
1 
 

 
 
Instituto Tecnológico y de Estudios Superiores de Monterrey 

 
 

Campus Monterrey 
 
 

School of Engineering and Sciences 
 

 
   

An analysis of the technical challenges to produce a Digital Twin of FDM parts 
A dissertation presented by 

Alan Mauricio Guajardo Treviño 
Submitted to the 

School of Engineering and Sciences 
in partial fulfillment of the requirements for the degree of 

 
Doctor of Philosophy 

 
In 
 

Engineering Science 
 
 

Major in Advanced manufacturing 
 
 
    

 
 

Monterrey Nuevo León, Aug 5h, 2022 
 

 
 
 
 
 

 



4 

@2022 by Alan Mauricio Guajardo Treviño 
All rights reserved 

 
 

Dedication 
 

I would like to express my deepest gratitude to my family, friends, advisor, and 
thesis committee for believing in me. Thanks for all your unconditional confidence, 
support, patience, and encouragement. You were my main motivation for pushing 
through this work. 
  



5 

Acknowledgements 
 
 

I would like to thank Tecnológico de Monterrey support on tuition, the cyber-
physical consortium for the help and equipment and CONACYT with the support for 
living. 
  



6 

 

An analysis of the technical challenges to produce a Digital Twin of FDM parts 
 

By 
 

Alan Mauricio Guajardo Treviño 
 
Abstract 
 

A Digital Twin (DT) is a digital representation containing all relevant information 
of a physical entity with synchronization between the entity and its virtual 
representation. The Digital Twin is mainly used to monitor, control and predict a part 
or process. Many challenges exist in implementing Digital Twins in the Additive 
Manufacturing (AM) fabrication process. However, recent advancements in 
sensorization and simulation make DT more useful for AM processes and ease its 
adoption. While FDM parts are commonly used in non-load bearing functions, with 
the aid of DT, it is possible to improve the mechanical properties and geometrical 
accuracy of the parts, which can help expand their use in engineering applications. 
This work evaluates the challenges and benefits of creating a Digital Twin for FDM 
products and proposes a methodology for gathering the relevant information. 
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Chapter 1  
 
1.1 Introduction 
 

Digital Twins are becoming a topic of interest in both the literature and the 
industry; recent technological advances have led them to be used in various 
industries to simulate real-world scenarios. To better understand the challenges of 
creating Digital Twins, it’s essential to first define what a Digital Twin is, what 
elements constitute it and how it has been implemented for FDM in the literature. 
This chapter seeks to propose a model to describe a DT and analyze the challenges 
of implementing Digital Twins in additive manufacturing. 

  
The recent advances in technology have led to the emergence and evolution of 

digital technologies, such as Cyber-Physical Systems (CPS), Internet of Things 
(IoT), Internet of Services (IoS), Big Data, Cloud Computing, Semantic Web, and 
Virtualization [1]. A Digital Twin (DT) is a blend of these and many other 
technologies. These technologies are in the direction of constant evolution. Hence, 
a DT is thought to continuously evolve with these technologies [2]. The Digital Twin 
technology is increasingly being explored as a way to improve the performance of 
physical entities with the use of computational techniques and themselves enabled 
by the virtual counterpart [3]. Digital Twins are often the best solution to support 
remote human interaction with physical machines and overcome the challenge of 
geographical distance [4]. 

 
Digital Twin development is still at its early stage. Within literature, there is no 

consistent view on what the Digital Twin is and how the concept is evolving; there 
are various definitions in the literature [5] [6] [7] [8]. Digital Twins lack an accurate, 
broadly accepted definition [9]. The idea of Digital Twins was born from NASA's 
Apollo program, where a hardware twin that consisted of 2 identical space vehicles 
was developed [10]. The original description of a Digital Twin defines it as a 
representation of a physical entity containing information about that entity [11]. The 
original idea of a Digital Twin consists of a system that can have a subset of two 
systems, the physical system present in the real world and a virtual system that 
exists in the virtual space that contains all the essential information of the physical 
system [10]. Digital Twins generally now have three components, a physical product 
in real space, a virtual representation of that product in the Virtual space, and the 
connections of data and information that connect the virtual and real products 
together [12]. A Digital Twin can contain a collection of the relevant data, algorithms, 
and models of a part or process, and it includes the properties, conditions, and 
behavior of the real-life object to a certain extent [13] [14] [15].  
 
The Digital Twin has the following characteristics [16]: 
 

• Contains process data, operational data, and behavioral descriptions 
through multiple simulation models.  
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• Develops with the actual system throughout the lifecycle and integrates 
existing knowledge. 

• It is used to explain the operation and derive a solution related to the real 
system. 
 

A Digital Twin must support many different functions [17]: 
 

• Asset analysis and status prediction:  
o Monitor the various deformations of the material.  
o Estimate the reliability of the asset.  
o Monitor system abnormalities.  

• Digital reflection of the asset's lifecycle:  
o Asset lifecycle management. Maintain a continuous flow of data 

about the various stages of the asset lifecycle. 
o A long-term study of a system that predicts behavior and 

performance under the influence of the external environment. 
o Virtual launch of an asset.  

• Resource management:  
o Optimal resource management,  
o Cooperate with other resources for optimal plant management.  

• Decision support based on technical and statistical analysis: 
o System optimization in the engineering phase. 
o Lifecycle optimization based on the forecast of past and future asset 

status and future state prediction. 
 

Digital Twins shall provide [17]: 
• Physical objects and Digital Twins. 
• Capacity to extend the process hierarchy.  
• Capacity to create different interfaces for distinct hierarchy levels.  
• Capacity to increase a model’s complicatedness by both hierarchy levels 

addition, adding hierarchies at both levels, and adding details to each phase 
of the process.  

• Capacity to represent different types of processes using the same display 
composition.  

• Capacity to display different visualization scales with different hierarchical 
levels and different amounts of detail at any stage of the process. 

• A framework that connects various modeling methods of assets with cross-
cutting digital models. 

• A semantic model that structures all plant-related information and clearly 
describes the control logic of different types of manufacturing processes.   

 
The benefits of using digital twins are diverse [18]: 
 

• Real-time or offline optimization of working parameters. 
• Simplify monitoring of job parameters and automatic management of data 

flow.  
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• Predict and prevent machine flaws. 
 

Rasheed et al. [19] summarized the following eight complementary values of 
Digital Twins: 
 

• Personalized products and services.  
• Real-time monitoring and control.  
• Predictive maintenance and planning.  
• More efficient and safer performance. 
• Better and more efficient decision support system.  
• Situational and Risk Assessment. 
• Greater synergy and collaboration within and between teams. 
• Better documentation and communication. 

 
Digital Twins can use any model that accurately represents the physical object 
being twinned [20].  
 
The main components that constitute a Digital Twin of an object are [20]:  

• Object model. 
• Object data. 
• A way to actively update or adjust the model according to the data. 

 
The following criteria are used to differentiate a Digital Twin from other digital 
modeling and simulation techniques [12]: 
 

1. The virtual representation consists of an instance of the physical 
Entity. 

2. The physical system's data and information are used to update the virtual 
representation's states. 

 
Digital Twin could be confused with simulation models; the main distinction 

between a simulation model and a Digital Twin is that the former tracks the present 
and past states of a single instance of the physical system while the latter predict 
future states of a physical system based on a set of initial assumptions [12]. 

 
A Digital Twin approach would use the test data from the prototype to update 

parameters in the model of the prototype, use the updated model to predict 
performance in use, and then update the design [20]. 

 
In the development phase, a Digital Twin can consist of an exact CAD 

representation of the part and multi-body and finite element method simulations to 
accurately mirror the behavior in the virtual space [13]. 

 
Osho et al. [23] realized that due to the varied applications of the DT concept, a 

single solution or platform for a DT is unrealistic. Thus they presented a generalized 
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framework for the development of a DT for FDM, which is defined by its maturity in 
4 phases: 
 
1    Representation. 
2 Replication. 
3 Reality. 
4 Relational. 
 

In the first phase, a basic digital twin would just need to interpret the physical 
system, represent its significant features and collect data from the physical entity. 
In the final phase, the digital twin would have some autonomy and be able to 
communicate in both directions with the cyber-physical system to make decisions 
and carry out activities in real-time. 
 
Based on the standard and the literature, a Digital Twin of an FDM part is: 
 

• Digital representation of an observable manufacturing element that consists 
of an exact CAD representation, a sufficiently accurate finite element method 
simulation, and a way to update the model [7][8][9]. 

 
 

The implementation of DT technology in production systems has shown great 
potential for enabling advanced management of production data [24]. The ability to 
continuously physically monitor production machines, parts, and processes during 
part construction, providing the opportunity to keep quality and process indicators 
under constant control while creating the means to detect quality deviations and 
other problems early so that the process can be rectified immediately whenever 
possible, or stopped early to avoid wasting resources again [25]A Digital Twin can 
assess the current conditions of the part being manufactured and additionally have 
the authority and ability to take corrective actions through a built-in feedback loop 
system [26]. AM processes are often optimized using offline modeling and 
monitoring tools, while the adaptability and real-time decision support provided by 
Digital Twins have not been fully achieved [27]. Digital Twins play a transformative 
role in not only the way we design and operate intelligent cybernetic systems but 
also in the way we enhance the modularity of multidiscipline systems to address 
fundamental barriers not addressed by current development modeling practices [19]. 
In the future, the importance of DT technology will continue to grow, driven by needs 
such as a more stringent throughput, productivity and cost reduction goals, mass 
customization in production, verification, faster and smarter system validation, a 
higher degree of reconfiguration, and tighter integration. All of this, across the entire 
production ecosystem, including the consumption space [28]. 
 
Rasheed et al. [19] summarized the enabling technologies of Digital Twins: 
 

• Physics-based model. 
• Data-Driven Model. 
• Combined evaluation and modeling. 
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• Machine-human interface. 
• framework and platforms.  

 
Providing additional modular sensor nodes for 3D printers helps detect deviations 

from intended printing early. Printing defects can be detected using a video camera, 
remote monitoring with acoustic emissions, or sensor data [29]. Built-in sensors can 
monitor a variety of physical phenomena associated with cyber-physical systems, 
such as vibration and energy consumption [30].  

 
DT can greatly aid in the additive manufacturing process. However, there are 

many challenges when implementing a Digital Twin in FDM. There is no broad 
consensus on a definition, implementation framework, or protocol [9]. In the 
literature, scarce research has explored the creation and implementation of DTs for 
manufacturing [31]. High quantities of data are acquired through the lifecycle of 
industrial production, yet these data are hysteric and isolated from each other, 
resulting in inefficient utilization of these precious resources [32].  

 
High-performance Applications often require products that meet strict functional 

and geometric specifications. This is reflected in the increasing demands of quality 
assurance requirements and the growing challenges of improving the robustness of 
the FFF process [25]. Consumer-grade 3D printers do not detect printing errors 
because they are designed primarily with no feedback mechanisms [29]; it might not 
even be feasible to place sensors in these systems intrusively after they are 
fabricated [30]. In the case of Digital Twins for Cyber-Physical Cloud Manufacturing 
(CPCM) system, much effort is underway to adapt them. Because of the large 
number of applications that must be processed concurrently, the number of 
information requests via cloud servers may exceed available computers’ capacity 
[4]. Full physical simulation of the whole production line will take up a lot of time, 
space, and cost [33] 
 
Rasheed et al. [19] summarized the common challenges for implementing Digital 
Twins”: 
 

• Real-time simulations, latency, estimation, and automation. 
• Transparency and interpretability.  
• Data management, compression, and improved data quality. 
• Extrapolation ability. 
• Combine, assimilate, and combine large-scale data   
• Data transmission, communication protocols, and data security. 

 
Bartsch et al. [34] performed a systematic review to investigate the current state of 
the art and progress of the implementation of the DT. He identified 3 main challenges 
for achieving the goal of implementing a complete DT in AM: 
  

• Standardization and consistent use of terminology.  
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• Current production-process models are too complex for even high-end 
computers to achieve real-time prediction and multiscale modeling or lack 
accuracy and reliability. 

• Common frameworks and corresponding physical and virtual interfaces are 
needed to connect the different systems.  

 
To implement Digital Twins, 3 steps are primarily followed [35]: 
 

• A Digital Twin Prototype (DTP) includes initial planning and analysis data as 
well as physical system implementation processes. 

• A Digital Twin of each property of the physical object.  
• All Digital Twins of system properties should be integrated. 

 
A critical gap in the twinning between the physical world and a virtual model is 

the real-time monitoring data synchronization for a Digital Twin in the design [33]. 
 

 One of the main problems encountered when implementing Digital Twins is 
accurately describing the characteristics of the physical system, and the digital 
model must be correctly calibrated to accurately perform optimization and error 
predictions [18]. To implement Digital Twins in FDM, the partial models should be 
synchronized to represent the whole life cycle of the product or process [36]. The 
Digital Twin´s vision refers to a comprehensive physical and functional description 
of an entity, product, or system that contains almost all information that may be 
needed in all current and subsequent lifecycle phases [14]. 

 
A Digital Twin made for manufacturing could help enhance the process, improve 

the design, monitor production, schedule maintenance, and predict hindrances. 
 

• Digital Twins of old products can be rehashed to aid in the inception of new 
products. 

• By comparing defective products´ twins, it may be possible to determine if 
there is an inherent defect in the rest of the products. 

• Digital Twins may assist in enhanced iteration processes.  
 

When implementing a new asset, the main goal is to create or improve a product 
or its manufacturing process to meet the customer}s needs [37]. Product lifespan 
determines the AMP life scope, and the two most commonly used life scopes are 
[38]: 
 

• Cradle-to-gate: it extends from the acquisition of the raw materials to the 
instance it leaves the factory.  

• Cradle-to-grave: it extends from the acquisition of the raw materials, 
utilization, and finally the disposal. 

 
A product life cycle consists of 6 phases, and these phases are [37]:  
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• Design  
• Fabrication of product 
• Delivery of Product  
• Use of Product  
• Product refurbishment 
• Disposal and Recycling  

 

Figure 1. Phases of the product life cycle 
 

Demand for a broader range of products coupled with reduced product lifecycles 
has spurred the emergence of mass customization models [39]. Unlike requirements 
for larger batch sizes, market demand is now becoming customer-focused, requiring 
smaller batch sizes with shorter life cycles [40]. Diversity is often achieved at different 
stages of the product life cycle. It can be achieved during design, assembly, the 
sales and distribution stages, and through modifications during the use phase. In 
addition, diversity in the manufacturing process can be achieved, e.g. by rapid 
prototyping [41]. Since additive manufacturing processes yield lower production 
rates compared to conventional manufacturing, it becomes necessary to constantly 
monitor the whole process and make the needed adjustments to increase the 
number of acceptable parts; therefore, increasing the overall quality of the process. 
Yet, in the literature, most emphasis on Digital Twins is set on a single phase of the 
lifecycle; 5% of studies concentrate on the full lifecycle [32]. 

 
The diverse implementations of Digital Twins in additive manufacturing are 

presented in the following review of the literature.  
 
Cai et al. [42] presented a methodology of using augmented reality (AR) technique 

to communicate layout information between an AM system made of robotic arms 
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and its corresponding Digital Twin for toolpath planning and simulation. Two 
desktops made up their prototype system. To ascertain the spatial relationship 
between various components in the system, such as the camera, markers, robotic 
arms, and part substrate, transformation matrices and AM robotic arms have been 
developed. They concluded that the suggested methodology enables quick recovery 
of position information from the physical system layout into the Digital Twin and 
makes it easy to deploy a layout chosen in the Digital Twin using simulation and 
optimization into the physical system. 

 
Mandolla et al. [43] Proposed blockchain Digital Twins that improve reliability, 

transparency, and protection of AM product components, where components are 
printed exactly when needed and use blockchain to securely send data to validated 
3D printers, therefore saving inventory, import, and logistics costs. When digital is 
developed, it can more accurately represent the life cycle of AM products by not only 
simulating and monitoring the entire manufacturing process to avoid printing errors 
but also better assessing mechanical properties. Parts can be used more reliably 
with the application of this technology.  

 
In order to forecast the spatial and temporal fluctuations of metallurgical factors 

that affect the structure and characteristics of components in laser-based directed 
energy deposition, Knapp et al. [44] built and validated a Digital Twin for the AM 
process. Users choose different parameters for the Digital Twin. Additionally, the 
Digital Twin would forecast estimates for crucial factors such as transitory 
temperature bounds, the geometrical features of molten pools, and changes in the 
cooling and solidification rates over time and space. 

 
To improve the production planning of an FDM process, Stavropoulos et al. [27] 

looked into the combination of empirical and theoretical models. They supplied a 
platform that supported Digital Twins and gathered insights while offering 
optimization services to future networked AM manufacturers. For the purpose of 
production planning, the cycle time, the energy use, and the connection were taken 
into account. They concluded that the models on display give users the knowledge 
required to raise the caliber of their output while reducing the amount of material 
wasted on defective products. 

 
For in situ real-time monitoring of the powder bed fusion (LPBF) and directed 

energy deposition (DED) 3D printing manufacturing processes as well as material 
defect forecast, Gaikwad et al. [45] developed a Digital Twin. To identify potential 
anomalies in the AM process, they integrated physics-based predictions, in-situ 
sensor data, and machine learning. They found that, compared to using only the 
theoretical model's predictions or in-situ sensor data alone, augmenting the insight 
into the process physics gained through a theoretical model with real-time 
information from in-situ sensor data in a machine learning framework, leads to higher 
statistical fidelity of detecting process flaws.  

 
For performance tracking and anomaly identification in AM processes, Balta et al. 

[46] presented a Digital Twin architecture. The DT has a versatile function block that 
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may be used for a variety of tasks, including performance monitoring and anomaly 
detection, and is able to record both the functional and continuous dynamics of an 
AM process. As a novel contribution, Signal Temporal Logic (a formalization to 
specify propositions on a signal measured from an underlying system) specifications 
are suggested for anomaly identification in AM processes. 
 
The following statements about the state-of-the-art trends for DTs in manufacturing 
were condensed by Moyne et al. [28]: 
 

• Even if they don't refer to them as DT, several manufacturing industries 
already successfully use them. 

• Less devoted Digital Twins are typically not utilized during actual 
manufacturing. 

• The quality, throughput, and cost challenges in some industries have led to 
DT improvements. 

• The majority of the DTs in use in factory operations are dedicated DTs, each 
with a specified purpose. 

• DT technology cooperation amongst DT application domains is frequently 
lacking.  

• Manufacturing is starting to investigate and gain from merging and 
abstracting DT solutions. 

 
There is extensive work in process monitoring for FDM: 
 

• Monitoring the position of the extruder nozzle with encoders [47] 
• Monitoring the filament length with attached encoders [48] 
• Monitoring filament extrusion with encoders [49] 
• Monitoring the creation of thermal stresses during deposition with Bragg 

sensors attached to the part [50] 
• Capturing filament temperature and pressure with sensors to optimize print 

flow [51] 
• Monitoring the pressure and temperatures of the extrusion with sensors in 

the nozzle [51] 
• Capturing the hotend temperatures with thermal imaging [52] 
• monitoring the print layer development with thermal imaging [53] 
• Detecting extruder anomalies with acoustic emissions [54] 
• Detecting machine problems with acoustic emissions [55] 
• Detecting step lost with accelerometers on the machine [56] 
• Monitor vibrations in the extruder with accelerometers to detect nozzle 

obstruction [57] 
 

The previous Literature review shows that although challenging, the 
implementation of Digital Twins is seeing a boom in manufacturing, among other 
areas, thanks partly to lowering costs in sensorizations, data management, 
simulation, and digitalization. 
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According to ISO 23247 [36], a Digital Twin for manufacturing is “a digital 
representation of an observable manufacturing element with synchronization 
between the element and its digital representation.” Digital Twin exists along the life-
cycle of the product. Digital Twins aid with identifying abnormalities in manufacturing 
processes to attain functional objectives such as [36]: 
 

• real-time control. 
• predictive maintenance. 
• in-process adaptation.  
• Big Data analysis.  
• machine learning.   

 
 

Figure 2. Digital Twin for manufacturing framework [36] 
 

Figure 2 shows the physical entities that communicate with their virtual 
counterparts and the benefits of DT implementation. Observable manufacturing 
elements like material, product, and processes are digitalized through varying 
methods like sensors and scanners, and the applications enable benefits such as: 

• Process planning. 
• Production Scheduling. 
• Simulation and Prediction. 
• Managing risks. 
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Many elements would need to be accurately digitalized to create a full DT, thus 
making the creation of Digital Twin an arduous and challenging task. 
In this work, the focus will be set on FDM products.  
 
 
 
 
 
 

Figure 3. Workflow of Digital Twin for manufacturing 
 

As seen in Figure 3, A Digital Twin in manufacturing is capable of collecting the 
data from a part or process, analyzing the information, displaying it, then using the 
information to monitor and predict the behavior and, based on that, decide to 
implement corrective measurements or change the entire process from the 
beginning. 
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DTs of products and processes are more convenient when using digital 
representations that can be shared throughout the product life cycle. You can use 
CAD, CAM, CAI, and CNC systems to create data for Digital Twin modeling and view 
the results of the Digital Twin [36]. In FDM, you can use the original CAD of the 
modeled part, perform termo-mechanical simulations to preview predicted 
deformation during fabrication, use those results to create a geometry that will 
compensate for the expected geometric distortion, print the part, scan the fabricated 
part, and compare the Original CAD against the simulated warped geometry and the 
actually printed geometry to iterate into a more precise compensated geometry. 
 
To generate a Digital Twin for FDM, you need: 
 

• CAD model 
• FEA model  
• Fabrication data 

o Toolpath 
o Thermal images 

• Finished part data 
o CT scans 
o SEM images 
o Surface scan 
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Figure 4. Workflow to obtain elements for Digital Twins  
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As seen in Figure 4, to create an FDM part, First the product is conceptualized, 

then Designed in CAD software, an STL is exported, sliced to create the toolpath the 
printer will be following, and finally, the part is printed. Data is collected through 
design, fabrication, and part validation phases. Many processes are required to be 
conducted to obtain all the elements to create a Digital Twin for an FDM part. 
Equipment like the CT-Scan, SEM microscope, and the universal machine is 
expensive and difficult to use. Furthermore, the elements gathered need to be 
correctly obtained and detailed for the DT to be accurate. 
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Figure 5. Functional view of Digital Twin for manufacturing [36] [58] 
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As seen in Figure 5, many entities, sub-entities, and functional entities (FEs) exist 

in the Digital Twin framework that communicates with the Observable manufacturing 
Elements (OME) in diverse ways. The functional view of the Digital Twin reference 
architecture consists of [58]: 
 

• User entity 
▪ User interface FE: interfaces the user entity to the Digital Twin 

entity. 
 

• Digital Twin entity 
 

o Operation and management sub-entity 
▪ Synchronization FE: synchronizes the status of the Digital 

Twin with its OME. 
▪ Presentation FE: presents information. 
▪ Digital representation FE: models the information of an OME 

to represent its characteristics. 
▪ Maintenance FE: keeps the DT operational. 

 
o Application and service sub-entity: 

▪  
▪ Analytic service FE: manages and analyses the data collected 

from the OMEs, as well as results from simulations. 
▪ Reporting FE: reports simulation predictions, production 

results, and data analytics results. 
▪ Application support FE: aids in implementing applications such 

as open and closed loops and predictive and reactive 
maintenance applications. 

 
o Resource access and interchange sub-entity 

▪ Interoperability support FE: enables integration between DTs 
and other systems. 

▪ Access control FE: manages the access of the OMEs.  
▪ Plug and play support FE: provides connection of an OME to 

its Digital Twin. 
▪ Peer interface FE: issues interfaces to other DTs.  

 
• Device communication entity 

 
o Data collection sub-entity 

▪ Data collecting FE: gathers information from OMEs. 
▪ Data pre-processing FE: preprocesses collected information 

by filtering or aggregation. 
▪ Collection identification FE: recognizes what information is 

needed from the OMEs. 
o Device control sub-entity 
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▪ Controlling FE: commands OMEs by sending orders to 
devices in their language. 

▪ Actuation FE: activates an OME in response to a solicitation 
from the user or Digital Twin entity. 

▪ Control identification FE: recognizes an OME to control it 
uniquely and unambiguously. 

 
• Cross-system entity 

 
▪ Data assurance FE: guarantees the accuracy and integrity of 

information. 
▪ Security support FE: ensures the Digital Twin including 

authentication, authorization, confidentiality, and integrity. 
▪ Data translation FE: enables translation of traded data 

between entities. 
 

 
Figure 6. Life cycle evolution of DT for FDM 

 
As shown in Figure 6, as the part goes through design and validation, and 

fabrication phases, digital entities are being created; these entities have essential 
information about the 3D part, like the predicted mechanical performance or the 
expected deformed geometry. 

 



28 

Figure 7. Functional view of Digital Twin for FDM [36] [58] 
 
 

Figure 7 shows how During the fabrication phase, observable manufacturing 
elements are digitalized, and their data is collected, using that data simulations are 
being performed to predict the behavior of the part and the printing process, and the 
results are examined and experimentally valeted to finally let the user decide if the 
part is approved 

  
For this work, digital elements are only collected from the design and 

manufacturing stage. The communication between the observable manufacturing 
elements and the Digital Twin used in this study is not performed in real-time or 
automatically; relevant information is collected and used for FEA simulations 
 
 
1.1 Discussion 
 

As seen in Figure 7, the process of creating a Digital Twin of the fabrication 
process and printed part is extensive, many elements need to be created, and data 
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needs to be collected accurately. a CAD model, FEA model, Fabrication toolpath, 
CT-scans, SEM images, and surface scans are required. Figure 7 explains how the 
elements are collected in each phase. 
 
 
1.2 Conclusion 
 

A Digital Twin for manufacturing is a virtual representation of a product or a 
process containing all relevant information of the physical entity with synchronization 
between the entity and its digital representation. 

 
The Digital Twin has a user entity where the person gives input and gets output; 

the Digital Twin entity, where the physical part or process is represented with its 
behavior, and a device communication entity that handles data collection, simulation, 
and control of the system, the cross-system entity that aids on the transfer of 
between entities, and finally the observable manufacturing elements, that are the 
physical entities being virtualized by the Digital Twin. 

 
Digital Twins in manufacturing are mainly used to monitor, control, and predict a 

manufacturing process. The Digital Twin, when implemented correctly, can assist in 
increasing the efficiency and effectiveness of a process; in FDM, this would mean 
less lead time when designing a new component, fewer geometrical deviations of 
the part compared to the designed model, and adequate mechanical behavior for 
the intended application. 

 
A Digital Twin is not an exact copy, as models always have a certain level of 

abstraction and only represent physical reality with an error margin [15]. As there is 
no Digital Twin that perfectly emulates all the product´s life cycle, there are many 
challenges that complicate the creation of a Digital Twin for FDM.  
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1.3 Motivation 
 
The motivation for this thesis surges from the boom seen in the literature on the 

use of Digital Twins to optimize manufacturing processes. Fused Deposition 
Modeling (FDM) is widely used as a method for prototyping and small patch 
production, having cost and time advantages in small fabrication numbers and 
capable of developing complex shapes without cost increase. However, FDM has 
many drawbacks like lower geometrical accuracy and mechanical properties 
compared to traditional manufacturing, as such, DT seems like a viable option to 
increase the performance of parts fabricated by FDM. 

 
This thesis works to assess the challenges of creating a Digital Twin for FDM 

parts 
 
1.4 Objective 
 
     The main goal of this work is to analyze the technical challenges of producing a 
Digital Twin for FDM parts and explain how to obtain the elements needed for a 
Digital Twin of an FDM part. 

 

1.5 Scope 
 

The scope of this work is a Digital Twin for FDM that only covers the design and 
fabrication phase. It does not cover other phases of the product life cycle. This work 
could be adapted to work with other manufacturing processes and phases  
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1.6 Research Question 
 

What are the challenges for producing a Digital Twin for FDM? what elements are 
required to produce a Digital Twin for FDM. 
 
1.7 Solution overview 
 

The solution is to obtain the elements of a Digital Twin for FDM parts and analyze 
the challenges of integrating the elements into a DT. This may help to illustrate the 
challenges in other processes and for other phases.  
 
1.8 Main Contributions 
 

The main contributions of this work are the analysis of the technical challenges of 
producing a Digital Twin for FDM, the improved model of a Digital Twin for FDM, and 
the operations to obtain the elements needed for an improved DT model. 
  
  

Comentado [LGFU1]: Justificado es muy 
largo.  
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Chapter 2 
 
 
2.1 Introduction 
 

One of the main qualities of a Digital Twin is that it virtually represents the physical 
entity it is based on, be it by geometry or behavior. However, accurate representation 
of the physical entities is limited by the complexity of the system. The FDM parts 
being fabricated are not an exact copy of the model created by the designer, FDM 
parts are built by melting plastic filament with a programmed toolpath, which creates 
rasters, and print layers during fabrication parts undergo complex thermomechanical 
profiles that create thermal stresses, leading to geometric deviations. Furthermore, 
environmental and machine variations may cause printing defects to arise. All these 
geometric variations are not present in the CAD model. In this chapter, the FDM 
fabrication process strategy will be inspected to understand how parts deviate 
geometrically from the design model.  

 
A manufacturing process is an act of turning any material into a product with 

different shapes and sizes, be it by changing or not the material properties of the 
final product [59]. The selection and design of manufacturing processes are critical 
aspects of the quality and economic efficiency of industrial output. [60]. Conventional 
manufacturing processes can be classified into [61]: 

• Subtractive 
o Machining 
o Grinding and finishing 
o Unconventional machining 

• Constant mass processes  
o Casting 
o Metal forming 
o Powder metallurgy process 
o Heat treatment 

• Additive 
o Wielding  
o Joining 
o 3D printing 

 
The American Society for Testing and Materials (ASTM) defines additive 

manufacturing (AM) as “a process of joining materials to make objects from 3D 
model data, usually layer upon layer” [62]. 3D printing is a set of advanced 
manufacturing methods that produce physical items from 3D CAD models that are 
digitally sliced into 2D cross sections in a discrete point-by-point, line-by-line, or 
layer-by-layer additive manner [63]. The rapid development of additive 
manufacturing (AM) has led to many different names for the field, including 3D 
printing (3DP), additive fabrication (AF), additive layered manufacturing (ALM), rapid 



33 

casting, rapid manufacturing (RM), rapid prototyping (RP), rapid tooling and solid 
free form fabrication (SFF). An attempt to standardize the terminology has been 
made in ISO/ASTM 52900 [64]. 

One of the most widely used processes is fused filament fabrication (FFF) or fused 
deposition manufacturing (FDM), an AM technique based on the multilayer 
deposition of melted thermoplastic [65]. Parts are created in the FDM technique by 
extruding molten filament through a heated nozzle [66]. The mechanical qualities of 
the created pieces are one of the process's limits in engineering applications. 
Because the printing process has a direct impact on the part's quality, applications 
that allow users to regulate it are required [67]. 

According to the basic principle of manufacturing, AM is classified into seven 
categories; namely, binder jetting, material extrusion, directed energy deposition, 
material jetting, powder bed fusion, sheet lamination, and vat photo-polymerization 
[68], which are described in Table1 shown below. 

 
Table 1. Additive manufacturing families 

Family Alternative 
Names: 

Description Advantages 
& Limitations  

Typical 
Materials 

Photopolymerizat
ion 

Scan, Spin, 
and Selectively 
Photo cure 
Stereolithograp
hy   
Digital Light 
Processing 
Continuous 
Liquid 
Interface 
Production 
 

A laser or 
projector is 
used to 
selectively 
expose a 
vat of liquid 
photopolym
er resin to 
light, 
causing 
polymerizati
on to start 
and turning 
the exposed 
areas into 
solid parts. 

Advantages: 
A 
good degree 
of precision 
and intricacy 
The finished 
surface is 
smooth 
accommodat
es extensive 
build zones 
Limitations: 
Needs 
support and 
post-curing 

UV curable 
Photopolyme
r Resins  
 

Powdered Fusion 
 
 
 
 
 

Selective Heat 
Sintering 
Selective 
Laser Melting  
Selective 
Laser Sintering 

Powdered 
materials 
are 
selectively 
consolidate
d by melting 
them 
together 

Advantages: 
substantial 
complexity 
Powder acts 
as a support 
material 

Powders, 
Plastics, 
Sand Metal, 
and Ceramic. 
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Direct Metal 
Laser  
Multi Jet 
Fusion 
Sintering 
Electron Beam 
Melting 
 

using a heat 
source such 
as a laser or 
electron 
beam. The 
unfused 
powder 
surrounding 
the 
consolidate
d part acts 
as a support 
material for 
overhanging 
features. 

a variety of 
materials 
can be used 
Limitations: 
Needs post-
processing; 
the machine 
is 
challenging 
to clean; 
employ 
caution while 
using x-rays. 

Binder Jetting 3D Printing, 
Voxel-jet Ex-
One  

To construct 
parts layer 
by layer, 
liquid 
bonding 
agents are 
selectively 
put onto thin 
layers of 
powdered 
material. 
Both 
organic and 
inorganic 
materials 
are used as 
binders. 
After being 
printed, 
pieces 
made of 
metal or 
powdered 
ceramic are 
usually 
burned in a 
furnace. 

Advantages: 
Enables 
printing in 
colors 
extremely 
productive 
use a variety 
of materials 
 

Sand, 
Powdered 
Plastic, 
Glass, Metal, 
and Ceramic.  

Material Jetting Smooth 
Curvatures 
Printing Polyjet 

To create 
pieces, 
material 
droplets are 

Advantages: 
Excellent 
precision 

Polymers, 
Photopolyme
rs, Waxes 
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 Multi-Jet 
Modeling 
 

placed one 
layer at a 
time. Both 
jetting 
thermally 
molten 
materials 
that 
afterward 
solidify in 
ambient 
temperature
s as well as 
jetting 
photo-
curable 
resin and 
curing it with 
UV light are 
common 
kinds. 

enables 
elements to 
be fully 
colored 
and enables 
the use of 
multiple 
materials in 
one part. 
Limitations: 
wax-type 
materials 
and a 
lengthy 
production 
time are 
weaknesses. 

Sheet lamination Ultrasonic 
Additive 
Manufacturing 
Laminated 
Object 
Manufacture  
Selective 
Deposition 
Lamination  
 

To create 
an object, 
sheets of 
material are 
piled and 
bonded 
together. 
Adhesives, 
chemicals 
(for paper or 
plastic), 
ultrasonic 
welding, or 
brazing are 
all possible 
lamination 
techniques 
(metals). 
After the 
object is 
formed, 
unused 
areas are 
ripped out 
layer by 

Advantages: 
Rapid 
volumetric 
growth 
relatively 
affordable 
(non-metals) 
allows for 
various 
metal foil 
combinations
, including 
those with 
embedding 
elements. 

Metal Tapes 
Paper and 
Plastic 
Sheets,  
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layer and 
eliminated. 

Material 
extrusion 

Fused 
Deposition 
Modeling 
Fused 
Filament 
Fabrication  

A nozzle or 
aperture is 
used to 
extrude the 
material in 
tracks or 
beads, 
which are 
then 
assembled 
into multi-
layer 
sculptures. 
Heated 
thermoplasti
c is a 
common  
 

Advantages: 
Affordable 
and cost-
effective 
allows for a 
variety of 
hues 
Suitable for 
usage in an 
office setting. 
Good 
structural 
qualities. 
Limitations: 
A slower 
process than 
SLA and a 
subpar finish 

Pellets, 
Thermoplasti
c Filaments, 
and Liquids. 
 

Directed energy 
deposition 

Direct Metal 
Deposition 
Laser Metal 
Deposition 
Laser 
Engineered 
Net Shaping 
 

Using an 
energy 
source like 
a laser or 
electron 
beam, 
powder or 
wire is fed 
into a melt 
pool that 
has been 
created on 
the surface 
of the part, 
where it 
binds to the 
underside 
part or 
layers. 
Essentially, 
this is a type 
of 
automated 

Advantages: 
Not 
constrained 
by axis or 
direction 
efficient for 
improvement
s and feature 
addition 
Several 
materials 
combined 
into one 
component 
Highest rates 
of single-
point 
deposition 
Limitations: 
Requires 
polish, but 

Metal 
Powder, 
metal Wire 
with 
ceramics 
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build-up 
welding. 

only for little 
portions. 

Hybrid AMBIT Combining 
CNC 
machining 
with laser 
metal 
deposition 
(a type of 
DED), which 
combines 
additive 
manufacturi
ng and 
"subtractive" 
machining, 
enables 
products to 
take 
advantage 
of both 
techniques. 
 

Advantages: 
High 
Productivity 
and a 
smooth 
surface finish 
DED's 
material and 
geometric 
freedoms 
Automated 
support 
finishing, 
inspection, 
and removal. 

Metal 
Powder, 
metal wire 
with the 
addition of 
ceramics 
 

 
AM allows for the flexible preparation of very complex and precise structures that 

would be impossible to achieve using traditional fabrication methods like casting and 
machining [63]. The main advantages of 3D printing are as follows [69]: 

• Avoiding the use of molds or equipment. 
• Reduction of waste material, lowering cost and ambient pollution. 
• Great variety of working materials that can be used, from plastics to metals. 

 
3D printing is praised as a disruptive technology that will permanently change 

manufacturing [70], since it offers a new manufacturing path that overcomes the 
constraints of traditional methods for processing materials [71]. Early applications of 
additive manufacturing were concentrated on models and prototypes. As technology 
progressed, AM became increasingly important in the production of quick and soft 
tooling. Today, it's also used to make end-of-life parts and goods [72]. AM is linked 
with clever and efficient technology, which has a wide range of applications in 
industrialized economies around the world [73]. 3D printing can produce parts with 
very intricate and complicated geometries that require no post-processing, are 
manufactured from custom-made materials and composites, have near-zero 
material waste, and can be used with a wide range of materials including metals [74]. 
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Construction, aerospace, food, soft robotics, automotive, biomedical equipment, 
prosthetic implants, health care, printed electronics, biomimetic designing, water 
treatment, energy harvesting, and desalination have all seen increased use of 3D 
printing in recent years [75]. This technique has been used in a variety of situations. 
The medical industry, for example, employs 3DP technology to create high-quality 
bone and joint grafts as well as anatomical models for research and analysis. 
Architects utilize 3DP to build complicated 3D models for their clients, and airfoils 
are printed using 3DP in the aerospace sector [76]. 

In the product development phase of product design and manufacturing, additive 
manufacturing technology has made a significant contribution [77]. However, 
essential information like process repeatability and uniformity of made goods is 
missing from the AM process, preventing it from being regarded as a legitimate 
manufacturing process [78].  

Sensors and intelligent data acquisition assist in the improvement of any asset's 
life cycle, from design to production, distribution, and maintenance, all the way to 
recycling [79]. Real-time three-dimensional form measurement techniques are 
becoming increasingly relevant as artificial intelligence and robots progress [80]. 

There are some process parameters that directly affect the geometry built by 
slicing software; by increasing the layer thickness, you, therefore, decrease the 
number of layers the part will be made of, and also, each layer will be ticker by 
changing the object orientation, the layers will slice the part in a different direction, 
nuzzle size will make each raster road to have a different circumference, infill density 
and infill pattern will change the geometry of the internal structure. Other parameters, 
however, do not change the sliced geometry but will indirectly change the final part 
geometry by affecting the deposition process. Extruder temperature, print speed, 
and the filament material used will have a diverse effect on the printed part’s 
geometry. 
 

Figure 8. Deviation between CAD model, slicer model, and scan of the printed part. 
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As seen in Figure 8, the sliced model introduces internal structures, which are not 
present in the original CAD model, and the printed part exhibits those structures as 
well as deviations in the surface of the geometry. The STL model created from the 
scanning process has imperfections, as the software makes approximations to unite 
the triangles. certain measuring errors are caused by shadows, dust, and other 
environmental sources. 

The following literature review demonstrates how process parameters deviate the 
internal structure as well as indirectly affect the final geometry of FDM parts. 

Peng et al. [81] employed mathematical techniques to model the effects of printing 
ABS FDM parts in dimensional accuracy and validated the results with experiments. 
They concluded that layer thickness has a positive effect on dimensional deviation, 
and lower geometric deviation was shown in parts with thicker layers. 

Padhi et al. [82] investigated the impact of process parameters on the precision 
of ABSP 400-printed FDM parts. They found that layer thickness of 0.178 mm, the 
orientation of 0, raster angle of 0, raster width of 0.4564 mm, and air gap of 0.008 
mm are the best process parameters.  

Qattawi et al. [83] studied the influence of process parameters on the accuracy 
and mechanical properties of FDM parts made of PLA. They concluded that 
increasing extruder temperature and layer height has a direct effect on increasing 
deviation, and Although they could not determine exactly how the orientation 
affected the deviation, they found that orientation has a significant effect on 
geometrical accuracy, while infill density and infill geometry has almost no effect on 
deviation. The study also confirmed that the raster bond is stronger than the layer 
bond, resulting in greater mechanical strength; they also found that increasing infill 
density and extruder temperature has a positive influence on stiffness.  

Tanoto et al. [84] studied the effects of object orientation on mechanical strength 
and geometric deviation of FDM ABS parts. They concluded that orientation has 
different effects on different features; some features were better in one orientation 
and showed to be worse in another. They also concluded that the stiffness depends 
on the orientation of the force with respect to the print layers, with better tensile 
strength when the load is parallel to the print layers and vice versa.  

Chuang et al. [85] presented a reverse engineering procedure for generating 
interference-free tool paths in 3-axis machining from data of physical models 
acquired with a 3D laser scanner. Furthermore, using a shortest-distance method, 
they determined the connecting sequence of the neighboring points between two 
adjacent scan lines, such that the scanned data are converted into triangular 
polygons. They then generated Tool paths from the tessellated surfaces. 

Yanamandra et al. [86]  proposed a reverse engineered approach for an FDM part 
made of glass fiber reinforced ABS filament. Using μCT scan and SEM images of 
the model, they captured the tool-path of 3D printing information by identifying the 
fiber orientation in each layer with the help of Recurrent Neural Network with LSTM 
architecture. 
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Rupal et al. [87] created a Reverse CAD algorithm, which reconstructs a CAD 
model from the g code containing the sliced file. The Reverse CAD model created 
by the team is the virtual replica of the part to be printed with specific printer and 
machine parameters like layer thickness, infill density, and so on. They concluded 
that the algorithm facilitates accurate modeling and analysis of the FDM printed part 
behavior. They validated the efficiency of the algorithm by geometric comparison, 
mass comparison, deviation analysis, and mechanical behavior analysis using 
different process parameters and printers. 

The previous review shows that different process parameters will result in different 
final geometries that will differ from the CAD model in distinct ways. Furthermore, 
Some process parameters will directly change the slicing geometry [81] [82] [83] 

• Layer thickness 
• Object orientation  
• Infill density 
• Infill pattern 
• Nuzzle size 

While other process parameters will indirectly change the final part geometry [81] 
[83]: 

• Extruder temperature 
• Print speed 
• Material 

 
 

2.2  Inspection devices 
 
The SEM machine consists of the following components [88]: 
 
• A source to generate electrons of high energy is called an electron gun. 
• Column down for traveling the electrons through two or more electromagnetic 

lenses.  
• The deflection system consists of scan coils.  
• Electron detector for backscattered and secondary electron.  
• A chamber for the sample.  
• The computer system consists of a viewing screen to display the scanned 

images and a keyboard to control the electron beam. 
 

SEM is used in the Manufacturing & Assembly Industry for quality control, failure 
analysis, cleanliness inspection, and morphological and chemical analysis of 
particles. All samples were coated with gold using the Q150R-ES Rotary Pumped 
Coater from Quorum 
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CT scanning hardware consists of the following units [89]:  
 

• The generator  
• The scanning unit (gantry), which includes one or more  

o X-ray tubes  
o Photon detectors  
o Shielding elements  

 
2.3  Methodology  
 

Slicing programs are the programs that create part build-up instructions. These 
apps divide (slice) CAD models into layers using STL files from Computer Aided 
Software designs. For each layer, material deposition trajectories (rasters) are 
subsequently produced [90, 90]. In most cases, the application takes care of 
everything. The user's responsibility is extremely limited: they must submit CAD 
geometry, define part orientation in relation to the printing head, and choose part 
density and raster patterns from a menu. Some production aspects are outside the 
user's direct control. The user, in particular, does not influence the material 
deposition strategy. These pathways are automatically defined by programs using 
criteria that are unknown to the user (reduce material use or cycle time). Part build 
characteristics that are not controlled and have an effect on part strength are [91, 
91]: 
 

• Raster width: diameter of the raster depends on nozzle size. 
• Raster angle: angle between the path of the nozzle and a reference axis. 
• Raster gap: space between deposited filaments. 
• Number of contours: paths along the periphery of the layer. 

 

2.3.1 Large isogrid specimens 

 
To explore the problems that emerge from part constructions strategies, a block 

measuring 58.8 by 37.4 by 25.4 mm, with an internal isogrid structure, was created 
and printed on a Marktwo using onyx with solid infill, 0.1mm print layer, 0.4mm 
nozzle, and two walls and floors. Different internal wall thicknesses (IWT) were used 
( 0.5, 0.6, 0.8, 1.0, and 1.5mm.)The design is presented in Figure 9. 
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Figure 9. IWT specimen measurements 
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Figure 10. Deposition paths for the parts with IWT of 0.5 mm and IWT 0.8 in three 
different slicing software. 

 
As seen in Figure 10, the path planning changes substantially in response to 

changes in internal wall thickness (IWT) of the same geometry. To produce a 0.5 
mm IWT with a 0.4 mm nozzle, the slicer performs two 0.4 mm raster paths that 
overlap (“negative” raster gap). In theory, in the case of IWT, 0.8 mm no overlap is 
necessary, as two raster paths of 0.4 mm can be laid out side by side. In practice, 
these two paths are subject to poor binding of the deposited material, which results 
in a gap that negatively impacts part strength. Figure 2 shows these fabrication 
defects for different specimens.  

   
Figure 11. Images of the actual experimental specimens and their manufacturing 
defects. 
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Figure 12. Details of defects in the reticle of the specimens. 

In some cases, raster paths were insufficient to produce solid grid walls in a 
certain region of the part in IWT 1.0, and while paths result in a better fill for IWT 1.5, 
gaps and voids are visible. All specimens´ deformations occurred on the plane. 
 

2.3.2 Thin isogrid specimens 

 
To take measurements of the internal structure on a SEM microscope, thin Isogrid 

specimens measuring 37.4x15.7x2mm were fabricated on a Marktwo using onyx 
with solid infill, 0.1mm print layer, 0.4mm nozzle, and two walls and floors. The 
specimens were frozen with liquid nitrogen and cut so as to not damage the internal 
structure. 
 

The specimens were gold coated using the Q150R-ES Rotary Pumped Coater 
from Quorum, and inspection was performed with a SEM EVO MA 25 by Zeiss; the 
machine has a Maximum specimen height of 210 mm, Maximum specimen diameter 
of 300 mm, Motorized stage travel XYZ of 130x130x80mm  
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Figure 13. (a) Q150R-ES Rotary Pumped Coater from Quorum (b) SEM EVO MA 
25 by Zeiss  
 

To take scans of the internal cavities of the specimens the CT-scan Metrotom 800 
by Zeiss was used, the voxel size was set to 36 microns, the voltage to 100-kilo 
Volts, and the current to 80 micro-amps. 
 

(a) (b) 
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Figure 14. Specimen mounted on Metrotom 800 CT-Scan   
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2.4 Results  
 

 
    
 
Figure 15. Comparison of reticle center. (a) Thin 0.5, (b) Thin 0.6, (c) Thin 0.8 
 

As seen in Figure 15 (a) and (b), the raster passes through the center of the 
reticles, filling them. While as seen in Figure 15 (c), the rasters leave a void in the 
middle of the reticle 
 

Figure 16. Comparison of raster width. (a) Thin 0.5, (b) Thin 0.8, (c) Thin 0.8 

(a) (b) (c) 

(a) 

(b) 

(c) 

(a) 
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As seen in Figure 16 (a), raster overlap is apparently identified as the raster 

should be 0.4mm; however, as the thickness of the stub is 0.6mm, the geometry 
could not be created with 0.5mm rasters without overlapping. While in Figure 16 (b), 
no overlap is necessary as there is enough space for the 2 0.4mm rasters. 
 
 

Figure 17. SEM images of the boundary between rasters. 
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Figure 18. SEM images of layer and raster gaps 

 
As seen in Figure 17, voids are present between rasters and layers, and these 

voids are not modeled in the slicer and deviate from the geometry. 
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Figure 19 SEM images of rasters and volume cells 

Figure 19 shows images of raster path measurements that were used to compare 
to the slicer geometry; as it can be seen, the measurements deviate from the 
intended 0.4mm width. 
 

Figure 20. SEM images of print layers sliding 
 

Figure 20 shows print layers curving and sliding in place, and this could have been 
a deposition defect or an effect of the thermomechanical profile of the part during 
fabrication. 
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 Figure 21 SEM images of air gaps 

As seen in Figure 21, there is a zone in which the layer is thinner, and this could 
have been the cause of an air bubble or an extrusion problem. 
 
 
 
 

Figure 22. SEM images of print layer defect 

As seen in Figure 22, the highlighted print layer is more than twice as big as the 
other print layers, and this could have been the effect of the motor skipping a step 
or 2print layers merging. 
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Figure 23. SEM images of discontinuous carbon fiber strands 

 
Figure 23 presents the measurements of the carbon fiber strands inside the 

Onyx mixture; as seen from the measurements, the strands are not uniform. 
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Figure 24. Post mortem CT scan of ASTM d695 specimen. (a) top view, (b) Lateral 
view, (c) front view  
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Figure 25 Post mortem CT scan of isogrid specimen. (a) top view, (b) Lateral view, 
(c) front view (d) STL 
 
 
 
2.5 Discussion 

 
As seen in Figure 10, IWT 0.5 and 0.6 specimens were built with overlapping 0.4 

thick raster paths. Raster paths for IWT 0.8, 1.0, and 1.5 did not necessarily overlap 
as internal walls were built. The limiting case was IWT 0.8, in which raster paths are 
side by side.  

As illustrated in Figure 12 for specimens IWT 1.0 and 1.5, the thicker studs caused 
the deposition architecture to avoid placing material in the middle of the reticle 
resulting in voids; also, an unknown deposition mistake caused the printer to omit to 
set the material between the raster resulting in gaps between the rasters  

 
In Figure 16, the raster thickness was shown to deviate from the intended 

toolpath. From the 11 measurements performed on IWT 0.8, an error of 19.06 % 
was calculated.  
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Table 2. Deviation result summary 
 

The deviations result from Table 1 shows how each phase introduces more 
deviations from the CAD model as the CAD model has no deviation or internal 
structures, the slicer has no deviations but introduces internal structures, and finally, 
printed parts have deviations and internal structures 
 
 
2.6 Conclusions  
 

In this chapter, the deviation between the CAD model and the final part was 
studied, and slicing architecture, effects of process parameters, and defects in the 
fabrication of FDM parts were discussed and analyzed. 

The fabrication of FDM parts may exhibit flaws like internal voids and raster gaps; 
the slicing software architecture causes the creation of print layers and raster paths, 
which, as seen on the SEM images, deviate from the toolpath strategy, they differ in 
thickness and geometry, and the rasters may even overlap based on the fabrication 
conditions. 
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Chapter 3 
 
3.1 Introduction 
 

As seen in the previous chapter, the complex effects of process parameters in the 
fabrication process deviate from the final part with respect to the CAD model. 
Deviations in the geometry of the CAD model may cause fabricated parts to not meet 
the required tolerances for the designed application. Furthermore, they may also 
negatively affect the structural integrity of the FDM. These deviations are caused by 
multiple factors, such as the accumulated stress during the thermo-mechanical job, 
machine error during production, and rheological issues during the deposition. To 
study in-depth the divergence between the expected behavior of the printing process 
and the actual fabrication of the part, in this chapter, the FEA simulations of the 
deposition process were performed, and the deviations predicted by the software 
were compared with those of the results of scanned printed parts. 

 
FDM is hindered by the lack of processing knowledge [92], and their performance 

is judged by the dimensional and geometric precision of the parts produced [93]. It 
demands the ability to produce goods with acceptable dimensional accuracy [94]. 
Before additive manufacturing technology become the norm in the manufacturing 
sector, there is still a lot of effort and research to be done. Not all regularly used 
manufacturing materials can be handled, and the precision needs to be improved to 
do away with the requirement for a finishing process [95]. These new materials must 
meet particular 3DP specifications, and they must undergo extensive testing to 
ascertain their mechanical characteristics and ultimate geometry [62]. 

 
FDM is not suitable for complex parts since it has the lowest dimensional accuracy 

and resolution of the conventional 3DP processes [96] [78]. Component tolerance, 
which is a commonly used parameter for traditional manufacturing that helps assure 
part fit, can be thought of as how closely the 3D printed part matches the original 
CAD design in terms of dimensions [97]. Major print failures can originate from a 
variety of error sources; therefore, identifying only individual root causes may lead 
to the acceptance of faulty components [98].  
 
The following four main elements can be summed up as affecting the accuracy of 
FDM parts [99]:  
 

• Machine error: caused by the printer movement.  
• Software error: caused during the slicing process by geometric. 

Approximation. 
• Thermomechanical extrusion errors: caused during the material extrusion by 

nozzle and filament diameter, and extrusion speed. 
• Thermomechanical deposition errors: caused during the deposition and rest 

by material and environment. 
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The accumulation of the defects that occur throughout the manufacturing process 
has an impact on the accuracy of an anatomical 3D model [100]. Process 
parameters have an important effect on the final geometry of the part. The main FDM 
process parameters are [101]: 
 

• Slicing parameters  
• nozzle diameter  
• road width 
• flow rate 
• print speed 
• infill pattern 
• infill density 
• raster orientation 
• air gaps 
• number of contours 
• roof thickness 
• floor thickness 
• layer thickness 
• building orientation  

 
• Temperature parameters:  

• environment temperature, 
• extrusion temperature,  
• print-bed temperature. 

 
Tolerances for 3D printing using fused filament fabrication (FFF) range from 0.15 

mm for industrial printers used in manufacturing settings to 0.5 mm for desktop 
printers used by hobbyists [97]. Given the lower production rates that additive 
manufacturing processes achieve compared to conventional manufacturing, it 
becomes necessary to continuously monitor the entire process and make the 
necessary adjustments to increase the number of acceptable parts, thereby raising 
the process' overall quality. 

 
Creating geometries with higher component precision can be achieved by 

modifying the design to account for anticipated deviations produced during the part's 
manufacture [102]. However, distortion detection currently requires computationally 
intensive simulation and analysis of sensing data [98]. 

 
Successful realization of a specific 3DP process involves the printing process 

along with process details for printing and post-processing, both of which play a 
major role in determining the mechanical properties of the parts produced [103] 

Iterative processes are typical of 3D printing. The steps listed below are used to 
carry out 3D printing [104]: 
 

• Conceptualize the geometry. 
• Design a virtual CAD model. 
• Convert the CAD model into an STL.  
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• Convert the STL dataset into a toolpath. 
• Export the machine instructions to a 3D printer and execute the printing 

process. 
• Carry out finishing operations.  

 
Typically, the workflow has to start over if a printed component doesn't comply 

with the anticipated usage, whether it be due to parameter errors or fabrication faults. 
This leads to longer lead times, lost material, and perhaps even geometric 
restrictions for the component. 

 
A major barrier to AM's widespread use in the industry is the lack of process 

robustness, stability, and repeatability brought on by the complicated, unresolved 
interactions between material properties, product design, process parameters, 
process signatures, post operations, and product quality [24]. Due to the nature of 
additive manufacturing (AM) processes, it is necessary to identify manufacturing 
flaws early in the production phase in order to prevent the creation of defective parts 
[105]. By identifying part distortion quickly, significant print errors can be prevented. 

 
Molten fibers are extruded and placed over the previously printed layer in FDM, 

forming bonds with contiguous fibers [106]. Diverse thermo-mechanical profiles are 
applied to FDM parts, which results in residual stresses and geometry deformation 
[107]. Warpage and shrinkage occur when the material cools by a high thermal 
gradient [108]. That occurs since cooling induces residual stresses to build [109]. 
One of the most extreme conditions is residual stress-induced distortion [110].  

 
Through comparison of the measurement results of several tolerance values, 

such as flatness and symmetry, Mahes et al. [111] discovered that warpage and 
delamination, which influenced flatness, were produced by residual stresses. These 
print flaws are common in AM. Rapid cooling of the melted fibers may result in 
solidification before full fusion with other fibers, leaving gaps between the fibers and 
bonds with inadequate mechanical properties [112] [106]. The thermal gradient 
influences fiber adhesion [106].  All through the fabrication process, FDM parts suffer 
a constant time-varying temperature profile [113]. This makes it difficult to accurately 
simulate the deposition process. 

 
Using FDM for practical engineering components requires having improved 

mechanical qualities, surface polish, dimensional control, and tolerances [114]. A 
deeper comprehension of the deposition process is required for these 
advancements to be feasible. Typically, for a given set of materials, process 
parameters are set and optimized experimentally. Generally, process parameters 
are set and optimized experimentally for specific materials. Nevertheless, the 
procedure is time-consuming and expensive. As an alternative solution, numerical 
techniques are used to investigate the effect of process parameters on the thermo-
mechanical behavior of 3D printed composite parts [115]. Simulations based on DTs 
can collaborate in real-time with their physical counterparts to verify, validate, and 
optimize the process [32]. Digital Twin simulation, as opposed to traditional 
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simulation, is used to optimize solutions [31]. Simulations of fabrication processes 
are widely used in design and production to achieve high geometrical accuracy [116]. 
 
 
Abaqus' Additive Manufacturing framework includes technologies to address a 
variety of simulation challenges [113]: 
 

• Finite element mesh with varying mesh density. 
• The input of process parameters and specifics for various AM processes 

such as deposition head dimension and moving speed, stack direction. 
• Supporting progressive heating computation using actual tool path data. 
• Supporting progressive cooling computation using evolving heat transfer 

surfaces during the printing process. 
 

FDM thermal simulation is complicated for at least two main reasons. The first is 
the manufacturing process's inherent geometric complexity, which discretizes the 
design model and results in numerous artifacts such as "stair-stepping" on the 
surface, voids between roads, and under-fill. The second challenge is the high 
computational complexity of the transient thermal simulation, which necessitates a 
numerical solution at each time increment of the process. [117]. 

 
Voxel mesh is used in streamlined thermal simulation techniques, which 

decreases the size of the finite element mesh and, as a result, the amount of time 
needed to model intricate additive designs [118]. Nevertheless, this approach is 
neither precise nor efficient since the design geometry greatly differs from the 
produced shape [117]. The geometric change during the deposition process is not 
taken into account by two-dimensional models for FEA analyses of AM processes 
[110]. Making the models less accurate, as in FDM, the primary heat transfer modes 
are convection and conduction [94] [110]. The prediction of the grinding temperature 
(background temperature) can be improved by using the finite difference method 
and more precise convective heat transfer information [119]. 

 
An effective way to validate computer simulations is through experimental testing. 

Real-time three-dimensional form measurement techniques are becoming more and 
more crucial as artificial intelligence and robotics grow quickly [80]. The present 
unsolved issues in layer imaging relate to the trade-off between imaging resolution 
and extension of covered area, as well as to the complexity of picture interpretation, 
which is made worse by optically challenging materials, intricate filament patterns, 
and non-uniform environmental circumstances [25]. The life cycle of any asset, 
starting with design, manufacture, distribution, maintenance, and ending with 
recycling, is being improved through sensors and intelligent data collecting [79]. 

 
The following Literature review briefly shows the work done in deposition 

simulation for additive manufacturing. 
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Using ANSYS software, Zhou et al. [120] created a thermal model for FDM that 
took into account the nonlinear behavior of thermal conductivity and specific heat 
due to temperature changes and phase transformations. Using a finite element 
analysis technique based on the continuous media theory, they looked at the 
temperature evolution and how the modeled component formed. They came to the 
conclusion that the impacts of modeling have a significant impact on the thermal 
evolution when the material's thermal properties are changed. 

 
Cattenone et al. [121] developed an FEA framework to simulate the Fused 

Deposition Modeling process using the Abaqus software to study the effect that 
simulation parameters such as time step and the mesh size have on strength. They 
concluded that:  
 

• While it has little effect on the outcomes of the mechanical analysis results, 
the time step has a significant impact on the local temperature distribution 
during printing. 

• The meshing method is crucial for simulating the actual printing process. For 
small models to examine local impacts, a finer meshing method is 
recommended; however, for large models where the local effects are minimal, 
a coarser meshing strategy is advised. 

• Accurate calibration is required for the constitutive model to get findings that 
are physically feasible, and it's essential to consider the temperature 
dependence of Young's modulus and the yield stress limit. 

 
They discovered that, in conjunction with other printing factors like extrusion 

temperature, chamber temperature, nozzle velocity, and extruded filament 
diameters, thermal gradients have a significant impact on the quality of the things 
that are generated. The adhesion model between the first layer and the constructing 
plate was the study's biggest flaw. To evaluate the adhesion force between the plate 
and the filament, complicated experimental experiments must be carried out at 
various temperatures before any form of adhesion model can be introduced. 

 
Croccolo et al. [122] developed and experimentally validated an analytical model 

that can be easily implemented in a calculation sheet and is able to predict the 
strength and stiffness of FDM parts based on the print setting such as raster pattern, 
number of contours, and raster angle. The developed method can forecast the failure 
of the entire part by modeling the rupture event of each individual bead. 

 
Courter et al. [113] developed an open user customizable subroutine interface 

framework in Abaqus aiming at providing accurate and scalable predictions for 
Additive Manufacturing processes like FDM, SLM, DLM, and Polyjet. Following an 
experimental validation, they came to the conclusion that the finite element 
simulations accurately depict how the tool path and thermomechanical physical 
processes interact with one another and how this affects the final state of the printed 
part. In comparison to the physically printed samples, the temperature history and 
distortion forecasts are qualitatively accurate 
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Zhang et al. [117] proposed an approach to thermal simulation for FDM using an 

explicit finite difference method that is applied directly to an as-manufactured model 
described by a typical manufacturing process plan. The thermal model takes into 
account the majority of significant thermal impacts, such as heat radiation and 
convection to the environment, heat conduction with the build platform, and heat 
conduction with nearby roads (and adjacent layers). Conduction and convection are 
the primary heat transport modes in FDM [110]. They demonstrated, both 
conceptually and numerically, that the suggested simulation technique achieves 
linear time complexity. 

 
Zhang et al. [110] developed a finite element analysis model with simplified 

material properties and boundary conditions. The stress accumulations during the 
deposition and subsequent part deformation are examined using simulations. They 
also looked at how the tool route affected the part's residual stresses and distortion 
pattern. 

 
They came to the conclusion that residual stresses built up during the deposition 

caused tool-path patterns to alter the deflection of the part as well noticeably. It can 
therefore be inferred that the process factors, such as the tool-path pattern and 
others, have an impact on the FDM parts. 

 
Sonmez et al. [123] studied the relationship between process parameters, 

temperature, and stress distributions during fabrications. They developed models for 
the thermomechanical laminated object manufacturing process. 

 
Baronio et al. [124] proposed a methodology for the production of a printable 

orthosis made with FDM. They used a 3D scanner for the precise recording of a 
person's forearm geometry. They emphasized the value of submillimeter accuracy 
in acquiring the anatomy of the hand and fingers since it enabled the design and 
manufacture of orthoses that were incredibly comfortable and tolerable. 

 
Chen et al. [125] inspected The 3-dimensional surface data of FDM parts with 

hand scanners to evaluate the accuracy of printed parts. They analyzed the 
difference between the CAD model and the fabricated parts, and concluded that by 
improving this system, the production process will become more accurate and 
efficient overall while also saving time in the clinic. 

 
Henson et al. [98] proposed a Digital Twin strategy approach for the detection of 

catastrophic failures during printing. The methodology described starts with the 
simulation of ground truth images prior to printing, is followed by the processing of 
print images that are captured during printing, and is concluded with a real-time 
comparison of the ground truth images and captured images to determine whether 
or not the print should be stopped. They emphasized that a drawback of this method 
has to do with part concavity; any part geometry that is hidden from camera view 
cannot be monitored using this method, which could result in the part deforming 
without being seen. 
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The literature is deficient in explaining how changes in the process parameter 

may impact the dimension and geometric accuracy [78] [126]. Additionally, how do 
they differ between a proprietary AM system and an open-source AM system [127] 
[128]. The increased accuracy and shortened inspection time of hand scanners is 
beginning to allow the in situ inspection of FDM prints; based on GD&T standards, 
its implementation could ease the adoption of FDM as a true manufacturing option 
for engineering parts. Furthermore, currently, there are no models that have been 
capable of predicting all the complexities of the FDM process [112]. 
 
 
3.2  Creation of FDM specimens for tolerance performance inspection  
 

To study the geometrical accuracy of parts created through FDM, two kinds of 
specimens, one wall (1W) and two walls (2W), were created. The model included 
specific geometry to evaluate and compare the performance in terms of GD&T 
dimensional accuracy of 2 different machines, machine 1 and machine 2, with 
different filaments. For example, the model included cylindrical bosses and thin-
walled structures. Annotated Computer-aided Design (CAD) drawings of the models 
along with the associated measurements for the identified features are shown in 
Figure 26 and Figure 27. 
 
 

 
Figure 26. 1W geometry, all dimensions are in mm. 
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Figure 27. 2W geometry, all dimensions are in mm. 
 
 

To analyze the effects of build orientation, both machine 1 and machine 2 1W and 
2W specimens were printed each on two different orientations, as seen in Figure 28, 
since the structural properties of the built object and geometry are affected by the 
orientation [129]. 
 

Figure 28. Printing orientations (a) 1W Horizontal. (b) 1W Vertical. (c) 2W 
Horizontal. (d) 2W Vertical. 
 

For machine 1 specimens, the parts were printed using a Marktwo by Markforge, 
the toolpath was generated in Eiger by Markforge, 37% triangular infill was selected 
as it is the default setting, and 0.1mm was set as the layer height. Roof and layers 
were set to 4 (0.4mm total), and walls at 2 (0.8mm total)  

 
For machines 2 specimens, the parts were printed on an in-house FFF machine, 

and the toolpath obtained in Cura, 20% triangular infill was selected, and 0.2mm was 
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set as the layer height. The roof and layers were set to 4 (0.4mm total), and the walls 
at 2 (0.8mm total).  

 
On each of the two machines, five 1W specimens were printed vertically and five 

horizontally; also, five 2W specimens were printed horizontally and five vertically. 
Forty total specimens were created. 
 
 

Figure 29. Specimens on the print bed 

 
3.3  Surface inspection of printed specimens 
 

To digitally inspect the surface geometry of the printed specimens, the fabricated 
parts were scanned by a 3D laser scanning system, HandyScan Black Elite from 
Creaform, which has 11 blue laser crosses that enable it to have measurement rates 
of up to 1,300,000 measurements/s and an accuracy of 0.025 mm according to ISO 
17025.  
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Figure 30. HandyScan Black Elite from Creaform  
 

The specimens’ surface geometries were captured using VXelements (a software 
program for 3D scanning and post-processing). A laser scanning approach is 
uniquely suited for the inspection of parts fabricated using AM, considering the 
possibility of layer-wise deviations [127]. Using the Vxelements analysis tool, the 
GD&T range of variations in the tolerances were calculated on the surfaces shown 
in Figure 31 and Figure 32. GD&T communicates acceptable 3D variations of 
geometric elements, and it is based on mathematical representations of the variation 
of geometric elements [130]. 
 
 

 
Figure 31. Locations of inspected surfaces for 1W 
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Figure 32. Locations of inspected surfaces for 2W 
 

Figure 33. Location of future tolerances for specimens 
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Figure 33 shows the locations of feature tolerances for specimen 2W, specimen 
1W has no Datum E and their respective tolerances, and no other difference in 
feature tolerances exists. 
 
3.4 Thermo-mechanical simulation 

 
To study the prediction accuracy of FEA deposition simulation software of parts 

created through FDM, Digimat-AM was used to simulate the thermomechanical 
behavior of the fabrication process of the 1W and 2W specimens, in vertical and 
horizontal orientations, with two different materials.  

 
Digimat-AM provides thermal and thermomechanical simulations to inspect the 

deposition process, minimizing warpage and part deviation. Digimat-AM uses the 
Mark solver, which is a general purpose, nonlinear finite element analysis solver. 
 

Figure 34. Digimat-AM printer setup 
 

FFF was selected for the manufacturing process, along with a generic printer with 
a Chamber of 320x152x154 to represent the Marktwo. The chamber temperature 
was set at 24oC, bed with at 0.4, discretization by filament, voxel size 0.1mm. The 
CAD model was created in Fusion 360. the toolpath created in Markforge’s Eiger 
software for Machine 1 and Cura for machine 2. PA6 with 0.2 carbon fiber bead was 
used as the material representing Markforge´s Onyx and ABS for machine 2, as PLA 
is not available in the material database. 
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Figure 35. Digimat-AM fabrication setup 

 
The mesh of the expected deformed geometry created by Digimat-AM was 

exported into VXelements for feature measurements to compare to the printed parts 
surface inspection 

 
Figure 36. Simulation 2W deformed geometry exported as STL 
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The deformed geometry was compared against the CAD model to quantify the 
point deviation by superimposing both geometries in the Digimat-AM software. 
 

Figure 37. Deformed geometry superimposed in CAD model  

Figure 37 shows the predicted deformed geometry the software calculated, 
superimposed over the original CAD model. The thermometer on the right indicates 
the amount of deviation in millimeters, with red indicating the highest deviation and 
blue the lowest.  
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3.4.1 Results  

The predicted deformation from the fabrication is shown in Figure 38 

Figure 38. Result of simulated deformed 2W horizontal from Digimat-AM 
 

As seen in Figure 37 and Figure 38, the software predicted that the part would 
have deformations mainly in the base, walls, and cylinder, as seen from the red 
shading in Figure 37 and yellow in Figure 38 

 
The dimensional accuracy of the compared FDM parts is reported in terms of 

variation of individual feature tolerance associated with the GD&T form tolerances, 
as seen in Table 3, Table 4, Table 5, and Table 6 
 
Table 3 2W machine 1 geometrical tolerance deviation based on GD&T 
Speci
men 
name 

Surface 
A 

Surface B Surface C Surface D  Surfac
e E 

Flatness 
(mm) 

Perpend
icularity 
with A 
(mm) 

Flatness 
(mm) 

Cylindricity 
(mm) 

Perpend
icularity 
with A 
(mm) 

Flatne
ss 
(mm) 

Paralle
lism 
with B 
(mm) 

2W 
Vertica
l sim 

0.005 0.069 0.002 0.126 0.076 0.070 0.010 

2W 
Vertica
l  scan 
1 

0.615 0.463 0.439 0.227 0.463 0.313 0.535 

2W 
Vertica
l scan 
2 

0.363 0.170 0.099 0.130 0.185 0.153 0.078 

2W 
Vertica
l  scan 
3 

0.274 0.201 0.196 0.132 0.304 0.273 0.239 
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2W 
Vertica
l  scan 
4 

0.187 0.210 0.206 0.201 0.132 0.131 0.213 

2W 
Vertica
l°  
scan 5 

0.438 0.162 0.157 0.319 0.173 0.121 0.276 

2W 
Horizo
ntal 
sim 

0.047 0.260 0.204 0.483 0.092 0.086 0.553 

2W 
Horizo
ntal 
scan 1 

0.341 0.245 0.237 0.440 0.110 0.096 0.506 

2W 
Horizo
ntal 
scan 2 

0.222 0.118 0.106 0.342 0.251 0.181 0.153 

2W 
Horizo
ntal 
scan 3 

0.208 0.144 0.107 0.479 0.172 0.123 0.111 

2W 
Horizo
ntal 
scan 4 

0.202 0.170 0.154 0.361 0.173 0.163 0.465 

2W 
Horizo
ntal 
scan 5 

0.327 0.148 0.127 0.416 0.126 0.149 0.116 

 
Table 3 presents the results from the tolerance deviation inspection of specimens 

2W on machine 1 on both vertical and horizontal orientations, and the tolerance 
deviation results from the deposition simulation on both vertical and horizontal 
orientations as well. Surfaces A, B, C, D, and E with their corresponding feature 
tolerance are presented for each case. 

 
As appreciated in Table 3, both thermo-mechanical simulations underpredict the 

actual flatness deviation seen on the printed specimens, while the 1W simulation 
underpredicts the flatness deviation of surface B when compared to the results of 
the 1W specimens. 
 
Table 4 1W machine 1 geometrical tolerance deviation based on GD&T 
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Specim
en 
name 

Surface 
A 

Surface B Surface C Surface D  

Flatness 
(mm) 

Perpendi
cularity 
with A 
(mm) 

Flatness 
(mm) 

Cylindricity 
(mm) 

Perpendi
cularity 
with A 
(mm) 

Flatnes
s 
(mm) 

1W 
Vertical 
sim 

0.000 0.043 0.010 0.024 0.039 0.009 

1W 
Vertical 
scan 1 

0.239 0.228 0.439 0.627 0.176 0.158 

1W 
Vertical 
scan 2 

0.098 0.209, 0.173 0.153 0.461 0.461 

1W 
Vertical 
scan 3 

0.113 0.113, 0.087 0.110 0.127 0.124 

1W 
Vertical 
scan 4 

0.234 0.204 0.180 0.405 0.227 0.222 

1W 
Vertical 
scan 5 

0.322 0.199 0.172 0.427 0.264 0.198 

1W 
Horizon
tal sim 

0.093 0.279 0.152 0.470 0.067 0.065 

1W 
Horizon
tal scan 
1 

0.726 0.380 0.285 0.805 0.508 0.508 

1W 
Horizon
tal scan 
2 

0.182 0.219 0.157 0.873 0.079 0.076 

1W 
Horizon
tal scan 
3 

0.071 0.133 0.076 0.830 0.228 0.208 

1W 
Horizon
tal scan 
4 

0.197 0.264 0.244 0.997 0.255 0.202 

1W 
Horizon

0.178 0.280 0.130 0.853 0.112 0.098 
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tal scan 
5 

 
Table 4. presents the results from the tolerance deviation inspection of specimens 

1W on machine 1 on both vertical and horizontal orientations, and the tolerance 
deviation results from the deposition simulation on both vertical and horizontal 
orientations as well. Surfaces A, B, C, and D with their corresponding feature 
tolerance are presented for each case. 

 
As seen in Table 4, the thermo-mechanical simulation of 1W underpredicts the 

deviation of all features when compared to the results of the 1W specimen, 
especially since the software under-predicts the flatness deviation of Surface A, as 
it predicted the deviation was 0mm. 
 
 
Table 5 2W machine 2 geometrical tolerance deviation based on GD&T 
Speci
men 
name 

Surface 
A 

Surface B Surface C Surface D  Surfac
e E 

Flatness 
(mm) 

Perpend
icularity 
with A 
(mm) 

Flatness 
(mm) 

Cylindricity 
(mm) 

Perpend
icularity 
with A 
(mm) 

Flatnes
s 
(mm) 

Parallel
ism 
with B 
(mm) 

2W 
Vertica
l sim 

0.006 0.045 0.001 0.034 0.038 0.038 0.013 

2W 
Vertica
l scan 
1 

0.416 0.366 0.376 0.322 0.214 0.195 0.303 

2W 
Vertica
l scan 
2 

0.694 0.248 0.156 0.350 0.352 0.350 0.552 

2W 
Vertica
l scan 
3 

0.853 0.167 0.152     1.195 0.193 0.193 0.666 

2W 
Vertica
l scan 
4 

0.357 0.160 0.132 1.081 0.380 0.379 0.398 

2W 
Vertica
l scan 
5 

0.408 0.260 0.138 0.407 0.575 0.574 0.287 
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2W 
Horizo
ntal 
sim 

0.004 0.179 0.124 0.247 0.049 0.032 0.295 

2W 
Horizo
ntal 
scan 1 

0.400 0.122 0.009 0.247 0.530 0.471 0.148 

2W 
Horizo
ntal 
scan 2 

0.221 0.473 0.465 0.869 0.513 0.459 1.077 

2W 
Horizo
ntal 
scan 3 

0.388 0.459 0.425 1.459 0.724 0.694 0.884 

2W 
Horizo
ntal 
scan 4 

0.284 0.256 0.252 1.129 0.385 0.404 0.546 

2W 
Horizo
ntal 
scan 5 

0.510 0.532 0.536 1.090 0.815 0.373 0.403 

 
Table 5 shows the results from the tolerance deviation inspection of specimens 

2W on machine 2 on both vertical and horizontal orientations, and the tolerance 
deviation results from the deposition simulation on both vertical and horizontal 
orientations as well. Surfaces A, B, C, D, and E with their corresponding feature 
tolerance are presented for each case. 

 
Table 5 continues the trend of the thermo-mechanical simulation of both 

specimens under predicting the actual flatness deviation of surface A seen on the 
printed specimens, while again, as in Table 3, the flatness deviation of the 1W 
specimen was under predicted in surface B as well. 
 
 
Table 6 1W machine 2 geometrical tolerance deviation based on GD&T 
Specim
en 
name 

Surface 
A 

Surface B Surface C Surface D  

Flatness 
(mm) 

Perpendic
ularity 
with A 
(mm) 

Flatness 
(mm) 

Cylindricity 
(mm) 

Perpendic
ularity 
with A 
(mm) 

Flatness 
(mm) 
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1W 
Vertical 
sim 

0.006 0.104 0.002 0.022 0.011 0.000 

1W 
Vertical 
scan 1 

0.369 0.657 0.435 0.582 0.306 0.248 

1W 
Vertical 
scan 2 

0.480 0.269 0.230 0.906 0.629 0.613 

1W 
Vertical 
scan 3 

0.855 0.574 0.557 1.033 0.208 0.177 

1W 
Vertical 
scan 4 

0.480 0.348 0.290 0.869 0.277 0.277 

1W 
Vertical 
scan 5 

0.343 0.512 0.468 0.748 0.377 0.285 

1W 
Horizont
al sim 

0.057 0.139 0.089 0.221 0.061 0.054 

1W 
Horizont
al scan 
1 

0.532 0.483 0.264 0.986 0.334 0.334 

1W 
Horizont
al scan 
2 

0.330 0.382 0.346 1.107 0.355 0.325 

1W 
Horizont
al scan 
3 

0.278 0.263 0.254 1.19 0.112 0.109 

1W 
Horizont
al scan 
4 

0.321 0.300 0.282 0.933 0.242 0.224 

1W 
Horizont
al scan 
5 

0.533 0.204 0.201 0.795 0.252 0.197 

 
Table 6 presents the results from the tolerance deviation inspection of specimens 

1W on machine 2 on both vertical and horizontal orientations, and the tolerance 
deviation results from the deposition simulation on both vertical and horizontal 
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orientations as well. Surfaces A, B, C, and D with their corresponding feature 
tolerance are presented for each case. 

 
Table 6 finishes the trend of the thermo-mechanical simulation of both specimens 

under predicting the actual flatness deviation of surface A seen on the printed 
specimens, while again, as in Table 3 and Table 5, the flatness deviation of 1W 
specimen was under predicted in surface B as well. 

 
From the results, it can be concluded that the simulations mostly under-predict 

the actual deviations seen on the printed specimens, especially the flatness 
deviation. It can also be concluded that the software under-predicts the actual 
flatness deviation of surface B more in vertical orientation than in horizontal. 

Figure 39. Tolerance deviation results based on GD&T  
 

Figure 39 shows the tolerance deviation average of flatness, perpendicularity, and 
cylindricity on both orientations and both machines. Cylindricity tolerance has the 
highest deviation among all configurations, with the horizontal orientation showing 
the highest effect on deviation. Cylindricity has 125% more deviation than 
perpendicularity and 122% more than flatness, 
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Figure 40. Flatness tolerance deviation results based on GD&T  
 

Figure 40 shows the tolerance deviation average of flatness in both orientations 
and both machines. The results demonstrate that surface A has 50% more flatness 
deviation with respect to B and 14% with respect to D. 
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Figure 41. Cylindricity tolerance deviation results based on GD&T 
 
 

Figure 41 shows the tolerance deviation average of cylindricity in both orientations 
and both machines. Horizontal orientation has 38% more deviation than vertical. 
Thus it would be recommended to print cylinders in the vertical orientation, if allowed 
by design, to have better surface accuracy. 
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Figure 42. Perpendicularity tolerance deviation results based on GD&T 

Figure 42 shows the tolerance deviation average of Perpendicularity on both 
orientations and both machines. Orientation and surface don’t seem to have an 
effect on perpendicularity deviation. 
 
 
 
 
Table 7 Machine1 2W point cloud differences. 
Specimen 
name 

Min 
deviation 
(mm) 

Maximum 
deviation 
(mm) 

+- deviation 
(mm) 

SD 
(-) 

Error 
distribution 
between -
0.25-
+0.25mm 
(%) 

2W Vertical  
scan 1 

-0.196 0.402 0.597 0.040 99.95 

2W Vertical 
scan 2 

-0.542 0.204 0.745 0.065 99.75 

2W Vertical  
scan 3 

-0.278 0.216 0.494 0.055 100 

2W Vertical  
scan 4 

-0.326 0.721 1.047 0.073 99.18 
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2W Vertical  
scan 5 

-2.000 0.537 2.537 0.432 86.97 

2W Horizontal 
scan 1 

-0.290 1.059 1.349 0.087 98.51 

2W Horizontal 
scan 2 

-0.442 1.844 2.287 0.095 99.12 

2W Horizontal 
scan 3 

-0.270 0.943 1.213 0.100 98.13 

2W Horizontal 
scan 4 

-0.638 0.995 1.634 0.116 94.97 

2W Horizontal 
scan 5 

-1.171 0.781 1.952 0.088 98.52 

 
Table 7 Shows the point cloud difference of 1W machine 1 specimens with 

respect to the CAD model. 
 
Table 8 Machine 1 1W point cloud differences. 
Specimen 
name 

Min 
deviation 
(mm) 

Maximum 
deviation 
(mm) 

+- deviation 
(mm) 

SD 
(-) 

Error 
distribution 
between -
0.25-
+0.25mm 
(%) 

1W Vertical  
scan 1 

-0.196 0.402 0.597 0.040 99.95 

1W Vertical 
scan 2 

-0.208 1.785 1.993 0.092 99.58 

1W Vertical  
scan 3 

-0.231 0.155 0.386 0.054 100 

1W Vertical  
scan 4 

-0.338 0.773 1.111 0.114 95.70 

1W Vertical  
scan 5 

-0.632 0.491 1.123 0.132 94.00 

1W Horizontal 
scan 1 

-0.349 0.714 1.063 0.062 99.27 

1W Horizontal 
scan 2 

-0.216 0.775 0.991 0.068 99.43 

1W Horizontal 
scan 3 

-0.239 0.761 1.000 0.071 99.34 

1W Horizontal 
scan 4 

-0.414 0.906 1.320 0.099 98.00 

1W Horizontal 
scan 5 

-0.392 0.957 1.348 0.117 96.17 

 
Table 8 Shows the point cloud difference of 1W machine 1 specimens with 

respect to the CAD model. 



81 

 
Table 9 Machine 2 2W point cloud differences. 
Specimen 
name 

Min 
deviation 
(mm) 

Maximum 
deviation 
(mm) 

+- deviation 
(mm) 

SD 
(-) 

Error 
distribution 
between -
0.25-
+0.25mm 
(%) 

2W Vertical  
scan 1 

-1.968 0.560 2.528 0.100 94.82 

2W Vertical 
scan 2 

-1.523 0.345 1.869 0.097 98.16 

2W Vertical  
scan 3 

-1.839 0.653 2.492 0.127 96.42 

2W Vertical  
scan 4 

-0.743 1.859 2.602 0.197 79.70 

2W Vertical°  
scan 5 

-4.998 4.973 9.971 0.893 75.70 

2W Horizontal 
scan 1 

-1.449 0.845 2.295 0.197 76.70 

2W Horizontal 
scan 2 

-1.705 0.651 2.356 0.167 82.18 

2W Horizontal 
scan 3 

-1.722 0.760 2.482 0.185 83.26 

2W Horizontal 
scan 4 

-1.856 1.884 3.740 0.184 82.63 

2W Horizontal 
scan 5 

-1.796 1.997 3.794 0.231 65.89 

 
Table 9 Shows the point cloud difference of 2W machine 2 specimens in relation 

to the CAD model. 
 
Table 10. Machine 2 1W point cloud differences. 
Specimen 
name 

Min 
deviation 
(mm) 

Maximum 
deviation 
(mm) 

+- deviation 
(mm) 

SD 
(-) 

Error 
distribution 
between -
0.25-
+0.25mm 
(%) 

1W Vertical  
scan 1 

-0.933 0.768 1.700 0.135 89.46 

1W Vertical 
scan 2 

-1.942 0.624 2.566 0.103 89.21 

1W Vertical  
scan 3 

-0.583 0.871 1.454 0.122 97.05 
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1W Vertical  
scan 4 

-1.951 1.052 3.003 0.226 79.87 

1W Vertical  
scan 5 

-0.621 0.592 1.213 0.102 94.05 

1W Horizontal 
scan 1 

-0.790 0.702 1.492 0.204 76.58 

1W Horizontal 
scan 2 

-1.752 0.694 2.445 0.131 87.37 

1W Horizontal 
scan 3 

-0.740 0.883 1.622 0.177 84.09 

1W Horizontal 
scan 4 

-1.622 0.699 2.322 0.147 85.27 

1W Horizontal 
scan 5 

-0.739 1.080 1.819 0.149 91.27 

 
Table 10 Shows the point cloud difference of 1W machine 2 specimens with 

respect to the CAD model. 
 

Figure 43. Point cloud differences result in the average of printed parts against 
CAD models for all specimens 
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Figure 44. Results of average feature deviation between simulations and scanned 
parts. H: Horizontal, V: Vertical, M: Machine.  

The graph shows the point cloud difference in mm between the average of each 
specimen type, including simulation, and the CAD model. The simulations predict 
46-94% less deviation than the final parts. 
 
 
3.5 Thermal simulation  
 

To study the relation between the thermal gradients and the surface deviation of 
parts fabricated through FDM, Digimat-AM was used to simulate the thermal 
behavior of the fabrication process, and the results were compared to thermal 
images of the actual deposition of the printed parts. 

 
Digimat-AM was used for the thermal simulation, FFF was selected as the 

manufacturing process, and a generic printer with a Chamber of 320x152x154 to 
represent the Marktwo was used. The chamber temperature was set at 24oC, bed 
width at 0.4, discretization by filament, and voxel size 0.1mm. The CAD model was 
created in Fusion 360. the toolpath created in Cura, ABS was used for the simulation 
as PLA is not available in the material database 
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3.5.1 Results  

Figure 45. Temperature prediction from thermal simulation of 1W specimen 

Figure 46. Thermal image from the deposition of 1W specimen 
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Figure 45 shows the predicted temperature from the deposition process of 

specimen 1W. At the current fabrication moment, the maximum temperature is 96oC.   
 
Figure 46 shows a thermal image from the deposition of specimen 1W, the 

maximum temperature at the time of recording was 200oC. 
 
As seen in Figure 45 and Figure 46, the thermal simulation could be under 

predicting the deposition temperature by half what we see on the thermal camera. 
This trend was observed in all observed instances of the simulation. Because of this, 
the thermal simulation was concluded to be unreliable and inaccurate. 
 
 
3.6  Discussion  
 

As seen in Figure 43, the PLA samples of machine 2 have more deviation 
compared to the Onyx samples of machine 1 Tanoto et al. [84] noted PLA to have 
good dimensional accuracy. Zharylkassyn et al. [131] reported in an extensive 
review that the layer thickness levels between 0.1 mm and 0.2 mm are more likely 
to be optimal for the dimensional accuracy of FDM parts that uses ABS or PLA 
resins, whereas for Nylon, about 0.3 mm are preferable. Therefore, the print settings 
for Machine 2 (0.125 mm layer height) that uses PLA were better aligned with what 
the literature has reported for better accuracy than those of machine 2 (0.1mm layer 
height) that uses Onyx which has a Nylon matrix. The lower tolerance deviation of 
machine 1 could be attributed to the better mechanical solutions of the Marktwo 
printer. 

 
Cylindricity has the highest overall deviation in the case of the vertical specimens, 

and this is probably due to the complexity of using two motors for simultaneously 
moving in 2 axes to create a circle, compared to the other tolerances, which only 
move in a straight line. In the case of the horizontal specimens, the staircase effects 
may be involved. 

 
Horizontal orientation seems to have higher cylindricity deviation due to gravity 

deforming the polymer, while 2W seems to have lower cylindricity deviation, possibly 
due to the lack of material in the inner hole resulting in less thermal gradient, which 
causes less thermal stresses, therefore less thermal induced deviations. 

 
As shown in Figure 44, the average error ranged from 46-94% less deviation in 

the simulation than in the scanned parts. Therefore, the simulation isn’t accurate 
enough under the studied conditions. 
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3.7  Conclusion 
 

In this chapter, deposition simulations were performed to predict the expected 
geometry of parts fabricated by FDM. The simulations were compared to 
experimental tests to validate the predicted geometry.  From the results, it can be 
concluded that the thermos-mechanical deposition simulations failed to accurately 
predict the geometric deviations seen in the physical parts due to the complexities 
of the thermomechanical process and the effects of process parameters. The 
thermal deposition simulation was concluded to be unreliable and inaccurate based 
on the results of the thermal images. 
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Chapter 4 
 
4.1 Introduction 
 

As seen in chapter 2, defects in the fabrication process and the slicing process 
deviate the final part with respect to the CAD model, which is used in FEA static 
simulations. Anisotropy caused by the layered process, surface deviation, and 
internal structures are not considered when simulating the original CAD model. This 
deviation between the CAD model and the final part geometry can affect the 
performance prediction accuracy of typical FEA static simulations, as geometry and 
mechanical properties have a direct effect on stiffness. Furthermore, as seen in 
Chapter 3, the selection of process parameters may also change the sliced 
geometry, and other parameters that affect the fabrication process may indirectly 
affect the final parts´ geometry. This chapter seeks to analyze the effects that 
process induce defects have on the strength of FDM parts 

 
For a Digital Twin to accurately represent an FDM part, not only the geometry 

needs to be mimicked, but the physical behavior as well. This includes the 
mechanical properties of the part. As the stiffness depends on the geometry as well 
as the mechanical properties of the material, the previously discussed geometrical 
deviations will cause the FDM parts to have different mechanical behavior than 
traditionally manufactured parts. This chapter studies the effects of process-induced 
deviations and defects in the mechanical strength of FDM parts. 

 
FDM parts are already generally weaker than their traditional manufacturing 

counterpart as the inherent printing process creates print layers and raster. These 
structures adhere to one another through the melting process. However, this bond 
is normally weaker than the bulk material; because of this, the structure becomes 
anisotropic and weaker when a fore is applied in a certain direction.   

 
Process induce defects affect the geometrical accuracy of the part. However, this 

is not the only problem they cause. By altering the intended internal structure, the 
toolpath attempts to construct, voids and gaps may be created that hinder the part´s 
stiffness 

 
When designing a new component, verifying if the mechanical requirements fulfill 

the specific needs of the applications for which they are manufactured is important. 
Designers usually employ computer-aided simulation and engineering tools to 
predict the performance of various designs earlier in the life cycle, reduce reliance 
on expensive and various physical testing, optimize the design for maximum 
performance, and cut-down design time and cost [33]. Experimental testing is time-
consuming and costly. Finite Element Analysis was developed to solve complex 
elastic and structural analysis problems in aerospace and civil engineering  [132] 
FEA can reduce material and experimental testing costs [133]. FEA is a method for 
converting approximate partial differential equation solutions into a linear 
combination of polynomial trial functions specified over elements [133].  
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FEA reduces complicated problems to a small number of variables. FEA is 

commonly used to simulate constrained parts with various materials, restrictions, 
and loads under various boundary conditions [134] [135]. Following the analysis of 
the simulation results, adjustments to the current design can be made and re-
simulated for compliance. For structural analysis, thermomechanical simulations, 
and thermal analysis, FEA is commonly employed [133]. By modeling the existing 
model, FEA can be utilized to forecast stress distribution and deformations [135]. 
However, existing FEA simulations have a number of drawbacks, particularly when 
it comes to FDM parts. 

 
CAD software creates designs with the assumption that the internals of the parts 

is geometrically and materially homogenous. The tensile behavior of an FDM sample 
constructed with various layer thicknesses and/or raster orientation differs from that 
of solid material [136]. A reliable AM CAD tool should give you the flexibility to 
customize the material distribution and composition inside the part [137].  

 
When using FEA, it's critical to be able to check whether the analysis' conclusions 

converge with the actual testing of a part, resulting in accurate and useful results. As 
a consequence, experimental validation is essential [138]. Most  FEA material 
databases contain isotropic materials that have been developed using typical 
manufacturing methods, and they are unable to represent layered manufactured 
anisotropic materials effectively [134]. With FEA techniques, parts are intended to 
be operational when fabricated from molded or machined stock material [139]. The 
current restriction in material properties is that they are not well understood, rather 
than that they are inadequate [140] [139]. 

 
Due to substantial deformation, thermoplastic properties are difficult to identify, 

and they have less strength and stiffness than metal [141]. The strength and stiffness 
of the part are determined by the strength of the material and bonding between the 
extruded infill and the air gaps that separate them, making the FEA simulation of 
FDM products difficult [137].  

 
Understanding the interplay of process parameters, material properties, and 

mechanical behavior of FDM specimens and parts is critical for determining whether 
the objects can meet the mechanical requirements of the applications for which they 
are made [101]. More realistic simulations that account for all the intricacies of the 
FDM process are required in order to pick the best printing parameters. Modeling 
and simulation are the basis of implementing DT [142] 
 

The following review shows the work done in simulation and experimental 
validation of AM parts. 

 
Hambali et al. [138] performed numerical simulations to compare the stress-

deformation failure differences between a solid component model and a model that 
included each layer as a solid and union forces between layers. They concluded 
that, given the identical charge conditions, the layer-based model achieves larger 
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elastic values than the solid case, implying that the second case is more restricted 
than the first. They highlighted that when a ply fails, its stresses could be 
redistributed and carried by the rest of the plies. 

 
Garg et al. [136]  performed simulation and modeling of realistic models that 

consider layers of different thicknesses and rasters at different angles maintaining 
the inter-layer and intra-layer bonded region. They experimentally validated by 
comparing them with observations. Fractographic studies are also carried out to 
analyze the mode of failure of the FDM samples. They highlighted that compared to 
solid simulation, the 0.178 and 0.254 mm layer thickness specimens had the stress 
more concentrated towards the end of the gage length, where the area starts 
decreasing. They also concluded that for 90° raster angles, since layers are laid 
perpendicular to the loading direction, fewer stresses are generated, and failure of 
specimen mainly depends upon adhesion between successive layers 

 
Baikerikar et al. [140] carried out FEA simulations of FDM dogbone parts with bulk 

material properties and derived material properties. To experimentally validate the 
simulation results four different infill patterns were printed and tensile tested. Bulk 
isotropic properties resulted in up to 70% error in normal stress values as compared 
to the experimental results. FEA results using derived material properties resulted in 
up to 45% error in normal stress values. 

 
The team concludes that the Finite Element Analysis using isotropic models is not 

a reliable tool for analyzing FDM parts. They also noted that as the geometries get 
finer, FEA predictions become worse. And for FDM were fine, complex shapes are 
an advantage over traditional methods. This is a downside. 

 
Abbas et al. [143] performed an experimental analysis on the influence of infill 

density on the compressive strength in FFF specimens. The compressive strength 
of the additively built polylactic acid (PLA) samples increased almost linearly with the 
increase in infill density, according to the researchers. The study also discovered 
that the maximum compressive strength for PLA pieces (30 MPa) is obtained at an 
infill density of 80%, advocating for the employment of internal structures. 

 
Naranjo et al. [144] studied the effects of several deposition techniques on the 

tensile characteristics of FFF composites. They discovered that Nylon samples fail 
macroscopically ductile, whereas Onyx (Nylon fibers containing chopped carbon 
fibers) fails macroscopically brittle. Furthermore, the fiber deposition arrangement 
has an impact on tensile strength, with discontinuities and bends acting as failure 
initiation points. 

 
Forcellese et al. [145] studied the buckling behavior of composite isogrid 

structures in compression. FFF of polyamide reinforced with chopped carbon fiber 
was used to produce these constructions. They experimented with buckling loads 
for various geometric parameters. Outside the plane of loads, specimens buckled. 
During compression tests, the load applied to isogrid structures increases with 
displacement until it reaches a maximum value at the commencement of buckling. 
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Parts can buckle locally (internally) or globally (globally) depending on the values of 
geometrical parameters. They discovered that increasing rib thickness helped them 
to carry heavier burdens. Their internal architecture is geometrically similar to the 
test specimens used in this study. 

 
Block et al. [146] found that continuous fibers embedded in a thermoplastic matrix 

help improve the mechanical properties of products. However, because continuous 
fibers cannot be added in sharp radius and angles, design flexibility is limited. They 
also found that embedding carbon microfibers in a thermoplastic fiber has no 
additional design limits but that the mechanical qualities are only marginally better 
than the material without fibers. These findings are in line with those of Naranjo. 

 
To avoid low-quality prints, Günaydn et al. [147] examined the sources of faults 

in AM and found that slicing software options and FDM machine work principles 
should be thoroughly understood to make production plans. This emphasizes the 
significance of slicing software in the printing process. 

 
The impact of gaps on tensile strength, modulus, and failure strain on 3D printed 

parts was investigated by Fayazbakhsh et al. [148], who found that defects 
transverse to the loading direction have a more severe impact than defects along 
the loading direction. 

 
The previous review shows that the mechanical properties of FFF fiber reinforced 

parts are affected by the material deposition process and that the study of the 
response to compression is a field of recent interest.  

 
This article shows that path planning programs follow strategies that do not favor 

part strength. The objective of this work is to evaluate the effects that internal voids 
and raster gaps have on the mechanical strength of the part, specifically the 
compressive strength of FDM parts made out of Onyx. The effects of internal 
structure thickness and part geometry on FFF composites’ compressive properties 
are also analyzed. Experimental results are compared to that of Finite Element 
model simulations.  
 
4.2  Methodology 
 

Exploratory tests were specifically built to evaluate the compressive behavior of a 
composite structure and to determine its maximum compressive strength. 
Specimens were fabricated with Onyx filament in a Markforged Mark two. The 
printing layers in all specimens ended up in planes parallel to the direction of load 
application in the compressive test. The internal structure's wall thickness varied 
between 0.5 mm and 1.5 mm. All other variables were maintained constant (layer 
thickness, print speed, infill density, material, nozzle size, and geometry). For each 
case, five specimens were made, and compressive tests were done at 1.3 mm/s 
using a Shimadzu 250 KN Universal Machine. 
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Linear static exploratory FEA simulations for all specimens were run in 1 KN 
increments from 1 to 10 Kilo-Nektons (KN). The results of the stress-displacement 
tests were graphed alongside the results of the experimental testing. Non-linear 
static large deformation and buckling simulations for specimens were also done to 
model the effect of printing flaws on part strength for three cases: entirely solid 
structure, structure with raster gaps on walls, and structure with raster gaps and 
voids. Figure 47 summarizes the cases that were modeled and examples of the 
specimens that were tested. Simulations were performed in Fusion 360. Linear and 
buckling static models assumed a constant Elastic Modulus (E) of 1.0 GPa and a 
yield strength of 32 MPa [146]. For non-linear static analysis, a function of the Elastic 
Modulus (E) was prepared based on the work of Block [146]. Non-linear static 
simulations for solid models and models with raster gaps and voids were performed. 
The average mesh element size was 4% of the model, the element was set at 
parabolic, curved mesh elements were enabled, and max turn angle was set at 60o 
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Figure 47. Basic model and simulation conditions, defect free (solid) case.  
 
 
  
 

Figure 48. Model with raster gaps simulation conditions. 
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Non-linear and buckling static simulations were conducted with geometries that 
attempted to replicate the faults of the actual parts by using 0.1 mm raster gaps and 
1 mm diameter voids, respectively. The total gap and void in all models were 
between 2% and 3% of the part volume. 
 
4.3 Results 
 
Table 11.  Experimental tests and the simulation results 

Specime
n 
(IWT) 

Experimen
tal 
buckling 
load 
(N) 

Simulation 
linear 
critical 
buckling 
load 
(N) 

Displaceme
nt at 
buckling 
load 
experiment
al 
(mm) 

Theoretical 
displaceme
nt with 
experiment
al buckling 
load (mm) 

Displaceme
nt at 
buckling 
load 
theoretical 
(mm) 

0.5 solid 3680.7 3761 0.73 0.7 0.65 
0.6 Solid 4653.2 5604 1.19 0.85 1.065 
0.8 gap 
and void 3858.9 3005 1.55 1.2 0.935 

1.0 gap 
and void 3106.7 4072 1.07 1.01 0.935 

1.5 gap 
and void 6008.7 5412 3.07 N/A N/A 

  
Table 11 shows the following results: 

• Experimental buckling load. 
• Theoretical critical buckling load (FEA).  
• Displacement at experimental buckling load from the onset of buckling. 
• Theoretical (FEA) displacement using experimental buckling load.  
• Theoretical (FEA) displacement at critical buckling l.       
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Figure 49. Compressive load vs contraction of the different IWT specimens (0.5. 0.6, 
0.8, 1.0, 1.5). Solid lines show experimental results, dashed and dotted lines 
represent Nonlinear Static Simulations (NLS), with overlap represented as a solid 
structure  
 
Figure 49 plots compressive loads vs. displacement of the top surface for all cases. 
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Figure 50. Buckling simulation results of solid models IWT 0.8, 1.0 and 1.5 

 
 

Figure 51. Buckling simulation results of models with raster gaps and voids IWT 
0.8, 1.0 and 1.5 
 

As seen from the results of Figure 50 and Figure 51, the simulation results of 
models with raster gaps and voids behave in a manner closer to that of the 
experimental tests, thus supporting the use of simulations with modeled raster gaps 
and voids. 
 
 
 



96 

4.4  Discussion  
 

 
Figure 52. Experimental specimens during the test. (a) The onset of buckling 
occurs when the internal structure begins to collapse; (b) Buckling of the full 
structure. 

 
At small loads (under 2000 KN), every part behaves linearly and shows similar 

strength, indicating that the side walls take most of the loads. The results of linear 
simulations shown in Figure 49 represent what would be intuitively expected: parts 
with thicker sections take larger loads for the same deflection. Experimental results, 
however, behave differently. The thinnest specimens (IWT 0.5 and 0.6) take heavier 
loads, while specimens with IWT 0.8, 1.0, and 1.5 suffer larger deformations. 

  
Non-linear simulations of geometries that include gaps and voids behave in a 

similar pattern to the experimental results and provide a good representation of the 
behavior of the part. For the case of IWT 1.0, models with gaps and one void showed 
the best correlation with the experimental results, while for the 1.5 cases, models 
with voids in all intersections and gaps at selected locations (particularly on 
horizontal trusses) showed the best correlation. Buckling simulations provided a 
good representation of the mode shape for the onset of buckling of the isogrid. 
Theoretical buckling loads were used in non-linear simulations to predict the 
displacements at the onset of buckling. Simulation values for the displacement at 
buckling are reasonably close to the experimental values. Overall, the results of 

(a) (b) 
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experimental tests and the simulations indicate that the manufacturing defects 
generated during filament deposition have an important effect on part strength and 
cannot be ignored when parts are designed.  

 
It is important to note that these simulation models are only approximations of the 

macroscopic behavior of the part, as they lack the detail to accurately model the 
failure mechanisms at a microscopic level. Nevertheless, they serve to illustrate the 
effects that the defects produced during part manufacture have on the strength of 
the part. 

 
Static simulations should use CAD models that include raster roads, print layers, 

printing defects, and non-linear materials to accurately predict the part’s 
performance. 
 
 
4.5  Conclusions  
 

This work has shown that different slicing programs use raster path definition 
strategies that are not represented in the CAD model. Experimental tests, supported 
by simulation results, show that gaps and voids produced by typical manufacturing 
processes significantly affect the load-bearing capabilities of parts in compression. 
And that by not modeling these defects in the CAD, the FEA static simulations fail to 
predict the part’s performance accurately. This work also shows that slicing strategy 
defects, such as raster overlap, positively affect the load-bearing capabilities of the 
parts, which will also affect the simulation if not properly modeled. 

 
AM processes inherently require that nozzle sizes and the material they deposit 

be smaller than the smallest walls they produce. As a consequence, decisions must 
be made about the strategies to deposit material to produce solid parts. The results 
of this work indicate that slicer programs need to allow the part designer to have 
better control of the raster paths. A highly desirable capability for slicers would be a 
diagnostics routine that could interact with the part (or process) designer to evaluate 
the quality of a proposed filling strategy and help identify and correct potential 
weaknesses in the structure. The slicer software could then allow the designer to 
eliminate gaps by programming overlapping rasters. Other parameters that affect 
part strength and that could be controlled by proper path deposition strategies are 
the location of discontinuities of the fiber strands and the temperature of the part at 
the deposition point, which affects interlayer bonding.  
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Chapter 5 Conclusion and future work 
 

Many challenges for the creation of Digital Twins of FDM parts have been 
presented and analyzed in this work; CAD models don’t fully represent the printed 
part, deposition simulation fails to predict the final part geometry, and static 
simulations don't accurately predict part performance. 

 
A definition based on the literature and ISO 23247 was established. The elements 

and components that constitute a Digital Twin, as well as how they interact in a 
framework, was presented along with the advantages and limitations of Digital Twins 
in Additive manufacturing were presented in addition to the main challenges to 
overcome for the implementation of DT in AM. 

 
It was presented how FDM parts are not an accurate replica of the designed CAD 

model as they incorporate inherent printing architecture, fabrication defects, and 
geometric deviations. It was discussed how the geometric deviation could be caused 
by the printing machine, the slicing software, the rheological extrusion of the 
material, or the thermomechanical deposition of the printed part. It was proposed 
how some process parameters change the sliced geometry from the CAD model 
while others indirectly deviate the final part geometry from the intended CAD model. 

 
An analysis of how slicing architecture and the deposition process induce 

geometric deviations to the final part that are not present in the CAD model is 
presented with an in-depth Inspection of the FDM parts using various advanced 
equipment such as SEM microscope, light microscope, and CT-Scan.  

 
First, it was presented how the slicing architecture introduced raster paths and 

print layers to the geometry, which, if not taken into account during the design stage, 
could result in raster gaps or raster overlaps.  

 
By fabricating thin isogrid specimens and taking images with a SEM microscope, 

it was shown how the internal structure´s geometry deviates from that of the slice 
model as the dimensions of the internal structure were not as intended by the slicing 
software, with raster paths being on average 14.975% larger and print layers being 
12.9% smaller than those of the slice model.  

 
By analyzing isogrid FDM parts with a light microscope, defects in the fabrication 

process resulted in the creation of voids on the reticle center, raster to raster gaps, 
and even a deposition failure which resulted in no raster being deposited between 2 
adjacent rasters, leaving a bigger than usual gap. 

 
CT-scans of post-mortem isogrid FDM specimens showed dislocations in the print 

layers and triangular structure, which are not taken into account in the CAD model, 
this dislocation in the internal structure could lead to yielding sooner than what would 
be expected from a solid plastic injection part  
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 Varying thermo-mechanical induce stresses were stated to be a cause for 
geometric deformation, and the intricate geometries and complex time-varying 
thermal were proposed to make accurate deposition simulations of geometric 
deviations challenging. 

 
Two different specimens in 2 orientations with two different materials were 

designed, and FDM deposition simulations of the specimens were performed to 
predict the expected geometric deviation caused by the printing process. The 
deformed geometry from the simulation was exported to analyze the GD&T 
tolerances of specific zones to compare the feature deviation to the deviation of 
actual printed parts.  

 
As shown by the results from the deposition simulations, it is concluded that the 

deposition simulations fail to accurately predict to a full extent the geometric 
deviations caused by the printing process, possibly due to the complexities of the 
thermomechanical process. 

 
Challenges in the implementation of FEA simulations for FDM parts like the 

absence of slicing architecture in the CAD model, the use of bulk material properties 
obtained through traditional manufacturing processes, and the idealized CAD 
geometry that lacks the deviations caused by the printing process exhibited in the 
actual printed parts was presented. By performing compression tests of isogrid FDM 
specimens, it was proven that process-induced defects like raster gaps, internal 
voids, and print gaps negatively affect the compressive strength of the part, while 
overlap benefited the stiffness of the specimens, as seen from the results of IWT 0.5 
and IWT 0.6, which contrary to the simulations results handled higher compressive 
loads than the specimens with thicker internal walls (1.0 and 1.5). 

 
Because of the recent increase in the adoption rate of both AM and DT in the 

industry, this becomes ever more important to address to take advantage of both 
technologies’ benefits further. 
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Appendix A 
 
The following appendix contains images of the point cloud difference between the 
CAD model. 
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 Scan 2W onyx side s5 measured 2.0 
 

Scan onyx 1W up s4 measured 2.0 
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 Scan onyx 2W up s3 measured 2.0 
 

Scan onyx 2W up s4 measured 2.0 
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 Scan onyx 1W up s1 measured 2.0 
 

Scan onyx 1W up s2 measured 2.0 
 

Scan onyx 1W up s3 measured 2.0 
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 Scan 1W onyx side s1 measured 2.0 

Scan 1W onyx side s2 measured 2.0 
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Scan 2W onyx side s1 measured 2.0 
 

Scan 2W onyx side s2 measured 2.0 
 

Scan 2W onyx side s3 measured 2.0 
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Scan PLA 1W up s1 measured 2.0 

Scan PLA 1W up s3 measured 2.0  

Scan PLA 1W up s4 measured 2.0 
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Scan PLA 1W up s5 measured 2.0 

Scan PLA 2W up s1 measured 2.0 

Scan PLA 2W up s2 measured 2.0 
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Scan PLA 2W up s3 measured 2.0 

Scan PLA 2W up s4 2.0 measured 2.0  

Scan PLA 2W up s5 measured 2.0 
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Scan PLA 1W side measured 2.0  

Scan PLA 1W side s2 measured 2.0 

Scan PLA 1W side s3 measured 2.0 
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Scan PLA 1W side s4 measured 2.0 
 

Scan PLA 1W side s5 measured 2.0 
 

Scan PLA 2W side measured 2.0 
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Scan PLA 2W side s2 measured 2.0 
 

Scan PLA 2W side s3 measured 2.0 
 

Scan PLA 2W side s4 measured 2.0 
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Scan PLA 2W side s5 measured 2.0 
 
 
 


