al., 2009; Saide et al., 

2009). However, the strategy of assigning values to the regularization parameter 

subjectively, or empirically, prevails (e.g., Eckhardt et al., 2008). 

 

In this study, we explore three methods that do not require a good estimate of the 

noise variance: generalized cross validation (GCV) (Golub et al., 1979; Haber and 

Olenburg, 1999), which is a parameter-choice method based on ordinary cross 

validation (Allen, 1974); the L-curve method (LC), which uses a plot of the valid 

regularization parameters of the (semi) norm of the regularized solution versus the 

corresponding residual norm (the best regularization parameter must be located in 

the corner of the L-curve) (Hansen and O’Leary, 1993); and normalized cumulative 

periodograms (NCP) (Rust, 2000; Rust and O’Leary, 2008), which chooses the 

regularization parameter for which the residual becomes closer to behave as white 

Gaussian noise. 

 

4.3.3 Regularization with restrictions 

Regardless of whether regularization methods tend to yield more stable, precise 

solutions, these solutions will often lack physical sense or violate some of the 

restrictions imposed by the nature of the problem. In our case we need to 

guarantee positive emissions. Several techniques incorporate additional 
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restrictions to impose boundaries for the solution or add additional information 

about the solution. One such technique is the BVLS (Stark and Parker, 1995), 

which solves linear least-squares problems with upper and lower bounds on the 

variables. 

 

BVLS uses an active set strategy in which the unconstrained least-squares 

problems for each candidate set of free variables are solved using the QR 

decomposition. The method also includes a “warm-start” feature that accelerates 

the solution by allowing for some of the variables to initialize at their upper or lower 

bounds. Stark and Parker’s BVLS algorithm is based on the non-negative least 

squares method (Lawson and Hanson, 1974). In this study, we use this additional 

technique in our application and compare it with the solutions obtained by 

regularization. 

 

4.4 Application to the GMA emissions inventory 

 

The base case, reported by Mendoza and García (2009), for the modeling of 

photochemical pollutants in the Guadalajara Metropolitan Area (GMA; 20° 40’ 25” 

N, 103° 20’ 38” W) was used as case study. The GMA is the second largest urban 

center in Mexico, emissions are rather concentrated around the urban core (~600 

km2), and no important emission sources are located around this core. In the 

application described here, the same AQM, spatial configuration of the modeling 

domain, as well as the same meteorological fields, emissions inventory, and initial 

and boundary conditions were used. In that study, the California/Carnegie Institute 

of Technology (CIT) model extended with the capacity of estimating first-order 

sensitivity coefficients through the direct-decoupled method for three-dimensional 

models (Yang et al., 1997) was applied for the simulation of a three-day high-ozone 

concentration episode, occurring from May 16 to May 18, 2001. May was selected 

for the modeling exercise because it is the month when O3 concentrations peak in 

the GMA (Zuk et al., 2007). The modeling domain was a computational matrix 

composed of 40 × 40 cells (horizontal resolution), with each cell being 4 × 4 km 
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and geographically centered in the GMA. In addition, the domain included six 

vertical levels topping at 3100 m. 

 

The emission inventory used by Mendoza and Garcia (2009) was based on the 

1995 Official Emissions Inventory for the GMA. This inventory had to be extended 

to provide coverage for the additional municipalities that were included in the 

modeling domain and that were not part of the GMA. In addition, this inventory had 

to be scaled from the base year (1995) to the modeled year (2001) and had to be 

spatially segregated based on an estimated population density. For this research, it 

was particularly suitable to have an emission inventory that, given its formulation 

process, was known to have uncertainties (Mendoza and Garcia, 2011). 

 

Previously, Mendoza and Garcia (2011) used ridge regression (Hoerl and Kennard, 

1976) to derive hour-to-hour inverse-modeled emission scaling factors to the 

emissions for this same application. They found that on a daily average, CO 

emissions would need to be subject to corrections ranging from −16% to +60%, 

whereas NOx and SO2 emissions would require increments from 100% to 150% 

and 20% to 140%, respectively. The inverse model proposed by Mendoza and 

García (2011) notably enhanced the statistical model performance for O3 and other 

pollutants predictions; however, several discrepancies among the observed and 

modeled values remained unsolved. 

 

This new application recreates the original problem, as approached by Mendoza 

and García (2011), but differs from it in the mathematical methods used. Eight 

different schemes were tested and compared with the base case and inverse-

derived results achieved by Mendoza and García (2011). The schemes were as 

follows: TIKH combined with GCV, LC, and NCP; DSVD combined with GCV, LC, 

and NCP; TSVD combined with GCV; and BVLS. The algorithms provided in the 

Regularization Tools Matlab package, developed by Hansen (2008), were used to 

perform our numerical experiments. For the BVLS method, a modified version of 

the original FORTRAN algorithm by Stark and Parker (1995) was used. 
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The inversion experiments consisted of obtaining correction factors for domain-

wide emission of NOx, CO, and SO2 using the observational data derived by the 

eight ground monitoring stations that comprise the routine air quality network of the 

GMA. Observations of NO, NO2, CO, SO2, and O3 were used in this process. 

Because the inverse model works under a minimization scheme difference 

between the observed and simulated values, leaving a residual error that the 

model cannot explain, and because of the structure of the minimization function, 

biased estimators are obtained. Therefore, a complete concordance between the 

observed and modeled values after the inversion process is completed cannot be 

anticipated. However, a better performance of the AQM may be expected not only 

for the species directly related to the emissions (i.e., NO, NO2, CO, and SO2), but 

also for the secondary species (e.g., O3). The inverse-modeling approach, as used 

here, yielded hourly changes to the original emission inventory that needed to be 

applied for the AQM to more successfully replicate the observed atmospheric 

pollutant concentrations. The inversion was conducted under an iterative process 

due to the non-linear response of some of the constituents (particularly NO, NO2, 

and O3) to the changes in emissions. 

 

Finally, when conducting inverse modeling of emissions, it must be considered that 

misfits between the model and observations are due to not only emission 

inaccuracies, but also to errors in meteorological fields and other model 

parameters, as well as errors in the representation of physical and chemical 

processes. For this reason, a model evaluation is often required before the inverse-

modeling stage (Saide et al., 2009) or these errors must be accounted for by 

incorporating them into the methodology as an additional term to the minimization 

function (e.g. Elbern et al., 2007). The corresponding evaluation processes 

performed for the meteorological and AQMs used in this study were previously 

described by Mendoza and García (2009). Both models were found to perform 

within the recommended guidelines for related applications. 
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4.5 Results 
 
Table 4.1 depicts the statistical performance of the base case, that is, the ability of 

the CIT model to replicate O3-ambient concentrations. For brevity, only third-day 

(May 18) simulation results are shown. Table 4.1 shows the contrasts of that 

performance with the Mendoza and García (2011) experiment (referred to as the 

MG test for the remainder of the text) and the eight schemes investigated. The 

statistical indicators for performance appraisal were those suggested by Doll et al. 

(1991) for use in AQM applications. Moreover, Tables 4.2, 4.3, and 4.4 show the 

statistical performance of the AQM for the same day for each of the chemical 

species whose emissions where directly adjusted by the inverse-modeling process, 

namely, NOx, CO, and SO2, using the previously mentioned inverse-modeling 

schemes. 

 

As shown in Tables 4.1 through 4.4, among the regularization and restricted least 

squares methods tested, for most performance metrics and for all the chemical 

species of interest, BVLS consistently performed the best. Particularly, for O3, Doll 

et al. (1991) suggest the following performance benchmarks: a normalized bias 

smaller than ±15%, normalized error smaller than ±35%, and peak estimation 

accuracy smaller than ±20%. All models tested within these limits, except for the 

normalized bias, for which only BVLS, DSVD-NCP, and TIKH-NCP yielded 

satisfactory results. However, BVLS performance did not always outdo that 

reported in the MG case, especially concerning O3 concentrations, but it improved 

SO2 significantly (e.g., the daily index of agreement [DIA] increased from 0.48 to 

0.52). CO and NOx simulations were also enhanced except for the normalized bias, 

mean normalized square error (MNSE), and root mean square error (RMSE) of 

NOx. MNSE is usually regarded as a better metric for spatial and temporal 

performance appraisal than the normalized error (Hanna, 1998). 

 

One of the main differences between regularization methods and BVLS is that the 

latter restricts the solution to a definite, fixed set of maximum and minimum values, 
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while regularization methods seek a smoother solution. It is possible that BVLS’s 

relatively good performance might be a result of the inventory attributes and that 

the need of imposing appropriate, plausible bounds was of major concern. This 

possibility could be explored by performing further experiments with other 

inventories. 

 

All methods generally showed lower RMSE when compared with the base case. 

However, it is important to also assess the relative weights of the systematic 

(RMSEs) and unsystematic (RMSEu) components of the RMSE. In this context, the 

regularization schemes tested yielded mixed results. In all NOx and SO2 

simulations, RMSEs prevailed over RMSEu, whereas for the CO results, RMSEu 

outweighed its systematic counterpart. O3 showed a mixed response: only BVLS 

and those simulations using LC and NCP parameter choice schemes presented 

higher RMSEu than RMSEs, indicating that in such applications, residual errors are 

mostly caused by variations (noise) that the forward model cannot resolve. 

 

Time series for the RMSE statistic were also explored with the aim of determining 

whether the CIT was adequately simulating the temporal dynamics of O3. For the 

BVLS run, Figure 4.1 shows the time evolution of RMSE, RMSEs, and RMSEu. It 

should be noted that overall, RMSE diminished at all hours compared with the 

base case simulation. Furthermore, as was also reported in the MG case, there 

appears to be a local minimum in the RMSE during the afternoon hours. This might 

be a result of the fact that the CIT, as other photochemical air quality models, has 

been partially calibrated (tuned) to perform best under conditions were O3 levels 

are the highest as O3 peaks are of more environmental concern than low 

concentrations (Russell and Dennis, 2000). However, the mere presence of RMSEs 

indicates that the model requires further improvement for better results. 
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Table 4.1. CIT statistical performance evaluation for simulated O3 on May 18, 2001a 

 
BC MG BVLS DSVD-

GCV 
DSVD-

LC 
DSVD-
NCP 

TIKH-
GCV 

TIKH-
LC 

TIKH-
NCP 

TSVD-
GCV 

Peak estimation 

accuracy, % 
16.40 –10.20 –6.24 –6.80 –1.66 –4.05 2.23 –1.46 –6.96 3.15 

Normalized bias, % 20.30 0.10 11.14 16.61 16.96 13.50 23.54 16.27 7.08 23.79 

Normalized error 36.50 15.60 21.41 31.81 26.94 23.01 35.27 26.06 18.81 35.56 

MNSE 0.19 0.04 0.05 0.13 0.08 0.06 0.16 0.08 0.04 0.16 

RMSE (ppbv) 31.10 21.90 22.65 29.47 24.41 23.36 32.16 24.29 22.95 32.85 

RMSEs (ppbv) 20.70 15.10 14.24 20.98 15.39 15.28 23.55 16.09 16.11 24.56 

RMSEu (ppbv) 23.20 15.80 17.59 20.70 18.94 17.66 21.90 18.20 16.35 21.81 

DIA 0.89 0.95 0.95 0.90 0.94 0.94 0.88 0.94 0.94 0.87 

a Statistics were computed by taking into account the residual ri = Pi − Oi, where Oi and Pi are the i-th observed and modeled concentrations, 
respectively. Normalized bias is 1/NΣ(ri/Oi), where N represents the number of valid pairs that originate ri while the sum runs from i=1 to N. In a 
similar fashion, the normalized error is 1/NΣ[|ri|/Oi], the MNSE is 1/NΣ(ri/Oi)2, and the RMSE is [1/NΣ(ri)2]½. RMSEs was computed from [1/NΣ(ri)2]½, 
where ri = Pi − Oi and Pi = a + bOi (a and b are lineal regression coefficients). RMSE follows RMSE2 = RMSEs2 + RMSEu2. Finally, the DIA is 1 − [N 
RMSE2/Σ(|Pi−Mo|+|Oi−Mo|)2], where Mo is the mean observed value, as given by 1/NΣOi. Note that a positive bias indicates that modeled values are 
greater than observed values. 
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Table 4.2. CIT statistical performance evaluation for simulated NOx on May 18, 2001a 

 
BC MG BVLS DSVD-

GCV 
DSVD-

LC 
DSVD-
NCP 

TIKH-
GCV 

TIKH-
LC 

TIKH-
NCP 

TSVD-
GCV 

Normalized bias, 

% 
–51.10 –13.20 –29.41 –56.84 –32.66 –33.35 –53.77 –35.33 –34.07 –55.90 

Normalized error 67.00 61.90 –20.38 69.29 66.04 64.72 68.44 63.26 62.23 69.55 

MNSE 2.05 0.83 1.05 2.45 1.15 1.13 2.38 1.18 1.11 2.56 

RMSE (ppbv) 43.10 36.70 37.94 44.36 38.65 38.42 44.56 38.46 38.14 45.06 

RMSEs (ppbv) 39.70 26.10 28.14 41.31 29.93 29.23 41.63 30.79 28.69 42.39 

RMSEu (ppbv) 16.90 25.80 25.45 16.16 24.47 24.94 15.89 23.05 25.12 15.30 

DIA 0.47 0.59 0.60 0.46 0.58 0.59 0.45 0.58 0.60 0.44 

a Refer to Table 4.1 for definitions. 
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Table 4.3. CIT statistical performance evaluation for simulated CO on May 18, 2001a 

 
BC MG BVLS DSVD-

GCV DSVD-LC DSVD-
NCP 

TIKH-
GCV 

TIKH-
LC 

TIKH-
NCP 

TSVD-
GCV 

Normalized bias, % –26.80 –15.60 –15.12 –20.96 –14.88 –15.04 –15.53 –15.21 –15.23 –15.34 

Normalized error 60.60 46.20 45.05 45.12 45.29 45.28 45.32 45.31 45.32 45.27 

MNSE 0.87 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 

RMSE (ppmv) 1.33 1.05 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 

RMSEs (ppmv) 1.01 0.62 0.64 0.64 0.64 0.64 0.65 0.64 0.64 0.65 

RMSEu (ppmv) 0.86 0.84 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 

DIA 0.60 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 
a Refer to Table 4.1 for definitions. 

 

Table 4.4. CIT statistical performance evaluation for simulated SO2 on May 18, 2001a 

 
BC MG BVLS DSVD-

GCV 
DSVD-

LC 
DSVD-
NCP 

TIKH-
GCV 

TIKH-
LC 

TIKH-
NCP 

TSVD-
GCV 

Normalized bias, % –

13.10 10.10 23.85 –16.67 4.41 14.76 –20.51 –10.20 –4.22 –20.25 

Normalized error 66.90 79.90 82.35 64.95 69.83 77.22 63.82 64.76 69.60 64.07 

MNSE 1.99 1.43 1.11 2.10 1.35 1.26 2.25 1.81 1.70 2.25 

RMSE (ppbv) 8.10 7.70 7.26 8.13 7.34 7.44 8.23 7.85 7.89 8.25 

RMSEs (ppbv) 7.30 6.40 5.98 7.43 6.51 6.36 7.58 7.18 7.01 7.57 

RMSEu (ppbv) 3.50 4.20 4.11 3.30 3.37 3.85 3.21 3.16 3.62 3.27 

DIA 0.42 0.48 0.52 0.42 0.48 0.47 0.42 0.43 0.43 0.42 
a Refer to Table 4.1 for definitions. 
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Figure 4.1. Time series for RMSE and its systematic and unsystematic 
components: a) Base inventory simulation; b) BVLS-corrected inventory simulation. 
 

Because different combinations of regularization techniques and parameter 

selection methods were assessed, it became evident that it would be useful to 

evaluate the relative impact of the choice of regularization technique versus the 

choice of the regularization parameter method. Thus, the results were segregated 

into clusters of simulations using the same regularization method and the same 

regularization parameter selection method. Dispersion plots were constructed by 

pairing observed and simulated species concentrations. Linear regression models 

were fitted to each of the proposed combinations, which revealed that the use of 
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the same regularization parameter selection method explained most of the 

variance shown among the different tested schemes. Figure 4.2 depicts the model 

response for O3 using the different regularization parameter selection methods, 

and Figure 3 presents the model’s response for O3 using different regularization 

methods. Correlation (R2) values for regularization schemes using LC were 

between 0.517 and 0.522, whereas regularization schemes using NCP or GCV for 

parameter selection ranged between 0.414 and 0.416 and 0.370 and 0.377, 

respectively. When assembling the results by regularization method (e.g., DSVD or 

TIKH), DSVD-based methods yielded R2 values between 0.370 and 0.522, 

whereas TIKH-based methods yielded values ranging from 0.374 to 0.517. From 

this analysis, it became clear that R2 values were more sensitive to changes in the 

choice of the regularization parameter, regardless of the accompanying 

regularization method, than to the choice of the regularization method per se. 
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Figure 4.2. Scatter plots for pairs of simulated versus observed O3 concentrations 
clustered according to the regularization parameter selection method used: LC 
(top-right panel), GCV (top-left panel), and NCP (bottom-right panel). Guidelines 
represent 2:1, 1:1, and 1:2 proportions.  
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Figure 4.3. Scatter plots for pairs of simulated versus observed O3 concentrations 
clustered according to the regularization technique used: DSVD (top panel), TIKH 
(bottom panel). Guidelines represent 2:1, 1:1, and 1:2 proportions. 
 

Whereas special emphasis has been put on the adequate modeling of ambient O3 

concentrations because of its possible adverse effects on human health and non-

linear nature, dispersion plots were also constructed for the species NOx and CO 

(Figure 4.4). For these species, as for O3, most of the regularization methods 

showed similar behavior among them. This likeness was remarkably evident for 

CO, as can be seen in Table 4.3. However, as previously shown, differences arose 

depending on the choice of regularization parameter selection method. For this 
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particular application, the regularization schemes using the LC method 

demonstrated better performance than the rest of the schemes. 

 

 
Figure 4.4. Scatter plots for pairs of simulated versus observed concentrations of 
CO (left panel) and NOx (right panel). Guidelines represent 2:1, 1:1, and 1:2 
proportions. 
 

In this study, the correction of NOx emissions was relevant because within urban 

environments, O3 is mostly produced by photochemical reactions between NOx 

and volatile organic compounds (VOCs), which explains the high correlation shown 

by NOx and O3 performance metrics for all test runs. That is, correcting the 

emissions of primary species (NOx) leads to the automatic improvement in the 

estimation of secondary species. However, VOC emissions were not corrected 

because of a lack of proper observations to constrain their inversion. Thus, the 

remaining differences could be attributed to uncertain VOC emissions. 

 

Finally, after analyzing the behavior of SO2, it was concluded that this model 

application, even after undergoing regularization processes, was unable to 

adequately reproduce the observed SO2 concentrations within the GMA (Table 4.4). 

In this regard, it is believed that the level of uncertainty in current SO2 emission 

inventories is still large enough as to overcome any effort aimed at correcting these 
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emissions via mathematical regularization methods. Thus, the spatial distribution of 

these emissions would need to be revised through a down-top methodology. 

 

In addition to the combinations among regularization methods and regularization 

parameter-selection methods described above, further combinations are possible. 

For example, initial exploration of TSVD-LC and TSVD-NCP was conducted. 

However, they were not further analyzed because similar conclusions on the 

relevance of the regularization parameter selection method over the regularization 

technique could be drawn from those initial tests. 

 

4.6 Conclusions 
Inverse modeling is being increasingly used as a top-down analysis tool for 

emissions inventory assessment. Regularization is a mathematical technique that 

provides numerical stability for this type of ill-conditioned problem and, thus, was 

explored in this investigation. A common feature to all regularization techniques is 

that they require the selection of a regularization parameter that seeks to balance 

the minimization error and the regularization error. In addition, there are restricted 

least-squares methodologies that solve the inverse problem by restraining the 

solution to a specific set of boundaries (e.g., BVLS). 

 

In this work, several regularization schemes and one restricted least-squares 

method were tested and compared using statistical performance criteria with the 

MG test (2011). This experiment consisted of detecting possible improvements in 

the emission inventory of ozone precursors at the scale of an urban center 

(Guadalajara, Mexico, in this case). Overall, the BVLS consistently showed the 

best agreement among the other mathematical techniques tested. In addition, 

regularization methods demonstrated almost indistinct behavior patterns among 

them. Nonetheless, the choice of the regularization parameter was found to explain 

most of the variance shown among the different tested schemes, with the 

techniques using the LC method exhibiting better agreement between the 

observed and simulated values than their NCP and GCV counterparts. 
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This experiment allowed for the evaluation of the suitability of the use of 

regularization methods for improving air pollutant emission inventories, and for the 

direct comparison of a variety of them. The inverse modeling approach was able to 

significantly reduce  However, results also reflected that regularization methods 

cannot resolve all uncertainties, for example, those related to emission processes 

of specific pollutants such as SO2, or the lack of observation data to adequately 

constrain VOC emissions. Therefore, the need to consider additional approaches 

and incorporating all available data for a better understanding of pollution sources. 

In the next Chapter, a supervised machine learning technique -namely, Multivariate 

Linear Regression (MLR) will be explored as a complementary tool to assess 

pollutant emission sources. 
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Chapter 5 
 
Impacts of economic and sociodemographic variables on air 
quality in Mexican Metropolitan Areas 
 
This chapter was coauthored with Sergio Santiago Cárdenas-Pérez, Diego 

Guillermo González-Almendárez, Isabel Cristina Xicoténcatl-Guzmán, and Alberto 

Mendoza-Domínguez.  

 

As explained in the preceding chapters, while deterministic models are very 

powerful to resolve complex atmospheric emission-concentration processes, one 

of their shortcomings is the need for detailed emission inventories, that even 

nowadays carry large uncertainties which the use of mathematical tools cannot 

fully overcome. In this chapter, supervised machine learning methods -specifically, 

multiple linear regression models- are explored as complementary tools for a better 

understanding of pollution drivers in Mexican cities. 

 

5.1 Introduction 
Ambient air pollution is considered the greatest environmental threat to human 

health. Almost the entire global population (99%) breathes unhealthy levels of fine 

particulate matter and nitrogen dioxide. People in low and middle-income countries 

are most exposed to outdoor air pollution at levels exceeding World Health 

Organization (WHO) air quality limits. Outdoor and indoor air pollution were 

responsible for approximately 7 million deaths globally in 2016. The highest 

attributable mortality rates were concentrated in lower-middle-income countries 

that accounted for almost nine of 10 (88%) deaths (WHO, 2022a; WHO, 2022b). 

 

Metropolitan areas are highly complex, diversified spaces, in which different urban 

functions -administrative-political, productive, commercial, housing, cultural, 

recreational, and touristic- are carried out simultaneously  (Ramírez Sáiz and Safa 

Barraza, 2011). Mexican metropolitan areas are defined as groups of municipalities 
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that interact around a major city with more than 50,000 inhabitants (Ortega-

Montoya et al. 2021). Their rapid growth has spawned several social and 

environmental issues, including urban air pollution.  The three major Mexican 

metropolitan areas: Mexico City Metropolitan Area (MCMA), Monterrey 

Metropolitan Area (MMA) and Guadalajara Metropolitan Area (GMA) are not 

exempted (INECC, 2021) of this problem.  

 

In this context, air quality models (AQM) are mathematical modeling tools that 

allow studying the dynamics of atmospheric pollutants and can be useful to study 

emitter-receptor relationships, forecast poor air quality events, and eventually 

establish public policy instruments for their abatement. Deterministic AQM solve 

the primitive conservation equations (matter, energy, momentum and chemical 

species), combined with parameterizations of complex atmospheric phenomena 

(e.g., turbulent convection, soil-atmosphere interaction, cloud microphysics, etc.) to 

describe states of the atmosphere and the evolution of pollutants ) (Kadaverugu et 

al., 2019). However, the application of such models requires considerable efforts to 

generate the required information and to computationally solve the modeled 

scenarios. (See Chapters 1-4 of this dissertation). 

 

With the increasing availability of large amounts of historical data, deterministic 

models are being complemented with empirical models to answer questions 

related to air pollution. For example, Carmona et al. (2020, 2021) has combined 

satellite data with Artificial Neural Networks (ANN) to study the levels of fine 

suspended particles in Northeast Mexico. Iglesias-Gonzalez et al. (2020) 

forecasted systems based on time series models. Within machine learning 

techniques, in the family of statistical models, multiple linear regression models 

(MLRM) are receiving increased attention for their application to environmental 

problems. MLRM can be used to explore and quantify the interactions and 

contributions of socioeconomic systems to observed air pollution levels using 

historical sectoral indicators, and thus help governments to diagnose, monitor, and 

forecast macroeconomic outcomes to reduce or maintain allowable emissions and 
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ensure effective public and environmental policies (Shpak et al. 2022). In the 

literature, multiple applications of MLR models to study air quality have been 

documented, e.g. Rosenlund et al. (2008) Ganesh et al. (2017), Bai et al. (2018), 

Ganesh et al. (2019), Abdullah et al. (2020), Shams et al. (2021), He et al. (2022), 

the majority of them considering meteorological and historical pollutant data as 

predictor variables. 

 

Econometric science has been long employed to study the impact of population 

and macroeconomic indicators on the levels of atmospheric carbon dio CO2 

emissions in the United States and the Asia-Pacific region. Cramer (1998) 

produced one of the first works to examine the impact of population growth on air 

pollution in California and conclude that population is closely associated with some 

sources of emissions but not with others. Later, by considering sulfur dioxide 

(SO2), Cole and Neumeyer (2004) presented the first work that explicitly examined 

the impact of demographic factors on a pollutant other than carbon dioxide at the 

cross-national level, and took into account the urbanization rate and the average 

household size neglected by many prior cross-national econometric studies. For 

carbon dioxide emissions, Cole and Neumeyer (2004) found evidence that 

population increases are matched by proportional increases in emissions while a 

higher urbanization rate and lower average household size increase emissions. For 

sulfur dioxide emissions, they found a U-shaped relationship, with the population-

emissions elasticity rising at higher population levels. Urbanization and average 

household size are not found to be significant determinants of sulfur dioxide 

emissions. For both pollutants, our results suggest that an increasing share of 

global emissions will be accounted for by developing countries (Cole and 

Neumeyer, 2004).  

 

More recently, the method of a correlation-regression analysis with the subsequent 

construction of econometric levels was utilized by Shpak et al. (2022) confirming 

the dependence of CO2 emissions on GDP, exports and imports, the rate of 

inflation and unemployment in the United States. The influence of socioeconomic 
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variables has also been studied earlier in China. Yang et al. (2022) developed a 

geographically weighted regression (GWR) model and concluded that air quality 

was more sensitive to variations in socioeconomic metrics in less developed and 

medium-sized cities. Zhou, Li, and Zhang (2022) studied the effect of 

meteorological conditions, economic features, and population density due to 

variations in marine and terrestrial geographical environments on air quality 

through the application of a multiscale GWR model and wavelet analysis. They 

showed that the relationship between population density and urbanization rate with 

ozone concentration was greater in coastal cities, and that daily maximum 

temperature was the most important factor influencing O3 concentration.  

 

In Latin America, socioeconomic information, such as income, multidimensional, 

and energy poverty levels, has been used along ordinary least squares regression 

models to determine the relationship between pollution and socioeconomic 

information in Chilean cities. The obtained models showed positive and significant 

correlations between income, multidimensional, and energy poverty and the 

different pollutants, but mixed results in the case of unemployment (Herrera, Rojo, 

and Scapini, 2022).. 

 

Although MCMA, MMA and GMA are distinctly characterized by different 

geographic and meteorological conditions (Stoltz et al. 2020), there has been some 

research aiming to compare their air quality characteristics. Hernández-Paniagua 

et al. (2017) performed an assessment of long-term trends in O3 and odd oxygen 

(O3 + NO2) at MMA and compared it to MCMA and GMA. Ramírez Sáiz and Safa 

Barraza (2011) provided an overview of the urban conditions in the three 

metropolitan areas in different time periods but did not address explicitly the 

problem of bad air quality. Ortega-Montoya et al. (2021) analyzed the spatial 

configuration of accidental chemical risk scenarios in MCMA, GMA and MMA, and 

performed complementary geostatistical correlation analyses using population 

data, marginalization indexes, and industrial clustering sectors to identify trends 

that would lead to environmental justice approaches. Stoltz et al. (2020) analyzed 
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the spatial representativeness of air quality stations through the use of clustering 

techniques, showing that GMA and MMA have a well distributed air quality network 

with the fewest number of similar stations, while in contrast, in the MCMA, a cluster 

of possible redundant stations is found. Understanding the differences and 

similitudes in these three metropolitan areas can allow for a better design and 

implementation of pollution control measures and public policies aimed at reducing 

air pollution and improve people’s welfare.  

 

This research investigates the regional air quality characteristics and its drivers in 

MCMA, MMA and GMA. The specific objectives are to identify long-term, economic 

and sociodemographic indicators, routinely reported by Mexican government 

agencies, that might have an influence in air pollution in the selected metropolitan 

areas, and to build and assess MLRM based on economic and sociodemographic 

variables to predict air quality in Mexican metropolitan that allow for the 

quantification of urban air pollution causes in these regions. To the authors’ 

knowledge, it is the first study to explore and compare for MCMA, MMA and GMA 

the relationship between economic and sociodemographic variables, only, and air 

pollution, by using monthly, long-term, publicly available government data. 

 

5.2 Methods 
 
5.2.1 Area of study 
 
5.2.1.1 Mexico City Metropolitan Area 

The MCMA comprises Mexico City and 60 adjoining municipalities, with an area of 

5954 km2. The MCMA is located in an endorheic lake basin with an average 

altitude of 2250 m a.s.l., which is surrounded at the north by Sierra de Guadalupe, 

at the southeast by Santa Catarina Mountain, at the south by Sierra de 

Chihinautzin, and at the east and west by Sierra Nevada and Sierra de las Cruces, 

respectively (INECC, 2007).  It is the most populated area in Mexico, as well as the 
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seventh largest megacity in the world (UN, 2016) with 22 million inhabitants 

(INEGI, 2020), equivalent to 17% of the country’s total population.  

 

The main economic activities in MCMA are commerce, financial and insurance 

services, transport, and tourism. The MCMA creates around 23% of the national 

Gross Domestic Product (GDP), making it an extremely important part of Mexico’s 

economy. The primary land use is for urban settlements, but there is also a large 

area of vegetation in the outskirts of this region. In 2018, there were 6 million 

vehicles in the MCMA, of which 89.4% where private-owned, 5.1% freight, and 

5.5% public transportation. Due its large size, air pollution remains an important 

issue in MCMA. For example, in 2020, the number of days exceeding the 

maximum permissible level for at least one pollutant was 262 (72%). The most 

frequently exceeded pollutant was O3 (64% of the days), followed by PM10 (21%), 

SO2 (12%) and PM2.5 (4%) (INECC, 2021). 

 

5.2.1.2 Monterrey Metropolitan Area 

The MMA in northeast Mexico, is formed by Monterrey City and 17 municipalities: 

Abasolo, Apodaca, Cadereyta Jiménez, El Carmen, Ciénega de Flores, García, 

San Pedro Garza García, General Escobedo, General Zuazua, Guadalupe, 

Juárez, Monterrey, Pesquería, Salinas Victoria, San Nicolás de los Garza, Hidalgo, 

Santa Catarina and Santiago. According to INEGI (2020), MMA is the second-most 

populated area in Mexico with a population of 5,341,177 inhabitants within a 7657 

km2 area. The MMA lies an open plain with an average altitude of 530 m a.s.l., 

crossed by the Pesqueria river at the north and Santa Catarina River at the south. 

The MMA is surrounded by Sierra Madre Oriental at the south, which has an 

altitude up to 2400 m a.s.l. and Sierra de la Silla with elevations between 1200 and 

1800 m a.s.l. 

 

The main economic activities in the MMA are services and manufacturing. The 

city’s urban mobility statistics have shown an increasing trend in the number of 

vehicles, while the use of public transportation has been decreasing. According to 
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Instituto de Control Vehicular del Estado de Nuevo León, in 2021 there were 

2,587,209 registered vehicles in the State of Nuevo León, an increase of 44% with 

respect to the number of vehicles registered in 2011 (1,792,905 vehicles). The 

state of Nuevo Leon has a GDP per capita of 18,912, 88% larger than the national 

average (Datos Nuevo Leon, s.f.). According to SEMARNAT  (2016),  the state 

uses 2,967.42 kWh of electricity per home,  0.30 toe of fuel per home, and 0.55 toe 

of total energy per home. 

 

 In 2020, the number of days exceeding the maximum permissible level for at least 

one pollutant within the MMA was 207, which represented an increase from 2019 

(188 days), but still lower than the previous 20 years (which ranged from 223 days 

in 2018 to 320 days in 2011). The most frequently exceeded pollutant is PM10 (45% 

of the days), followed by O3 (22%) and PM2.5 (8%) (INECC, 2021). 

 

5.2.1.3 Guadalajara Metropolitan Area 

The GMA is in central Mexico and comprises Guadalajara City and 10 

municipalities with 5.2 million inhabitants in an area of 2735 km2. The GMA is 

located in the Valley of Atemajac, approximately 500 km northwest of the MCMA, 

and an altitude of 1600 m a.s.l. In contrast to MCMA and MMA, GMA is not 

surrounded by mountains, except at the northeast where Barrancas de Oblatos 

canyon is located, which a depth of 600 m and a maximum altitude of 1520 m a.s.l.  

 

In the GMA, the main economic activities are industry and services (Ortega-

Montoya et al. 2021). The state of Jalisco is the fourth largest contributor to the 

national GDP, with 6.9% of the total. The GMA concentrates 64.3% of the total 

vehicle fleet in the state of Jalisco, with 2,514,679 vehicles in circulation, and 

consumes 60% of the state’s energy consumption. Jalisco is also the fourth largest 

consumer of energy at the national level. In GMA, in 2020, the number of days 

exceeding the maximum permissible level for at least one pollutant was 159, a 

decrease from the 267 exceedance-days reported in 2019. The most-frequent 

exceeded pollutant is PM10, followed by O3. Although average PM concentration 
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has shown a decreasing trend during the period 2016-2020, still, in 2020, 25% of 

the days exceeded the daily average standard for PM10. Other pollutants (e.g. 

PM2.5 and O3) have remained relatively stable (INECC, 2021).  

 

Figure 5.1 shows the location of MCMA, MMA and GMA, including land use, 

territorial division, and location of air quality network (Benítez-García et al. 2014).  

 
 

 

Figure 5.1 Locations of the three Mexican metropolitan areas: MCMA, MMA and 
GMA, their land use, territorial division, and locations of the air-monitoring stations. 
(Taken from: Benitez-García et al. 2014) 
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5.2.2 Model philosophy 
 
It is known that pollutant emissions are a direct consequence of human activities, 

for example, commercial activities typically involve transportation, which inevitably 

produce pollutant emissions (e.g. CO2, CO, NOx, PM10, and PM2.5) as a result of  

the incomplete combustion of fuels. Under this context, it can be expected that 

having data on the use of fuels can provide an overview of pollution dynamics in a 

certain geographic region. The MLR model proposed here relies on this premise by 

correlating long-term economic and energy indicators, routinely reported on a 

monthly basis by Mexican government agencies (e.g. INEGI, Secretaría de 

Energía), with monthly-averaged air pollution data for the MMA, GMA and MCMA. 

Since air quality is the product of complex interactions between meteorological 

variables, geographical factors, atmospheric processes and emissions sources,  

socioeconomic variables might not explain all variance in the observed pollutant 

concentrations, but can  allow the identification and analysis of activities with 

impact in air quality. Figure 5.2 depicts the methodology framework followed in this 

study. 

 

 
Figure 5.2 Methodology framework. 
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5.2.3. Databases  
 
5.2.3.1 Air quality data and pollutant selection 

Long-term hourly measurements of criteria air pollutants were extracted from 

records of the MCMA, MMA, and GMA official air quality networks, namely Red 

Automática de Monitoreo Atmosférico (RAMA), Sistema Integral de Monitoreo 

Ambiental (SIMA) and Sistema de Monitoreo Atmosférico de Jalisco, respectively. 

Data quality in monitoring sites is assured by the measurement methods and 

calibration procedures defined by the Mexican Secretariat for the Environment and 

Natural Resources (SEMARNAT, 2011). Mexican standard NOM-156-

SEMARNAT-2012 describes maintenance procedures, quality assurance, and 

quality control processes that must be followed to secure the traceability and 

continuous quality of air monitoring data. 

 

To narrow the scope of this research, only one pollutant was selected as proxy for 

pollution levels in each metropolitan area. This pollutant was chosen based on data 

quality (i.e., no evidence of drifting or shifting in time series records) and data 

availability (≥75% per year in agreement with Mexican standards). For example, in 

the case of MCMA RAMA sites, if a monitoring site displayed a three-year gap 

between data measurements, was removed prior year 2018, or had an operation 

span of less than 3 years, the site will not be considered in this research. Also, 

because monitoring data is reported in hourly basis, daily and monthly averages 

were computed. As a result, the selected pollutants were PM10 for MMA, and O3 for 

MCMA and GMA. Of note, PM10 and O3 also typically exceed the air quality 

standards in said Mexican metropolitan areas (Soltz et al. 2020, INECC, 2021). 

 

For each pollutant, all distinct monitoring sites follow similar temporal trends, from 

which one can hypothesize that the average of all monitoring sites within a domain 

can adequately represent the pollution levels in the domain. In the case of MMA, 

previous works have demonstrated that, for PM2.5, SW, CE, and NE stations are 

spatially similar to one another (Mancilla et al. 2019). Moreover, a recent 
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assessment of the spatial representativeness of air quality monitoring networks in 

the MMA, MCMA and GMA concluded that GMA has a well distributed air quality 

network with the fewest number of similar stations, as well as the MMA, which 

presents the same stations clusters for PM10 and O3. In contrast, in the MCMA, a 

cluster of possible redundant stations is found (Stolz et al. 2020). The suitability of 

computing a “representative domain-average” is further confirmed by analyzing 

monthly-averaged concentration boxplots per site. 

 

5.2.3.2 Economic and socio-demographic data 

A total of 107 variables with potential relation to air quality were identified from the 

public, official sites of Instituto Nacional de Estadística y Geografía (INEGI) and 

Sistema de Información Energética (SIE) databases. The variables could be 

classified in energy, population, economy and mobility categories. To further 

correlate them with air pollution data, only those variables with monthly-updated, 

long-term records, and statewide or metropolitan geographical resolution where 

opted for, and others discarded.  

 

In the case of MCMA, 83 variables from several categories -ranging from building 

construction indices, personnel working hours, worker wages, to fuel production 

and number of registered vehicles- met the selection criteria to be further 

correlated to monthly-averaged O3 concentrations. In the cases of MMA and GMA, 

55 and 33 variables, were also selected as potential predictor variables to be 

correlated through univariate linear regression models to monthly-averaged PM10 

and O3, respectively.  

 

5.2.4 Statistical analysis 
Descriptive statistics (maximum, minimum, mean, median, standard deviation) 

were computed for all variables. Linear regressions for the selected variables were 

evaluated in terms of their coefficient of determination (R2), homoscedasticity, and 

significance (p-value).  R2 represents the proportion of the variation in the 

dependent variable that is predictable from the independent variables. According to 
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literature, R2 >0.08 can be considered significant (Zhao, 2022).  The existence of 

heteroscedasticity is a major concern in regression analysis and the analysis of 

variance, as it invalidates statistical tests of significance that assume that the 

modelling errors all have the same variance. Here, the Breusch-Pagan test with a 

level of significance of 0.05 was used to validate the homoscedasticity of linear 

regressions. Due to the different nature of the available variables and with the aim 

to increase the number of suitable variables for multiple regression analysis 

purposes, all variables were transformed and plotted against a transformation (e.g. 

logarithm, square root, inverse, squared inverse, squared, cubed form) of the 

corresponding monthly-averaged pollutant concentration.) to increase the 

regression coefficient or assure homoscedasticity. 

 

5.2.4.1 Multiple linear regression model 

 

Multiple-linear regression (MLR) models relate a set of predictor variables via some 

linear function to a predictand variable (Maraun and Widmann, 2018), and are 

given as: 

𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙𝟏 + 𝒃𝟐𝒙𝟐 + ⋯ + 𝒃𝒊𝒙𝒊 + 𝒆𝒊                                  (5.1) 

 

where 𝒚 is the dependent variable, 𝒙 and 𝒙𝒊 are the independent variables, 𝒃 and 

𝒃𝒊are the regression coefficients, and 𝒆 is the error. Stepwise regression is the 

step-by-step iterative construction of a regression model that involves the selection 

of independent variables to be used in a final model. It involves iteratively adding or 

removing potential explanatory variables in succession and testing for statistical 

significance. The forward selection approach starts with nothing and adds each 

new variable incrementally, testing for statistical significance. The backward 

elimination method begins with a full model loaded with several variables and then 

removes one variable to test its importance relative to overall results. 

 

After narrowing down the set of predictor variables, stepwise (backward and 

forward) MLR models were computed using the 'olsrr', 'gvlma', 'car', 'lmtest'  
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packages in R Studio v4.2.1. Here, it was noted that if the dependent variable was 

reexpressed, such reexpression had had to be applied to all variables, so models 

for linear (no transformation), squared, and inverse distributions were created. The 

resulting MLR models performance was evaluated in terms of significance (p-

value), homoscedasticity (Breusch-Pagan test), and the F-statistic, which describes 

the ratio of two variances, i.e., two mean squares. Mean squares are simply 

variances that account for the degrees of freedom (DF) used to estimate the 

variance. Additionally, residuals autocorrelation was tested through the Durbin 

Watson (DW) statistic. DW will always have a value ranging between 0 and 4, in 

which a value of 2.0 indicates there is no autocorrelation detected in the sample. 

Values from 0 to less than 2 point to positive autocorrelation and values from 2 to 4 

means negative autocorrelation. 

 

Cook´s Distance and QQ (Quantile-Quantile) plots were also analyzed. Cook’s 

distance plot finds influential outliers in a set of predictor variables, and can help 

identify points that negatively affect the regression model. The measurement is a 

combination of each observation’s leverage and residual values, the higher the 

leverage and residuals, the higher the Cook’s distance. QQ plots, on the other 

hand, are probability plots that graphically compare two probability distributions by 

plotting their quantiles against each other. A point on the plot corresponds to one of 

the quantiles of the second distribution plotted against the same quantile of the first 

distribution.  

 

5.3 Results and discussion 
 

5.3.1 MLR model for O3 in the MCMA 
Table 5.2 presents the list of the evaluated INEGI-SIE variables included in the 

correlation analysis per metropolitan area. In the case of the MCMA, the 83 

identified variables were narrowed to 17 variables. All 17 variables showed R2 

>0.05. These variables include MCMA data, but also include information from the 

the Miguel Hidalgo Refinery, located approximately 87 km northwest of Mexico City 
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in the state of Hidalgo, whose operations have been documented to have an effect 

in MCMA (García-Escalante et al., 2014; Sosa et al., 2013). Table 5.1 presents 

descriptive statistics and general information for energy-related (refinery) variables 

considered for the MCMA, while Table 5.2 displays the rest of the selected 

socioeconomic variables for the MCMA. Tables 5.3 and 5.4 present the univariate 

model performance statistics, indicating if any re-expression was performed to 

increase the regression coefficient or assuring homocedasticity.  

Stepwise forward and backward regressions were computed, initially considering 

all 17 variables, but also subsets were analyzed to further investigate in the 

model´s statistical performance and significance of variables. Regarding stepwise 

regression, it is recommended that the variance inflation factor (VIF) to be below 3 

or 4, and the tolerances to be above 0.25 for a robust model. Although the R2 is an 

important metric, VIF and tolerances must also be carefully considered. It was 

noticed that while most stepwise models yielded similar results, the best 

performance was yielded by a forward-stepwise model showing better increased 

tolerances and low VIF. Effort was also placed in obtaining the most simple model 

with the best performance statistics.  
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Table 5.1 Refinery-related selected socioeconomic variables for the MCMA. 
Socioeconomic 

variables 
Descriptive Statistics 

Predictor 
Variable 

ID 

 
Variable description 

Category Data 
source 

Data availability 
(spatial, 
temporal) 

 
Min 

 
Mean 

 
Max 

Standard 
Deviation 

E.1 Crude oil and liquids process in 
refinery 

Refinery SIE Monthly data from 1993 to 
2021 Sectioned by 
Refinery 

 
521.7939 

 
176.7229 

 
643.746 

 
108.4712 

E.1.1 Crude oil and liquids process in 
refinery (Heavy) 

Refinery SIE Monthly data from 1993 to 
2021 Sectioned by 
Refinery 

 
136.9867 

 
40.4938 

 
223.602 

 
43.8033 

E.2 Production of petroleum products by 
refinery 

Refinery SIE Monthly data from 1993 to 
2021 Sectioned by 
Refinery 

 
532.3886 

 
202.3486 

 
722.914 

 
111.3417 

E.2.2 Production of petroleum products by 
refinery (Liquid gas) 

Refinery SIE Monthly data from 1993 to 
2021 Sectioned by Refinery 

19.5791 4.9083 36.752 6.2269 

E.2.5.1 Production of petroleum products by 
refinery (Pemex Diesel) 

Refinery SIE Monthly data from 1994 to 
2021 Sectioned by 
Refinery 

 
93.856 

 
14.6224 

 
162.53 

 
34.2124 

E.2.6 Production of petroleum products by 
refinery (Fuel Oil) 

Refinery SIE Monthly data from 1993 to 
2021 Sectioned by 
Refinery 

 
163.875 

 
63.6595 

 
228.488 

 
33.887 
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Table 5.2 Non-refinery related selected socioeconomic variables for the MCMA. 
Socioeconomic 

variables 
Descriptive Statistics 

Predictor 
Variable 

ID 

 
Variable description 

Category Data 
source 

Data availability 
(spatial, 
temporal) 

 
Min 

 
Mean 

 
Max 

Standard 
Deviatio
n 

E.3 Internal demand for Gas Gas and 
Gasoline 

SIE Monthly data from 1995 to 
2019 Sectioned by State 

 
80.2531 

 
65.42092 

 
99.8388 

 
7.7024 

E.4.1 Volume of internal sales of 
Gasoline by federal entity 

Gas and 
Gasoline 

SIE Monthly data from 1993 to 
2020 Sectioned by State 

 
143.0519 

 
116.4964 

 
165.6005 

 
13.3536 

E.4.1.2 Volume of internal sales of 
Gasoline by federal entity 
(Pemex Magna) 

Gas and 
Gasoline 

SIE Monthly data from 1993 to 
2020 Sectioned by State 

 
580.0607 

 
232.0056 

 
754.5108 

 
109.0959 

E.4.3 Volume of internal sales of Diesel 
by federal entity 

Gas and 
Gasoline 

SIE Monthly data from 1993 to 
2020 Sectioned by State 

 
38.5175 

 
22.31879 

 
46.8837 

 
5.3752 

E.5 Internal Demand for Natural Gas 
by State 

Gas and 
Gasoline 

SIE Monthly data from 1993 to 
2019 Sectioned by State 

 
353.9687 

 
139.4123 

 
584.3652 

 
91.7863 

E.6 Internal Demand for Natural Gas 
by State, Public Sector 

Gas and 
Gasoline 

SIE Monthly data from 1993 to 
2019 Sectioned by State 

 
178.7571 

 
77.89788 

 
328.5038 

 
41.0776 

E.8 Internal Demand for Natural Gas 
by State, Industrial Sector 

Gas and 
Gasoline 

SIE Monthly data from 1993 to 
2019 Sectioned by State 

 
22.3154 

 
2.75462 

 
44.6849 

 
9.743 

E.16 Registered motor vehicles in 
circulation 

Mobility INEGI Monthly data from 1993 to 
2021 Sectioned by State 

 
5.5001 

 
2.901888 

 
8.9704 

 
1.9184 

E.16.1 Registered motor vehicles in 
circulation (Cars) 

Mobility INEGI Monthly data from 1993 to 
2021 Sectioned by State 

 
4.5999 

 
2.33168 

 
7.7995 

 
1.7065 

E.16.2 Registered motor vehicles in 
circulation (Buses) 

Mobility INEGI Monthly data from 1993 to 
2021 Sectioned by State 

 
34.3767 

 
13.456 

 
44.582 

 
10.4892 

E.16.3 Registered motor vehicles in 
circulation (Loading Vehicles) 

Mobility INEGI Monthly data from 1993 to 
2021 Sectioned by State 

 
865.8339 

 
512.366 

 
1138.113 

 
213.3087 
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Table 5.3 Univariate model performance statistics for MCMA selected predictor variables (refinery-related). 
Univariate regression 

model 
Predictor 
Variable 
ID 

R2 P value 
Homocedasticity test (Brreusch 
Pragan test) 

Independent 
variable 
scaling 

Independent variable 
re-expression 
(function) 

Dependent variable 
re- expression 
(function) 

E.1 0.0652 3.2553e-06 
BP = 3.841761 df = 1 p-value = 

0.049991 
None x2 x2 

E.1.1 0.094 1.7494e-08 
BP = 4.228745 df = 1 p-value = 

0.039745 
None 1/x2 x2 

E.2 0.0733 7.4771e-07 
BP = 4.497231 df = 1 p-value = 

0.03395 
None x2 x2 

E.2.2 0.0801 2.2157e-07 
BP = 9.11003 df = 1 p-value = 

0.002542 
None None x2 

E.2.5.1 0.081 2.1352e-07 
BP = 8.676032 df = 1 p-value = 

0.003224 
None 1/ x2 x2 

E.2.6 0.1461 1.0388e-12 
BP = 6.467843 df = 1 p-value = 

0.010984 
None None X3 
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Table 5.4 Univariate model performance statistics for MCMA selected predictor variables (non-refinery-related). 
Univariate regression 

model 
Predictor 
Variable 

ID 

R2 P value Homocedasticity test 
(Brreusch Pragan test) 

Independent 
variable 
scaling 

Independent 
variable re-
expression 
(function) 

Dependent variable 
re- expression 

(function) 

E.3 0.0829 2.6149e-07 BP = 15.59094 df = 1 p-value = 7.9e-
05 

None x2 1/x 

E.4.1 0.1398 4.3445e-12 BP = 8.509977 df = 1 p-value = 
0.003532 

x/1000 None x2 

E.4.1.2 0.1584 1.0446e-13 BP = 10.46671 df = 1 p-value = 
0.001215 

None X1/2 x2 

E.4.3 0.0564 1.6139e-05 BP = 9.05031 df = 1 p-value = 
0.002627 

x/1000 None x2 

E.5 0.1806 5.5275e-15 BP = 15.765802 df = 1 p-value = 7.2e-
05 

None None x2 

E.6 0.0694 2.6661e-06 BP = 5.716832 df = 1 p-value = 
0.016803 

None x2 1/x 

E.8 0.2086 2.5186e-17 BP = 8.331141 df = 1 p-value = 
0.003897 

x/1000000 x2 1/x 

E.16 0.2021 1.5955e-17 BP = 14.86085 df = 1 p-value = 
0.000116 

x/1000000 1/x sqrt(x) 

E.16.1 0.1977 3.9432e-17 BP = 14.59149 df = 1 p-value = 
0.000134 

x/1000 1/x 1/x 

E.16.2 0.2242 1.6539e-19 BP = 10.48399 df = 1 p-value = 
0.001204 

x/1000000 1/x 1/x 

E.16.3 0.2182 5.7351e-19 BP = 12.934979 df = 1 p-value = 
0.000322 

x/1000000 1/x None 
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Table 5.5 Model selection. Stepwise procedure for MCMA. 
 

Step Predictor 
variable ID 

Added/ 
Removed     R2 R2-Adjusted Cp AIC RMSE 

1 E_16_2 addition 0.2255 0.2229 99.8668 1983.416 6.5542 
2 E_4_1_2 addition 0.2822 0.2773 72.9017 1962.621 6.3204 
3 E_2_6 addition 0.3098 0.3028 60.7859 1952.851 6.2081 
4 E_3 addition 0.3359 0.3269 49.4527 1943.293 6.1 
5 E_16 addition 0.3658 0.355 36.158 1931.462 5.9711 
6 E_16_2 removal 0.3658 0.3572 34.1621 1929.466 5.961 
7 E_5 addition 0.4173 0.4073 9.8485 1906.068 5.7237 
8 E_4_1 addition 0.4244 0.4126 8.2188 1904.39 5.6984 
9 E_4_3 addition 0.437 0.4235 3.7771 1899.749 5.6453 
 
 

The resulting MLR model for ozone in the MCMA is summarized as follows: 

𝐥𝐧 𝑶𝟑  = 𝟑. 𝟑𝟒𝟔 ∙ 𝟏𝟎−𝟏𝟔 + 𝟎. 𝟎𝟖𝟐 ∙ 𝑬𝟐.𝟑.𝟏
𝟐 + 𝟎. 𝟐𝟖𝟎𝟑 ∙

𝟏

𝑬𝟐.𝟓.𝟏
𝟐 −  𝟎. 𝟒𝟗𝟗𝟖 ∙

𝟏

𝑬𝟑
𝟐 + 𝟎. 𝟏𝟓𝟒𝟑 ∙ 𝑬𝟕

𝟐 − 𝟎. 𝟕𝟑𝟓𝟏 ∙

𝑬𝑴𝑬𝑪𝟐
𝟐      

              + 𝟎. 𝟓𝟗𝟗 ∙
𝟏

𝑬𝑴𝑬𝑪𝟒
𝟐 − . 𝟐𝟑𝟑𝟓 ∙

𝟏

𝑬𝑵𝑬𝑪𝟔.𝟒
+ 𝟎. 𝟏𝟗𝟖𝟏 ∙

𝟏

𝑬𝑵𝑬𝑪𝟗.𝟑
𝟐 −  𝟎. 𝟏𝟏𝟒𝟒 ∙

𝟏

𝑬𝑵𝑬𝑪𝟏𝟏.𝟐
𝟐 + 𝟎. 𝟏𝟕𝟐𝟒

∙ 𝑬𝑵𝑬𝑪𝟏𝟏.𝟒 
 

(5.1) 
 

where: 
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The Equation (5.1) coefficients of the linear regression model and their corresponding 

statistics are shown in Tables 5.6 and 5.7. 

 

Table 5.6 Coefficients of the linear regression model for the MCMA. 

Variable Coefficients Tolerance VIF Significance 

Intercept 3.346E-16 - - - 

E2.3.1 0.082 0.2579 3.8776 0.4469 

E2.5.1 0.2803 0.4483 2.2305 0.0008 

E3 -0.4998 0.8021 1.2468 <0.0001 

E7 0.1543 0.4937 2.0255 0.0492 

EMEC2 -0.7351 0.2179 4.5883 <0.0001 

EMEC4 0.599 0.3882 2.5757 <0.0001 

ENEC6.4 -0.2335 0.4987 2.0053 0.0031 

ENEC9.3 0.1981 0.6737 1.4844 0.0035 

ENEC11.2 -0.1144 0.7698 1.299 0.0684 

ENEC11.4 0.1724 0.7951 1.2577 0.0057 

 

Table 5.7 Performance statistics for the MCMA O3 MLR model. 

Statistic Value Statistic Value 

E2.3.1 Petroleum products processing (Extra/Pemex Magna b Gasoline) 

E2.5.1 Petroleum products processing (Pemex Diesel) 

E3 Domestic LP Gas demand 

E7 Domestic Natural Gas Demand (Petroleum Sector) 

EMEC2 Total revenues from the supply of goods and services 

EMEC4 Average remuneration 

ENEC6.4 Social benefits excluding worker and administrative employees’ wages 

ENEC9.3 Electrical and telecommunications constructions and auxiliary works 

ENEC11.2 Water, irrigation and sanitation constructions and auxiliary works 

ENEC11.4 Transportation constructions and auxiliary works 
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R2 0.6395 Global Stat 8.1160 
Adjusted R2 0.6097 p-value 0.0874 
F-Test 21.4629 Skewness 2.6713 
p-value <0.0001 p-value 0.1022 
Bresuch-Pagan 
Test 13.5319 Kurtosis 0.0756 

p-value 0.1954 p-value 0.7833 
Durbin-Watson 
Test 1.8098 Link Function 2.9331 

p-value 0.1061 p-value 0.0868 
  Heteroscedasticity 2.4360 
  p-value 0.1186 
 

 

It can be noticed that tests show a notable statistical significance. Figure 5.3 presents 

QQ plots showed adequate normal residual distribution, as well as a Cook’s Distance 

chart, resulting in values <0.1 for all but 3 observations. The DW statistic (1.81) shows 

evidence of some correlation, as for a true model with negligible autocorrelation a DW 

value of 2 would be ideal (Chellakan et al., 2022. Obtained R2 is spread around 0.6395, 

which can be considered a good value when compared to the findings of studies using 

structural equation modeling. (Zhao et al., 2019) obtain an explanation of 42% of the 

data. Of note, including variables from the Tula Refinery improved the model´s 

performance and confirms the effect of refinery operations in MCMA’s air quality.  
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Figure 5.3 Residuals QQ plot and Cook’s D Chart for forward-backward stepwise 

regression for ozone concentration in the MCMA. 

 

While scaling the variables can help computational performance, this might to scaled 

regression coefficients with magnitudes that do not necessarily equate to the relative 

importance of the regressor (Montgomery, 2006). In other instances, even the sign of 

the coefficient might contradict expectations based on experiences. For example, one 

would expect a proportional relationship between total revenues from the supply of 

goods and services (EMEC2) and air pollution, but in the MLR model they show a 

negative relation. This can be due to the existence of regressors not considered in this 

study due to the lack of available information. However, what can be concluded is that 

the regressors in the resultant MLR model are important and worth of further analysis to 

understand sources of pollution, in this case, O3 concentration. 

The robustness of the model was tested through an ensemble model approach, in 

which 10 randomized subsets that included 70% of all data were create, and a MLR 

model was created for each data set. The coefficients of the 10 bootstrap regression 

models were averaged. Each bootstrap model was tested by comparing the remaining 
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(30%) data points to the model estimates. The resulting average-ensemble model was 

similarto the original model in terms of coefficient magnitudes, term signs and 

performance statistics. 

 

5.3.2 MLR model for PM10 in the MMA 

All 21 possible predictor variables were tested through univariate linear regressions, 

as described above.  Table 5.8 presents descriptive statistics and general information 

for the MMA selected predictor variables, while Table 5.9 displays model 

performance statistics, and indicates if any re-expression was performed to increase 

the regression coefficient or assuring homoscedasticity. 
 

Once the variables with the best results in their univariate linear regressions have 

been selected, a variety of stepwise forward and backward multivariate linear 

regression models were built. Each model was tested for statistical performance 

appraisal by means of its R2, significance (p-value), F-statistic, AIC, Mallow's Cp, 

DW, normality of residuals (QQ-plot), presence of influential observations (Cook's) D, 

homoscedasticity, variables’ significance, VIF and tolerance.   
 
 

 

For example, a first model using backward stepwise regression method and 

considering the total of the 21 candidate predictor variables was built seeking to 

optimize the p-value, and with 𝒚´= 𝑳𝒏(𝒚). In a second model, forward and backward 

stepwise regression method was applied to optimize the p-value, and with 𝒚´= 𝑳𝒏(𝒚). 

Because this second model included, variables E.2 and E.2.3, the latter being a 

subset of E.2, the variable E.2 was arbitrarily removed to develop a third model. Also, 

a mobility variable, E.16.1 was added to produce a more activity-diversified model. 

Finally, a stepwise forward and backward model was used to produce a linear model 

𝒚´= 𝒚.  
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Table 5.8 Descriptive statistics and general information for the MMA selected 
predictor variables. 

 

Predictor 
Variable 

ID
Variable description Category Data 

source

Data availability 
(spatial, 

temporal)
Min Mean Max Standard 

Deviation

E.1
Process of crude oil and liquids in the
Cadereyta refinery (Total). [thousands of
barrels per day]

Energy SIE
Data by State 
and monthly 
(1993-2021)

56.69 170.07 239.39 45.7

E.1.2
Process of crude oil and liquids in the 
Cadereyta refinery (Light). [Thousands of 
barrels per day]

Energy SIE
Data by State 
and monthly 
(1993-2021)

12.06 83.06 147.8 28.34

E.2
Production of petroleum products by the 
Cadereyta refinery (Total). [Thousands of 
barrels of crude oil equivalent per day.]

Energy SIE
Data by State 
and monthly 
(1993-2021)

70.28 174.75 247.31 48.51

E.2.3

Production of petroleum products by the 
Cadereyta refinery (Gasoline). 
[Thousands of barrels of crude oil 
equivalent per day.]

Energy SIE
Data by State 
and monthly 
(1993-2021)

18.77 65.05 97.91 19.51

E.4.2
Volume of internal sales of Petroleum
Products by federal entity (Kerosene).
[Cubic meters]

Energy SIE
Data by State 
and monthly 
(1993-2021)

0.723 21,421.35 55,053.98 11,327.68

E.4.3
Volume of internal sales of Petroleum 
Products by federal entity (Diesel). [Cubic 
meters]

Energy SIE
Data by State 
and monthly 
(1993-2021)

30,689.46 102,741.60 169,691.10 29,686.61

E.4.7
Volume of internal sales of Petroleum 
Products by federal entity (Asphalts). 
[Cubic meters]

Energy SIE
Data by State 
and monthly 
(1993-2021)

1,179.40 14,139.74 29,421.76 5,839.12

E.4.10
Volume of internal sales of Petroleum 
Products by federal entity (Others). 
[Cubic meters]

Energy SIE
Data by State 
and monthly 
(1993-2021)

4,086.70 70,864.49 229,104.60 26,404.40

E.5 Internal Demand for Natural Gas. [Million 
cubic feet per day] Energy SIE

Data by State 
and monthly 
(1993-2021)

426.08 658.73 1037.44 127.1375

E.6
Internal Demand for Natural Gas, Public 
Electricity Sectors and Electricity Exports. 
[Million cubic feet per day]

Energy SIE
Data by State 
and monthly 
(1993-2021)

91.68 192.34 317.19 47.15

E.11.1
Hours worked by total employed 
personnel (manufacturing industries). 
[Number of hours]

Economy INEGI
Data by State 
and monthly 
(2007-2021)

56,055.50 69,950.72 79,844.31 5,352.08

E.12 Total remuneration depending on the 
company name (Total). Economy INEGI

Data by State 
and monthly 
(2007-2021)

5,981,912 9,036,927 17,380,054 2,259,910

E.16.1 Registered motor vehicles in circulation 
(Cars). [Number of vehicles] Mobility INEGI

Data by State 
and monthly 
(1991-2021)

612,564 1,290,887 1,917,074 349,716.30

E.27 Electric power users. [Number of users] Energy SIE
Data by State 
and monthly 
(2002-2017)

1,054,232 1,484,880 1,924,832 250,988.10

E.30 Internal sales of electricity. [Megawatt- 
hour] Energy SIE

Data by State 
and monthly 
(2002-2017)

17,500.30 1,301,656 1,900,584 267,445.80

E.31 Total wholesale revenue of trading 
companies. [Index] Economy INEGI

Data by State 
and monthly 
(2008-2021)

76.32 102.11 121.34 10.42

E.32 Total retail revenue of trading companies. 
[Index] Economy INEGI

Data by State 
and monthly 
(2008-2021)

72.94 107.29 157.79 19.48

E.33 Index of water, irrigation, and sanitation of 
construction companies. [Index] Economy INEGI

Data by State 
and monthly 
(2006-2021)

9.49 429.73 1,471.88 333.56

E.35 Transportation and urbanization index of 
construction companies. [Index] Economy INEGI

Data by State 
and monthly 
(2006-2021)

40.03 130.3 312.29 57.8

E.39 Public sector index of construction 
companies. [Index] Economy INEGI

Data by State 
and monthly 
(2006-2021)

30.45 132.62 305.75 56.99

E.40
Index of total income for temporary 
accommodation and food and beverage 
preparation services. [Index]

Economy INEGI
Data by State 
and monthly 
(2013-2021)

29.82 79.05 114.28 18.16
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Table 5.9 Univariate model performance statistics for MMA selected predictor variables 

Predictor 

Variable ID 
R2 P value Homoscedasticity test 

(Brreusch Pragan test) 

Independent variable 

scaling 

Independent variable re-expression 

(function) 

Dependent variable re-expression 

(function) 

E.1 0.278 < 2.2e-16 Pass. BP = 11.439, 

p-value = 0.0007192 

Unscaled. Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.1.2 0.2619 < 2.2e-16 Pass. BP = 14.358, 

p-value = 0.0001511 

Unscaled. Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.2 0.3016 < 2.2e-16 Pass. BP = 12.958, 

p-value = 0.0003185 

Unscaled. Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.2.3 0.2772 < 2.2e-16 Pass. BP = 10.935, 

p-value = 0.0009436 

Unscaled. Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.4.2 0.0517 0.00180 Pass. BP = 16.757, 

p-value = 4.249e-05 

Scaled 

x . 1000 

 

Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.4.3 0.0430 0.000712

2 

Pass. BP = 5.3661, 

p-value = 0.02053 

Scaled 

x . 1000 

 

Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.4.7 0.1663 1.355e-11 Pass. BP = 10.642, 

p-value = 0.001105 

Scaled 

x . 1000 

 

Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.4.10 0.1459 4.002e-09 Pass. BP = 7.9499, 

p-value = 0.004809 

Scaled 

x . 1000 

 

Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.5 0.189 6.631e-13 Pass. BP = 4.4812, 

p-value = 0.03427 

Unscaled. Without re-expression. Radical. 𝒚´ = 𝒚𝟑⁄𝟐. 

E.6 0.1701 1.215e-11 Pass. BP = 5.1815, 

p-value = 0.02283 

Unscaled. Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 
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E.11.1 0.0806 0.003192 
Pass. BP = 9.1214, 

p-value = 0.002526 

Scaled 

x . 1000 

 

Without re-expression. Without re-expression. 

E.12 0.0437 0.03156 

Almost passed. 

BP = 3.5254, 

p-value = 0.06044 

Scaled 

x . 1000000 

 

Fraction. x´ = 1 / x  Fraction. y´ = 1 / y  

E.16.1 0.1955 4.595e-14 
Pass. BP = 5.1678, 

p-value = 0.02301 

Scaled 

x . 1000 

 

Without re-expression. Without re-expression. 

E.27 0.2976 3.353e-16 
Pass. BP = 8.391, 

p-value = 0.003771 

Scaled 

x . 1000 

 

Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.30 0.3559 < 2.2e-16 
Pass. BP = 28.679, 

p-value = 8.544e-08 

Scaled 

x . 1000 

 

Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.31 0.0782 0.0002408 
Pass. BP = 6.2324, 

p-value = 0.01254 
Unscaled. Without re-expression. Without re-expression. 

E.32 0.1164 6.018e-06 
Pass. BP = 6.4255, 

p-value = 0.01125 
Unscaled. Without re-expression. Natural logarithm. 𝒚´ = 𝐥𝐧(𝒚). 

E.33 0.1307 0.0001208 
Pass. BP = 3.9449, 

p-value = 0.04701 
Unscaled. Without re-expression. Without re-expression. 

E.35 0.2521 1.181e-13 
Pass. BP = 5.3651, 

p-value = 0.02054 
Unscaled. Without re-expression. Radical. 𝒚´ = 𝒚𝟑⁄𝟐. 

E.39 0.2068 3.441e-11 
Pass. BP = 3.9988, 

p-value = 0.04553 
Unscaled. Without re-expression. Radical. 𝒚´ = 𝒚𝟐. 



127 

 

After analyzing models’ performance statistics, it was noted that models 1 and 4 

clearly underperformed, while models 2 and 3 showed similar performance. However, 

even when model 2 displayed a slightly better R2, after comparing variable tolerances 

VIF, and Cook’s D, and overall structure, it was concluded that model 3 provided a 

better fit. Therefore, the resulting MLR model for PM10 in the MMA is presented in 

Equation (5.2). Tables 5.10 and 5.11 present coefficients of the linear regression 

model and their corresponding performance statistics. 

 

𝐥𝐧(𝑶𝟑) = 𝟐. 𝟐𝟓𝟓𝟖 − 𝟎. 𝟎𝟑𝟑𝟑 𝑬𝟏𝟔.𝟏 + 𝟎. 𝟖𝟏𝟑𝟑 𝐥𝐧(𝑬𝟓
𝟐/𝟑

) − 𝟎. 𝟎𝟎𝟏𝟓 𝑬𝟔 − 𝟏. 𝟔𝟓𝟐𝟑 𝐥𝐧(𝑬𝟏𝟏.𝟏)

+ 𝟎. 𝟎𝟎𝟑𝟏 𝑬𝟐.𝟑 + 𝟎. 𝟎𝟏𝟎𝟗 𝑬𝟒.𝟕 + 𝟏. 𝟏𝟖𝟎𝟑 𝐥𝐧(𝑬𝟑𝟏) 

(5.2) 

where: 

E.2  Total petroleum products 

E.6  Internal demand of natural gas for electricity production 

E.11.1  Hours worked by manufacturing industries personnel 

E.5  Total internal demand of natural gas (state) 

E.31  Total wholesale revenue of trading companies 

E.2.3  Total production of petroleum products 

E.4.7  Internal sales of petroleum products (asphalts) 

 

Table 5.10. Coefficients of the linear regression model for the MMA. 
 

Predictor 
variable ID 

Variable 
coefficient (Estimate) 

Std. Error Tolerance VIF Significance 

(Intercept) 2.2558 2.4757   0.3648 
E.6 -0.0015 0.0004 0.8325 1.2012 0.0022  
E.11.1 -1.6523 0.6124 0.1782 5.6129 0.0084  
E.5 0.8133 0.3588 0.3448 2.9002 0.0260  
E.31 1.1803 0.4949 0.2816 3.5517 0.0193  
E.2.3 0.0031 0.0015 0.4847 2.0631 0.0437  
E.4.7 0.0109 0.0053 0.9047 1.1054 0.0427   
E.16.1 -0.0333 0.2618 0.4100 2.4388 0.8990 
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Table 5.11 MMA PM10 MLR model performance statistics. 

R2 0.4440 

R2-Adjusted 0.3982 

p-value 8.11e-09 

F-statistic 9.696 on 7 and 85 DF 

Global Stat Assumptions acceptable. 

Skewness Assumptions acceptable. 

Kurtosis Assumptions acceptable. 

Link Function Assumptions acceptable. 

Heteroscedasticity test Assumptions acceptable. 

Durbin-Watson test DW = 1.1249, p-value = 3.124e-07 

 

The variables in Equation (5.2) can explain almost half of the variation observed in PM10 

monthly averaged concentration, which can be considered a good fit.  Regarding Table 

5.11, the Global Stat assumption indicates if a linear relationship exists between the 

dependent variable and the independent variables, the Link function assumption verifies 

that the variable is continuous, and the heteroscedasticity test confirms that the 

variance of the residuals is constant. Furthermore, the Skewness and Kurtosis 

assumptions show that the distribution of the residuals is normal, as confirmed by the 

QQ plot in Figure 5.4. On the other hand, the Durbin-Watson statistic implies that there 

might be some autocorrelation, however, there are no significant outlier observations in 

Cook’s D chart. 

 

Also, as discussed in section 5.3.1, the resulting model in Equation 5.2 cannot fully 

explain all intervening pollution processes, and there might be uncertainty in regards to 

the significance or sign of the regressor coefficients. However, the model  identifies that 

activities of oil production and processing have some relation with O3 pollution in the 

AMM, and that this relation should be further explored. Also, variables such as natural 

gas demand, number of registered vehicles, asphalt sales, wholesale sales index, and 

hours worked in manufacturing industries can have an impact in pollution levels, too.  
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Figure 5.4 Residuals QQ plot and Cook’s D Chart for forward-backward stepwise 

regression for PM10 concentration in the MMA. 

 
 
 
5.3.3 MLR model for O3 in the GMA 
For the GMA, 17 energy, economic and mobility variables complied with the univariate 

regression analysis significance criteria to be considered possible predictors in the 

MLRM, namely homoscedasticity of 0.1 and R2>0.05. In some cases, re-expressions of 

the independent and dependent variables were performed. Of note, in the case of GMA, 

there are no nearby refineries, thus there were no fuel production and processing 

variables. Table 5.12 presents descriptive statistics and general information for the 

GMA selected predictor variables, while Table 5.13 displays model performance 

statistics, and indicates if any re-expression was performed to increase the regression 

coefficient or assuring homoscedasticity. 
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Table 5.12 Descriptive statistics and general information for the GMA selected predictor variables. 
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Table 5.13 Univariate regression statistics for the GMA selected predictor variables. 
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As in the case of MCMA and MMA, stepwise forward and backward regression 

models were computed. Considering variables listed in Table 5.13 as possible 

predictor variables, a recommended model for monthly-averaged O3 concentration 

in the GMA is: 

 
[𝑶𝟑] = 𝟐𝟑𝟗. 𝟔𝟑𝟔 + 𝟎. 𝟑𝟕𝟐 (𝑬𝟑𝟎.𝟏) − 𝟎. 𝟔𝟒𝟎 (𝑬𝟐𝟖.𝟖) − 𝟎. 𝟏𝟓𝟏(𝑬𝟐𝟖.𝟕) − 𝟎. 𝟐𝟗𝟒 (𝑬𝟐𝟖.𝟑)

+ 𝟎. 𝟏𝟏𝟑 (𝑬𝟐𝟖.𝟓) + 𝟔𝟐. 𝟎𝟕𝟑(𝑬𝟏𝟎) + 𝑬𝟒.𝟏.𝟐 + 𝑬𝟏𝟑 + 𝑬𝟐𝟒 + 𝟎. 𝟓𝟎𝟗 (𝑬𝟑𝟎.𝟐) 

 (5.3) 
where: 

E.28.3  Electricity and telecommunications index. 

E.12  Total remuneration depending on denomination 

E.16.3  Registered motor vehicles in circulation: Loading vehicles 

E.13  Production value of manufactured products 

E.30.1  Total income from supply of good and services: Wholesale trade.  

E.16.2  Registered motor vehicles in circulation: Buses  

E.4.2.   Domestic demand of petroleum products: other kerosenes 

E.28.1  Building index 

E.28.6  Other constructions Index 

E.28.2  Irrigation, water and sanitation Index. 

E.16.1  Registered motor vehicles in circulation: Cars 

E.30.2  Total income from supply of good and services: Retail trade. 

 

This model in Equation (5.3) was obtained through a forward stepwise regression, 

as detailed in Table 5.14 below. The linear regression coefficients and its 

corresponding statistics are shown in Table 5.15, while the model’s performance 

statistics are shown in Table 5.16. As in the cases of MCMA and MMA, an 

ensemble model was built to test for robustness. 
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Table 5.14 Forward stepwise regression for MLR O3 model in the GMA. 

 
 

Table 5.15. Coefficients of the linear regression model for the GMA 

 
 
 
Table 5.16. GMA PM10 MLR model performance statistics. 

Statistic Value  p-value 

Global Stat 1.04E+01  0.03385 

Skewness 1.56E+00  0.21184 

Kurtosis 7.54E-04  0.9781 

Link function 6.48E+00  0.01093 

Heteroscedasticity 2.39E+00  0.12221 

R2 0.6142    

R2 Adjusted 0.5563    

F-statistic 10.61  3.30E-12 

Breusch-Pagan 20  6.71E-02 

Durbin-Watson 1.4194  1.16E-04 

Mallows Cp 16.0085    

RMSE 0.109    
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As can be noticed, consumption of fuels (primarily, internal demand of natural gas 

and gasoline display the most significant correlation with O3 pollution. Of note, in 

the resulting model, some economic activity variables correlated negatively with air 

pollution. Again, this can be to some lack of information for all relevant regressors 

not considered in this study due to the lack of available information. However, what 

can be concluded is that the regressors in the resultant MLR model are important 

and worth of further analysis to understand sources of pollution. 

 

Finally, Table 5.17 presents the summary of model performance results for MCMA, 

MMA and GMA models.  

 

Table 5.17 Summary of model performance statistics for MCMA, MMA and GMA 

MLR models. 

Model statistics MCMA Forward-
Backward Model 

MMA Forward-
Backward Model 

GMA Forward 
model 

R2 0.4402 0.4440 0.6142 

R2 Adjusted 0.4268 0.3982 0.5563 

F-statistic 32.8038 9.696 10.61 

Durbin-Watson 1.0978 1.1249 1.4194 

 
 
5.4 Conclusions and discussion 
Air quality in metropolitan areas is the product of multiple confluence factors, both 

natural and anthropogenic. This study attempted to identify economic and energy 

activities with statistically significance in air quality, in three Mexican Metropolitan 

areas: MCMA, MMA and GMA. Even if sources are not explicitly identified, 

socioeconomic indicators among air quality and economic activity, as they change 

through time, allow for the study of air pollution responses to forcings.  
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The resulting MLRM models compare favorably to other studies found in literature, 

e.g. Zhao et al. 2012, in terms of R2 and p-value significance. It is concluded that, 

although the three areas have distinct geographical locations and characteristic, 

common air pollution drivers appear: fuel production and processing resulted an 

important factor in areas nearby refinery installations, as well as fuel use (e.g. 

gasoline and natural gas demand). It is also demonstrated that the use of energy 

and economy information, routinely recorded by government agencies can provide 

further insights on the causes of air pollution, and that these economic and energy 

activities alone can explain a substantial fraction of air pollution.  Identifying and 

quantifying the causes of urban air pollution and allows the formulation of pollution 

control measures in Mexico. 

 
For example, in the case of the MMA, although there are experimental studies that 

suggest an important contribution of the Cadereyta Refinery in MMA air quality, 

there are no deterministic simulations that can further support this hypothesis. The 

MMA-MLR model states that there are some variables associated to the Cadereyta 

activity that show that is a significant activity, which provides evidence to the need 

to develop public policies and measures.  
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6. Conclusions and future work 
 

6.1. Conclusions 

Deterministic air quality models have multiple applications: they can be used to 

recreate specific episodes, validate emission inventories, and test emission 

changes scenarios. Detailed, spatially and temporally-resolved emission 

inventories are a key input to deterministic AQM, however uncertainties in 

inventories remains a current issue, as exemplified by experiences documented in 

literature, This is especially relevant for emission inventories developed in the 

MMA and the State of Nuevo Leon during years 2005 to 2019. For example, 

emission inventories with base year 2005, presented differences up to +600% in 

the case of gaseous mobile emissions, among other discrepancies. More recent 

emission inventories prepared by different government agencies still showed 

differences ranging from -3.6% to +51.7% for total emissions of specific pollutants 

between different inventories. 

Inverse modeling can be applied with satisfactory results to improve emissions 

estimates. As study case, some regularization methods (Tikhonov regularization, 

Truncated Singular Value Decomposition, and Damped Singular Value 

Decomposition) in combination with regularization parameter selection methods 

(Generalized Cross Validation, L-Curve, and Normalized Cumulative 

Periodograms), along a Bounded Variable Least Squares (BVLS) method, were 

used with a deterministic photochemical air quality model to compute scaling 

factors for the improvement of a criteria-pollutant emission inventory for 

Guadalajara Metropolitan Area, Mexico. 

The inverse modeling with regularization approach was able to adequately resolve 

ozone concentrations, a secondary pollutant, by adjusting its precursor emissions, 

obtaining Daily Indices of Agreement up to 0.95 (compared to 0.89 of the base 

case). Also, the non-systematic error was reduced. The experiment also showed 

that the BVLS consistently showed the best agreement among the other 

mathematical techniques tested, and that regularization methods demonstrated 
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almost indistinct behavior patterns among them. Nonetheless, the choice of the 

regularization parameter was found to explain most of the variance shown among 

the different tested schemes, with the techniques using the LC method exhibiting 

better agreement between the observed and simulated values than their NCP and 

GCV counterparts.  

However, this research also shows that mathematical techniques, such as 

regularization methods, cannot fully resolve all inconsistencies, such as 

uncertainties in specific emission processes. Therefore, alternative approaches, 

such as observational procedures, are needed. Recent advances in data science 

allows for the use of supervised machine learning methods, such as Multivariate 

Linear Regression Model (MLRM) along socioeconomic historical data to explore 

the evolution of pollution sources through time.  Actually, both -inverse modeling 

with regularization and MLR- approaches are driven by observations. In the case of 

inverse modeling, observations are used to adjust emissions. In the case of MLRM, 

observations are used to train the model. 

Here, MLR models were built by correlating socioeconomic and energy monthly 

data with monthly-averaged pollutant concentrations in MCMA, MMA, and GMA. 

Ensemble models showed that the obtained models were robust. The resulting 

models included energy variables associated to fuel production (when a nearby 

refinery existed), mobility, and economic activity. The resulting MLRM models 

compare favorably to other studies found in literature, (e.g. Zhao et al. 2012, 

Chellakan 2022) in terms of R2 and p-value significance. The statistical 

performance of MCMA, MMA and GMA were similar among the three geographical 

areas. 

Deterministic AQM and supervised ML methods, as MLR models, are two different 

tools, that can be complementary as they try to compensate the other’s 

shortcomings, but together can be used to create relevant public policies. 
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6.2 Future work 

This research demonstrated that inverse modeling can be applied with satisfactory 

results to improve emissions inventories, one of the major sources of uncertainty in 

air quality modeling applications.  

A follow up to this work is the development of structural equation models (SEM). 

SEM seek to explain theoretically defined cause-effect relationships between latent 

variables (LV) through multivariate statistical modeling techniques. The LV of a 

system explain the characteristics of a system but are characterized by not being 

directly quantifiable. Within a system, LVs can be quantified, indirectly, by means 

of observable and measurable variables known as manifest variables (MVs), which 

are sometimes affected by other LV (Jiao et al, 2016). SEM has the advantage 

over conventional multivariable regression models in that direct and indirect 

relationships that influence between all the factors analyzed can be traced, while 

conventional regression only quantifies direct relationships. 

The SEM methodology is currently used in various areas of science, particularly in 

the human behavioral sciences (Huijts et al., 2014), but is also being explored to 

analyze social, economic, and urban factors, among others, and their possible 

direct and indirect contributions to air quality (Shi et al.., 2019; Zhao et al., 2018). 

However, the applications vary as different regions have different indicators, with 

different resolution (spatial and temporal), which requires an evaluation of the type 

of information and type of models most appropriate to represent the local contexts. 

Another natural branch of further research is the use of land-use regression (LUR) 

models. LUR models can combine air pollution monitoring data, from typically 20 to 

100 sites, along stochastic models using predictor variables, such as traffic 

representations, population density, land use, physical geography and climate or 

meteorological variables, usually obtained through geographic information systems 

(GIS). LUR have been successfully used to model criteria pollutant concentrations 

in different geographic areas (e.g. Hinojosa-Baliño et al., 2019; Wong et al. 2021, 

Zhang et al. 2018). 
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On a last note, it cannot be understated the evident need to continue building 

capacities in the topics of development and validation of emission inventories and 

air quality modeling. According to a study from INECC-PNUD (2018), in 2017, 

there were only three research institutions with sustained work in air quality 

modeling applications in Mexico: Centro de Ciencias de la Atmósfera of 

Universidad Nacional Autónoma de México, Instituto Nacional del Petróleo, and 

Tecnológico de Monterrey, Campus Monterrey. Moreover, only 4 out of existing 20 

ProAires at the time had reported the use of air quality models for the evaluation of 

emission reduction scenarios and for routine air quality management. 

In order to advance air quality modeling capabilities, attention to infrastructure 

development, training of human resources, continuity of existing research groups, 

and formation of new research groups in academic and government institutions, 

must be given. 
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