INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES
DE MONTERREY

CAMPUS CIUDAD DE MEXICO

SCHOOL OF ENGINEERING AND SCIENCE

TECNOLOGICO
DE MONTERREY,

DESIGN OF A PROPRIETARY SELF DRIVING CAR PLATFORM AND
DEVELOPMENT OF AUTONOMOUS DRIVING ALGORITHMS BASED
ON COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS.

A DISSERTATION PRESENTED BY

ALDO IVAN AGUILAR ALDECOA

SUBMITTED TO THE
SCHOOL OF ENGINEERING AND SCIENCES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

ENGINEERING SCIENCE

Mexico City, June 08 2021

(©2021 by Aldo Ivan Aguilar Aldecoa
All Rights reserved

Dedication

A mi madre Maria de Jesis Aldecoa Camacho, quien ha sido siempre mi mayor inspiraciéon. A mi padre
Juan Aguilar Hernandez, el pilar mds importante en mi vida. A mi hermano Juan Aguilar Aldecoa, mi més
grande motivacion y el mejor companero. Ustedes han sido el motor méas importante para mi vida profesional
y personal, sin su apoyo este trabajo no hubiera sido posible.

Los quiero.

Acknowledgments

Gracias a mis padres por el apoyo incondicional que me han brindado siempre. Por ser los méas grandes
modelos de éxito para mi y para mi hermano. Gracias por los valores que han sembrado en mi y que me
han permitido lograr este y muchos exitos mas. Siempre estaré eternamente agradecido.

Gracias a mis profesores y principalmente a mi asesor el Dr. Alejandro Aceves Lépez, por su enorme
apoyo, por compartir sus conocimientos, por su gran paciencia y por la siempre oportuna y enriquecedora

guia y retroalimentacion que me permitieron culimar este proyecto exitosamente.

A Alfonso, Fer y Ro que formaron parte fundamental durante el desarrollo de este proyecto. Gracias por
su apoyo, comprension y por el tiempo brindado, pero principalmente gracias por su amistad.

Gracias a Jorge, Sam y Lau por formar parte de un exito méas en mi vida y por ser parte de mi familia.
Por confiar siempre en mi y motivarme a alcanzar mis suenos y poder compartirlos con ustedes.

iMuchas gracias!

Design of a Proprietary Self Driving Car Platform and
Development of Autonomous Driving Algorithms based on
Computational Vision and Deep Neural Networks.

by

Aldo Ivan Aguilar Aldecoa

Abstract

This research project presents a detailed description of the design and development of
the first small-sized self driving development platform at the ITESM Campus Estado de
México. The implemented hardware and software is presented based on the state of the art
research platforms. Additionally, the required sensor and instrumentation implementation
is described as well as the platform’s mechanic and electric design. Moreover, the dynamic
identification of the vehicle actuators is presented for the linear velocity control of the plat-
form however no clear evidence of a linear dynamic behavior could be identified, leading to
the implementation of a herustically tuned PI velocity control system.

Specific Computer Vision (grayscale color thresholding) and Deep Neural Network (U-Net
semantic segmentation) based road lane segmentation mechanisms were developed, tested
and validated. These segmentation mechanisms served as the main input of the final au-
tonomous driving system proposal based on a road lane following strategy. Finally, a well-
defined autonomous driving performance evaluation methodology is described and imple-
mented to compare the proposed systems response, identifying comparable performances
between CV and DNN segmentation systems.

VII

List of Figures

2.1 Developed Small-Sized AV Platform.
2.2 Platform’s hardware baseline.
2.3 Block Diagram of the system architecture.
2.4 Platform mechanical montage.
2.5 Implemented odometry system.o
2.6 Block diagram of the override system.
2.7 Implemented PCB design. L
2.8 Block Diagram of the platform’s electric system.
2.9 Large Mount plate design. L oo
2.10 Small mount plate design. oL
2.11 On-wheel IR sensor mount top part CAD.
2.12 On-wheel IR sensor mount bottom part CAD.
2.13 Implemented network architecture. o000
2.14 Implemented software architecture in ROS.

3.1 Implemented BLDC Motor + ESC system. [1]
3.2 PWM characteristics.
3.3 PWM High Time and estimated linear velocity monitoring system.
3.4 Vehicle Linear Velocity response to growing input PWM High Time.
3.5 Examples of the developed acquisition experiments for the minimum PWM

High Time required to begin the vehicle motion..
3.6 Single acquisition experiment for the minimum PWM High Time required to

begin the vehicle motion. Lo
3.7 PWM startup High Times histogram for 47 different startup sequences.
3.8 Vehicle’s Speed Step Response for PWM High Time of 1.53 ms.
3.9 Vehicle’s Speed Step Response for PWM High Time of 1.531 ms.
3.10 Vehicle’s Speed Step Response for PWM High Time of 1.541 ms.
3.11 Vehicle’s Speed Step Response for PWM High Time of 1.571 ms.
3.12PWM High Time vs Steady-state Linear Velocity.
3.13PWM High Time vs Settling Time.

3.14 Model Order VS Quality plot for the first 10 Model Identification Experiments.

3.15 Single experiment dynamic response approximation and registered vehicle’s dy-
namic COMPAriSOI.« v v v v vt e e e e
3.16 Linear Velocity Control System Architecture.
3.17 Low-level linear Velocity Control block diagram.
3.18 Closed-loop output-response with first PI Controller test for 65.97 cm/s desired
velocity at bHz sampling. oo

O~ O O Ut = W

10
11
11
12
13

15
19
20
21

22

23
24
25
25
26
26
28
28
30

31
34
35

LIST OF FIGURES

3.19 Closed-loop output-response with first PT Controller test for 82.47 cm /s settling
point at bHz sampling.
3.20 Closed-loop output-response with first PI Controller test for 107.21 cm/s de-
sired velocity at 5Hz sampling. oL
3.21 Closed-loop output-response with first PI Controller test for 123.70 cm/s de-
sired velocity at 5Hz sampling. oo
3.22 Closed-loop output-response with first PI Controller test for 156.69 cm/s de-
sired velocity at 5Hz sampling.
3.23 Closed-loop output-response with first PI Controller test for 181.43 cm/s de-
sired velocity at 5Hz sampling. L
3.24 Closed-loop output-response with first PI Controller test for 206.17 cm/s de-
sired velocity at 5Hz sampling.
3.25 Closed-loop output-response with second PI Controller test for 65.97 cm/s de-
sired velocity at 5Hz sampling. oo
3.26 Closed-loop output-response with second PI Controller test for 82.47 cm/s de-
sired velocity at 5Hz sampling. oL L
3.27 Closed-loop output-response with second PI Controller test for 107.21 cm/s
desired velocity at 5Hz sampling. oL
3.28 Closed-loop output-response with second PI Controller test for 123.70 cm/s
desired velocity at 5Hz sampling. oL L
3.29 Closed-loop output-response with second PI Controller test for 156.69 cm/s
desired velocity at 5Hz sampling.
3.30 Closed-loop output-response with second PI Controller test for 181.43 cm/s
desired velocity at 5Hz sampling. o000
3.31 Closed-loop output-response with second PI Controller test for 206.17 cm/s
desired velocity at 5Hz sampling. o000

4.1 General Image Processing Pipeline. 0.
4.2 Perspective Transformation Procedure.
4.3 Vview of the used road track traced on the ITESM CEM Laboratories.
4.4 CV based Road Lane Segmentation Example 1.
4.5 CV based Road Lane Segmentation Example 2.
4.6 CV based Road Lane Segmentation Example 3.
4.7 Single top-down view frame grayscale histogram at maximum illumination con-
dition. A maximum thresholding value of 90 is illustrated with a vertical red
line, the analyzed grayscale image can be observed at the upper left section of
the Figure, while its binarized representation is shown at the upper right. . . .
4.8 Single top-down view frame grayscale histogram at medium illumination con-
dition. A maximum thresholding value of 90 is illustrated with a vertical red
line, the analyzed grayscale image can be observed at the upper left section of
the Figure, while its binarized representation is shown at the upper right. . . .
4.9 Single top-down view frame grayscale histogram at low illumination condition.
A maximum thresholding value of 90 is illustrated with a vertical red line,
the analyzed grayscale image can be observed at the upper left section of the
Figure, while its binarized representation is shown at the upper right.

42

42

43

43

44

93

o4

LIST OF FIGURES X
4.10 Single top-down view frame grayscale histogram at dark illumination condition.
A maximum thresholding value of 90 is illustrated with a vertical red line, the
analyzed grayscale image can be observed at the upper left section of the Figure,
while its binarized representation is shown at the upper right. 56
4.11 Cumulative grayscale color value histogram made by summing each individual
frames grayscale color value histograms in all the recorded vehicle trajectory
videos at multiple illumination conditions. L. 57
4.12PixelAnnotationTool segmentation procedure example. 59
4.13 DNN training dataset output image pre-processing example. 59
4.14 Data Augmentation Procedure Example. 60
4.15 Typical U-Net architecture example. Each blue box correspond to a multi-
channel feature map. The number of channels is denoted on top of the box.
The frame size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different operations. [2] 61
4.16 Deep Convolutional Neural Network segmentation model architecture. . 62
4.17DNN based Road Lane Segmentation Example 1. 63
4.18 DNN based Road Lane Segmentation Example 2. 63
4.19 DNN training and validation loss graphs during training. 64
4.20 INIT Road Lane Identification Example. 65
4.21BOTH Road Lane Identification Example. 65
4.22RIGHT Road Lane Identification Example. 66
4.23 Road Lane Identification curved road section Example 1. 66
4.24 Road Lane Identification Curve Mask Example 2. 67
4.25 Road Lane Identification and Steering Angle Correction Example 1. 68
4.26 Road Lane Identification and Steering Angle Correction Example 2. 68
4.27 Road Lane Identification and Steering Angle Correction Example 3. 69
5.1 Road top-down view representation. 73
5.2 Examples of undesired driving condition frames obtained from the mobile cam-
era perspective. 74
5.3 Autonomous driving response mobile recording and inner image processing
pipeline Examples at All Lights ON illumination condition using a DNN based
segmentation system. Lo 77
5.4 Autonomous driving response mobile recording and inner image processing
pipeline Examples at All Lights ON illumination condition using a CV based
segmentation system. L. Lo Lo 77
5.5 Autonomous driving response mobile recording and inner image processing
pipeline Examples at Only Left Light ON illumination condition using a DNN
based segmentation system.o 78
5.6 Autonomous driving response mobile recording and inner image processing
pipeline Examples at Only Left Light ON illumination condition using a CV
based segmentation system. Lo 78
5.7 Autonomous driving response mobile recording and inner image processing
pipeline Examples at Only Right Light ON illumination condition using a DNN
based segmentation system. L 79

LIST OF FIGURES

5.8 Autonomous driving response mobile recording and inner image processing
pipeline Examples at Only Right Light ON illumination condition using a CV
based segmentation system. oL

5.9 Autonomous driving response mobile recording and inner image processing
pipeline Examples at All Lights OFF illumination condition using a DNN based
segmentation system. L. L. Lo oL

5.10 Autonomous driving response mobile recording and inner image processing
pipeline Examples at All Lights OFF illumination condition using a CV based
segmentation system. Lo

5.11 Vehicle’s autonomous driving response representation using both CV and DNN
system proposals at the Only Left Light ON illumination condition.

5.12 Vehicle’s autonomous driving response representation using both CV and DNN
system proposals at the Only Right Light ON illumination condition.

5.13 Vehicle’s autonomous driving response representation using both CV and DNN
system proposals at the All Lights OFF illumination condition.

79

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1

Identified PWM signals 18
PWM Startup High Time Identification 23
PWM High Time Step Responses. 27
Dynamic Model Identification Experiments Results. 33
First PI values (K, = 0.12, K; =0.21). 36
Second PI (K, =0.6, K; =0.22)., 37
CV based Road Lane Segmentation Configuration Parameters. 57
Steering Correction Control Configuration Parameters. 71
Autonomous Driving Test Results. 76

XII

Contents

Abstract VII
List of Figures XI
List of Tables XII
1 Introduction 1
2 Platform Design and Implementation 3
2.1 Hardware and Software Description 3
2.2 Mechanical and Electrical Design 6
2.3 Network Architecture 12
2.4 Software Architecture in ROS 13
3 Dynamic Model Identification and Linear Velocity Control 15
3.1 BLDC Motor and ESC Pairing Behavior 15
3.2 Linear Velocity Estimation L. 16
3.3 Actuators PWM Control Signal Generation 18
3.4 PWM Operational Ranges and Startup Behavior 20
3.5 Dynamic Step Response 24
3.6 Dynamic Model Identification 29
3.7 Linear Velocity Control 34
3.8 Discussion 44
4 Road Lane Identification and Autonomous Driving based on Computa-
tional Vision and Deep Neural Networks 46
4.1 Road Lane Identification and Autonomous Driving Process Description 46
4.2 Vehicle’s Front-View to Top-Down Perspective Transformation 48
4.3 Road Lane Segmentation using Computater Vision 49
4.4 Road Lane Segmentation using Convolutional Neural Networks 58
4.5 Road Lanes Identification and Classification 64
4.6 Identification and Correction of the Steering Angle 67
4.7 Discussion e 71
5 Autonomous Driving Response 73
5.1 Experiment Description 73
5.2 Experiment Results 76
5.3 Discussion 82
References 89

XIIT

Chapter 1

Introduction

Software simulations are widely used for Autonomous Vehicle (AV) technology investigation,
depending mainly on appropriate modeling of real world scenarios [3] [4] [5] [6]. However this
strategy limits the application of self-driving technologies in real life experiments, limiting
the validation, repeatability and robustness of the developed systems in real life [7]. More-
over, real-scale vehicles require particularly important space, security and high investments,
limiting the accessibility for multiple researchers and students around the world.

Small-sized self driving cars have permitted to establish a realistic testing and validation
environment offering a simple, trustworthy, secure and cheap alternative for complex au-
tonomous systems deployment [8]. Furthermore, small-sized vehicles present important use
cases for performance analysis of algorithms, validation of maneuver protocols and investi-
gation of advantages and drawbacks of complex driving protocols at traffic.

With the emergence of smaller and more efficient processing units, highly capable de-
velopment platforms have taken great relevance for research communities. This improved
platforms have offered many applications for scaled vehicles such as trajectory planning,
route mapping and security capabilities [9]. Moreover a great interest in the development
of AV systems on small-sized vehicles has emerged, allowing to test, compare, validate and
develop the state of the art AV technologies such as Computational Vision (CV) and Deep
Neural Network (DNN) Algorithms.

Multiple small-sized self driving platform proposals have emerged in recent years product
of the rapidly growing research interest on autonomous vehicles [10] [11] [12] [13] [14] [15]
[16], being the design and implementation of these platforms a highly relevant research area
itself. These AV systems depend on an adequate hardware and software development, aided
mainly by the usage of specific sensors such as ultrasonic and infrared sensors, vision-based
sensors, wheel encoders, monocular cameras, application boards (Debian-based Linux ARM
board) and software/hardware interface boards (sensors and actuators management and in-
terfacing) [8].

Some of the most relevant small-sized AV development platforms include open source pro-
posals such as the FITENTH autonomous racing platform [10], Berkeley Autonomous Race
Car (BARC) [12], AutoRally [15], MIT RACECAR [13], the Multi-agent System for non-

CHAPTER 1. INTRODUCTION 2

Holonomic Racing (MuSHR) and other commercial alternatives such as the AWS DeepRacer
[14] or the Donkey Car [17]. However, the implementation of these open source systems is
limited in some manner, requiring the acquisition of specific hardware and software as well
as the actual manufacturing of the platform, while commercial alternatives such as the AWS
DeepRacer present an easier way to start yet high provider dependency and more expensive
acquisition process by directly buying the platform.

On one hand, the aforementioned proposals motivated the design and deployment of a
proprietary platform based on the state of the art system architectures and capabilities, and
using the resources available at Campus. The goal was to define the first small-sized self
driving development platform at the ITESM Campus Estado de México that could serve
as a baseline for further AV research, allowing the testing and development of multiple au-
tonomous driving mechanisms.

On the other hand, it was required to count with an adequate hardware and software ar-
chitecture design for the correct vehicle instrumentation and efficient velocity and directional
control. The project central scope was to develop a road lane follower capable of maintain-
ing an autonomous performance while driving inside a delimited track. More importantly,
the proposed platform would be utilized for the implementation of specific CV and DNN
segmentation and road lane following algorithms as a manner of comparing the vehicle’s
autonomous capabilities and establishing an adequate performance evaluation methodology.

Some of the achievements and contributions provided by this research project include
the implementation of a structured and well designed small-sized AV platform that could
serve for future autonomous driving research validation and testing. Moreover, the system
provides adequate hardware and software support for the implementation of relevant AV
algorithms based on the state of the art development platform proposals as the aforemen-
tioned. Additionally, a well-defined design and implementation procedure is described for
further integration of similar platforms as well as future required updates or modifications.
Finally, the platform served as a baseline for the integration and comparison of specific CV
and DNN strategies permitting to demonstrate the autonomous capabilities the system can
provide at specific testing conditions and acting as the first AV research proprietary platform
in the Campus.

This document firstly presents the design and construction of the developed platform in
Chapter 2, including a deep description of the implemented hardware and software as well
as the mechanical and electrical requirements of the system. The platform’s linear velocity
control system is also described in Chapter 3, including the dynamic identification of the
vehicle actuators and the automatic actuators’ control signal generation. Finally, Chapter 4
and Chapter 5 include the implemented road lane segmentation and identification systems
description based on state of the art CV and DNN techniques, including a complete defi-
nition of the methodology used for their development, to finally evaluate the autonomous
driving response achieved by comparing the performance of each system proposal.

Chapter 2

Platform Design and Implementation

2.1 Hardware and Software Description

There exist multiple projects focused on the development of autonomous driving in small-
sized cars [9][18][19][8][20]. These approaches have impulsed the research for a rapidly
growing field of autonomous vehicles (AVs). Small-sized AVs present affordable and high-
performance systems capable of implementing the state of the art autonomous driving al-
gorithms [7][21]. A variety of small-sized cars for AVs research have been developed, estab-
lishing well-defined state of the art hardware and software architectures [11] [22] [10][23],
and that is also the case for this platform developed at ITESM Campus Estado de México,
shown here in Figure 2.1.

Figure 2.1: Developed Small-Sized AV Platform.

CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION 4

The design of this small-sized car was restricted to use the available hardware resources
at Campus displayed in Figure 2.2 including: Turnigy Trooper SCT-X4 1/10 4x4 Nitro
Course Truck [24] , Turnigy RC ON/OFF Switch [25], Turnigy Radio Control Transceiver
+ Receiver [26], Arduino Nano microcontrollers [27], Odroid XU4 Development board [28],
NVIDIA Jetson Nano Development Kit board [29], Intel RealSense SR300 BlasterX Senz3D
Depth Camera [30], RPLidar A2 sensor [31], Turnigy 2200mAh 28 LiPo battery [32], Matek
PDB-XT60 Power Distribution Board [33], Pololu D24VI0F5 5V@9A Step-Down Voltage
Regulators [34].

(a) Turnigy Trooper (b) Turnigy RC (¢) Turnigy RC ON/OFF(d) Odroid XU4 Develop-
SCT-X4 1/10 4x4 Nitro Transceiver + Receiver. Switch. ment board.
Course Truck.

(e) NVIDIA Jetson (f) Arduino Nano. (g) Intel RealSense SR300 (h) RPLidar A2 sen-
Nano Developer Kit BlasterX Senz3D Depth SOr.
board . Camera.

Figure 2.2: Platform’s hardware baseline.

The Turnigy Trooper SCT-X4 1/10 4x4 Nitro Course Truck [24] served as the vehicle’s
primary mechanical baseline. It is a 1/10 high-speed small-sized vehicle counting with a
PWM 60A Electronic Speed Controller (ESC), a 2080kV Sensor-Less Brushless DC Motor
(BLDC) and a PWM high torque directional Servo Motor. The Turnigy Radio Control
Transceiver + Receiver and Turnigy RC ON/OFF Switch modules [26][25] were required to
select between autonomous or manual mode, enabling a human operator to override possible
faulty computer control and manually stop the car. In fact, this hardware turned into a
great advantage when conducting the experiments on identification and automation.

Both PWM signals to control speed and steering in the car are generated by a robust
PWM signal generation built with an Arduino Nano board. The odometry system was
built with another Arduino Nano [27] and four Infrared sensors (IR). These microcontrollers
served as the low-level control units. The Odroid XU4 board [28] and the NVIDIA Jetson
Nano [29] are responsible for the high-level control. Specifically, the NVIDIA Jetson Nano
acquires incoming images from the camera and processes them, while the Odroid XU4 is
responsible for the vehicle’s linear velocity and steering control interfacing with the vehicle
low level control units.

5 CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION

The environment perception was achieved with a Intel RealSense SR300 BlasterX Senz3D
Depth Camera [30] and a RPLidar A2 sensor [31], allowing the acquisition of RGB images
of the vehicle’s front view and relevant distance and depth information. Figure 2.3 shows
a block diagram of the overall architecture. The vehicle’s software development was based
on a distributed subsystem architecture. The implemented subsystems include (a) the vehi-
cle’s linear velocity and directional control, (b) low-level management of actuators, and (d)
vehicle’s environment perception. The Robot Operating System (ROS) [35] was used as the
central software integration platform. ROS is one of the leading software frameworks used
in the AVs research area.

Qﬂmid XU4 Desired Linear Jeson -Nano Intel RealSense

Velocity and Front-View BGR
Steering Angle [f§ Image

T Y—

| Estimated Linear Arduino Nano 1

Velocity and Encoder
Steering Angle Interrupts
Desired Linear PWM Forward and Multiplexor

Velocity and Circuit

Steering Angle

Steering Automatic
¢ Commands

>

PWM Forward and
Steering Manual
Commands

PWM Forward and
Steering Command

RC Transceiver RC Receiver RC ON/OFF Switch

Figure 2.3: Block Diagram of the system architecture.

It was required to install the software for the Intel RealSense Depth Camera and RPLidar
sensor. These sensors interact directly with the Jetson Nano board as part of the environment
perception subsystem. The software installation procedure was based on various sources
online [36] [37] [38]. Specific modifications on the NVIDIA Jetson Nano OS Kernel were
needed for the IntelRealSense Camera. The overall installation procedure is described in the
project’s GitHub repository [39]. The Arduino Command Line Interface (CLI) was adopted
to help low-level coding and optimize performance [40]. Some ROS scripts were developed
to automatically upload and test the microcontrollers’ code with the Arduino CLI tool.
Furthermore, TensorFlow [41] and OpenCV [42] were used as the software development
libraries for the implemented Computer Vision (CV) and Deep Neural Network (DNN)
algorithms. In fact, TensorFlow and OpenCV are commonly used all around the world in
the development and research of autonomous driving systems for small-sized AV.

CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION 6

2.2 Mechanical and Electrical Design

A mechanic montage for the small-sized car was designed and built, as displayed in Figures
2.4, consisting of three main parts (a) the 1/10 RC car chassis, (b) a laser-cut 3mm thick
acrylic plate where all hardware was placed, and (c) a second small acrylic plate for the Intel
Depth Camera. It was a requirement to mount all the platform components without altering
the car chassis. This constraint was taken into account for the overall montage design. The
plates’ CADs, as displayed in Figures 2.9 and 2.10, considered the vehicle’s shape and size
and those of the implemented hardware. All the components were placed on the acrylic
plates achieving an easy to mount structure. The small plate was attached to the main
one with two metallic posts, assuring an adequate camera placement. While the large plate
was mounted on the car using four easily removable plastic pillars directly attached to the
chassis, allowing a simple overall montage.

Figure 2.5: Implemented odometry system.

7 CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION

An adequate odometry system was primordial for the linear velocity control and au-
tonomous driving of the AV platform. The hardware baseline did not count with a pre-
existent odometry system. Therefore, an odometry system similar to those presented in
[43] and [44] was designed and built. This system consists on four infrared sensors (IR)
connected to an Arduino Nano board, each of them mounted on the wheel’s shaft along
with a dark-clear segmented film as it is shown in Figure 2.5. Accordingly, it was needed
to attach the IR sensors to the car chassis mechanically without altering it. The mounts
specifications included (a) acquiring a clean IR lecture by isolating the sensor to the light,
(b) the mounts must be attached to the wheels axles without breaking or modifying them,
and (c) they would be 3D printed. Figures 2.11 and 2.12, show the implemented disk-like
mounting geometry and its dimensions. The overall design permitted a mechanically stable
attachment of the sensors to car’s wheels.

Besides, a PCB was designed for the integration of the developed electronics. The plat-
form electronics consisted of (a) the vehicle’s remote operation mode selection and driving
override system aided by a Turnigy RC ON/OFF switch, (b) IR sensors power supply and
output acquisition, (¢) two Arduino Nano boards, one for actuator’s control and the other for
odometry system and (d) remote RC data retrieval via the Turnigy RC Receiver. The PCB
implementation considered the space limitations of the platforms’ mount, a clean montage
of the electronic components, as well as the actuators’ power and interfacing requirements.

RC Receiver RC ON/OFF Switch

TURNIGY

RECEIVER CONTROLLED
O/ 8FF SWiTEH

PWM Forward and
Steering Manual
i Command
" . PWM Forward and
- - Steering Command
Odroid Xu4 —
Desired Linear PWM Forward and
Velocity and Steering Automatic A
Steering Angle ¢ Command . 3
" i ’/’,/’ Vehicle Actuators

Arduino Nano

Multiplexor
Circuit

Figure 2.6: Block diagram of the override system.

CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION

INTERRUPT

anD)

000000000000000

HOTOR_OUT

MOTOR

(b) Render of the implemented PCB

Figure 2.7: Implemented PCB design.

9 CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION

The vehicle’s override system is important for a safe and controlled algorithms develop-
ment, allowing a rapid alternation between the autonomous and manual driving operations,
see Figure 2.6. This emergency system was essential for preventing any crash danger or non-
desirable behavior of the platform. Specific electronics were designed for the selector circuit,
multiplexing between the autonomously generated control signals and those obtained by the
manual control from the RC Receiver. The override system allowed an efficient remote op-
eration selection based on the Turnigy RC ON/OFF Switch [25] and the designed electronics.

The Turnigy Trooper SCT-X4 1/104x4 Nitro Course Truck [24] has to be powered with
a LiPo battery of 2 (or 3) cells, accepting voltages from 7.4 to 12 V. Operational tests
were developed with both type of batteries. Even though 3 cells batteries allowed higher
speeds, reasonable low speeds could not be easily achieved. Whereas, for 2 cells batteries,
the platform achives lower speeds, making easier the development of the autonomous driving
algorithms. This behavior led to select a 2 cells 7.4 V Turnigy 2200mAh LiPo battery [32]
as the vehicle’s main power supply.

Furthermore, the implemented hardware (such as peripherals, single-board computers,
and microcontrollers) required a 5 V power supply with a 4 A total current consumption.
This electric power requirement was obtained from the mentioned 2 cell LiPo battery. Fur-
thermore, a Y-connector was necessary followed by a Matek PDB-XT60 Power Distribution
Board (PDB) [33]. Moreover, a pair of Pololu D24V90F5 5VQ9A step-down voltage regula-
tors [34] were used to assure correct power supply to main Odroid and Jetson boards. Figure
2.8 shows a block diagram of all those components interconnected.

USB A to
7.4V LiPo 5.5mm Jack Micro B
batter XT60 - Connector
y SV@9A
'] [.
i LI vertage
Regulator =
Ethernet 2
&
5.5mm Jack o
XT60 n
XT60 5V@9A Connector o
1 J Voltage &
Regulator =
e -
HXT ‘RC Car PCB o
Amm | RC
RC Car : - .
B = I TX/RX l:j Switch
ESC J‘l——l — E-—J RPLIDAR
X160 =1
RC Car |
o | Servo
| | | .
XT6@ Parallel HXT 4mm to RC Car
Adapter XT6@ Adapter| Encoders | |
' USB A to Mini B

Figure 2.8: Block Diagram of the platform’s electric system.

CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION 10

w w (=] | (&} o <<
380.00 mm
342.00 mm £
= E 4
—320 m% + 6.00 mm ;]
] 7*/ 26.00 mm 24.00 mm) |
R N D B
B Rgi L
€
8|8 S 11| = gl | 8
K 4 8|4 + + & + + = §
L i + =)
) \+ _+_ / ,
105.00 mm _J 55.00 mm
— i —
x:{’,‘;"“;;;uw Self Driving Car Project G| _
;650 Large Mount Plate ; =
- A4 Roee |
SCALE WETGHT (kg) DRAWING NUMBER SHEET c —
055 Bl _
‘This drawing is our property: it can't be reproduced or communicaied without our writien consent. . ‘A —

F E ‘ D f | ™7 T

Figure 2.9: Large Mount plate design.

w w] o { o | & -
< ; 100.00 mm 4
9-50m2_| 26.00 mm
g . F
E
| E .
£ 0 p—
= S 50.00 mm .
o
« = ‘/ 24.00 mm £ 3
= o 3
81.00 mm S
1 @
E
o
£l
' L]
o 1 i 5
30.50 mm
£ ——-—|
E 7.00 mm
o — —-—————
| g B
(14} DESIGNED BY: P n
Aldo Aguilar Self Driving Car Project 6 _
=
e Small Mount Plate _
7 E|
- A4 Roeiol |
TEAE WETGHT {wg] | DFAING FUWEER TEET c =
10 8| _
This drawing 15 our praperty. i can be reproduced of communicaled withoul our witlen consent A _
I T T | T 1 T T T |
F E \ p — |

Figure 2.10: Small mount plate design.

11 CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION

[T w a I (&7 [s] ‘ <
" 72.00 mm i
|— 67.50 mm 'I
£) —
< EX I T EI 4
2 5.50 mm el E
SW—] e §
£ 2]
—] £ a o -
m
~
=]
[Ta]
™ 3
2.25 mnj
o 2
E1
1 E -
(= DESIGNED BY T 1
.-“EI Aldo Aguilar Self Driving Car Project G|
DATE: - F
2020 On-wheel sensors top mount . =
= 5 1
33.75 mn A4 & = =
] Enz T e _
1.0 Bl _
“This drawing is our property; it can't be reproduced of communicated withoul our written consent. A -
I T I T S S | I I I
F | E | D] T
Figure 2.11: On-wheel IR sensor mount top part CAD.
w | w I o I o | o <
36.00 mm 72.00 mm
33.75 mm
g 12.00mm i 657-500mmnT o | 2.25 mm
< [4 25.10 mm | —-'3ul-— : 1 4
o
. E E
m ‘$ —‘i:]ﬁ: E E
c| o El g
"’.l 1 E| €
o ~f on o -
.8 S 7
T 1 oo
" & \gt) L2z 3
12.00 mm
25.10 mm
o £ 40.00 mm 2
£ 4
g 6.63 mm
El - 36.00 nim E
| E" £ L
m =) T — -
; g Aldo Aguilar Self Driving Car Project G| _
N E s OATE: On-wheel sensors hottom mount Fl
& (4 £ e |
- g A4 o |1
m = - 5 c
o e T e -
1.0 Bl _
“This drawing is our property; it can't be reproduced of communicated withoul our written consent. A -

| I T 1 I ! SN O I I I

D T | T] T]

Figure 2.12: On-wheel IR sensor mount bottom part CAD.

CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION 12

2.3 Network Architecture

In order to achieve a distributed processing among Odroid, Jetson and operator computer
(PC), a network design was necessary. ROS utilizes TCP socket based communication among
its nodes, demanding the implementation of a well-established network architecture. Direct
cable network connection between the Odoid XU4 and the NVIDIA Jetson Nano board was
required to enhance communication speed. Moreover, to communicate with the vehicle at
any time, a WiFi remote network was established. This WiFi network will allow the devel-
opment, debugging and data transferring between the platform and a remote PC. The final
architecture, as displayed in Figure 2.13, consists on a pair of networks, (a) an Ethernet-
based LAN between the vehicle-single board computers and (b) a WLAN between the Odroid
XU4 and a remote PC through a router.

In order to get direct access to Jetson from PC, it was necessary to configure the Odroid
XU4 to mount a network sharing strategy by configuring it as a network routing device.
A way to do that can be read in [45]. By configuring a routing device, all traffic could be
forwarded from one network to another. This arrangement allows the remote PC to estab-
lish direct communication with the Jetson Nano board and vice-versa through the Odroid
XU4. Though, specific configurations had to be set in the end devices to define how they
could reach a different network by adding static routes, achieving successful communication
among all computers. Finally, ROS Networking configurations [46] were set to deploy ade-
quate bi-directional connectivity of the nodes used, by establishing the Odoid XU4 as the
ROS master node in all the end-devices, assuring complete overall connectivity. An in-depth
explanation of the network configuration can be reviewed in the project’s GitHub repository
[39].

— WLAN
192.168.1.1 192.168.1.2 —
1192.168.1.3 1192.168.1.4
10.47.0.1
PC Odroid |e » Jetson
10.47.0.2
Vehicle

Figure 2.13: Implemented network architecture.

13 CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION

2.4 Software Architecture in ROS

As aforementioned, the vehicle utilizes a distributed software strategy. This structure is
based on the interaction of dedicated subsystems. ROS was selected as the central software
integration platform. The designed ROS architecture for this project is displayed in Figure
2.14, where all subsystems could interact adequately [47] [48]. The Odroid XU4 is responsi-
ble of low-level linear velocity and directional control, while the Jetson Nano board manages
the vehicle’s environment perception. Accordingly, each subsystem was defined as a specific
ROS node, considering the network characteristics previously mentioned. The ROS nodes
included the self driving car node and the environment_percept_node.

/actuators_data |e

r i

1 1

! 1

1 1

i !
O ros nope y i motor_pwm_cnt

1 I servo_pwm_cnt
D ROS TOPIC : :

i !

1 1

! 1

1 1

———» ROS MESSAGE /sensors_data

™™™ DevicE

op_mode
current_linear_velocity
current_steering_angle
wheel_x_success

desired_linear_velocity
desired_steering_angle

/driving_command

Figure 2.14: Implemented software architecture in ROS.

The self driving car node is also responsible for the translation from low-level control
to high-level supervision of the platform. It utilizes the /actuators_data and /sensors_data
topics to publish current state information such as the vehicle’s operational mode, current
speed and directional angle, wheel encoder functional state, and current actuators’ PWM
High Time supplied. It also subscribes to the /driving command topic to receive the plat-
form’s desired speed and directional angle to keep car inside the track.

The self driving car_node receives relevant data from a dedicated Arduino Nano board
regarding the current actuators and odometry system states. Also, the self driving car node
transmits the desired platform speed and directional states to a second Arduino microcon-
troller responsable to achieve such desired autonomous driving behavior.

CHAPTER 2. PLATFORM DESIGN AND IMPLEMENTATION 14

The environment_percept_node is responsible for the environment perception data ac-
quisition and processing. It utilizes the acquired image from Intel RealSense Depth Camera,
analyzes it, generates the desired speed and directional correction to keep car on track, and
publish them to the /driving_command topic. This node executes the designed DNN and
CV based algorithms internally to recognize the current road state and generates the desired
platform’s speed and directional angle.

It can be noticed that the implemented architecture allows having a well-defined re-
mote monitoring system. This is achieved by the network configuration made and the
/actuators_data and /sensors_data topics. A remote PC is subscribed to the mentioned
topics to visually analyze relevant platform data using the ROS /rqt_plot node.

Chapter 3

Dynamic Model Identification and
Linear Velocity Control

3.1 BLDC Motor and ESC Pairing Behavior

As aforementioned, the Turnigy Trooper SCT-X4 1/10 4x4 Nitro Course Truck is inte-
grated with a 60A Electronic Speed Controller (ESC) and a 2080kV sensor-less Brushless
DC (BLDC) Motor [24]. The ESC module is responsible for providing the necessary polar-
ization sequence required to rotate the BLDC motor at a desired speed. In general, the ESC
translates a PWM input into a tri-line voltage polarization sequence. This output is directly
fed to the motor control lines to produce a rotational motion on the car’s wheels.

To have adequate control of the speed, the ESC module must recognize the motor coils’
position to produce the required polarization sequence. However, sensor-less motors do not
count with a mechanism capable of providing this positional information directly. Nonethe-
less, the ESC can still recognize the motor’s rotational condition aided by the motor’s
counter-electromotive voltage produced while it is rotting. This signal is produced by any
motor’s non-polarized coil when a rotational movement has been achieved by polarizing the
rest of the coils. This characteristic of a sensor-less BLDC motor allows establishing a suffi-
cient positional recognition mechanism for its further speed control [49].

Figure 3.1: Implemented BLDC Motor + ESC system. [1]

15

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 16

The induced output voltage facilitates synchronizing the tri-line polarization sequence
and achieving specific vehicle speeds. However, this speed control is limited, as an initial
motion must be achieved to have a confident positional detection. This constraint takes
great relevance for the BLDC motor starting sequence when the vehicle is stopped. Starting
from a still condition, no counter-electromotive voltage is induced, and the ESC ignores the
motor’s positional condition [49]. When this situation happens, the ESC output depends
fully on the input PWM signal.

Therefore, the voltage polarization sequence frequency varies based on the provided PWM
High-Time until a constant motion is produced and the ESC synchronization can be achieved.
Finally, when BLDC motor has already started, its speed can be easily adjusted by varying
the PWM High Time inputted to the ESC. It is then necessary to acknowledge the startup
complications of the couple ESC-motor. As a result, the car can exhibit a slightly different
behavior every time when it starts moving from zero-velocity. Moreover, constant car’s
forward speed is not guaranteed with this ESC controller at certain low speed conditions,
requiring an external speed control.

3.2 Linear Velocity Estimation

An adequate linear velocity estimation is essential to achieve vehicle’s linear velocity con-
trol. As mentioned, the car does not count with any direct speed measurement system. This
limitation led to the design of a robust odometry system based on a set of four CNY70 IR
sensors and segmented dark-clear films mounted on each wheel. The design allows detecting
the rate of change of the perceived film pattern as the vehicle moves. While the wheels
rotate, the IR sensors emit a pulse each time they are facing a film’s dark-segment [50][51].
Each film counts with a total number of 20 dark-clear segments.

Every IR output is connected to an Arduino’s External Interrupt pin [52]. Each inter-
ruption modifies an internal counter C'NT; which stores the number of pulses that have
occurred in a fixed period of time s. Given that the total number of pulses per turn is known
ENC_CNT, the actual rotational speed w; of each wheel can be easily calculated. Finally,
the vehicle’s linear velocity V' is estimated from the average wheels’ rotational speeds and
wheel radius r using the following equations:

V:w1+MQIW3+W4*T (31)

. CNT;
ENC_CNT x s

w; = 2w (3.2)

17 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

Where:

V' = Vehicle’s linear velocity (cm / s)
w; = Wheel angular velocity (rads / s);
r = Wheel radius (cm) = 5.25 cm;
CNT; = Encoder Counts;
ENC_CNT = Total number of counts per turn = 20;
s = Period of time in seconds (s).

As stated in Equations (3.1) and (3.2), the vehicles’ linear velocity can be successfully es-
timated given the wheels” angular velocity and radius. However, the wheels” angular velocity
resolution depends on the total number of dark-clear segments on the film. Considering a
fixed sampling period of 200 ms, the wheels” angular velocity can be estimated as follows:

CNT
o x .
W 0 % 0.25 (3.3)

W= g x CNT (3.4)

Substituting Equation (3.4) in (3.1) and considering a wheel radius of 5.25 cm:

V & 8.2467 x CNT (3.5)

As shown in (3.5), the minimum linear acceleration perceived by the implemented system
is 8.2467 cm/s. Therefore, if a single encoder count is detected every 200 ms, that is 5 Hz
sampling frequency, the estimated linear velocity will be equal to 8.2467 cm/s, meaning that
no speed lower than this minimum value will be perceived. In conclusion, the linear velocity
estimations would be limited in quantiles of @) = 8.2467 cm/s. This will turn in a highly
relevant characteristic for the further linear velocity control implementation.

Furthermore, a full-speed experiment in a long-lane was executed to detect the maximum
linear velocity that could be achieved with the car, that was 726 cm/s. Therefore the quantile
()=8.2467 cm/s represents the 1.136% of that maximum perceivable speed. This signified
that the achieved quantile offers a just-enough resolution of 88 different possible levels of
car’s estimated speed.

As shown in Equation (3.3), the selected quantile depends inversely on the sampling period
s. If smaller quantiles () were desired, a smaller sampling frequency 1/s would be necessary
that, in turn, produce a worse speed control. Conversely, if a higher sampling frequency
1/s were desired for better control (say 10 Hz), a worse speed quantile ¢) would be achived
(16.4933 cm/s) and fewer perceivable speed levels (only 44). This analysis justified the first
selection of a 200 ms sampling time, allowing a good-enough proportion between velocity
resolution and sampling rate.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 18

3.3 Actuators PWM Control Signal Generation

The vehicle actuators control depend on a proper PWM signal generation. In absence of
any technical specifications of the vehicle actuators, an experimental identification became
necessary. This identification served as a baseline to achieve robust linear velocity and direc-
tional control of the platform. The procedure followed permitted (a) to identify the actuators
control PWM frequency and operation ranges, (b) acknowledge the PWM High Time reso-
lution required to achieve adequate control of actuators, and (c¢) automate the PWM control
signals generation, using an Arduino Nano microcontroller.

To roughly identify the PWM signal characteristics, a first off-road experiment was con-
ducted. The car was placed on a platform with all wheels on air and manually controlled by
the RC Transceiver. The PWM output from the Rx module to the vehicle ESC + BLDC
motor system was measured using an oscilloscope. The procedure consisted on pairing the
RC modules and slowly pushing the RC Transceiver left-stick from its center position

The PWM High Time readings were registered when the modules changed from ”Not
paired” to ”Paired but still not-moving”, and when the wheels’ state changed to ”Moving”,
starting the vehicle’s acceleration. Finally the speed was adjusted to the maximum achievable
value. This experiment was conducted 10 different times as the ESC-motor pairing condition
was not always archived at the same PWM High Time. Average results are presented in
Table 3.1.

Table 3.1: Identified PWM signals

PWM Frequency 50Hz

PWM High Time when RC is not paired 0 ms
PWM High Time when RC is paired but still not-moving || ~ 1.46 ms
PWM High Time to start accelerating ~ 1.49 ms
PWM High Time to achieve maximum speed ~ 1.98 ms

The acquired data demonstrated that 50 Hz PWM frequency is always constant. Besides,
the PWM High Time is different when the ESC-motor couple is paired or unpaired. As
shown, a difference of around 30 microseconds is enough to change from ”Paired but still
not-moving” to ”Moving”. Furthermore, a PWM High Time operation interval of approx-
imately 520 microseconds is required to obtain all achievable speed values. Accordingly, a
microseconds resolution on PWM High Time is required to control the vehicle efficiently.

Arduino counts with a pre-existing PWM library (Analog 10) [53] in its IDE program-
ming tool. However, this library has restricted configuration capabilities. In particular, the
Arduino Nano board natively supports PWM frequencies of only 480 Hz or 980 Hz and per-
mits a fixed PWM High Time variation of only 256 different values [54]. This pre-existing
resource was not sufficient for the desired application.

19 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

TCNT
0 5000 10000 15000 20000 5000 10000 15000 20000 5000 10000 15000 20000
1 OCR =7500 OCR=7500 OCR=7500 |
PR N High_level
PWM High Time
P
3
oy
>
O
=
=
o
I PV Cyde (oopis)
B Low_level
O _______________________ -
i
0 10000 20000 30000 40000 50000 60000
Time (us)

Figure 3.2: PWM characteristics.

The Arduino board has an Atmega 328P microcontroller chip [55]. This microcontroller
can be appropriately configured to achieve a more robust PWM functionality. The microchip
counts with a 16 bits PWM Timer that allows the adjustment of the operating frequency
with an excellent PWM High Time resolution. The Arduino Command Line Interface (CLI)
was adopted to optimize this low-level coding and overall performance [40]. The PWM
frequency configuration [55] is determined by the equation:

_ fclk
fewar = 2x N«TOP (3.6)

Where:

fpwam = PWM Operation Frequency = 50 Hz.
far = Atmegad28P Internal Clock Frequency = 16 Mhz;
N = PWM Operation Frequency Prescaler divisor (1, 8, 64, 256, 1024) = 8;
TOP = PWM Timer Register Top Counting Value;

In order to achieve the desired 50 Hz PWM Operation Frequency, the Prescaler divisor
was manually set to 8, allowing to easily determine the required TOP counting value. A
16-bit PWM Timer was used, allowing a maximum counting of 65535 values. However, as
shown in Equation 3.6, the PWM Timer Register Top Counting Value must be configured
with a TOP value of just 20000 to achieve the desired Frequency. The prescaler divisor
factor of 8 produces the best counting resolution in comparison to others prescaler values.
That is, if a 64 factor prescaler is selected, only 2500 counts would be available within the
desired 50 Hz frequency, whereas a 1 factor prescaler would require 160000 counting values
which cannot be configured given the 16-bit Timer resolution available.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 20

When the Timer Register (TCNT) is set to zero, the PWM output is set to High until
the Timer value is equal to a desired value as shwon in Figure 3.2. Such desired value can
be configured using an specific Output Compare Register (OCR). Once the TCNT value
reaches the adjustable OCR value, the PWM output is set to Low until the TCNT reaches
the Top Counting value (TOP = 20000). This mean that every PWM cycle, the Timer
Register (TCNT) reaches 20000 counts and then resets to zero again. Considering that each
PWM cycle lasts 20 ms (at a frequency of 50 Hz), a single count takes 1 ps (that is 20
ms/20000). Therefore, an excellent PWM High Time resolution of 1 us is achieved. Finally
the PWM High Time can be easily configured by modifying the OCR value when necessary
[55].

3.4 PWM Operational Ranges and Startup Behavior

As shown in Table 3.1, there is a clear gap between the vehicle’s RC pairing and the motor’s
startup PWM High Times. However, such High Time value gap was hard to identify man-
ually. This range of uncertain control signals values or uncertain dead zone correspond to a
region where the vehicle’s BLDC Motor and ESC pairing process has not been achieved yet,
causing an unpredictable car’s dynamic response at very slow speeds.

With the new and accurate PWM generator system based on Arduino, it is now possible
to determine with more precision the best startup PWM High Time value and limit the men-
tioned uncertain dead zone. Therefore, a new set of experiments were conducted using both
(a) the Linear Velocity Estimator, and (b) the PWM Control Signal Generator subsystems
as displayed in Figure 3.3.

e ——-
PWM Encoders
Control
Arduino 1 Signal Arduino 2
(PWM Generator) (Linear Velocity
Estimator)
Estimated
. . Linear
PWM High Time - Velocity

Odroid Xu4

Figure 3.3: PWM High Time and estimated linear velocity monitoring system.

21 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

With the car’s wheels on the air, a first off-road experiment was conducted, consisting
on varying the PWM control signal with a defined High Time growing from 1.52 ms to
1.585 ms. That PWM signal was maintained constant for exact 4 seconds and then a 1 us
variation was added to the last outputted PWM High Time. Specific ROS topics, described
in the Implemented software architecture in ROS subsection, were used to monitor: a) the
generated PWM Control Signal and b) the estimated vehicle’s linear velocity.

Figure 3.4 shows the typical car’s startup behavior. The vehicle remained stopped when
PWM High Time value is small but at about 1.53 ms the vehicle started moving exhibiting
an overshoot that lasted no more than 1 or 2 sec. After that, a smooth and growing steady-
state behavior appears, suggesting a possible linearity on the vehicle’s dynamic response.

This first experiment confirmed the presence of an uncertain dead zone at the startup
therefore, a slightly different experiment was executed to identify such startup behavior.
All conditions of the previous experiment were kept the same, except that: a) the vehi-
cle was placed on the floor and b) the input PWM High Time signal was changed a little
bit. Previously, that signal grew up by 1 us regardless the exhibited linear speed, but now it
will vary continuously until the vehicle starts to move, registering the identified startup value.

A typical example of the developed experiment can be observed in Figure 3.6 where a
High Time value of 1530 was just enough to provoke movement in the car. Unfortunately,
when the experiment was repeated, the mentioned startup value was not always the same.
Figure 3.5 shows the recorded performance of some experiments.

—— Estimated Linear Velocity (cm/s) ...:::’1560
.—— PWM High Time
PR ———

30 O IO s L 1545 3

me

=

PWM High

ul
o

Estimated Linear Velocity (cm/s)

0 20 40 60 80 100 120 140 160
Time (secs)

Figure 3.4: Vehicle Linear Velocity response to growing input PWM High Time.

22

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

(sn) swil ybIH WMd

“"UOTJOW J[OIYaA 9} UISaq 03 parmbal swr], YSI NAJ WNWIUTW oY) I0j sjuswrrodxas uorjsmboe padofaasp a1y jo sepdurexy :G ¢ oInSrq

(s29s) Wil

awil YbIH IWMd

- K1D0J3A Jeaur paiewnsy —— -

o
o
)
—

awil ybiH WMd —— |
A1Dojap Jeaur] pajewnsy — -

9TSTA.
87ST{

0€ST 1=

CEST

Aj130|3A JeBU pajewisy —

0c

(s239s) swi

(s29s) swiL

8ZST+
0ESTA

ZEGTA

............................. I .\O

s e g | P i E———————— :
________________ 251 N S N S~ .

........ ” "10s
.. | O0gStT]

. awil UBIH WMd —— | B} . awil UbIH Wmd — [SL
AD0[3A Jeaur pajewnsy —— CeSTT=4 T AID0[aA JBBUI pRlewnsT ——

| : : 00T

9¢SI

8¢GT .

0€EST +

ZEST A

o

T
n
~

o
[Tal

2wl ybIH WMmd
= AJD0J9A Jeaul] pajewns3

- T
n
~

+00T

9781
82GT ..
0ESTA

CESTH

awil YBIH Wmd
AjD0|ap Jeaur pajewiysy —

9ZGT .
86T .

0EST +=

CESTH

o

P
[Ta]
~

awil ybiH Wwmd — [SL

AJD0]aA Jeaur] pajewnsy —

F00T

(s / wd) A11D0|aA Jeaul] palewils]

23 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

g0l — Estimated Linear Velocity -«
—— PWM High Time

11533

11532

r1531

(cm/s)

r1530

11529

11528

PWM High Time (us)

r1527

Estimated Linear Velocity

r1526

1525

0.0 25 5.0 75 10.0 12.5 15.0 17.5
Time (secs)

Figure 3.6: Single acquisition experiment for the minimum PWM High Time required to begin the vehicle
motion.

The experiment was repeated 47 times. The sequence of each experiment started with
the car static on the floor and a PWM High Time of 1.525 ms outputted during 2 seconds.
If no motion was detected, an addition of 1 us was applied to the PWM High Time. The
new PWM Signal was then maintained during another 2 seconds period and the process was
repeated until the vehicle began to move. The PWM High Time that caused the vehicle’s
motion was registered and the overall procedure was repeated.

Table 3.2: PWM Startup High Time Identification

PWM High Time || Repetitions || Probability
1.525 ms 7 14.89%
1.529 ms 5 10.63%
1.530 ms 12 25.53%
1.531 ms 22 46.80%
1.532 ms 1 2.13%

A histogram of all registered startup PWM High Times was created. Results are pre-

sented in Figure 3.7 and Table 3.2 showing four things: a) the distribution is not gaussian,
b) the vehicle startup was achieved with PWM High Times ranging from 1.525 ms to 1.532
ms, ¢) the most frequent startup value was 1.531 ms, occurring in the 46.8% of the overall
experiments and, d) in the 100% of the cases the car is guaranteed to be moving forward
with PWM High Time of 1.532 ms.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 24

Startup PWM High Times Frequency

20

151

Frequency

1525 1526 1527 1528 1529 1530 1531
Startup PWM High Time (us)

Figure 3.7: PWM startup High Times histogram for 47 different startup sequences.

3.5 Dynamic Step Response

To obtain an adequate model of the vehicle’s forward speed for further control, a step re-
sponse identification was performed. Therefore a new set of experiments were executed.
With the car static on the floor and starting in one corner of the laboratory, the experiment
consisted on inputting a PWM High Time step to the vehicle’s ESC + BLCD motor and
then record the outputted forward speed until the vehicle traversed a straight lane to the
other side of the laboratory and then stopped before it collided into the wall. This procedure
was repeated multiple times with different steps on the PWM High Time.

Figures 3.8, 3.9, 3.10, 3.11 exhibit the input-output dynamic of four different cases. For
instance, Figure 3.8 shows two plots, the first one is the inputted PWM High Time signal
in red, stepping from 1480 to 1530 us at 5 sec, while the second plot in blue, is a horizontal
line at 0 cm/s corresponding to the car’s forward speed. In Figure 3.9 the input signal steps
from 1480 to 1531 us at 5 sec, while the output forward speed remained oscillating after a
delay of about 0.5 sec.

Figure 3.10 shows the inputted control signal stepping from 1480 to 1541 us at 5 sec, with
an output signal overshooting after approximately 1 sec and reaching a steady-state velocity
of around 41 cm/s. Finally, Figure 3.11 shows an input step of 1571 us with an output speed
with steady-state of about 131 cm/s. It must be noticed that all speed measurements are
segmented in quantiles of @ = 8.2467 cm/s, as explained in the Linear Velocity Estimation,
subsection 4.2.

25

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

Estimated Linear Velocity (c

Estimated Linear Velocity (c

1580

71560

11540

1520

711500

8,25 d ot .~ EStiMated Linear Velocity (cm/s) |
0.00 —— PWM High Time = 1530.0 us 1480
0 5 10 15 20 25 30
Time (secs)
Figure 3.8: Vehicle’s Speed Step Response for PWM High Time of 1.53 ms.
1580

r1540

.—— Estimated Linear Velocity (cm/s) |

...—— PWM High Time = 1531.0 us

11480

0 5 10 15 20 25
Time (secs)

Figure 3.9: Vehicle’s Speed Step Response for PWM High Time of 1.531 ms.

30

PWM High Time (us)

us)

PWM High Time

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 26

1580
140.19
131.95
123.70
& 115.45 ..r1560
£ 107.21
L
> %)
S 15402
3 £
(]
z =
g 11520%
T =
© o
£
- Ul 1500
b — Steady-State Velocity = 41.0 cm/s .
4. Settling Time. =.1.6seC.............. —— PWM High Time = 1541.0 us 11480
10 15 20 25 30
Time (secs)
Figure 3.10: Vehicle’s Speed Step Response for PWM High Time of 1.541 ms.
1580
—~115.45 _.r1560
£107.21
&
> w0
5 15403
3 £
Q
T =
© <
c *1520'9
k5 =
T o
£ =
= : 11500
di. —— Steady-State Velocity = 131.0 cm/s
-4..Settling Time = 3.0sec... —— PWM High Time = 1571.0 us 1480
0 5 10 15 20 25

Time (secs)

Figure 3.11: Vehicle’s Speed Step Response for PWM High Time of 1.571 ms.

27 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

Table 3.3: PWM High Time Step Responses.

| High Time (us) | Steady-state Velocity (cm / s) | Settling Time (sec) |

1541.0 41.0 1.6
1542.0 41.0 1.5
1543.0 41.0 1.9
1544.0 41.0 2.3
1545.0 49.0 1.5
1546.0 49.0 1.3
1547.0 57.0 1.0
1548.0 57.0 0.9
1549.0 57.0 1.1
1550.0 65.0 1.1
1551.0 65.0 1.5
1552.0 74.0 0.2
1553.0 82.0 0.3
1554.0 74.0 0.9
1555.0 82.0 0.2
1556.0 90.0 0.5
1557.0 90.0 0.4
1558.0 82.0 0.6
1559.0 90.0 0.6
1560.0 90.0 0.6
1561.0 98.0 3.0
1562.0 98.0 1.8
1563.0 107.0 2.6
1564.0 107.0 1.9
1565.0 107.0 2.2
1566.0 115.0 1.8
1567.0 115.0 2.2
1568.0 123.0 2.2
1569.0 131.0 2.8
1570.0 123.0 2.0
1571.0 131.0 3.0
1572.0 131.0 2.4
1573.0 140.0 2.7
1574.0 131.0 2.5
1575.0 140.0 2.5
1576.0 148.0 2.7
1577.0 148.0 2.0
1578.0 148.0 2.8
1579.0 148.0 4.7
1580.0 148.0 2.7
1582.0 156.0 3.5
1583.0 164.0 2.8
1584.0 164.0 2.8
1585.0 173.0 3.1

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

28

160

Estimated Linear Velocity (cm/s)

Settling Time (sec)

140

120

100

[e]
o

60

= Estimated Linear Velocity (cm/s)
—--- Velocity Linear Regression (DC Gain = 3.01)

1550 1560 1570 1580
PWM High Time (us)

Figure 3.12: PWM High Time vs Steady-state Linear Velocity.

w

N

1540

1550 1560 1570 1580
PWM High Time (us)

Figure 3.13: PWM High Time vs Settling Time.

29 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

Roughly speaking, four different type of dynamic responses were identified: (a) a zero
velocity when PWM High Time inputs are too small, (b) an oscillatory response with PWM
High Times close to the previously identified startup value of 1.531 ms, (¢) a scemingly
underdamped behavior for intermediate input values, and (d) an overdamped response for
higher input values.

In previous experiments, the PWM High Time of 1.531 ms demonstrated to be a good
startup value as shown in Figure 3.9. These oscillatory responses were also seen in multiple
subsequent experiments with small enough High Times. However, PWM High Times smaller
than this startup value were not sufficient to move the vehicle, see Figure 3.8. Therefore, it
was ratified that a High Time value of 1.531 ms could be considered a good-enough startup
value. In other words, this value can be used as an offset to avoid the so-called uncertain
dead zomne.

Finally, an analysis of the relationship between the input signals versus steady-state speed
and settling-time was conducted. For this analysis, all experiments with input step higher
than 1.541 ms were taken into account, where dynamics are overdamped. Steady-state ve-
locity is defined as the last velocity reached at the end of the experiment, typically at 30 s.
Settling time is defined as the first time the signal remained inside a tolerance range of +2@)
of its final speed.

Table 3.3 shows the results. Moreover, Figure 3.12 shows a linear relationship between
the inputted PWM High Time and the achieved steady-state linear velocity. As the PWM
High Times increased so did the steady-state velocity estimations with an approximate DC
Gain of 3.01, suggesting that it could be possible to estimate a linear dynamical model.

Nonetheless, the settling time did vary strongly throughout the tested conditions as shown
in Figure 3.13. Furthermore, the setting time took considerably smaller values for medium
speeds (say 1.552 ms to 1.56 ms PWM High Times) than those registered for other veloc-
ities. These variations limited the assumption of the stated linearity of the vehicle dynamics.

3.6 Dynamic Model Identification

A series of experiments were developed to identify an adequate dynamic linear model. The
experiments consisted on the generation of multiple pseudo random PWM High Time se-
quences and registering the speed response of the vehicle while traversing a straight lane.
The relation between the input pseudo random variations and the vehicle dynamic response
was later analyzed to produce a dynamic model approximation.

The vehicle’s straight trajectory was limited by the available space inside the laboratory
where the experiments were developed. Therefore, multiple trajectories were executed in
order to successfully capture the vehicle’s overall dynamic response. Specifically a variety of
30 vehicle trajectories were produced.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 30

Model Order vs Quality

—— Experiment 1 Quality.
+— Experiment 2 Quality.
Experiment 3 Quality.
—— Experiment 4 Quality.
—— Experiment 5 Quality.
Experiment 6 Quality.
—— Experiment 7 Quality.
Experiment 8 Quality.
Experiment 9 Quality.
Experiment 10 Quality.

i

=
N

=
o

Model Quality
[o0]

6
4l
5
0 5 10 15 20 25 30 35 40
Model Order

Figure 3.14: Model Order VS Quality plot for the first 10 Model Identification Experiments.

The registered response of each experiment was used to define a particular dynamic model.
Such models were based on the vehicle’s dynamic response registered once an adequate
startup was achieved after exact 10 seconds, avoiding the aforementioned uncertain dead
zone. This criterion was defined based on the non-linear response identified at startup as
described in the PWM Operational Ranges and Startup Behavior subsection.

Given a set of input-output data {u(k), y(k)}, an ARMA model of a given order n can
be derived using a Least Squares Identification [56]:

Yiu(2) 02" 402" 2+ + b,
U(z) a2 4+ ay

where model quality is defined as:

T = e(k) (3.8)

e(k) = y(k) = ym(F) (3.9)

31 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

and
y(k) = Vehicle’s registered linear velocity (cm/s);
u(k) = PWM High Time input (us);
ym (k) = Identified model linear velocity estimation output (cm/s);
e(k) = Linear velocity estimation error (cm/s);

n = Model order.

Figure 3.14 shows the relationship between model quality and model order for 10 differ-
ent experiments. It is clear that the models behaved similarly, with a continuous quality
improvement as the model order increases. It is also remarkable that the quality kept on
improving for bigger model orders instead of presenting an asymptotic behavior (typical of
linear dynamics). This behaviour could be the result of an unidentified non-linearity of the
vehicle’s overall dynamics. Moreover, it is know that, bigger the model order bigger the
chances of over-fitting and therefore getting a bad model.

Knowing that a hyper-high model order is useless, a strong assumption was made and a
second order model was kept as the best fit for the vehicle’s identified overdamped dynamic.
General form of such model is show in equation 3.10.

140+
r1570
130+
) 11565
E 1201
> %)
S 11560
TOJ 110 GEJ
> =
— =
& 1007 ﬂ 115555
< 0 O U ; T
2 901 UL ul =
s}
© r155008-
£
& 801
r1545
701 —— Estimated Linear Velocity
—— Model Response
—— PWM High Time
. ; : : : r1540
0 50 100 150 200

Measurement

Figure 3.15: Single experiment dynamic response approximation and registered vehicle’s dynamic compari-
son.

For each of 30 experiments, the registered car’s speed was compared to that obtained
from its corresponding identified model. An example of these comparatives can be observed
in Figure 3.15 that has three different plots (a) the second order model approximation in
blue, (b) the registered experiment’s dynamic response in green, and (c) the inputted con-
trol signal in red. It can be observed that the model estimation poorly resembled the actual

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 32

dynamic response.

Table 4.4 shows the identified models’ parameters for each individual experiment. Even
though the experiment was repeated 30 times, the identified poles seemed to be always the
same, but that wasn’t the case for the zero and the gain. Also, the individual quality exhib-
ited a huge variation among the identified models.

(3.10)

In order to get a unique model, an average of all identified parameters has been computed.
That unique model is presented in equation 3.11. The results of the statistical analysis can
be observed at the bottom of Table 3.4. An average gain K value of 0.0212 was determined
with a deviation of 0.0737, while the model poles average values were 0.9476 and -0.0804
with deviations of 0.0235 and 0.1004 respectively. In general, the deviation of these three
last parameters showed that the obtained average values could represent the overall response
of the experiments. However, this is not true for the model’s zero average value of -2.776
which presented a substantial deviation of 12.4932.

021(z + 2. 021z + 0.
Gz = 00 (42776) 0021z +0.05885 (3.11)
(z— 0.947)(z + 0.0804) 2% — 0.8672z — 0.07619

In order to verify the validity of this last unique model (3.11), it was re-computed the
model quality for each individual experiment and computed the Models Quality Differential.
Notice that, in all cases, the quality has decreased. Average and deviation of such quality
differential were obtained, registering an average value of -2.9022 and a deviation of 2.2513.
This imply that the dynamic response achieved with the average model 3.11 got a bit worst
in each of the experiments than its corresponding individual models. Unfortunately this fact
limits the validity of the initial dynamic linearity assumption and therefore decreases the
utility of the derived unique model.

Multiple evidences of a possible non-linearity were recognized, such as the uncertain dead
zone dynamic response, the observed quality vs model order behaviour from Figure 3.14 and
the strong dynamic model’s parameters variation shown in Table 3.4.

Finally, it was concluded that a better dynamic model approximation should be achieved
if a non-linear identification procedure is made. However, non-lincar identification is not
part of the original scope of this thesis and will therefore be left for future supplementary
research.

33 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

Table 3.4: Dynamic Model Identification Experiments Results.

Individual | Average Models
No. K Poley Poley Zero Model Model Quality
Quality Quality | Differential
1 -0.022893 | 0.952056 | -0.060327 4.6471 10.379 11.459 -1.080
2 0.059722 | 0.961203 | -0.041269 | -0.19085 11.540 14.395 -2.855
3 0.029045 0.91977 -0.32126 -5.4316 13.491 20.727 -7.236
4 -0.044564 | 0.981371 | -0.042409 1.7747 11.268 12.678 -1.410
5 0.0050049 | 0.884655 0.049223 -37.186 9.6261 11.892 -2.266
6 0.0044416 | 0.90877 -0.22824 -38.714 13.116 15.614 -2.498
7 -0.017260 | 0.966494 | -0.083071 4.7955 12.592 15.635 -3.043
8 -0.026111 | 0.942102 | -0.076235 5.0567 7.3712 9.634 -2.263
9 0.032574 | 0.958511 | -0.023943 -1.0000 11.570 12.019 -0.449
10 0.026878 0.95947 | -0.00049341 | -1.3427 8.8459 9.270 -0.424
11 0.026726 | 0.945156 | -0.011923 -1.9394 8.8927 8.933 -0.040
12 0.080688 0.93107 -0.13599 -0.56043 13.230 14.533 -1.303
13 | -0.011695 | 0.94403 -0.30675 12.758 8.7727 15.065 -6.292
14 0.24531 0.94645 -0.19464 0.52668 7.5443 12.525 -4.981
15 0.041776 | 0.966590 | -0.031919 | -0.56292 9.8550 15.629 -5.774
16 0.024073 | 0.964281 | -0.073536 -1.9961 8.0842 13.582 -5.498
17 | -0.0060543 | 0.966448 | -0.013319 9.4694 7.6803 7.840 -0.160
18 | -0.036127 | 0.944195 | -0.089036 4.0920 9.9405 15.411 -5.470
19 | -0.030208 | 0.975205 | -0.041353 2.4517 10.338 11.740 -1.402
20 | -0.0060543 | 0.966448 | -0.013319 9.4694 7.6803 7.840 -0.160
21 0.026878 0.95947 | -0.00049341 | -1.3427 8.8459 9.270 -0.424
22 | 0.0062852 | 0.960880 | -0.023124 -10.608 12.577 15.716 -3.139
23 | 0.0050049 | 0.884655 0.049223 -37.186 9.6261 11.892 -2.266
24 | -0.022893 | 0.952056 | -0.060327 4.6471 10.379 11.459 -1.080
25 0.24531 0.94645 -0.19464 0.52668 7.5443 12.525 -4.981
26 -0.16125 | 0.934903 | -0.024446 1.7491 10.075 14.336 -4.261
27 0.041776 | 0.966590 | -0.031919 | -0.56292 9.8550 15.629 -5.774
28 0.032574 | 0.958511 | -0.023943 -1.0000 11.570 12.019 -0.449
29 0.029045 0.91977 -0.32126 -5.4316 13.491 20.727 -7.236
30 0.059722 | 0.961203 | -0.041269 | -0.19085 11.540 14.395 -2.855
| Parameter | Average | Deviation |

K 0.0212 0.0737

P1 0.9476 0.0235

D2 -0.0804 0.1004

21 -2.7760 12.4932

Models Quality Differential | -2.9022 2.2513

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 34

3.7 Linear Velocity Control

The development of a robust linear velocity control was limited by the recognized non-linear
dynamic response and the unsuccessful identification of the vehicle dynamics. However,
it was still required to achieve a sufficient linear velocity control of the platform for its
autonomous driving. To achieve this, an heuristically tuned PI velocity control was imple-
mented [57].

The control system architecture is displayed in Figure 3.16. The closed-loop system uti-
lizes the linear velocity estimation obtained from Arduino 2, feeding this data to Arduino
1 responsible for the control signal generation. A PI controller was implemented directly in
the Arduino 1 board, receiving the desired linear velocity from the Odroid XU4.

PI Control
IR EEENEI
A R e | |
o Y o
Desired § 5 e

Linear“ " Control
Velocity Arduino 1 Signal

(PWM Generator)
PWM High Time

Estimated
Linear
Velocity

Arduino 2
Odroid Xu4 (Linear Velocity
Estimator)

Figure 3.16: Linear Velocity Control System Architecture.

Arduino 2 shares the Linear Velocity Estimation with Arduino 1 using the I?C communi-
cation protocol. This allows a fast data acquisition and permits the implementation of the
desired control system. The estimated velocity is then subtracted to the desired velocity to
compute the current linear velocity error e(t). The PWM High-Time is finally computed
using the PI equation 3.12 and sent to the ESC-BLCD motor. Two specific ROS topics
where put on place at the Odroid XU4 to monitor the behavior of vehicle’s linear velocity.

The designed PI controller utilizes the equation:

t
PW Moyt = PW My + Kpe(t) + K > e(r)At (3.12)

7=0

35 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

where:

PW Moyt = PWM High-Time sent to ESC-BLCD motor.
PW Myqny = Minimum startup PWM High Time = 1.531 ms
K, = Proportional gain.
K; = Integral gain.
e(t) = Current linear velocity error.
At = Sampling Period = 200 ms.
t = The sampling moment. A positive integer that grows linearly.

The PI controller uses the offset (PWMyn). This guarantees that the linear velocity
control will always operate outside the so-called uncertain dead zone interval where there’s
no certainty of the vehicle dynamic response. A representation of this low-level implemen-
tation is shown in Figure 3.17

Desired
L 1neap Arduino 1 car
Velocity
»| PI CONTROL J BLDC + ESC
PWM
Control
i e ENCODERS
Encoders
Linear Interrupts | |
Velocity - v
Estimation Arduino 2
Velocity
Estimator

Figure 3.17: Low-level linear Velocity Control block diagram.

The controller depends on the identification of the actual linear velocity error e(t) which
is obtained by comparing the current desired linear velocity and the estimated linear ve-
locity. The mentioned estimation is produced each 200 ms, corresponding to a well-defined
sampling period At that is used to apply the desired control action.

The controller also depends on the proper tuning of the Proportional and Integral Gains.
Such constants were tuned empirically by testing the implementation for multiple desired
speeds. The constants were continuously tuned until a good response was achieved, with an
small steady-state error and a short settling time.

The target linear velocity values were: 8Q=65.97 cm/s, 10Q=82.47 cm/s, 13(Q)=107.21
cm/s, 15Q=123.70 cm/s, 19Q=156.69 cm/s, 22Q=181.43 cm/s and 25()=206.17 cm/s.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 36

These desired speeds were tested with the vehicle on the floor, using the velocity controller
while the vehicle traversed autonomously a straight road. The vehicle speed was registered
using specific ROS topics to be later processed. An analysis of the controller performance
was subsequently developed, registering the obtained settling values.

As previously mentioned, the velocity estimations were constrained by the measurement
quantiles @ = 8.2467 cm/s. This estimation characteristic limited the identification of
the speed. For this, a tolerance of £2 () from the desired speed was used to establish a
settling speed interval. The registered speed would be considered in a settling state if such
measurement remained inside the mentioned tolerance interval.

Table 3.5: First PI values (K, = 0.12, K; = 0.21).

Settling Speed (+/- 2Q) || Settling Time
65.97 cm/s 2.7 secs
82.47 cm/s 0.6 secs
107.21 cm/s 0.3 secs
123.70 cm/s 1.5 secs
156.69 cm/s 3.3 secs
181.43 cm/s 3.2 secs
206.17 cm/s 2.9 secs

The first heuristically tuned PI resulted with a K, gain of 0.12 and a K; gain of 0.21.
That proposed PI controller presented a short-enough settling time for desired low speeds.
In particular, the vehicle demonstrated a short settling time for desired linear velocities lower
than 107.21 cm/s, as shown in Figures 3.18 to 3.20 and Table 3.5. However, for considerably
low desired linear speeds such as 65.97 cm/s the settling time was higher (around 2.7 seconds).

The mentioned low-speed behaviour could be a reflex of the aforementioned nonlinear
startup dynamics. Nonetheless, the achieved closed-loop performance was considered ac-
ceptable given the characteristics of the desired application. Furthermore, the control per-
formance got substantially worse for higher speeds. As the desired speed value increased so
did the obtained settling time (around 3 seconds) for velocities greater that 123.70 cm/s as
shown in Figures 3.21 to 3.24. This high settling times were not desirable for those bigger
speeds.

In order to achieve a good high-speed control of the platform, a second PI controller was
developed. The same tuning process was followed, adjusting the K, and a K; gains empiri-
cally until an adequate high-speed control was achieved. The second PI controller resulted
with a K, gain of 0.6 and a K gain of 0.22.

As shown in Table 3.6 and Figures 3.27 to 3.31, this second controller exhibited a good
high-speed performance, achieving short-enough settling times of around 0.7 seconds. How-
ever the settling time archived for low speeds, say lower than 107 cm/s, got considerably
worse, with settling times greater than 10 seconds (compared with those settling times
archived in Figures 3.18 and 3.19). This low-speed settling times were unacceptable, be-
cause the vehicle would be mainly driven at low-speeds during the autonomous driving.

37 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

107.214
98.96 -
90.71+
82.47
74.22
65.97 1
57.73 | O—
49.48 e
41.23
32.991
24.741
16.491

8.251
I
0 5 3 6 g % - . 1‘6

Time (secs)

Estimated Linear Velocity (cm / s)

—— Estimated Linear Velocity
s ————— O ST e e Y B
 Settling Time = 2.700128 secs . ___ steady-state Velocity +/- 2Q

Figure 3.18: Closed-loop output-response with first PI Controller test for 65.97 cm/s desired velocity at 5Hz
sampling.

The two presented PI linear velocity controllers were the best proposals achieved by the
empirical tuning process. However, it was not possible to identify a unique controller that
successfully achieved an adequate performance for the whole range of tested speeds. Given
that the autonomous driving algorithm development would require mainly a low-speed con-
trol of the vehicle, it was decided to utilize the first PI controller.

Table 3.6: Second PI (K, = 0.6, K; = 0.22).

Settling Speed (+/- 2Q) || Settling Time
65.97 cm/s 18.4 secs
82.47 cm/s 11.3 secs
107.21 cm/s 0.6 secs
123.70 cm/s 0.7 secs
156.69 cm/s 0.7 secs
181.43 cm/s 0.7 secs
206.17 cm/s 0.8 secs

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 38

—
S
@®
B
S

G 107.214

98.96 1 =i
90.711 _\
82.47 :

Estimated Linear Velocity (cm

- —— Estimated Linear Velocity

------------ s - Steady-state Velocity- =-82:47-€m/s
Settling Time = 0.599866368 secs === Steady-state Velocity +/- 2Q

0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
Time (secs)

Figure 3.19: Closed-loop output-response with first PI Controller test for 82.47 cm/s settling point at 5Hz
sampling.

123.704 ==': --- S e
115.451 o Py o e, e pa g o p e e R
107.21] BNV AVARL W AVAY AN R VAW AVAVANENY/N W A VI W AN YAV A W |
v 98.96 \
E 90.71) 11| S——
> 8247 T ———
E 74.22 1
L 6597 |
5 57730 |
S 49481
B 41.231
had i
g 3299 .
E 24.741 1
16497 Jl " —— Estimated Linear Velocity
8.251 /"; " —— Steady-state Velocity = 107.21 cm/s
0.001 ‘; - ----- Steady-state Velocity +/- 2Q

0 2 4 6 8 10 12 14 16
Time (secs)

Figure 3.20: Closed-loop output-response with first PI Controller test for 107.21 cm/s desired velocity at
5Hz sampling.

39 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

= 107.21
98.96 1
90.711
82.471
74.22 1
65.97
57.731
49.48 1
41.234
32.99
24.74 |
16.49 1

Estimated Linear Velocity (cm

- —— Estimated Linear Velocity
- —— Steady-state Velocity = 123.70 cm/s
- ----- Steady-state Velocity +/- 2Q

0.00/ .| Settling Time = 1.500147712 secs

0 2 4 6 8 10
Time (secs)

Figure 3.21: Closed-loop output-response with first PI Controller test for 123.70 cm/s desired velocity at
5Hz sampling.

173.18
164.93
156.69 1
148.44
" 140.19/
e 13195/
G 123.70]
~.115.45
107.211
98.96 |
90.71
82.47
74.22
65.97
57.731
49.48 1
41.23]
32.99
24.741
16.49 |
8.251
0.001

Estimated Linear Velocity (

..—— Estimated Linear Velocity
. —— Steady-state Velocity = 156.69 cm/s
-~ ----- Steady-state Velocity +/- 2Q

6 8

Time (secs)

Figure 3.22: Closed-loop output-response with first PI Controller test for 156.69 cm/s desired velocity at
5Hz sampling.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

40

197.92;
189.67
181.43
173.181

~164.931

£ 156.69

£ 148.44

5140.19;

Estimated Linear Vel
(o)}
L
[(e}
~l

Q0N11750A carc

" —— Estimated Linear Velocity

:— Steady-state Velocity = 181.43 cm/s
- Steady-state Velocity +/- 2Q

Figure 3.23: Closed-loop output-response with first

5Hz sampling.

a 6
Time (secs)

8

PI Controller test for 181.43 cm/s desired velocity at

Estimated Linear Velocity (cm / s)

2.900352512 secs

—— Estimated Linear Velocity
—— Steady-state Velocity = 206.17 cm/s
----- Steady-state Velocity +/- 2Q

3 a 5
Time (secs)

6

Figure 3.24: Closed-loop output-response with first PI Controller test for 206.17 cm/s desired velocity at

5Hz sampling.

41 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

107.21;
98.96 |
90.711
82.471
74.22 |
65.97 |
57.73
49.48 |
41.23
32,90 |
24.74] e S€THING TIME. = 18.400404 736 s€CS

16.49;
8.251
0.001

Estimated Linear Velocity (cm / s)

.. STegdy shats eloors ea. 0 amis

jJ —— Estimated Linear Velocity
- ----- Steady-state Velocity +/- 2Q

0 5 10 15 20
Time (secs)

Figure 3.25: Closed-loop output-response with second PI Controller test for 65.97 cm/s desired velocity at
5Hz sampling.

123.70
115.451
107.211
98.96 1
90.711
82.47 1
74.22
65.971
57.731
49.48 1
41.231
32.991
24.74
16.49

Estimated Linear Velocity (cm / s)

—— Estimated Linear Velocity
8.251 Steady-dtate Veloeity = 8247 emjs
0.001 R e R a3 A B e Sl 8 A s SO S L R e e Steady.state Ve|0city +/- 2Q

0 2 4 6 8 10 12 14
Time (secs)

Figure 3.26: Closed-loop output-response with second PI Controller test for 82.47 cm/s desired velocity at
5Hz sampling.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 42

123.701

115.45

107.21
98.96
90.71
82.47
74.22
65.97
57.73
49.48
41.23
32.99
24.74
16.49/

Estimated Linear Velocity (cm / s)

—— Estimated Linear Velocity

8.25 ‘/,J i o S e B S ST A VRO = EOT2 LS
0.00 [.......5ettling Time. = .0.599932416.S8CS. ... —-—- Steady-state Velocity +/- 2Q

0 2 a 6 8 10 12 14
Time (secs)

Figure 3.27: Closed-loop output-response with second PI Controller test for 107.21 cm/s desired velocity at
5Hz sampling.

131.951
123.701
> 115.451
= 107.21
98.961
90.711
82.471
74.22 !
65.97_ e e e e
57.73
49.48 1
41.23
32.991
24.74
16.49
8.251
0.00+

Estimated Linear Velocity (cm

"""" —— Estimated Linear Velocity

14 S— YR Y S T R A T R T e KRR S i Steady—state Velocity =123.70 les
-.i..5ettling Time. = 0,700103424 S€CS ... - Steady-state Velocity +/-2Q

0 2 4 6 8 10 12
Time (secs)

Figure 3.28: Closed-loop output-response with second PI Controller test for 123.70 cm/s desired velocity at
5Hz sampling.

43 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

Estimated Linear Velocity (
(8]
~l
~]
w

16.49. i ... — Estimated Linear Velocity
e ——— ...—— Steady-state Velocity = 156.69 cm/s

8251 T akiing Time o

0 2 a 6 8 10
Time (secs)

Figure 3.29: Closed-loop output-response with second PI Controller test for 156.69 cm/s desired velocity at
5Hz sampling.

197.92
189.67
181.43
173.18

—164.93

£156.69

£ 148.44

Estimated Linear
()]
(8]
[(e]
~

ET.J31 o
49.48
41.23
32,00
%gzg _____ —— Estimated Linear Velocity

8251 | —— Steady-state Velocity = 181.43 cm/s

0.007 csbuem .Settling Time =.0.700652544 S€CS... .o e Steady-state Velocity +/- 2Q

0 2 4 6 8
Time (secs)

Figure 3.30: Closed-loop output-response with second PI Controller test for 181.43 cm/s desired velocity at
5Hz sampling.

CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL 44

Estimated Linear Velocity (cm / s)

-« —— Estimated Linear Velocity
. —— Steady-state Velocity = 206.17 cm/s
- ----- Steady-state Velocity +/- 2Q

0 1 2 3 a 5 6 7
Time (secs)

Figure 3.31: Closed-loop output-response with second PI Controller test for 206.17 cm/s desired velocity at
5Hz sampling.

3.8 Discussion

Multiple goals were reported in this chapter, regarding the linear velocity and dynamic
identification of the platform. These achievements included the recognition of the vehicle’s
non-linear startup dynamic response or the so-called uncertain dead zone typical of the
sensorless BLDC Motor and ESC systems. Furthermore, an adequate linear velocity estima-
tion system was implemented, requiring the software and hardware design of an appropriate
odometry system.

A proper PWM signal generator was also developed, considering the operational charac-
teristics of the vehicle actuators, achieving a good-enough PWM High Time resolution for
the proper velocity control of the platform. Moreover, these previous subsystems served as
a baseline for the vehicle’s startup behavior identification and the posterior recognition of
adequate PWM startup High Time that could served as an offset for the posterior develop-
ment of a linear velocity control system.

Finally, an analysis of the vehicle dynamic response was conducted with the intention
of having a linear dynamic model, however multiple non-linear dynamic evidences were
recognized that limited the adequate identification of a vehicle dynamic model. A heuristic
method was then used to tune a PI controller that could regulate the vehicle’s linear velocity.
Experimental evidences show that it was necessary to develop two PI controllers, one for low
speeds and other for high speeds.

45 CHAPTER 3. DYNAMIC MODEL IDENTIFICATION AND LINEAR VELOCITY CONTROL

The vehicle’s linear velocity estimation and control was highly limited by the character-
istics of the implemented platform. Moreover, the dynamic model identification and linear
velocity control might be improved by substituting the former BLDC sensor-less motor with
a shaft-sensor-BLDC motor [58] or a classic DC motor [59], avoiding the non-linear dynamics
and startup behavior. However, the heuristically tuned PI controller was enough to obtain
a regulated linear speed behaviour (at low speeds) required for the development of the au-
tonomous driving algorithm and enabling the continuation with the road lane identification
algorithm described in the upcoming chapter.

Chapter 4

Road Lane Identification and
Autonomous Driving based on
Computational Vision and Deep
Neural Networks

4.1 Road Lane Identification and Autonomous Driving Process Description

Road lane identification is a basic step required for the autonomous driving. This process is
based on the visual segmentation of the road lanes in an acquired environment image. Here,
the segmentation is the process of recognizing the road lanes from a vehicle’s front-view im-
age perspective. The segmentation output is processed to identify left and right road lanes
in a frame and then to decide what steering angle is needed to keep the AV platform in
between them.

Multiple methods can be used both to segment and identify the road lanes on an acquired
image. This methods include CV and DNN based algorithms [60] [61] [62] [63], allowing not
only to recognize the road lanes in a given frame, but to directly generate a driving deci-
sion based on the input image [64] [65] [66]. These last proposals are mainly based on more
complex processing mechanisms such as Deep Convolutional and Recursive Neural Networks,
requiring high computational power. Nevertheless simpler Neural Network architectures were
considered for the development of this research project as a demonstration of the capabilities
of the AV platform, focusing mainly on the road lane segmentation process and serving as a
baseline for further implementations of more robust autonomous driving mechanisms.

As aforementioned, one main goal was to implement both CV and DNN based road lane
segmentation systems, to compare the performance that these proposals offer at different
driving conditions. This allowed to identify the capabilities of the developed platform and
recognize the autonomous driving performance achieved by these methodologies.

46

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON

COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

47

ourpedl SuIssed0IJ 98eW] [RIGUSY) ' 9INSJIg

W

UOT31EeDTJ4TIUSpPT UOT329J4Jd0)
saue peoy P 9T73uy 3uUTJ991S

uotiejuawdas NNQG

UOT3I3JJ0d
aAT1DadsJad

SutualrT4

P SutpToysaJyl
BaJy Jnoluo)

T9A37 aTeasAeudp

UOTSJSAUOD
JOT0D> aTedsAedp

I

uotiejuawdas AD

98ewT MSTA-3uUOJA
9suasTeay [o3ul

AW AW A

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 48

The characteristics of the NVIDIA Jetson Nano board allowed an efficient integration
of the required image processing, permitting the execution of a CV pipelines while driving
based on the OpenCV Python library [42]. The image processing system was divided in five
steps: (a) Intel Realsense front-view image capturing, (b) image perspective correction, (c)
road lane segmentation (CV or DNN based), (d) road lane identification and (e) steering
angle correction. See Figure 4.1.

On one hand, the CV segmentation proposal is based on the processing of the captured
vehicle’s front-view images by applying typical CV methodologies [67] [68] [69] such as blob
or contour extraction, image filtering, color conversion, thresholding methods, etc. On the
other hand, the DNN segmentation proposal is based on the implementation and training
of a U-Net [70] Convolutional Neural Network capable of processing the acquired image and
generate the desired segmentation output [71].

After segmenting the image with CV or DNN, the left and right lane identification is
mainly based on CV classic methods. Conditions such as road curvature, straight trajectories
or possible out-lane scenarios could be then evaluated to finally produce the steering angle
correction required. An in-depth description of these processing phases will be presented in
the upcoming subsections.

4.2 Vehicle’s Front-View to Top-Down Perspective Transformation

The environmental image perception system consisted on the implementation of an image
correction mechanism that could facilitate the road lane segmentation process required. To
achieve this, a specific OpenCV perspective transformation method were used [69], permit-
ting the acquisition of the vehicle’s top-down view driving images based on the captured
frames from the Intel RealSense SR300 BlasterX Senz3D Depth Camera [38].

e = AR\

Figure 4.2: Perspective Transformation Procedure.

The perspective transformations used consisted of two steps, (a) extract the perspective
transform matrix and (b) warp the source image using the transform matrix [72]. This im-
age correction allows to define a ROI mask formed by four points from the original vehicle’s
front-view image. Such points were selected in a trapezoidal shape that would be distorted
into the final top-down view image as represented in Figure 4.2. These vertex points were
adjusted manually and iteratively, tested for multiple sample images and modified until a
good-enough perspective correction was achieved, where both road lanes could be perceived
inside a ROI, obtaining the top-down view as shown in Figure 4.2.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
49 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

4.3 Road Lane Segmentation using Computater Vision

Once the perspective transformation is done, the next step is to segment the image into lane
and no-lane sections with some degree of robustness at different light conditions [73] [74].
This segmentation could facilitate the identification of the individual road lanes in a given
frame allowing to extract information such as the vehicle’s position with respect to the road
center and the current road curvature could be determined.

Therefore, a road was traced inside the Campus laboratories using a black tape pasted
on the laboratory white floor (see Figure 4.3), while the illumination conditions were set
using the laboratory light lamps placed along the whole track. The lamps are placed at the
right, center, and left sections of the traced road, allowing to establish different illumination
scenarios by modifying their state.

The vehicle was manually driven multiple times, traversing the traced road in both senses
(clockwise and counter-clockwise) and at different light conditions. Simultancously, the
front-view images acquired throughout all the vehicle trajectories were recorded and classi-
fied based on the settled illumination. Finally, this recordings were utilized as a database
for the development of the road lane segmentation system, allowing to count with multiple
recordings of the different testing scenarios the vehicle would face.

The color contrast between the road lanes and the laboratory floor motivated the imple-
mentation of a color thresholding based segmentation system [10] [11] [60]. Moreover, this
proposal could be tested and validated using the previously acquired recordings, comparing
the achieved performance at different illumination scenarios.

The CV segmentation procedure consisted of three steps (see Figure 4.1) including (a)
apply a grayscale image color conversion, (b) binarize the obtained image based on a prede-
fined threshold, and (c¢) filter the detected contours based on a minimum detection area [75]
[76]. Some examples of this road lane segmentation procedure can be observed in Figures
4.4, 4.5 and 4.6.

The vehicle top-down view images contained mainly dark and clear pixels given the traced
road characteristics and the laboratory floor. Based on this, a grayscale representation of
the current frame was obtained using the OpenCV library cvtColor method [77]. This color
conversion could facilitate the posterior binarization of the image by applying grayscale color
thresholding methods [75] [76].

As mentioned, the image binarization depended on specific grayscale color threshold val-
ues. These parameters would delimit the color values used to evaluate if a given dark
pixel would be considered part of the road lane or not. Therefore a MIN_LANE_COLOR_VAL
and MAX_LANE COLOR_VAL values were required, defining the minimum and maximum dark
grayscale pixel values to be segmented.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

50

Figure 4.3: Vview of the used road track traced on the ITESM CEM Laboratories.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON

o1 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS
Black & Black &
Irﬁ(aaze IGray White White
mage
. Grayscale .color‘ ﬁ Grayscale Level Luage Contour Area Imag'e
conversion Thresholding Filtering
Figure 4.4: CV based Road Lane Segmentation Example 1.
Black & Black &
I:{;Ze IGray White White
mage 1 Image
' Grayscale color . Grayscale Level mage. Contour Area g.
conversion Thresholding Filtering
Figure 4.5: CV based Road Lane Segmentation Example 2.
Black & Black &
mage
' Grayscale 'color‘ Grayscale Level Inags Contour Area i
conversion Thresholding Filtering —

Figure 4.6: CV based Road Lane Segmentation Example 3.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 52

An initial criteria was to establish the MIN_LANE_COLOR_VAL to 0, denoting the darkest
possible pixel value which in general would be directly considered part of the searched black
road lanes. However, in order to define the MAX_LANE_COLOR_VAL parameter an empirical
methodology was applied, testing multiple maximum threshold values on the previously
acquired vehicle trajectory videos. The goal was to test with different maximum threshold
values and observe the acquired binarization outputs, finally the value that demonstrated the
best apparent response throughout all the recordings was selected. This procedure yielded
a MAX_LANE_COLOR_VAL value of 90, which was later validated by analyzing the grayscale
histogram of specific top-down view frames.

An example of the mentioned histogram analysis can be observed in Figures 4.7, where
the red vertical line represents the MAX_LANE_COLOR_VAL threshold value of 90. It is clear
that the selected value succesfully divides the grayscale histogram in two classes: (a) the
black grayscale pixels placed to the left of the red line and (b) the clear pixels located to the
right. This two color value classes would be then used to binarize the current frame, setting
to black all the clear pixels and to white the dark ones.

Nonetheless, this single frame analysis was not enough to validate that the selected thresh-
old values would produce an appropriate segmentation response. Based on this, a histogram
analysis was made with different frames at a variety of illumination conditions as shown in
Figures 4.8, 4.9 and 4.10. It can be observed that the selected threshold parameters were
good-enough to obtain the desired output, except at a very low illumination condition (Figure
4.10). In this scenario, the pixel intensities were considerably small, generally placed inside
the established threshold limits and causing an undesired response. However, the histogram
distribution showed up an apparent color class division at a lower maximum threshold value
around 50, suggesting that it is still possible to adequately segment the frames if a different
threshold range is used.

A deeper analysis of the threshold method response was made developing a cumulative
histogram. This procedure consisted on summing the individual histograms of all the frames
in cach of the stored videos, to finally acquire a general cumulative histogram. The objective
was to include all the detected color values throughout the whole set of light conditions tested,
except those videos with the darkest light conditions. As shown in Figure 4.11, the cumu-
lative histogram demonstrated that it is not possible to define a single MAX_LANE_COLOR_VAL
value that could succesfully binarize any given frame at the stated illumination conditions.
It can be concluded that the best possible threshold value would depend heavily on the cur-
rent illumination condition, hindering the motivation to establish a single general threshold
parameter.

Finally, the binarized image is filtered by contour areas [78] using OpenCV. A contour
is any well-limited shape found in an image, having the possibility of extracting specific
features such as its area, perimeter, centroid, etc. Any contour with an area smaller than
a predefined MIN_DETECTION_AREA value shall be deleted from the binarized image as shown
in Figures 4.4 and 4.5. This allows to diminish the presence of undesired small contours in
the final segmentation output such as floor spots, dirt, etc.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
53 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

e\

12

[y
[=]

g
2
6 B
ol
et
©
o
& 6
f .
o
=]
(]
T 4
X
=
2
0 N
0 50 100 150 200 250
0 50 100 150 200 250

Figure 4.7: Single top-down view frame grayscale histogram at maximum illumination condition. A maximum
thresholding value of 90 is illustrated with a vertical red line, the analyzed grayscale image can be observed
at the upper left section of the Figure, while its binarized representation is shown at the upper right.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS o4

1 VT

= = =
o N ES

Pixel Color Repetitions (%)
(=]

0 —l—__-_-
0 50 100 150 200 250
0 50 100 150 200 - 250

Figure 4.8: Single top-down view frame grayscale histogram at medium illumination condition. A maximum
thresholding value of 90 is illustrated with a vertical red line, the analyzed grayscale image can be observed
at the upper left section of the Figure, while its binarized representation is shown at the upper right.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
55 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

L 11

-

(=]

w

Pixel Color Repetitions (%)
w =3

L5

[

_AA——

o

0 50 100 150 200 250
0 50 100 150 200 250

Figure 4.9: Single top-down view frame grayscale histogram at low illumination condition. A maximum
thresholding value of 90 is illustrated with a vertical red line, the analyzed grayscale image can be observed
at the upper left section of the Figure, while its binarized representation is shown at the upper right.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 96

8
8
26
h=]
=]
—
<]
o
&
E 4
[=]
S
]
>
X
2
8 el
0 50 100 150 200 250
0 50 100 150 200 250

Figure 4.10: Single top-down view frame grayscale histogram at dark illumination condition. A maximum
thresholding value of 90 is illustrated with a vertical red line, the analyzed grayscale image can be observed
at the upper left section of the Figure, while its binarized representation is shown at the upper right.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
57 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

2.5

2.0

1.5

1.0

Pixel Color Repetitions (%)

0.5

0.0

0

0 50 100 150 200 250

200 250

Figure 4.11: Cumulative grayscale color value histogram made by summing each individual frames grayscale
color value histograms in all the recorded vehicle trajectory videos at multiple illumination conditions.

The reduction of undesired contours would help to improve the road lane identification
performance, preventing the segmentation process to perceive irrelevant objects as part of the
road lane. This behavior can be observed in Figure 4.5 where a small floor spot was filtered
in the final segmentation output. The required MIN_DETECTION_AREA value was manually
adjusted by testing different values and comparing the algorithm performance in multiple
vehicle trajectory recordings.

However, bigger and irregular non-desired items could still be part of the segmentation,
as shown in Figure 4.6. Even though more complex filtering procedures could have been
used to reduce the stated undesired binarization response, they were not considered based
on the desire to establish a simple CV process pipeline. Table 4.1 shows the three adjustable
meta-parameters.

Table 4.1: CV based Road Lane Segmentation Configuration Parameters.

Configuration parameter | Value
MIN_LANE_COLOR_VAL 0

MAX_LANE_COLOR_VAL 90
MIN_DETECTION_AREA 200

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 58

4.4 Road Lane Segmentation using Convolutional Neural Networks

Deep Convolutional Neural Networks have demonstrated excellent efficiency in the develop-
ment of AV platforms [62] [63]. Many self-driving car projects base their functionality on
these kind of algorithms. DNN systems are generally used for complex tasks such as path
planning, image identification, autonomous driving control, crash avoidance, etc. Despite
the excellent performance these systems provide, they are generally computationally expen-
sive. However, in many applications, they have proven to be better than other algorithm
proposals such as CV based systems [79] [80].

As aforementioned, it was desired to implement both CV and DNN based road lane
segmentation systems and compare their performance as a demonstration of the platform’s
capabilities. Convolutional Neural Networks offer excellent response for image segmentation
tasks in the development of AV platforms, allowing the identification of multiple elements
contained in a typical driving scenario. Such characteristics motivated the implementation
of this kind of DNN paradigm for the vehicle’s road lane segmentation system.

The implemented road lane segmentation system would be validated given multiple driv-
ing and light conditions traversing the traced road inside the ITESM CEM laboratory. Con-
sequently, these criteria were taken into consideration for the adequate design of the DNN
based segmentation system. It was needed to acquire an image dataset for the DNN training
process, this dataset was formed by the individual 320 x 180 pixels frames of the multiple
trajectory recordings made at low, medium, and high laboratory light conditions.

The obtained dataset consisted of 1422 top-down view BGR frames of the vehicle trajecto-
ries that were manually segmented using the PixelAnnotationTool software [81]. This tool
allows to manually and quickly annotate large sets of images by providing specific markers
as shown in Figure 4.12.

The established markers are used by the OpenCV watershed marked algorithm [82] to
segment each component of the input images. The PixelAnnotationTool generates BGR
images, assigning a specific color to each segmented element on the frame. This character-
istic allows annotating more complex images such as a typical roads with multiple traffic
signals, pedestrians, vehicles, trees, etc.

However, the project’s application required only the segmentation of the road lanes and
floor background facilitating the overall manual segmentation process. The segmented ele-
ments included (a) the road, (b) the road lanes, and (c) the road exterior as shown in Figure
4.13. The acquired training dataset images were posteriorly binarized by color using specific
OpenCV color thresholding methods. This procedure allowed having black and white seg-
mented training images similar to those obtained by the CV based segmentation method.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
99 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

File Edit Tool Help

image100_orig,jpg* %
Alpha Mask : |0.40

Resize factor :

Circle size :

image104_orig.jpg
image105_orig.jpg
image106_orig.jpg
image107_orig.jpg
image108_orig.jpg
image109_ori
image10_ori
image110_orig.jpg
image111_orig.jpg
image112_orig.jpg
image113_ori
image114 ol
image115_orig.jpg
image116_orig.jpg
image117_orig.jpg
image118_orig.jpg
image119_orig.jpg
image11_origjpg
image120_orig.jpg
image121_orig.jpg
image122_orig.jpg
image123_orig.jpg
image124_orig.jpg
image125_orig.jpg
image126_orig.jpg
image127_orig.jpg
image128_orig.jpg
image129_ori
image12_origj
image130_orig.jpg
image131_orig.jpg
image132_orig.jpg
image133_orig.jpg
image134_orig.jpg

image135_or

image136_or
lane eCiC image137_orig.jpg
image138_orig jpg
wall (Ctrl+Alt+§ image139 orig.jpg

image13_origjpg
image140_orig.jpg
image141_orig.jpg
image142_orig jpg
image143_orig.jpg
image144 orig.jpg
image145_orig.jpg
image146_orig.jpg
image147_orig.jpg
image148_orig.jpg
image149_orig jpg ~|

keep border provide by the watershed
¥ Manuel Mask

¥ Watershed Mask

[Watershed

label=[road marking] id=[34] categorie=[flat] color=[fafafa]

Figure 4.12: PixelAnnotationTool segmentation procedure example.

Figure 4.13: DNN training dataset output image pre-processing example.

60

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON

COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

‘o[durexy 2IMpadolJ uolyeIuewsSny eye(F1°F oIS

3ndinQ
uotyejuswsas

andut
uoT3}eluawsas
UOT1EBTJBA SHEl
T addt
uotaeutunrr | Hnmuﬂ.gw,
UOT1ETJEA adewrt
uoteuruntrr | Teut3TJo

Y | Y-
\ U\ U\ (e (

3ndino
uoT3leljuswsdas

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
61 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

In order to enhance the DNN’s ability to correctly detect lanes, a data augmentation
procedure was used to obtain a more complete dataset for training. This was achieved by
computationally modifying the original images’ orientation applying a vertical reflection and
changing their illumination condition using Tensorflow specific methods as shown in Figure
4.14. The procedure generated a new training dataset up to 11376 images from the original
1422 manually segmented frames.

64 64

input
imzfge > > > | > o
Bl el -
tile o rs;e;_:;{n)‘nentatlon

72 x 572
&

5

=p»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Figure 4.15: Typical U-Net architecture example. Each blue box correspond to a multi-channel feature map.
The number of channels is denoted on top of the box. The frame size is provided at the lower left edge of
the box. White boxes represent copied feature maps. The arrows denote the different operations. [2]

The implementation of the DNN system was made using the TensorFlow Python library
[41], utilizing a typical U-Net Architecture [2] [70]. A U-Net is a highly efficient convolu-
tional neural network specifically designed for image segmentation. These neural networks
are based on the usage of contracting convolutional layers (feature maps extraction) and
succesive expansive or deconvolutional layers (decoder), as shown in Figure 4.15, allowing
the extraction of relevant image features and the generation of high resolution segmenta-
tion outputs. This network architectures require few training images and present excellent
training performance when using a data augmentation training strategy [2].

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 62

As shown in Figure 4.15, typical U-Net architectures present a complex structure with
multiple down and upsampling layers. Furthermore, these kinds of deep convolutional archi-
tectures are generally not suitable for mobile applications with limited computational power.
However, models such as the MobileNet V2 [83] [84] offer good and efficient performance for
low computational powered devices, based on the usage of depthwise separable convolutions
[85] and shortcut connections between layers [84]. This characteristics motivated the usage
of a MobileNet V2 system as the core of the required feature map/contracting layers of the
implemented U-Net system.

input
. P output
image :
segmentation
[e0]
(o]
i Q
x o
0 i
o~ x
— [+0]
o~
i
32 96 112
<
—p S| = 3
< = ;
3 3 ©

144 concatenate
I =P conv,RelU

= conv transpose,RelU

32 x 32

96
I-»

Figure 4.16: Deep Convolutional Neural Network segmentation model architecture.

32x32

The segmentation architecture proposed in this thesis can be observed in Figure 4.16, the
DNN input image is the captured vehicle’s top-down view BGR image resized to a 128 x 128
x 3 format, while the output is its segmented representation with only two color channels
(128 x 128 x 2). Only two contracting and expansive layers are used to obtain the desired
segmentation output. As mentioned, the contracting layers used the MobileNet V2 model
and the expansive layers were based on typical deconvolutional layers. A single inner layer
shortcut connection is used, allowing the propagation of relevant feature maps throughout
the network and easing the overall training process.

The network training included a transfer learning strategy [86], meaning that the param-
eters of the feature map extraction layers of the network were assigned using a pretrained
MobileNet V2 model provided by the Tensorflow Python library [87]. This methodology
allowed having a more efficient and faster training of the network, requiring to train only
the expansive or deconvolutional layers of the U-Net.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
63 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

Before training, the whole dataset was randomly ordered. Then the network was trained
using 90% of the previously sorted dataset. A specific testing dataset was defined to validate
the model performance, utilizing 10% of the overall 11375 images dataset. The network train-
ing process was based on the Adam Optimizer and Categorical Crossentropy Loss Function.
A training by epoch methodology was used, with 20 epochs and specific training batches of
120 images achieving a validation accuracy of 98.51%. A graph of the DNN model training
and validation loss can be observed in Figure 4.19 obtained throughout the whole model
training.

Some examples of the road lane segmentation response based on the trained DNN can be
observed in Figures 4.17 and 4.18.

A /I

lack &

White
Image Image

ﬁ DNN Segmentation #

Figure 4.17: DNN based Road Lane Segmentation Example 1.

lack &
RGB White
Image Image

ﬁ DNN Segmentation ﬁ

Figure 4.18: DNN based Road Lane Segmentation Example 2.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON

COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 64
0.200
—— Training loss
—e— \Validation loss
0.175
0.150
0.125

Loss Value
o
[
o
o

0.075
0.050

0.025 = —
0-00047% 255 5.0 75 10.0 12.5 15.0 17.5

Epoch

Figure 4.19: DNN training and validation loss graphs during training.

4.5 Road Lanes Identification and Classification

Road lanes identification and classification consisted of recognizing and tracking the road
lane contours during a vehicle’s trajectory using specific CV processing. The main objective
is to properly identify left and right lanes in every single segmented top-down frame. In
particular, five identification states were considered (a) INIT: Initial state, (b) BOTH: Both
lanes are visible, (¢) RIGHT: Only right lane is visible, (d) LEFT: Only left lane is visible, and
(e) NONE: None of lanes are visible. This mechanism allows a posterior decision of steering
angle correction.

Specific road-lane search-masks were used to extract the lane contours on a frame and
used it in the next frame as a initial searching area to tacking it thought a video streaming.
This searching strategy allows also to discriminate erroneous contours to be wrongly iden-
tified and permits a more efficient identification process constraining the road lane search
space.

The mask-based tracking-lane method works as follows. Once a road lane contour has
been found inside the image’s masked region, a new lane identification mask is generated
based on a Minimum Area Rectangle. A Minimum Area Rectangle is the bounding rectangle
that best surrounds the whole lane contour with the minimum area required. The obtained
rectangular mask is finally dilated to augment the research region for new frames. This
dilation strategy facilitates recognizing the searched lane contour as it considers the possible
displacement of the tracked lane in subsequent frames.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
65 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

The INIT state is defined by an initialization condition where the road lanes identification
has just begun. The algorithm must recognize and classify for the first time each of the road
lanes on the current captured segmented frame. To achieve this, the vehicle is placed on
a straight section of the road where both road lanes are clearly observable. The algorithm
detects each road lane contour on the binarized image input by applying the specific road
lane search mask. Considering the vehicle’s initial position, each road lane would be located
at the left or right half section of the top-down view segmented image, see Figure 4.20. This
assumption facilitates the initial identification of the road lanes, defining the required lane
search masks (blue and red rotated rectangles in Figure 4.20) by directly placing them at
the left or right halves of the image.

(IR A

Left & Right Road

Black & Lane Masking
White BGR
Image d Image
Road Lane q
Identification

Figure 4.20: INIT Road Lane Identification Example.

The BOTH state reflects a condition where both road lanes have been already identified
as shown in Figure 4.21. This classification state will occur every time the algorithm has
previously found both of the searched road lanes. In this case, the last frame’s left and right
lanes search masks would be used as a dynamic-ROI to find the road lanes in a next captured
frame. The identification is based on the premise that no considerable change in the road
lanes location would be perceived from one frame to another. This allows using the previous
search masks to find the new lane position in the current image, updating the search masks
once the new lane contours have been found.

N Y

Left & Right Road

Black & Lane Masking
White BGR
Image 4 Image
Road Lane ﬁ
Identification

Figure 4.21: BOTH Road Lane Identification Example.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 66

The RIGHT and LEFT states occur when only one of both road lanes has been identified.
These states may occur during a curved section when just one road lane is perceivable or in
an undesired out-road condition where the vehicle is close to a road edge or about to leave
the road. In these cases, only a single lane identification mask is defined as shown in Figure
4.22. In general, a RIGHT or LEFT condition is achieved when any of the lane contours could
not be found given the predefined search masks.

EANEN RN

Left & Right Road

Black & Lane Masking
White BGR
Image J Image
ﬁ Road Lane ﬁ
Identification

Figure 4.22: RIGHT Road Lane Identification Example.

The goal in the RIGHT and LEFT states is to keep on tracking the single identified lane
and try to recover the missing one using a stronger steering correction. This missing lane
recovery is based on the current identified lane condition, such as its location and slope. For
instance, if a RIGHT state occurs and the identified right road lane is located sufficiently to
the right in the current frame and with an adequate slope (see Figure 4.23), then a new left
lane search mask will be suggested. The suggested missing lane mask would be generally
placed at the right-most or left-most section of the image until the lane contour is recovered
as shown in Figure 4.23 where the missing left contour was recovered using a left-most sec-
tion placed search mask in blue.

Left & Right Road

Black & Lane Masking
White BGR
Image g Image
Road Lane ﬁ
Identification

Figure 4.23: Road Lane Identification curved road section Example 1.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
67 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

An important consideration made was the management of possible search masks overlap-
ping. This condition may happen whenever both lane search masks are considerably close.
This overlapping condition could be the product of an unreliable road lane segmentation
output, occurring typically during tight road curves. For instance, consider that a tight left
curve is traversed, the algorithm may initially recognize the left lane contour successfully.
However as the vehicle traverses the road curve, the perceived lane may cross the whole frame
from left to right horizontally, see Figure 4.24. This state may produce the segmentation
system to progressively divide the single lane into multiple contours, causing an incorrect
identification of the newly split contour as the missing right lane.

In order to avoid this incorrect road lane identifications, an analysis of the road lane search
masks slopes is made. A linear projection of the identification masks slopes is made, evalu-
ating if the generated line projections intersect inside the current frame limits. If the inter-
section condition is fulfilled, the algorithm determines that the two masks correspond to the
same lane contour and discriminates the newly split contour preventing a miss-classification.

ah =

Left & Right Road

Black & Lane Masking
White BGR
Image g Image
Road Lane ﬁ
Identification

Figure 4.24: Road Lane Identification Curve Mask Example 2.

Finally, the NONE condition is an undesired state where both lanes are missing and mainly
occurs when the vehicle has completely left the road. A NONE state will always be preceded
by a condition where at least one lane was still recognized, implying that a previous road
lane identification mask is available. The algorithm would then be conscious of the last seen
road lane’s possible location based on its previous mask, allowing the algorithm to search
for this last seen road lane in new frames.

4.6 Identification and Correction of the Steering Angle

The road lane identification facilitated the recognition of specific vehicle driving conditions
based on the road lane contours centroid location and slope. This information served to
generate the required steering angle correction for the autonomous driving of the vehicle. As
aforementioned, the Minimum Area Rectangle or Minimum Bounding Rectangle is a rotated
rectangle that encloses a more complex shape using the minimum possible area [88].

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 68

The described method allows to define a regular and more simple shape from the de-
tected lane contour and simplify its slope estimation, as displayed in Figures 4.25, 4.26 and
4.27, showing the obtained slope angle in read and blue on the last image of the processing
pipeline. The obtained slope from both road lane contours is then used to identify and
correct the current vehicle’s steering angle based on the present identified lanes.

Black &
White BGR
Image Image

Road Lane — p°

Identification Steering angle

correction

Figure 4.25: Road Lane Identification and Steering Angle Correction Example 1.

If both road lanes are vertical and parallel then the steering angle should be zero. If
both road lanes are vertical but not parallel then steering angles should be the average of
left and right bounding-boxes slopes. Special cases appears when only one lane is visible, as
shown in Equation 4.1. If one of both road lanes is missing then the correction will depend
entirely on the detected road lane slope and an specific ANG_LANE_OFFSET, see Figure 4.27.
This strategy allows a smooth driving response during straight and curved sections of the
road, applying a bigger steering correction in situations where only a single road lane has
been recognized as an attempt to recover the missing lane. Nonetheless, it was also desired
to achieve a driving behavior in which the vehicle remained at center of the road during the
whole trajectory.

Black &

White
Image

— Road Lane

Identification Steering angle

correction

Figure 4.26: Road Lane Identification and Steering Angle Correction Example 2.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
69 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

left_lane_sl ght_lane_sl
eft_lane_slope +2mg ane_slope if BOTH

angle-error = 9 je ft lane_slope + ANG_LANE OFFSET if LEFT (4.1)
right lane_slope — ANG_LANE_OFFSET if RIGHT

Where:

left_lane_slope = angle of left bounding rectangle;
right_lane_slope = angle of right bounding rectangle;
ANG_LANE_OFFSET = angle correction offset.

To determine if the car is at the center, a middle_point_error was computed. This error
is the difference between the frame’s center and the average of left and right centroids, see
(4.2). However, depending on the current driving scenario, it is not possible to identify both
road lanes at the same time, as shown in Figure 4.27, hindering the estimation of the road’s
center position. To cope with this situation, the estimation would depend on the current
lane identification state. Therefore if only the right road lane is recognized, the central point
estimation would be made by calculating the mean between the right lane centroid and the
left-most location of the analyzed frame.

Black &
White
Image Image

Road Lane _7g0°

Identification Steering angle

correction

Figure 4.27: Road Lane Identification and Steering Angle Correction Example 3.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 70

maddle_point_error = lane_middle_point — frame_middle_point (4.2)

Where:

left_lane_centroid + right_lane_centroid
eft-lane_centroid 4 right_lane_centroi if BOTH

2
left_lane_centroid + frame_right_most_point

lane_middle_point = if LEFT (4.3)

2
frame_left_most_point + right_lane_centroid

if RIGHT
2

lane_middle_point = estimated road lanes middle point;
left_lane_centroid = estimated left lane centroid horizontal point;
right_lane_centroid = estimated right lane centroid horizontal point;
frame_le ft_most_point = frame’s left most horizontal point;
frame_right_most_point = frame’s right most horizontal point;
maddle_point_error = estimated centered driving error;
frame_maiddle_point = frame’s horizontal middle point.

Both the lane slope error and the vehicle’s centered error were proportionally combined
to produce the steering error correction, using the equations:

ANG_NO_LANE_OFFSET if NONE and previous LEFT
steering-angle_correction = ¢ —ANG_NO_LANE_OFFSET if NONE and previous RIGHT (4.4)
nit_steering_angle Otherwise

init_steering_angle = ANGLE_P x angle_error +MIDDLE_P x maiddle_point_error (4.5)

Where:

ANGLE_P = angle correction proportional constant;
MIDDLE_P = central driving correction proportional constant;
ANG_NO_LANE_OFFSET = offset when no lane is detected.

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
71 COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS

As shown in (4.5), a Proportional Control was tuned to guarantee an adequate driving
response. Two proportional constants were defined: an ANGLE_P for the steering angle correc-
tion based on the current road lane slopes and a MIDDLE_P for the vehicle’s centered driving
error. Furthermore, a final consideration was made when facing a NONE identification state,
as shown in Equation 4.4 where the maximum steering correction ANG_NO_LANE_OFFSET is
made in an attempt to recover the last seen road lane.

These driving commands are calculated in the Jetson Nano board and published using
specific ROS topics to be finally fed to the vehicle’s low-level control units to achieve the
desired autonomous driving behavior. The required ANG_LANE_OFFSET, ANG_NO_LANE OFFSET,
ANGLE_P and MIDDLE_P correction parameters were experimentally adjusted by testing the
autonomous driving performance and validating the correct steering control until the vehicle
was capable of traversing the traced road continuously. The selected configuration parame-
ters can be observed in Table 4.2, while the final implemented code can be reviewed in [39].
Examples of steering angle corrections are shown in Figures 4.25, 4.26 and 4.27.

Table 4.2: Steering Correction Control Configuration Parameters.

Configuration parameter | Value

ANG_LANE_OFFSET 20
ANG_NO_LANE_OFFSET 60
ANGLE_P 0.3
MIDDLE_P 0.25

4.7 Discussion

In this chapter the processing capabilities of the developed AV platform were tested, imple-
menting interesting autonomous driving mechanisms based on a road lane following strategy.
Relevant tools such as CV and DNN based image processing were considered for the devel-
opment of the final Road Lane Identification and Autonomous Driving system. Moreover,
state of the art systems such as Convolutional Neural Networks and Computer Vision image
segmentation were studied to generate an image processing pipeline capable of solving the
desired complex task.

An image processing pipeline was defined, dividing the autonomous driving strategy in
specific sub-steps. This processing steps were individually tested and validated using mul-
tiple manual driven vehicle trajectory recordings. This strategy allowed the modification
and adjustment of the developed software when necessary in order to achieve an adequate
overall performance, being specially useful for the development of the road lane segmentation
systems.

A CV segmentation system was implemented based on the empirical selection of a gen-
eral grayscale threshold value. The system demonstrated a good response throughout the
whole set of recordings. However, it was evident that defining a single threshold value is not

CHAPTER 4. ROAD LANE IDENTIFICATION AND AUTONOMOUS DRIVING BASED ON
COMPUTATIONAL VISION AND DEEP NEURAL NETWORKS 72

enough for the adequate road lane segmentation specially at worst illumination conditions.
This last could imply that the segmentation response would vary considerably specially if
darker testing conditions were settled. More robust CV segmentation mechanisms could
have been used, but they were left aside for further research.

A DNN segmentation system was also implemented based on a small U-Net architecture
specially trained by utilizing data argumentation and transfer learning strategies, taking ad-
vantage of a previously trained MobileNet V2 network. Even though more complex network
architectures could have been used for better performance, they could imply the usage of a
deeper network with considerably more layers.

Given the computational power of the platform, the usage of this complex networks
could have been counterproductive. In order to achieve an adequate autonomous driving
response, it is desired to obtain a segmentation output as fast as possible, however deeper
networks could produce greater output latencies, directly affecting the autonomous perfor-
mance achieved. Nonetheless, the implemented network presented a seemingly good per-
formance with a validation accuracy of 98.51%. Furthermore, it is recommended for future
complementary works to count with more diversified training data, utilizing other data aug-
mentation mechanisms such as image translation or rotations, or gathering more testing
samples at varying conditions, as an attempt to improve the network segmentation perfor-
mance.

Finally, an adequate road lane identification and steering angle correction mechanism was
achieved based entirely on the CV processing of the segmentation output. It is important
to acknowledge that this processing steps are the same for both the CV and DNN based
segmentation outputs, allowing an unbiased comparison of the autonomous road lane follow-
ing performance with respect to the segmentation strategy used. Moreover, a proportional
control of the steering angle was tested as a first approach to solve the task, demonstrating a
good overall response without the necessity of implementing more complex control strategies.

Chapter 5

Autonomous Driving Response

5.1 Experiment Description

The implemented autonomous driving system was tested using both CV and DNN based
road lane segmentation methodologies. The goal was to compare their overall performance,
and identify the most suitable proposal for the developed AV platform. To achieve this, mul-
tiple autonomous driving experiments were conducted executing the two mentioned systems
at different conditions, leaving the vehicle to traverse the traced track inside the I'TESM
CEM laboratory (see Figure 4.3) autonomously.

Both driving systems were validated using the same testing conditions as an strategy to
obtain an unbiased comparison of their performance. The testing scenarios were defined by
the modification of the vehicle’s driving sense and environment illumination variations. The
vehicle’s response at this variant conditions would be analyzed to identify the performance
achieved by each driving algorithm. However, it was first required to establish an experi-
mental procedure that allowed the quantitative comparison of both system proposals.

dIAVT 1437
dIAVT 37QAIN
dIAVT LHOIY

)

Figure 5.1: Road top-down view representation.

73

CHAPTER 5. AUTONOMOUS DRIVING RESPONSE 74

The road that the vehicle would traverse counted with three main light sources in the
laboratory lamps distributed along the whole track, see Figure 5.1. The laboratory lamps are
placed at the right, middle, and left sections of the traced road, allowing to set the desired
variant illumination scenarios by modifying their state. The illumination scenarios tested
included (a) All lights ON, (b) Middle and Right Lights ON, (c¢) Left and Right Lights ON,
(d) Only Left Light ON, (e) Only Middle Light ON, (f) Only Right Light ON, and (g) All
lights OFF.

It was primordial to establish similar testing conditions for each of the developed exper-
iments. An adequate control of the illumination conditions was achieved, however it was
required to define a constant startup condition given the trajectory sense to be used. To
achieve this, specific startup locations were determined as shown in Figure 5.1. The clockwise
direction startup location is represented with a purple dashed line, while the counter-clock
wise startup location is shown in green. This startup conditions were defined to fulfill the ini-
tial road lane identification condition where the vehicle must be initially placed in a straight
section of the road (see Road Lanes Identification and Classification subsection).

Figure 5.2: Examples of undesired driving condition frames obtained from the mobile camera perspective.

The autonomous driving performance metric was based on how frequently the vehicle
presented an undesired driving behaviour throughout each of the developed experiments.
Furthermore, an unbiased measurement was desired where the performance metric was not
dependent in any way to the autonomous driving system used. To achieve this, external
top-down view recordings of each of the vehicle trajectories were made using a mobile cam-
era. This recordings were later analyzed by segmenting them frame by frame to manually
determine the performance achieved.

The mentioned methodology allowed defining the desired quantitative performance metric
shown in Equation 5.1, based on the total number of frames acquired for a whole vehicle
trajectory and the number of frames where the vehicle demonstrated an undesired driving
condition. Such error frames included situations where the vehicle was driving near the road
limits or directly outside the road, see Figure 5.2. The goal was to identify how frequently
this erroneous driving conditions occurred during the vehicle’s autonomous driving given the
settled illumination condition and the segmentation method used.

75

CHAPTER 5. AUTONOMOUS DRIVING RESPONSE

OutLaneFrames
E = 1 1
rror% Total Frames * 100 (5-1)

Where:

Error% = Erroneous driving performance metric (%).
OutLaneFrames = Number of error frames in the current analyzed vehicle trajectory.
Total Frames = Number of frames for the current analyzed vehicle trajectory.

Finally, the experimental procedure was divided in specific steps following the previously
defined specifications:

1.
2.

Manually place the vehicle in its startup location.

Set the current experiment illumination condition by turning ON or OFF the laboratory
lights.

. Execute the autonomous driving system to be tested (CV or DNN segmentation).

. Start the mobile recording and change the vehicle’s operation mode to autonomous

driving.

. Leave the vehicle autonomously traverse the whole track five times and follow it while

recording its driving behavior.

. Stop the mobile recording once the vehicle has completed the five laps or if it completely

leaves the road.

Repeat the procedure at the same illumination condition but changing the vehicle driv-
ing sense.

. Determine the achieved driving performance metric using the two trajectory videos

recorded.

. Repeat the whole process with the segmentation system that has not been tested yet.

The previous steps were repeated for each illumination and trajectory sense conditions
acquiring a total number of 28 trajectory videos which were manually analyzed to calculate

the

desired performance metric. Every undesired driving behaviour frame was counted,

writing down the total number of such error frames as well as the total number of frames
acquired for each video. Finally the performance data obtained for both trajectory senses at
similar illumination conditions were added to obtain a single performance evaluation metric
for each illumination condition tested.

CHAPTER 5. AUTONOMOUS DRIVING RESPONSE 76

5.2 Experiment Results

The overall experiments results can be observed in Table 5.1. Two entries are presented
for each of the illumination conditions tested, one for the experiments were a CV based
road lanes segmentation was used and one for DNN segmentation, i.e. All lights OFF CV
and All lights OFF DNN. Moreover, the Table presents a Complete out-road indicator that
marks if the vehicle did not complete the whole track, meaning that at some point of the
trajectory the vehicle completely left the road. The Total Frames, Out Lane Frames and
Error% performance measurement parameters are also presented in the table.

Table 5.1: Autonomous Driving Test Results.

| Test Condition | Complete out-road | Total Frames | Out Lane Frames | Error % |
All lights OFF CV X 126 29 44.94%
All lights OFF DNN X 106 28 52.75%
Only Left Light ON CV X 1417 246 36.62%
Only Left Light ON DNN X 3547 103 22.87%
Only Middle Light ON CV 9394 618 13.12%
Only Middle Light ON DNN 9491 763 16.07%
Only Right Light ON CV X 2612 638 47.38%
Only Right Light ON DNN X 8142 797 18.83%
Middle and Right Lights ON CV 10840 676 12.55%
Middle and Right Lights ON DNN 10891 679 12.46%
Left and Right Lights ON CV 10108 723 14.22%
Left and Right Lights ON DNN 10358 916 17.69%
All lights ON CV 9749 480 9.87%
All lights ON DNN 9768 700 14.33%

For high illumination scenarios such as All lights ON and Left and Right Lights ON, the
CV based system showed up a seemingly better performance. This is reflected in the Error
% parameter, that showed that the vehicle presented an undesired driving behavior less
frequently during its whole trajectory in comparison to the DNN proposal. However, in the
case of the Middle and Right Lights ON condition, both systems presented a very similar
performance with practically the same Error % value. Nonetheless, a good overall perfor-
mance was achieved by both systems at these high illumination conditions, accomplishing
the desired autonomous driving behaviour continuously.

Surprisingly, the vehicle achieved a better driving performance with the DNN based road
lane segmentation at low light conditions, even though both proposals were not capable of
completing the five road laps. This is clear for the Only Left Light ON and Only Right Light
ON scenarios. This is reflected in the total number of frames acquired for the whole vehicle
trajectory, being greater for the DNN proposal than for the CV based, as well as the smaller
Error % value. However the response at the Only Middle Light ON was not comparable
to the other low illumination scenarios, as both systems were capable of maintaining a
continuous autonomous driving behaviour. This could be caused by the middle lamp position
on the road, as it is placed right at the center of the road, allowing a better overall lighting
of the whole track compared to the other low illumination scenarios.

7 CHAPTER 5. AUTONOMOUS DRIVING RESPONSE

Finally, both systems demonstrated a similar response for the All lights OFF test scenar-
ios as they were unable to complete the trajectory and directly leaving the road at startup.
This could be a reflex of the previously mentioned CV threshold values variation at low light
conditions, described in the Road Lane Segmentation using Computater Vision, as well as a
bad response from the DNN segmentation system.

The obtained results could reflect that the CV segmentation was better adapted to high
illumination scenarios whereas the DNN segmentation system was better for lower ones be-
sides, they presented a comparable performance for medium light conditions. Video examples
of the platform’s response at the All Lights ON illumination condition can be observed in
links shown at Figures 5.3 and 5.4. Both of them show the mobile camera recording captured
that was later analyzed manually and the inside captured processing results throughout the
whole trajectory.

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.3: Autonomous driving response mobile recording and inner image processing pipeline Examples
at All Lights ON illumination condition using a DNN based segmentation system.

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.4: Autonomous driving response mobile recording and inner image processing pipeline Examples
at All Lights ON illumination condition using a CV based segmentation system.

CHAPTER 5. AUTONOMOUS DRIVING RESPONSE 78

Other autonomous driving response examples can be observed in links shown at Figures
5.5 and 5.6. These experiments were made at a Only Left Light ON illumination condition.
Throughout the whole trajectory, it is clear that the DNN based segmentation system offered
a better response as CV segmentation showed really noisy outputs (see minute 1:04 and 0:00
of Figure’s 5.6 Inside process recording). Furthermore, the vehicle was capable of completing
four complete road trajectories using the DNN system while the CV proposal only completed
a single road lap, see Figure 5.11. Moreover, the DNN proposal got into a complete out-road
situation however the inside recording did not show evidence of a bad segmentation response
(see minute 1:20 of 5.5 Inside process recording).

7]

*.-
e T

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.5: Autonomous driving response mobile recording and inner image processing pipeline Examples
at Only Left Light ON illumination condition using a DNN based segmentation system.

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.6: Autonomous driving response mobile recording and inner image processing pipeline Examples
at Only Left Light ON illumination condition using a CV based segmentation system.

79 CHAPTER 5. AUTONOMOUS DRIVING RESPONSE

Figures 5.7 and 5.8 show links to experiment recordings at Only Right Light ON illumi-
nation conditions. In these cases, both autonomous driving systems tested were not capable
of completing the whole set of road trajectories (see Figure 5.12) however the DNN system
completed a single trajectory successfully, while the CV proposal got into the undesired
complete out-road condition before even completing the first lap. It’s noticeable that the
vehicle completely left the road at the same track section which was the left road curve (see
minute 1:06 of Figure’s 5.8 Inside process recording and minute 0:47 of Figure’s 5.7 Inside
process recording). This could be a result of an erroneous segmentation response by both
systems product of the settled illumination condition, given that such road section was the
darkest being the furthest from the unique light source.

EREEE e

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.7: Autonomous driving response mobile recording and inner image processing pipeline Examples
at Only Right Light ON illumination condition using a DNN based segmentation system.

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.8: Autonomous driving response mobile recording and inner image processing pipeline Examples
at Only Right Light ON illumination condition using a CV based segmentation system.

CHAPTER 5. AUTONOMOUS DRIVING RESPONSE 80

Finally, the extreme case scenarios are shown in Figures 5.9 and 5.10 including some
recordings of the vehicle’s performance at the All Lights OFF illumination condition. As
shown in both proposals’ Inside process recording video, the segmentation systems were inca-
pable of segmenting the road lanes in the acquired frames, causing the vehicle to completely
leave the traced road at startup (see Figure 5.13. This reflects that neither autonomous
driving system proposal presented an adequate response at considerably dark scenarios as
the one tested in these recordings.

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.9: Autonomous driving response mobile recording and inner image processing pipeline Examples
at All Lights OFF illumination condition using a DNN based segmentation system.

[=] 2% [m]

(a) Inside process recording. (b) Outside mobile recording.

Figure 5.10: Autonomous driving response mobile recording and inner image processing pipeline Examples
at All Lights OFF illumination condition using a CV based segmentation system.

81 CHAPTER 5. AUTONOMOUS DRIVING RESPONSE

1 LAP

dIAVT 31aaIn
dAIVT LHOIY

dIAVT 1431

Lﬂ

4 LAP

1
]
x DNN FAIL POINT x CV FAIL POINT | STARTUP POINT <«—— TRAJECTORY SENSE

Figure 5.11: Vehicle’s autonomous driving response representation using both CV and DNN system proposals
at the Only Left Light ON illumination condition.

= =

= o (2]

7 2 =

= 1LAP < =

< = <

o < o
0LAPS

x DNN FAIL POINT x CV FAIL POINT

STARTUP POINT =— TRAJECTORY SENSE

Figure 5.12: Vehicle’s autonomous driving response representation using both CV and DNN system proposals
at the Only Right Light ON illumination condition.

CHAPTER 5. AUTONOMOUS DRIVING RESPONSE 82

-

dIAIV1 LHOIY

dINVT 1437
dIAVT 3TAdIN

1
1
x DNN FAIL POINT x CV FAIL POINT | STARTUP POINT <«—— TRAJECTORY SENSE

Figure 5.13: Vehicle’s autonomous driving response representation using both CV and DNN system proposals
at the All Lights OFF illumination condition.

5.3 Discussion

In this chapter, the developed autonomous driving systems (CV and DNN based) were
tested and evaluated. An specific experimental methodology was defined to determine the
autonomous driving performance achieved by each proposal and obtain an unbiased quantita-
tive comparison. Even though the selected strategy offered a simple quantitative evaluation
method, the performance estimation could have been enriched with other complementary
measurements such as an image processing response evaluation. This would allow to deter-
mine erroneous road lane identifications and consider the achieved segmentation quality as
part of the performance evaluation measurement.

The implemented autonomous driving strategies present a high performance dependency
on the established illumination condition. Despite the good performance achieved by both
systems at high illumination scenarios, there was clear evidence of a decrease in the segmen-
tation quality as darker testing scenarios were settled. Furthermore, it was not possible to
recognize a single best autonomous driving system as both proposals demonstrated pretty
similar performances. This was demonstrated thanks to the calculated Error %, where DNN
segmentation seemed the better option for low illumination conditions and CV for higher
ones, while both system showed pretty similar responses at medium light scenarios. The
proposal was not capable of achieving better performances even at higher illumination con-
ditions, despite using the CV or DNN segmentation methods. This could imply that better
steering correction system adjustments could be made in order to, for instance, prevent er-
roneous vehicle driving behaviours at curved sections of the road.

83 CHAPTER 5. AUTONOMOUS DRIVING RESPONSE

Moreover, if its important to acknowledge the segmentation output generation latency of
both system proposals, as a more complex image processing is made by the DNN system
with a 30 ms output latency in comparison to the CV system with a latency of 0.3 ms.
This implies that the DNN segmentation system presents a substantially slower response
than the CV approach. Therefore a complete evaluation of this performance trade-off could
be taken into consideration for the selection of the autonomous driving system to be used,
specially given the unclear performance difference between them. Further research can be
done regarding the relation between the vehicle’s linear velocity and the image processing
output latency in order to improve the autonomous control performance.

It was evident that the general response at low illumination conditions could have been
improved by developing a more robust CV or DNN segmentation system and taking into
consideration the multiple possible light scenarios the vehicle would face. Besides, the devel-
oped U-Net system could have been benefited by the acquisition of a more complete training
dataset, gathering training data of multiple different illumination scenarios and at different
day times. Nevertheless, the platform autonomous driving capabilities were demonstrated
successfully, serving as a baseline for future updates and improvements of the algorithms
proposed in this project.

Future complementary work can be considered, including the possibility of implementing
more complete odometry mechanisms, taking advantage of the platform’s hardware. This
mechanisms could include the Intel Realsense image processing and RPLidar sensor data
to develop a sensor fusion system, allowing a better odometry and vehicle trajectory track-
ing system. The proposed autonomous performance evaluation system depends on human
intervention for the manual identification of erroneous driving conditions, however further
research could be done to propose automated evaluation mechanisms that could considerably
enhance the comparison and development of different autonomous driving approaches.

References

1]

2]

3]

[4]

[5]

[6]

[10]

Hobbyking trooper pro-edition brushless sct. https://www.rcgroups.com/forums/
showthread.php?2756163-Hobbyking-Trooper-Pro-Edition-Brushless-SCT. Ac-
cessed: 2020-11-21.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation, 2015.

Craig Quiter and M Ernst. Deepdrive. https://deepdrive.voyage.auto/. Accessed:
2020-04-01.

Inc LG Electronics. Lgsvl simulator. https://www.svlsimulator.com/. Accessed:
2020-04-01.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity
visual and physical simulation for autonomous vehicles, 2017.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Sergey Levine, Vincent Vanhoucke, and
Ken Goldberg, editors, Proceedings of the 1st Annual Conference on Robot Learning,
volume 78 of Proceedings of Machine Learning Research, pages 1-16. PMLR, 13-15 Nov
2017.

Matthew O’Kelly, Houssam Abbas, Jack Harkins, Chris Kao, Yash Vardhan Pant, Rahul
Mangharam, Varundev Suresh Babu, Dipshil Agarwal, Madhur Behl, Paolo Burgio, and

Marko Bertogna. F1/10: An open-source autonomous cyber-physical platform. arXiv,
10, 2019.

Christian Berger. From a Competition for Self-Driving Miniature Cars to a Standardized
Experimental Platform: Concept, Models, Architecture, and Evaluation. 5(May):63-79,
2014.

Ardashir Bulsara, Adhiti Raman, Srivatsav Kamarajugadda, Matthias Schmid, and
Venkat N Krovi. Obstacle avoidance using model predictive control: An implementation
and validation study using scaled vehicles. Technical report, SAE Technical Paper, 2020.

Matthew O’Kelly, Hongrui Zheng, Dhurv Karthik, and Rahul Mangharam. Fltenth: An
open-source evaluation environment for continuous control and reinforcement learning.
In Hugo Jair Escalante and Raia Hadsell, editors, Post Proceedings of the NeurIPS

2019 Demonstration and Competition Track, Proceedings of Machine Learning Research.
PMLR, 2020.

84

85 REFERENCES

[11] AutoModelCar. Autonomos model. https://github.com/AutoModelCar/
AutoModelCarWiki/wiki, 2018.

[12] Ugo Rosolia Jon Gonzales and Greg Marcil. Barc: Berkeley autonomous race car.
http://www.barc-project.com/. Accessed: 2020-04-01.

[13] MIT. Racecar. https://mit-racecar.github.io/. Accessed: 2020-04-01.

[14] Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet Khare,
Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, Eddie Calleja, Sunil Muralidhara,
and Dhanasekar Karuppasamy. Deepracer: Educational autonomous racing platform
for experimentation with sim2real reinforcement learning, 2019.

[15] Brian Goldfain, Paul Drews, Changxi You, Matthew Barulic, Orlin Velev, Panagiotis
Tsiotras, and James Rehg. Autorally an open platform for aggressive autonomous
driving, 06 2018.

[16] Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove, Matt Schmittle, Colin
Summers, Matthew Rockett, Joshua R. Smith, Sanjiban Choudhury, Christoforos
Mavrogiannis, and Fereshteh Sadeghi. Mushr: A low-cost, open-source robotic race-
car for education and research, 2019.

[17] W Roscoe. Donkey car: An opensource diy self driving platform for small
scale cars. https://www.amazon.com/XiaoR-Geek-Starter-Platform-Raspberry/
dp/B082NL3RLG. Accessed: 2020-04-01.

[18] Adhiti T. Raman, Venkat N. Krovi, and Matthias J.A. Schmid. Empowering graduate
engineering students with proficiency in autonomy. Proceedings of the ASME Design
Engineering Technical Conference, 5A-2018:1-8, 2018.

[19] Matthew O’Kelly, Hongrui Zheng, Achin Jain, Joseph Auckley, Kim Luong, and
Rahul Mangharam. TUNERCAR: A Superoptimization Toolchain for Autonomous

Racing. Proceedings - IEEE International Conference on Robotics and Automation,
(January):5356-5362, 2020.

[20] Aman Sinha, Matthew O’Kelly, Hongrui Zheng, Rahul Mangharam, John Duchi, and
Russ Tedrake. Formulazero: distributionally robust online adaptation via offline popu-
lation synthesis. arXiv, 2020.

[21] Embedded Systems, Abhijeet Agnihotri, and Matthew O Kelly. ScholarlyCommons
Teaching Autonomous Systems at 1 / 10th-scale. (February), 2020.

[22] David Tian. Deeppicar — part 1: How to build a deep learning, self driv-
ing robotic car on a shoestring budget. https://towardsdatascience.com/
deeppicar-part-1-102e03c83f2c, 2019.

[23] Mariusz Bojarski, Davide Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Larry Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. 04 2016.

[24] Turnigy trooper sct-x4 1/10 4x4 nitro curso corto
de camiones (rtr). https://hobbyking.com/es_es/

REFERENCES 86

turnigy-trooper-sct-x4-1-10-4x4-nitro-short-course-truck-rtr.html. Ac-
cessed: 2020-11-21.

[25] Turnigy rc on/off switch. https://hobbyking.com/es_es/
turnigy-receiver-controlled-switch-1.html. Accessed: 2020-11-21.

[26] Turnigy 9x 9ch mode 2 transmitter w/ module and ia8 re-
ceiver (athds 2a system). https://hobbyking.com/es_es/
turnigy-9x-9ch-mode-2-transmitter-w-module-ia8-receiver-afhds-2a-system.
html. Accessed: 2020-11-21.

[27] Arduino nano. https://store.arduino.cc/usa/arduino-nano. Accessed: 2020-11-
21.

[28] Odroid-xud. https://wiki.odroid.com/odroid-xu4/odroid-xud. Accessed: 2020-
11-21.

[29] Jetson nano developer Kkit. https://developer.nvidia.com/EMBEDDED/
jetson-nano-developer-kit. Accessed: 2020-11-21.

[30] Blasterx senz3d. https://es.creative.com/p/web-cameras/blasterx-senz3d. Ac-
cessed: 2020-11-21.

[31] Rplidar a2. https://www.slamtec.com/en/Lidar/A2. Accessed: 2020-11-21.

[32] Turnigy 2200mah 2s 25¢ lipo pack w/xt60. https://hobbyking.
com/es_es/turnigy-2200mah-2s-30c-1lipo-pack.html?queryID=
61017de534bd628a334581b6a7d83735&objectID=18290&indexName=hbk_live_
magento_es_es_products. Accessed: 2020-11-21.

[33] Matek pdb-xt60 (power distribution board). http://www.mateksys.com/?portfolio=
pdb-xt60. Accessed: 2020-11-21.

[34] Pololu 5v, 9a step-down voltage regulator d24v90f). https://www.pololu.com/
product/2866. Accessed: 2020-11-21.

[35] Ros melodic morenia. http://wiki.ros.org/melodic. Accessed: 2020-11-21.

[36] jetsonhacks. installlibrealsense. https://github.com/jetsonhacks/
installLibrealsense-1/tree/vL4T32.2.1, 2019.

[37] WubinXia. Slamtec rplidar public sdk. https://github.com/Slamtec/rplidar_sdk,
2020.

[38] shiritbrook. librealsense. https://github.com/IntelRealSense/librealsense, 2021.

[39] AldoAguilar. Self driving car project. https://github.com/AldoAguilar/self_
driving_car_project/tree/master, 2020.

[40] Arduino cli (command line interface) application. https://www.arduino.cc/pro/cli.
Accessed: 2020-11-21.

[41] Tensorflow. https://www.tensorflow.org/. Accessed: 2020-11-21.
[42] Opencv. https://www.python.org/. Accessed: 2020-11-21.

87 REFERENCES

[43] jleichty. R/c car quadrature wheel encoders. http://www.blargh.co/2013/, 2013.

[44] Dimitris Platis. Build your own android-powered self driving r/c car. https://
makezine.com/projects/build-android-powered-autonomous-rc-car/, 2015.

[45] Connect two networks with one roscore. https://answers.ros.org/question/
256435/connect-two-networks-with-one-roscore/. Accessed: 2020-11-21.

[46] Running ros across multiple machines. http://wiki.ros.org/R0S/Tutorials/
MultipleMachines. Accessed: 2020-11-21.

[47] Understanding ros nodes. http://wiki.ros.org/R0OS/Tutorials/
UnderstandingNodes. Accessed: 2020-11-21.

[48] Understanding ros topics. http://wiki.ros.org/ROS/Tutorials/
UnderstandingTopics. Accessed: 2020-11-21.

[49] Diego Bueno. Motor eléctrico brushless: Funcionamiento y caracteristicas. https:
//1mecanizadoelarenal .files.wordpress.com/2013/11/motores-brushless.pdf,
2013.

[50] Howard Austerlitz. Chapter 2 - analog signal transducers. In Howard Austerlitz, editor,
Data Acquisition Techniques Using PCs (Second Edition), pages 6 — 28. Academic Press,
San Diego, second edition edition, 2003.

[51] Clarence W. de Silva. Sensors for control. In Robert A. Meyers, editor, Encyclopedia
of Physical Science and Technology (Third Edition), pages 609 — 650. Academic Press,
New York, third edition edition, 2003.

[52] Arduino external interrupts. https://www.arduino.cc/reference/en/language/
functions/external-interrupts/attachinterrupt/. Accessed: 2020-11-21.

[53] Arduino pwm. https://www.arduino.cc/en/Tutorial/Foundations/PWM. Accessed:
2020-11-21.

[54] Arduino analog library. https://www.arduino.cc/reference/en/language/
functions/analog-io/analogwrite/. Accessed: 2020-11-21.

[55] Atmel. ATmega328P 8-bit AVR Microcontroller with 32K Bytes In-System Pro-
grammable Flash DATASHEET, 1 2015. Rev. 4.

[56] Gene Franklin, J.D. Powell, and M.L. Workman. Digital control of dynamic systems-
third edition. page 503, 01 2006.

[57] S. Dormido. Advanced pid control - [book review|. Control Systems Magazine, IEEE,
26:98- 101, 03 2006.

[58] Xianhu Gao. Bldc motor control with hall sensors based on frdm-ke 02 z by :. 2013.

[59] Vikas Gupta and Anindya Deb. Speed control of brushed dc motor for low cost electric
cars. In 2012 IEEFE International Electric Vehicle Conference, pages 1-3, 2012.

[60] Em Poh Ping, J. Hossen, Fitrian Imaduddin, Wong Eng Kiong, and Ubaidillah Sabino.
Experimental of vision-based lane markings segmentation methods in lane detection
application. Journal of Engineering Science and Technology Review, 2019.

REFERENCES 88

[61] Miguel Angel Sotelo, Francisco Javier Rodriguez, Luis Magdalena, Luis Miguel Bergasa,
and Luciano Boquete. A color vision-based lane tracking system for autonomous driving
on unmarked roads. Autonomous Robots, 2004.

[62] Dwi Prasetyo Adi Nugroho and Mardhani Riasetiawan. Road lane segmentation us-
ing deconvolutional neural network. In Communications in Computer and Information
Science, 2017.

[63] Leonardo Cabrera Lo Bianco, Jorge Beltran, Gerardo Ferndndez Lépez, Fernando
Garcia, and Abdulla Al-Kaff. Joint semantic segmentation of road objects and lanes
using Convolutional Neural Networks. Robotics and Autonomous Systems, 2020.

[64] Jelena Kocic, Nenad Jovicic, and Vujo Drndarevic. An end-to-end deep neural network
for autonomous driving designed for embedded automotive platforms. Sensors, 05 2019.

[65] N. Kehtarnavaz and W. Sohn. Steering control of autonomous vehicles by neural net-
works. In 1991 American Control Conference, pages 3096-3101, 1991.

[66] Wael Farag and Zakaria Saleh. Behavior cloning for autonomous driving using convolu-
tional neural networks. In 2018 International Conference on Innovation and Intelligence
for Informatics, Computing, and Technologies (3ICT), pages 1-7, 2018.

[67] P Daniel Ratna Raju and G Neelima. Image segmentation by using histogram threshold-
ing. International Journal of Computer Science Engineering and Technology, 2(1):776—
779, 2012.

[68] J. R. Parker. Gray-level segmentation. In Algorithms for Image Processing and Com-
puter Vision, chapter 4, pages 141-142. Wiley Publishing, Inc., 2010.

[69] Adrian Kaehler Gary Bradski. Image transforms. In Learning OpenCV: Computer
Vision with the OpenC'V Library, chapter 6, pages 163—172. O’Reilly, 2008.

[70] Le Anh Tran and My Ha Le. Robust u-net-based road lane markings detection for
autonomous driving. In Proceedings of 2019 International Conference on System Science
and Engineering, ICSSE 2019, 2019.

[71] Farhana Sultana, Abu Sufian, and Paramartha Dutta. Evolution of image segmentation
using deep convolutional neural network: A survey. Knowledge-Based Systems, 201-
202:106062, Aug 2020.

[72] Opencv perspective transformation. https://medium.com/analytics-vidhya/
opencv-perspective-transformation-9edffefb2143#: ~:text=Perspectivel,
20Transform/20is%20a’%20feature, Transformation’20is%20applied’20to%20it.
Accessed: 2020-04-01.

[73] Ge Pingshu, Guo Lie, Qi Guodong, and Chang Jing. Lane marker line identification
method in variable light environment. Laser and Optoelectronics Progress, 2020.

[74] Deepshikhar Tyagi, Sameer Farkade, and Upendra Suddamalla. Night time road bound-
ary detection using adaptive averaging likelihood map over spatio-temporal gradient
correspondence-STGC. In 2017 4th International Conference on Image Information
Processing, ICIIP 2017, 2018.

89 REFERENCES

[75] Farid Garcia-Lamont, Jair Cervantes, Asdriibal Lépez, and Lisbeth Rodriguez. Seg-
mentation of images by color features: A survey. Neurocomputing, 2018.

[76] Parthima Guruprasad. Overview Of Different Thresholding Methods In Image Process-
ing. TEQIP Sponsored 3rd National Conference on ETACC, 2020.

[77] Color conversions. https://docs.opencv.org/3.4/de/d25/imgproc_color_
conversions.html. Accessed: 2020-04-01.

[78] Opencv contours : Getting started. https://docs.opencv.org/3.4/d4/d73/
tutorial_py_contours_begin.html. Accessed: 2020-11-21.

[79] Niall O’ Mahony. Deep Learningvs. Traditional Computer Vision. MaR Technology
Gateway, Institute of Technology Tralee, 2020.

[80] Hyeon-Joong Yoo. Deep convolution neural networks in computer vision: a review. IEIE
Transactions on Smart Processing and Computing, 4:35—-43, 02 2015.

[81] Amaury Bréhéret. Pixel Annotation Tool. https://github.com/abreheret/
PixelAnnotationTool, 2017.

[82] Image segmentation with watershed algorithm. https://docs.opencv.org/master/
d3/db4/tutorial_py_watershed.html. Accessed: 2020-04-01.

[83] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications, 2017.

[84] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks, 2019.

[85] A basic introduction to separable convolutions. https://towardsdatascience.com/
a-basic-introduction-to-separable-convolutions-b99ec3102728. Accessed:
2020-04-01.

[86] Abdelilah Adiba, Hicham Hajji, and Mustapha Maatouk. Transfer learning and U-Net
for buildings segmentation. In ACM International Conference Proceeding Series, 2019.

[87] tf.keras.applications.mobilenetv2. https://www.tensorflow.org/api_docs/python/
tf/keras/applications/MobileNetV2. Accessed: 2020-04-01.

[88] Contour features. https://docs.opencv.org/3.4/dd/d49/tutorial_py_contour_
features.html. Accessed: 2020-04-01.

