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Mining the SCOPUS Database to Identify Potential
Academic Rising Stars

by
Jorge Antonio Ayala Urbina

Abstract

Academic Rising Stars are often defined as authors in the earlier years of their scientific ca-
reers who have the potential to become impactful authors in the future. Universities and
research institutions would benefit greatly from identifying these Academic Rising Stars and
convince them to join their research teams, because if the potential of these authors is fulfilled
these could benefit the institution in terms of scientific prestige and impactful scientific pro-
duction. This thesis project aims to prove if it is possible to identify these Academic Rising
Stars using Machine Learning classifiers and the data that is available through Elsevier’s Sco-
pus and SciVal APIs. Conducting a case study in the field of Clustering, it was shown that it is
possible to identify these authors using the average metrics from their first five years of scien-
tific publications, with acceptable precision and accuracy. It was shown that the best attribute
to label top authors is the h5-index and the classifier which can achieve the best result is the
Support Vector Machine with a radial basis function kernel. The developed methodology pro-
vides a solid framework from which research institutions can identify Academic Rising Stars
in the fields they are interested in.
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Chapter 1

Introduction

1.1 Scientometrics, Machine Learning and Academic Ris-
ing Stars

The field of scientometrics has greatly benefited from the advances in machine learning and
data science. This has opened the possibility of predicting with varying grades of success the
future scientific success of a researcher. One of the earliest models used to make these predic-
tions is based on the number of articles written, current h-index, years since the publication
of the researcher’s first article, number of distinct journals published, and number of articles
in high impact journals[1]. Since then, other alternative approaches have been proposed, such
as approaches based on factors such as a researcher’s professional network[27].

Early efforts to predict future scientific success have been based on citations, publica-
tions, and h-index[1, 2]. However, more comprehensive approaches have been developed,
for example, some of them involve the quality of the research network the author collabo-
rates with. These methods can be based on the temporal impact of the author, their co-author
network, and the venue in which they publish [39].

The ability to evaluate and predict scientific impact has prompted a search for Academic
Rising Stars. There is not a universal consensus on what an Academic Rising Start is, how-
ever one of the most straightforward definitions states that Academic Rising Stars are scholars
in the beginning stage of their careers and as such are not outstanding among peers or have a
low research profile, but they tend to become influential in their academic field[37]. Aiming
to identify Academic Rising Stars various methods have been developed, and these will be
further discussed in Chapter2.

But why is it important to search for Academic Rising Stars? Having a reliable and con-
sistent way to predict if a researcher is going to become outstanding in their field of research
is of interest for universities and research institutions as they constantly strive to improve their
scientific output and prestige. Identifying who may become a prominent scientist in the future
also allows institutions to reinforce the strength of their internal research network. Addition-
ally, the factors which drive these predictions are of interest to young researchers as they can
provide guidance on which aspects of their scientific career they should improve if they aspire
to become influential in their field of research. In other words, the search for rising stars pro-
vides a university with an answer to the question: “Who should I hire?” and provide a young
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2 CHAPTER 1. INTRODUCTION

researcher with an answer to the question: “Which of my indicators should I improve to stand
among my peers?”.

The availability of data enables this search. The biggest and most complete database
for scientific publications is the Scopus database, and it has still not been exploited to predict
rising stars, to the best of our knowledge. The Scopus database is a citation and abstract
database which has more than 69 million records[10]. These records include more than 36,000
articles from more than 11,000 publishers. Scopus provides an API that enables a user to
make certain queries to the database and get information in return. The API allows retrieving
affiliation data, which is the data related to an academic institution, and author data which
includes papers, affiliations, and h-index. Additionally, a traditional Scopus search using
keywords can be conducted. Using this API, it can be possible to implement a machine
learning classifier that gathers Scopus data and identifies Academic Rising Stars in any field
of knowledge.

1.2 Finding Academic Rising Stars

Measuring and evaluating the scientific impact of a researcher has been of interest to the sci-
entific community. Currently, the most accepted and widely used solution is the h-index. The
h-index is calculated by counting the number of publications for which an author has been
cited by other authors at least that same number of times[17]. Although it has come under
criticism[8] it is widely accepted and useful to measure the productivity and impact of a sci-
entist. To tackle the problem of finding Academic Rising Stars, using only one metric such
as the h-index results inefficient. This mainly has to do with the young researcher having
very little time in the scientific field, and as such, the number of papers, citations, and h-index
alone are insufficient to describe the impact and potential of the young researcher. Methods to
predict academic rising stars have been proposed. Two notable cases, CocaRank and Schol-
arRank are heavily inspired by PageRank[37, 38, 3]. PageRank is an algorithm developed
by Larry Page and Sergey Brin, and it can be used by Google to rank web pages. It works
by counting the number and quality of links to a page to determine a rough estimate of how
important the web page is. To determine how important a web page is, a rank is assigned
based on how many other web pages have a direct link to it. So this applied to the search for
academic rising stars is used to assess the relevancy of young researchers works in within a
research network. These algorithms also weigh in the influence of the citation network and
the co-author network.

The latest approaches to identify Academic Rising Stars have been based on machine
learning techniques. A non-iterative hierarchical weighted model employed to detect aca-
demic rising stars uses author, social, venue, and temporal features to make predictions[26].
These models require evaluating author features, such as how many papers an author has, how
many of those have been published in the last five years, the average time between paper publi-
cations, and the average citation count. They also evaluate social features, such as the number
of co-authors, the citation number of the researcher’s co-authors, and the average citations of
all its co-authors, this should speak about the quality of the researcher’s network. The venue
features include the number of citations by journal level, the number of papers in each level,
the number of venues the author has published in, and the average number of publications on
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each level in the last five years. And finally, the temporal features comprehend the author’s
citation increment in one year, two years, and the average, and the same increments in their
co-author network. These features are the most likely to be used for this thesis project. As
they are very comprehensive features and take into account the quality of the researchers, the
young researcher works with. Additionally, taking into account the temporal features helps to
weigh in the improvement of a young researcher over time.

An alternative approach has used scientometric indicators such as the researcher pro-
ductivity level, scientific impact level, value of productivity, citations per publication, contri-
bution impact, international collaboration, research area relevancy, and venue reputation[3].
The use of these scientometric indicators can also be evaluated and tested to see if that ap-
proach presents many advantages over the method which employs feature evaluation. This
last method does not explore the impact that each indicator has, and exploring that would
also be valuable for the thesis project. It is not enough to make predictions with a reasonable
and reliable level of accuracy, explanations as to why the features and indicators employed
in the predictions are impactful and relevant would also enrich the scientific contribution of
the project. It is also important to mention that the last method that employs scientometric
indicators, was tested using the Web of Science (WoS) database, which is similar to the Sco-
pus database. The approach that this method uses could be more relevant to the scope of this
project. However, Scopus is more strict on its records and that is why it is considered more
reliable.

1.3 This Thesis Project’s Goals

Currently, to the best of our knowledge, no one has attempted to predict which researchers
are considered Academic Rising Stars using data gathered from the Scopus database. As
previously stated, the Scopus database is regarded as the best of its kind; and given the quality
of the data, the quality of the predictions should also be more robust compared to the ones
previously done. Furthermore, the predictions done using scientometric indicators and the
one that uses different features[3, 26], have been done with different databases and in limited
scopes such as only for certain academic institutions[3], or very broad domains such as the
whole computer science field[26]. In contrast, this thesis project aims at predicting Academic
Rising Stars from a specific domain, in this case, Clustering. As such, the results should
provide evidence that it is possible to predict Academic Rising Stars using a specific area,
which is not done in most similar Academic Rising Star prediction exercises[3, 26].

Since this thesis project aims at predicting the Academic Rising Stars of a specific field,
it is necessary to specify how these datasets are built in the context of the use of the Scopus
database, which to the best of our knowledge has not been documented in previous research
papers regarding Academic Rising Stars prediction. Retrieving data using the Scopus API
has its limitations in terms of download speed and the amount of data that can be down-
loaded. Therefore, this project has the additional objective of presenting the method used to
acquire, preprocess and enrich the necessary data for the Academic Rising Star prediction
task. Once the data is ready, different types of classifiers (Logistic Regression and Support
Vector Machine) are trained using different parameters, sets of features, and labels to verify if
it is possible to predict Academic Rising Stars using Scopus data.
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The successful prediction of Academic Rising Stars can have commercialization poten-
tial. It is in the best interest of universities and research institutions to identify and attract
the most promising young researchers to their ranks. Therefore, providing these institutions
with information on potentially outstanding researchers that suit their research areas can be
something they are prepared to pay for. Additionally, the resulting methodology of this thesis
project could be integrated into a service that aids the institutions in their researchers’ hiring
processes in a more comprehensive fashion.

All in all, the aim of this thesis project is to build a relevant data set and then select author
features available in Scopus databases to identify Academic Rising Stars. The final goal of
the project is to choose a field of knowledge as input and then implement a methodology that
builds a data set through Scopus and then returns which young researchers adjust better to the
description of an Academic Rising Star.

This thesis project starts by presenting how can researchers’ data can be retrieved from
the Scopus API in a feasible way, in terms of time and sticking to a reasonable download
quota. Once the dataset is built, a thorough Exploratory Data Analysis (EDA) of the dataset
will be presented explaining the particularities of the data and how is it processed to make
it possible to predict if a researcher will achieve the Academic Rising Star status. Then, the
different classification methods and their particularities will be presented. Assessing with
different metrics the performance of the different classifiers, it will be possible to conclude
if these Academic Rising Star identification exercises have been successful and if so, to what
extent. Finally, the results will be discussed and if further experimentation can be conducted
to increase the success of the identification process.

1.3.1 Hypothesis, Objectives and Research Questions
Finally, to be as specific as possible in the goals and purpose of this thesis project, in this
subsection, the hypothesis, the objectives, and the research questions will be presented. First
of all, the hypothesis of this project is:

Is it possible to predict if an author will become an Academic Rising Star in the next
five years starting from the fifth year since the publication of its first indexed article

using the data readily available in Scopus databases?

In other words, this thesis aims to prove that given a set of data retrieved from Scopus
it is possible to establish criteria and a methodology to identify Academic Rising Stars. And
that same hypothesis leads us to the following objectives:

• Objective 1. Establish a method to acquire the necessary data from the Scopus databases
while sticking to the constraints and quotas inherent to the use of these databases.

• Objective 2. Find the best labeling criteria to establish which authors are considered as
top researchers ten years after the publication of its first document in Scopus.

• Objective 3. Find the best sets of parameters and features to train a classifier that can
predict the top researcher label using only features belonging to the first five years of
the author since their first document in Scopus.
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• Objective 4. Compare our methodology and results with the ones from two of the most
recent and similar Academic Rising Star identification efforts[3, 26].

From the previously presented objective, a set of research questions arises. These ques-
tions are presented according to the objective they belong to.

• Objective 1:

– Q1. Is it possible to conduct a Scopus query such that it only returns the relevant
documents for a particular area of research, use those documents to identify the
relevant authors, and gather individual metrics for those authors?

• Objective 2:

– Q2. Which of the available author metrics works best to label the top authors
ten years from the publication of its first document in Scopus, and which metric
threshold should be used?

• Objective 3:

– Q3. Which combination of labeling, data and parameters yield the best classifica-
tion performance?

• Objective 4:

– Q4. How does our research compares to the ones by Bin-Obaidellah et. al.[3] and
the one proposed by Nie et. al.[26]?





Chapter 2

Background

This chapter is going to be divided into three sections. In the first section, we are going to
present the work that has been carried out to predict Academic Rising Stars or some other
variation of scientific success. Then, in the second section, the author metrics (or features)
retrieved from Elsevier’s databases used for this thesis project are going to be presented. In
the third section of this chapter, the relevant theoretical framework for this thesis project will
be presented, including but not limited to the machine learning classifiers and the metrics used
to evaluate these classifiers.

2.1 Previous work

2.1.1 First attempts to predict future scientific impact
One notable effort in the prediction of scientific success, which is related to the identifica-
tion of Academic Rising Stars was done by Acuna, Allesina, and Kording[1]. The authors
intended to use Hirsch’s h-index[17] and an additional set of features, to predict future scien-
tific success. To do this, they used linear regression with elastic net regularization[41]. The
authors achieved an R2 = 0.52 for predictions ten years from the time frame used to train
their models. It is also notable that they used scientists which were 3 to 15 years into their
scientific careers. This work is relevant because it showed that the h-index can be predicted
to an acceptable extent using a set of established authors. While these results cast a reason-
able suspicion that identifying Academic Rising Stars may be possible, it still needs to be
tested using the data from scientists in the earliest years of their scientific career. Addition-
ally, identifying Academic Rising Stars is a classification task instead of a regression one. A
similar approach was taken by Ayaz et al.[2]. The features used in this work were average
citations per paper, number of coauthors, years since publishing their first article, number of
publications, number of impact factor publications, and number of publications in distinct
journals. The data they used was gathered from the Arnetminer dataset, using publications
in the field of Computer Science. While they do not specify which type of regression they
used, they achieve an R2 = 0.92 for next year predictions and R2 = 0.82 for predictions in
5 years. Nonetheless, they found out that this method yielded a low R2 for authors with less
than 5 years of experience. This implies that this method does not apply to the identification
of Academic Rising Stars, however, it points out the potential of the h-index to be used as a

7
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target variable for the prediction of scientific impact. Notably, as early as 2007, Hirsch had
already discussed the potential predictive power of the h-index[18]. Even, to this day h-index
is still being used not only to predict but to describe the scientific impact of researchers. For
example, the list of Top Scientist by h-index in Computer Science and Electronics by Guide
2 Research[15].

2.1.2 Predicting Academic Rising Stars using bibliographic networks

To the best of our knowledge, the first effort to define and find Academic Rising Stars came in
2009 in Searching for Rising Stars in Bibliography Networks[23]. In this article, a Rising Star
is defined as an author which has a low research profile at the beginning of their career but may
become a prominent contributor in the future. Their proposed algorithm to detect Rising Stars
is called PubRank. PubRank works by mining evolving links in a social network of researchers
modeled by a bibliography network. In this work, every researcher is modeled as a node and
the links represent a collaborative relationship (in other words, a joint publication). Then,
the algorithm evaluates the mutual influence among the researcher in the network, the track
record of the researcher, and the chronological changes of the network. Then, the algorithm
assigns a PubRank value to each node (or author), and when a researcher shows an above-
average increment it is considered a Rising Star. It is important to mention that the PubRank
algorithm is based on PageRank[4]. PageRank is a webpage ranking algorithm, which works
by ranking webpages based on the hyperlinks among the webpages, or in other words, how
relevant is the webpage. The main difference between PageRank and PubRank is that while
the PageRank of a node is dependent on the nodes that link to it, the PubRank is dependant
on the nodes to which it links to. So, in simpler terms, PubRank ranks higher the nodes
(authors) which influence other nodes. In 2013, in Finding Rising Stars in Social Networks[7]
improvements were proposed to PubRank. In these improvements, the author’s contribution-
based mutual influence and dynamic publication venue scores are included in the calculation
of the PubRank value. The authors named the resulting algorithm StarRank.

Then in CocaRank: A Collaboration Caliber-based Method for Finding Academic Ris-
ing Stars[38]. One of the main flaws of PubRank and StarRank is that there is no way to tell
if young authors were being compared to more senior researchers. CocaRank implements the
publishing year of the first paper as the start of the Rising Star Evaluation. CocaRank is calcu-
lated in three parts. In the first part, the collaboration caliber is computed, which is based on
an entropy calculation that has the purpose of representing the ability of an author to collabo-
rate with other authors. Then, it calculates the PageRank value in a heterogeneous academic
network. Contrary to PubRank and StarRank which are based on a bibliographic network,
CocaRank a three sub-network architecture comprised of a citation network, a paper-author
network, and a paper-journal network. Finally, these results are used to calculate the final
CocaRank. To validate the results of CocaRank, the future citation counts of the authors with
the highest CocaRank (thus, being considered Academic Rising Stars) are compared to the
future citation counts of the authors with the highest StarRank. The authors that CocaRank
identified as Academic Rising Stars showed a significantly greater number of citation counts
in the future than those authors identified by StarRank, thus taking a significant step forward
in the identification of Academic Rising Stars. Further along the road, ScholarRank[37] was



2.1. PREVIOUS WORK 9

introduced, building on the heterogeneous network proposed by CocaRank. The only dif-
ference between this approach and CocaRank is that the heterogeneous network is evaluated
using a mutual reinforcement process of the sub-networks. This method achieved an improved
number of future citation counts compared to CocaRank.

2.1.3 Predicting Academic Rising Stars in the Machine Learning era
One of the first efforts to predict Academic Rising Stars using some kind of machine learning
method is found on Social Gene - A New Method to Find Rising Stars[27]. In this article,
the authors propose the use of 14 different features to calculate a series of underlying author’s
parameters known as ”social genes”, associated with the ”talents” of a given author. First,
these features are fed to an Analytic Hierarchical Process, and then the weights are determined
using a neural network with sigmoid functions as activation functions. Finally, the ranks are
determined using the factor weights. All in all, while this first attempt was innovative at the
time, it was only compared with PubRank, and while Social Gene did outperform it, it was
not compared to the state of the art Academic Rising Star identification methods of the time.

However, one of the greatest breakthroughs in the use of machine learning to predict
Academic Rising Stars is found in Academic Rising Star Prediction Via Scholar’s Evaluation
Model and Machine Learning Techniques[26]. In this article, for the first time, the predic-
tion of Academic Rising Stars is not completely treated as a matter of future citation counts.
Instead, it is considered a classification task. The data used in this project comes from the
Arnetminer database. In a classification task, the positive causes need to be labeled before
the classifier can be trained. In this case, the authors labeled as positive cases are the ones
considered outstanding or influential at present. The approach that this work uses to label the
positive cases is based on the increment in academic impact scores in a time window of five
years, starting on the fifth year since the publication of its first article. This impact score is
based on their papers’ scores, the scores of the papers that cite the author’s papers, and a score
based on the author’s contribution to each published paper based on the s-index[31]. Once
the authors are labeled, the classifiers are trained using features from the first five years since
the publication of the author’s first article. These features comprehend author, social, venue,
and temporal characteristics. The classifiers used in this work were k-Nearest Neighbor, Ran-
dom Forest, Support Vector Machine, Gradient Boosting, and XGBoost. The best F1 scores
achieved in this work ranged from 0.784 to 0.795.

Another notable work in the identification of Academic Rising Stars using machine
learning came in Scientometric Indicators and Machine Learning-Based Models for Predict-
ing Academic Rising Stars in Academia[3]. In this article, data from Web of Science is used to
predict Academic Rising Stars, and again the prediction of Academic Rising Stars is treated as
a classification task. To label the positive cases for the classification task, the authors choose
the top 30% of the available authors according to their last year increment to their InCites
Ranking, which ranks the authors according to the times they are cited and the number of
documents indexed in Web of Science. Then, 8 different scientometric indicators are calcu-
lated for each author and two classifiers are trained, Support Vector Machine and k-Nearest
Neighbors. This work achieved an AUC of 0.96 with a Support Vector Machine.

Finally, this thesis project will build on these two previously presented Academic Rising
Star Prediction works. The methodology that will distinguish this research project from these
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two previous machine learning-based works will be discussed in detail in Chapter 3. Addi-
tionally, the difference in results and their explanation from our work with previous work will
be thoroughly discussed in Chapter 5.

2.2 Elsevier Retrieved Metrics

For this Academic Rising Stars identification project, several author metrics will be used.
In the section, these metrics will be explained in detail according to the data provided by
Elsevier’s Research Metrics Guidebook[11]. In this document additionally to author metrics,
other Elsevier’s available metrics are also presented, journal metrics, article-level metrics, and
institutional metrics. All of the discussed metrics are retrieved through the SciVal API for this
thesis project.

1) Publications is a metric that shows how many publications does an author has indexed
in Scopus. In the SciVal API, this metric is retrieved as Scholarly Output, but for the rest of the
project, this metric will be referred to as Publications. One of the limitations of these metrics
comes from comparing authors with different scientific career lengths, as more established
authors are more likely to publish more documents than their peers who are in the earlier
stages of their careers. This metric is retrieved on a per-year basis, which means that the
metric shows how many documents an author published per year. Although it is possible to
filter the types of documents counted towards the metric, in this case, we choose not to do so,
as we considered important this metric to represent every type of document that the authors
produced.

2) h5-index is a metric based on the original h-index[17], however, it only evaluates
a 5-year publication and citation window on the calculation of the h-index. For example,
the h5-index of an author in 2018 takes only into account the publications made from 2014
to 2018 and the citations received by those same publications from 2014 to 2018. While
some published works have acknowledged the shortcomings of the h-index[9, 30], earlier
research[1, 2], has shown that it is a good metric to represent scientific impact. By using the
h5-index, we have the advantage of removing the possibility of the metric being biased by old
publications and citations.

3) Citation Count is a metric that describes the total number of citations the author’s
publications have received. This metric is obtained on a per-year basis. However, it is very
important to take into account that this metric refers to the total citations the publications in
a determined year have received so far. In other words, this metric does not reflect the year
in which these citations were received. Thus, the usefulness of this metric may be limited,
for example, the Citation Count of an author in 2010 may be influenced by citations received
years after 2010. Nonetheless, the metric is integrated into this project as every author in the
dataset will be affected in the same way, so the effect of this phenomenon will be reasonably
uniform across the retrieved dataset.

4) Field-Weighted Citation Impact (FWCI) indicates how the number of citations re-
ceived by an author compares with the average number of citations received by all other simi-
lar publications. Therefore an FWCI of 1 indicates that the author’s publications have received
the average number of citations it is expected from them. An FWCI above 1 indicates that
the publications have received more than the average number of citations it is expected from
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them, while an FWCI below 1 indicates the contrary. For example, an FWCI of 1.5 indicates
that the author’s publications have received 50% more citations than the world average, while
an FWCI of 0.25 indicates that the author’s publications have received 75% fewer citations
than the world average. Scopus assigns each publication in its database to one or more classi-
fication sub-categories. To avoid that the FWCI calculation is biased in favor of publications
with multiple categories, it spreads symmetrically the publication’s citations among the sub-
categories it belongs to. As with Citation Count, the yearly representation of this metric refer
to the years in which the publications were published and not to the year where the citations
were received. The FWCI formula is presented in equation 2.1, where N is the number of
publications, ci is the citations received by publication i, and ei is the expected number of
citations received by all similar publications in the publication year and the following 3 years.

FWCI =
1

N

N∑
i=1

ci
ei

(2.1)

5) Outputs in Top Citation Percentiles (OTCP) is a metric that represents the percent-
age of an author’s publications are present in the top most-cited publications. This metric
is retrieved for the top 1%, 5%, 10%, and 25% most-cited publications. To define these top
most-cited threshold Scopus calculates the percentiles of the number of citations that the pub-
lications have received, thus more than 10% of the total publications in the Scopus database
can be in the top 10% most-cited publications, for example. Additionally, this metric is cal-
culated per publication type. As with the previous metrics, the year of the metric accounts for
the citations that a publication published in a certain year has received so far, not the year the
citations were received.

5) Publications in Top Journal Percentiles (TJCP represents the percentage of an au-
thor’s publications in the most-cited journals in Scopus’ data universe. This metric represents
how many publications does an author has in the top 1%, 5%, 10%, and 25% most-cited
journals indexed in Scopus. The method used in this thesis project to define the most-cited
journals is the CiteScore[21]. Since Scopus did not calculate CiteScore before 2011, this
metric is calculated with the CiteScore of 2011 for publications published before 2011. It is
important to point out that a publication that did not receive any citations may be counted
towards this metric as long as it is published in one of the top most-cited journals.

6) Citations per Publication measures the average number of citations that the author’s
publications have received. It can be considered that this metric indicates the average citation
impact of the author. As with the previous metrics, the year of the metric accounts for the
citations that a publication published in a certain year has received so far, not the year the
citations were received. It is calculated by adding all of the citations certain year publications
have received and diving that number by the total number of documents published in that
certain year.

7) Cited Publications measures the citability of an author. In other words, this metric
shows the percentage of publications that have received at least one citation. As with the
previous metrics, the year of the metric takes into account if the publication has received any
citations regardless of the year the citation has been received.
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2.3 Machine Learning Background

2.3.1 Normalization Methods

Before data is fed to a machine learning algorithm, in this case, classifiers, it may be con-
venient to normalize the data. In this thesis project, three normalization methods are used.
These three methods are MinMax Scaling, Standard Scaling, and Robust Scaling. The imple-
mentation used is the one provided by Scikit-Learn[28].

MinMax Scaling

Min-Max scaling[32] replace every value in the feature being transformed with a new value.
This value is found between 0.0 and 1.0, and the formula to calculate the new value is found
in Equation 2.2, where m is the new value, x is the actual value of the feature, xmin is the
minimum value in the dataset for that feature, and xmax is the maximum value in the dataset
for that feature.

m =
x− xmin

xmax − xmin

(2.2)

This normalization method places every value within the 0 to 1 range. This causes that
the weight of the outlier values in the normalized feature is taken away to a certain extent.
This may end up hurting the performance of the model in some cases.

Standard Scaling

Standard Scaling, also known as Z-score standardization[32] transforms every value in the
feature with its z-score. This means that the features are rescaled to have a mean of zero and a
standard deviation of one, resulting in all of our features having a uniform mean and variance.
The formula to calculate the new value, or z-score is found in Equation 2.3, where z is the
new value, x is the original value of the feature, µ is the mean of the feature, and σ is the
standard deviation of the feature.

z =
x− µ

σ
(2.3)

Robust Scaling

The Robust Scaling[28] works somehow like the Standard Scaling, however, instead of using
the mean and the standard deviation, it uses the median and the interquartile range of the
features. The formula is shown in equation 2.4, where r is the new value, x is the original
value of the feature M is the median of the feature and IQR is the interquartile range, which
is defined as the 75 percentile minus the 25 percentile.

r =
x−M

IQR
(2.4)
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2.3.2 Recursive Feature Elimination

Recursive Feature Elimination[22] is a backward selection of the predictors. The goal of this
technique is to remove the least important predictors to then train the model. This technique
works by building a model, then the least important feature is removed, and this is repeated
recursively until the desired number of features is reached. For this method to work, an
estimator model needs to be selected, so the Recursive Feature Elimination can use the feature
coefficients calculated by the estimator model.

2.3.3 Support Vector Machine

One of the two main classifiers used in this thesis project is the Support Vector Machine
(SVM) with a Radial Basis Function[5] (rbf) kernel. Support Vector Machines were developed
as support vector networks by Cortes and Vapnik[6]. The idea behind support vector machines
is that input vectors are non-linearly mapped to a high-dimensional feature space where a
linear decision surface is constructed. In this case, the decision surface is used to classify data
into two classes. So the purpose of the support vector machine is to optimize this decision
surface in such a way that the widest marginal possible divides the two classes[35].

However, in some classification cases, the points in a dataset are not linearly sepa-
rable, that is why SVM uses the kernel trick technique, which transforms the data into a
higher-dimensional space, so this transformation can provide a dividing margin between the
classes[35]. The kernel used in this project, as previously mentioned is the rbf kernel, which
gives a value to each data point based on its distance from a fixed center, on a Euclidean
space[35]. SVM results in a very convenient classifier for this classification task as it works
well with a high number of features and the decision surface is only affected by the support
vectors (which means that the outliers have a lesser impact).

2.3.4 Logistic Regression

Logistic Regression[14] is commonly used for the classification of observations, and the pur-
poses of this analysis aim to predict the effect of a set of variables on a binary response
variable. Or in other terms, it classifies the observations in a specific category based on the
probability estimation. One important concept in logistic regression is the odds ratio, which
denotes how the odds for one independent variable with the increase of a unit in that variable,
while the rest are kept constant. So in simpler terms, the odds ratio is how likely is a specific
result in the dependant variable if one of the independent variables changes.

However, it is important to mention that the Logistic Regression classifier makes some
assumptions. The first assumption is that there should not be any outliers in the data, because
the models are very sensitive to outliers in the data. The second assumption is that there
should not be a high correlation between the independent variables. This assumption can
be considered met if the correlation coefficients between the independent variables are less
than 0.9[34]. Additionally, it is recommended[33] having 20 observations per independent
variable. However, it is also argued[19] that 10 observations per independent variable may
still be appropriate.
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Actual Positive Class Actual Negative Class
Predicted Positive Class True Positive (tp) False Negative (fn)
Predicted Negative Class False Positive (fp) True Negative (tn)

Table 2.1: Confusion Matrix for Binary Classification

2.3.5 Classification Metrics
To assess the performance of the trained classifiers, a set of metrics is going to be used. All of
the presented metrics are calculated using their respective implementations in scikit-learn[28].
For this project’s binary classification task the first metric that we calculate is the Confusion
Matrix[20]. This matrix shows how many True Positives (tp), False Negatives (fn), False
Positives (fp), and True Negatives (tn) has the trained classifier predicted. True Positives and
True Negatives refer to the positives and negatives that the classifier has correctly classified,
while the False Positives and False Negatives refer to the positives and negatives that the
classifier has incorrectly classified. In Table 2.1, a representation of the Confusion Matrix is
shown.

From these four metrics in the Confusion Matrix, it is possible to derive other metrics.
While not every one of them is presented in this thesis project, they are still used to derive even
more metrics in some cases. The first of these metrics is the Accuracy[20] which measures
the ratio of correct prediction over the total number of instances evaluated. The formula
for Accuracy is shown in Equation 2.5. In cases where the classes are not balanced, this
metric can be deceiving, as it is possible to have a high Accuracy if the model is very good at
classifying the negative cases but not the positive cases when the number of negatives cases is
overwhelmingly greater than the number of positive cases.

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
(2.5)

The Precision[20] measures the positive cases which are correctly predicted from the
total predicted cases in the positive class. In simpler terms, this metric indicates the proportion
of true positives in the positive class predicted by the classifier. The formula for Precision is
shown in Equation 2.6.

Precision =
tp

tp+ fp
(2.6)

The Recall[20] is used to measure the fraction of positive cases from the total positive
cases in the positive class. The formula for Recall is shown in Equation 2.7.

Recall =
tp

tp+ tn
(2.7)

The F1 score or F-measure[29], is defined as the harmonic mean of the Precision and
the Recall. The formula for the F1 score is shown in Equation 2.8. This is a very useful metric
because it presents a good balance between how good is a classifier at detecting the available
positive cases and how precise it is at doing so.
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F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(2.8)

The Average Precision Score[40] is a metric that summarizes the Precision-Recall curve
in a single value, specifically the area under the Precision-Recall curve. What this curve
represents is the precision of the model at different classification thresholds. This metric is
specifically useful for class imbalance. The highest the metric, the greater the area under the
Precision-Recall curve, and thus it can be concluded that the better the model is at identifying
a good proportion of the positive cases with good precision.

The Area Under the Receiver Operating Characteristic Curve (AUC)[12] summarizes
the ROC curve in the form of the area underneath it. The ROC curve plots the false positive
rate versus the true positive rate. The true positive rate can be considered as a measurement
of how good is the model at predicting a positive case as positive. The false positive rate
represents how often a negative case is predicted as negative. The ROC curve represents
the trade-off between the true positive rate and the false positive rate at different decision
thresholds. The highest the AUC, the better is the model at detecting true positives while
detecting as few false positives as possible.

2.3.6 Post Hoc Tests
As part of this thesis project, we are to determine which parameters have a significant impact
on the performance of the trained classifiers. To find if the variation in the value of these
parameters brings a statistically significant difference among the classifiers trained with the
different values in a specific parameter, the Autorank[16] library will be used. What Autorank
does is running post hoc tests which then compare the central tendencies of the different clas-
sifier groups as paired samples. Fortunately, Autorank automatically decides which statistical
test should be carried out depending on the characteristics of the classifier groups.

When comparing a parameter with only two possible values, then two groups of classi-
fiers are compared. In this case, Autorank chooses to compare the two groups using Wilcoxon’s
signed-rank sum test[36]. This is a non-parametric test (the compared population does not
need to be normally distributed) that is used to test the hypothesis that the probability distri-
bution of the first population is equal to the probability distribution of the second population.
If this null hypothesis is rejected, then it can be concluded that the two populations are dif-
ferent. And thus, for this thesis project, the variations in the values of the parameter have a
significant effect on the performance of the classifier.

The other relevant case for this thesis project is comparing more than two populations
that do not have a normal distribution. This is done for parameters with more than two pos-
sible values. In this case, Autorank chooses to compare these groups with a non-parametric
Friedman test[13] and a Nemenyi post hoc test[25]. The non-parametric Friedman test is used
to determine if there are significant differences between the median values of the populations.
The null hypothesis of the non-parametric Friedman test states that there is no difference in
the central tendencies of all of the populations being compared. When the null hypothesis is
rejected, it is because at least two of the populations being compared have a significant dif-
ference in their medians. Then, the Nemenyi test established a critical distance between the
mean ranks of the populations that are being compared. If the absolute difference between
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the mean ranks of two or more populations is smaller than the critical distance provided by
the Nemenyi test, then these populations are not significantly different. In the context of this
thesis project, this test indicates to us which values for the different parameters being tested
are not significantly different from each other. Additionally, the results of these post hoc tests
are summarized in a convenient table. These table shows the Mean Rank (MR), the Median
(MED), the Median Absolute Deviation (MAD), the Median Confidence Interval (CI), the
effect size in comparison to the highest ranking approach using Akishin’s gamma (γ), and the
interpretation of the γ value in the Magnitude column.



Chapter 3

Methodology

3.1 General Methodology
This thesis project aims to utilize Machine Learning to identify Academic Rising Stars. Car-
rying out this project comprehends from acquiring the relevant data, processing it, classify it,
and finally assess the extent to which the classification was successful. More specifically the
methodology steps are the following:

• Building the Dataset: Gathering information on the relevant authors from the Scopus
database

• Preparing the Data: Who will be labeled as a top researcher?

• Train the Classifiers: Attempt to predict with data from early stages in an author’s
career if it becomes a top researcher.

• Evaluate the Classifiers: To what extent were the classifiers able to predict if an author
becomes a top researcher? (Thus, testing the classifiers ability to predict the Academic
Rising Star status)

In the following sections of this chapter, the intricacies of each step will be approached
in detail. Nonetheless, in this section, the process will be outlined in general, and some of
the most important details will be mentioned. This to present the reader with a general and
clear overview of the methodology, while providing information on the complexity involved in
each step. First, building the dataset has its complications, since the data is retrieved through
an API that limits the amount of information that can be downloaded, and also the speed at
which this information can be downloaded. So, to gather the necessary information to build
the dataset, a sensible and measured approach to this task had to be taken. In this process, it
is important to make the correct queries to the API, so as not to waste the limited amount of
data that can be retrieved. The gathering process starts with retrieving the metadata of all of
the documents in the domain or field we are interested in finding the Academic Rising Starts.
Then, from the metadata retrieve which authors publish significantly in this domain or field,
and retrieve the relevant metrics for each of these authors.

Once the data on the relevant authors is acquired, then the data needs to be prepared.
This is important, since classifiers to be trained, need to know which authors are the ones it
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is looking for. In this case, the authors who excel among their peers in certain metrics are
the ones labeled as top researchers, and as such are the ones considered as the positive class.
Different criteria are used to label these top researchers, and in the following sections, we
will explain in a detailed fashion which metrics were the ones chosen to label data and which
was criteria used on these metrics. However, several datasets are generated, with the only
difference being how the authors are labeled. This is to test which metrics or attributes are the
most best suited to point out who is more likely to become an Academic Rising Star. It is also
important to clarify that this labeling is done, based on the latest year metrics. Additionally,
to ensure we are ”comparing apples to apples”, only authors whose first publication was done
10 years ago are taken into account for this labeling process, as done in previous Academic
Rising Star identification works[26, 38].

When the datasets are labeled, then it is possible to train the classifiers under different
parameters. Since this Academic Rising Star identification problem involves a heavy class
imbalance (which is obvious, as it is not possible to have the same number of top researchers
and non-top researchers, the fact that these are top researchers imply that they are scarce),
one of the various parameters that are tweaked is the class weight. Where a greater weight
is assigned to the positive class during the training of the model. As previously mentioned,
different labeling sets are also used. This results in a great number of trained classifiers with
different parameters and different data. Additionally, the features used to train these classifiers
only comprehend the metrics of the first five years from the year of the author’s first indexed
publication. Since we are interested in finding out which authors have the potential to become
top researchers in the following five years.

Finally, the results of these classifiers are analyzed. In this case, the classifier must be
able to identify as many top researchers as it possibly can while keeping the number of false
positives at a low and reasonable number. The two main metrics that will be used to evaluate
these models are the Area Under the ROC Curve (AUC) and Average Precision Score. It is
also important to mention that more than one classifier will be used. This Academic Rising
Start identification exercise will be done using the Logistic Regression Classifier and Support
Vector Machine.

3.2 Building the Dataset using the Scopus API

The identification of Academic Rising Stars has to start somewhere, and in this case, the first
step is to know what kind of Academic Rising Star we are looking for. If we were a university
that wants to hire a new researcher for their Computer Science department in the area of
Clustering, then it would be convenient to know who is publishing in the Clustering area.
Then, we should retrieve the documents from Scopus which deal with Clustering, through the
Scopus API. The number of documents retrieved from Scopus depends largely on how specific
is the query being made. Searching for the documents in the Computer Science area from the
last 10 years would result in millions of documents that would have to be downloaded. It
can be done, however, Scopus restricts the number of documents that any user can download.
As such, it is recommended to delimit the areas to something more specific. In this case, the
Scopus query that was conducted in the Study Case presented in Chapter 4 is related to the
Clustering Area and it resulted in more than 50,000 documents.
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Scopus ID Title Publication Name ISSN
ISBN EISSN Volume Page Range
Cover Date DOI Citation Count Affiliation
Aggregation Type Subtype Description Authors Full Text

Table 3.1: Retrieved Features per document from a Scopus Query.

The retrieval of documents was done through the pybliometrics library. This library
allows the user to retrieve the documents in a very convenient JSON format, which can be
then easily converted into a CSV database. The features in this document database are shown
in Table 3.1. In this particular case, the feature we are interested in is the Authors feature.
This feature represents a list of Scopus authors’ IDs. Then, the unique authors in these lists
are retrieved, and the number of times their ID appeared in the documents is paired with their
ID. This allows us to know how many documents have that specific author published in our
Query. Additionally, this Scopus author ID will allow us to retrieve the metrics related to the
author. However, it was previously mentioned that it is important to conduct the retrieval of
information in the most efficient way possible. In this case, it means not retrieving the metrics
for those authors who are not relevant to the area of the query. Not relevant authors are
considered in this case the authors that have two or fewer documents in the document query.
Trimming these authors from the subsequent analysis saves a significant amount of time and
avoids the query quota to be wasted on authors who are not even publishing constantly in the
area of interest.

Then, for the remaining authors, their metrics are retrieved. These metrics are retrieved
using the Scopus API and the SciVal API. Since we want to keep the retrieval of metrics as
efficient as possible, the author’s IDs are bundled into groups of 100 authors, since Scopus
and SciVal allow us to retrieve the metrics of 100 authors in a single query, which is faster and
more efficient than retrieving the metrics of each author one by one. However, one query is
still needed per type of metric. The only author information retrieved for the authors from the
Scopus API was the publication range. This reports the year in which the author’s first indexed
publication was made and when was the last one made. All of the other author metrics were
retrieved using the SciVal API. The retrieved author metrics are shown in Table 3.2. All of
the retrieved metrics were retrieved per year from 2010 to 2019. Additionally, it is important
to note that one of the limitations of the SciVal API is that it only allows the retrieval of
metrics from the last ten years. It is not possible to retrieve any metric from previous years,
which limits this ten-year analysis to the 2010-2019 time frame exclusively. If it was possible
to retrieve earlier metrics, it would be possible to have even more time frames (2009-2018,
for example). Another important consideration is that, although SciVal offers the option to
exclude self-citation from the calculation of each one of the metrics, it was chosen not to
exclude self-citation. The reasoning behind this is that while self-citation may inflate to an
extent the metrics of authors with a considerable scientific career, it may not be the case for
authors in the first years of their scientific career.

All of these metrics were retrieved in JSON format, which was then easily used to build
the authors’ dataset in CSV format. This is the data that will be then used to train the differ-
ent classifiers. However, the data still has to be processed, to be used in the training of the
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Metric Abbreviation Full Metric Name
fwci Field Weighted Citation Impact
citCount Citation Count
citPP Citations per Paper
citedPub Cited Publications
publications Publications
OTCP01 Outputs in the Top 1% Citation Percentiles
OTCP05 Outputs in the Top 5% Citation Percentiles
OTCP10 Outputs in the Top 10% Citation Percentiles
OTCP25 Outputs in the Top 25% Citation Percentiles
TJCP01 Publications in the Top 1% Journal Percentiles
TJCP05 Publications in the Top 5% Journal Percentiles
TJCP10 Publications in the Top 10% Journal Percentiles
TJCP25 Publications in the Top 25% Journal Percentiles
h5index h5-index

Table 3.2: Metrics retrieved per author using the SciVal API

classifiers.

3.3 Data Preparation
Once we have the metrics for each of the authors, the next step is to prepare the data for the
classifiers. The first step is ”comparing apples to apples”. Since we are targeting authors
whose first publication came 10 years ago to make predictions based on the first five years
since that publication is made, the only time frame that can be used given the limitations of
the SciVal API is 2010-2019. That is why, the first step is to separate those authors who started
10 years ago, from the rest of the authors, and these are the ones that are going to be used for
the classification task.

Another important part of preparing the data is the labeling of the data. In simple terms,
we want to point out who is a top researcher on the present (2019), and then use their metrics
for the first five years since the first publication was made (2010-2019). This is one notable
difference this Academic Rising Star identification effort has with other machine learning-
based efforts. We want to make sure that the authors that we identify as Academic Rising
Stars are still at an early stage in their careers. For example, in Scientometric Indicators and
Machine Learning-Based Models for Predicting Rising Stars in Academia[3], takes a very
different approach to identifying Academic Rising Stars, where they take a five-year time
frame, and then try to predict if the author the next year after those five years. Additionally,
the top 30% of authors according to their InCites rank (which is provided by Clarivate Ana-
lytics) are labeled as Academic Rising Stars. Which in contrast to our proposed methodology,
does not ensure that the predicted Academic Rising Star is in an early stage of its scientific
career. Moreover, our proposed methodology aims to predict if a young author became a top
researcher in the next five years, in contrast to the next year approach, more like the approach
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Figure 3.1: Yearly distribution of published articles per year by the authors whose first publi-
cation came in 2010.

taken by Nie. et. al.[26]. This aims to make our models more flexible and ensure that our
identified Academic Rising Stars are at an early stage in their careers, and as such, they are
easier to hire by the interested academic institutions. Additionally, to confirm that the year
of the first publication of the author is a viable indicator of the starting point of the scientific
career of a researcher, the number of publications per year for all of the authors who started
in 2010 was plotted in boxplots in Figure 3.1. By looking at the boxplots it shows that while
there are authors who do not publish in certain years, the median stays at two articles per
year from 2012 onward. Therefore, the boxplots support our assumption of making the year
of first publication the year where we assume that the author’s scientific career started. It is
important to note that the boxplots in Figure 3.1, exclude outliers, to make the boxplots easier
to visualize.

Another important part of data preparation is the criteria we use to define who is a top
researcher. Four metrics were chosen to label the top authors, publications, citCount, fwci,
and h5index, all of these in 2019. In contrast to the approach taken by Nie et. al.[26] to label
the data, we simplify this process by not creating additional metrics to measure who is a top
author. However, we still need to define a threshold in these metrics, so authors whose metrics
exceed these thresholds are labeled as top researchers. Two approaches were taken for this
task. First, the outlier approach, which consists on calculating the median, the third quartile,
and the interquartile range (which is Q3 − Q1), to define the top researcher threshold at the
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outlier point of the metric. The equation to define the outlier point is the following:

Threshold = Q3 + 1.5(Q3−Q1)

So in this case, if an author’s metric is greater or equal to the threshold, then it is labeled
as a top researcher, and the datasets labeled with this approach were referred to as the Outlier
group. However, it was observed that in some cases there were authors whose metrics were
considerably well beyond the outlier threshold. To deal with these extremely outlying authors,
a second approach was developed. This second approach consists of calculating the outlier
threshold for the metric, just as before, but the authors who are going to be labeled as top
authors are those whose metrics are within a range of ±35%, of that threshold. This labeling
group is referred to as the Custom group. With this approach, authors who are beyond the
outlier threshold are still labeled as top authors, and some authors who are reasonably above
the median of the metric, but not above the outlier threshold are still labeled as top authors.
The ±35% range can be tweaked, but we found that it worked well. So the result of this
labeling criteria is 8 differently labeled datasets, two for each of the chosen metrics, one
labeling the outlier group and the other the custom group. The range of ±35% for the custom
group was empirically obtained from the case study presented in Chapter 4, as the aim was to
classify as positive cases as close as possible to 10% of the authors.

Furthermore, each author has 70 metric features per year, only taking into account the
metrics from 2010 to 2014. Training classifiers using these 70 features could make it hard
to explain the models. That is why, as part of the data preparation two additional sets of
features are added to the datasets. These two sets are the Average (AVG) feature set and the
Median (MED) feature sets. These two sets reduce the number of attributes from 70 to 14, by
calculating the average and the median of each type of metric from 2010 to 2014. This has
the added benefit of resulting in models with fewer features and thus, easier to explain. The
feature set with the 70 features is referred to as the ALL feature set.

Finally, the last step of the data preparation is data normalization. From all of the exist-
ing datasets up to this point, three additional variations of each of these datasets are created,
one for each of the normalization methods. These methods are MinMax normalization, Stan-
dard normalization, and Robust normalization. All of the features, except the class feature,
are normalized. This is done to find out which type of normalization helps the classifiers to
perform better.

3.4 Classification
Once the data is prepared, all there is left to do is train the different classifiers. In these cases,
two classifiers are going to be used Logistic Regression and Support Vector Machine. The
Logistic Regression will use liblinear as its solver because it tends to perform better in small
datasets, although it can be slow in greater datasets. Since we do not expect to deal with huge
amounts of data, liblinear is the ideal choice. On the other hand, for the SVM classifier, as
kernel, the Radial Basis Function Kernel (rbf) will be used, as it performs well in non-linear
relationships. These two classifiers are chosen for their robustness in binary classification
tasks. Since Logistic Regression is fitted with the logarithmic odds of each feature, it can
model each feature as a probabilistic contributing factor to the positive or negative prediction
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of the Academic Rising Star status. Nonetheless, Logistic Regression has some limitations in
terms of the amount of data it is trained with, as explained in Chapter 2. For this reason, the
Support Vector Machine with the rbf kernel is also implemented. This kernel is robust against
the presence of outliers in the data and is also well-suited to work with a limited amount of
data. Since the time it takes to train the number of models for each classifier is considerable,
it was decided to limit the classification efforts to these two classifiers.

One additional step before training the classifiers is the Recursive Feature Elimination.
There may still be some colinearity among the features, and this can impact negatively the
performance of the classifiers. That is why before training the classifiers, three types of Re-
cursive Feature Elimination stages are put in place. This process is done with ten-fold cross-
validation, to ensure that the features which are not significant for the model are dropped
from the features used to train the classifiers. The estimators used by each of the Recursive
Feature Elimination stages are Logistic Regression, Perceptron, and Decision Tree. A model
is trained for each of the estimators, to find which estimator does better at eliminating the
irrelevant features.

Then, the models with the features eliminated are trained with the whole dataset and
varying the weight of the target class from 1.0 to 2.0. This is done to deal with the class
imbalance associated with Academic Rising Star prediction. So, three additional models are
trained, one with a weight of 1.0, the other with 1.5, and the last one with a weight of 2.0. Once
the model has been trained several metrics are calculated. These metrics are the following:

• Accuracy

• Precision

• Recall

• Specificity

• AUC

• Average Precision Score

However, the ones that we are going to take more into account are AUC and Average Precision
Score. These metrics are stored in a new models dataset. Additionally, the confusion matrix
of each model is added to the dataset. And finally, the features used by the model and the total
number of these features are added to the dataset. This data will prove useful to analyze our
results in Chapter 4. These metrics will then help us to know if models capable of predicting
Academic Rising Stars were produced, and if so how do these models look.

As previously mentioned, the classifiers are trained with the whole dataset and tested
with the whole dataset. Although, it is not a good practice to test a model with the data it was
trained with, in this case it was necessary to do this. The reason behind this decision is the
small amount of data available for these classification tasks. However, given the results, it can
be argued in favor of the validity of this approach. This will be further discussed in Chapter 5





Chapter 4

Case Study: Clustering

4.1 The Scopus Query
In this case study, the chosen field of knowledge is Clustering from the Computer Science
domain. This field of knowledge was chosen for two main reasons, its size and its similarity
with previous datasets used to identify Academic Rising Stars. One of the limitations faced
during the retrieval of data is that it is complicated to retrieve more than 50000 documents, and
it was found that the field of Clustering at the time was very close to that figure. On the other
side, other previous Academic Rising Star identification efforts[26, 3] have used Computer
Science datasets, and choosing a dataset from the same field could provide beneficial when
comparing results with these previous efforts. The Scopus Query to retrieve the data was the
following:

KEY ( ’CLUSTERING’ ) AND SUBJAREA ( COMP ) AND PUBYEAR >2009 AND PUB-
YEAR <2020 AND DOCTYPE ( AR ) OR DOCTYPE ( CP )

The elements of the Scopus Query limit the amount of documents’ metadata to be re-
trieved by Scopus. It is also important to explain the query element by element, to fully
understand which documents are being used in this case study.

• KEY: The Scopus Search is limited to documents that contain ’Clustering’ in the key-
words section.

• COMP: The Scopus Search is limited to documents that are classified in the Computer
Science area.

• PUBYEAR: The Scopus Search excludes any document before 2010 and after 2019.
These elements are exclusive, so even though the query uses the years 2009 and 2020,
these will not be included in the retrieved documents.

• DOCTYPE: The Scopus Search excludes documents that are not classified as articles
(ar) or conference papers (cp)

It is important to mention that these are not the only keywords that can be used to retrieve
documents’ metadata from Scopus. However, it was determined after some trial and error that
the most relevant results were retrieved using this query. On the date this query was conducted
(09/09/2020), it returned 50269 documents.
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4.2 Data Exploration and Preprocessing
After retrieving the documents’ metadata via the Scopus Query, to classify Academic Rising
Starts it was still needed to process and filter the unique authors found in the query. In the
following subsections, it will be discussed the criteria used to determine which authors were
considered relevant in this case study. Although it will not be discussed in this section the
retrieval of the individual metrics of those authors, as it was already explained in chapter 3,
in the following subsections the labeling process and the normalization of the data will be
discussed.

Furthermore, the behavior of the variables will be discussed in the following subsections
too. Since the classification process will only be done using authors whose first publication
came in 2010, the analysis of the different author metrics will only comprehend the previously
mentioned authors.

4.2.1 The Authors

Once every document was acquired from Scopus, a new dataset of unique authors was built
using the documents’ metadata. Not so surprisingly, 95446 unique authors were found. This is
due that rarely scientific articles are published with single authorship. That is why it is not so
surprising to find that there are almost double the authors than there are documents. However,
it is also important to mention that in this case the authors are being retrieved by their unique
Scopus Author ID. Due to this ID identification process, it was suspected that there might be
IDs that refer to an author that is already referred in the dataset with another ID. However,
these cases were deemed to be marginal and Scopus does a very good job unifying the authors
by ID. Therefore, most of the cases of repeated IDs, are negligible, in this dataset. This
conclusion was reached by sorting the author’s dataset by most documents in the original
document query and looking at the ones with the most documents in Scopus’ web interface.
Although these authors usually went by more than one Scopus ID, the number of documents
in the interface and the dataset were the same. Thus, it was concluded that most likely this
problem does not occur in the dataset and if it does, is most likely for authors with very few
articles and not a lot of impact.

Once the authors and the number of documents that they have in the query have been
determined, it is important to filter those who do not have published a significant amount of
articles. As previously mentioned, this is done to remove the authors who do not publish
often in the Clustering area, therefore avoiding retrieving the metrics of those authors, saving
valuable time. In Figure 4.1 it can be appreciated that most of the authors in the query have
published less than 20 documents in the area of Clustering.

Not all of these authors are relevant for this case study since they have published a very
small number of articles in the area we are interested in. After some trial and error, it was
seen fit to trim from the dataset those authors who had two or fewer articles in the author’s
dataset. This helped tremendously since the number of authors went down from 95446 to
11333, which is only around 12% of the original authors. Nonetheless, 11, 333 is still a good
amount of authors to have.

Once those 11, 333 authors were determined as the relevant ones, their author metrics
were retrieved from Scopus and SciVal. This process, as previously stated takes a significant
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Figure 4.1: Kernel Density Estimate Plot for the number of published documents by the au-
thors in the Clustering dataset

amount of time, and this reduction in authors took the retrieval of metrics from approximately
70 hours to merely 8 hours. As explained before, during the development of this thesis project
the determination of when an author has begun to publish in Scopus indexed publications is
of paramount importance. Since other Academic Rising Star identification efforts rely on an
increment in the metrics of an author to determine the point where the author becomes an
Academic Rising Star[3]. However, this criteria can be prone to identify as Academic Rising
Star authors with long careers who suddenly make a breakthrough and their metrics increase.
These authors despite becoming influential authors, may not meet the youth criteria, thus not
making them attractive enough for research institutions to take into account in their hiring
processes. Since it was defined in our criteria of Academic Rising Star that the author is
to be in the first years of their career, it was important to visualize the publication dynam-
ics of the authors to be used for the classification. Figure 4.2 presents the boxplot of yearly
publications for authors who made their first publication in 2010. Although the median of
publications stays around two publications per year, a steady increase in the number of pub-
lished documents can be appreciated, especially for those authors publishing above Q3. From
this visualization, we can conclude that once an author starts to publish in the Clustering area,
it is most likely that the author keeps on publishing, and their number of publications per year
increases. As such, for the classification task, only those authors whose first publication was
done in 2010 are of interest. So, after filtering those authors, the dataset has left 451 authors,
which are the ones that are going to be used for the rest of this case study.

4.2.2 Data Labeling

As previously explained, it is necessary to label the data before the classification process can
be done. The authors were classified as top authors using four criteria:

• Publications in 2019
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Figure 4.2: Boxplots of the number of documents published per year for authors whose first
publication was made in 2010.
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Metric Group Author Count Proportion Min. Value Max. Value
Publications Outliers 33 7.3% 15 45
Publications Custom 61 13.5% 9.75 20.25

Citation Count Outliers 35 7.8% 51 792
Citation Count Custom 29 6.4% 33.15 68.85

FWCI Outliers 24 5.3% 4.08 36.83
FWCI Custom 33 7.1% 2.652 5.51

H-5 Index Outliers 28 6.2% 12 29
H-5 Index Custom 56 12.4% 7.8 16.2

Table 4.1: Labeling characteristic for each of the datasets that are used classification.

• Citation Count in 2019

• Field-Weighted Citation Impact in 2019

• H-5 Index in 2019

As previously explained, for each metric, two datasets with different labels are produced.
The first dataset labels authors whose metric is greater than the outlier threshold as the positive
cases. The second dataset labels authors whose metric is 35% greater or smaller than the
outlier threshold. The first labeling group is referred to as Outliers, and the second one as the
Custom. The reasoning as to why this is done can be found in Chapter 3. In table 4.1 the results
of the labeling process are shown. In each of the datasets, the positive cases comprehend from
5.3% to 12.4%, of the total cases, which is in an acceptable range for the classification task at
hand.

4.2.3 Check for Colinearity
Logistic Regression requires that no strong colinearity is present among the independent vari-
ables. To check for this assumption, a heatmap of the correlation matrix of the independent
variables was made. Figure 4.3, shows the linearity among independent variables. In this case,
there is some colinearity among some of the independent variables, especially among those
who represent different citation metrics. However, this colinearity will be dealt with along the
classification process with feature selection. It is also important to mention that Figure 4.3
only shows the correlation among the average of the metrics from 2010 to 2014. This is done
to keep the heatmap at a reasonable size. Nonetheless, the complete heatmap (with the 70
independent variables) shows very similar behavior. It is also important to mention, that most
of the metrics do not show high colinearity, which is good for the performance of the logistic
regression.

4.3 Data normalization
Data normalization improves the performance of classifiers. For each of the labeled datasets,
three additional datasets are generated. In those three additional datasets data is normalized
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Figure 4.3: Heatmap of the correlation between the average of each independent variable from
2010 to 2014. Values closer to 1 mean a high correlation.
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Figure 4.4: This set of boxplots show the difference in data scaling of the h5index avg attribute
when the attribute is normalized and when it is not.

using three different techniques:

• MinMax Scaling

• Standard Scaling

• Robust Scaling

In Figure 4.4 an example of the distribution of the normalized data is appreciated. In this
case, Figure 4.4 is showing how the data differs between the different normalization strategies.
Every attribute in the dataset is normalized in these ways.

4.4 The Dataset
For the purposes of the following classification, it is important to clarify that the classifiers
were trained using different variations of this dataset. The first difference comes in the labeling
of the positive cases as previously explained. The results of these different labeling strategies
are shown in Table 4.1.

The next variation comes in the form of the normalization of the data. As previously
explained, non-normalized metrics were used along with data that was scaled using three
different methods. These were MinMax, Standard, and Robust.

And the final variation comes in the form of the set of features being used. The first
variation is ALL, where every metric from 2010 to 2014 is present in the classifier. Table 4.2
shows the metrics used in this type of dataset. Each type of feature is represented from 2010
to 2014, and with the purpose of keeping the table at a reasonable size, the final digit of the
feature is represented with an X, which represents the values from 0 to 4. This feature set has
70 individual features. It is also important to clarify that in these datasets there is a distinction
between the zero and the NaN (Not a Number) values. Where applicable that a metric is zero,
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Metric Abbreviation Full Metric Name
fwci 201X Individual Field Weighted Citation Impact from 2010 to 2014
citCount 201X Individual Citation Count from 2010 to 2014
citPP 201X Individual Citations per Paper from 2010 to 2014
citedPub 201X Individual Cited Publications from 2010 to 2014
publications 201X Individual Publications from 2010 to 2014
OTCP01 201X Individual Outputs in the Top 1% Citation Percentiles from 2010 to 2014
OTCP05 201X Individual Outputs in the Top 5% Citation Percentiles from 2010 to 2014
OTCP10 201X Individual Outputs in the Top 10% Citation Percentiles from 2010 to 2014
OTCP25 201X Individual Outputs in the Top 25% Citation Percentiles from 2010 to 2014
TJCP01 201X Individual Publications in the Top 1% Journal Percentiles from 2010 to 2014
TJCP05 201X Individual Publications in the Top 5% Journal Percentiles from 2010 to 2014
TJCP10 201X Individual Publications in the Top 10% Journal Percentiles from 2010 to 2014
TJCP25 201X Individual Publications in the Top 25% Journal Percentiles from 2010 to 2014
h5index 201X Individual h5-index from 2010 to 2014

Table 4.2: Metrics in the datasets with the ALL feature set.

means that while there were publications by the author in that year, the value of the metric is
zero. On the other hand, that the value of the metric is NaN means that there is not a value
available for that metric because there were not any publications by the author in that year.
For the purposes of easily dealing with this distinction, the NaN values were converted to
zero.

The next variation is Average (AVG), where every metric from 2010 to 2014 is con-
densed in an average representation of the values of the feature from 2010 to 2014. Table 4.3
shows the metrics used in this type of dataset. This feature set has 14 individual features.

The final variation is Median (MED), where every metric from 2010 to 2014 is con-
densed in the median representation of the values of the feature from 2010 to 2014. Table 4.4
shows the metrics used in this type of dataset. This feature set has 14 individual features.

Nonetheless, each of these datasets has 451 observations (or authors). These correspond
to the authors whose first document was published in 2010.

4.5 Classification
Once the different datasets are properly labeled and normalized, the three different classifiers
were tested, Logistic Regression, and Support Vector Machine. In the following subsections,
the parameters that were used for the different configurations of classifiers will be discussed.
Furthermore, the results of these classification exercises through their relevant metrics will be
presented.

Additionally, the classifiers will be trained with one of the three different sets of features.

• ALL: It comprehends every feature that refers to an individual year from 2010 to 2014.

• AVG: This set contains only the average of the different features from 2010 to 2014.
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Metric Abbreviation Full Metric Name
fwci avg Average Field Weighted Citation Impact from 2010 to 2014
citCount avg Average Citation Count from 2010 to 2014
citPP avg Average Citations per Paper from 2010 to 2014
citedPub avg Average Cited Publications from 2010 to 2014
publications avg Average Publications from 2010 to 2014
OTCP01 avg Average Outputs in the Top 1% Citation Percentiles from 2010 to 2014
OTCP05 avg Average Outputs in the Top 5% Citation Percentiles from 2010 to 2014
OTCP10 avg Average Outputs in the Top 10% Citation Percentiles from 2010 to 2014
OTCP25 avg Average Outputs in the Top 25% Citation Percentiles from 2010 to 2014
TJCP01 avg Average Publications in the Top 1% Journal Percentiles from 2010 to 2014
TJCP05 avg Average Publications in the Top 5% Journal Percentiles from 2010 to 2014
TJCP10 avg Average Publications in the Top 10% Journal Percentiles from 2010 to 2014
TJCP25 avg Average Publications in the Top 25% Journal Percentiles from 2010 to 2014
h5index avg Average h5-index from 2010 to 2014

Table 4.3: Metrics in the datasets with the AVG feature set.

Metric Abbreviation Full Metric Name
fwci med Median Field Weighted Citation Impact from 2010 to 2014
citCount med Median Citation Count from 2010 to 2014
citPP med Median Citations per Paper from 2010 to 2014
citedPub med Median Cited Publications from 2010 to 2014
publications med Median Publications from 2010 to 2014
OTCP01 med Median Outputs in the Top 1% Citation Percentiles from 2010 to 2014
OTCP05 med Median Outputs in the Top 5% Citation Percentiles from 2010 to 2014
OTCP10 med Median Outputs in the Top 10% Citation Percentiles from 2010 to 2014
OTCP25 med Median Outputs in the Top 25% Citation Percentiles from 2010 to 2014
TJCP01 med Median Publications in the Top 1% Journal Percentiles from 2010 to 2014
TJCP05 med Median Publications in the Top 5% Journal Percentiles from 2010 to 2014
TJCP10 med Median Publications in the Top 10% Journal Percentiles from 2010 to 2014
TJCP25 med Median Publications in the Top 25% Journal Percentiles from 2010 to 2014
h5index med Median h5-index from 2010 to 2014

Table 4.4: Metrics in the datasets with the MED feature set.
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Positive Label Weight MR MED MAD CI γ Magnitude
2 1.875 0.521 0.031 [0.509, 0.539] 0.000 negligible
1.5 1.995 0.528 0.041 [0.517, 0.542] -0.194 negligible
1 2.130 0.520 0.029 [0.500, 0.527] 0.039 negligible

Table 4.5: Summary Table for the Label Weights Post Hoc Test in the Logistic Regression
Classifiers.

• MED: This sets contains only the median of the different features from 2010 to 2014.

4.5.1 Logistic Regression

In the case of Logistic regression, as previously discussed, it is affected by colinearity among
the independent variables. Therefore, Recursive Feature Elimination is used to reduce the
number of features to be used in the classifier. If the set of features to be used is ALL, the
parameter Minimum Features will range from 15 to 20 (from a total of 70). In any other
case, this parameter will range from 5 to 10 (from a total of 14). Three Recursive Feature
Elimination estimators are used with default sklearn’s default parameters and 10-fold cross-
validation. The selected sets of features for each Recursive Feature Elimination estimator are
used to train three Logistic Regression classifiers where the weight of the positive class is 1,
1.5, and 2. All of these models are trained with 5-fold cross-validation. In total, 4320 Logistic
Regression classifiers were trained with five-fold cross-validation.

In the following subsections, the results of the training of these classifiers will be pre-
sented. Boxplots showing the Area Under the ROC Curve (AUC) and the Average Precision
Score for each of the classifiers’ parameters will be shown too. Additionally, to determine if
the difference among parameters is significant, the results of the corresponding post hoc test
are presented too.

Label Weights

As mentioned earlier, while training the classifiers one of the modified parameters was the La-
bel Weight. The positive class was assigned a weight of 1.0, 1.5, and 2.0. The boxplots of the
AUC and the Average Precision Score for each of these weights can be seen in Figure 4.5. To
truly determine if there is any significant difference between the use of these weights, a post
hoc test is carried out. The results of this post hoc test are presented in Table 4.5, the meaning
of the columns of this table are explained at the end of Chapter 2. The non-parametric Fried-
man test, in this case, determined that the null hypothesis (there is no significant difference in
the central tendency of the groups) is rejected with p < 0.05, and therefore there is no sig-
nificant difference between the median values of the groups. Additionally based on running a
post hoc Nemenyi test, it can be assumed that all the differences between the populations are
significant. This test determined that differences greater than 0.087 in the mean rank, mean
that there is a significant difference between the groups. This can be visualized in Figure 4.6.
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Figure 4.5: These boxplots show the AUC and Average Precision Scores for each of the
positive class weights used to train the Logistic Regression Classifiers

Figure 4.6: Critical Distance (CD) graph, that shows that every Positive Label Weight for the
Logistic Regression classifiers is at a distance greater than the Critical Distance determined
by the Nemenyi Post Hoc Test.
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Figure 4.7: These boxplots show the AUC and Average Precision Scores for each of the
positive class weights used to train the Logistic Regression Classifiers

Labeling Group

The Logistic Regression classifiers were trained with two groups of labeled datasets. One
group labeled the authors in the outlier group as the positive cases, and the second group
labeled the authors whose metrics were within a 70% range of the outlier threshold. These
two groups are referred to as the Outliers group and the Custom group. The AUC and the
Average Precision Score metrics for the classifiers trained with the data of these two groups are
presented in the boxplots in Figure 4.7. It may be evident just looking at the boxplots that these
two groups are significantly different. However, a post hoc test was still conducted to confirm
this observation. The results of this test are shown in Table 4.6 In this case since we are
dealing with just two populations, instead of the non-parametric Friedman Test, a Wilcoxon’s
signed-rank test was conducted to determine if there is a significant difference in the central
tendency of each group. In this case, Wilcoxon’s test determines with a p < 0.05 that we can
reject the null hypothesis. Therefore, the median of one group is significantly larger than the
median value of the other group. Since the comparison between only two populations only
requires a Wilcoxon’s test, no Nemenyi post hoc test was conducted, therefore, there is no
critical distance plot to show.

Labeling Attribute

As mentioned earlier in this chapter, different datasets had different authors labeled in the
positive class depending on the attribute used to classify them. In Figure 4.8 the AUC and
the Average Precision Score for these labeling attributes are shown. Even though it may be
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Labeling Group MR MED MAD CI γ Magnitude
OUTLIERS 1.218 0.569 0.072 [0.560, 0.582] 0.000 negligible
CUSTOM 1.782 0.500 0.000 [0.500, 0.500] 1.363 large

Table 4.6: Summary Table for the Labeling Groups Post Hoc Test in the Logistic Regression
Classifiers.

Labeling Attribute MR MED MAD CI γ Magnitude
h5index 2019 1.531 0.613 0.113 [0.604, 0.621] 0.000 negligible
citCount 2019 2.343 0.540 0.060 [0.517, 0.568] 0.797 medium
publications 2019 2.961 0.500 0.002 [0.500, 0.506] 1.407 large
fwci 2019 3.166 0.500 0.000 [0.500, 0.500] 1.407 large

Table 4.7: Summary Table for the Labeling Attributes Post Hoc Test in the Logistic Regres-
sion Classifiers.

apparent that every labeling attribute is significantly different from one another, it was still
convenient to run a post hoc test. The results of this test can be appreciated in Table 4.7 and
in the critical distance graph 4.11. In this case, the non-parametric Friedman test is used to
determine is the central tendencies of the groups are equal. In this case, that hypothesis is
rejected with a p < 0.05. According to the Nemenyi test, the critical distance is 0.143, and
therefore we can assume that all differences between populations are significant.

Normalization Method

To understand the effects of the data normalization in the dataset it is important to compare the
results of the different normalization methods with the results of the non-normalized data. As
it was specified previously, the data was normalized utilizing three different scalers, MinMax,
Standard, and Robust. The group of boxplots in Figure 4.10 display the AUC and the Average
Precision Score of the classifiers according to the data type they used. At first sight, the
performance of the different normalization methods seems fairly different. A summary of the
post hoc test is shown in Table 4.8. The null hypothesis of the non-parametric Friedman test
is rejected with p < 0.05, and thus it can be concluded that there are significant differences in
the central tendency of the classifier groups. The Nemenyi test determined the critical distance
to be at 0.143 and therefore, all the differences between the populations are significant.

Normalization MR MED MAD CI γ Magnitude
STD 1.891 0.572 0.076 [0.559, 0.586] 0.000 negligible
CRISP 2.428 0.543 0.063 [0.527, 0.558] 0.421 small
Robust 2.608 0.500 0.004 [0.500, 0.521] 1.340 large
MM 3.073 0.500 0.000 [0.500, 0.500] 1.341 large

Table 4.8: Summary Table for the Normalization Methods Post Hoc Test in the Logistic Re-
gression Classifiers.



38 CHAPTER 4. CASE STUDY: CLUSTERING

Figure 4.8: These boxplots show the AUC and Average Precision Scores for each of the
positive labeling attributes used to train the Logistic Regression Classifiers. These results
comprehend both the Outlier group and the Custom group.

Figure 4.9: Critical Distance (CD) graph, that shows that every Labeling Attribute group for
the Logistic Regression classifiers is at a distance greater than the Critical Distance determined
by the Nemenyi Post Hoc Test.
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Figure 4.10: These boxplots show the AUC and Average Precision Scores for each of the
normalization groups used to train the Logistic Regression Classifiers.

Figure 4.11: Critical Distance (CD) graph, that shows that every Labeling Attribute group for
the Logistic Regression classifiers is at a distance greater than the Critical Distance determined
by the Nemenyi Post Hoc Test.
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Figure 4.12: These boxplots show the AUC and Average Precision Scores for each of the
feature groups used to train the Logistic Regression Classifiers.

Feature Group MR MED MAD CI γ Magnitude
ALL 1.491 0.561 0.091 [0.552, 0.577] 0.000 negligible
AVG 2.210 0.500 0.002 [0.500, 0.507] 0.954 large
MED 2.299 0.500 0.002 [0.500, 0.515] 0.954 large

Table 4.9: Summary Table for the Feature Groups Post Hoc Test in the Logistic Regression
Classifiers.

Features Group

The classifiers were trained with three different sets of features. Every feature (except for the
averages and medians of each group feature), the average of the features, and the median of
the features. These features groups are referred as ALL, AVG, and MED. In Figure 4.12, the
AUC and Average Precision Score for each group of features are shown. They seem to be
fairly different, and this is confirmed by the summary of the subsequent post hoc test. The
summary table of this post hoc test is shown in Table 4.9. The non-parametric Friedman test
discarded the null hypothesis with p < 0.05, which means that the central tendencies of the
different feature groups are not equal. The Nemenyi test determined that the critical distance
is 0.087, then all the differences between the feature groups are significant. This can be seen
graphically represented in Figure 4.13.
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Figure 4.13: Critical Distance (CD) graph, that shows that every Feature Group for the Logis-
tic Regression classifiers is at a distance greater than the Critical Distance determined by the
Nemenyi Post Hoc Test.

RFE Estimator MR MED MAD CI γ Magnitude
perceptron 1.918 0.530 0.045 [0.515, 0.542] 0.000 negligible
logistic regression 2.040 0.520 0.030 [0.507, 0.536] 0.268 small
decision tree 2.041 0.521 0.031 [0.507, 0.535] 0.249 small

Table 4.10: Summary Table for the Recursive Feature Eliminator Estimator Post Hoc Test in
the Logistic Regression Classifiers.

Recursive Feature Elimination Estimators

To overcome some of the drawbacks of colinearity among the independent variables, Recur-
sive Feature Elimination was used. The three different estimators used were Logistic Regres-
sion, Perceptron, and Decision Tree. In Figure 4.14 the boxplots of the AUC and the Average
Precision Score for each of the classifiers that used each type of estimator is displayed. Look-
ing at the boxplots, it seems that the Recursive Feature Elimination groups may not be so
different between them. To confirm this observation, a post hoc analysis was done, and a
summary of this analysis is shown in Table 4.10. Using a non-parametric Friedman test, the
null hypothesis is rejected, therefore at least one of the groups has a significantly different
central tendency from the other population. The Nemenyi test determines that the critical dis-
tance, in this case, is 0.087. The differences in Mean Rank for Decision Tree and Logistic
Regression are not greater than the critical distance, so we assume there is no significant dif-
ference between these two estimators. On the other hand, the perceptron estimator is indeed
at a distance greater than the critical distance, and thus it is significantly different from the
other two estimators. These observations can be graphically observed in Figure 4.15.

Number of Features Used

As Recursive Feature Elimination eliminates some of the features before the Logistic Re-
gression Classifier is trained, it is also important to visualize how the elimination of features
impacts the performance of the classifiers. In Figure 4.16 the AUC and the Average Precision
Score of the groups of classifiers per range of the number of features is shown. To determine
the range of features, the number of features was divided into five bins which are divided by
quantiles. The aim of using quantiles to divide the bins was to conduct the post hoc test to
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Figure 4.14: These boxplots show the AUC and Average Precision Scores for each of the
estimators used in the Recursive Feature Elimination stage to train the Logistic Regression
Classifiers.

Figure 4.15: Critical Distance (CD) graph, that shows that every Recursive Feature Elimina-
tion estimator for the Logistic Regression classifiers is at a distance greater than the Critical
Distance determined by the Nemenyi Post Hoc Test.
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Figure 4.16: These boxplots show the AUC and Average Precision Scores for each of the
ranges of number of features that resulted from using Recursive Feature Elimination before
training the Logistic Regression Classifiers.

compare them as paired groups. However, since the number of resulting features depends
solely on the Recursive Feature Elimination results and these have a random component, it
was not possible to achieve perfectly paired groups with any number of bins. Therefore, it is
not possible to conduct the post hoc test, as the groups are no longer paired. Nonetheless, the
lone visualization of the metrics for each of the groups in Figure 4.16 makes it evident that
the central tendency of all of the groups is different. These observations should prove useful
when the impact of the number of features used in the classifiers is discussed in Chapter 5.

Exploring the best classifiers based on AUC

To understand and show what parameters worked best in training the Logistic Regression
Classifiers, the classifiers whose AUC metric was in the top 10% were separated into a new
dataset. These classifiers have an AUC greater than 0.64793, the this resulted in 429 classi-
fiers, which represent 9.93% of the classifiers. To understand which features did work best,
Figure 4.17 shows how prevalent were each one of the parameters in the classifiers which
performed best. From looking at the Sub-figure 4.17c, it becomes evident that classifiers that
used h5-index as the labeling feature performed overwhelmingly better than those labeled us-
ing any of the features. Additionally, Sub-figures 4.17e and 4.17f also show that those models
which used a high amount of features, and those that used the ALL group of features, are the
most frequent in the best performing classifiers. With regards to the data normalization meth-
ods in Sub-figure 4.17d, the only data type with less prevalence than the other normalization
methods is the MinMax normalization. On the other hand, it seems that the presence of both
classifiers which utilize the outliers group and the custom group shown in the Sub-figure 4.17e
is more or less similar. And finally, from Sub-figure 4.17a it seems that assigning a greater
weight to the label of the positive class has a positive impact on the performance of the top
classifiers since an increase in the frequency of top classifiers is observed as the label weight
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Feature Group Labeling Group Average AUC Num. of Classifiers Avg Num of Features
ALL OUTLIERS 0.7257 140 42.61
ALL CUSTOM 0.7277 123 45.93
AVG OUTLIERS 0.6916 15 12.53
AVG CUSTOM 0.6838 58 12.66
MED OUTLIERS N/A 0 N/A
MED CUSTOM 0.6662 10 10.1

Table 4.11: Summary Table of the AUC of each Logistic Regression classifier group in the
top 10% models whose labeling feature is h5-index.

grows.
Now that it is known that the best classifiers use h5-index as the labeling target class,

the analysis of this case is going to be focused on the top classifiers which use this target
class. After filtering those classifiers that use other features as the labeling target class, the
top classifiers dataset is left with, 346 classifiers which represent roughly 8% of all the trained
classifiers. It is of interest to know in more detail which features were used in these top clas-
sifiers, that is why these classifiers are subsequently divided according to the feature set they
were trained with (ALL, AVG, and MED). Additionally, these were separated again according
to the feature group they were trained with (Outliers, Custom). In Table 4.11 a summary of
these classifier groups are shown. In this case, none of the classifiers that used the median
feature group and the outliers labeling group made it to these top classifiers. Additionally, in
Table 4.11, it is shown how many classifiers are there per group. Given these results, for the
following analysis, these models with the median set of features are going to be disregarded.

Best Features

Once the best models are properly separated from the rest of the models, it is possible to
visualize which features were the most predominant in these models. Tables 4.12 and 4.13
show the percentage of models in which these features appeared for the outlier and custom
groups respectively when the feature set ALL was used. For the outlier group, the three
most prevalent features are the fwci 2014, citCount 2014, and OTCP10 2012, which were
used in every model. On the other hand, the most prevalent features for the custom group
were citCount 2013 and publications 2014, which also appeared in every model. However,
most of these models utilized a great number of features, which can make the explanation of
the model harder to explain. On the other hand, in Tables 4.14 and 4.15 the percentages of
frequency of the attributes in the models trained with the AVG feature set are shown. The first
table shows the outliers group, while the second table shows the custom group. In this case,
it is possible to show the frequency of every attribute in the models, since these models can
only have a maximum of 14 features, while the models with the ALL feature set can have a
maximum of 70 variables, and it would not be practical to show all of them. For these models
trained with the AVG feature set, it is interesting that they tend to use most of the variables.
According to Table 4.11, these models use on average 12.53 and 12.66 features, which is
almost the 14 available features. On the other hand, the models that use the ALL feature set,
use on average 42.61 and 45.93 features, which is roughly 66% of the available features.



4.5. CLASSIFICATION 45

(a) Frequency of the Label Weights
in the top 10% models.

(b) Frequency of the Labeling Group
in the top 10% models.

(c) Frequency of the Labeling Feature in the
top 10% models.

(d) Frequency of the Data Normal-
ization Methods in the top 10% mod-
els.

(e) Frequency of the Feature Group in the top
10% models.

(f) Frequency of the Number of Fea-
tures in the top 10% models.

Figure 4.17: Frequency of the different parameters in the top 10% Logistic Regression Clas-
sifiers.
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Attribute Frequency
fwci 2014 100%
citCount 2014 100%
OTCP10 2012 100%
fwci 2012 96.43%
citCount 2012 96.43%
fwci 2013 92.86%
TJCP01 2012 92.86%
OTCP05 2013 92.86%
OTCP25 2014 92.86%
citPP 2010 92.14%
citCount 2013 91.43%
TJCP01 2013 89.29%
OTCP05 2012 88.57%
fwci 2010 85.71%
h5index 2011 85.71%

Table 4.12: Most frequent attributes
in the Logistic Regression top models
labeled with the h5-index attribute,
for the Outliers group when the ALL
feature set is used.

Attribute Frequency
citCount 2013 100.0%
publications 2014 100.0%
citPP 2010 94.31%
fwci 2010 93.5%
citPP 2014 89.43%
citPP 2013 87.8%
citedPub 2012 86.99%
OTCP25 2014 86.99%
citCount 2012 86.18%
TJCP25 2012 86.18%
fwci 2014 81.3%
TJCP05 2012 81.3%
OTCP10 2013 81.3%
fwci 2012 79.67%
TJCP01 2013 79.67%

Table 4.13: Most frequent attributes
in the Logistic Regression top models
labeled with the h5-index attribute,
for the Custom group when the ALL
feature set is used.
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Attribute Frequency
fwci avg 100.0%
citCount avg 100.0%
citPP avg 100.0%
citedPub avg 100.0%
publications avg 100.0%
TJCP01 avg 100.0%
OTCP01 avg 100.0%
OTCP05 avg 100.0%
OTCP25 avg 100.0%
h5index avg 100.0%
TJCP05 avg 93.33%
TJCP10 avg 93.33%
TJCP25 avg 33.33%
OTCP10 avg 33.33%

Table 4.14: Most frequent attributes
in the Logistic Regression top models
labeled with the h5-index attribute,
for the Outliers group when the AVG
feature set is used.

Attribute Frequency
citPP avg 100.0%
OTCP01 avg 100.0%
OTCP25 avg 100.0%
h5index avg 100.0%
OTCP05 avg 98.28%
citCount avg 96.55%
TJCP10 avg 94.83%
TJCP05 avg 93.1%
fwci avg 87.93%
publications avg 86.21%
TJCP25 avg 86.21%
OTCP10 avg 86.21%
citedPub avg 82.76%
TJCP01 avg 53.45%

Table 4.15: Most frequent attributes
in the Logistic Regression top models
labeled with the h5-index attribute,
for the Custom group when the AVG
feature set is used.
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Group D.T. L. W. Accuracy Precision Recall AUC APS Features
CUSTOM Robust 2 0.969 0.763 0.853 0.916 0.662 69
CUSTOM Robust 1.500 0.973 0.867 0.765 0.878 0.680 69
CUSTOM Robust 2 0.958 0.714 0.735 0.856 0.545 65
OUTLIERS STD 2 0.971 0.800 0.714 0.851 0.589 53
CUSTOM Robust 2 0.953 0.686 0.706 0.840 0.506 55
CUSTOM STD 2 0.965 0.821 0.676 0.832 0.580 68
CUSTOM STD 2 0.962 0.793 0.676 0.831 0.561 67
CUSTOM STD 2 0.962 0.793 0.676 0.831 0.561 70
CUSTOM STD 2 0.962 0.793 0.676 0.831 0.561 70
CUSTOM Robust 2 0.960 0.767 0.676 0.830 0.543 62

Table 4.16: The top 10 Logistic Regression Classifiers, trained with the ALL feature set and
h5-index as labeling feature.

The Best Models

To finish with the Logistic Regression results, all that is left to do is to present the best clas-
sifiers, both with the ALL feature set and the AVG feature set. Again, these models are the
ones where the used labeling feature is h5-index and are ordered based on their AUC metric.
In Table 4.16 the best 10 models for the ALL feature set are presented. In both Tables 4.16
and 4.17, D.T stands for Data Transformation, L.W. stands for Label Weight, and APS stands
for Average Precision Score. It is interesting to note that 9 of these 10 classifiers were trained
with the Custom group. The best two models can be considered fairly good since both boast
a very high accuracy. However, the number 1 model has greater precision than the number
2 model, but the number 2 model has a greater recall than the number 1 model. It all comes
down to a trade-off between false positives and false negatives. Table 4.17 shows that the
achieved AUC scores with the AVG feature set are not as high as the ones achieved with the
ALL feature set. Nonetheless, the precision and recall are acceptable although not as good as
with the previous models. One last important thing to mention is some models are repeated
in Tables 4.16 and 4.17. This is due to different Recursive Feature Elimination estimators
sometimes achieve the same results, eliminating the same features. This is evidence that the
Recursive Feature Elimination methods used were able to identify consistently which features
were the least relevant for the Logistic Regression Classifiers.

4.5.2 SVM

Additionally to the Logistic Regression models, Support Vector Machine models were trained.
In the same fashion as with the Logistic Regression Models, Recursive Feature Elimination
is used to reduce the number of features to be used by the classifier. The parameters used in
the Recursive Feature Elimination are the same as with the Logistic Regression. Additionally,
these classifiers were trained with five-fold cross-validation as well. The kernel used is the
Radial basis function kernel.

In the following subsections, the results of these classifiers are going to be presented in a
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Group D.T. L.W. Accuracy Precision Recall AUC APS Features
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 13
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 13
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 14
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 14
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 14
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 14
CUSTOM STD 2 0.945 0.696 0.471 0.727 0.367 13
CUSTOM CRISP 2 0.942 0.682 0.441 0.712 0.343 14
CUSTOM CRISP 2 0.942 0.682 0.441 0.712 0.343 14
CUSTOM CRISP 2 0.942 0.682 0.441 0.712 0.343 14

Table 4.17: The top 10 Logistic Regression Classifiers, trained with the AVG feature set and
h5-index as labeling feature.

Positive Label Weight MR MED MAD CI γ Magnitude
2 1.278 0.604 0.079 [0.600, 0.614] 0.000 negligible
1.5 1.914 0.576 0.071 [0.573, 0.583] 0.379 small
1 2.808 0.542 0.062 [0.542, 0.545] 0.884 large

Table 4.18: Summary Table for the Label Weights Post Hoc Test in the SVM Classifiers.

series of boxplots, where the performance of each type of parameter is going to be shown, just
as with the Logistic Regression Classifiers. As with the Logistic Regression classifiers, the
corresponding post hoc test will be conducted to determine if the different parameters have a
significant difference in the performance of the SVM classifiers.

Label Weights

In Figure 4.18 the boxplots of the AUC and Average Precision Score for each weight assigned
to the positive class are shown. It may be evident that a higher weight results in an increment
in the metrics of the classifier, being those trained with a positive class label of 2.0, the ones
with the highest median. Table 4.20 shows a summary of the values of the post hoc test. Which
in this case it was determined using a non-parametric Friedman test that the difference in the
median is significant for the different label weights with p < 0.05. The subsequent Nemenyi
test established that the critical distance is 0.087, and since the differences in the mean ranks
of all the label weights are greater than this critical distance, the differences between these
label weights are significant. This can be appreciated in Figure 4.19.

Labeling Group

The boxplots of the AUC and Average Precision Score for each of the classification groups
are shown in Figure 4.20. The medians of both populations as displayed in the boxplots are
different. While the median of the Outliers group is higher than the median of the Custom
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Figure 4.18: These boxplots show the AUC and Average Precision Scores for each of the
positive class weights used to train the SVM Classifiers

Figure 4.19: Critical Distance (CD) graph, that shows that every Positive Label Weight for the
SVM classifiers is at a distance greater than the Critical Distance determined by the Nemenyi
Post Hoc Test.
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Figure 4.20: These boxplots show the AUC and Average Precision Scores for each of the
positive class weights used to train the SVM Classifiers

Labeling Group MR MED MAD CI γ Magnitude
OUTLIERS 1.184 0.589 0.049 [0.585, 0.599] 0.000 negligible
CUSTOM 1.816 0.542 0.062 [0.537, 0.548] 0.851 large

Table 4.19: Summary Table for the Label Weights Post Hoc Test in the SVM Classifiers.

group, the Custom group seems to be able to reach better results than the Outliers group. To
confirm if the two labeling groups are significantly different, a post hoc test was conducted.
The summary of this test is found in Table 4.19. Since the comparison, in this case, is between
two non-normal groups, then a Wilcoxon’s signed-rank test is used, and the null hypothesis
is rejected with p < 0.05, so the median of the Outliers group is significantly larger than the
median value of the Custom group. For two population comparisons, there is no need for a
critical distance graph.

Labeling Attribute

The boxplots of the metrics of the labeling attributes used to label the positive cases before
training the classifiers are displayed in Figure 4.21. Again, the labeling attribute which per-
forms best is the h5-index. Conducting a post hoc test, it can be confirmed that every labeling
feature group is significantly different from the others. The non-parametric Friedman test de-
termined with p < 0.05 that there are significant differences in the central tendencies of the
different labeling attributes. The summary of the post hoc test is shown in Table 4.20, and the
critical distance graph of this analysis is shown in Figure 4.22. The critical distance according
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Figure 4.21: These boxplots show the AUC and Average Precision Scores for each of the
positive labeling attributes used to train the SVM Classifiers. These results comprehend both
the Outlier group and the Custom group.

to the Nemenyi test is 0.143 and none of the attributes is a distance smaller than the critical
distance.

Normalization Method

In Figure 4.23 the effects of data normalization are compared. In these boxplots, the re-
sults of the classifiers that were trained with non-normalized (CRISP) data are found too. It
seems like both CRISP data and MinMax data are not so different from each other, so we
conduct a non-parametric Friedman test to confirm if there is a significant difference among
the normalization methods. The test rejects the null hypothesis with p < 0.05 which means
their difference between the central tendencies of the normalization methods is significant.

Labeling Attribute MR MED MAD CI γ Magnitude
h5index 2019 1.228 0.638 0.074 [0.625, 0.656] 0.000 negligible
citCount 2019 2.066 0.600 0.056 [0.598, 0.602] 0.582 medium
publications 2019 3.160 0.549 0.040 [0.545, 0.561] 1.500 large
fwci 2019 3.546 0.542 0.031 [0.542, 0.542] 1.698 large

Table 4.20: Summary Table for the Label Attributes Post Hoc Test in the SVM Classifiers.
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Figure 4.22: Critical Distance (CD) graph, that shows that every Positive Label Attribute
for the SVM classifiers is at a distance greater than the Critical Distance determined by the
Nemenyi Post Hoc Test.

Normalization Method MR MED MAD CI γ Magnitude
STD 1.576 0.604 0.078 [0.588, 0.606] 0.000 negligible
Robust 2.236 0.576 0.055 [0.571, 0.588] 0.419 small
MM 3.054 0.554 0.071 [0.542, 0.561] 0.675 medium
CRISP 3.134 0.561 0.059 [0.544, 0.562] 0.628 medium

Table 4.21: Summary Table for the Normalization Method Post Hoc Test in the SVM Classi-
fiers.

However, the Nemenyi test’s critical distance is calculated at 0.143, which means that any
normalization methods with a difference in mean rank less than this critical distance, are not
significantly different. The summary of this post hoc test is shown in Table 4.21 and the crit-
ical distance graph is shown in Figure 4.24. In the table and the graph it can be appreciated
how the distance between CRISP and MM is not greater than the critical distance, therefore,
the difference between these normalizations is not significant.

Features Group

Figure 4.25 presents the AUC and Average Precision Score metrics for the feature sets used by
the classifiers. In terms of AUC, the three sets of features seem to be capable of achieving high
scores, while AVG shows a median slightly lower than the median of the other two groups.
In terms of the Average Precision Score, AVG seems to achieve lower scores, compared to
the other two groups. Nonetheless, the Average Precision Scores medians for the tree feature
sets are fairly low. To confirm the difference between these feature groups a post hoc test
was conducted. The results of the post hoc test can be seen in Table 4.23 and in the critical
distance graph in Figure 4.26. The Nemenyi test determined the critical distance at 0.087, and
the non-parametric Friedman test showed that there are significant differences in the central
tendencies of the feature groups.

Recursive Feature Elimination Estimators

Recursive Feature Elimination eliminates those features which do not contribute significantly
to the outcome of the models. In Table 4.27, the AUC and Average Precision Score achieved
by the classifiers that used each estimator in the recursive feature elimination stage is shown.
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Figure 4.23: These boxplots show the AUC and Average Precision Scores for each of the
normalization groups used to train the SVM Classifiers.

Figure 4.24: Critical Distance (CD) graph, that shows that CRISP and MM normalizations
for the SVM classifiers are at a distance lesser than the Critical Distance determined by the
Nemenyi Post Hoc Test.

Features Groups MR MED MAD CI γ Magnitude
ALL 1.441 0.588 0.081 [0.583, 0.604] 0.000 negligible
MED 1.961 0.575 0.051 [0.562, 0.583] 0.202 small
AVG 2.598 0.544 0.065 [0.542, 0.554] 0.599 medium

Table 4.22: Summary Table for the Feature Groups Post Hoc Test in the SVM Classifiers.
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Figure 4.25: These boxplots show the AUC and Average Precision Scores for each of the
feature groups used to train the SVM Classifiers.

Figure 4.26: Critical Distance (CD) graph, that shows that every Feature Group for the SVM
classifiers is at a distance greater than the Critical Distance determined by the Nemenyi Post
Hoc Test.
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Figure 4.27: These boxplots show the AUC and Average Precision Scores for each of the
estimators used in the Recursive Feature Elimination stage to train the SVM Classifiers.

RFE Estimator MR MED MAD CI γ Magnitude
perceptron 1.949 0.572 0.066 [0.562, 0.576] 0.000 negligible
logistic regression 2.025 0.571 0.072 [0.562, 0.576] 0.004 negligible
decision tree 2.026 0.571 0.075 [0.562, 0.576] 0.004 negligible

Table 4.23: Summary Table for the Recursive Feature Elimination Estimators Post Hoc Test
in the SVM Classifiers.

It seems that the three estimators, logistic regression, perceptron, and decision tree perform
similarly in terms of the AUC measurements which are not outliers. The subsequent post hoc
test determined that the non-parametric Friedman rejects the null hypothesis that states that the
central tendencies show no significant difference, with p < 0.05. Nonetheless, the Nemenyi
test stated differences between estimators are significant if the difference of the mean rank is
greater than the critical distance of 0.087. In this case, the difference in the mean ranks of the
three estimators is not greater than the critical distance. This can be appreciated in Table ??
and in the critical distance graph in Figure 4.28.

Number of Features Used

Since the Recursive Feature Elimination stage eliminates a different number of features, it is
convenient to group the number of remaining features in each classifier to visualize its AUC
and Average Precision Score metrics. In this case, a quantile grouping was used to achieve
groups with a similar number of classifiers. The boxplots of the metrics for these groups are
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Figure 4.28: Critical Distance (CD) graph, that shows that every RFE Estimator for the SVM
classifiers is at a distance lesser than the Critical Distance determined by the Nemenyi Post
Hoc Test.

Figure 4.29: These boxplots show the AUC and Average Precision Scores for each of the
ranges of number of features that resulted from using Recursive Feature Elimination before
training the SVM Classifiers.

shown in Figure 4.29. In the case of the AUC, the medians of every group seem to be fairly
similar, while in the case of the Average Precision Score the groups which use 8-9, 10-11 and
21-70 features have higher medians. However, conclusions about the impact of the number of
features used will be better understood once the best models are presented.

Exploring the best classifiers based on AUC

Once the boxplots of the different parameters used to train the SVM Classifiers have been
presented, it is important to take a look at those classifiers in the top 10% based on their AUC
scores. This analysis will present a better visualization of the real effect of the parameters
in the performance of the SVM Classifiers. The top 10% classifiers were those whose AUC
metric is in the top 10% percentile, having an AUC score higher than 0.6786. This resulted
in the selection of 421 classifiers which represent 9.75% of the total classifiers. Figure 4.30
shows the prevalence of the parameters in the top-performing classifiers. Looking at Sub-
figure 4.30a it can be appreciated that most of the top classifiers weighted 2.0 as the weight
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Feature Group Labeling Group Average AUC Num. of Classifiers Avg Num of Features
ALL OUTLIERS 0.7525 91 51.6
ALL CUSTOM 0.7633 116 44.01
AVG OUTLIERS 0.7042 7 11.71
AVG CUSTOM 0.7212 48 11.85
MED OUTLIERS 0.7116 40 11.83
MED CUSTOM 0.7041 25 10.36

Table 4.24: Summary Table of the AUC of each SVM classifier group in the top 10% models
whose labeling feature is h5-index.

of the positive label, while models with a weight of 1.0 were very scarce. Additionally, it is
interesting that sub-Figure 4.30b shows that a little bit more classifiers using the outliers group
are present in the top classifiers than the ones using the custom group. However, there is a
significant number of classifiers trained with the custom group. As for the labeling feature,
Sub-figure 4.30c, shows that classifiers that were trained with data labeled using the h5-index
feature are more predominant than any other feature in the top classifiers. Surprisingly, when
it comes to the data transformation used in the training of the classifiers, according to Sub-
figure 4.30d, the most frequent type of data used by the top classifiers is data with Standard
normalization. Sub-Figure 4.30e shows that while the most frequent set of features used by the
top classifiers is ALL; AVG and MED are still used to a good extent, in around 50 classifiers
each. Finally, Sub-figure 4.30f shows that the number of features used lean towards larger
feature ranges. Although most of the classifiers seem to be in the 14-70 features range, these
are most likely the classifiers that used the ALL set of features. A more detailed breakdown
of the average of used features can be found in Table 4.24.

As the most frequent labeling attribute was again, h5-index, the classifier analysis is go-
ing to be focused on the classifiers that used the h5-index as the labeling attribute. Removing
from the analysis those classifiers which used another labeling attribute, we are left with 327
classifiers which make up roughly 7.57% of the total classifiers. This is done again for con-
sistency reasons, as the h5-index is the attribute that worked best for the Logistic Regression
classifiers. Again, the subsequent analysis going to be carried out diving the classifiers per
the feature set they used (ALL, AVG, and MED). A general summary of these classifiers is
shown in Table 4.24.

Best Features

Using these top classifiers, Tables 4.25 and 4.26 show the percentage of models in which these
features appeared in the classifiers trained with the feature set ALL. The first table shows the
Outlier group and the second one, the Custom group. For the outlier group, the three most
predominant features are related to citation, journal percentile, and FWCI. For the Custom
group, the case is very similar. However, these models used a high amount of features which
can make the models’ explanation complicated. Additionally, these models can use up to
70 features, which would make it even harder to visualize. In these tables, only the top 14
features are shown. On the other hand, the models which use the AVG feature set can make
it easier to explain which features contribute best to the classification of the authors. Tables
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(a) Frequency of the Label Weights
in the top 10% models.

(b) Frequency of the Labeling Group
in the top 10% models.

(c) Frequency of the Labeling Feature in the
top 10% models.

(d) Frequency of the Data Normal-
ization Methods in the top 10% mod-
els.

(e) Frequency of the Feature Group in the top
10% models.

(f) Frequency of the Number of Fea-
tures in the top 10% models.

Figure 4.30: Frequency of the different parameters in the top 10% SVM Classifiers.
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Attribute Frequency
fwci 2012 100.0%
citCount 2012 100.0%
citCount 2014 100.0%
TJCP01 2012 100.0%
OTCP05 2013 100.0%
OTCP10 2012 100.0%
OTCP25 2014 98.9%
citCount 2013 97.8%
citPP 2010 97.8%
OTCP05 2012 97.8%
OTCP05 2011 96.7%
OTCP01 2012 95.6%
citPP 2011 94.51%
OTCP25 2011 94.51%
OTCP10 2011 92.31%

Table 4.25: Most frequent attributes
in the top SVM models labeled with
the h5-index attribute, for the Out-
liers group when the ALL feature set
is used.

Attribute Frequency
citCount 2013 100.0%
TJCP01 2013 100.0%
fwci 2010 99.14%
fwci 2014 99.14%
publications 2014 97.41%
publications 2010 92.24%
TJCP25 2013 92.24%
OTCP10 2013 92.24%
OTCP25 2012 92.24%
citCount 2011 91.38%
TJCP05 2012 91.38%
publications 2013 90.52%
citedPub 2012 87.07%
citCount 2014 83.62%
TJCP01 2012 82.76%

Table 4.26: Most frequent attributes
in the SVM top models labeled with
the h5-index attribute, for the Custom
group when the ALL feature set is
used.

4.27 and 4.28 show the frequency of features for the Outlier and Custom Groups. For the
outlier group, most features are predominant, however, the least predominant are the ones
related to the publications in top citation journals (TJCP). For the Custom group, these were
citPP avg, TJCP25 avg, and OTCP01 avg. Finally, Tables 4.29 and 4.30 show the frequencies
of features in the classifiers trained with the MED set of features. In this case, the top features
were fwci median, citCount median, citPP median, and publications median for the Outlier
group, and the Custom group uses additionally 55index median, too.

The Best Models

To show the results and metrics of the best models per feature set used, these are condensed
into tables that show the parameters used and their metrics. Again, only the models whose
labeling attribute is h5-index are taken into account in this analysis. Tables 4.31, 4.32 and 4.33
show these models. In the case of the ALL feature set, every top 10 model uses the Custom
group with non-normalized data. However, their recall metrics are below 0.5 in most cases,
while they show very high precisions. But, these models are not identifying even half of the
positive cases. Again, in the models which use the AVG feature set, the top 10 models only
use the custom group, however, these models are using the robust normalized data. While
the AUC metric for these models is consistently higher, the recall also stays above 0.5 in the
majority of models. Finally, the models which use the MED feature set do use the Outliers
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Attribute Frequency
fwci avg 100.0%
citCount avg 100.0%
citedPub avg 100.0%
publications avg 100.0%
TJCP25 avg 100.0%
OTCP01 avg 100.0%
OTCP05 avg 100.0%
OTCP10 avg 100.0%
h5index avg 85.71%
citPP avg 71.43%
OTCP25 avg 71.43%
TJCP10 avg 57.14%
TJCP05 avg 42.86%
TJCP01 avg 42.86%

Table 4.27: Most frequent attributes
in the top SVM models labeled with
the h5-index attribute, for the Out-
liers group when the AVG feature set
is used.

Attribute Frequency
citPP avg 100.0%
TJCP25 avg 100.0%
OTCP01 avg 100.0%
citCount avg 97.92%
fwci avg 95.83%
OTCP25 avg 95.83%
h5index avg 93.75%
OTCP10 avg 91.67%
publications avg 89.58%
TJCP10 avg 75.0%
OTCP05 avg 70.83%
TJCP05 avg 68.75%
citedPub avg 60.42%
TJCP01 avg 45.83%

Table 4.28: Most frequent attributes
in the SVM top models labeled with
the h5-index attribute, for the Custom
group when the AVG feature set is
used.
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Attribute Frequency
fwci median 100.0%
citCount median 100.0%
citPP median 100.0%
publications median 100.0%
OTCP10 median 95.0%
h5index median 95.0%
OTCP01 median 90.0%
OTCP05 median 90.0%
OTCP25 median 90.0%
TJCP25 median 85.0%
TJCP10 median 80.0%
TJCP05 median 55.0%
citedPub median 52.5%
TJCP01 median 50.0%

Table 4.29: Most frequent attributes
in the top SVM models labeled with
the h5-index attribute, for the Out-
liers group when the MED feature set
is used.

Attribute Frequency
fwci median 100.0%
citCount median 100.0%
citPP median 100.0%
publications median 100.0%
h5index median 100.0%
citedPub median 80.0%
TJCP25 median 80.0%
OTCP25 median 76.0%
OTCP10 median 72.0%
OTCP01 median 60.0%
OTCP05 median 60.0%
TJCP10 median 48.0%
TJCP05 median 36.0%
TJCP01 median 24.0%

Table 4.30: Most frequent attributes
in the SVM top models labeled with
the h5-index attribute, for the Custom
group when the MED feature set is
used.



4.5. CLASSIFICATION 63

Group D.T. L. W. Accuracy Precision Recall AUC APS Features
CUSTOM STD 2 0.980 1 0.735 0.868 0.755 34
CUSTOM STD 2 0.978 0.962 0.735 0.866 0.727 42
CUSTOM STD 2 0.978 0.962 0.735 0.866 0.727 47
CUSTOM STD 2 0.978 0.962 0.735 0.866 0.727 38
CUSTOM STD 2 0.976 0.960 0.706 0.852 0.700 29
CUSTOM STD 2 0.973 0.923 0.706 0.851 0.674 16
CUSTOM STD 2 0.976 1 0.676 0.838 0.701 70
CUSTOM STD 2 0.976 1 0.676 0.838 0.701 69
CUSTOM STD 2 0.976 1 0.676 0.838 0.701 69
CUSTOM STD 2 0.976 1 0.676 0.838 0.701 69

Table 4.31: The top 10 SVM, trained with the ALL feature set and h5-index as labeling
feature.

Group D.T. L.W. Accuracy Precision Recall AUC APS Features
CUSTOM STD 2 0.962 0.870 0.588 0.791 0.543 13
CUSTOM STD 2 0.960 0.833 0.588 0.789 0.521 14
CUSTOM STD 2 0.960 0.833 0.588 0.789 0.521 14
CUSTOM Robust 2 0.956 0.769 0.588 0.787 0.484 14
CUSTOM Robust 2 0.956 0.769 0.588 0.787 0.484 14
CUSTOM Robust 2 0.956 0.769 0.588 0.787 0.484 14
CUSTOM Robust 2 0.956 0.769 0.588 0.787 0.484 14
CUSTOM Robust 2 0.956 0.769 0.588 0.787 0.484 14
CUSTOM Robust 2 0.956 0.769 0.588 0.787 0.484 14
CUSTOM STD 2 0.953 0.810 0.500 0.745 0.442 10

Table 4.32: The top 10 SVM Classifiers, trained with the AVG feature set and h5-index as
labeling feature.

group. However, these show low recalls.

4.5.3 Classifier Comparison
While it has already been confirmed that the top SVM classifiers achieved a higher AUC and
Average Precision Score metrics than the Logistic Regression classifiers. The comparison
boxplots can be seen in Figure 4.31. While the AUC could achieve higher values for Logistic
Regression, SVM could achieve a higher Average Precision Score. Then, to compare the best
models for each classifier, the boxplots for the top 35 models trained with the AVG feature
set per classifier are shown in Figure 4.32. The models trained with the AVG feature set
are chosen, as these were the ones who showed consistently the best results both for Logistic
Regression as SVM. The ALL feature set was not chosen as this feature set was deemed prone
to overfitting.
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Group D.T. L.W. Accuracy Precision Recall AUC APS Features
OUTLIERS Robust 2 0.965 0.929 0.464 0.731 0.464 13
OUTLIERS STD 2 0.965 0.929 0.464 0.731 0.464 13
OUTLIERS Robust 2 0.965 0.929 0.464 0.731 0.464 13
OUTLIERS MM 2 0.965 0.929 0.464 0.731 0.464 12
OUTLIERS STD 2 0.965 0.929 0.464 0.731 0.464 14
OUTLIERS Robust 2 0.965 0.929 0.464 0.731 0.464 13
OUTLIERS STD 2 0.965 0.929 0.464 0.731 0.464 14
OUTLIERS STD 2 0.965 0.929 0.464 0.731 0.464 14
OUTLIERS STD 2 0.965 0.929 0.464 0.731 0.464 13
OUTLIERS MM 2 0.965 0.929 0.464 0.731 0.464 12

Table 4.33: The top 10 SVM Classifiers, trained with the MED feature set and h5-index as
labeling feature.

Figure 4.31: These boxplots show the AUC and Average Precision Scores for the Logistic
Regression and SVM classifiers.
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Figure 4.32: These boxplots show the AUC and Average Precision Scores for the top 35 AVG
models for the Logistic Regression and SVM classifiers.

4.5.4 The Best Model
The best model with the AVG feature set was trained with the SVM classifier. This model was
trained with the Custom labeling group, the data were transformed with the Standard Scaling
and a Labeling Weight of 2.0. The metrics achieved by the model are shown in Table 4.34.
The features used by this model are the following:

• fwci avg

• citPP avg

• citedPub avg

• publications avg

• TJCP01 avg

• TJCP05 avg

• TJCP10 avg

• TJCP25 avg

• OTCP01 avg

• OTCP05 avg
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Metric Value
Accuracy 0.9623
Precision 0.8696
Recall 0.5882
F1 Score 0.7018
AUC 0.7905
APS 0.5426
True Positive 20
False Positive 3
False Negative 14
True Negative 414

Table 4.34: Metrics for the best AVG model.

• OTCP10 avg

• OTCP25 avg

• h5index avg



Chapter 5

Discussion

Recapitulating, the main objective of this thesis project is to prove that it is possible to predict
if an author will become a top researcher in the next five years, using the metrics of the first
five years of its scientific career. All of this by using exclusive data which is available through
the Scopus and SciVal APIs. To prove that this is possible, a dataset was built using entirely
Scopus and SciVal data, this data was used to train different classifier models, and finally,
those models were evaluated, to conclude if these models are able to predict Academic Rising
Stars. After the analysis of our results in Chapter 4, they indicate that it is possible to predict
Academic Rising Stars, to a very useful extent.

5.1 Dataset Building

One of the first hurdles that this thesis project had to phase is the challenge of creating datasets
that are comprehensive enough to undertake the Academic Rising Star identification problem.
With the querying methodologies developed for this thesis project, it was possible to build
a dataset of publications of the Clustering area in a reasonable time frame of fewer than 24
hours. In this case, the area of knowledge was well defined in the query and only took into
account Journal Articles and Conference Papers. It is also important to point out that in this
time frame of 24 hours, the metrics of the relevant authors were retrieved. This indicates that
it is possible to build the relevant datasets in a sensible time frame.

While exploring the built dataset it was unexpected to find such a significant number of
authors whose article count in the query was less than two. Trimming these authors meant
being just left with 12% of authors who were initialize retrieved in the query. Although it
was initially thought that this was due to different author IDs that referred to a single author,
and this caused the great number of authors with less than two articles in the query. To rule
out that this was the case, the same query was conducted in the web interface of Scopus, and
since no repeated authors were found, it was concluded that the number of authors with less
than two articles was not caused by duplicate IDs. However, due to the limitations of the data
retrieval limitations, it was not possible to conduct a more detailed search as to why so many
authors in the query had less than two articles. These authors were considered irrelevant for
the Academic Rising Star identification task. Nonetheless, in the study case, 11,333 authors
were still left, so it was still considered a good amount of data to work with.

67
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5.2 Data Preparation

Furthermore, one of the most interesting results of this analysis is that the feature that showed
the greatest potential in being predicted by past metrics was the h5-index. This does not
come as a surprise as previous efforts to predict scientific success using the h-index have
yielded positive results[1, 2]. Nonetheless, these efforts to predict scientific success with the
h-index have shown decreasing accuracy as the time frame of the prediction grows, and that
this approach does not work well for researchers with little experience[2]. However, in this
thesis project, h5-index was used as a labeling feature as well as a predictive feature along
with another set of features. The difference is that this approach only uses the previous 5-
year h-index (h5-index) and it combines it with the features offered by SciVal. This suggests
that the h5-index is a very good indicator of present scientific success. Additionally, this
approach had the additional challenge of predicting the h5-index label 5 years in the future.
This contrasts with the approach taken by Bin-Obaidellah[3], where the Academic Rising Star
status is only predicting one year from the date of the analysis. It is convenient to explain why
this one-year prediction analysis was not carried out in this thesis project. The approach taken
by Bin-Obaidellah evaluates the Rising Star Status based on the increase of the metrics of an
author from one year to the next one, and while this approach works well with the features in
the research, our available features do not account for yearly changes. Thus, using a one-year
prediction would only reduce our window to predict the Academic Rising Star status, making
it more difficult to predict Academic Rising Stars as our prediction time frame is constrained.
Another important difference between these two approaches is that in [3] 30% of the best
ranking authors are labeled as top authors, while in our approach approximately only 6% to
12% of the authors are labeled as top authors, making a positive class even scarcer. On the
other hand, the other three labeling features, FWCI, Publications, and Citation Count did not
result in good classification models. This makes sense, as the h5-index takes into account both
scientific production, and scientific impact. As stated by Hirsch[17], the h-index provides an
estimate of the importance, significance, and broad impact of a scientist’s cumulative research
contributions. And using only the last five years of scientific production in the form of the
h5-index results in a reliable metric to assess the current scientific impact of an author in a
relevant and specific time frame.

One of the greatest concerns before training the classifiers was making sure that the
data was suitable for the specific classifiers. Even though our assessment of the independent
variables found that some variables had colinearity, this could be dealt with using Recursive
Feature Elimination, at least that could be the case with the models based on the AVG and
MED features sets, since the number of features used to train the classifiers was still reason-
able. Even though we were aware that training classifiers using the ALL features sets would
inevitably result in the models being trained with colinearity among the independent vari-
ables, it was still decided to train the classifiers with this feature set. The reason for this was
to observe how good could the metrics of these classifiers get, despite them not being suitable
for Academic Rising Star prediction. However, before going deeper into the reasoning for
this, the results of the different parameters in the training of the classifiers will be discussed.
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5.3 The Classification Parameters
Labeling Weights

It is also important to mention that since we are labeling less than 13% of the total researchers
as top researchers (the positive label) we are bound to have a class imbalance issue that had
to be dealt with. To deal with this issue, in both classifiers Logistic Regression and SVM, a
higher weight was assigned to this positive class. In simple terms, when a label has a higher
weight it means that it has a greater influence on the cost function of the classifiers, hence the
classifier is penalized more for miss-classifying the positive label than the negative label. Our
results showed that for both classifiers, Logistic Regression and SVM, the models trained with
a weight greater than 1.0 were able to achieve higher AUC and Average Precision Scores. In
the case of SVM, it is more notable that models trained with a positive label weight of 2.0 are
more predominant than those models trained with smaller weights, especially while looking at
the top 10% models. The same is true for the Logistic Regression models, however, the num-
ber of top-performing models with weights of 1.5 and 2.0 are similar. These results indicate
that, assigning a greater weight to the positive labels while training the classifiers resulted in
an effective way of handling the class imbalance issue. Although it was not reported in the re-
sults, in the early stages of this project, weights greater than 2.0 were tested, but these resulted
in marginal gains in the true positive rate while increasing considerably the false positive rate.
Therefore it was decided to leave these weights outside of the final experimentation.

Labeling Groups

As for the two labeling groups, the Outliers group, and the Custom group, these were similarly
represented in the top 10% models. However, for both classifiers, it was shown that while the
Custom group achieved a lower median in both AUC and Average Precision Score, these same
group was capable of achieving higher metrics than the Outlier group. The reasoning behind
the creation of these two labeling groups is explained in Chapter 3, where the Methodology
of the project is discussed. But, in simple terms, the custom group was created to avoid
classifying authors with outrageous metrics as top authors, as we suspect that it is likely that
these authors did not truly start their scientific careers in 2010 as the other authors in the
dataset, or maybe they are engaging in some questionable article authorship practices. But,
since there is no way of determining this with the available data, it was decided to keep both
of the labeling groups in the project. This also implies that some authors who may have been
left out of the positive class due to the magnitude of the effect of the outliers, also have a
chance of being identified by the classifiers. All in all, this scenario where both feature groups
are present in the top 10% models provides evidence of the robustness of the h5-index as the
labeling feature. Additionally, these results also show evidence that it is possible to adjust the
positive labeling range while still obtaining good classifiers.

Data Normalization

When it comes to the normalization method, the results showed that the normalization method
that achieved the best median metrics for AUC and Average Precision Score is the Standard
Scaler. However, in both cases, the one that achieved the highest metrics is the Robust Scaler.
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On the other hand, the normalization which performed the worst for both classifiers is Min-
Max Scaling. This result could suggest that the bounding range introduced by the MinMax
scaler hurts the classification by constraining the outlier data to the bounding range. In this
case, since there are outlier measurements that are too large compared to the rest of the mea-
surements, this causes these other measurements to be constrained very closely together in the
bounding range. In the case of the Standard and Robust Scalers, this does not happens, since
these two scalers do not have bounding ranges, and effectively transform every feature to a
comparable range. Moreover, another interesting observation from comparing the normaliza-
tion results in both classifiers is that in SVM the Standard Scaling achieves the best results,
while in Logistic Regression, Robust Scaling achieves the best results. These could be ex-
plained by the sensibility of the Logistic Regression classifier to outlier data. One of the main
features of the Robust Scaler is that it tunes down the values of the outlier measurements, to
decrease their influence in the model. In the case of the Logistic Regression is benefited by
this Robust Scaler’s feature. With these results, we can suggest that the two best normaliza-
tion methods for the Academic Rising Star identification task, are Standard and Robust Scaler.
Therefore, when identifying these Rising Stars it does not hurt to use both, to achieve the best
possible results depending on the classifier being used.

Feature Sets

As part of the parameters involved in the training of these classifiers to identify Academic
Rising Stars, three different feature groups were used. These three groups are ALL, AVG and
MED. Looking at the results, they show that the classifiers in both cases the ALL feature set is
the one that achieves the highest metrics. However, it is most likely due to overfitting. Since
in this experiment the reduced amount of data prevents us from having a training and a testing
set, the ALL feature set is more prone to overfitting than the other feature sets. Nonetheless, it
was trained with the purpose of observing how high could the metrics get using the 70 metrics
we had available. However, it must be noted that this feature set is not suitable for Academic
Rising Star Prediction despite being the one that achieved the highest metrics. The feature
sets which are more suited to predicting Academic Rising Stars are the AVG and the MED
feature sets. These feature sets comprehend each metric’s five-year time span into a single
metric. By reducing the number of features in this way, we are providing a way to deal with
overfitting and thus reducing the negative effects of training and testing with the same data.
For both classifiers, the AVG feature set was the one able to achieve the highest metrics. On
the other hand, the MED feature set does not achieve results as good as the AVG feature set.
This result makes sense as if an author were to increase one of their metrics in their fourth and
fifth year in a significant way, the median of the feature would fail to represent this increment,
while the average of the feature would to an extent represent this increment.

Recursive Feature Elimination

Regarding the estimator used for the Recursive Feature Elimination, in both cases, the esti-
mator which achieved the best results was logistic regression. However, it is also important to
point out that the corresponding post hoc test to determine if the estimators were significantly
different showed that for the Logistic Regression classifiers, the only different estimator was
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the perceptron; while for the SVM classifiers, none of the estimators were significantly dif-
ferent. Hence, these results show that the chosen estimator in the training of these classifiers
does not yield a significant effect. And this was later confirmed when several of the classi-
fiers that were identified in the top 10% of AUC, shared the same parameters except for the
Recursive Feature Elimination estimator. Nonetheless, we should stress the importance of
having a Recursive Feature Elimination stage before training the classifiers as it is essential to
overcome linearity among the independent variables, which can have a negative effect on the
trained models.

Number of Features

When it comes to the number of features used by the classifiers, it makes more sense to discuss
how many features used the classifiers in the top 10% of each type of classifier. In the case
of the classifiers that used the ALL feature set, these used on average between 42 and 51.6
features which are more than half of the available features in the ALL feature set. But, as
previously discussed, the models that use this feature set are not suitable for the Academic
Rising Star prediction task. On the other hand, the models which used the AVG and MED
feature sets made use of at least 10 of these features on average. However, as previously
discussed, the fact that that these models utilize on average almost the 14 features available,
is not likely a sign of overfitting. Mainly because these features condense the 70 features of
the ALL feature set in a convenient way.

5.4 The Best Models

Looking at the best models which used the AVG feature set, the ones who achieved the best
metrics are the ones trained with SVM, instead of Logistic Regression. The best Logistic
Regression model trained with the AVG feature set and Custom group labeled has an AUC
of 0.727, an accuracy of 0.945, a precision of 0.696, and a recall of 0.471, which means
that from the 34 available top researchers to be identified by the model, it correctly classified
16 positive cases (Academic Rising Stars), failed to classify 18, and identified 7 authors as
positive cases, which were not positive cases. On the other hand, the best model for the SVM
classifier has an AUC of 0.791, an accuracy of 0.962, a precision of 0.870, and a recall of
0.588, which means that from the 34 available top researchers to be identified by the model, it
correctly classified 20 positive cases, failed to classify 14, and identified 3 authors as positive
cases which were not positive cases. What these results tell us is that it is possible to predict
Academic Rising Stars using the average of their metric from their first five years since the
publication of its first document. Although the metrics may not seem too high it is important
to stress the difficulty of this classification task, since we are trying to predict if an author
will become a top author ten years from the publication of its first article, only using the
first five years of data available. For this reason, we do not expect the AVG feature set to be
able to achieve metrics above 0.9. In the Academic Rising Star identification conducted by
Bin-Obaidellah[3], an AUC of 0.96 using SVM was reached. However, they only identified
Academic Rising Stars in the next year of the analysis, where we are identifying Academic
Rising Stars over a period of five years. For this reason, we consider our metrics to be very
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good and useful in the identification of Academic Rising Stars. Additionally, compared to the
results obtained by Nie et. al.[26] where their best classifier achieved an F1 score of 0.819, our
best classifier achieved a calculated F1 score of 0.702, which is not as bad, taking into account
that the number of positive cases and data our models were trained with is far lesser than the
ones used by them. Additionally, these loss in score can be interpreted as an acceptable trade
off in favor of a simpler method to label the top authors.

Another interesting result is that the Custom group was more accurately identified than
the Outliers group. This could be caused by the huge range of metrics that the authors in the
outliers group have, while the metrics of the custom group can be expected to be in similar
ranges. As it was stated when arguing the reasoning behind the Custom group, we consider
this group to be more appropriate for the identification of Academic Rising Stars. At the same
time, it can provide the institutions or individuals interested in identifying Academic Rising
Stars with a flexible range to label the authors they are interested in predicting.

The best model achieved by this thesis project is an SVM model trained with the AVG
feature set, and the Custom labeling group. For the purpose of identifying Academic Rising
Stars five years from the future, identifying correctly 20 true positives, and only 3 false pos-
itives, is a remarkably good result. While identifying only 14 false negatives and 414 true
negatives. Looking at this in the context of identifying Academic Rising Stars to hire them in
research institutions, this would significantly decrease the number of scientists these institu-
tions would have to check out. As for the features used by this model, it uses every available
AVG feature except the citedPub features. While it could be argued that this is due to over-
fitting, it should be stressed that these features are a condensed representation of the original
features.

5.5 Recommendations and Limitations

On the other hand, this thesis project still has some limitations. Due to time constraints and
the difficulties associated with downloading and preparing the datasets, it was only possible to
conduct this Academic Rising Star identification exercise for only one domain, which is Clus-
tering. Strictly speaking, what this project proved is that it is possible to predict Academic
Rising Stars in the area of Clustering. While, we would have preferred to test this method-
ology in more than one area of knowledge such as Point-of-Care or Additive Manufacturing,
the study case conducted in this thesis project still provided evidence of the possibility of pre-
dicting Academic Rising Stars using the Scopus API and the SciVal API. This was ultimately
the goal of this project.

Another important observation that should be made regarding the methodology is that
it somehow hurts authors that publish in the early stages of their scientific career (under-
graduates or early graduates) because they are evaluated the same as authors that have been
constantly publishing since their first article. While the graph in Figure 4.2 shows that authors
tend to keep on publishing more than one article yearly after the publication of its first docu-
ment, it would also be important to compensate in some way for the authors that do not keep on
publishing constantly from the year of their first document. While our proposed methodology
does not compensate for these cases, the implementation of features that represent co-author
networks or citation networks. As these could in some way ”vouch” for the potential of a
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young author based on the quality of the authors it is collaborating with. Nonetheless, a way
to create these features has not yet been developed within the constraints that the retrieval of
data from the Scopus database has. More research needs to be conducted in these regards,
however, it could be possible to calculate these features for only the authors that are going to
be used for the final stage of classification, as they would hopefully cut the time and API key
quota used to calculate these features.

Furthermore, due to the relatively small dataset that was utilized to train and test the
predictive models, it would still be convenient to validate with a larger dataset. This was not
available for this project, due to Elsevier’s restrictions, as previously explained. If one more
year had been available in the metrics that could have been retrieved, that would have helped to
validate the models. For example, if the metrics for 2009 would have been available it would
have been possible to test the models for the top authors in 2014, using metrics from 2009 to
2013. While discussing the possible ways of training these models, one idea that surfaced was
to use the metrics of the first three years of metrics for the authors and then label if they were
top authors in the fifth year from the publication of its first article. However, we considered
that constraining the training metrics to just three years would not be as descriptive as using
the metrics of five years. While the decision taken had the negative impact of not having other
time frames available for testing, this has the advantage of giving the authors more time to
show their potential of becoming top authors. It is also important to mention that any research
institution or university that would like to implement this methodology to identify Academic
Rising Stars, most likely has the means to acquire more data from Elsevier than the one this
project was able to acquire. This means that these institutions would have more room to
validate and tweak their models to improve their Academic Rising Star identification efforts.

Moreover, further research is needed to establish if the addition of more types of fea-
tures has a positive impact on the identification of Academic Rising Stars. While this project
limited itself to the metrics offered by Scopus and SciVal, it is still possible to engineer more
features and assess their impact on the overall performance of the classifier models. Scien-
tometric indicators[3] have been used to predict Academic Rising Stars, and it would be of
benefit to research if these types of scientometric indicators can be calculated from the metrics
available in Scopus and SciVal. Nonetheless, we would still recommend that if these features
were to be calculated, the researcher would have to make sure that there is not a strong co-
linearity between these features and the ones we are currently using. Furthermore, research
conducted by Zhang et. al[39] to predict Academic Rising Stars is focused on the academic
networks. This means that the prediction of the Academic Rising Star status is predicted from
the citation and publication dynamics of the collaborators of the author being evaluated. This
is a sensible approach as it relies on the validation of other authors. While our approach does
not take into account any feature related to the most frequent collaborators of the author being
evaluated, adding features that describe in some way the robustness of quality of the closest
and most frequent collaborators would probably add to the quality of the Academic Rising
Stars predictions. As more metrics are offered by Scopus, it would be possible to implement
them and see if they have a positive impact on the prediction of Academic Rising Stars. For
example, at the moment of writing this document, now it is possible to obtain metrics regard-
ing the amount of international collaboration of an individual author, or the type of research
funds used to conduct its research. Additionally, it is possible to determine if the author is
the first author in the documents taken into account for the prediction, it is possible that this
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feature could also have a positive impact on the prediction performance. However, given the
limitations in the data retrieval process, it would still be difficult to implement features based
on citation or co-author networks.

Furthermore, another aspect that this thesis project did not tackle is explaining which
metrics have the most influence in the classification of Academic Rising Stars. As such, it
could be beneficial in the future to complement these classification efforts with the imple-
mentation of a pattern-miner, such as PBC4cip[24]. The implementation of pattern-mining
in the dataset used in this thesis project could result in a convenient and precise way to ex-
plain which metrics and in which thresholds they have a positive impact in determining which
young authors are classified as Academic Rising Stars.

Despite the positive results obtained, it could be beneficial to test this methodology with
additional types of classifiers. These classifiers could be k-Nearest Neighbors or Naive Bayes,
for example. As a future iteration of this work, more classifiers could be implemented, given
that more computational power is available for the training of the added number of models.

All in all, we consider that these results show a positive outlook on the prediction of
Academic Rising Stars using the data available from Elsevier’s databases. While there is still
work to be done, these results provide a solid framework from which further research can
be conducted. So we can confirm based on the discussed results that it is possible to predict
Academic Rising Stars using the Scopus API and the SciVal API.

5.6 Deployment
Once the model for a certain field of knowledge (in this case, Clustering) it would take little
to no effort to evaluate new candidates once the model is built. However, it would still be
recommended for any research institution or university that may consider implementing this
methodology as part of their hiring process, to improve their model as data from upcoming
years become available. For example, in our case it would be possible to improve the model
by downloading the data from 2011 to 2020, now training the model using the data from
2010 to 2014, and 2011 to 2015. As more data becomes available, the performance of the
prediction would possibly improve. Nonetheless, it must be stressed out that this Academic
Rising Star identification methodology should only constitute an aid in the identification of
potential researchers to be hired, and in no way should substitute the whole exiting hiring
processes that the universities and research institutions already have in place.

Furthermore, this methodology opens up the possibility to not only identify Academic
Rising Stars with the potential to become one of the top 10% researchers in their respective
fields. Given that this project proposes a custom labeling group, the criteria for this custom
labeling group could be adjusted at will by any interested university or research institution.
It is possible that the institution would only want to identify Academic Rising Stars with the
potential to become one of the top 5% researchers in their respective fields. On the other hand,
it is possible that another institution could not afford researchers with such a high potential,
so they could adjust the custom labeling group to identify Academic Rising Stars with the
potential to become of the top 25% researchers in their respective field. The implementation
of this methodology coupled with a thoughtful data exploration can enable institutions to
identify researchers with the potential range they desire.
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Conclusion

This thesis project had the aim of confirming if it is possible to predict Academic Rising
Stars using the Scopus and SciVal APIs, which was confirmed to an acceptable and satisfying
extent. Retrieving the relevant documents and author metrics for our study case in the area of
Clustering, then preparing the data, and finally training several classifier models showed that
to a reasonable extent it is possible to predict Academic Rising Stars. Taking into account the
limitations on the available data and the challenging ten-year time frame chosen to conduct
these predictions, our results indicate that it is possible to predict the Academic Rising Star
status in the next ten years of an author using the average metrics of the first five years of their
publications.

While the approach taken to this Academic Rising Star identification task, is different
from the other approaches found in the literature, it had the advantage of using only metrics
and data that is already available in the Scopus and SciVal APIs. And, as discussed in Chapter
5, while the performance of the classifiers’ metrics are not as high as the best in the liter-
ature, the amount of positively labeled authors and the longer time frame that this research
project uses, justifies that our metrics are not as high. Therefore, the methodology developed
and tested in this thesis project provides universities and research institutions a convenient
way to identify young authors with high potential and then hire them to develop high-impact
research. It is also very important to stress that this methodology should be considered an
aid in the identification of Academic Rising Stars, and the decision of which scientist should
be hired by a research institution should not be exclusively made based on the results of us-
ing this methodology. As previously discussed, the classifier is not perfect and some false
positives can still be identified and the research institutions should take a closer look at the
authors to confirm if they really show great potential as the classifier suggests. Nonetheless,
this methodology provides a great aid to these research institutions, as instead of looking at
hundreds of authors who are publishing in the fields they are interested in, they can now focus
on analyzing only around 10% of these authors which are the ones the classifiers can identify.

At the same time, this methodology has a lot of room to grow, as discussed in Chapter
5. If research institutions have access to more data, the trained models will be able to achieve
more precise results. At the same time, more data availability can result in experimentation
with more features or indicators, which can result in even better results. However, it is also
important to stress that data availability also depends on the broadness or narrowness of the
selected field. If the chosen field is very broad, for example, Computer Science, while there
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will be a lot of data to train and test the classifiers, the amount of time that retrieving the
data would take may not be reasonable. However, institutions that have more availability to
Elsevier’s data, may not experience this drawback. On the other hand, if the chose field is too
narrow or very niche, it is possible that there are not a lot of results, and the number of iden-
tified researchers may make it more convenient to look at them manually, instead of trying to
train classifiers using very little data. However, a balance between these two scenarios should
be balanced by the interested institutions while using this methodology to identify Academic
Rising Stars. Furthermore, it is important to make clear that while the obtained models are
not expected to be directly implementable for other fields of knowledge, this methodology
certainly is. The citation and publication dynamics in other fields are different, and as such,
the Academic Rising Star prediction models are to be trained with the data of the specific field
one is interested in.

Finally, we consider that this thesis project has succeeded in providing evidence that it
is possible to identify Academic Rising Stars using Elsevier’s data. To the best of our knowl-
edge, the identification of Academic Rising Stars is a topic that has already been addressed in
the literature, however, no one had tried to identify these authors using the Scopus and Sci-
Val APIs. Other Academic Rising Star identification attempts had used Web of Science[3] or
ArnetMiner[39] data. We suspect this is mainly due to the challenges associated with retriev-
ing the data from these APIs, in terms of time and download quotas. Nonetheless, Elsevier
possesses one of the most comprehensive repositories of scientific publications data, thus it
was important to prove that this data can be used to identify Academic Rising Stars. For this
reason, we consider that this thesis project is making a significant and important contribution
to the efforts to find Academic Rising Stars.
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