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Prognosis using Deep Learning in CoViD-19 patients
By

José Luis Guadiana Álvarez

Abstract
Prognostics study the prediction of an event before it happens, to enable efficient critical deci-

sion making. Over the past few years, it has gained a lot of research attention in many fields, i.e.
manufacture, economics, and medicine. Particularly in medicine, prognostics are very useful for
front line physicians to predict how a disease may affect a patient and react accordingly to save as
many lives as possible. One clear example is the recently discovered Coronavirus Disease 2019
(CoViD-19).

Because of its novelty, not nearly enough is known about the virus’ behaviour and Key Per-
formance Indicators (KPIs) to asses a mortality prediction. However, using a lot of complex and
expensive medical biomarkers could be impossible for many low budget hospitals. This motivates
the development of a prediction model that not only maximizes performance, but does so using the
least amount of biomarkers possible. For mortality risk prediction, falsely assuming that a patient
has a low mortality risk is far more critical than the opposite. Therefore, false negative predictions
should be prioritized over false positive ones.

This research project proposes a CoViD-19 mortality risk calculator based on a Deep Learning
model trained on a data set provided by the HM Hospitales from Madrid, Spain. A pre-processing
strategy for unbalanced classes and feature selection is proposed. Benefit of using over-sampling
and imputation techniques is evaluated. Also, an imputation method based on the K-Nearest Neigh-
bor (KNN) algorithm for biomarker data is is proposed and its efficiency is evaluated. Results are
compared against a Random Forest (RF) model while showing the trade-off between feature in-
put space and the number of samples available. Results on the MPCD score show the proposed
DL outperforms the proposed RF on every data set when evaluating even with an over-sampling
technique. Finally, the proposed KNN method proves beneficial for data imputation, improving the
model’s Recall score from 0.87 to 0.90.
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Chapter 1

Introduction

Prognostics is defined as ”Predict the progression of an event based on current and future oper-
ational and environmental conditions to estimate the time at which a system no longer fulfils its
function within desired specifications, i.e. Remaining Useful Life (RUL) [Goebel et al., 2012]. To
predict is to know of the occurrence of an event, most of the times defined as a fault, on a given
system before its parameters go out of specification. To predict an event is very useful and it is a
topic of interest in many different areas:

• Medicine: Patient’s accurate and early diagnosis and prognosis of diseases, X-ray and CT-
Scan image interpretation [Panwar et al., 2020b]

• Manufacture: Downtime reduction in production lines by making machine health diagnosis
and prognosis for optimal maintenance.

• Finance: Financial credit risk prediction [Ma and Lv, 2019], Stock market price prediction
[Ferdiansyah et al., 2019] and Risk of bankruptcy prediction.

Predictive analytics (prognosis) is one of the main research topics nowadays, forecasting a 20%
to 50% market penetration in less than 2 years, according to Gartner Inc., [S. et al., 2020]. Fig.
1.1 shows the evolution of expectations for new technologies through time. At the begging of any
new technology, the expectations for its productivity applications grow exponentially (Innovation
Trigger) until it reaches a peak of hype (Peak of Inflated Expectation). However, most of the
expected applications are proven inefficient or impossible, so the hype around said technology
is lowered (Through of Disillusionment). Given time, real productive applications for problem
solving will be materialized (Slope of Enlightenment) until the technology reaches its limits for
new applications and stabilizes (Plateau of Productivity).

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Hype Cycle for Data Science and Machine Learning, 2020

1.1 Motivation

In the medical field, the ability to correctly predict the evolution of a disease in patients enables
doctors and hospitals to make critical treatment decisions earlier, which ultimately saves more
lives. One clear example is the recently discovered Coronavirus Disease 2019 (CoViD-19).

CoViD-19 is a respiratory disease caused by the Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) [Wu et al., 2020] which was declared as a global pandemic on March 11,
2020 by the [Cucinotta and Vanelli, 2020]. Up to date, more than 62 million people have been
infected and more than 1.49 million have died of CoViD-19 [The Johns Hopkins University, 2020].
Most cities around the world have implemented isolation and social distancing as a preventive
measure, which has greatly impacted their economy, and will continue to do so, by completely
stopping most ”non-essential” economical activities. According to [Fernandes, 2020] Gross Do-
mestic Product (GDP) growth would take a hit ranging from 3% - 5% depending on the country.
In other scenarios, GDP can fall as much as 10%. On average, each additional month of crisis
costs 2% - 2.5% of global GDP. The need for an efficient model to accurately distinguish critical
patients from others, becomes clear.

1.2 Problem Description

In Mexico, there have been 1,113,543 confirmed infected people and 105,940 deceases due to
CoViD-19 (up until December 1st, 2020) [CONACYT and DataLab, 2020]. For CoViD-19, iden-
tifying severe patients at their acute phase is clinically trivial. Early identification of those at risk
to quickly deteriorate, and those with very low risk for critical disease, are the measures required
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for efficient triage [Assaf et al., 2020]. Most of the times it is not the fact that the disease itself
is very life threatening, but rather the lack of proper critical patient management. Because of the
high reproduction number of the SARS-CoV-2 virus, studies estimated a median R0 value of 5.7
[Read, 2020], the amount of infected patients grows in an exponential manner and hospitals cannot
keep up with the sudden amount of people who need critical attention, facing shortages of beds,
mechanical ventilators and medical drugs. The reproduction number R0 of an infection can be
thought of as the expected number of cases directly generated by one case in a population where
all individuals are susceptible to infection [Fraser et al., 2009].

Moreover, not every hospital has the resources, i.e. budget, time, staff, equipment, etc., to
conduct many complicated tests before needing to make a decision. A mortality risk calculator
for CoViD-19 must not only be as accurate as possible, but also use only the minimum amount
of features in order to produce an acceptable prediction. That means, the trade-off between the
number of input variables and model performance must be practically optimized.

1.3 Research Question

Because of its novelty, there is still much we don’t know about the CoViD-19 disease and not
nearly as much data as we would want to make proper data-driven models. Even though there are
already a lot of Machine Learning (ML) algorithms for CoViD-19 prediction, most of them have
not reached optimal results, because of the lack of useful data, or because they are highly biased to
only a certain population. The lack of an accurate model to predict risk of mortality in CoViD-19
patients is evident and would be greatly beneficial for hospitals to properly manage critical patients
(efficient triage). This research project attempts to answer the following questions:

• Which are the basic features needed for an acceptable mortality risk prediction DL model?

• How does the prediction performance of DL models change when using basic against spe-
cialized features?

• How does the DL model compare against other ML algorithms?

• How does oversampling and data augmentation techniques affect the DL model?

1.4 Solution Overview

Develop a Deep Learning (DL) model to predict the mortality risk of CoViD-19 patients. Feature
selection and pre-processing, as well as hyper-parameter tuning, is done to optimize the algorithm’s
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convergence. The model is a Feed-Forward Neural Network (FFNN) with one-dimensional fea-
tures, where sequential data is transformed into stationary data by getting its statistical attributes
(maximum and minimum values).

1.5 Main Contribution

The main contribution of this research project is a DL model that can be used in a mortality risk
prediction web application. The application was developed through Amazon Web Services (AWS)
and is intended to help frontline physicians in clinical decision making under time-sensitive and
resource-constrained conditions for CoViD-19 patients. The proposed model achieves an average
Maximum Probability of Correct Decision (MPCD) score of 0.84 using a 10-fold Cross-validation
(CV) evaluation method on a data set using 26 input features., which represents a 10% improvement
when compared against other a Random Forest (RF) algorithm.

1.6 Organization

This research work is organized as follows:

• Chapter 2 presents the state of the art methods and approaches for Prognosis using DL, along
with a basic theoretical background.

• Chapter 3 describes the experimental database, the description of the used database and the
structure of the Design of Experiments (DoE) used.

• Chapter 4 describes the proposed methodology

• Chapter 5 presents the main results.

• Chapter 6 presents the conclusion, the contributions and future work of this research.

• Bibliography

• Appendices



Chapter 2

State of the Art

First, the necessary theoretical background information to comprehend the methodology and per-
formance metrics used in this research project are described. Then, a literature review of relevant
papers in the prognosis of CoViD-19 is presented. Table 2.1 shows a summary of the literature
review. Finally, an explanation of key concepts such as ML, DL, Artificial Neural Networks (ANN)
and different feature selection techniques is presented.

2.1 Theoretical Background

Over the years, many different fault prognosis methods have been introduced. However, [Patti-
pati et al., 2009] states that they are all framed within the same three categories: Model-based,
Knowledge-based, and Data-driven based methods. Model-based approaches require an accurate
mathematical model to be developed and use residuals as features, where residuals are the out-
comes of consistency checks between the sensed measurements of a real system and the outputs
of a mathematical model, [Vachtsevanos, 2006]. Knowledge-based approaches use symbolic rep-
resentations to solve problems, which can be very difficult when dealing with complex systems,
time consuming, and completely rely on the availability of expert knowledge. Data-driven based
approaches are used when monitoring systems have big amounts of historical data available, [Pat-
tipati et al., 2009].

In recent times, data-driven methods have produced state of the art results in many research
fields, mainly due to an increase in computational power, and both quantity and quality of data.
New technological trends, i.e. Industry 4.0 (I4.0), encourage companies and systems to have ac-
cess to a lot of real-time process variables to analyze and support strategic decision making. The
concept of I4.0 was born to enable industrial processes to move from a physical process with IT
support, to an integrated cyber-physical system of production [Henning, 2013]. However, it has
quickly being adopted by different areas to use data-driven approaches for complex problem solv-

5
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ing without needing expert knowledge. For example, data-driven methods allow hospitals and
medical staff to not rely on specialized doctors to correctly diagnose and treat certain diseases
using different patient’s attributes or even images, i.e. X-ray or CT-Scans. As the world moves
towards a new era in which huge amounts of data are available, known as Big Data, Data-driven
methods such as AI, ML and DL, have gotten a lot of attention.

Figure 2.1: Representation of DL inside of AI

AI is a subset of computer science, concerned with how to give computers the sophistication to
act intelligently [Nilsson, 2014]. Its goal is to enable computers to do complicated abstract tasks
that usually require human intervention. ML is a field from AI which is focused on developing
algorithms that enable computers and systems to imitate the human learning process by extract-
ing useful knowledge and making appropriate decisions from big data [Zhao et al., 2019]. The
learning process can either be supervised or un-supervised. In Supervised learning the user gives
the system the outcome it expects for each data sample. In un-supervised learning the model must
first generate an outcome from the given data samples and then adjust itself to learn from these
self-generated labels.

2.2 Literature Review

Prognosis has been a very popular research topic in recent years. In the medical field, [Jiang et al.,
2020] developed a risk of developing Acute Respiratory Distress Syndrome (ARDS) for CoViD-19
patients predictive model. The database consisted in 53 confirmed CoViD-19 patients from the
Wenzhou Central Hospital and Cangnan People’s Hospital in Wenzhou, China. The median age
was 43 years and 62.2% were men. Common symptoms included fever (in 47 patients, 88.7%)
and cough (in 32, 60.4%). Median days from symptom onset to hospitalization was 3 days, no
patients presented more than once and none were pregnant. Various lab tests were taken into
account, although these varied between hospital according to availability. Median white blood
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cell count (x109/L) was reported to be 4.8, and median Lymphocyte count (x109/L) was of 1.2.
Out of the 53 patients 9.4% developed ARDS, 1.9% was taken into the Intensive Care Unit (ICU)
and 47.5% required supplemental oxygen. All 53 patients took lopinavir and litonavir tablets;
dose was 200 mg twice a day of lopinavir. 29 patients took umifenovir. 43 patients took rectal
suppositories of recombinant human interferon-2a. All 53 patients have now been discharged.
The median length of stay was 27 days (interquartile range 23-31.5, 9-45). Discharge required
normal temperature for over three days, no respiratory and gastrointestinal symptoms, Polymerase
Chain Reaction (PCR) swab negative twice over at least 2 days, and PCR stool sample negative
as well. They used filter and wrapper methods for feature selection. For the filter methods they
adopted entropy, information gain, Gini index and Chi-Squared statistics. Finally, a greedy forward
selection algorithm was implemented to leave only the most relevant features. The final list of
features were: ALT, Myalgias, Hemoglobin, Gender, Temperature, Na+, K+, Lymphocyte count,
Creatinine, Age and White blood cell count. They compared various ML algorithms using a 10-
fold cross validation accuracy. The top accuracy achieved was 80% from a Support Vector Machine
(SVM) and a K-Nearest Neighbor (KNN) (k=5) algorithm. Authors contemplate the idea of trying
out DL methods next, once they have the necessary amount of sample data.

Authors in [Pourhomayoun and Shakibi, 2020] proposed a ML algorithm to accurately predict
the mortality risk of CoViD-19 patients. They used a dataset with more than 117,000 laboratory-
confirmed CoViD-19 patients from 76 countries with a average age of 56.6, from which 74.4%
recovered. Data imputation techniques were used for missing values and a balanced dataset was
created for training and testing the model. 112 features were available from symptoms and doctor’s
medical notes, and patient’s demographic and physiological data. After applying different filter
and wrapper methods, the feature space was reduced to 42 features. The tested ML algorithms
included: SVM, ANNs, RF, Decision Tree, Logistic Regression, and KNN. The evaluation technique
was 10-fold cross-validation and the performance metrics were accuracy, Area Under the Curve
of Receiver Operating Characteristics curve (AUC-ROC) and Confusion Matrix (CM). The best
performance accuracy achieved was 93.75% by the ANN algorithm. Hyper-parameters were tuned
using grid search and the final architecture had two hidden layers with 10 neurons in the first
layer and 3 neurons in the second layer. Sigmoid function was used as the hidden layer activation
function and stochastic gradient as the optimizer with constant learning rate and a regularization
rate of alpha = 0.01.

In [Khan et al., 2020] a Gaussian Process Regression (GPR) model with optimized hyper-
parameters is used to predict the mortality rate in five different countries (Turkey, Spain, Sweden,
France and Pakistan). Its results were compared against a polynomial regression model using the
Root Mean Square Error as a performance metric. The data was obtained from [Max Roser and
Hasell, 2020] using data from March 21, 2020 to May 10, 2020, which represent 51 days. 36 days
were used for training and 15 days for testing. It was shown that, even though the GPR model
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takes longer to train, mainly because of the hyper-parameter optimization, it outperformed the
Polynomial Regressor in every country.

In [Burdick et al., 2020] an Extreme Gradient Boosting (XGBoost) Classifier is used to model
the probability of requiring mechanical ventilation within the next 24 hours, using data from the
first 2 hours after admission. The model is compared against the Modified Early Warning Score
(MEWS) score, which is commonly used to identify likely patient deterioration and mortality, using
sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio
as performance metrics. Data for 197 patients with confirmed CoViD-19 was obtained from five
US health systems, being 51.3% male and the majority being between 30 and 80 years old (73%).
For each patient, 12 features were used as input to the model. These included: diastolic blood
pressure (DBP), systolic blood pressure (SBP), heart rate (HR), temperature, respiratory rate (RR),
Saturation of Peripheral Oxygen (SpO2), white blood cell (WBC), platelet count, lactate, blood
urea nitrogen (BUN), creatinine, and bilirubin. Missing values were left as empty holders, which
are valid inputs to the model because each node has a default direction that will be used in the event
that the feature in that node is missing. Results showed that the XGBoost Classifier outperformed
MEWS both in every metric, specifically sensitivity (0.90) and specificity (0.58), meaning that it is
capable of detecting 16% more patients at risk while simultaneously reducing false positive alerts.

[Kim et al., 2019] attempted to predict the occurrence of Major Adverse Cardiac Events
(MACE) in Acute Myocardial Infarction (AMI) patients, during the 1, 6 and 12 months follow-
up periods after hospital admission using a FFNN. The used database consists of 10,813 patients
from 52 Korean hospitals, using 51 variables for prediction. This method was compared against
other ML methods such as Gradient Boosted Machine (GBM), Generalized Linear Model (GLM)
and a commonly used regression method in the medical field: Global Registry of Acute Coronary
Event (GRACE). The FFNN greatly outperformed the commonly used GRACE model in every
evaluated metric (Accuracy=95.98%, Sensitivity=81.25%, Specificity=96.10% and AUC=0.97).

In [Bertsimas et al., 2020], a mortality risk calculator XGBoost model was developed using
patients from hospitals in Spain (HM Hospitals) and Italy (ASST Cremona). The study comprised
2,831 patients, 711 (25.1%) of whom died during hospitalization while the remaining ones were
discharged. Vitals signs and laboratory test values from only the first day upon admission were
used. Two models were trained for the mortality risk calculator: one with lab test results and
one without them. Missing values were imputed using KNN, features missing in more than 40%
were excluded and 95% confidence intervals were calculated using bootstrapping. Performance
evaluation using 40 random data partitions into training and test sets was made yielding an average
AUC of 93.8% using laboratory values and 90.5% without laboratory test values.

[Panwar et al., 2020b] developed a deep neural network transfer model based on a Convolu-
tional Neural Network (CNN) called nCOVnet that can diagnose a patient with CoViD-19 by ana-
lyzing their lungs’ X-ray images. The evaluation metrics used were: CM (Sensitivity, Specificity
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and Accuracy) and AUC-ROC. The data set consisted of 284 X-ray images from which around
142 were positive for CoViD-19. A 70%-30% training-testing split was made for proper model
evaluation. The nCOVnet uses the top layers of the VGG16 image classifier as a base model and
then adds 5 layers as part of the transfer learning methodology. The proposed model achieved
Sensitivity of 97.62%, Specificity of 78.57%, Accuracy of 88.10% and AUC-ROC of 0.88.

In [Panwar et al., 2020a], authors proposed a CNN transfer learning model to diagnose CoViD-
19 patients using X-ray and CT-Scan images. The model was evaluated using Precision, Recall,
F1-Score and accuracy, along with the corresponding CM on three data sets:

• [Cohen et al., 2020] with 285 patients and 526 images.

• [Soares et al., 2020] has 1,252 positive and 1230 negative CT-Scans for CoViD-19 patients
from a hospital in Sao Paulo, Brazil.

• [Kermany et al., 2018] 5,856 X-Rays images of Pneumonia and normal patients.

The architecture used for the transfer learning part was VGG19 which was trained on the Ima-
geNet database [Deng et al., 2009]. Because of the importance of explainable models in the med-
ical field, they used the Gradient Weighted Class Activation Mapping (GRAD-CAM) technique
[Selvaraju et al., 2017] for this purpose. The results obtained were: Precision = 0.95, Recall =

0.94, F1− Score = 0.95 and Accuracy = 95%.
[Yadaw et al., 2020] developed a mortality prediction model using a database (3,841 patients,

8.2% deceased) with patients treated at the Mount Sinai Health System in NY, USA. The features
were patient’s age, SpO2 and type of patient. The selected metrics was AUC of ROC (0.91) scores.
The best results were obtained with the XGBoost algorithm.

In [Zhao et al., 2020] a risk scores based on clinical characteristics at presentation to predict
ICU admission and mortality in CoViD-19 patients was developed. Clinical data including demo-
graphic information, chronic comorbidities, vital signs, symptoms, laboratory tests, and outcomes
were considered. The database has 641 hospitalized patients with a median age of 60 years old,
40.1% female, 62% no critical illness, 30% were admitted to the ICU, and 82 who expired. Five
significant variables predicting ICU admission were lactate dehydrogenase, procalcitonin, SpO2,
smoking history, and LIN. Seven significant variables predicting mortality were heart failure, pro-
calcitonin, lactate dehydrogenase, chronic obstructive pulmonary disease, SpO2, heart rate, and
age. The mortality group uniquely contained cardiopulmonary variables. The risk score model (a
multivariable regression model) yielded good accuracy with an AUC-ROC of 0.74 for predicting
ICU admission and 0.82 for mortality.

A predictive model of CoViD-19 disease progression is proposed by [Ji et al., 2020] using Mul-
tivariate Analysis (Cox proportional regression), and a database with 208 patients. The average age
was 44, 117 of 208 patients (56.2%) were male, 31 (14.9%) were older than 60 years, 45 (21.6%)
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had at least one underlying comorbidity, the average hospitalization time was 17.5 days, and in
40 (19.2%) patients, the clinical conditions deteriorated progressed during the observation period.
Comorbidity was defined as having at least one of the followings: hypertension, diabetes, cardio-
vascular disease,liver disease, asthma, chronic lung disease, HIV infections and malignancy for at
least 6 months. Analyses showed Comorbidity, older Age, Lower lymphocyte count, and higher
Lactate dehydrogenase (CALL) were independent high-risk factors for CoViD-19 progression. A
nomogram achieved good concordance (0.86) and a good AUC-ROC (0.91). Using CALL score
model, clinicians can improve the therapeutic effect and reduce the mortality with more accurate
and efficient use of medical resources.
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Table 2.1: Comparison between ML models to predict CoViD-19 patients mortality risk

References Model Input features Sample size and distribution Performance evaluation

[Jiang et al., 2020] SVM and KNN
11 input features (ALT, myalgias,

hemoglobin, gender, temperature, Na+, K+,
LIN, Cr, age and white blood cell count).

53 CoViD-19 patients from China.
The median age was 43 years, 62.2% men,
common symptoms included fever 88.7 %

and cough 60.4%.

Acc = 80%

[Pourhomayoun and Shakibi, 2020] ANN 42 input features
>117,000 patients from 76 countries with
an average age of 56.6 years and 74.4%

recovered.
Acc = 93.75%

[Khan et al., 2020] GPR 1 feature (Daily mortality rate)
51 days of mortality rate data from 5

different countries. 36 training observations
and 15 for testing.

RMSE = 13.06

[Burdick et al., 2020] XGBoost Classifier

12 features (Diastolic blood pressure,
systolic blood pressure, heart rate,

temperature, respiratory rate, SpO2, WBC,
platelet count, lactate, blood urea nitrogen,

Cr, and bilirubin).

197 patients from 5 US hospitals. 51.3%
male, 30-80 years old (73%).

Recall = 0.90,
TPR = 0.58

[Kim et al., 2019] ANN
51 features (21 numerical, 26 categorical

and 4 discrete data).

10,813 registries from Korea, aged between
20 and 100 years old with the 1-year

follow-up MACE after discharge.

Acc = 95.98,
Recall = 81.25,
TPR = 96.10,
AUC = 0.97

[Bertsimas et al., 2020] XGBoost Classifier
20 features (Demographic, comorbidities

and lab values).
2,831 patients from Spain and Italy (27.2%

deceased).
AUC = 93.8%

[Panwar et al., 2020b]
CNN and Deep Transfer

Learning
224x224 RGB X-ray images 284 images (142 positive for CoViD-19)

Recall = 97.62%,
TPR = 78.57%,
Acc = 88.10%,

AUC −ROC = 0.88

[Panwar et al., 2020a]
CNN and Deep Transfer

Learning
X-ray and CT-Scan images

Evaluated on three different datasets. (1)
285 patients and 526 images, (2) 1252

positive and 1,230 negative CT-Scans from
Brazil, and (3) 5,856 X-Rays images of

Pneumonia and normal patients

Precision = 0.95,
Recall = 0.94,

F1− Score = 0.95,
Acc = 95%

[Yadaw et al., 2020] XGBoost Classifier
3 features (Age, minimum oxygen
saturation and type of encounter)

3,841 patients (8.2% deceased and 55%
male) from USA.

AUC −ROC = 0.91
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Table 2.1: Comparison between ML models to predict CoViD-19 patients mortality risk (Continued)

References Model Input features Sample size and distribution Performance evaluation

[Zhao et al., 2020]
Multivariate Regression

model

7 features (heart failure, procalcitonin,
lactate dehydrogenase, chronic obstructive
pulmonary disease, SpO2, heart rate, and

age)

641 patients (median age of 60 years old,
40.1% female and 82 patients died).

AUC −ROC = 0.82

[Ji et al., 2020]
Multivariate Analysis

(Cox proportional
regression)

4 features (Comorbidity, age, lymphocyte
count and Lactate dehydrogenase).

208 patients (Average age of 44, 56.2%
male patients, 14.9% older than 60 years
old, 21.6% had at least one underlying

comorbidity and the average hospitalization
time was 17.5 days)

AUC = 0.91
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2.3 Deep Learning

DL is a ML technique that attempts to model high level representations behind data by using a
multi-layer non-linear hierarchical architecture approach [Yan et al., 2019]. The basic idea behind
DL is to stack many shallow ML algorithms to obtain more abstract representation of features as the
network gets deeper. DL has recently gained popularity particularly in the field of computer vision,
but is rapidly moving towards different areas, such as diagnosis and prognosis in the medical field.
The quintessential DL algorithm is the ANN.

ANNs are a type of ML algorithm roughly based on the biological neurons of the brain and the
way that they are interconnected with one another to learn complex abstract representations. Each
neuron is typically a simple linear regression model that applies a non-linear activation function to
its output a = g(

∑n
i=0 xiwi + b). They have a bias b and each connection has a determined weight

wi which represents the activation of that specific connection to another neuron xi, similar to how
biological neurons work through electrical impulses. ANNs consist of input layers, hidden layers
and output layers, where each layer has a collection of neurons that are connected to other layers
in a specific way, defined by the type of ANN architecture that is being used.

2.3.1 Feed-Forward Neural Networks (FFNN)

Also known as Multi-Layer Perceptron (MLP), these networks consist of fully connected layers
where every neuron in layer l is connected to every neuron in layer l− 1 and l+ 1. They are called
Feed-Forward because the flow of information is unidirectional from inputs to outputs following
eqn. 2.1.

Al = gl(Wl ∗ AT
l−1 + bl) (2.1)

where Wl ∈ Rn×m is the weight matrix of the lth layer with n neurons and m inputs, bl ∈ Rn is
the bias vector of layer l, gl(x) is the non-linear activation function of layer l and Al ∈ Rn is the
output activation vector of n neurons in layer l. Some of the most common activation functions
include: sigmoid, tanh and ReLU. Figure 2.2 shows the graphical representation of a FFNN with a
3 neuron input layer, only 1 hidden layer using 4 neurons and a 2 dimensional output layer.

2.3.2 Binary cross-entropy loss function

ANNs use loss functions to quantify a deviance between a model’s prediction and the expected
(true) output. It is used by the Gradient Descent algorithm to know how to modify the model’s
parameters in order to minimize it. The binary cross-entropy loss function is used for binary
classification problems where y ∈ {0, 1} and ŷ ∈ [0, 1], eqn. 2.2.
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Figure 2.2: Graphical representation of a FFNN architecture

L(ŷ, y) = y log ŷ + (1− y) log(1− ŷ) (2.2)

where y is the true output of the system, ŷ is the model’s predicted output, and L(ŷ, y) is the
selected loss function between the true and predicted outputs.

2.3.3 Adam Optimizer

ANNs ”learn” by minimizing a given loss function L(ŷ, y), by modifying every parameter of the
network using true historical data from the system (Supervised learning). This learning process
is done using a technique called Back Propagation which consists on using Stochastic Gradient
Descent (SGD) (eqn. 2.3) to adjust every θ parameter to minimize the loss function. It is called
Back Propagation because the flow of information now goes from outputs to inputs.

θi = θi − α
(
∂L(ŷ, y)

∂θi

)
(2.3)

where θi represents the ith parameter from the complete parameter space Θ, i.e. θi ∈ Θ, and
α is the learning rate of the ANN. SGD uses a single training sample to optimize the system’s
parameters. This could be beneficial for very large data sets, but inefficient for smaller ones. Most
of the times we may converge to the optima solution faster by dividing our samples in batches and
training using each batch of samples at a time. This process is called Mini-batch Gradient Descent
and is currently the most commonly used implementation of Gradient Descent [Li et al., 2014] and
the one we will use in thie research project.

The Adaptive Momentum Estimation (Adam) optimizer is a variant to the regular SGD opti-
mizer that computes individual adaptive learning rates for different parameters from estimates of
first and second moments of the gradients [Kingma and Ba, 2014].
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θ = θ − α

(
V corrected
dθ√

Scorrecteddθ + ε

)
(2.4)

V corrected
dθ =

Vdθ
(1− β1)t

and Scorrecteddθ =
Sdθ

(1− β2)t
(2.5)

Vdθ = β1Vdθ + (1− β1)dθ and Sdθ = β2Sdθ + (1− β2)dθ2 (2.6)

where Vdθ and Sdθ are moving averages at iteration t for the first and second momentum respec-
tively, β1 and β2 are hyper-parameters (typically 0.9 and 0.999 respectively), dθ and dθ2 are the
gradient and element-wise squared gradient for parameter θ respectively, V corrected

dθ and Scorrecteddθ

are the bias corrected moving averages, and ε is a hyper-parameter to ensure not dividing by 0

(typically around 10−8).

2.3.4 Performance metrics

The CM is widely used to report results in classification problems, because it is possible to observe
the relations between the classifier’s predicted outputs and the system’s true outputs. Table 2.2
shows an example of a CM for a binary classification problem. TN and TP are the elements cor-
rectly classified, and therefore the elements outside the diagonal represent the ones miss-classified.
A asymmetric CM is related to a biased classifier.

Table 2.2: CM for a binary classification problem

Prediction

Negative Positive

True Label
Negative True Negative (TN)

False Positive (FP)
Type I error

Positive
False Negative (FN)

Type II error
True Positive (TP)

Accuracy is a metric used to predict the correctness of a ML model, eqn (2.7). Precision means
the percentage of the results which are relevant, eqn (2.8). Recall refers to the percentage of total
relevant results correctly classified, eqn (2.9). The F-measure was developed as an evaluation
metric that would give a harmonic mean between precision and recall. The β parameter from eqn.
(2.10) gives more weight to recall as it increases.



16 CHAPTER 2.

Accuracy =
TP + TN

Total
=

TP + TN

TP + FP + TN + FN
(2.7)

Precision =
TP

Actual Results
=

TP

TP + FP
(2.8)

Recall =
TP

Predicted Results
=

TP

TP + FN
(2.9)

Fβ = (1 + β2)
Precision ∗Recall

(β2 ∗ Precision) + Recall
(2.10)

The AUC-ROC score is used to evaluate the real classification performance of a model. This
curve is obtained by measuring the True Positive Rate (TPR) and False Positive Rate (FPR) using
different decision thresholds. The closer the AUC-ROC score is to 1, the better is the prediction
performance of the evaluated model.

Figure 2.3: Area Under the Curve graphic

2.3.5 Learning algorithm

An overview of the DL algorithm can be visualized in Fig. 2.4. We start by feeding the ANN a
batch of samples and forward propagating them trough the network (eqn. 2.1). Once we have
the network’s predicted output for the selected batch of samples, we compare its result with the
system’s true output using the defined Loss function (eqn. 2.2). Using the Loss function value we
can then proceed to adjust the network’s parameters using the defined Optimizer function (eqn.
2.4) through Back Propagation. We then repeat this process for every batch of samples to train on
every available training sample.

The number of times to perform the learning algorithm is defined by the epochs hyper-parameter.
Final model’s performance is calculated using the defined performance metrics.



2.3. DEEP LEARNING 17

Figure 2.4: DL learning flow chart

This research projects proposes a DL model for mortality risk prediction for CoViD-19 patients.
The trade-off between feature and sample space is analyzed, along with the effects of using over-
sampling in the unbalanced data set.





Chapter 3

Experimental System

3.1 Database description

Because there was no reliable database for CoViD-19 patients in Mexico, data from a different
region was used to validate the proposed methodology. The database was provided by HM Hospi-
tales from Madrid, Spain, under the Covid Data Save Lives project, [Hospitales, 2020]. It contains
the anonymized records of 2,307 CoViD-19 patients since the beginning of the epidemic to April
25, 2020. The database is divided into six different sections, each containing a different type of
data for each patient. The common key among every file is the patient id feature, which helps to
identify patients across every section of the database. A summary of the information contained in
the database is shown in Table 3.1.

Table 3.1: Complete raw database’s sections description

Section Description

1
Demographic data: Patient ID, Age, Gender, Diagnosis
(Positive/Negative/Pending), Admission/Discharge date and motive,
SpO2, Temperature, Heart rate, Blood Pressure, etc.

2 Prescribed medication: daily dose and duration

3
Evolution of vitals signs: SpO2, Heart rate, Temperature, Blood
pressure and Blood glucose values

4 Laboratory tests with date, results and units

5
Comorbidities, these are coded based in [World Health Organization,
2019]

This raw database poses five main technical challenges:

1. Incomplete records. A Not a Number (NaN) value is placed whenever there is a missing
value for a feature.

19
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2. Features with different engineering scales.

3. Combination of categorical and numerical features.

4. Irrelevant and redundant features.

5. Highly unbalanced classes.

3.2 Data cleansing

From all of the 2,307 available records, patients were filtered according to the following criteria:
Leave only patients who:

• have a CoViD-19 positive diagnosis.

• have been discharged or confirmed deceased.

• have an age different than 0.

• have a registered value of SpO2.

After applying all of these filters, only 1,503 patients were kept. A RF algorithm was used to
select the features with the highest predictive power to decrease the feature space, by analyzing
the importance assigned to each feature by the algorithm. For this purpose, the SHapley Additive
exPlanations (SHAP) value [Lundberg and Lee, 2017] was used to estimate the impact/weight of
each input variable in prediction. The SHAP value graph is a graphical visualization of how much
a feature contributes to a model’s prediction. A large positive SHAP value indicates the feature
is very relevant to detect positive outputs, while a large negative value is associated to a negative
output. The color bar shows the feature value associated to the given SHAP value, while the
thickness of a feature’s line, indicates the amount of samples present in the data set for the given
feature value. Only the 4 most important input features are shown in Fig. 3.1. It corroborates
the assumptions that the older people have higher mortality risk than the younger people, and the
lower SpO2, the higher the risk. The selected demographic features were: Age, Gender, Patient
ID and Discharge motive (Label). The 5 most relevant comorbidities features were: kidney failure
(N17), hypertension (I10), diabetes (E11), heart disease (I25) and respiratory distress (J80).

Most relevant lab tests were selected by literature review. Selected biomarkers include: Pro-
thrombin activity, Creatinine, Dimer-D, Ferritin, Immunoglobulin G, Immunoglobulin M, Inter-
leukin 6, Lactate, LDH, Leukocytes (Count and %), Lymphocytes (Count and %), Neutrophils
(Count and %), C-reactive protein, Platelets, Prothrombin time, and Troponin. Because sampling
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Figure 3.1: Relative importance of features according to SHAP value.

frequency for lab tests is inconsistent, simple time series statistical representation, such as maxi-
mum and minimum values, were chosen to represent these features. Therefore, we add two features
for every biomarker, one for the maximum and another one for the minimum values.

All available features for study are presented in Table 3.2. Features 1, and 4 through 9 are
categorical data ∈ [True, False], while every other feature is numerical data ∈ R.

3.3 Data distribution

Table 3.3 shows the filtered database distribution with 1,503 CoViD-19 patients. Fig. 3.2 shows
some graphical representations for the main features and Appendix C shows the distribution for
every biomarker feature.

From Fig. 3.2 we can see that the patient’s age distribution has a mean of about 70 years old
following a normal distribution. Oxygen saturation values have a mean of 92.28, with a couple
of lower outliers, which suggest a more severe disease state according to literature. A clear un-
balance between the classes is clearly observed, with only 16.5% of deceased patients. As for
comorbidities, there are 919 patients with none of the selected comorbidities, 398 patients with
only 1 comorbidity, 148 patients with 2 of them, 35 patients with 3, 3 patients with 4 comorbidi-
ties, and no patients with every comorbidity. The most common comorbidity among patients is
hypertension.
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Table 3.2: (I)ndex, acronym and name of the features (clinical data)

I Acronym Feature I Acronym Feature

1 Gender 25 IGMm IgM (Immunoglobulin M) min

2 Age 26 IGGm IgG (Immunoglobulin G) min

3 SpO2 Oxigen saturation 27 TNIm Troponin min

4 Kidney Failure 28 APm Prothrombin activity min

5 Hypertension 29 TPm Prothrombin time min

6 Diabetes 30 LIN%M Lymphocytes % Max

7 Heart Disease 31 LINM Lymphocytes Max

8 Respiratory distress 32 LEUCM Leukocytes Max

9 Discharge motive 33 NEUM Neutrophils Max

10 Patient ID 34 NEU%M Neutrophils % Max

11 LIN%m Lymphocyte % min 35 PLAQM Platelet count Max

12 LINm Lymphocytes min 36 PCRM C-reactive protein Max

13 LEUCm Leukocytes min 37 DDM Dimer D Max

14 NEUm Neutrophils min 38 CrM Creatinine Max

15 NEU%m Neutrophils % min 39 LDHM LDH Max

16 PLAQm Platelet count min 40 IL6M Interleukin 6 Max

17 PCRm C-reactive protein min 41 LEULCRM Leukocytes count Max

18 DDm D Dimer min 42 LACM Lactate Max

19 Crm Creatinine min 43 FERM Ferritin Max

20 LDHm LDH min 44 IGMM IgM (Immunoglobulin M) Max

21 IL6m Interleukin 6 min 45 IGGM IgG (Immunoglobulin G) Max

22 LEULCRm Leukocytes count min 46 TNIM Troponin Max

23 LACm Lactate min 47 APM Prothrombin activity Max

24 FERm Ferritin min 48 TPM Prothrombin time Max
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Table 3.3: Filtered database distribution according to key features. Biomarkers data shows
average values for maximum and minimum features

Feature Detail Number of patients (%)

Gender Male 927 (61.7%)

Comorbidities

Kidney failure 81 (5.4%)

Hypertension 446 (29.7%)

Diabetes 194 (12.9%)

Heart disease 69 (4.6%)

Respiratory distress 21 (1.4%)

Discharge motive Deceased 248 (16.5%)

Mean value min - max

Biomarkers

LEUC (×103/µL) 6.03 - 9.85

LIN (×103/µL) 1.00 - 1.65

LIN% 13.90 - 25.03

NEU (×103/µL) 4.10 - 7.84

NEU% 63.23 - 78.66

PLAQ (×103/µL) 206.42 - 320.81

Cr (mg/dL) 0.84 - 1.09

PCR (mg/L) 38.84 - 130.69

LDH (U/L) 482.91 - 726.57

DD (ng/mL) 1194.71 - 4509.60

IL6 (pg/mL) 192.74 - 239.50

LAC (mmol/L) 1.73 - 2.29

FER (ng/mL) 1150.13 - 1526.91

TNI (ng/L) 27.01 - 36.47

AP (%) 70.58 - 80.93

TP (s) 13.70 - 16.55

3.4 Preprocessing

To increase the training data availability, a preprocessing algorithm [Escobar et al., 2020] is ap-
plied, it is a Greedy-like algorithm that at each iteration maximizes the number of samples by
selecting the column (feature) with more rows (samples) available. Since the original data set con-
tains a lot of missing cells, the sample size reduces as the number of features increases. Fig. 3.3
shows the amount of available samples per feature where every vertical line shows the partition for
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Figure 3.2: Distribution of age, SPO2, deceases and comorbidities distributions of
patients in filtered database

every sub data set. By examining the plot, eight sub-data sets are heuristically created. Table 3.4
shows the number of features and samples in every sub data set. After the 8th data set most of the
samples are lost, so we will only analyze until this data set.

Figure 3.3: Sub-data sets divisions according to available sample number
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Table 3.4: Number of features and samples in every defined sub data set

Data sets

1 2 3 4 5 6 7 8 9 10 11 12 13

Num. of features 10 22 24 26 28 30 34 36 38 40 42 46 48

Num. of samples 1503 1449 1434 1428 1419 1341 1291 683 496 379 90 47 2

The eight sub-data sets pose a trade off between the number of features and the number of sam-
ples, since the sub-set with the most discriminatory information cannot be determined in advanced,
the learning algorithm is applied to all of them.

Since normalizing the data generally speeds up learning and leads to faster convergence [Ioffe
and Szegedy, 2015], the remaining numeric features are re-scaled using the Min-Max normalization
method (eqn. 3.1), [Mohamad and Usman, 2013].

Xnorm = (x− xmin)/(xmax − xmin) (3.1)





Chapter 4

Proposal

Section 4.1 reviews the Key Performance Indicator (KPI) used to evaluate the model. Then, section
4.2 shows the training and testing strategy and the decision threshold tuning strategy is explained
in section 4.3. Section 4.4 and 4.5 introduce the over-sampling and data imputation approaches
respectively. Finally, the proposed DL model is described in section 4.6

4.1 KPI

The MPCD score is a probabilistic-based measure of classification performance aimed at analyzing
highly unbalanced data structures. It is sensitive to the recognition rate by class; therefore, in a
high conformance production rate, its score mainly describes the ability of a model to correctly
classify the minority class. The MPCD score is calculated following eqn (4.1). The α and β errors
can be calculated following eqn (4.2) from the classifier’s CM.

MPCD = (1− α)(1− β) = (TPR)(TNR) (4.1)

where MPCD ∈ [0, 1]

α =
FP

FP + TN
, β =

FN

FN + TP
(4.2)

Table 4.1 shows the behaviour of the MPCD score and accuracy given different performance
scenarios using the database described in section 3 where we have 248 positive (deceased) samples
and 1255 negative (recovered) samples.

Table 4.1 shows that the MPCD score gives more weight to the TP metric, as it corresponds
to the minority class, and how the MPCD score is better to identify the FN predictions over some
ordinary metric like the Accuracy.

27
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Table 4.1: Examples for MPCD scores

Scenario TN TP FN FP α-error β-error Accuracy MPCD

1 1255 248 0 0 0 0 1 1

2 1254 248 0 1 7.96× 10−4 0 0.999 0.999

3 1255 247 1 0 0 4.03× 10−3 0.999 0.995

4 1155 248 0 100 0.079 0 0.933 0.92

5 1255 148 100 0 0 0.40 0.933 0.59

6 1255 0 248 0 0 1 0.835 0

4.2 Training and Testing split

To properly assess the performance of a ML model, we must compare its outputs to the true out-
puts generated by the real system. Ideally, we would generate an extra set of samples for testing
purposes. Alternatively, we can create these data sets from our original data set by dividing it in
training and testing samples. Testing samples are typically a small fraction of the data set, just
big enough to have enough population variation in them. For every data set we will use the K-
fold CV algorithm. In this algorithm, the data set is first randomly shuffled to avoid bias and then
divided in K equally sized parts (folds). The proposed model is trained K times, where at each
iteration a different fold of the data set is used as the testing set while every other fold is used for
training. The final unbiased result is the average value of each evaluation metric across every fold.
The proportion of the label classes distribution should be kept across every fold. This is done to
avoid a fold of the model training with only positive or negative class samples, therefore getting a
biased classifier. For this purpose we use the StratifiedKFold scikit-learn function, which keeps the
proportion of the label feature across every fold. For our model we will use 90% of the samples
for training and 10% for testing (i.e. K = 10). Fig. 4.1 shows a graphical representation of the
10-Fold CV algorithm.

4.3 Decision threshold

The output of the trained model is the probability of a given sample belonging to one class or
another. Intuitively, we might assign an equally spaced decision threshold for every class, e.g. 0.5

for a binary classification problem. However, it is not recommended to just take the largest output
value to assign a class, particularly with highly unbalanced data sets. Depending on the perfor-
mance metric we would like to optimize, we might desire a higher or lower decision threshold.
For example, for our mortality risk calculator, the FNR should be prioritized over the FPR. In this
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Figure 4.1: 10-Fold CV sets distribution

case, we might desire a lower decision threshold, to avoid miss classifying a patient with a high
mortality risk. If we use 0.2 as a decision threshold to decide whether a patient has a high mortality
risk or not, we would classify them as a patient with high risk even if we are only 20% sure of it.
This would minimize the Recall and therefore the FNR scores.

This research project will use the Optimal Classifying Threshold Method (OCTM) algorithm [Es-
cobar and Morales-Menendez, 2017] to obtain the decision threshold value which optimizes the
MPCD score (see Fig. 4.2).

Figure 4.2: Pseudo-code of the OCTM algorithm
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4.4 SMOTE technique

The Synthetic Minority Over-sampling TEchnique (SMOTE) is an over-sampling approach in which
the minority class is over-sampled by creating “synthetic” examples rather than by over-sampling
with replacement. It generates synthetic examples in a less application specific manner, by operat-
ing in “feature space” rather than “data space”. The minority class is over-sampled by taking each
minority class sample and introducing synthetic examples along the line segments joining any/all
of the k minority class nearest neighbors [Chawla et al., 2002]. It is not advisable to sample syn-
thetic samples until both classes are completely balanced, because completely balanced classes
are, in most cases, not necessary to proper model a system’s behaviour. The SMOTE algorithm is
implemented using the imbalanced-learn (version 0.7.0) [Lemaı̂tre et al., 2017] from Python. For
this research project, a final proportion of sm = 0.80 will be set to the minority class.

sm =
Majority class

Minority class
(4.3)

4.5 Data imputation

The impact of using imputed data on the prediction model is evaluated for the cases where there
are time or budget constraints, and obtaining complex biomarker data is impossible or unfeasible.
To properly evaluate the proposed imputation method, we will only imputate available biomarker
features to be able to calculate an error between imputated and real values. The methodology
described in section 4.2 will be followed. Data will be split in train and test sets using a 10-Fold
approach. Biomarker features will be imputed on the test set using the mean value of the K most
similar patients from the real biomarker data of the train set using the KNN algorithm. The value of
K is determined by the amount of available data. The benefit of using the imputed features will be
evaluated by comparing the model’s performance against the same test set with the real biomarker
data. The error of the estimated imputed data is calculated using the Root Squared Error (RSE)
(eqn. 4.4).

RSE =
√

(xi − x̂i)2 (4.4)

where x is the real feature value and x̂ is the imputed feature value.
Finally, the benefit of adding imputed biomarkers data will be measured by comparing the

performance of the imputed test set against the performance of a model which only uses basic
patient information, without any imputation. As we impute more features, the model’s performance
will have more uncertainty and therefore a higher error. This motivates us to impute only the
necessary amount of features to see an improvement on our model without adding variance to the
output. The SHAP values of the data set (see table 3.4) with the best overall performance will be
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used for feature selection. This research project will only impute 2 features to keep a low variance.
Fig. 4.3 shows the SHAP values for the features included in the 4th data set. In this case we would
choose to impute the 2 most relevant features for prediction: NEU%m and LIN%M . Since this
feature selection could be biased because of the size of available features in our data base, we will
also run a test using features recommended in the literature for the imputation process: DDm and
DDM

Figure 4.3: SHAP values for Data set 8

4.6 Deep Learning model

The DL model is a FFNN using binary cross-entropy as the loss function and the Adam algorithm
as an optimizer to adjust the network’s weights. Fig. 4.4 shows a graphical representation of the
FFNN model. The model has 3 hidden layers with 17, 10 and 5 neurons respectively. The ”?” sign
stands for the batch size the mini-batch optimization technique. Since we are dealing with a binary
classification problem we can use the Sigmoid function as the output activation, which will set our
output to be ∈ [0, 1]. By tuning the decision threshold we can then decide to assign either one of
the two classes to th prediction.
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Figure 4.4: Proposed FFNN model plot

Hyper-parameters are summarized in table 4.2. This model was developed using the Keras
framework (version 2.2.4) running on Tensorflow 2.0.0 in python 3.6
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Table 4.2: Hyper-parameters used for the proposed FFNN model

Parameter Value

Hidden layers 3

Neuron number [17, 10, 5]

Hidden activation functions Sigmoid

Output activation Sigmoid

Batch size 32

Epochs 200

Learning rate 0.001

β1 0.9

β2 0.999

ε 1e-07
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Results

This chapter summarizes the results found for the proposed DL model on the data sets described
in section 3.4. Section 5.1 summarizes the results for data sets with and without the SMOTE
approach. Both approaches’ results are compared against a RF model in section 5.2. Then, section
5.3 presents the results for the data imputation technique described in section ??. Finally, section
5.4 presents a discussion of the obtained results.

5.1 DL results summary

Fig. 5.1 shows a boxplot graph of the MPCD score for the proposed DL model with and without
the SMOTE approach on every sub data set described in section 3.4.

Results for every fold in every sub data set are presented in Appendix D following the per-
formance indicators proposed in section 4.1, along with a boxplot graph for every KPI across the
10-folds. After the 4th data set the MPCD score does not improve significantly. Therefore, we
use this data set as the optimal one and as a comparison point. Fig. 5.2 shows the MPCD boxplot
graph for every fold of the 4th data set for both approaches.

5.2 Performance comparison

For comparison purposes, we will train a RF algorithm on the same data sets described in section
3.4. Section 5.2.1 briefly describes the RF algorithm.

5.2.1 The RF algorithm

The RF algorithm uses an ensemble of Decision Trees to make a prediction. A Decision Tree fits
a function (typically piece-wise constant, i.e. mean) over domain X by recursive partitioning in a
greedy way, see Fig. 5.3.

35



36 CHAPTER 5. RESULTS

Figure 5.1: Results of the DL model for every data set (Left - Normal, Right - SMOTE)

Figure 5.2: Performance metrics for sub-data set 4 (Left - Normal, Right - SMOTE)

Individual Decision Trees suffer from high variance, although when very bushy (very deep),
they have very low bias. A RF is a classifier consisting of a collection of tree-structured shallow
classifiers [h(x,Θk), k = 1, ...] where Θk are independent identically distributed random vectors
and each tree casts a unit vote for the most popular class at input x [Breiman, 2001]. RF use a col-
lection of shallow tree classifiers together with bootstrap and random variable subspace sampling
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Figure 5.3: Recursive partitioning of variable X1 in a Decision Tree

to reduce the high variance mentioned above while maintaining their low bias attribute. The final
prediction of the RF is defined by the majority between every decision tree.

Although this is a binary classification problem, we use a RF Regressor in order to be able to
tune the decision threshold for classification as described in section 4.3. This model was developed
using the sckit-learn (version 0.23.2) library in python (3.6). Table 5.1 shows the RF model’s
hyper-parameters.

Table 5.1: Hyper-parameters used for the RF Regressor model

Parameter Value

Number of estimators 500

Maximum depth 2

Maximum Features 5

5.2.2 DL vs RF results

A comparison of the results from the DL and RF models on every data set with and without the
SMOTE approach are presented in Fig. 5.4 and Fig. 5.5 respectively.

KPI tables and boxplot graphs for every fold on every data set for the proposed RF model can
be found in Appendix D.2.

5.3 Data imputation results

Results of imputating the NEU%m and LIN%M biomarkers are shown in Fig. 5.6. The boxplot
graph of every performance metric is compared with and without imputation. We can see an in-
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Figure 5.4: Comparison of results for the DL (left) and RF (right) models

Figure 5.5: Comparison of results for the DL (left) and RF (right) models using SMOTE

crease in the variance of each evaluation metric, which is expected because of the error introduced
by the imputation process. The mean performance value of the model was overall the same, which
suggests that the imputation process did not introduce false information to the process. Results
for the DDm and DDM imputation process are shown in Fig. 5.7. In this case we can see a simi-
lar variance when comparing the imputated and real value models, suggesting a good imputation
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performance.

Figure 5.6: Performance metrics for the imputation of the NEU%m and LIN%M biomarkers (Left
- Imputated, Right - Real values)

Figure 5.7: Performance metrics for the imputation of the DDm and DDM biomarkers (Left -
Imputated, Right - Real values)

Fig. 5.8 and Fig, 5.9 show the boxplot graph of RSE values for the first of the 10 folds when
imputating the NEU%m and LIN%M , and DDm and DDM , respectively. The red dots highlighted
in the graph represent the patients who had a different classification between real and imputated
data.
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Figure 5.8: RSE values for imputated NEU%m and LIN%M features

Figure 5.9: RSE values for imputated DDm and DDM features

5.4 Discussion

From Fig. 5.1 we can observe a clear performance upgrade as we advance from data set to data set.
This is expected as the more features are used, the more information is available to better model the
system’s behaviour. However, an increase in the variability of the results is also observed, because
more samples are dropped as more features are added, as shown in Table 3.4. Comparing both
approaches on every data set shows that the SMOTE approach yields no significant improvement
for the model. The proposed DL model is capable of making an accurate prediction even on the
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unbalanced data set. Further, analyzing the proposed DL outcomes distributions, we can see that it
is very close to the actual output distribution of the dataset. Fig. 5.10 shows the original database
class distribution on the lehft side, while the right side shows the DL predicted distribution. This
indicates that the proposed model successfully models the data set underlying distribution.

Figure 5.10: Age and SpO2 original (left) and prediction’s (right) distributions

Comparing both results for data set 4 (see Fig. 5.2), the SMOTE approach has a Recall distri-
bution closer to 1, but more variability for the Precision metric. This is observed on the outlier
of the MPCD value near to 0.95 which could suggest a possible improvement on the model’s
performance when introducing more training data. The same can be said about the final data sets,
where the variability of the MPCD score is bigger, but outliers with very high MPCD values are
also observed. Finally, the threshold value set by the SMOTE approach gets closer to 0.50 because
the proportion between classes are closer to one another, as seen in section 4.3.

By comparing the results we can see that the DL model outperforms the RF model in practically
every data set on both approaches. The RF model greatly benefits from the SMOTE approach,
while the DL model appears to work better even when having unbalanced classes.

The Recall metric is further analyzed to quantify how good our predictions are. As we know
from section 2.3.4, the Recall metric shows the proportion of the positive samples correctly clas-
sified. Fig. 5.11 shows the distribution of the Recall metric on every data set without any over-
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sampling or imputation methods. For data set we have a mean Recall value of 0.92, which means
that we have a 92% confidence of correctly classifying any positive prediction. Additionally, we
can see folds where the Recall value reaches 1.00, indicating that no positive samples were miss-
classified.

Figure 5.11: Recall score across every data set for the proposed DL model

Both imputation results suggest that model’s performance can indeed benefit from the impu-
tation of said biomarkers. The Recall metric got an overall mean value of around 0.90 which
outperforms the 0.87 of the model without any imputations, while also reaching Recall values of
about 0.95. Fig. 5.9 shows that the overall RSE when imputating the DDm and DDM features is
smaller, with very low variance and just a couple of outliers. Imputating these features should yield
a very similar result to the real feature value. Fig. 5.8 has more variance so the imputated value
will have more error. Also, we can observe that most of the patients classified differently when
using imputation are above the Q3 for the observed error distribution. This can suggest a lack of
information in the current database to properly imputate these features.
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Conclusions

There is still much we do not understand about the CoViD-19 disease. Its high reproduction rate
demands hospitals to predict patient’s evolution upon admission to efficiently manage hospitals
resources. Therefore, a mortality risk calculator must not only accurately classify patients with a
high mortality risk, but also do it using only the necessary features.

A mortality risk calculator for CoViD-19 patients using a DL model is proposed. The trade-
off between performance and amount of input features is analyzed. This can enable hospitals to
make early predictions even when only basic features are available, while evaluating the benefits
of later on obtaining more complex biomarker features. The proposed DL model using only most
basic features had an average MPCD score of 0.70, while the best MPCD score was of 0.85

obtained using 24 input features, 10 basic and 7 biomarker data (both the maximum and minimum
values). The proposed model outperformed a RF model when evaluating each of the proposed
data sets. Both over-sampling and data imputation approaches were analyzed. A data imputation
method using the KNN algorithm was proposed and evaluated to improve MPCD. The proposed
imputation strategy improved the MPCD (0.75) and Recall (0.90) scores while only imputating 2
features.

The analysis presented in this research project can be applied to other research areas, e.g.
Finance or manufacture. In the defect detection or prediction problem in the manufacturing area,
where the positive (defect) to negative (non.defective) ratio is also very unbalanced, the prediction
problem can be analyzed in a similar fashion.

6.1 Contributions

The main contribution of this research project is an analysis of the most important features to use in
a DL model to predict mortality risk for CoViD-19 patients and the trade-off between performance,
and feature and sample space. The results are compared against a RF model to assess its benefits
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when attempting to reduce the FNR value. Further, the benefits of using over-sampling and data
imputation techniques is analyzed. An imputation method using the KNN algorithm is proposed
and evaluated. While the SMOTE over-sampling technique appears to have no real benefit for the
model, the proposed imputation method proves to improve the performance of the baseline model.

6.2 Publications

This research project supported the publication of a research paper that will appear in the Inter-
national Journal on Interactive Design and Manufacturing (IJIDeM) 2020 as ”Data-Driven Risk
Prediction Model to Help CoViD19 Patients: a Challenge-based Learning”

6.3 Future work

• Test models using data from Mexican hospitals.

• Add other type of statistical representation for biomarkers time series data, by standardizing
sampling frequency of both vital signs and lab test results.

• Test usage of a time series dedicated algorithm, i.e. Recurrent Neural Networks, ARMA
models, etc. to predict patient’s evolution trough time.

• Evaluate data imputation efficiency for every biomarker feature in a greedy way.
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Appendix A

Acronyms Definitions

Table A.1: Acronyms definitions

Acronym Description Acronym Description

Adam
Adaptive Momentum

Estimation
FNR False Negative Rate

AI Artificial Intelligence FP False Positive

AMI
Acute Myocardial

Infarction
FPR False Positive Rate

ANN Artificial Neural Network GBM Gradient Boosted Machine

ARDS
Acute Respiratory Distress

Syndrome
GDP Gross Domestic Product

AUC Area Under the Curve GLM Generalized Linear Model

AWS Amazon Web Services GPR
Gaussian Process

Regression

CBM
Condition Based

Maintenance
GRACE

Global Registry of Acute
Coronary Event

CM Confusion Matrix GRAD-CAM
Gradient Weighted Class

Activation Mapping

CNN
Convolutional Neural

Network
GRU Gated Recurrent Unit

CoViD-19 Coronavirus Disease 2019 I4.0 Industry 4.0

CV Cross-validation ICU Intensive Care Unit

DL Deep Learning KNN K-Nearest Neighbor

DoE Design of Experiments KPI Key Performance Indicator

FFNN
Feed-Forward Neural

Network
LSTM Long-Short Term Memory
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Table A.1: Acronyms definitions (Continued)

Acronym Description Acronym Description

FN False Negative RUL Remaining Useful Life

MACE
Major Adverse Cardiac

Events
SARS-CoV-2

Severe Acute Respiratory
Syndrome Coronavirus 2

MEWS
Modified Early Warning

Score
SGD Stochastic Gradient Descent

ML Machine Learning SHAP
SHapley Additive

exPlanations

MLP Multi-Layer Perceptron SM Smart Manufacturing

MPCD
Maximum Probability of

Correct Decision
SMOTE

Synthetic Minority
Over-sampling TEchnique

NaN Not a Number SpO2
Saturation of Peripheral

Oxygen

OCTM
Optimal Classification

Threshold Method
SVM Support Vector Machine

PCR Polymerase Chain Reaction TN True Negative

RF Random Forest TP True Positive

RMSE Root Mean Squared Error TPR True Positive Rate

RNN Recurrent Neural Network XGBoost Extreme Gradient Boosting

ROC
Receiver Operating

Characteristics



Appendix B

Variables Descriptions

Table B.1: Variables description

Variable Description

sm SMOTE over-sampled proportion

gl Activation function of lth layer

y True output

ŷ Predicted output

Al Activated outputs vector for the lth layer

bl Bias vector for the lth layer

FN False Negatives

FP False Positives

L(ŷ, y) Loss function

TN True Negatives

TP True Positives

Sdθ Moving average for the second moment gradient

Scorrecteddθ Bias corrected moving average for the second moment gradient

Vdθ Moving average for the first moment gradient

V correcteddθ Bias corrected moving average for the first moment gradient

Wl Weights matrix for the lth layer

dθ First moment gradient

dθ2 Second moment gradient

θi ith parameters

α Learning rate

β Level of importance of recall over precision
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54 APPENDIX B. VARIABLES DESCRIPTIONS

Table B.1: Variables description (Continued)

Variable Description

β1 Exponential decay rate for the first moment estimates

β2 Exponential decay rate for the second moment estimates

ε Small number to prevent any division by zero



Appendix C

Additional features graphs

The following figures show the distribution of data for every biomarker feature as shown in Table 3.3. The x-axis
shows the biomarkers feature values grouped in 20 bins, while the y-axis shows the number of samples (patients) that
are within the range values defined in each bin.

Figure C.1: Data distribution for biomarkers features (part 1)

55



56 APPENDIX C. ADDITIONAL FEATURES GRAPHS

Figure C.2: Data distribution for biomarkers features (part 2)
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Figure C.3: Data distribution for biomarkers features (part 3)





Appendix D

Sub-data sets results

Section D.1 contains the tables and boxplot figures evaluating the performance of each one of the
eight sub data sets on every fold for the DL model. Section D.2 shows the same tables and figures
for the RF model. Results for both the normal data sets and the oversampling implementations are
shown.
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D.1 DL model

D.1.1 Normal dataset

Sub-data set 1

Table D.1: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.73 0.68 0.73 0.61 0.71 0.68 0.73 0.68 0.74 0.72

Recall 0.84 0.84 0.88 0.92 0.96 0.80 0.84 0.88 0.88 0.88

F2 score 0.76 0.72 0.77 0.69 0.76 0.72 0.76 0.73 0.77 0.76

Precision 0.55 0.47 0.51 0.34 0.41 0.53 0.55 0.43 0.52 0.49

AUC 0.85 0.82 0.86 0.79 0.85 0.83 0.85 0.82 0.86 0.85

Accuracy 0.86 0.81 0.84 0.71 0.77 0.85 0.86 0.79 0.85 0.83

Threshold 0.17 0.19 0.13 0.08 0.16 0.16 0.26 0.14 0.17 0.15

Figure D.1: Boxplot for 10-fold CV on data set 1 for the DL model
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Sub-data set 2

Table D.2: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.81 0.80 0.78 0.88 0.76 0.75 0.77 0.89 0.78 0.78

Recall 0.92 0.96 0.88 0.96 0.92 0.83 0.92 0.96 0.84 0.92

F2 score 0.83 0.83 0.81 0.89 0.79 0.78 0.80 0.91 0.81 0.81

Precision 0.61 0.53 0.62 0.70 0.51 0.62 0.54 0.74 0.70 0.55

AUC 0.90 0.90 0.88 0.94 0.87 0.87 0.88 0.95 0.88 0.88

Accuracy 0.89 0.86 0.89 0.92 0.84 0.89 0.86 0.94 0.91 0.86

Threshold 0.20 0.06 0.24 0.13 0.08 0.18 0.15 0.11 0.45 0.14

Figure D.2: Boxplot for 10-fold CV on data set 2 for the DL model
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Sub-data set 3

Table D.3: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.91 0.81 0.82 0.73 0.69 0.81 0.83 0.77 0.86 0.86

Recall 1.00 0.88 0.96 0.92 0.83 0.96 0.88 0.79 0.92 1.00

F2 score 0.92 0.83 0.85 0.77 0.73 0.83 0.85 0.80 0.88 0.88

Precision 0.69 0.70 0.57 0.47 0.49 0.55 0.78 0.83 0.76 0.59

AUC 0.95 0.90 0.91 0.85 0.83 0.90 0.91 0.88 0.93 0.93

Accuracy 0.92 0.92 0.88 0.81 0.83 0.86 0.94 0.94 0.94 0.88

Threshold 0.23 0.30 0.10 0.07 0.09 0.05 0.41 0.40 0.42 0.11

Figure D.3: Boxplot for 10-fold CV on data set 3 for the DL model
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Sub-data set 4

Table D.4: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.85 0.84 0.91 0.90 0.87 0.82 0.77 0.80 0.75 0.90

Recall 0.96 0.92 0.96 0.96 1.00 0.91 0.87 0.87 0.83 0.96

F2 score 0.87 0.86 0.92 0.91 0.88 0.84 0.80 0.83 0.78 0.91

Precision 0.64 0.69 0.79 0.76 0.61 0.64 0.61 0.69 0.63 0.76

AUC 0.92 0.92 0.95 0.95 0.94 0.91 0.88 0.90 0.87 0.95

Accuracy 0.90 0.92 0.95 0.94 0.89 0.90 0.89 0.92 0.89 0.94

Threshold 0.14 0.27 0.55 0.11 0.06 0.16 0.10 0.17 0.20 0.41

Figure D.4: Boxplot for 10-fold CV on data set 4 for the DL model
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Sub-data set 5

Table D.5: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.80 0.77 0.83 0.85 0.83 0.89 0.84 0.92 0.86 0.87

Recall 0.96 0.87 0.91 0.91 0.87 0.91 0.91 0.96 0.91 1.00

F2 score 0.83 0.79 0.85 0.87 0.85 0.91 0.85 0.93 0.87 0.88

Precision 0.54 0.59 0.66 0.72 0.77 0.88 0.68 0.85 0.74 0.61

AUC 0.90 0.88 0.91 0.92 0.91 0.94 0.91 0.96 0.92 0.94

Accuracy 0.86 0.88 0.91 0.93 0.94 0.96 0.91 0.96 0.94 0.89

Threshold 0.04 0.12 0.14 0.19 0.45 0.30 0.18 0.69 0.15 0.06

Figure D.5: Boxplot for 10-fold CV on data set 5 for the DL model
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Sub-data set 6

Table D.6: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.87 0.93 0.88 0.93 0.87 0.79 0.88 0.83 0.81 0.79

Recall 0.95 1.00 1.00 1.00 0.90 0.95 0.95 0.95 0.95 0.90

F2 score 0.87 0.93 0.88 0.93 0.88 0.81 0.89 0.83 0.83 0.80

Precision 0.66 0.71 0.59 0.71 0.82 0.50 0.70 0.56 0.54 0.56

AUC 0.93 0.96 0.94 0.96 0.93 0.89 0.94 0.91 0.90 0.89

Accuracy 0.92 0.94 0.89 0.94 0.95 0.85 0.93 0.89 0.87 0.88

Threshold 0.09 0.14 0.04 0.17 0.38 0.03 0.20 0.05 0.06 0.13

Figure D.6: Boxplot for 10-fold CV on data set 6 for the DL model
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Sub-data set 7

Table D.7: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.85 0.82 0.88 0.88 0.70 0.86 0.90 0.91 0.87 0.89

Recall 0.89 0.89 1.00 0.94 0.83 0.94 0.94 0.94 0.94 1.00

F2 score 0.86 0.83 0.88 0.89 0.72 0.87 0.90 0.91 0.88 0.89

Precision 0.76 0.67 0.60 0.71 0.47 0.65 0.77 0.81 0.68 0.62

AUC 0.92 0.91 0.94 0.94 0.83 0.93 0.95 0.95 0.93 0.95

Accuracy 0.94 0.92 0.90 0.93 0.83 0.92 0.95 0.96 0.92 0.91

Threshold 0.58 0.26 0.12 0.30 0.01 0.05 0.58 0.25 0.05 0.11

Figure D.7: Boxplot for 10-fold CV on data set 7 for the DL model
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Sub-data set 8

Table D.8: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.79 0.91 0.60 0.83 0.79 0.96 0.87 0.88 0.60 0.96

Recall 0.89 1.00 0.67 1.00 0.89 1.00 1.00 1.00 0.67 1.00

F2 score 0.80 0.90 0.64 0.83 0.80 0.96 0.87 0.88 0.64 0.96

Precision 0.57 0.64 0.55 0.50 0.57 0.83 0.56 0.60 0.55 0.82

AUC 0.89 0.95 0.79 0.92 0.89 0.98 0.93 0.94 0.79 0.98

Accuracy 0.89 0.92 0.87 0.85 0.89 0.97 0.89 0.90 0.87 0.97

Threshold 0.04 0.05 0.38 0.04 0.25 0.23 0.09 0.10 0.20 0.17

Figure D.8: Boxplot for 10-fold CV on data set 8 for the DL model
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D.1.2 SMOTE dataset

Sub-data set 1

Table D.9: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.69 0.76 0.80 0.63 0.67 0.62 0.72 0.68 0.70 0.75

Recall 0.76 0.92 0.92 0.92 0.83 0.80 0.88 0.80 0.80 0.88

F2 score 0.73 0.79 0.82 0.70 0.71 0.68 0.76 0.72 0.74 0.79

Precision 0.61 0.51 0.57 0.35 0.45 0.42 0.49 0.53 0.57 0.55

AUC 0.83 0.87 0.89 0.80 0.82 0.79 0.85 0.83 0.84 0.87

Accuracy 0.88 0.84 0.87 0.72 0.81 0.78 0.83 0.85 0.87 0.86

Threshold 0.71 0.57 0.60 0.17 0.42 0.34 0.63 0.51 0.60 0.63

Figure D.9: Boxplot for 10-fold CV on data set 1 for the DL model
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Sub-data set 2

Table D.10: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.76 0.85 0.80 0.84 0.83 0.79 0.81 0.81 0.85 0.73

Recall 0.88 0.96 0.88 0.92 0.96 0.96 0.96 0.88 1.00 0.79

F2 score 0.79 0.86 0.82 0.86 0.85 0.82 0.83 0.83 0.87 0.76

Precision 0.57 0.62 0.66 0.69 0.59 0.52 0.55 0.70 0.58 0.66

AUC 0.87 0.92 0.89 0.92 0.91 0.89 0.90 0.90 0.92 0.85

Accuracy 0.87 0.90 0.90 0.92 0.88 0.85 0.86 0.92 0.88 0.90

Threshold 0.18 0.57 0.55 0.35 0.46 0.22 0.25 0.67 0.34 0.60

Figure D.10: Boxplot for 10-fold CV on data set 2 for the DL model
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Sub-data set 3

Table D.11: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.83 0.75 0.85 0.86 0.79 0.76 0.79 0.80 0.87 0.76

Recall 0.96 0.96 0.92 1.00 0.87 0.88 0.88 0.88 1.00 0.88

F2 score 0.85 0.79 0.87 0.88 0.81 0.79 0.81 0.83 0.89 0.79

Precision 0.59 0.47 0.71 0.59 0.65 0.57 0.64 0.68 0.62 0.57

AUC 0.91 0.87 0.92 0.93 0.89 0.87 0.89 0.90 0.94 0.87

Accuracy 0.88 0.81 0.92 0.88 0.90 0.87 0.90 0.91 0.90 0.87

Threshold 0.37 0.41 0.80 0.24 0.43 0.32 0.53 0.41 0.20 0.25

Figure D.11: Boxplot for 10-fold CV on data set 3 for the DL model
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Sub-data set 4

Table D.12: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.79 0.87 0.86 0.75 0.81 0.81 0.83 0.92 0.85 0.97

Recall 0.83 0.96 0.92 0.91 1.00 0.96 0.96 1.00 0.91 1.00

F2 score 0.82 0.88 0.87 0.78 0.83 0.83 0.85 0.93 0.87 0.97

Precision 0.77 0.68 0.73 0.50 0.50 0.55 0.58 0.72 0.72 0.85

AUC 0.89 0.93 0.92 0.87 0.90 0.90 0.91 0.96 0.92 0.98

Accuracy 0.93 0.92 0.93 0.84 0.84 0.87 0.88 0.94 0.93 0.97

Threshold 0.83 0.20 0.58 0.09 0.21 0.10 0.20 0.47 0.55 0.73

Figure D.12: Boxplot for 10-fold CV on data set 4 for the DL model
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Sub-data set 5

Table D.13: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.80 0.89 0.78 0.90 0.77 0.88 0.89 0.85 0.85 0.88

Recall 0.83 0.91 0.91 1.00 0.96 0.96 0.96 0.96 0.91 1.00

F2 score 0.83 0.91 0.81 0.91 0.80 0.89 0.90 0.87 0.86 0.89

Precision 0.83 0.88 0.55 0.66 0.49 0.71 0.73 0.63 0.71 0.62

AUC 0.90 0.94 0.88 0.95 0.88 0.94 0.94 0.92 0.92 0.94

Accuracy 0.94 0.96 0.87 0.91 0.83 0.93 0.94 0.90 0.93 0.90

Threshold 0.66 0.66 0.29 0.28 0.12 0.52 0.41 0.11 0.48 0.25

Figure D.13: Boxplot for 10-fold CV on data set 5 for the DL model
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Sub-data set 6

Table D.14: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.87 0.84 0.83 0.80 0.87 0.92 0.89 0.80 0.82 0.91

Recall 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.89 0.85 1.00

F2 score 0.88 0.85 0.84 0.82 0.88 0.92 0.90 0.81 0.84 0.91

Precision 0.82 0.69 0.67 0.60 0.68 0.83 0.73 0.59 0.81 0.67

AUC 0.93 0.91 0.91 0.90 0.93 0.96 0.94 0.89 0.91 0.95

Accuracy 0.95 0.92 0.92 0.89 0.92 0.96 0.94 0.89 0.95 0.92

Threshold 0.81 0.42 0.22 0.30 0.23 0.80 0.63 0.31 0.62 0.40

Figure D.14: Boxplot for 10-fold CV on data set 6 for the DL model



74 APPENDIX D. SUB-DATA SETS RESULTS

Sub-data set 7

Table D.15: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.81 0.90 0.89 0.96 0.88 0.84 0.82 0.73 0.88 0.80

Recall 0.89 1.00 1.00 1.00 0.89 1.00 0.94 0.78 0.94 0.89

F2 score 0.82 0.90 0.89 0.96 0.90 0.85 0.83 0.76 0.89 0.82

Precision 0.64 0.64 0.62 0.82 0.94 0.53 0.55 0.70 0.71 0.62

AUC 0.90 0.95 0.95 0.98 0.94 0.92 0.90 0.86 0.94 0.90

Accuracy 0.91 0.92 0.91 0.97 0.98 0.87 0.88 0.92 0.93 0.90

Threshold 0.23 0.22 0.57 0.51 0.88 0.33 0.06 0.84 0.60 0.47

Figure D.15: Boxplot for 10-fold CV on data set 7 for the DL model
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Sub-data set 8

Table D.16: Results for the DL model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.62 0.87 0.86 0.84 0.75 0.87 0.84 0.82 0.65 0.94

Recall 0.67 1.00 0.89 0.89 0.78 1.00 0.89 0.89 0.67 1.00

F2 score 0.65 0.87 0.87 0.85 0.78 0.88 0.85 0.83 0.70 0.94

Precision 0.60 0.56 0.80 0.73 0.78 0.59 0.73 0.67 0.86 0.75

AUC 0.80 0.93 0.93 0.92 0.87 0.93 0.92 0.91 0.82 0.97

Accuracy 0.89 0.89 0.95 0.94 0.94 0.89 0.93 0.92 0.93 0.95

Threshold 0.06 0.12 0.53 0.73 0.83 0.73 0.84 0.25 0.85 0.89

Figure D.16: Boxplot for 10-fold CV on data set 8 for the DL model
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D.2 RF model

D.2.1 Normal dataset

Sub-data set 1

Table D.17: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.70 0.68 0.72 0.61 0.63 0.70 0.67 0.66 0.70 0.69

Recall 0.80 0.88 0.76 0.71 0.88 0.92 0.76 0.72 0.88 0.84

F2 score 0.74 0.73 0.76 0.65 0.69 0.75 0.71 0.70 0.74 0.73

Precision 0.57 0.43 0.76 0.50 0.38 0.43 0.56 0.62 0.46 0.49

AUC 0.84 0.82 0.86 0.79 0.80 0.84 0.82 0.82 0.84 0.83

Accuracy 0.87 0.79 0.92 0.84 0.75 0.79 0.86 0.88 0.81 0.83

Threshold 0.25 0.19 0.31 0.31 0.18 0.13 0.31 0.34 0.13 0.20

Figure D.17: Boxplot for 10-fold CV on data set 1 for the RF model
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Sub-data set 2

Table D.18: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.74 0.82 0.72 0.77 0.73 0.66 0.62 0.82 0.81 0.76

Recall 0.96 0.96 0.83 0.88 0.88 0.83 0.71 0.96 1.00 0.83

F2 score 0.78 0.85 0.75 0.80 0.77 0.71 0.66 0.84 0.84 0.79

Precision 0.45 0.57 0.54 0.60 0.51 0.44 0.53 0.56 0.52 0.67

AUC 0.86 0.91 0.85 0.88 0.85 0.81 0.79 0.90 0.90 0.88

Accuracy 0.80 0.88 0.86 0.88 0.84 0.80 0.85 0.87 0.84 0.90

Threshold 0.11 0.14 0.16 0.17 0.15 0.12 0.22 0.15 0.12 0.19

Figure D.18: Boxplot for 10-fold CV on data set 2 for the RF model
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Sub-data set 3

Table D.19: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.79 0.74 0.76 0.77 0.66 0.76 0.72 0.75 0.76 0.72

Recall 0.96 0.88 0.92 0.96 0.78 0.92 0.92 1.00 0.83 0.83

F2 score 0.82 0.78 0.80 0.80 0.70 0.80 0.77 0.80 0.79 0.76

Precision 0.52 0.54 0.52 0.49 0.49 0.52 0.47 0.44 0.67 0.56

AUC 0.89 0.86 0.87 0.88 0.81 0.87 0.85 0.87 0.87 0.85

Accuracy 0.85 0.85 0.85 0.83 0.83 0.85 0.81 0.79 0.90 0.86

Threshold 0.12 0.16 0.15 0.14 0.15 0.12 0.13 0.13 0.20 0.18

Figure D.19: Boxplot for 10-fold CV on data set 3 for the RF model
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Sub-data set 4

Table D.20: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.81 0.82 0.73 0.74 0.81 0.75 0.70 0.70 0.64 0.84

Recall 0.92 0.88 0.96 0.91 1.00 1.00 0.96 0.78 0.74 0.91

F2 score 0.83 0.85 0.78 0.77 0.83 0.79 0.75 0.73 0.68 0.85

Precision 0.61 0.75 0.45 0.48 0.50 0.43 0.41 0.58 0.52 0.68

AUC 0.90 0.91 0.86 0.86 0.90 0.87 0.84 0.84 0.80 0.91

Accuracy 0.89 0.93 0.80 0.82 0.84 0.79 0.77 0.87 0.85 0.92

Threshold 0.18 0.19 0.15 0.12 0.14 0.12 0.09 0.21 0.19 0.19

Figure D.20: Boxplot for 10-fold CV on data set 4 for the RF model
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Sub-data set 5

Table D.21: Results for the RF model

KPI 5-fold 2-fold 3-fold 5-fold 5-fold 6-fold 7-fold 8-fold 9-fold 50-fold

MPCD 0.66 0.68 0.75 0.78 0.80 0.85 0.80 0.84 0.84 0.66

Recall 0.74 0.87 0.91 0.83 0.87 0.91 0.87 0.91 0.95 0.78

F2 score 0.70 0.72 0.78 0.81 0.83 0.87 0.82 0.85 0.85 0.70

Precision 0.57 0.43 0.50 0.76 0.69 0.72 0.67 0.68 0.60 0.49

AUC 0.81 0.82 0.87 0.89 0.90 0.92 0.89 0.91 0.92 0.81

Accuracy 0.87 0.79 0.84 0.93 0.91 0.93 0.91 0.91 0.89 0.83

Threshold 0.20 0.12 0.15 0.24 0.20 0.17 0.19 0.23 0.18 0.20

Figure D.21: Boxplot for 10-fold CV on data set 5 for the RF model
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Sub-data set 6

Table D.22: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.66 0.68 0.75 0.78 0.80 0.85 0.80 0.84 0.84 0.66

Recall 0.74 0.87 0.91 0.83 0.87 0.91 0.87 0.91 0.95 0.78

F2 score 0.70 0.72 0.78 0.81 0.83 0.87 0.82 0.85 0.85 0.70

Precision 0.57 0.43 0.50 0.76 0.69 0.72 0.67 0.68 0.60 0.49

AUC 0.81 0.82 0.87 0.89 0.90 0.92 0.89 0.91 0.92 0.81

Accuracy 0.87 0.79 0.84 0.93 0.91 0.93 0.91 0.91 0.89 0.83

Threshold 0.20 0.12 0.15 0.24 0.20 0.17 0.19 0.23 0.18 0.20

Figure D.22: Boxplot for 10-fold CV on data set 6 for the RF model
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Sub-data set 7

Table D.23: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.84 0.74 0.74 0.82 0.70 0.65 0.72 0.83 0.87 0.82

Recall 0.89 0.83 0.83 0.89 0.89 0.78 0.94 0.89 0.94 0.89

F2 score 0.85 0.77 0.77 0.83 0.73 0.68 0.75 0.84 0.88 0.83

Precision 0.73 0.58 0.58 0.67 0.42 0.45 0.41 0.70 0.68 0.67

AUC 0.92 0.86 0.86 0.91 0.84 0.81 0.86 0.91 0.93 0.91

Accuracy 0.93 0.88 0.88 0.92 0.80 0.83 0.79 0.92 0.92 0.92

Threshold 0.21 0.17 0.16 0.19 0.12 0.14 0.14 0.20 0.19 0.19

Figure D.23: Boxplot for 10-fold CV on data set 7 for the RF model
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Sub-data set 8

Table D.24: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.84 0.98 0.62 0.77 0.81 0.98 0.75 0.92 0.79 0.85

Recall 0.89 1.00 1.00 1.00 0.89 1.00 0.78 1.00 0.89 1.00

F2 score 0.85 0.98 0.69 0.79 0.82 0.98 0.78 0.92 0.80 0.85

Precision 0.73 0.90 0.31 0.43 0.62 0.91 0.78 0.69 0.57 0.53

AUC 0.92 0.99 0.81 0.89 0.90 0.99 0.87 0.96 0.89 0.92

Accuracy 0.94 0.98 0.68 0.81 0.90 0.98 0.93 0.93 0.89 0.87

Threshold 0.21 0.26 0.09 0.12 0.24 0.27 0.30 0.16 0.15 0.12

Figure D.24: Boxplot for 10-fold CV on data set 8 for the RF model
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D.2.2 SMOTE dataset

Sub-data set 1

Table D.25: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.69 0.73 0.76 0.60 0.63 0.58 0.70 0.62 0.62 0.67

Recall 0.80 1.00 0.92 0.79 0.83 0.96 0.84 0.92 0.72 0.76

F2 score 0.73 0.79 0.79 0.65 0.68 0.69 0.74 0.70 0.66 0.71

Precision 0.54 0.42 0.51 0.38 0.40 0.32 0.50 0.36 0.50 0.56

AUC 0.83 0.87 0.87 0.77 0.80 0.78 0.84 0.80 0.79 0.82

Accuracy 0.85 0.77 0.84 0.76 0.77 0.66 0.83 0.71 0.83 0.86

Threshold 0.57 0.39 0.58 0.41 0.52 0.18 0.59 0.23 0.58 0.60

Figure D.25: Boxplot for 10-fold CV on data set 1 for the RF model
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Sub-data set 2

Table D.26: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.66 0.69 0.67 0.67 0.78 0.74 0.70 0.69 0.80 0.75

Recall 0.71 0.92 0.79 0.83 1.00 0.83 0.88 0.88 0.92 0.92

F2 score 0.70 0.74 0.71 0.71 0.82 0.77 0.74 0.74 0.83 0.79

Precision 0.68 0.42 0.50 0.45 0.47 0.59 0.47 0.46 0.59 0.50

AUC 0.82 0.83 0.82 0.82 0.89 0.86 0.84 0.83 0.89 0.87

Accuracy 0.90 0.78 0.83 0.81 0.81 0.88 0.81 0.81 0.88 0.83

Threshold 0.50 0.35 0.37 0.34 0.33 0.53 0.39 0.37 0.44 0.34

Figure D.26: Boxplot for 10-fold CV on data set 2 for the RF model
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Sub-data set 3

Table D.27: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.77 0.78 0.72 0.85 0.75 0.69 0.72 0.66 0.78 0.69

Recall 0.96 0.88 0.83 0.88 0.87 0.83 0.96 0.96 1.00 0.83

F2 score 0.81 0.81 0.75 0.88 0.78 0.73 0.77 0.74 0.82 0.74

Precision 0.50 0.62 0.54 0.88 0.56 0.49 0.43 0.38 0.48 0.50

AUC 0.88 0.88 0.85 0.92 0.87 0.83 0.85 0.82 0.89 0.83

Accuracy 0.83 0.89 0.85 0.96 0.87 0.83 0.78 0.73 0.82 0.83

Threshold 0.34 0.47 0.46 0.62 0.44 0.35 0.32 0.28 0.31 0.41

Figure D.27: Boxplot for 10-fold CV on data set 3 for the RF model
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Sub-data set 4

Table D.28: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.73 0.75 0.82 0.84 0.72 0.72 0.68 0.77 0.83 0.89

Recall 0.79 0.79 1.00 0.96 0.96 0.96 0.78 0.87 1.00 1.00

F2 score 0.77 0.78 0.85 0.86 0.76 0.77 0.71 0.80 0.85 0.90

Precision 0.68 0.73 0.53 0.61 0.42 0.43 0.53 0.61 0.53 0.64

AUC 0.86 0.87 0.91 0.92 0.85 0.86 0.82 0.88 0.92 0.95

Accuracy 0.90 0.92 0.85 0.89 0.78 0.79 0.85 0.89 0.86 0.91

Threshold 0.47 0.54 0.40 0.43 0.34 0.34 0.40 0.49 0.36 0.44

Figure D.28: Boxplot for 10-fold CV on data set 4 for the RF model
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Sub-data set 5

Table D.29: Results for the RF model

KPI 5-fold 2-fold 3-fold 5-fold 5-fold 6-fold 7-fold 8-fold 9-fold 50-fold

MPCD 0.79 0.76 0.71 0.83 0.88 0.80 0.82 0.78 0.76 0.65

Recall 0.87 0.78 0.83 1.00 0.96 0.91 0.96 1.00 0.86 0.96

F2 score 0.81 0.79 0.75 0.85 0.89 0.83 0.84 0.82 0.79 0.73

Precision 0.65 0.82 0.54 0.53 0.69 0.60 0.56 0.47 0.58 0.37

AUC 0.89 0.87 0.85 0.92 0.94 0.90 0.91 0.89 0.87 0.82

Accuracy 0.90 0.94 0.86 0.86 0.92 0.89 0.87 0.82 0.88 0.73

Threshold 0.48 0.51 0.37 0.40 0.55 0.42 0.41 0.33 0.46 0.28

Figure D.29: Boxplot for 10-fold CV on data set 5 for the RF model
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Sub-data set 6

Table D.30: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.88 0.72 0.82 0.81 0.76 0.84 0.84 0.71 0.79 0.80

Recall 0.90 0.90 0.95 0.90 0.90 0.95 1.00 0.84 0.95 1.00

F2 score 0.89 0.75 0.83 0.83 0.78 0.85 0.85 0.73 0.81 0.82

Precision 0.86 0.45 0.56 0.62 0.51 0.59 0.53 0.48 0.50 0.48

AUC 0.94 0.85 0.91 0.90 0.87 0.92 0.92 0.85 0.89 0.90

Accuracy 0.96 0.82 0.88 0.90 0.86 0.89 0.86 0.85 0.85 0.83

Threshold 0.59 0.33 0.37 0.42 0.45 0.41 0.39 0.40 0.39 0.35

Figure D.30: Boxplot for 10-fold CV on data set 6 for the RF model
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Sub-data set 7

Table D.31: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.78 0.86 0.86 0.87 0.78 0.84 0.72 0.69 0.78 0.77

Recall 0.83 0.89 1.00 1.00 0.83 0.94 0.94 0.83 0.89 0.94

F2 score 0.81 0.88 0.87 0.87 0.80 0.85 0.75 0.71 0.79 0.79

Precision 0.71 0.84 0.56 0.58 0.68 0.61 0.41 0.45 0.55 0.47

AUC 0.89 0.93 0.93 0.94 0.88 0.92 0.86 0.83 0.88 0.88

Accuracy 0.93 0.96 0.88 0.89 0.92 0.90 0.79 0.82 0.88 0.83

Threshold 0.46 0.53 0.41 0.36 0.41 0.45 0.36 0.41 0.44 0.41

Figure D.31: Boxplot for 10-fold CV on data set 7 for the RF model



D.2. RF MODEL 91

Sub-data set 8

Table D.32: Results for the RF model

KPI 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

MPCD 0.65 0.91 0.86 0.65 0.81 0.83 0.87 0.83 0.67 0.85

Recall 0.67 1.00 0.89 0.89 0.89 0.90 1.00 1.00 100 0.89

F2 score 0.70 0.90 0.87 0.69 0.82 0.85 0.87 0.83 0.73 0.87

Precision 0.86 0.64 0.80 0.36 0.62 0.69 0.56 0.50 0.35 0.80

AUC 0.82 0.95 0.93 0.81 0.90 0.91 0.93 0.91 0.84 0.93

Accuracy 0.94 0.92 0.95 0.76 0.90 0.92 0.89 0.85 0.72 0.95

Threshold 0.63 0.45 0.57 0.30 0.42 0.56 0.42 0.27 0.27 0.56

Figure D.32: Boxplot for 10-fold CV on data set 8 for the RF model
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Python code

E.1 Create filtered data base

1 #Imports

2 import pandas as pd

3 import numpy as np

4

5 def create_database():

6 #Raw data base loading

7 df_1 = pd.read_csv("01.csv", sep=";", encoding="ANSI")

8 df_2 = pd.read_csv("02.csv", sep=";", encoding="ANSI")

9 df_3 = pd.read_csv("03.csv", sep=";", encoding="ANSI",

10 parse_dates=[[1,2]])

11 df_4 = pd.read_csv("04.csv", sep=";", encoding="ANSI",

12 error_bad_lines=False, warn_bad_lines=False,

13 parse_dates=[[2,3]])

14 df_5 = pd.read_csv("05.csv", sep=";", encoding="ANSI")

15 df_6 = pd.read_csv("06.csv", sep=";", encoding="ANSI")

16

17 #Data filtering

18 df_filt = df_1.copy()

19 df_filt = df_filt[df_filt["DIAG ING/INPAT"]=="COVID19 - POSITIVO"]

20 df_filt = df_filt[(df_filt["MOTIVO_ALTA/DESTINY_DISCHARGE_ING"]=="

Domicilio") | (df_filt["MOTIVO_ALTA/DESTINY_DISCHARGE_ING"]=="

Fallecimiento")]

21 df_filt = df_filt[df_filt["EDAD/AGE"]!=0]

22 df_filt = df_filt[(df_filt["SAT_02_PRIMERA/FIRST_URG/EMERG"]!=0) | (

df_filt["SAT_02_ULTIMA/LAST_URG/EMERG"]!=0)]

23

24 df = df_filt.copy()

93



94 APPENDIX E. PYTHON CODE

25 df = df[["PATIENT ID", "EDAD/AGE", "SEXO/SEX", "MOTIVO_ALTA/

DESTINY_DISCHARGE_ING"]]

26 df["O2"] = df_filt[["SAT_02_PRIMERA/FIRST_URG/EMERG", "SAT_02_ULTIMA/

LAST_URG/EMERG"]].max(axis=1)

27 df.columns = ["ID", "Age", "Gender", "Deceased", "O2"]

28

29 #Add comorbidities

30 comorbilities = {}

31 for pat in df_1["PATIENT ID"].sort_values():

32 comorbilities[pat] = []

33

34 for index, row in df_5.iterrows():

35 codes = row[[col for col in df_5.columns if "DIA" in col]].tolist()

36 comorbilities[row["PATIENT ID"]] = [c.split(".")[0] for c in codes if

isinstance(c, str)]

37

38 for index, row in df_6.iterrows():

39 newcodes = row[[col for col in df_6.columns if "DIA" in col]].tolist()

40 pat_id = row["PATIENT ID"]

41 codes = comorbilities[pat_id]

42 to_add = [code.split(".")[0] for code in newcodes if code not in

comorbilities[pat_id] and isinstance(code, str)]

43 comorbilities[pat_id] += to_add

44

45 codes = ["N17", "I10", "E11", "I25", "J80"]

46

47 for code in codes:

48 df[code] = [1 if code in comorbilities[pat] else 0 for pat in df.ID]

49

50 #Add biomarkers

51 biomarkers = [’AP -- ACTIVIDAD DE PROTROMBINA’,

52 ’CREA -- CREATININA’,

53 ’DD -- DIMERO D’,

54 ’FER -- FERRITINA’,

55 ’IGG -- IgG (INMUNOGLOBULINA G)’,

56 ’IGM -- IgM (INMUNOGLOBULINA M)’,

57 ’IL6 -- INTERLEUCINA 6’,

58 ’LAC -- LACTATO’,

59 ’LDH -- LDH’,

60 ’LEUC -- Leucocitos’,

61 ’LEULCR -- Recuento Leucocitos’,

62 ’LIN -- Linfocitos’,

63 ’LIN% -- Linfocitos %’,

64 ’NEU -- Neutrófilos’,

65 ’NEU% -- Neutrófilos %’,
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66 ’PCR -- PROTEINA C REACTIVA’,

67 ’PLAQ -- Recuento de plaquetas’,

68 ’TP -- TIEMPO DE PROTROMBINA’,

69 ’TROPO -- TROPONINA’]

70

71 df = df.reset_index(drop=True)

72

73 for bio in biomarkers:

74 df[bio + "_max"] = np.nan

75 df[bio + "_min"] = np.nan

76

77 for pat in df.ID:

78 idx = df[df.ID==pat].index

79 temp = df_4[df_4["PATIENT ID"]==pat]

80 for col in biomarkers:

81 if temp[temp["DETERMINACION/ITEM_LAB"]==col].empty: continue

82 vals = []

83 try:

84 for i in temp[temp["DETERMINACION/ITEM_LAB"]==col].iloc

[:,4]:

85 if i=="Sin resultado" or i=="----" or i=="No se

observan":

86 continue

87 i2 = i

88 if "<" in i or ">" in i:

89 i2 = i[2:]

90 vals.append(i2)

91 if not vals:

92 print(pat, col)

93 vals = np.nan

94 except:

95 print(pat, col)

96 print(temp[temp["DETERMINACION/ITEM_LAB"]==col].iloc[:,4])

97 vals = np.nan

98 finally:

99 ar = np.array(vals, dtype="float")

100 df.loc[idx, col + "_max"] = ar.max()

101 df.loc[idx, col + "_min"] = ar.min()

102

103 #One-hot encoding for categorical features

104 df.Gender = (df.Gender=="MALE").astype(int)

105 df.Deceased = (df.Deceased=="Fallecimiento").astype(int)

106

107 #Save final csv data base

108 df.to_csv("Final_CSV.csv")
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109

110 return df
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E.2 Normalize data base

1 #Imports

2 import pandas as pd

3 import numpy as np

4 from sklearn.preprocessing import MinMaxScaler

5

6 def normalizer(df):

7 cols_to_scale = ["Age", "O2"] + list(df.columns[10:])

8 scaler = MinMaxScaler()

9 df.loc[:, cols_to_scale] = scaler.fit_transform(df.loc[:,cols_to_scale])

10

11 return df
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E.3 Create data sets

1 #Imports

2 import pandas as pd

3 import numpy as np

4

5 def Create_DataSets(df):

6 sorted_cols = (len(df) - df.isna().sum(axis=0)).sort_values(ascending=

False)

7

8 cuts = {}

9 for n, i in enumerate(np.unique(sorted_cols.values)[::-1]):

10 cuts[n+1] = len(sorted_cols[sorted_cols>=i])

11

12 data_sets = {}

13 for n, cut in enumerate(cuts.values()):

14 if n==8: break

15 data_sets[n+1] = df.loc[:, sorted_cols[:cut].index]

16

17 return data_sets
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E.4 OCTM

1 def OCTM_Thresholds(outputs):

2 sorted_outs = sorted(outputs, reverse=True)

3

4 return [(sorted_outs[i]+sorted_outs[i+1])/2 for i in range(len(sorted_outs

)-1)]
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E.5 Evaluation

1 #Imports

2 import pandas as pd

3 import numpy as np

4

5 from sklearn.metrics import recall_score, precision_score, accuracy_score,

fbeta_score, roc_auc_score,plot_confusion_matrix, confusion_matrix,

precision_recall_curve

6 from sklearn.ensemble import RandomForestRegressor

7

8 import tensorflow as tf

9 from tensorflow.keras.models import Model, Sequential, load_model

10 from tensorflow.keras.layers import Input, Dense, Dropout

11

12 from imblearn.over_sampling import SMOTE

13 from sklearn.model_selection import train_test_split, KFold, StratifiedKFold

14

15

16 def evaluation(df, OCTM=True, smote=False):

17 #Drop NaN values from data set

18 df = df.dropna().reset_index(drop=True)

19

20 #Create K-Folds while maintaining the class label preportion

21 kf = StratifiedKFold(n_splits=10, shuffle=True)

22 sm = SMOTE(sampling_strategy=0.80)

23

24 cv_DL = []

25 cv_RF = []

26 tf.keras.backend.clear_session()

27

28 #Initial Thresholds definition

29 Thresholds = np.arange(0, 1, 0.01)

30

31 for train_idx, test_idx in kf.split(df.drop(["Deceased", "ID"], axis=1),

df.Deceased):

32 df_train = df.loc[train_idx]

33 df_test = df.loc[test_idx]

34

35 X_train, y_train = df_train.drop(["Deceased", "ID"], axis=1).values,

df_train.Deceased.values

36 X_test, y_test = df_test.drop(["Deceased", "ID"], axis=1).values,

df_test.Deceased.values

37

38 #SMOTE
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39 if smote: X_train, y_train = sm.fit_sample(X_train, y_train)

40

41 #Deep Learning model

42 model_DL = Sequential([

43 Input(X_train.shape[1:]),

44 Dense(17, activation="sigmoid"),

45 Dense(10, activation="sigmoid"),

46 Dense(5, activation="sigmoid"),

47 Dense(1, activation="sigmoid")])

48

49 model_DL.compile(loss="binary_crossentropy",

50 optimizer="adam")

51

52 history = model_DL.fit(X_train, y_train,

53 epochs=200,

54 verbose=0)

55

56 best_mpcd = 0

57 outputs = model_DL.predict(X_test).squeeze()

58

59 #If OCTM is to be used

60 if OCTM: Thresholds = OCTM_Thresholds(outputs)

61

62 for t in Thresholds:

63 y_pred = (outputs>=t).astype(int)

64 cm_array = confusion_matrix(y_test, y_pred)

65 fp = cm_array[0,1]/cm_array[0].sum()

66 fn = cm_array[1,0]/cm_array[1].sum()

67 mpcd = (1-fp)*(1-fn)

68

69 if mpcd > best_mpcd:

70 best_mpcd = mpcd

71 best_t = t

72

73 y_pred = (outputs>=best_t).astype(int)

74

75 cm_array = confusion_matrix(y_test, y_pred)

76 recall = recall_score(y_test, y_pred)

77 f2 = fbeta_score(y_test, y_pred, beta=2)

78 precision = precision_score(y_test, y_pred)

79 auc = roc_auc_score(y_test, y_pred)

80 acc = accuracy_score(y_test, y_pred)

81

82 fp = cm_array[0,1]/cm_array[0].sum()

83 fn = cm_array[1,0]/cm_array[1].sum()
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84 mpcd = (1-fp)*(1-fn)

85

86 cv_DL.append([mpcd, recall, f2, precision, auc, acc, best_t])

87 print("Fold {} for DL model done".format(len(cv_DL)))

88

89

90 #Random Forest model

91 model_RF = RandomForestRegressor(n_estimators=500, max_depth=2,

max_features=5)

92 model_RF.fit(X_train, y_train)

93

94 best_mpcd = 0

95 outputs = model_RF.predict(X_test)

96

97 #If OCTM is to be used

98 if OCTM: Thresholds = OCTM_Thresholds(outputs)

99

100 for t in Thresholds:

101 y_pred = (outputs>=t).astype(int)

102 cm_array = confusion_matrix(y_test, y_pred)

103 fp = cm_array[0,1]/cm_array[0].sum()

104 fn = cm_array[1,0]/cm_array[1].sum()

105 mpcd = (1-fp)*(1-fn)

106

107 if mpcd > best_mpcd:

108 best_mpcd = mpcd

109 best_t = t

110

111 y_pred = (outputs>=best_t).astype(int)

112

113 cm_array = confusion_matrix(y_test, y_pred)

114 recall = recall_score(y_test, y_pred)

115 f2 = fbeta_score(y_test, y_pred, beta=2)

116 precision = precision_score(y_test, y_pred)

117 auc = roc_auc_score(y_test, y_pred)

118 acc = accuracy_score(y_test, y_pred)

119

120 fp = cm_array[0,1]/cm_array[0].sum()

121 fn = cm_array[1,0]/cm_array[1].sum()

122 mpcd = (1-fp)*(1-fn)

123

124 cv_RF.append([mpcd, recall, f2, precision, auc, acc, best_t])

125 print("Fold {} for RF model done".format(len(cv_RF)))

126

127 results_DL = pd.DataFrame(cv_DL, columns=["MPCD", "Recall", "F2 score", "
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Precision",

128 "ROC-AUC score", "Accuracy", "

Threshold"])

129 results_RF = pd.DataFrame(cv_RF, columns=["MPCD", "Recall", "F2 score", "

Precision",

130 "ROC-AUC score", "Accuracy", "

Threshold"])

131

132 return results_DL, results_RF
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E.6 KNN Imputation

1 #Imports

2 import pandas as pd

3 import numy as np

4

5 #Define columns to impute from data set

6 cols_2_impute = ["DD -- DIMERO D_min", "DD -- DIMERO D_max"]

7

8 k = int(len(df_train)*0.10)

9

10 for i, row in df_test.drop(cols_2_impute, axis=1).iterrows():

11 distances = np.sqrt(((df_train.drop(["ID", "Deceased"], axis=1)-row.drop([

"ID", "Deceased"]))**2).sum(axis=1))

12 k_indeces = distances.sort_values()[:k].index

13 df_test.loc[i, cols_2_impute] = df_train.loc[k_indeces, cols_2_impute].

mean()
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