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Abstract

Mexico has a growing need for lower limb prostheses due to a rising number of amputa-
tions caused primarily, by diabetic foot. Researchers enable functional and comfortable
prostheses through prosthetic design by integrating new technologies applied to the tra-
ditional handcrafted method for prosthesis fabrication that is still current. That is why
computer vision shows to be a promising tool for the integration of 3D reconstruction
that may present to be useful for prosthetic design. This thesis has the objective to de-
sign, prototype and test of a functional system to scan plaster cast molds and serve as
platform for future technologies for lower limb reconstruction applications. The image
capture system is based on 5 stereoscopic RGB-D cameras with 3 DOF, as well as al-
gorithms to calibrate the cameras to a global coordinate reference, to segment a target
by removing the background, the conversion of RGB-D images into point clouds for later
registration and surface reconstruction. The results for the plaster cast models show the
segmentation and registration validations. The segmentation metrics of DC and HD show
strong visual similarity with an average similarity percentage of 0.87 and average error of
6.40 mm respectively. Moving forward, the system was tested using a known 3D printed
model obtained from a CT scan, to which comparison results via HD show an average
error of ≤ 1.93 mm making the system competitive against the systems reviewed from
the state-of-the-art.. The tests and results of the proposed system demonstrate it to be
useful for the applications stated in the proposal, applications such as the generation of
a digital library for plaster cast molds, serving as a platform for assisting the prosthesist
during the manufacturing process, updating external geometries of previous CT scans to
avoid radiation exposure and future extraction of viscoelastic properties of external tissue
used for deformation analysis.

Keywords: Point Cloud, Iterative Closest Point, Dynamic Reconstruction, Multi-view
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1| Introduction

To understand the context, Mexico, according to the Mexican Institute of Social Security,
shows that just in 2014, they were near 900 thousand amputees, to which are added 75
amputations per day. This means that each year Mexico is accumulating more than 70
thousand people with lower limb amputations, forming part of the people with disabilities
in the country [1]. This generates economic problems and dependency for their caregivers,
their families, and the community. This is why prostheses have an important role in
recovering a percentage of mobility in amputees, providing autonomy to the person in
carrying out activities, as well as complementing the person in a social and cultural
aspect, preserving their individual identity [1].

This is why researchers currently focus their efforts to address this issue with all the
“Extreme Bionics" projects. The main goal is to seek comfort and functionality for all
the people who receive a prosthesis so they can walk again. It is important to mention
that the most important part of the prosthesis is the socket, because it is unique for each
individual. Also, many of the projects in the laboratory are related to socket design. It
forms part of the four sections in a lower limb prosthesis, the socket, knee, pylon, and foot
[2]. While several of the parts can be obtained in large quantities, materials, and sizes.
The socket is the part where the amputation load rests, so a correct fit must be met. A
favorable socket design stimulates muscle growth and relieves pressure in sensitive areas
providing comfort to the user [3]. On the other hand, improper fitting may result in skin
problems and tissue injury caused by unbalanced weight [4].

That said, the socket requires a manufacturing process that ensures a match with the
user measurements. Currently, the design and manufacture continue to be handcrafted
since all the fabrications are unique and unrepeatable [4]. The overall socket fabrication
can be seen in Fig. 1.1. First, a prosthetist performs an evaluation by taking limb
measurements Fig. 1.1a and a cast mold Fig. 1.1b is taken. Subsequently, the mold is
filled to obtain a model that describes the geometry of the residual limb. Afterward, post-
processing is necessary to rectify, add and remove material, to ensure that the dimensions
match with those obtained Fig. 1.1c. Then, the socket is manufactured by laminating
the mold and then curing it, usually with polypropylene shown in Fig. 1.1d. Finally
the socket get polished in Fig. 1.1e. The time and the iterations invested in the process
depend on the experience of the prosthetist, since obtaining a fitting socket consists of trial
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and error. Typically the participant will receive a check socket, return for adjustments
to get a provisional socket that will last from 6 months to a year before the residuum
strengthens and changes in volume. Here again, a check socket must be fabricated, and
afterward a definitive socket [5]. This timeline that a participant follows in order to obtain
their definitive socket can be seen in Fig. 1.2.

(a) Measure (b) Cast mold (c) Rectification (d) Lamination (e) Socket polish

Figure 1.1: The overall process of conventional socket fabrication is shown. a) Starting
with the limb measurements. b) Then, a plaster cast is obtained with the residuum
geometry. d) Later, the plaster cast model is post-processed by adding and removing
material at key locations. d) Next, lamination and curing take place. e) Finally, the
socket gets polished and the cut line is shaped.

Figure 1.2: A typical process an amputee follows to obtain a prosthesis. 1) Limb mea-
surements and socket fabrication. 2) Check socket. 3) Provisional/Definitive socket. 4)
6-12 months before receiving a definitive socket.

Computer vision shows to be a tool that benefits these processes through digital re-
construction with the use of photogrammetry to obtain a digital model. This technique
is used to obtain detailed information from photographs. Then, algorithms take these
images and estimate their position to generate a 3D point cloud. This can be done
with multi-view stereo cameras as mentioned in [6]. In the literature, the study of lower
limb reconstruction has advanced Computer-Aided Design (CAD), assisting in socket
manufacturing, digital models allow to iterate at a minimal cost and reducing the time
taken for their manufacture. Moreover, digital models allow accurate geometry and ad-
ditional relevant information for socket fabrication. Existent technologies and methods
involve photogrammetry, 3D scanning with structured light, 3D laser scanning, Computer
Tomography (CT), and Magnetic Resonance Image (MRI). Nevertheless, there are still
challenges, particularly with regard to limitations on current technologies available and
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their integration with biomedical applications. These technologies are going to be seen
and compared in-depth in section 1.1.

1.1. State of the art

This section covers the types of cameras that exist to obtain color and depth data 1.1.1,
several machine vision algorithms used for segmentation, registration, and reconstruction
as well as popular implementations 1.1.2. Then the review of certain biomedical applica-
tions of interest 1.1.3. Then a comparison of methods and techniques for 3D reconstruction
1.1.4. Last, an overview of the previous and current work 1.1.5.

1.1.1. Cameras

There are different sensors and types of cameras to acquire 3D data. These methods
include 3D laser scanning also known as Light Detection And Ranging (LiDAR) which
uses a laser beam that bounces onto a surface and measures the traveling light to the
objective. It is mainly used in the industry for mapping wide open areas such as cities and
autonomous cars as mentioned in [6]. There are also structured light scanning cameras
that have Color and Depth sensors (RGB-D), the depth sensors project a coded light,
which measures the distance of the light traveled to the objective. An example of this
type could be the Intel® Realsense® SR300 camera. They have a direct comparison to
other cameras like the Microsoft® Kinect® [7]. Then there is the stereoscopic vision,
having two or more sensors. Cameras like the Intel® Realsense® D435 have two image
sensors in combination with an infrared projector to estimate depth. Many of these
sensors may be used alone or in tandem to cover a wider range as discussed in the next
section.

1.1.2. Machine vision algorithms

Multi-view systems are based on photogrammetry, which assumes parts from having
multiple repeated elements of the same object in multiple images. This is so to obtain
information about physical objects and environment by capturing a sequence and pro-
cessing it to extract data such as properties and measurements as mentioned in [6, 8].
Most of the algorithms used are oriented to 3D reconstruction. Such that, a triangulation
of points can be made from images and the world. So a point cloud can be made from
this point triangulation. This can be approached with a single camera having different
views or with an array of cameras by covering a whole object and having overlapping
areas of said object [6]. Two of the most significant pieces of researches make use of
photogrammetry and multi-view for 3D reconstruction [9, 10].
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Different approaches have been explored, one of the most common ones is Simultaneous
Localization and Mapping (SLAM) [11]. This technique’s goal is to create a map and
determine the location of an object inside an environment. So basically this map is a
sequence of images matched together by common regions, with enough images a 3D map
may be represented. One of the challenges SLAM faces is the acquisition and integration
of multiple scans that have dynamic changes that update in the scene. Various imple-
mentations of this technique can be seen, such as the Kinect Fusion [12] and Dynamic
Fusion [13] being the most popular ones. The idea is the same, but, these implementations
are focused in punctual object or scene reconstruction rather than area mapping. What
stands out about these algorithms is their response to dynamic changes for rigid and
non-rigid transformations. It is more clear in the Dynamic Fusion were facial expressions
are scanned and updated in real-time [13].

These above-mentioned papers and many computer vision works depend on classic al-
gorithms for camera calibration, segmentation, registration, and surface reconstruction.
The first and most necessary step is calibrating the cameras to obtain intrinsic properties,
related to internal camera properties, and extrinsic properties, related to the physical
position of the camera in the world coordinate system. This calibration is performed
employing matching key elements from the images sequence. In the literature, one of
the most common algorithms for calibration is Zhang’s Methods using a checkerboard
as a target [11, 14]. Zhang’s algorithm works both with single and multi-view setups.
This algorithm is limited to RGB sensors which do not utilize the capabilities of RGB-D
cameras.

The next step is the segmentation which takes place to separate a portion of interest
from the rest of an image. Popular algorithms like Otsu’s method binarize an image by
setting up a threshold where parts of an image remain white while others black make a
contrast or mask of the original image [15]. Using Canny’s algorithm for edge detection,
like binarization, the resulting image has white edges that surround the objects and black
for the rest [15]. Another technique is the watershed for region growing, this algorithm
resembles the flooding of a valley, as the water rises it fills the terrain, in this case, the
gradients of the image, the bigger the water becomes would represent the elements on
the image [15]. Also, these techniques aren’t used all alone, in practice, a combination of
them is required in addition to applying filters to the image, like blurring and sharpening
[15]. Their use will depend on the case needed for the application. So, as a general idea,
segmentation creates a binary mask of the desired object and when applied to the original
image, a region of interest can be extracted.

Moving on, the third step is registration charged with the alignment of two pairs of
coordinate points sets, commonly known as Point Clouds (PCs), whether 2D or 3D. Reg-
istration is still a challenge to find the best transformation for PCs that properly preserve
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the morphology of the object. These transformations involve the use of rigid transfor-
mations that translate and rotate the object, without scaling or deforming the object.
The most common algorithms are the Random Sample Consensus (RANSAC) [6], which
randomly tries to fit a line over a set of points, the most amount of points that lie over the
line are considered in-liers. Another technique, is the Iterative Closest Point (ICP), that
matches point to point given a threshold distance [6]. While RANSAC is usually used for
a first coarse alignment, ICP is used as a fine one. These pairwise alignments represent
rigid and non-rigid transformations. A prior work reports the performance of different
registration techniques, including Artificial Neuronal Networks (ANN), Coherent Point
Drift (CPD), RANSAC, and ICP. The study consisted of using these mentioned methods
to align 2D PCs. Results demonstrate that RANSAC had the least accumulated error,
followed by ICP, then ANN, and finally CPD [16]. Variations in results are determined
in part by the morphology of the target.

Once the PCs have been properly aligned when the desired threshold is met, a surface
reconstruction is completed to create a mesh that can be exported as a 3D model. In
the literature, there are several methods such as Ball pivoting and Poisson surface recon-
struction. The BPA, Ball Pivoting Algorithm [17], is a surface reconstruction method
that consists in creating triangles in between points and by pivoting a mathematical ball
with a specific radius around the points without falling through the points a triangle is
created, a drawback for this algorithm is that points must be uniformly distributed and
the distance between three points must be smaller than the selected ball radius, other-
wise the resulting mesh would be left out with undesired holes. Another widely used is
the Poisson surface reconstruction [18], it solves the optimization problems to obtain a
smooth surface and even extrapolates in areas to achieve it, which is preferred over the
BPA, as the surface is not smooth due to the resulting low polygon density from the PC.

These algorithms are well known when speaking of a standard 3D reconstruction pipeline.
Various biomedical applications make use of these techniques to create 3D models. Mainly
by using photogrammetry, structured light, LiDAR, CT, and MRI, which is seen in more
detail in the different biomedical applications of interest for this study in the next section.

1.1.3. Biomedical applications

Previous research shows the use of several medical image techniques for 3D scanning.
Shuxian et al. presented a 3D reconstruction for residual limb with the use of a CT. From
it, bone structure and skin surface are reconstructed and then aligned to represent the
inner and the external part of the residuum. This work utilizes the compound model to be
submitted to a Finite Element model (FE-model) simulation [3]. Sengeh et al. focus on
the in-contact patient in-vivo indentation system, which allows tissue displacement, along
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with MRI, combined with an FE model to evaluate the mechanical and loading conditions
over the skin [4]. Works like Bonacini et al. and Colombo et al. conducted a detailed
study on a non-contact method for obtaining external and internal 3D reconstruction
through the use of laser scanners, CT, and MRI and compares these morphology acqui-
sition techniques [5, 19]. Their results show that CT has good quality for bone structure
and external shapes, whereas MRI provides detailed representations of both internal and
external. But, for bot CT and MRI surfaces resemble the skin very little. While laser-
scanned helps as a reference for aligning the models [5] and it has important features such
as cicatrix and marks left from the amputation having a better correspondence to the
real skin surface [19]. These studies demonstrate that bone structure and skin surface
are essential when performing a 3D reconstruction for prosthetic design along with an
FE-model to understand the loading conditions for the socket.

After the first socket completion, multiple iterations might be necessary for the user,
there is no socket that can adjust to the residuum’s volume change [1]. Soft tissue like
skin, muscle, and adipose are susceptible to increasing or decreasing their volume, while
inner geometries like bone can be considered to remain without morphological changes
over long periods of time and under varying loads. As these changes affect the external
structure, photogrammetry shows to be a useful tool for external surface reconstruction,
by helping to update previous models during the iterative process of the socket while
remaining with a single CT capture containing the bone structure. A similar process
might be followed to update the external surface scan and align it to the original CT
and performed by Bonacini et al. So, to address the radiation problem generated by CT
and MRI, radiation exposure may be minimized by updating the external surface only
through photogrammetry.

Several studies on skin reconstruction have taken place. Taqriban et al. conducted a
study on close-range photogrammetry by using a digital reflex camera and Autodesk®
Recap Photo software to obtain a 3D model. The residuum of a participant was scanned
360º with two different shooting angles, a 3D model of the external surface was obtained
with Recap and then a manual rectification was performed. Its worth mentioning that
the manipulation process towards the socket manufacture is still digitally handcrafted
with this method [20]. A soft tissue reconstruction was conducted by Lacher et al.,
who proposed a nonrigid reconstruction of 3D breast surfaces with RGB-D. The work
mentions the importance of a non-invasive way for the evaluation. As well, the work
addresses the model deformation caused by the involuntary movement of the body during
data acquisition. This work finds that multi-view is important when analyzing body
parts, to minimize the involuntary movement of the body [21]. Another study by Wu
et al. proposed a system with six RGB-D cameras in an array that identifies landmarks
and measurements from a foot. The results showed a 3D capture system able to scan a
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foot, obtain multiple PCs, and merge them using ICP. Also, twelve anatomical landmarks
of the foot can be detected automatically without manual intervention [22]. A similar
study using multi-view by Solav et al. presents a multi-camera array to analyze muscular
deformation through Digital Image Correlation (DIC) by using 12 RGB cameras, which
demonstrates the non-contact multi-view in-vivo capabilities [23]. Contrasting to the
in-contact presented by Sengeh et al. with the skin indentation [4].

So, these studies demonstrate the importance of multi-view photogrammetry to com-
plement with additional information from the skin surface, as to update previous models
and needed for an FE-model [5, 19]. Moreover, methods like the 3D breast soft tissue
reconstruction highlight the importance of systems that minimize inaccurate data from
the involuntary movement of the body, and the presented DIC to analyze muscular de-
formation shows the capabilities of a non-contact in-vivo analysis [21, 23].

All of these studies have important attributes that make strong research in their field,
the use of different approaches or a combination of these can be useful for this work to
move forward the socket design. This is why a comparison is made in the next part
denoting the benefits and disadvantages of the available technologies.

1.1.4. Acquisition methods comparison

Table 1.1 compares the above-mentioned technologies and techniques used for 3D recon-
struction involving their measurement accuracy, speed capture, geometries, benefits, and
disadvantages.

For photogrammetry there are two approaches to obtain corresponding features, the
first one is by using a single moving camera around the target as the SLAM algorithm
and the second is by using multiple fixed cameras as described in the study to obtain
foot measurements. Both of them rely on multi-views. Also, this method allows any
commercial digital camera to be used. In the case of a stereo camera, it follows the
principle of photogrammetry, as two sensors are fixed to the frame of the camera. There
are models such as the D435i RGB-D that have this capability.

For 3D structured light scanning, there are commercial options such as the SR300 RGB-
D or the Kinect®, the accuracy comparison are shown respectively in Table(1.1). On one
hand, coded light cameras and LiDAR cannot, because the light from one camera interferes
with another camera aiming at the same target [22, 24]. Also, these two technologies
struggle with reflective surfaces [24]. On the other hand, stereo cameras have the main
advantage on multi-view setups over the coded light depth cameras. While having an
array of stereoscopic cameras, they may be turned on all at once.

Recent research pipelines involve the use of CT and MRI to optimize socket design
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through the use of CAD [3–5, 19]. These techniques show to be the most accurate and
comfortable for socket design. These, have the advantage to obtain internal and external
geometries needed to locate bone structure and soft tissue. Results show a better quality
socket with less involvement of the participant attending the laboratory for limb mea-
surements [5]. As mentioned above, the participant will have external volume changes [1].
So the amputee will have to return in the future for a new socket with fresh CT or MRI
images for this pipeline. Resulting in high expenses per scan for the individual and the
drawback of radiation exposure for the CT.

Another important aspect is the capture speed. This affects the quality of the images.
The longer the time for a capture session, the more prominent body stuttering will be-
come, resulting in blurry images. For this application, photogrammetry demonstrates
to minimizes the capture speed [21]. By using simultaneous cameras, the speed could be
narrowed down to the manufacturer specification of 30 fps. In the case of structured light
and LiDAR, they also perform in the time set by the manufacturer, usually 30 fps. But,
for a multiple sensor setup, these need multiplexing as further discussed in the cameras
section in 2.2. The multiplexing issue on these technologies can drop significantly the
fps. In previous work, the use of multiple structured light cameras delivered a capture
speed of 1

6
fps due to multiplexing [24]. Capture speeds for CT have been recorded to be

average to 1-2 min taken from the trials performed with the laboratory’s participants. A
similar time was recorded for MRI [19]. These times depend on many factors that could
be explained mainly by image resolutions, slices thickness, and the number of images.
Protocols can be adjusted to increase or decrease these capture speeds. Still, CT and
MRI show to be the least effective in this category. Knowing the current methods and
technologies enables the planning and proposal of this work, which has a strong basis on
previous work as discussed next.

Table 1.1: Comparison of different image acquisition methods used for 3D reconstruction
for lower limb amputations.

Method Measurement
Accuracy

Capture
Speed Geometries Benefits Disadvantages

Photogrammetry
Relatively 1–10%. [6]
For Stereo cameras
1.25% of range [6]

15-
120fps

External

Use of multiple cameras at a time.
Allows capturing textures. [6]
May use any digital camera [20].
Used for DIC.[23]

Often, not a plug and play solution.

3D Structured
light scanning

2-5 mm [7]
Relatively 1–6% [6]

1
6
fps

[24]
External

Often used on commercial scanners
with plug and play solution.
May capture textures if an RGB sen-
sor is integrated. [6]

Use of one camera at a time. [22, 24]
Has trouble with reflective surfaces.
[24]

LiDAR 1–10 mm [6] - External
High speed scanning.
Able to scan large objects.[6]

Often used on vehicles, rarely used on
biomedical applications.
Has trouble with reflective surfaces.

CT 0.3 ± 0.4 mm [25] 1-2 min Inner and
external

Allows medical diagnostic.
Radiation exposure
No resemblance of skin surface. [19]

MRI For 1 mm slice, rela-
tively 4-15% [26]

1:50 min
[19]

Inner and
external

Allows medical diagnostic.

Cannot be used in presence of inner
metallic supports. [19]
No resemblance of the skin surface.
[19]
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1.1.5. Previous & current work

In prior work, I presented a system capable of capturing a whole target with four fixed
cameras that surround it, to minimize the involuntary movement of the body. A hand
was used to demonstrate its capabilities for non-static and deformable targets [24]. Said
research served as a preliminary methods for the current work, as it establishes the type
of cameras needed, as the amount and their position for a full reconstruction. Moreover,
it provides equations that relate the distance between the target and the camera, and the
resolution. Sections 2.1 and 2.2 rely heavily on these aspects which, determine the cameras
used in this work, the mounting frame, and the computational resources needed to meet
the application. Also, it has an influence on the ICP and Poisson surface reconstruction
algorithms selected in the section 2.6.

This thesis focuses on the construction of algorithms that can provide automated lower
limb external reconstruction with the use of photogrammetry using consumer-grade RGB-
D cameras, requiring a single capture from all different cameras. This study introduces
and tests a five-camera array system, by fixing cameras to a frame to facilitate the cal-
ibration and capture of the system. While the integration of range images is not novel,
the particular setup and application are novel with the following particular issues. The
scanned PCs have an initial rough alignment from the calibration and then a fine one
using Iterative Closest Points (ICP). This produces a 3D model that can be exported
for further processing. At this stage, due to the iterative nature of the work involving
programming, participants were not involved, but for validation purposes only. Instead,
another issue was addressed to help Proactible, a local prosthetics clinic, in building a
digital library for plaster cast models. This helped the development by having a controlled
environment, while having replicas of transtibial, below the knee, and transfemoral, above
the knee, lower limbs. This writing is organized as follows, the methodology presents the
pipeline and the experimental setup, along with the segmentation and registration algo-
rithms. Then results display the performance of the said used algorithms with the molds
mentioned and the validation with an in-vivo participant, also discussion precedes the
conclusions.

1.2. Problem statement

The problem that the Proactible laboratory is currently facing is that they are running
out of physical storage as shown in Fig. 1.3 and a digital library is desired. This would
enable the backup of the plaster cast model for later re-fabrication if needed. The scope
of this thesis only includes the digitization of physical models leaving the fabrication and
re-fabrication of molds to future work.
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Furthermore, the problem that the prosthetic researchers and designers are facing today
is that no digitally-based system that makes reconstruction for transtibial lower limb
amputations on one run. Current systems are comprised by hand-held scanners, moving
cameras, or a turning table to perform scanning. By using only one camera and moving
it around the target, captured data becomes inaccurate due to the involuntary movement
of the body, as noise is carried out through the reconstruction process [21]. Similarly,
dimensions do matter in the manufacturing process, large tolerances could lead to an
uncomfortable and unusable socket [22] in the dimensions requiring sufficiently accurate
digitally-based reconstructions to ensure accuracy. Moreover, the system is sought to
serve as a platform that enables the integration of future technology such as the use of
CT scans and deformation analysis which needs synchronous, real time capture for the
socket design.

Figure 1.3: Current socket storage running low and hindering important work areas at a
typical prosthetics shop.

1.3. Justification & proposal

There are four main reasons to solve the aforementioned problems. The first, to assist the
prosthetist during the manufacturing process by obtaining dimensions and skin-related
information due to surgery Fig. 1.4a. Second, extract the viscoelastic properties of
external tissues to later feed an FE-model for an automated socket conformation as shown
in Fig. 1.4b. Third, to update the external surface from previous CT scans Fig. 1.4c.
Fourth, assist Proactible in the creation of a digital library to backup plaster cast models
for future re-fabrication Fig. 1.4d.

The proposal is to use multiple stereoscopic RGB-D cameras to obtain a full recon-
struction with a minimum of 5 cameras, 4 that would cover 360º in a circular pattern,
and a fifth camera that would look at the end view of the residuum. This way cameras
would not need to move around the residuum and a full scan could be performed in a
single multi-view capture. Have a frame to hold all cameras fixed in place. Also, have a
segmentation algorithm that cleans the pictures and an algorithm for the reconstruction
process. This reconstruction should give us enough accuracy to have an error of ≤ 2 mm

for validation.
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(a) Assisted (b) Viscoelastic (c) CT update (d) Digital library

Figure 1.4: The experimental system and the proposal on the four main reasons to address,
(a) assisting the manufacturing process, (b) obtaining viscoelastic properties of external
tissue, (c) updating external geometries of a CT, (d) creating a digital library from plaster
molds.

1.4. Objectives

The general objective is to prototype and test an automated multi stereoscopic view
acquisition and reconstruction system. In other words, a multipurpose scanner for lower
limb amputations.

The specific objectives consist of the following and are presented in the same order
throughout the methodology.

• To design and manufacture a functional frame with a radial array able to support
5 mounted cameras to cover an objective around 360º and capture simultaneously
across all cameras. Also, to integrate camera movement through orientation and
position for calibration.

• To develop a segmentation algorithm, allowing to keep the desired object, by re-
moving the background and unwanted elements in the scene. Moreover, compare
the algorithms versus a based truth segmentation via Dice Coefficient (DC) and
Hausdorff Distances (HD).

• To implement a reconstruction algorithm that receive RGB-D images as input and
outputs a 3D triangle mesh of the target. Furthermore, compare the resulting mesh
with an original digital model via HD to seek an error of ≤ 2 mm.

• To display the result of using the system by scan 4 different plaster cast models and
verify their diameter measurements through software and physically with the use of
a caliper.

• To demonstrate the final use scenario with an in-vivo participant and its capabilities
for skin deformation changes through HD.
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This section hereby presents the stages of the system. In Fig. 2.1 a pipeline of the system
can be found, it contains six main parts. The capture system involves the cameras used
and the frame where cameras are fixed. Then a calibration takes place where cameras are
located within a global coordinate system by using a checkerboard. Next, a segmentation
takes place by making a selection of the target using the color image. From a set of RGB-
D images, a Point Cloud (PC) is created using the intrinsic parameters. Moving on, all
five PCs are loaded and globally aligned from calibration parameters and reconstruction
takes place. As a result, a 3D model is obtained from the system and validation takes
place to ensure proper dimensions by using Dice coefficient (DC) and Hausdorff Distance
(HD) metrics.

Figure 2.1: System pipeline

2.1. Requirements & specifications

The system needs to meet the 4 different applications stated in section 1.3. The following
list of requirements ensures a proper implementation:

• Contain a wide enough field of view to cover the target,

• Capture simultaneously and stream visualization from all cameras,

• Duration of the capture should last no longer than 1 second to avoid body movement,

• Resistant frame and light weighted, made out of a resistant material,

• Have rotation and position mechanisms to adjust cameras for calibration phase,

• Consist of an interface to be easily approached towards the user,

• Incorporate a certain inclination so the user can be seated in a comfortable position,

• Capacity for residuum with a circumference up to 550 mm,
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• Comprise of an automatic reconstruction pipeline with little user intervention.

First, the vision and its integration. To address the first 3 elements of the requirement
list, Table 1.1 shows the comparison between different technologies available. Photogram-
metry shows to be the best option for this work for capturing external geometries, as it
is possible to use multiple cameras at the same time. Also, it allows the capture of
color images and enables the use of DIC. In addition, it has the lowest time capture
from all technologies. For this reason, stereo cameras show promise for this work, mul-
tiple sensors can be combined to capture simultaneously a scene. This work needs an
inward-facing configuration for a full capture of the target. By requiring multiple sensors,
there are several considerations when connected to a computer. The number of cameras
connected depends on data bandwidth and power consumption, preferring connecting
multiple cameras straight to the computer and choosing lower resolutions to limit the raw
data transmission below 1200 Mbps. With a specific configuration, a camera streaming
depth and color data at 15 fps can translate to an average of 220 Mbps with a power
consumption of 2 W . Also, multiple cameras will rely on processing power from the CPU,
for the RealSense® cameras, the tests performed by the manufacturer shows that an In-
tel® i7-6700HQ can support 4 simultaneous cameras [27]. From these requirements and
considerations, the next list presents the engineering specifications for the application:

• Stereo camera,

• Restriction design of ≤ 0.5 mm
px

,

• Accuracy of ≤ 2 mm,

• Data transmission below 1200 Mbps,

• Independent 3.0 USB controllers,

• i7 Quad-Core processor.

Second, the frame represents the physical space where cameras are mounted and the
interaction with the user. Points 4 through 8 include the manufacturing process, the
material used, and the size of the structure. Also, the installed rails and tripod heads are
used for adjusting the cameras for calibration. Also, discussed in sections 2.2.3 and 2.2.4.

The last point of the requirements emphasizes the software in charge of performing the
segmentation registration and surface reconstruction seen in-depth in the next sections.

2.2. Capture environment

This section deepens into the camera type used in this thesis, the capture speeds, system
resolution, mechanical design, and user interaction.
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2.2.1. Cameras

The capture system uses the Intel® RealSense® D435i RGB-D camera in Fig. 2.2b.
This component meets the requirements, by capturing depth and color images. In ad-
dition, this model provides a stereoscopic solution as it has two sensors, which through
homography, it matches pair key points to obtain depth information. The model has an
infrared projector that lies down a pattern covering the object, this additional feedback
results in more accurate depth data. The manufacture specifications state that the camera
has an accuracy of ≤ 2 % at 2 m, which is enough for the 2 mm error for our validation.
It is worth mentioning that this projector does not interfere with other cameras in the
setup, giving the ability to turn on all cameras at the same time.

The cameras depth and color configuration set to 640× 480px and 1280× 720px respec-
tively at 15 fps ensure a data transmission below 1200 Mbps. This study uses a computer
with 5 independent 3.0 USB ports with an Intel® Core i7 4770K, 16 Gb RAM, and a
GTX 760 GPU that handles the specifications above mentioned.

In contrast to previous work [24], It uses the SR300 model in Fig. 2.2a, which consists
of structured light for the depth images, but this caused problems with the setup. The
light coming from one camera added noise to the other cameras in the array if all cameras
are turned on at the same time. So, the SR300 model needed software multiplexing to
turn on and off one camera at a time for each capture, until a full swipe was complete.

(a) SR300 (b) D435i

Figure 2.2: Realsense models

To demonstrate this issue on how multiple SR300 cameras cannot be turned on at the
same time, Fig. 2.3 shows how depth data would normally operate by multiplexing each
camera independently. On the other hand, Fig. 2.4 displays how noise is introduced if
multiple cameras are turned on at once. For this study, the SR300 is not a viable option.
Making the D435i superior for multi-view setups.
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(a) Color 1 (b) Depth 1 (c) Color 2 (d) Depth 2

Figure 2.3: SR300 cameras turned on independently shows the difference between a color
image and a depth image.

(a) Depth noise 1 (b) Depth noise 2

Figure 2.4: Introduction of noise along the edges of the target when multiple SR300 are
turned on at once, caused by interference of the structured light.

2.2.2. Capture speed

The capture speed determines the accuracy of the reconstruction. As stated before in
section 1.1.4 and Table 1.1, with the use of photogrammetry, systems can achieve the
same capture speeds for each camera like the ones stated by the manufacturer. The use
of five D435i stereo cameras in this work, allows simultaneous streaming and capture
as shown in Fig. 2.5 with all 5 cameras. Each indexed image displays on the left, the
background removal with a given threshold, and on the right, the depth map. These
images are obtained and saved directly from the programmed visualizer, showing that
there is no presence of interference caused by the other cameras. These saved images
re-appear in the segmentation section 2.4. For this study, the capture speed of the system
is set so all cameras capture at 15 fps, this may be changed up to 90 fps. Moreover, this
allows the system to get a single capture in 1 s for static analysis. In contrast, previous
work delivers a capture speed of 1

6
fps and could only work for static modeling [24].

Resolution

In this part, I calculate the optimal distance from the camera to target and the resolution
that ensures a resolution less than 0.5 mm

px
considering the range distance suggested by the

manufacturer. The distance from the cameras to the objective and the resolution, share
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(a) Cam 1 (b) Cam 2 (c) Cam 3 (d) Cam 4 (e) Cam 5

Figure 2.5: Simultaneous streaming using 5 D435i cameras. Each indexed image shows on
the left side the target with the removed background and the right side shows the depth
map.

a common relationship through the focal distance in Eq. 2.1, obtained from prior work
[24],

f =
B

G
(l) (2.1)

where f is the focal distance, B is the image size, G is the target size and l is the distance
to the target.

From Eq. 2.1, B holds the information of the image width i and height j, while G is
the size in mm of the objective for width and height denoted by w and h. Then, the
resolution of the image can be calculated with Eq. 2.2, obtained from previous work [24].

res =
G

B
=

(i, j)

(x, y)
(2.2)

where w and h are the real width and height in mm captured by the camera, i and j is the
number of pixels regarding the camera’s width and height, res is the resulting resolution
in terms of mm

px
. Since pixels are squared, the resolution can be calculated with only one

axis component.

The camera’s manufacturer establishes that the ideal usage range is from 200 mm to
3 m for a proper depth estimation for the D435i, but may go up to 10 m. Given these
specifications, I propose the dimensions of the frame to have a diameter of 610 mm. Next,
I calculate the distance from the cameras to the objective given these parameters. An
experimental measurement is taken from the circumference C of a healthy man’s leg, with
a 1.85 m height and a body mass of 73 kg to find a radius r in Eq. 2.6:



18 2| Methodology

c = 470mm

c = π(d)

d =
470mm

π
= 149.6mm

r =
d

2
= 74.8mm ≈ 75mm

(2.3)

(2.4)

(2.5)

(2.6)

where c is the circumference, d is the diameter, r is the radius.

Then in Eq. 2.7 the distance l from the frame circumference to the target is obtained:

l = 305mm− 75mm = 230mm (2.7)

the resulting distance l = 230mm lies within the ideal usage range with an additional
30mm gap to avoid the 200 mm lower limit.

In this setup, the D435i uses a color resolution of 1280× 720 px, with a field of view of
69.4 × 42.5, horizontal and vertical respectively, provided by the manufacturer [28]. At
this distance, the horizontal range is found with Eq. 2.10, similarly, the height range is
obtained in Eq. 2.10 and it can be seen in Fig. 2.2. The camera is placed in a vertical
stance to cover the most length possible of the target. Then, the resolution is calculated
with Eq. 2.12:

w

2
= tan(34.7)(230mm) = 159.26mm

w ≈ 318.52mm

(2.8)

(2.9)

h

2
= tan(21.25)(230mm) = 89.44mm

h ≈ 178.88mm

(2.10)

(2.11)

res =
318.52mm

1280px
= 0.24

mm

px
(2.12)

where w and h are the width and height length of the field of view.

Finding a maximum resolution of 0.24 mm
px

for this setup at a distance of 230 mm, for a
lower value, the higher the resolution. The resolution obtained of 0.24 mm

px
is less than the

0.5 mm
px

specification, meaning a better image resolution for the application. The cameras
may be adjusted on the rails to increase or decrease the distance to the target from a
minimum of 230 mm up to 400 mm maximum. allowing flexibility for larger objects.
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Figure 2.6: A vision area of 318.52 × 178.88 px at 230 mm from the target using the
D435i stereo camera. This results in a resolution of 0.24 mm

px
.

2.2.3. Mechanical design

The frame is designed and manufactured to support and hold the cameras in place,
it is made out of laser-cut and bend aluminum sheets capable to support the system
components.Fig. 2.7a shows a top view of the frame, where cameras are placed spaced
every 90º showing to be equidistantly using 4 cameras and the calculated radius obtained
in Eq. 2.6 for the target. The number of cameras and their radial position was obtained
through trial and error. Since plaster cast molds and residuums have convex shapes,
results show no occlusion, thus the use of 4 cameras at 90º. These locations are marked
in blue dots. Also, it displays the overlapping angles between cameras. The structure
has an overall dimension of 534.50 mm height and an inner diameter of 610 mm where
the camera’s lenses are placed, as shown in Fig. 2.7b. As well as the adjustable locator
with the ball head mount for all 4 cameras and the one end camera that captures the
end view of the residuum. Previous work utilizes only 4 radial cameras, demonstrating
a robust full capture of the target [24]. This study reveals the need for a fifth camera
directly pointing at the head of the residuum, as it contains important skin information
post-surgery [19]. So, with a total of 5 cameras, 4 radially placed every 90º and 1 camera
at the base capturing the end view of the residuum. This, represents the mechanical
design. Furthermore, mechanical drawings are available in Anex A.

2.2.4. User interaction

The structure interacts with the amputee when scanning. This is why, the system works
in a non-contact scheme, where the design in C and the system can be accessed from a
wheelchair or other sitting position. This prevents accidents caused by bumps or scrapes.
Fig. 2.8 displays the example scenario of this interaction, highlighting three main parts,
the roller chair with the amputee, the fixed frame, and the cameras.
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(a) (b)

Figure 2.7: Mechanical design overview showing (a) Frame and cameras setup with over-
lapping areas, (b) Frame’s overall dimensions.

For the placement procedure, the participant is seated at the edge of a raised surface,
in this case, a roller chair. The amputation rests flying in a relaxation state, then the
roller chair is slid towards the fixed structure by the operator. While gently, the residual
limb is centered within the camera’s angles. The opening in C allows the system to move
comfortably to enclose the amputation, keeping it in the center of the structure. The
residuum is kept at rest during the scan process. In the end, the operator removes the
roller chair from the structure in the same way.

Figure 2.8: Example of the user interaction with the system, with a non-contact scheme.
Labeled in blue, the rolling chair enables the user to move towards the frame. In orange,
previously calibrated cameras aiming at the residual limb. In green, the fixed structure,
with a C shape at the top for ease of access.

2.3. Calibration

Calibration is used to obtain intrinsic and extrinsic parameters. Intrinsic parameters
describe the position of the internal components, in this case, the distance from one
color sensor to the other and the position of the projector, depth scaling factor, and the
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distortion parameters. These are needed to map out RGB-D images into PCs. While
extrinsic parameters describe the rigid transformations of a global coordinate system, in
other words, where are the cameras located in the physical space. The transformations
are useful for global registration, helping as a first rough alignment between PCs.

Since RealSense cameras are used, most of our implementations rely on base code pro-
vided by the manufacturer from the official repository [29]. Intrinsics are given by the
manufacturer and may be accessed through the camera’s firmware. On the other hand,
extrinsic parameters need to be calculated. Intel® already provides a calibration demo1

for the D435i cameras that are used in this project [29]. All cameras must be facing
inwards, viewing a common 6 × 9 checkerboard as the calibration item as shown in Fig.
2.9. The calibration is performed by using Kabsch Algorithm [30], this algorithm finds the
optimal rotation matrix between two sets of points. It superimposes both sets of points
and minimizes the Root Mean Square Deviation (RMSD). This is realized in three stages.

First, the centroid of two point sets P and Q are calculated (2.13), which is the average
position overall points and a translation of the centroid to the origin of the coordinate
system is performed (2.14), this is obtained by subtracting the centroid from the point
coordinates:

C(x,y, z) =

∑n
k=1 xk

n
,

∑n
k=1 yk
n

,

∑n
k=1 zk
n

t(x,y, z) = (x− xc, y − yc, z − zc)

(2.13)

(2.14)

where C is the resulting centroid, t is the translation, x, y and z are point coordinates in
a 3D space.

Second, the covariance matrix H is computed in Eq. 2.15:

H = PTQ (2.15)

where P is the reference matrix and Q is the matrix to be rotated.

Third, a Singular Value Decomposition (SVD), is computed from covariance matrix H

in Eq. 2.16. Then, a check sign takes place to ensure a proper rotation in Eq. 2.17.
Finally, the rotation matrix R is calculated in Eq. 2.18. This returns a superimposed
matrix that “fits" the reference matrix by minimizing the RMSD in Eq. 2.19:

1https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python/
examples/box_dimensioner_multicam

https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python/examples/box_dimensioner_multicam
https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python/examples/box_dimensioner_multicam
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Hn×m = Vn×nSn×mW
T
m×m

d = sign{det(WVT)}

R = W

1 0 0

0 1 0

0 0 1

VT

RMSD(p,q) =

√√√√ 1

n

n∑
k=1

|pk − qk|2

(2.16)

(2.17)

(2.18)

(2.19)

where H is an n ×m covariance matrix, V and W are orthogonal, and S is diagonal. p

and q are the k-th points of matrices P and Q respectively.

Once the calibration is complete, the program saves the intrinsic and extrinsic param-
eters. Fig. 2.9 displays the view from all 5 cameras looking at a common checkerboard
target serving as the calibration object. Also, all the images display a green bound-
ing box corresponding to the book underneath the checkerboard, correct orientation and
dimensions validate a successful calibration of the cameras.

(a) Cam 1 (b) Cam 2 (c) Cam 3 (d) Cam 4 (e) Cam 5

Figure 2.9: Calibration setup and the view from all 5 cameras. All sensors look at a
common checkerboard as the calibration item. The green box displays the dimensions
of the book underneath the checkerboard to validate that the process was completed
successfully. This shows the simultaneous view of the calibration phase.

2.4. Segmentation

By default the cameras take RGB and depth images of the whole scene, this means
that background, surfaces, and the target are present, which would add noise to the
reconstruction. This is why segmentation is needed. It allows keeping only the desired
object by removing unnecessary elements. OpenCV2 [31] and Scikit-image3 [32] libraries
are used for their segmentation algorithms. First, the original RGB image is taken in
Fig. 2.10a. Then the background gets removed by using a depth threshold of 500 mm

Fig. 2.10b, which leaves the target and the table previously covered with a green sheet.
2https://github.com/opencv/opencv_contrib
3https://github.com/scikit-image/scikit-image

https://github.com/opencv/opencv_contrib
https://github.com/scikit-image/scikit-image
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Then, a color segmentation is employed by setting a color range filter U with an upper
and lower bound U = xk − x1, the Hue, Saturation, and Value (HSV) color space is used
to control by selecting darker and brighter values of the same color. This extracts the
pixels corresponding to any green color on the image belonging to the sheet that falls into
the selected color range (2.10c). This operation creates a binary image called "mask" that
shows the pixels corresponding to that color range Fig. 2.10e.

Consequently, an algorithm checks an area with the biggest connected elements in the
image, assuming the desired object is the largest on the remaining scene. To do so, Otsu’s
Thresholding algorithm is computed to find the intensity threshold value that separates
pixels into two classes determined by maximizing its variance in Eq. 2.20:

σ2
ω(th) = ω0(th)σ

2
0(th) + ω1(th)σ

2
1(th) (2.20)

where ω are the probabilities of the classes, th is the threshold, and σ are the variances.
The resulting threshold is used to binarize the image.

Next, connected pixels of the same value represents an area. So, for every region pixels
are counted, the region with the highest amount of pixels is assumed to be the target. In
Fig. 2.10d an example is shown of the biggest element tagged with color and enclosed
within a red box.

Afterward, median and erosion filters are applied to the "mask" to smooth out the edges
of the remaining element, The median filter selects the median value pixel from a 15× 15

squared region named kernel and replaces each entry with this value. This process is
repeated 10 times swiping the whole image with the kernel represented in Eq. 2.21:

median(k) =
k(n+1)

2
(2.21)

where median is the resulting filter, k are the values inside the kernel. This filter is useful
to smooth the edges from the previous colored segmentation as shown in Fig. 2.10f.

The erosion filter is a morphological operator, it computes the local minimum within a
3 × 3 kernel. This erosion takes place on the "mask" to slim the target and iterates 10
times. This helps to remove possible outliers that neither the depth threshold nor color
segmentation could not resolve. The erosion of a binary image can be described in Eq.
2.22:

AΘB =

{
min A(u)

u ∈ B
⋂
A

}
(2.22)
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where A is the matrix image and B is the kernel Fig. 2.10g.

The image in Fig. 2.10h is the result of doing a bit-wise operation of the "mask" over
the original image.

(a) Original (b) No background (c) Color removal (d) Region box

(e) Mask (f) Mask smooth (g) Mask erosion (h) Result

Figure 2.10: Automatic segmentation, feature extraction, contour smoothing, contour
outlier removal, and masking process via the algorithms for one camera image. This
shows the automatic segmentation from start to finish.

2.5. RGB-D alignment & Point Cloud creation

After the segmentation process completes, RGB and depth images must be aligned
before converting them into a Point Cloud (PC). To do so, epipolar geometry is needed
to find a correspondence between the depth image and the color image. This is also the
case for stereovision with the D435i cameras, for estimating depth. The results of the
epipolar geometry are the extrinsic and intrinsic parameters. From the factory, the D435i
has these parameters to align the images. Following, a program4 converts aligned RGB-D
images into a PC by mapping the depth information using the intrinsic parameters from
each camera. This is performed by using this piece of code as a base and modifying it
to meet the needs of this project [33]. Now that the color image is segmented, only valid
color data is processed with the depth information, meaning that everything out of the
segmented region is dropped out. This results in a clean PC in Fig. 2.11b, in contrast
with a PC from the original scene as shown in Fig. 2.11a.

2.6. Reconstruction

All the reconstruction process is implemented using the Open3D5 library [34], as it can
deal with 3D data, and contains alignment algorithms, surface reconstructions, filters,
and an integrated visualizer. The process starts by importing the five PCs and apply-

4https://gist.github.com/Shreeyak/9a4948891541cb32b501d058db227fff
5https://github.com/isl-org/Open3D

https://gist.github.com/Shreeyak/9a4948891541cb32b501d058db227fff
https://github.com/isl-org/Open3D
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(a) Scene (b) Target

Figure 2.11: Comparison of the original scene and the segmented target. This shows the
correct working of the segmentation algorithms and PC conversion.

ing the transformation obtained from the extrinsic parameters. Each PC suffers a rigid
transformation by a 4 × 4 homogeneous transformation matrix T in Eq. 2.27. This
transformation corresponds to the initial global alignment obtained from the extrinsic
parameters during the calibration phase and can be seen in Fig. 2.12a.

Rx =


1 0 0 0

0 cos(θ) sin(θ) 0

0 −sin(θ) cos(θ) 0

0 0 0 1



Ry =


cos(θ) 0 −sin(θ) 0

0 1 0 0

sin(θ) 0 cos(θ) 0

0 0 0 1



Rz =


cos(θ) sin(θ) 0 0

−sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1



t(x,y, z) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1


T = RxRyRzt(x, y, z)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Then, PCs are down-sampled by a voxel size of 0.002 for a faster processing time,
being 0 the original size of the PC. Afterward, a refine alignment is performed with a
pairwise registration for each acquired projection by using the Iterative Closest Points
(ICP) algorithm, through a point to plane estimation with the objective function found
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in Eq. 2.28. The ICP algorithm was preferred, as demonstrated to have the second best
performance for aligning 2D PCs in previous work and since there is already an initial
global alignment, ICP is best suited as a refine alignment [16].

E(T) =
∑

(p,q)∈κ

((p−Tq)np)
2 (2.28)

where E is the result from the objective function, κ is the correspondence set of points
(p, q) from a target PC P, and a reference PC Q, np is the normal of point p. The pairwise
registration is performed in the same order in which the cameras are physically placed on
the frame. Once all of them are aligned, a Poisson surface reconstruction is performed
[18]. This algorithm solves an optimization problem to obtain a smooth surface. Then,
the resulting surface needs to be closed to be converted into a volume using MeshFix [35].
Finally, it can be exported as .PLY or any other mesh-supported format, the comparison
of the resulting mesh and the initial alignment can be seen in Fig. 2.12.

(a) Point Clouds (b) 3D triangulated surface model

Figure 2.12: Comparison of a) the initial global 5 image alignment and b) the output
model after applying a refine ICP registration and Poisson surface reconstruction. This
shows the input and the output of the reconstruction algorithms.

These previously mentioned algorithms that integrate the reconstruction pipeline of the
system are then validated by evaluating the segmentation and reconstruction phases using
region and distance based metrics to quantify the performance of the algorithms used.
These metrics are further described in the next section.

2.7. Validation

Validation is split into 5 blocks allowing different methods to demonstrate similarity,
measurements, and soft tissue deformation capabilities. These are listed as follow,

• The functional and tested prototype.

• Segmentation similarity.
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• Comparison of a CT model vs the scan with the proposed system.

• Diameter measurement verification with 4 plaster cast molds.

• In-vivo use demonstration with skin deformation.

For these comparison tests, Dice Coefficient (DC) and Hausdorff Distances (HD) are
proposed to measure the error. On one hand, DC calculates the similarity between two
samples with Eq. 2.29, where 1 is identical and 0 is no similarity.

dice(A,B) =
2|A ∩B|
|A|+ |B|

(2.29)

where A and B are images to be compared. The order does not matter, as the result
would be the same.

On the other hand, HD metric measures the Euclidean distance between two sets with
Eq. 2.30 and returns the worst-case scenario, where 0 is the best and ≥ 0 is the worst
outcome.

dHD(A,B) = max{
p∈A

sup
q∈B
inf d(p, q),

p∈B

sup
q∈A
inf d(p, q)} (2.30)

where A and B are images to be compared, sup and inf determine the least upper bound
and the greatest lower bound, p and q are points.

First, a total of four molds were scanned. The first mold corresponds to a 3D printed
model to which its digital model was obtained from a CT image from the transtibial
amputee participant M1 from Proactible. The remaining three models correspond to
plaster cast models obtained from Proactible’s orthosis and prosthesis laboratory. Model
2 belongs to a transtibial amputee, while models 3 and 4 belong to transfemoral amputees.
The segmentation results obtained in this phase were submitted to DC and HD metrics,
obtaining a percentage value for DC and pixel count for HD, which can later be related
using the system resolution obtained in section 2.2.2. Results for the segmentation phase
can be seen in Fig. 3.4. Top row displays a manual segmentation using photo editing
software taken as the ground truth and the bottom row shows the segmentation employed
with the implemented algorithms. Both segmentations result in binary "masks" which
are compared via DC and HD metrics, each model comprises 5 images.

Second, The M1 transtibial 3D printed model gets scanned with the proposed system.
The 3D printed model was printed using HP’s Multi Jet Fusion technology with a ± 0.3
% (with lower limit on ± 0.2 mm) accuracy stated by the manufacturer [36] and this
error would be expected for validation. Segmentation results can be seen in 3.4a as stated
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above. Then, the reconstructed model obtained with the system is compared via HD only.
As the system outputs a surface mesh, HD best suits the application.

Third, the diameter of all four scanned models gets measured at the same view angle
presented in Fig. 3.6 at three different heights. The bottom parts of the models were not
considered to be included, as they serve as bases for the cutlines and are not important
for the limb measurements.

Last, the system validates its use with a transtibial in-vivo participant M6 from Proactible.
This scenario shows the capabilities of the non-contact automatic reconstruction of the
proposed system. Two scans at different poses were obtained during this phase. The
first pose in a relaxed state was obtained. A second one by co-contracting the residuum.
A comparison between these two poses was computed through HD to visualize muscle
contraction with the heat map. This color map demonstrates skin deformation and ge-
ometries displacements in Fig. 3.7.

The results for these four tests are displayed and discussed in the Results section, as well
as the advantages of using this system and improvement areas for future development.
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This section presents the results to demonstrate the objectives previously presented. The
proposed system shows to accomplish the mount of 5 cameras and their calibration. It
also can simultaneously capture across all 5 cameras, segment, and reconstruct automat-
ically a 3D surface mesh. Then, segmentation comparison using DC and HD takes place
demonstrating a strong resemblance to the ground truth segmentation. Next, the 3D
printed model obtained from a CT scan gets compared to the results of the proposed
system using HD metrics. Then, all four scanned models with the system get compared
by diameter measurement via software and physically. Finally, the demonstration closes
with an in-vivo participant.

3.1. Prototype

Hereby, I present the prototype and test of a functional capture system. The system
was used in two different configurations for the capture and digitization of shapes. The
first configuration is used for use with plaster molds as shown in Fig. 3.1, the structure is
placed on a table covered by a green tablecloth. While the second configuration is used
adjacently for use with participants as shown in Fig. 3.2. Where it shows the workspace,
the calibration support and the user interaction. The frame has a “C" shape cut out at the
top so the participant can be moved closer to the frame. A 45º position of the frame was
chose so participants could easily place the residuum at the same orientation of the frame
while sitting on a chair. Regardless of configurations, the frame demonstrates the camera
mounting, the workspace, and the calibration support. This shows the frame holding 5
cameras with the ability to change orientation and position to direct the field of view
to the target and calibration item. The frame can hold four cameras radially every 90º
with 4 degrees of freedom (DOF), by using a ball and socket joint combined with a rail
axis seen in Fig. 3.2a, and a fifth fixed camera capturing the end view of the residuum.
Also, all the cameras capture simultaneously the desired object in place. An image of
the workspace can be seen in Fig. 3.2b displaying the setup of the frame before being
used by a participant. Looking at the top, the frame counts with removable support to
hold the calibration target as displayed in Fig. 3.2c. Then, Fig. 3.3 displays the in-vivo
non-contact application for external geometry reconstruction where a general view shows
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the system and the participant. Then the following images demonstrate the automatic
process that the system follows from the captured images up to the surface reconstruction
resulting in the output mesh of the system.

(a) Camera mount (b) Workspace (c) Calibration support

Figure 3.1: The configuration used for the plaster molds show a) 4 cameras mounted
on a support that enables rotation and position, b) the workspace of the system being
calibrated and c) the model being captured. Showing the camera mounts and the ability
to change orientation and position onto the objective.

(a) Camera mount (b) Workspace (c) Calibration support

Figure 3.2: The configuration used for participants show a) the workspace of the system
being calibrated and b) the removable support for target calibration in magenta, c) the
interaction with the participant. Showing the camera mounts and the ability to change
orientation and position onto the objective.

Fig. 3.3 shows the process from start to finish with the system previously calibrated.
In the time span of 5 minutes, a full reconstruction from start to finish was accomplished
with little intervention from the system’s operator. During this time-lapse, it includes
setting up the parameters of the camera, creating a folder for the current workspace.
Also, executing the parts of the program that include the calibration, image capture,
segmentation, PC conversion, and reconstruction. The system’s operator intervention
includes only inputting the data for the workspace creation, the placement, and removal
of the calibration target, saving the desired images in the capture phase, and selecting
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(a) General (b) Color (c) Depth (d) Segment (e) PC (f) Mesh

Figure 3.3: Testing of the system with an in-vivo participant starting from a) the general
view of the system and the participant, b) the color image from one of the cameras, c)
the aligned depth image, d) the segment of the target, e) the mapping of the PC and f)
the resulting surface mesh after the 5 images reconstruction. This shows the process from
start to finish of the system looked from one camera view.

the camera order in which reconstruction takes place. These may be performed previ-
ously as the setup stage, except the capture phase. Once concluded, the system is ready
instantaneously for a full automatic reconstruction.

Wu et al. reported the average processing time for the computer with their system to
be around 19 seconds including calibration, scanning, registration, and reconstruction.
Furthermore, they mention that they used 6 structured light cameras, which did not
allow the system for simultaneous capture and make use of multiplexing the cameras
on/off which could increase the overall execution time for the system.

Simultaneous streaming was an issue in previous work using structured light. With the
use of stereoscopic cameras, the issue was solved in this work. Although the system is
configured for the simultaneous stream, cameras can be synchronized via hardware to
work at the same clock. This feature would enable synchronous video recording to record
continuous tissue deformation.

3.2. Segmentation results

Fig. 3.4 shows on the top part the ground truth segmentation, on the bottom the use
of algorithms, at the top of each comparison displays the serial number for each camera.
The footnote presents the numerical results corresponding to the Dice coefficient and
HD. While DC presents a percentage, where digits closer to 1 means better. On the other
hand, HD digits closer to 0 represent a better segmentation. Also, HD is measured in pixel
count, error in mm may be obtained with the 0.24 mm

px
resolution previously calculated

in section 2.2.2. From the results presented in Fig. 3.4 a summary of the stats can be
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seen in Table 3.1 showing a mean of 0.87 for DC and 26.67 px or 6.40 mm for HD using
the segmentation algorithms. This determines a strong resemblance to the ground truth
segmentation. Other stats are available at the table such as the upper (3rd Qu.) and
lower (1st. Qu) quartiles, the Interquartile range (IQR) that shows the difference between
the 3rd Qu. and 1st Qu., and the root mean squared (RMS) calculated from the DC and
HD data itself. It is important to notice that different volume molds were used. For the
segmentation phase it can be seen in 3.4 that models are arranged from smallest to largest.
Since focal lengths and the cameras themselves are fixed smaller objects would occupy a
smaller portion of the image resolution. For smaller objects this could mean lower object
resolution that could affect the error for the segmentation phase. Also, there are errors
due to the average and erosion filters that remove a portion of the edge. However, the
areas of interest for reconstruction are the overlapping areas of the shape, not the edges.
So these errors do not present a problem for reconstruction.

Table 3.1: DC and HD statistics obtained from the segmentation results in Fig. 3.4.
Showing a mean of 0.87 out of 1.00 for DC. Also, a mean of 26.67 px for HD which
can be translated to 6.40 mm using the system resolution of 0.24 mm

px
, showing a strong

resemblance to the ground truth segmentation.

Type Min. 1st Qu. Median Mean 3rd Qu. Max. IQR RMS

DC(%): 0.47 0.80 0.98 0.87 0.99 0.99 0.19 0.89

HD(px): 7.21 13.17 15.97 26.67 22.68 138.76 9.51 40.30

HD(mm):1.73 3.16 3.83 6.40 5.44 33.30 2.28 9.67

For the validation of the results, it was sought to have a comparison of both regions
and distance, so I proposed the use of DC and HD metrics. Segmentation shows a strong
visual correspondence between the ground truth and algorithms.

These tests show good results, in this part of the segmentation we see errors due to the
averaging and erosion filters that remove part of the edges. In this case the sections of
interest are those overlapping of the shape, not the edges. So these errors do not present
a problem for reconstruction. But the algorithms can be further improved. Right now
the algorithms employed to calculate the segmented region with the biggest element in
the image make use of the Otsu’s method to calculate areas within the image. Otsu’s
algorithm may calculate wrong areas if lightning conditions are poor or over-exposed. As
well, the colors in the image. This specific algorithm works well with plaster cast models
since they are white, because brighter areas get marked in white and darker areas get
marked in black. During the in-vivo test, 2 out of 5 of the segmented images had trouble
with the region selection due to this mentioned issue and manual intervention was needed.
Since cameras can be automatically adjusted for light exposure, no additional light source
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(a) M1

(b) Model 2

(c) Model 3

(d) Model 4

Figure 3.4: DC and HD metrics for color images segmentation for four scanned models.
In each model, the top row displays the segmented object using manual segmentation as
ground truth. Below, the segmentation results using the algorithms. This shows a strong
visual comparison.
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was needed. But the use of an external light source could result in smoother and uniform
light along the target to minimize the shadows if the environment needs it.

3.3. Performance evaluation

Next, Fig. 3.5c presents the model comparison through HD for the M1 model. Where
the original model in light blue was obtained with a CT scan, and the scan with the
proposed system in yellow. A histogram of the HD results is shown at the left of the
model, from the minimum value 0 mm up to the maximum value 10.7 mm going from
blue through red respectively. Segmentation results for M1 can be seen in Fig. 3.4a above.
Then, Table 3.2 shows the stats summary from the HD histogram presented, showing an
error mean of 1.93 mm and a median of 1.27 mm which is ≤ 2 mm error proposed in
the objectives. The median is preferred over other stats as it better describes the central
tendency.

(a) Original (b) Scanned

(c) Quality map

Figure 3.5: M1 model measured via HD. a) the original model from the CT, b) the scanned
model with the proposed system, c) the quality map between the scanned and original
models.

The bottom of the model colored in red represents the highest disparity for two reasons.
First, the bottom part of the original CT model was modified for a proper 3d printing.
Second, due to the position of the model placed over the workspace. Adding to this,
the system algorithms creates a flat surface at the bottom where it touches the table.
This region, although it shows the greater error is not important because it is below the
cutline marked in magenta in Fig. 3.5, meaning that is not part of the socket and is
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Table 3.2: HD statistics results were obtained from the model comparison. Values in mm

Min. 1st Qu. Median Mean 3rd Qu. Max. IQR RMS

0.00 0.59 1.27 1.93 2.64 10.72 2.06 2.73

not desired to be compared. The important region resides above the cutline showing a
central tendency with a median of 1.27 mm of error. By comparing results with Wu
et al. with their foot scanner. They report two accuracy validations by using a sphere
with a real circumference of 942 mm with an average measured value of 940 mm for the
scanned model. Also, they compared their system against a commercial laser foot scanner
reporting the largest error of 5 mm and 80 % of their data with ≤ 1.5 mm of error with
a mean error of 1.42 mm [22]. Accuracy stats from previous work reported the use of
a freeform and prismatic shape. The scale in that study was updated to meet the same
units in this thesis for a proper comparison. The freeform showed a max error of 8.3 mm

with a mean of 1.3 mm and the tangram showed a max error of 4.8 mm with a mean
of 1.3 mm [24]. The characterization study for the SR300, demonstrated the multi-view
performance using freeform and prismatic shapes with a max error of 2.5 mm [7]. Figs.
17-18 [7] show a lower and upper bound for their compared meshes, with no mean errors
reported. The work of Solav et al. presented errors of 0.06 mm evaluating a cylinder with
random patterns as the calibration target.

These mentioned studies related to the use of multi-view systems for reconstruction and
the use of Euclidian distances for measuring error. The system presented here showed
a median error of 1.27 mm which is less than the reported with some of the compared
studies. The system proposed uses 5 stereoscopic cameras, while my previous work used
5 structured light cameras. Comparatively, Wu et al. used 6 structured light cameras
and Solav et al. used 12 RGB cameras of 8 Mpx. The calibration procedure in this work
utilizes a checkerboard using the Kabsch algorithm, previous work lacked a calibration
target. Wu et al. use a T-shaped checkerboard pattern using a variation of Zhang’s
method algorithm. Solav et al. use a cylinder with random dotted patterns. Another
main difference regarding the calibration phase is that in this work and Wu et al. systems
get calibrated previously during the setup stage, after that the checkerboards get removed
before capturing phase. While Solav et al. paints a similar pattern over the subject that
serves as markers to later correlate the images, resulting in less error reported from the
discussed studies, but with the drawback of having to paint the test subject.

With the current system, the global alignment error can be reduced if the cameras
setup is taken care of by obtaining values close to 0 during calibration with the Kabsch
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algorithm. In a practical way, I have noticed that placing the camera as close to being
perpendicular to the board gets better results. However, the system also makes use of the
ICP algorithm that depends on a threshold, which influences the final error of the model.
So there is still room of improvement with the ICP algorithm to minimize this error.

These results allow us to discuss the ideal tolerances that should exist between the socket
and the residuum. Works in the literature focus their efforts mainly on the reconstruction
and manufacture tolerances, but no interface tolerances have been reported today. This
could be caused due to the skin’s elastic properties and ability to adapt to unconventional
socket shapes. Traditional methods work on a trial-and-error basis in adding and remov-
ing material from the mold for socket manufacturing. Recent techniques with the use of
medical images are very accurate and can have resolutions of 0.3 mm previously men-
tioned in Table 1.1. However, the use of FE-models that optimize the shape by deforming
the 3d model will depend on each participant, which will have variations for each socket.
This would result in different tolerances for every socket. This is still an area of oppor-
tunity that needs further research. Current methods try to approach these tolerances by
using pressure sensors that can evaluate the interface pressure to understand the loading
conditions and possible pain thresholds [37–42]. The resulting mesh from the proposed
capture system can be further processed to meet desired diameters which would be well
suited for socket tolerances and manufacture.

3.4. Measurements verification

Furthermore, the scanned models get compared with the real diameter dimensions of
the plaster cast models at the same view angle presented. Fig. 3.6 demonstrates all four
models with their corresponding measurements. It shows the diameters at three different
heights obtained via software (SW) of the scanned model and the physical counterpart.
Additionally, M1 has the model obtained from the CT and the scanned model. The heights
are proportionally distributed with respect to each model, meaning that the distances used
vary and are not the same. This helps to verify that the measurements obtained from the
scanned model resemble the physical model. Moreover, the different heights selected are
considered to be below the cutline in the case of M1, models 2, and 3. For model 2, heights
were considered to be below the knee, considering that the models are upside down. Also,
the molds were arranged by size from small to large to demonstrate the dimension scan
capacity of the system. Demonstrating that the system allows the scanning of small and
large objects by adjusting the cameras with their respective 4 DOF. The largest mold
tested has a diameter of ≈ 150 mm, as calculated in Eq. 2.6 to ensure a proper field of
view of the target.

The obtained measurements of the diameters enable a fast verification of measurements
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(a) M1 - transtibial proto model (b) Model 2 - transtibial plaster

(c) Model 3 - transfemoral plaster (d) Model 4 - transfemoral plaster

Figure 3.6: Diameter measurements across all 4 models. Comparison for both SW and
physical diameters at 3 different heights. Units are in mm

using a caliper, by taking measuring the diameter at 3 different heights demonstrates
that overall, objects follow the same dimensions. As mentioned above in the study of
Wu et al. they compared a real sphere vs the scanned one having a difference of 2 mm

for the circumference. The use of diameters from a single viewpoint was proposed due
to the irregular shape of the amputation models which cannot be considered completely
cylindrical. Initially, the measurement of the circumference was proposed but software
limitations could not return the circumference, making the measurement of diameters at
specific heights more viable. Overall error measurements remain ≤ 1.6 mm, having a
strong resemblance with the real model. This proves to be useful for the assistance of the
prosthesist in the prostheses manufacture. Facilitating the comparison of measurements
of physical and digital models.
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3.5. In-vivo validation

The results in Fig. 3.7 show the comparison between two different poses. The first one
is in a relaxed state and the second one performs muscle co-contraction. The quality map
shows the differences and changes from one state to another showing great differences in
3 main parts, the knee, vastus lateralis, being the external part of the quadriceps, and
the residuum. The knee and residuum differences relate to the change in position, while
the quadriceps region was caused by muscle contraction. Also, an artifact appears at the
same spot in both poses at the top part, making a sink. This could possibly be occasioned
by the reconstruction algorithm while stitching the mesh.

(a) Relaxed (b) Extension

(c) Comparison changes heat-map of tissue deformation

Figure 3.7: Participant M6 two poses results measured via HD. a) the residuum model in
a relaxed pose, b) the residuum model while co-contracting the muscles, c) Quality map
between both poses.

Overall this new functional and tested prototype meets the requirements stated in the
proposal section 1.3. The proposed system serves as a useful tool to scan and create
a digital library for plaster cast models. Also, the diameters measurements verification
demonstrates the use scenario to assist the prosthetist for residuum dimensions and man-
ufacturing process. Looking back into the traditional pipeline in Fig. 1.2, the integration
of this system would be a hallmark for any local prosthetics clinic to be able to create
dossiers and see patients’ progress. The system would mean an update in the pipeline
with the integration of the new technology as shown in Fig. 3.8. This integration means
the scan of the current plaster model to re-fabricate it for the definitive socket after 6-12
months have passed. Another possible change in future pipelines could be the replacement
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of the plaster cast models and directly scanning the amputee, resulting in a reduction of
using materials and faster model iterations.

Figure 3.8: The traditional pipeline with the addition of technology integration. 1) Limb
measurements and socket fabrication. 2) Check socket. 3) Provisional/Definitive socket.
4) Scan of current plaster cast mold. 5) 6-12 months before receiving a definitive socket.
6) 3D Re-fabrication of the mold from the digital library.

Furthermore, through the literature review, there is already a new socket design paradigm
using CT scans, which enables the location of external and internal geometries that can
be used along an FE-model for an automatic socket design. The proposed system can be
used to update the external geometries of previous CT models to avoid radiation expo-
sure. More on that, future work will involve the use of the proposed system along with
multi-view DIC to properly extract the viscoelastic tissue properties to feed an FE-model.

Right now the reconstruction algorithm needs to input the camera order in which the
reconstruction has to be carried out. This process needs the fixing of the first PC and
making a pair-wise registration of the next PC and so on until all PCs have been ap-
plied the ICP algorithm. While it works adequately, it is not ideal. Algorithms can be
further improved so key features can be detected and correspondences between images
can be achieved to automatically determine the order in which registration should take
place. Also, the use of body markers could be implemented to facilitate the detection of
correspondences. This could also involve the calibration and the analyzing method used,
which enables the possibility to implement a multi-view DIC to detect corresponding
points across images.
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developments

The work presented addresses the design, prototype, and testing of a new fully automatic
capture system. The prototype was designed and manufactured out of laser cutting and
bending of aluminum sheets that can support the mounting of 5 stereoscopic cameras
with 3 DOF for position and orientation towards the target. The frame has a "C" shape
cut out for easy interaction with the participant. The system can perform an automatic
360º reconstruction including the end view of a target in less than 5 min. The system
presents the advantage of simultaneously capturing across all RGB-D cameras. Adding to
this, it is calibrated to a global coordinate system via a checkerboard by implementing the
Kabsch algorithm. Then the system segments the images to keep the target, which is then
mapped out into PCs with an initial alignment. Afterward, the registration algorithms
align and reconstruct the surface of these PCs, resulting in a closed mesh.

The results for the plaster cast models show the segmentation and registration valida-
tions. The segmentation metrics of DC and HD show strong visual similarity. Moving
forward, the system was tested using a known prototype model obtained from a CT scan,
to which comparison results via HD show an average error of ≤ 1.93 mm making the
system competitive against the state-of-the-art reviewed systems with only 5 stereoscopic
cameras. The different diameters obtained of the four models through SW present a rea-
sonably close resemblance to the physical models. These results from the objectives show
that the system is useful for the generation of a digital library to create a patient history
to see the shape progression over time, as well as assist the prosthesist in the manufac-
turing process, the saved model can serve to update external geometries of previous CT
scans, and future extraction of viscoelastic properties of the skin.

A full reconstruction was possible with only 5 images, since no occlusion areas were
observed with the convex shape of the amputations including the molds, having no issue
during the surface reconstruction with this application. Right now registration takes place
by selecting the order in which cameras were placed. While results were promising, prob-
lems may arise if selecting the order of the wrong cameras. Image correlation, key features,
or even color ICP may be implemented to overcome this issue. Additionally, calibration
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via a traditional checkerboard method is sensitive to external disturbances and gets easily
decalibrated, adding error to the initial global alignment. A cylindrical calibration target
may be implemented along with the use of body markers to resolve this problem. The
results obtained from the participant demonstrate that the system is capable for in-vivo
non-contact reconstruction and analysis. Also, cameras can be synchronized via hard-
ware to ensure an instantaneous capture of all sensors, which would enable the possibility
of synchronous video recording to obtain an overtime shape deformation useful for the
extraction of viscoelastic properties of the skin.

This thesis accomplishes to design, prototype, and test a new fully automatic capture
system to scan plaster molds and serve as a platform for future technologies in lower
limb reconstruction applications. The challenges involved the selection and integration
of technologies that could be useful to comply with the application of developing an
automatic capture system. In less than 5 minutes the reconstruction of an object can
be acquired with little intervention with the proposed system. Current commercial and
industrial solutions for 3D reconstruction consist of large equipment for which a dedicated
area is required for its operation, such as full-body scanning systems. This thesis addresses
this issue by scaling down a multi-view system to scan small and deformable objects over
time, and minimize involuntary movements of the body.
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Abbreviations

Description

CAD Computer-Aided Design

CT Computer Tomography

MRI Magnetic Resonance Image

LiDAR Light Detection And Ranging

RGB Color sensors

RGB-D Color and Depth sensors

SLAM Simultaneous Localization and Mapping

PC Point Cloud

RANSAC Random Sample Consensus

ICP Iterative Closest Point

DIC Digital Image Correlation

HD Hausdorff Distances

CPU Central Processing Unit

RAM Random Acces Memory

RMSD Root Mean Square Deviation

SVD Singular Value Decomposition

HSV Hue, Saturation, and Value
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Variable Description unit

f focal distance mm

B image size px

G target size mm

l distance to the target mm

res resolution mm
px

i image width px

j image height px

c circumference mm

d diameter mm

r radius mm

w width field of view mm

h height field of view mm

C centroid matrix px

t traslation vector px

P point set px

Q point set px

x point coordinate px

y point coordinate px

z point coordinate px

H covariance matrix px

R rotation matrix px

V an orthogonal matrix px

W an orthogonal matrix px

S a diagonal matrix px

p k-th points of P px

q k-th points of Q px

U range filter px
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ω probabilities of the classes px

th threshold px

σ variances px

k values px

median median filter px

u element from a matrix px

A an image matrix px

B an image matrix px

T transformation matrix px

E ICP objective function px

κ correspondence set of points

np normal of point p

dice dice coefficient %

dHD hausdorff distances px

sup least upper bound px

inf greatest lower bound px
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