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From Words to Sentences and Back: Characterizing  
Context-dependent Meaning Representations in the Brain 

by 
Nora Elsa Aguirre Sampayo 

 

Abstract 
 

How do people understand concepts such as olive oil, baby oil, lamp oil, or oil 

paint? Embodied approaches to knowledge representation suggest that words are 

represented as a set of features that are the basic components of meaning. In particular, 

Binder et al. (2009) grounded this idea by mapping semantic features (attributes) to 

different brain systems in their Concept Attribute Representations (CAR) theory. Their 

fMRI experiments demonstrated that when humans listen or read sentences, they use 

different brain systems to simulate seeing the scenes and performing the actions that are 

described. An intriguing challenge to this theory is that concepts are dynamic, i.e., word 

meaning depends on context. This dissertation addresses this challenge through the 

Context-dEpendent meaning REpresentations in the BRAin (CEREBRA) neural network 

model. Based on changes in the fMRI patterns, CEREBRA quantifies how word 

meanings change in the context of a sentence. CEREBRA was evaluated through three 

different computational experiments and through behavioral analysis. The experiments 

demonstrated that words in different contexts have different representations, that the 

changes observed in the concept attributes encode unique conceptual combinations, and 

that the new representations are more similar to the other words in the sentence than to 

the original representations. The behavioral analysis confirmed that the changes produced 

by CEREBRA are actionable knowledge that can be used to predict human responses. 
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Together, these experiments constitute a comprehensive evaluation of CEREBRA’s 

context-based representations as well as the soundness of CAR theory. Thus, CEREBRA 

is a useful tool for understanding how semantic knowledge is represented in the brain, 

and for providing a human-like context-based representations for NLP applications. 
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Chapter 1 
 
Introduction 

 

How is human knowledge organized, stored, and used? Visual, motor, somatosensory, 

emotional, social and other brain systems enable humans to acquire, store, and integrate 

knowledge, to make sense, structure the endless stream of information, and navigate in 

the external world. As a result, humans not only create an internal representation of what 

is experienced by seeing, hearing, touching, smelling or tasting, they mentally represent 

complex instantiations of both the external and internal world. They create 

representations of everything they experience (e.g., objects, actions), and things they have 

never encountered (e.g., unicorns, dragons, dinosaurs). Furthermore, most of this 

knowledge relies on their ability to form semantic representations by combining existing 

concepts, to achieve an unlimited number of meanings. The goal of this dissertation is to 

develop a computational framework to understand how this knowledge is represented in 

the brain.  

1.1 MOTIVATION 

A word meaning is more than an entry in a dictionary. It involves a vast amount 

of knowledge relating the scenes and experiences people encounter (i.e., a rich 

encyclopedic knowledge), a set of referents to which the word properly applies (i.e., the 

boy was angry vs. the chair was angry), combination of other words, and grammatical 

constructions in which the word occurs. The meaning of the word varies from situation to 

situation and across contexts of use. For example, the word small means something 
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different when used to describe a mosquito, a whale, or a planet. The properties 

associated with small vary in context-dependent ways: It is necessary to know what the 

word means, but also the context in which is used, and how the words combine in order 

to construct the word meaning.  

While humans have a remarkable ability to form new meanings by combining 

existing concepts, modeling this process is challenging (Hampton, 1997; Janetzko 2001; 

Middleton et al., 2011; Murphy, 1998; Sag et al., 2002, Wisniewski, 1997, 1998). The 

same concept can be combined to produce different meanings: corn oil means oil made of 

corn, baby oil means oil rubbed on babies, and lamp oil means oil for lighting lamps 

(Wisniewski, 1997). Since lamp is an object, oil is likely to be a member of the inanimate 

category. However, corn and baby are living things, which suggest otherwise. How do 

language users determine the membership structure of such combinations of concepts, 

and how do they deduce the interpretation? As this example illustrates, there is no simple 

rule for how oil combines with other concepts. Computational models of such 

phenomena could potentially shed light into human cognition and advance AI 

applications that interact with humans via natural language. Such applications need to be 

able to understand and to form by themselves novel combination of concepts. Consider 

for example virtual assistants such as Siri, OK Google, or Alexa. These applications are 

built to answer questions posed by humans in natural language. All of them have natural 

language processing software to recognize speech and to give a response. However, 

whereas humans process language at many levels, machines process linguistic data with 

no inherent meaning. Given the ambiguity and flexibility of human language, modeling 

human conceptual representations is essential in building AI systems that interact 

effectively with humans.  
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Although early efforts were restricted to behavioral observations, experimental 

methods to map neural structures have made possible to study the neural mechanisms 

underlying the semantic memory system. For instance, neuroimaging (fMRI) technology 

provides a way to measure brain activity during word and sentence comprehension. 

When humans listen or read sentences, they are using different brain systems to simulate 

seeing the scenes and performing the actions that are described. As a result, parts of the 

brain that control these actions “light up” during the fMRI experiments. Hence, semantic 

models have become a popular tool for prediction and interpretation of brain activity 

using fMRI data.  

Recently, Machine Learning systems in vision and language processing have been 

proposed based on single-word vector spaces. They are able to extract low-level features 

in order to recognize concepts (e.g., cat), but such representations are still shallow and 

fall short from symbol grounding (meaning). In general, these models build semantic 

representations from text corpora, where words that appear in the same context are likely 

to have similar meanings (Burgess, 1998; J. Devlin et al., 2018; Harris, 1970; Landauer 

& Dumais, 1997; Mikolov et al., 2013; Peters et al., 2018). However, such 

representations lack intrinsic meaning, and therefore sometimes even different concepts 

may appear similar. This problem has driven researchers to develop new componential 

approaches, where concepts are represented by a set of basic features, integrating textual 

and visual inputs. (Anderson et al., 2019; Bruni et al., 2014; Silberer & Lapata, 2014; 

Vinyals et al., 2015). Still, even with these multimodal embedding spaces, such vector 

representations fall short of symbol grounding; a truly multimodal representation should 

account for the full array of human senses (Bruni et al., 2014). 

On the other hand, embodiment theories of knowledge representation (Barsalou, 

1987; Binder et al., 2009; Landau et al., 1998; Regier, 1996) provide a direct analysis in 
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terms of sensory, motor, spatial, temporal, affective, and social experience. Further, these 

theories can be mapped to brain systems. Recent fMRI studies helped identify a 

distributed large-scale network of sensory association, multimodal and cognitive 

regulatory systems linked to the storage and retrieval of conceptual knowledge (Binder et 

al., 2009). This network was then used as a basis for Concept Attribute Representation 

(CAR) theory, a semantic approach that represents concepts as a set of features that are 

the basic components of meaning, and grounds them in brain systems (Binder et al., 

2009, 2011, 2016). 

An intriguing challenge to semantic modeling is that concepts are dynamic, i.e., 

word meaning depends on context and recent experiences (Pecher, Zeelenberg, & 

Barsalou, 2004). For example, a pianist would invoke different aspects of the word piano 

depending on whether he will be playing in a concert or moving the piano. When 

thinking about a coming performance, the emphasis will be on the piano’s function, 

including sound and fine hand movements. When moving the piano, the emphasis will be 

on shape, size, weight and other larger limb movements (Barclay et al., 1974). This 

dissertation addresses this challenge based on the CAR theory. The assumption is that 

words in different contexts have different representations. Therefore, different features in 

CARs should be weighted differently depending on context, that is, according to the 

combination of concepts that occur in the sentence.  

1.2 PROBLEM STATEMENT  

The main focus of this dissertation is to understand how word meanings change in 

the context of a sentence. There are three challenges that need to be addressed:  

1.   How are concepts represented in the brain? Componential theories of lexical 

semantics assume that they consist of a set of features that constitute the basic 
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components of meaning. CAR theory represents such features in terms of 

known brain systems, relating semantic content to systematic modulation in 

neuroimaging activity. 

2.   How do word meanings change in the context of a sentence? A word is broken 

down into various features that can become active at different rates in 

different situations. According to the CAR theory, the weights given to 

different feature dimensions are modulated by context. 

3.   What tools and approaches can be used to quantify such changes in meaning? 

CAR theory assumes that context modifies the baseline meaning of a concept. 

A computational model can test this assumption by using sentence fMRI 

patterns and the CAR semantic feature model to characterize how word 

meanings are modulated within the context of a sentence. 

The first two points constitute the foundation for the third, which is the main 

technical challenge of this dissertation. Conceptual representations are dynamic, 

changing not only in response to context and the combination of words occurring in the 

sentence, but also in response to the knowledge an individual brings with them, i.e., 

experience and culture. All these dynamic effects grant words their transformation 

powers adjusted by a semantic system that is (1) experience-based in that it allows 

representations to change over time, and (2) distributed so that various features can 

become active at different rates in different situations (Yee & Thompson-Schill, 2016). 

The next section outlines an approach to these challenges. 

In general, a “concept” is defined as the mental representation of a semantic 

object and a “word” is the symbolic name of it. Sometimes multiple words are required to 

identify a concept, such as lamp oil. “Word” and “concept” are used interchangeably in 

this dissertation when there is no risk of confusion. 
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1.3 APPROACH  

The first two challenges are addressed using the CAR theory. The approach to the 

third challenge is to develop a model called CEREBRA, or Context-dependent mEaning 

REpresentation in the BRAin, a neural network model based on CAR theory. 

The main point throughout is that conceptual knowledge is built from experience. 

Particularly, humans learn concepts from birth on through their senses and mental states 

and they are encoded according to the way they are experienced (e.g., seeing a dog is a 

visual experience). Since each person’s experiences involve different times, locations, 

cultures, and people, concepts are not static but change throughout lifetime. The CAR 

theory provides a direct correspondence between conceptual content and neural 

representations. It suggests that concepts can be represented through a number of 

semantic dimensions that correspond to different brain systems, such as sensory, motor, 

visual, spatial, temporal, and affective, and based on the way concepts are acquired. 

Word meanings are represented as a set of weighted such dimensions or attributes, 

modulated by context. This dissertation integrates a subject-generated instantiation of the 

CAR theory into the model design. These attribute representations of word meaning 

provide a novel and powerful tool for investigating individual differences in conceptual 

organization. Also, the attributes capture fundamental elements of conceptual knowledge, 

which allows for a highly interpretable analysis of where systematic differences in 

conceptual content occur, and how they associate to each brain system. 

CAR theory suggests that different properties of word meaning are activated in 

different contexts, and it is possible to capture these changes in fMRI images. Together, 

the CAR theory, the fMRI images, and the CEREBRA model form the groundwork for 

the last challenge: a tool to quantify how word meanings change in the context of a 

sentence. The main idea is to train a neural network to predict what the sentence fMRI 
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should be, based on the CARs, and then use the FGREP mechanism (Forming Global 

Representations with Extended Backpropagation; Miikkulainen et al., 1988) to adjust the 

CARs so that the prediction becomes correct. As a result, the modified CARs indicate 

how the meaning changed in context.  

This dissertation evaluates CEREBRA’s context-dependent representations 

through three computational experiments and a behavioral analysis. The first experiment 

analyzes interesting context effects for different shades of meaning for a number of 

words and subjects. The results showed that different meanings for words were activated 

in different contexts. The second experiment extends the analysis by using combinations 

of concepts across subjects. It focuses on different types of conceptual combinations and 

their effect on word meanings by analyzing statistically significant changes for individual 

sentences across multiple fMRI subjects. The results showed that CEREBRA identifies 

several types of combinations such as property, thematic, hybrid and centrality. The third 

experiment demonstrates that similar sentences have a similar effect, and this effect is 

consistent across all words in the sentence. It analyzes the differences and correlates these 

changes to the CARs of the other words in the sentence. In other words, it statistically 

quantifies the conceptual combination effect across sentences and subjects. This analysis 

was performed across the entire corpus of sentences, for all subjects, and the results 

demonstrated that the new CARs were more similar to the other words in the sentence 

than to the original CARs, indicating how features of the context were transferred to each 

word in the sentence. The fourth experiment, a behavioral analysis, evaluates 

CEREBRA’s context-based representations via human judgements. First, CEREBRA is 

used in a number of sentences to determine how the generic meaning of a word would 

have to change in order to account for the context. Then, the survey characterizes the 

changes in human subjects over the same sentences, to demonstrate that the changes 
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produced by the model agree with human responses. The results confirmed that the 

context-dependent changes produced by CEREBRA are actionable knowledge that can be 

used to predict human judgements. Collectively, these experiments constitute a 

comprehensive approach to evaluate the CEREBRA’s context-based representations as 

well as to assess the soundness of CAR theory as a semantic model of the brain.  

CEREBRA opens the door for cognitive scientists to achieve better understanding 

and form new hypotheses about how semantic knowledge is represented in the brain. 

Additionally, the context-based representations produced by the model could be used for 

a broad range of artificial natural language processing systems, where grounding 

concepts as well as novel combinations of concepts is essential. 

1.4 OVERVIEW OF THE DISSERTATION 

In the following chapters, a computational framework developed to characterize 

context-dependent representations in the brain is first described. Then a series of 

experiments are presented to test the hypothesis that different properties of word meaning 

are activated in different contexts, and that it is possible to see those changes in the 

corresponding fMRI images using the computational model. The experiments start by 

characterizing individual cases and gradually incorporating more general analyses, 

eventually showing that the effects are robust and emerge across the entire collection of 

data and subjects. The human subject study completes the investigation by showing that 

the effects are real and understandable to the subjects. The experiments thus provide a 

comprehensive analysis towards understanding how the brain constructs sentence 

meanings from word features.  
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More specifically, Chapter 2 presents the foundations on how the semantic 

knowledge is grounded in the brain, includes different semantic models, and the tools and 

approaches used in this dissertation. 

Chapter 3 introduces the framework to account for context effects in the brain. 

The chapter describes the computational model that is based in the brain-based theory, is 

implemented using neural networks, and is designed to interpret fMRI patterns to reflect 

the semantic space of the brain.  

Chapter 4 demonstrates that context-based changes are likely to be nonlinear: A 

linear mapping (regression) and a nonlinear mapping (neural network model) are 

compared in these representation cases, focusing on a verb, a noun and an adjective.  

Chapter 5 tests the context effect systematically across subjects and across 

examples. It studies the effects of similar context on different words and of different 

contexts. It also characterizes differences in context in terms of the centrality of meaning. 

Chapter 6 expands the analysis through an aggregation study to demonstrate that 

the effect is robust and general across the entire corpus of sentences and case roles. 

Similar sentences have a similar effect, and this effect is consistent across all words in the 

sentence.  

Chapter 7 provides evidence that the context-induced changes are real and 

actionable: The context-dependent changes are consistent with human judgements. 

Chapter 8 reviews the model limitations and discusses the soundness of the brain-

based theory. In addition, it outlines an NLP application that utilizes the context-based 

word representations, and proposes future work by integrating linguistic knowledge to the 

CEREBRA model.  

Chapter 9 summarizes the contributions of this dissertation and concludes that the 

computational model is a useful tool for interpreting fMRI patterns to reflect the semantic 
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space of the brain. Its functionality can further assist researchers to understand how the 

brain’s semantic knowledge is organized, and it provides a human-like context-based 

representations toward AI applications of natural language understanding.  

1.5 CONTRIBUTIONS 

Overall, this research contributes to the development of a unified theory of concepts 

and the organization of the semantic space. CEREBRA model extends the CARs static 

representations into context-modified representations. As a result, CEREBRA advances 

grounded word representations by encompassing the full range of human experience as a 

fully multimodal semantic model. Further, it provides a mechanism for adapting 

representations to context so that robots can behave more robustly. Finally, provides a 

mechanism for mapping fMRI to interpretable representations so that insights can be 

obtained. 
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Chapter 2 
 
Background and Related Work 

 

Concept representation and word meaning are the main focus of this dissertation. Thus, 

the key issues are: How are concepts represented in the brain? How is word meaning 

represented? How do word meanings change during concept combination or under the 

context of a sentence? What tools and approaches serve to quantify such meaning 

representation changes? This chapter presents an overview of the foundations necessary 

to answer these questions. 

2.1 MOTIVATION 

Over the last few years, many empirical findings have shown the connection 

between perception (information collected from the environment) and action (information 

emitted to the environment) with language comprehension (Barsalou, 2008, Binder & 

Desai, 2011; Kiefer & Pulvermüller, 2012; Meteyard et al., 2012). Listening to a sentence 

such as The child threw the book regulates the activation of hand-related areas of the 

motor cortex, even if individuals are not performing any hand-related action. These 

findings suggest that linguistic meaning is grounded in such systems (i.e., the motor 

system), challenging the traditional idea that word meaning can be explained on amodal 

and abstract symbols proposed by classic cognitivists (Fodor, 1983; Pylyshyn, 1984). 

Meaning comes across in different ways: the dark clouds in the sky mean rain, a 

yellow bus means school bus, a mountain lion nearby means danger. For humans, 

linguistic meaning makes it possible to build complex ideas (i.e., create an unlimited set 
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of meanings from different combination of concepts), and thus connect the internal 

knowledge with the external world.  

Just like language, this internal knowledge is acquired from infancy. Large 

amounts of knowledge are learned from interacting with the environment: manipulating 

tools, preparing, smelling, and tasting food, watching animals move or make sounds, 

listening to natural sounds, music, and noise. From these perceptions, people develop 

internal representations (knowledge) to discuss and exchange ideas about the world. This 

knowledge is called semantic knowledge, and the memory involved in its representation 

and processing is called the semantic memory (Binder et al., 2009, Binder & Desai, 2011; 

Cree & McRae, 2003; McRae & Jones, 2013). 

Neuroimaging (fMRI) technology has recently become a major tool to study 

semantic knowledge. It measures human brain activity non-invasively during word and 

sentence comprehension. Several fMRI studies on healthy volunteers and brain-impaired 

patients support the claim that these knowledge representations are at least partly 

“embodied” in different neural systems that play an essential role during conceptual 

acquisition and recall (Barsalou, 2008, Binder & Desai, 2011; Kiefer & Pulvermüller, 

2012; Meteyard et al., 2012).  

Contemporary theories of semantic knowledge representation suggest that 

concepts are represented as sets of features that are the basic components of meaning. In 

the embodied approach, the meaning of a concept is not a set of verbal features that 

people associate with the concept, but rather a set of neural processing modalities that are 

involved while experience instances of a concept (Barsalou, 2008, Binder et al., 2009, 

Cree & McRae, 2003). For example, while experiencing a dog for the first time, 

individuals gather their understanding by the sensory input associated with them, i.e., a 

dog is loud and furry. The neural processing modalities involved in this experience are 
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Visual, Auditory and Somatosensory. Every time they experience the concept dog in the 

future, it will stimulate these same neural processing modalities (Barsalou, 2008, Binder 

et al., 2009, 2011, 2016a, and 2016b; Damasio, 1989). Thus, concepts are instrumental to 

cognition because they eliminate the need to re-learn an object’s features every time it is 

experienced (Murphy, 2002). 

Studying the neurobiology of the semantic memory, Binder et al. (2009, 2011, 

2016a, 2016b) identified a distributed large-scale brain network of semantic processing 

systems that addresses many of the unresolved issues on concept representation (i.e., 

symbol vs. feature-based representation, feature selection, amodal vs. multimodal 

representation). Subsequently, they defined a model of semantic representations based 

entirely on such set of neural processing systems. This approach provides a direct 

correspondence between semantic content and neural representations (i.e., concept 

grounding; Harnad, 1990), and suggests that concepts can be represented through a 

number of weighted semantic features corresponding to different brain areas (Binder et 

al., 2009, 2011, 2016a, 2016b).  

Binder’s brain-based semantic feature model provides the background of the 

theoretical part of this dissertation. Likewise, a neural network model together with a 

collection of fMRI data constitute the foundation for the experimental portion. 

Combined, they form the basis for the framework developed in Chapter 3, to identify the 

changes in word meaning under different contexts.  

The following sections review the theory of concept representations and word 

meaning, including: (1) fMRI technology and grounded cognition, (2) semantic 

organization in the brain, (3) text-based and multimodal computational semantic models, 

(4) the neural-based semantic model, and (5) the FGREP neural network model for 

learning representations. Together, they provide the basis for the neural-based semantic 
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model developed in this dissertation to address the questions posed in the introductory 

paragraph. 

2.2 FMRI TECHNOLOGY AND GROUNDED COGNITION 

Are concepts grounded in perceptual and motor systems? Neuroimaging tools 

have become suitable tools to study the relationship of symbols, meaning and grounding. 

During concept understanding, this technology has shown significant correlation between 

the activity of a certain brain areas and properties of the task. This section briefly reviews 

brain imaging technology, followed by an analysis of the different theories of perception 

and cognition based on it.  

2.2.1 The fMRI Technology 

The availability of brain imaging tools has enhanced interest in how concepts are 

represented in human neural systems. Functional Magnetic Resonance Imaging (fMRI) is 

a technique for measuring brain activity (H. Devlin, 2018). It works by detecting the 

changes in blood oxygenation and flow that occur in response to neural activity. When a 

brain area is more active it consumes more oxygen, thus the blood flow increases to the 

active area. MRI uses magnetic resonance to form images of the anatomy of the brain. 

MRI becomes functional by adding a blood oxygen level-dependent (BOLD) signal, to 

reveal the anatomy of the brain and to show where blood oxygen is being heavily used 

during certain tasks. Thus, fMRI is an extension of MRI to capture functional changes in 

the brain caused by neuronal activity.  

As a brain imaging technique, fMRI has the following significant advantages over 

other technologies such as EEG (Electroencephalography) and TMS (Transcranial 

Magnetic Stimulation): (1) It is non-invasive and does not involve radiation, therefore is 
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safe for the subject, (2) It is possible to read the brain activations while a subject is 

performing cognitive tasks, and (3) It achieves high spatial resolution. On the other hand, 

it is limited of temporal resolution because the hemodynamic response imposes a major 

constraint on the time-precision of the measurement. 

The two different states of hemoglobin, i.e., oxygen-rich oxyhemoglobin vs. 

oxygen-poor deoxyhemoglobin, differ in their magnetic properties. The large fMRI 

magnets are sensitive to changes in the concentration of deoxyhemoglobin. As neural 

activity increases, blood flow to the vasculature of the brain increases, altering this 

concentration. Consequently, fMRI is used to produce activation maps showing which 

parts of the brain are involved in a specific mental process. 

The cylindrical tube of an MRI scanner houses a powerful electro-magnet. A 

typical research scanner has a field strength of 3 Teslas, about 50,000 times greater than 

the Earth’s magnetic field; in some cases, scans up to 7 Teslas have been used (Morris et 

al., 2019; Yacoub et al., 2001). 

Significant progress has been achieved over recent decades in understanding how 

conceptual knowledge is represented in the human brain. In particular, fMRI technology 

has encouraged cognitive scientists to explore the hypothesis regarding the knowledge 

organization and content of the brain. This technology allows researchers to observe 

regions of interest of brain activity while participants perform cognitive tasks such as 

reading sentences.  

2.2.2 Grounded Cognition 

The interaction and connection between body and mind, i.e., sensory-motor 

experience, and conceptual processing, has been studied for a long time. The history of 

philosophy on human cognition includes philosophers divided among empiricism, 
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idealism, and rationalism (Borghesani, 2017). According to the proponents of the first 

view (e.g., Thomas Hobbes, John Locke, David Hume), at birth human’s mind is a tabula 

rasa, i.e., a clean slate ready to be filled with knowledge acquired through sensory-motor 

experiences. Idealists (e.g., Plato, Kant) believe that humans are born with innate ideas, 

basic conceptual knowledge that does not require learning processes. Rationalists (e.g., 

Descartes, Spinoza, Leibniz) reject the connection of knowledge with perception, and 

claim that knowledge can be derived from reasoning independently of any sensory data.  

Until recently, Descartes’ mind-body dualism theory (i.e., a separation between 

mental and physical properties) was the norm, however, contemporary cognitive 

scientists revived the empiricist view that argues that sensory and motor experiences form 

the basis of conceptual knowledge. Under the label of Embodied Cognition, this theory is 

based on the hypothesis that all kinds of cognitive processes are rooted in the perceptual 

and action systems (Andrews et al., 2009, Binder et al., 2011).  

Within the Embodied Cognition principles, the degree of embodiment varies 

across theories from strongly embodied to completely disembodied representations. 

Disembodied models propose a complete separation in which conceptual processing is 

based entirely on amodal, symbolic representations (Fodor, 1983; Pylyshyn, 1984). Other 

theories like Grounding by Interaction propose that conceptual and perceptual 

representations are different but interact closely, so that amodal symbols can derive 

content from the perceptual knowledge (Damasio, 1989; Patterson et al., 2007). Contrary 

to both of these theories, Strong Embodiment theory states that conceptual representation 

is grounded in the sensorimotor system. This approach proposes a direct connection 

between experiences and the semantic memory (Barsalou, 2008; Martin, 2007). In 

contrast to all of these theories, neuroanatomical evidence for multiple modality-specific 

systems converging on a common semantic network suggests a process of Embodied  
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Figure 2.1: Embodied Abstraction. The central idea is that concept knowledge is built 
from experience. Therefore, knowledge representation is not static but changes with 
experience. The attribute representation captures the embodied abstraction of the concept 
as experienced by humans. (Reproduced with permission from Binder et al., 2011). 

 

Abstraction, in which conceptual representations are formed in multiple levels of 

abstraction from sensory, motor and affective input (Binder et al., 2009, 2011, 2016a, 

2016b). 

These levels of abstraction are not accessed or activated under all conditions. 

Instead, access depends on the type of task, i.e., familiar context and rapid processing 

needs (Binder & Desai, 2011). The top level contains schematic representations that are 

highly abstracted from specific representations in the primary perceptual-motor systems. 

In novel contexts or when the task requires deeper processing, sensorimotor-affective 

systems make a major contribution to supplement the representations. This hierarchical 

representation is known as an heteromodal approach (Binder & Desai, 2011; Thompson-

Schill, 2003).  

Figure 2.1 shows the central idea of this approach as concept representation 

proposed by Binder et al. (2009, 2011, 2016a, 2016b). The main point is that conceptual 
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knowledge is built from experience: (1) humans learn concepts (list of features) from 

birth throughout senses and mental states; (2) when learning new concepts, humans use 

past experiences to find similarities and differences; (3) concepts are encoded according 

to the way they were experienced; (4) similar experiences are encoded with similar neural 

patterns; (5) the encoding is done by a distributed neural network that includes a 

convergence zone to generalize the concept representation (i.e., classification); and (6) by 

analyzing similarities and differences of concept activation patterns, it is possible to 

understand novel brain activity. A comprehensive description of his theory will be 

presented in Section 2.5. 

2.3 SEMANTIC ORGANIZATION IN THE BRAIN  

Neuroimaging techniques have increased interest in neural and semantic 

organization of the brain. This section reviews the Semantic Memory function, followed 

by relevant issues regarding concepts, word meanings, conceptual combinations, and 

sentence context and contextual modulation (i.e., how sentence context modulates the 

meaning of a word).  

2.3.1 Semantic Memory 

Although philosophers have been wondering for centuries over the nature of 

concepts, semantic memory became a topic of formal study in cognitive science only 

recently (Binder & Desai, 2011). Tulving (1972) proposed that long-term memory is 

subdivided into declarative (facts) and procedural (skills) components. Declarative 

memory is further divided into two different but interacting systems:  

•   Semantic Memory is vital for understanding the meanings of words as 

well as knowing the facts about the world. It includes general knowledge 
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independent of personal experiences with no connection to specific time or 

place in which it was acquired.  

•   Episodic Memory contains information about individual’s own personal 

experiences. Episodic information is stored with information about when 

and where it was learned. 

Therefore, semantic memory is the aspect of human memory that corresponds to 

general knowledge of objects, word meanings, facts and people, without connection to 

any particular time or place (Patterson et al., 2007). For example, knowing that you have 

been confined to your house since early March of year 2020 due to the COVID-19 

pandemic, is stored in episodic memory. Knowing that Coronavirus refers to a highly 

contagious disease, that primarily spread between people during close contact, via small 

droplets such as coughing, sneezing, and talking, and common symptoms including 

cough, fever, fatigue, shortness of breath, and loss of smell, are all forms of semantic 

memory.  

Consequently, semantic memory is linked to language because it includes word 

meanings, which are mostly shared across individuals in a given culture but can differ 

between cultures. For instance, English and Italian speakers both have different words for 

the body parts foot (It. piede) and leg (It. gamba), while Japanese speakers have one word 

ashi that refers to both foot and leg (Borghesani, 2017; Vigliocco et al., 2007). Thus, if 

word meanings map into people’s mental representation of the world (e.g., objects, 

actions, events), are concepts and word meaning representations the same? Conceptual 

knowledge is believed to be universal (i.e., consistent) in its core features across cultures, 

contrary to the cross-linguistic variability of word meanings, like the example above 

(Vigliocco et al., 2007). Next section will discuss such issues referring to concepts, word 

meanings, their representations, and how they are related.  
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2.3.2 Concepts and Word Meaning 

Categories of concepts include people, events, objects or ideas. Concepts in turn 

can be concrete or abstract. Concrete concepts like fruits, animals, buildings, and man-

made tools have shape, dimensions, something that can be seen, heard or touched. 

Abstract concepts such as happiness, beauty, energy, idea, or holiday are not possible to 

perceive with the senses. These concepts are often difficult to understand specially by 

young children but as they grow, they develop strategies to master them. Usually, abstract 

concepts include a variety of experiential domains (spatial, temporal, social, affective, 

cognitive etc.) and the general agreement is that many abstract concepts are learned by 

experience with complex situations and events. (Barsalou, 1999; Binder, 2016a; Borghi et 

al., 2011; Vigliocco et al., 2009; Wiemer-Hastings & Xu, 2005).  

Many researchers assume that concepts and word meanings are the same, or at 

least are linked on a one-to-one mapping (Humphreys et al., 1999). However, they cannot 

be the same simply because speakers of any language have far many more concepts than 

words (Vigliocco et al., 2007). According to Barsalou (1987), meanings are generated 

when a word is recognized in interaction with its context. Thus, word meanings use 

concepts but are not equal to concepts (Barsalou et al., 1993). Thus, how is the meaning 

of a word represented?  

The earliest theory of concept representation may be traced to Aristotle (Cohen & 

Murphy, 1984). The Classical view is based on the idea that concepts are defined by a 

list of characteristics (features) necessary for the object or instance to be a member of that 

category. Each concept has a definition characterizing its “essence” and providing the 

necessary and sufficient conditions for concept membership. For example, the concept 

bachelor includes the characteristics unmarried, adult and male. Objects that do not 
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match all the features cannot accurately be named by that word. An object that is missing 

the feature unmarried might be called a man, if the married feature is present, a husband.  

This view of concepts was dominant until 1950s. It was then challenged by 

studies done by Rosch (Rosch & Mervis, 1975) demonstrating that people do not hold 

such lists of attributes to decide a category membership. For example, the concept 

bachelor does not match the Pope, although he definitely satisfies bachelor’s definition 

(Cohen & Murphy, 1984). She found that individuals keep a mental picture of what made 

up an example of a member of a class, giving rise to the prototype theory (Rosch & 

Mervis, 1975).  

The Prototype theory builds on the typicality effect, i.e., that concepts are 

organized around examples. A prototype is an object or item that is the most typical of 

that concept. The prototype could be a real example that has been experienced or an 

amalgamation of various examples of the concept (i.e., an abstraction). To determine 

category membership for novel items, the number of components that the two concepts 

have in common is compared. For example, the reason apples are considered to be more 

typical than plums is because the concept apple shares many features with the concept 

fruit. Although, strong evidence supported this theory, some problems started to emerge 

for cases where participants judged items to be more typical of a category in some 

situations than in others. For example, cottage cheese is more typical of pudding than 

cheese, but it is categorized as cheese.  

The Exemplar theory challenged the other theories by proposing that specific 

examples of concepts are learned, and stand as the representation, instead of a 

generalized prototype, or a list of specific mandatory characteristics. Not all the 

experienced examples are stored in memory, but many are retained. This theory faced 
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challenges too, as in the number of exemplars that should be stored take larger space than 

a single prototype would need (Brooks, 1978). 

Barsalou (1993) proposed the Experiential view based on the idea that 

conceptual representations are learned from experience and are built from smaller 

components. The representations are more abstract and schematic, excluding many 

details present during perception (e.g., chair representation might include “seat”, “back” 

and “legs”, while omitting color and texture). These representations do not appear from 

the basic sensory-motor modalities; instead, perceptual representations emerge from any 

aspect of experience, including proprioception (sense of position, location, and 

orientation), introspection (self-examination of representation states), emotions, and so 

on.  

In this theory, the representation of meaning is considered in terms of a list of 

features, that is, the properties collectively express the meaning of a word. However, 

some approaches differ in the type of conceptual features used, with some concepts 

relying on sensory-related properties, and others on motor-related properties (e.g., 

Barsalou, 1993; Cree & McRae, 2003; Damasio, 1989; Vigliocco et al., 2004). 

Consequently, some studies have attempted to gain insight into those dimensions of 

meaning by asking participants to provide a list of the features (semantic feature norms) 

that they believe to be important in describing and defining the meaning of a given word 

(Cree & McRae, 2003; McRae et al., 1997; Vigliocco et al., 2004; Vinson & Vigliocco, 

2002). A common characteristic of these models is the fact that the semantic features are 

chosen a priori by the investigators and may not reflect the full range of properties of 

meaning that may be relevant to the representations of the words (Vigliocco et al., 2007). 

In addition, the features are problematic in the sense that these features are complex 
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concepts themselves, i.e., “seat’, ‘back’, and “legs”, are components of a larger entity 

such as chair, but they are no more basic that the entity they define.  

A major departure from verbal feature analysis is an abstract embodiment theory 

of knowledge representation that provides a straightforward analysis of conceptual 

content in terms of sensory, motor, affective, and other experiential phenomena and their 

corresponding modality-specific neural representations. The neurobiologically defined 

experiential attributes provide a set of primitive features for the analysis of conceptual 

content, while simultaneously grounding concepts in experience (Binder et al., 2011). 

The main idea in this brain-based theory is that people weigh concept features 

differently based on context, i.e., they construct meaning dynamically according to the 

combination of concepts that occur in the sentence. Thus, this model allows conceptual 

representations to be dynamically sensitive to context (Binder et al., 2011; Yee & 

Thompson-Schill, 2016). More details about this brain-based concept attribute 

representation theory are given in Section 2.5. 

Finally, returning to the questions of how the meaning of a word is represented 

and how concepts and word meanings are related, there seems to be a clear distinction 

between conceptual and semantic levels of representation. One way in which this 

distinction is achieved is by assuming that concepts consist of grounded componential 

feature representations, and word meanings (lexical semantics) bind these representations 

with the goal of using them in language. Simply put, word meanings are represented as 

lists of features that together express the meaning of the word (Damasio et al., 2004; 

Vigliocco et al., 2004, 2007). Next two sections discuss how do word meanings change 

during concept combination and under the context of a sentence.  
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2.3.3 Conceptual Combination  

Conceptual combination is the process where complex concepts are constructed 

from simpler constituents (e.g., olive oil from olive and oil). Generating such 

combinations is an intriguing example of a high level cognitive process that humans 

perform very quickly. People are likely to create novel noun-noun phrases in their 

conversations i.e., dancer game, and listeners are capable at understanding them, i.e., 

playing games by dancing (Murphy, 1988).  

In language, complex concepts are expressed by noun phrases of the form 

adjective-noun (i.e., yellow car), noun-noun (i.e., trash can), noun-verb (i.e., duck slept), 

and verb-noun (i.e., drank tea). Wisniewski (2000) distinguished three types of 

conceptual combination interpretations: (1) property (or attribute) combination involves 

one or a few properties of one word applied to the combination (e.g., red apple is an 

apple that can be red), (2) relational combination usually requires a thematic relation such 

as an association or world knowledge to explain the combination (e.g., apple basket is a 

basket that holds apples), and (3) hybrid combination normally applies to a conjunction 

of the constituents or a cross between them (e.g., apple pie is a pie made of apples), 

(Wisniewski, 1997). 

For example, listeners must realize that red apple could mean just a fruit having a 

certain color by selecting salient features that dominate in the combination. The noun 

apple is defined by color, size, shape, taste etc. and one or more of those dimensions will 

be modified during the attribute combination. In relational combination, the modifier 

features have nothing to do with the combination. For example, apple basket or apple pie 

contain a variety of relations that often do not include apple’s features as in apple baskets 

are not edible, red or a fruit. To help understand that apple pie is made of apples, but 

apple baskets are not, a thematic relation needs to be built based on world knowledge 
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about plausible combinations. In the hybrid combination, interactions during conceptual 

combination are likely to take the form of additional processing within the neural systems 

where attribute representations overlap. This additional processing is necessary to 

compute the new attribute representations resulting from conceptual combination, and 

these new representations tend to have added salience. Usually, the more communalities 

the constituents have, the more likely can be interpreted as a hybrid combination. For 

example, apple pie, both constituents share features such as taste, smell, and edible.  

All three types of combinations contribute significantly to the construction of new 

or complex concepts (Gagné & Shoben, 1997; Murphy 1990; Pecher, Zeelenberg, & 

Barsalou, 2004). Similarly, a mechanism proposed by (Medin & Shoben, 1988) known as 

the centrality effect, plays a useful role in the process of conceptual combination not 

being considered in Wisniewski’s (1997) models. Centrality expresses the idea that some 

attributes are true to many different concepts, but they are more important to some 

concepts than others (e.g., it is more important for basketball than for cantaloupes to be 

round). 

The Centrality effect cannot be used to combine concepts by adding or changing a 

single feature. Attributes are not independent of each other, and the interpretations relies 

on the relationship among attributes and on the multidimensional effects that an attribute 

has on a noun. For example, small pen vs. small car, to interpret such combinations, 

world knowledge needs to be used to obtain the correct relationship. 

2.3.4 Sentence Context/Contextual Modulation 

While comprehending a sentence, sensory stimuli must be mapped into meanings. 

This process not only involves determining the meaning of individual words but also the 

meaning of the combination of words that appear in a sentence (Humphries et al., 2008).  
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Context provides the background for the real action of the main events. More 

importantly, as a consequence of learning and semantic processing, context often helps 

select appropriate behaviors and determine the explicit and implicit content of human 

thought (Rudy, 2009). For example, the nouns boat and basketball each have their own 

meanings, however, when the words appear in the context of a sentence such as Chris 

used a basketball as a life preserver when the boat sank (Barsalou, 1982), the context 

brings up unusual features to mind such as “basketball floats”. Thus, when words share 

features, those aspects of the word representation that are relevant to the context are 

strengthened (Hampton, 1997; Kiefer & Pulvermüller, 2012; Medin & Shoben, 1988; 

Mitchell & Lapata, 2010; Murphy, 1990; Wisniewsky, 1998).  

Along those lines, conceptual representations are dynamic, changing not only in 

response to context as it relates to stimulus modality and task, but also in response to the 

context an individual brings with them, i.e., recent or long-term experience. Putting all 

dynamic effects together creates a (moving) picture adjusted by a semantic system that is 

(1) experience-based such that it allows representations to change over time, and (2) 

distributed such that various features can become active at different rates, in different 

situations (Yee & Thompson-Schill, 2016).  

Thus far, the fMRI technology and the main topics of semantic organization have 

been reviewed. Next section will present different computational models of conceptual 

representation. Such models have the potential to explain the organization of the semantic 

memory and thus provide the groundwork for this dissertation.  

2.4 COMPUTATIONAL MODELS OF SEMANTIC REPRESENTATION  

Current computational models of semantic representation address how such 

representations may develop in the first place. (Yee et al., 2018). While there are many 
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models in the literature, most of them fall into two general classes: theories based on 

relations among words, i.e., those in which a word's meaning is represented by way of its 

relation to other words (Bruni et al., 2014; Kintsch & Mangalath, 2011; Mitchell, 2008; 

Mitchell & Lapata, 2010), and feature-based, i.e., those in which a word's meaning is 

represented as basic components of meaning, which together make the meaning of the 

word. Feature-based models further differ in the way the features are defined, i.e., 

whether they are abstract or embodied (Cree & McRae, 2003; McRae et al., 1997; 

Vigliocco et al., 2004; Vinson & Vigliocco, 2002).  

The following models are briefly reviewed with emphasis on aspects relevant to 

this dissertation. First, a currently dominant model which constructs semantic 

representations based on relations between words (a.k.a. distributional semantics), is 

described. This model uses large corpora of texts in order to compute aspects of a word’s 

meaning based on those other words found in the same linguistic contexts, i.e., dog is 

related to leash, bone, and collar (Mitchell et al., 2008). Then, an alternative view, where 

models derive semantic representations using multimodal information i.e., textual and 

feature-based visual inputs, is discussed. Last, Section 2.5 describes a third kind of 

feature-based model proposed by (Binder et al., 2009, 2011, 2016a, 2016b) that uses 

“experiential attributes” to represent word meaning. This third approach is the basis for 

the semantic representations in this dissertation. 

2.4.1 Text-based Semantic Representation 

A text-based computational model designed to predict neural activation patterns 

to understand how conceptual knowledge is represented in the brain was first proposed 

by Mitchell et al. (2008). The model uses word co-occurrence statistics derived from a 

large text corpus to model semantic content. The central idea is that the neural basis of 
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the semantic representation of concrete nouns is related to the distributional properties of 

those words in a large scale corpus of language. 

A collection of fMRI patterns for 60 different word-picture pairs that include five 

items from each of 12 semantic categories (animals, body parts, buildings, building parts, 

clothing, furniture, insects, kitchen items, tools, vegetables, vehicles, and other man-

made items) were recorded. A set of 25 verbs that reflect the basic sensory and motor 

activities, actions performed on objects, and actions involving changes to spatial 

relationships was then selected: see, hear, listen, taste, smell, eat, touch, rub, lift, 

manipulate, run, push, fill, move, ride, say, fear, open, approach, near, enter, drive, 

wear, break, and clean. These verbs were used as semantic features in two ways: by 

counting word co-occurrence with the object stimulus word, and through fMRI patterns 

(for each verb). 

The model predicts the neural activation for any given stimulus word w using a 

two-step process (Fig. 2.2). The first step encodes the meaning of stimulus word w as a 

25-dimensional vector, with each value corresponding to the normalized sentence-wide 

co-occurrence of stimulus word w with one of 25 selected verbs using a large text corpus 

(Brants & Franz, 2006). For example, one intermediate semantic feature might be the 

frequency with which celery co-occurs with the verb taste. The second step predicts the 

neural fMRI activation at every voxel location in the brain as a weighted sum of neural 

activations contributed by each of the intermediate semantic features. 

The results identify a direct, predictive relationship between the statistics of word 

co-occurrence in text and the neural patterns associated with thinking about the word 

meaning. Also, the computational model trained to make these predictions shed light into  
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Figure 2.2: Predicting fMRI activation for nouns. First, the model encodes the meaning of 
the input word via intermediate semantic features (extracted from a large corpus of text). 
Then, predicts the fMRI image as a linear combination on the fMRI signatures associated 
with each of these intermediate semantic features. Predicting fMRI activation using text-
based semantic representations. (Mitchell et al., 2008). 

 

how the neural activity can be associated with different semantic components of the 

objects. This model focuses on encodings of abstract semantic concepts denoted by 

words and predicts brain-wide fMRI activations based on text corpus features that capture 

semantic aspects of the stimulus word, compared to visual or auditory features that 

capture perceptual aspects. 

This distributional, or text-based, model of semantic representations helps 

understand how concepts are represented in the brain. Such models became popular 

because they make good predictions about the structure of the semantic space in the 

brain. Also, they are fast and easy to construct on a very large scale to model the way 

humans acquire and represent knowledge. In contrast to this alternative, semantic 

representations based on multimodal information are reviewed next. 
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2.4.2 Multimodal Semantic Representations  

Many experimental studies in language acquisition suggest that word meaning 

arises not only from exposure to the linguistic environment but also from our interaction 

with the physical world (Andrews et al., 2009; Bruni et al., 2014; Feng & Lapata, 2010; 

Lenci, 2008). There is therefore an increasing interest on grounding semantic models in 

sensory modalities (Andrews et al., 2009; Bruni et al., 2014; McRae et al., 2005).  

Early studies demonstrated that combining text-based distributional information 

with man-made conceptual attributes is an alternative for perceptual experience, 

providing a good approximation to human-like semantic representations (Andrews et al., 

2009). However, in most cases both components were derived from linguistic 

information. Recent models of brain analysis have used multi-modal inputs in which the 

features are assumed to be grounded (Anderson et al., 2013; Feng & Lapata, 2010; 

Silberer et al., 2017).  

Along these lines, Feng & Lapata (2010) proposed the first multimodal 

distributional semantic model that combines visual and linguistic representations of word 

meaning. The model learns from natural language corpora paired with images, assuming 

the images describe some of the document’s content. It extracts the semantic 

representation from a large collection of BBC News articles and their associated images 

without human involvement. Words are represented by their distribution over a set of 

latent multimodal dimensions, or topics derived from the textual and visual features. The 

idea is to build a common latent space by merging the two sources of information. The 

main limitations of this approach are that textual and visual data must be extracted from 

the same corpus, constraining the choice of corpora to be used, and the approach does not 

allow much flexibility in how the two information channels are combined. 
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Similarly, Anderson et al. (2013) tested whether image-based models capture the 

semantic patterns that emerge from fMRI recordings of neural signal. They used the 

fMRI collection of Mitchell (2008), focusing on a subset of 51 words out of the original 

60 words. They collected text co-occurrence statistics from ukWaC corpora and the 

English Wikipedia's full content (2009) combined, by selecting 20K, 5K, and 5K most 

frequent nouns, adjectives and verbs respectively.  

The visual model was based on that of Bruni et al. (2014), which extracts features 

from images separately from the object and its surrounding context, leading to a better 

performance. Particularly when evaluating inter-object similarity, the context in which 

the object is located can otherwise contribute significantly to semantic representation. 

The collection for the visual data was extracted from ImageNet (Deng et al., 2009), a 

large image database organized on top of the WordNet hierarchy, known for high quality 

images with concept annotations. 

Once the two modalities were built, they were combined by concatenation, and 

the relationship between the distributional models and the brain data was evaluated by 

using representational similarity analysis (i.e., correlation analysis). They found that 

image-based distributional semantic largely correlate with fMRI-based neural similarity 

patterns mainly for categories of concrete concepts. Correlations at the conceptual level 

were low, which suggests the need to develop better distributional models and/or reduce 

the noise inherent in neural data. Moreover, image-based models complement a state-of-

the-art text-based model, with the best performance achieved when the two modalities are 

combined. 

A novel approach developed by Silberer et al. (2014) utilized multimodal 

representations by using stacked autoencoders (deep networks) to learn higher level 

embedding from text and visual input (Silberer et al., 2017). Existing models (including 
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those reported above) present words as vectors resulting from a combination of 

representations with sometimes different statistical properties that do not necessarily have 

a natural equivalence (e.g., text and images). The Silberer et al. model computes meaning 

representations at a finer level of granularity for individual words and is unique in its use 

of attributes as a means of representing the textual and visual modalities. Since humans 

acquire a large amount of their semantic knowledge from perceptual input (Anderson et 

al., 2013; Bruni et al., 2014; Silberer and Lapata, 2017), the goal was to capture such 

intrinsic meaning.  

Earlier work by Silberer et al. (2013) had shown that automatically predicted 

visual attributes can be excellent substitutes for feature norms (i.e., features obtained 

from human participants to describe the meaning of a word). The Silberer et al. (2013) 

model then learned multimodal representations from attributes that were automatically 

inferred from text and images. Textual attributes were extracted from a 2009 download of 

the English Wikipedia using Strudel, a fully automatic approach for extracting weighted 

word attribute pairs (e.g., swan-bird:n) from a lemmatized and POS-tagged corpus. This 

step returned a total of 2,362 dimensions for the text-based vectors. Visual vectors were 

obtained by using an SVM-based attribute classifier that predicts visual attributes for 

images. The dataset was a taxonomy of 636 visual attributes (e.g., has_wings, 

made_of_wood) and nearly 700K images from ImageNet, and was used to form 414-

dimensional vectors for each noun. A stacked autoencoder was then used to project these 

linguistic and visual vectors onto a unified representation that fuses the two modalities 

together. The goal was to learn multiple levels of representations through a hierarchy of 

network architectures, where higher-level representations are expected to help define 

higher-level concepts. 
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Experimental results in two tasks, i.e., word similarity and word categorization, 

showed that their model outperforms other models trained on the same attribute-based 

input. Also, the evaluation revealed that the bimodal model (combined representation) is 

superior to the unimodal, and that higher-level unimodal representations are better than 

the original input.  

These multimodal studies suggest that semantic features provide useful insight 

into several cognitive process regarding concept representation, categorization, and 

semantic memory. They are useful in different tasks such as testing hypothesis, 

constructing experimental stimuli, and designing experiments. In addition, semantic 

features are a convenient approach because: (1) they are a natural (human) way to express 

salient properties of word meanings (McRae et al., 2005), (2) they allow for easy 

integration of different modalities, and (3) they adequately describe visual components, 

e.g., objects, scenes (Silberer and Lapata, 2012).  

The computational models presented in this section claimed to have grounded the 

semantic representations by using features from the visual modality along with text. 

However, truly multimodal representations should account for the full array of human 

senses (Bruni et al., 2014). Next section presents such an approach: An abstract 

embodiment theory of knowledge representation that uses a set of neural features for the 

analysis of conceptual content, while simultaneously grounding concepts in experience 

(Binder et al., 2011). 

2.5 THE BRAIN-BASED SEMANTIC REPRESENTATIONS  

The vector representations reviewed in the previous section are based on word co-

occurrence and other automatically or manually generated feature modalities which do 

not provide precise information about the experienced features of the concept itself 
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(Anderson et al., 2016). They are missing intrinsic knowledge (i.e., they are ungrounded). 

Moreover, the abstract description of such representations significantly restricts the 

possibility of capturing important aspects of conceptual knowledge representation.  

One alternative proposed by Binder et al. (2009, 2011, 2016a, 2016b) is to model 

concept representations based on known brain systems. Most importantly, such 

representations are not limited to the classical sensory-motor dimensions associated to the 

strong embodied theories (Section 2.2.2). The following sections provide an overview of 

Binder’s proposed semantic brain systems, the heteromodal semantic processing model, 

and the theory of Concept Attribute Representation (CAR). 

2.5.1 Neural Brain Systems  

The CAR theory (a.k.a. The Experiential attribute representation model) is 

supported by substantial evidence on how humans acquire and learn concepts through 

sensory-motor, affective, social, and cognitive interactions with the world (Binder et al., 

2009, 2011, 2016a, 2016b). The central axiom of this theory is that concept knowledge is 

built from experience, as a result, knowledge representation in the brain is not static. This 

process starts from birth: babies learn about objects through sensory input (e.g., parrot is 

loud). As they develop, the dimensions to such concepts expand through more modalities, 

including visual, somatosensory, and auditory (e.g., parrot is green, has feathers, and is 

musical). Later in life, humans connect previous concepts to new ones (e.g., parrots are 

similar to penguins), while also learning how to differentiate between the concepts.  

The theory suggests that conceptual knowledge can be decomposed into a set of 

features that are mapped to individual brain systems. It is based on these assumptions: (1) 

recalling a concept stimulates the features that were active when the concept was first 

experienced; (2) concepts with similar features produce similar neural patterns; and (3) 
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context modifies the baseline meaning of a concept. This last assumption is the focus of 

this dissertation.  

Table 2.1 lists the set of features defined in CAR theory. The first column shows 

the brain systems: Vision, Somatosensory, Auditory, Gustatory, Olfactory, Motor, 

Spatial, Event, Cognitive, Evaluation, Emotion, Drive, and Attention. The second column 

shows the list of 66 features embodying the concept representations. The third gives a 

high-level description of each feature.  

These features were selected based on physiological evidence with two 

assumptions: (1) All aspects of mental experience can contribute to concept acquisition 

and, consequently, to concept composition; (2) experiential phenomena are grounded in 

neural processors representing a particular kind of experience. These features are all 

visible in the brain at the macroscopic scale of in vivo imaging, and they are represented 

as a continuous one-dimensional variable (i.e., a scalar quantity). Next, each brain system 

will be outlined with the proposed group of features and how they apply to a number of 

concepts. 

Visual System Visual features include luminance, size, color, texture, shape, motion, and 

biological motion. Within the shape-perception system, there are separate subsystems that 

primarily process faces, human body parts, and three-dimensional spaces. The following 

list outlines how each Visual feature applies to different concepts:  

•   Bright or Dark: Apply to concepts that are brilliant or obscure, e.g., sun, light, 

shine, ink, night, dark, and black. 

•   Color: Applies to color concepts, e.g., green, red. 

•   Motion, Fast or Slow: Apply to concepts that involve movement, e.g., run, dash, 

zoom, and walk, but also to nouns such as bullet, jet, hare, snail, and tortoise, and  
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Table 2.1: The twelve brain systems and the 66 features used as the basis for the CAR 
theory. The first column lists the brain systems. The second column includes the list of 
features as basic components of meaning. The third column presents a description of each 
feature. List of attributes representing the semantic system proposed by Binder et al., 
(2009, 2011). 

 
 

to verbs that describe patterns of movement such as turn, roll, bounce, float, spin, 

and twist. 

•   Biological motion: Applies to concepts that are key for animate entities related to 

face and body part actions, e.g., boy, girl, woman, and man. 

•   Shape: Applies to mass concepts, e.g., butter, coffee, rice. In contrast, Shape does 

not apply to substance concepts, e.g., water, metal, plastic. 

BRAIN 
SYSTEMS FEATURES EXPLANATION BRAIN 

SYSTEMS FEATURES EXPLANATION
Vision something that you can easily see S Landmark having a fixed location, as on a map
Bright visually light or bright P Path showing changes in location along a particular direction to path

V Dark visually dark A Scene bringing to mind a particular setting or physical location
I Color having a characteristic or defining color T Near often physically near to you (within easy reach) in everyday life
S Pattern having or defining visual texture or surface pattern Toward associated with movement toward or into you
I Large large in size Away associated with movement away from or out of you
O Small small in size Number associated with a specific number or amount
N Motion showing a lot of visually observable movement Time an event that occurs at a typical or predictable time

Biomotion showing movement like that of a living thing E Duration an event that has a predictable duration, whether short or long
Fast showing visible movement that is fast V Long an event that lasts a long period of time
Slow showing visible movement that is slow E Short an event that lasts a short period of time
Shape having a characteristic or defining visual shape or form N Caused caused by some clear preceding event, action, or situation
Complexity visually complex T Consequential likely to have consequences (cause other things to happen)
Face having a human or human-like face Social an activity or event that involves an interaction between people
Body having a human or human-like body parts C Human having human or human-like intentions, plans, or goals

S Touch something that you could easily recognize by touch O Communication a thing or action that people use to communicate
O Temperature hot or cold to the touch G Self related to your own view of yourself, part of YOUR self-image
M Texture having a smooth or rough texture to the touch Cognition a form of mental activity or a function of the mind
S Weight light or heavy in weight E Benefit someone or something that could help or benefit you or others

Pain associated with pain of physical discomfort V Harm someone or something that could cause harm to you or others
Audition something that you can easily hear A Pleasant someone or something that you find pleasant

A Loud making a loud sound L Unpleasant someone or something that you find unpleasant
U Low having a low-pitched sound Happy someone or something that makes you feel happy
D High having a high-pitched sound E Sad someone or something that makes you feel sad
I Sound having a characteristic or recognizable sound or sounds M Angry someone or something that makes you feel angry
T Music making a musical sound O Disgusted someone or something that makes you feel disgusted

Speech someone or something that talks T Fearful someone or something that makes you feel afraid
G Taste having a characteristic or defining taste Surprised someone or something that makes you feel surprised
S Smell having a characteristic or defining smell or smells   DR Drive someone or something that motivates you to do something
M Head associated with actions using the face, mouth or tongue Needs someone or something that would be hard to live without
O UpperLimb associated with actions using the arm, hand or fingers   ATT Attention someone or something that grabs your attention
T LowerLimb associated with actions using the leg or foot Arousal someone or something that makes you feel alert or excited (+/-)
O Manipulation a physical object you have personal experience using
R Object a physical object

�1
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•   Complexity: Applies to concepts related to animals, plants, and tools, e.g., car, 

plane, computer, dog, chicken, bird, hammer, cloud. Animal concepts tend to 

have more complex shapes. 

•   Face & Body: Apply to many human concepts including Face and Body 

themselves, but also to general human types and roles, e.g., boy, man, nurse. The 

Face feature may have a high value for specific individuals such as brother, 

father, and Einstein. 

Somatosensory System Somatosensory features represent body location (somatotopic), 

body position and joint force (proprioception), pain, and surface characteristics of objects 

(texture and temperature). Additionally, these features are multimodal because a body 

location touched by an object is the same as body location involved in manipulative 

motor actions of such an object. These features encode the action as the salient 

characteristic of the object rather than the tactile features (which is represented through 

the Motor System). The following list outlines how each Somatosensory feature applies 

to different concepts:  

•   Touch, Temperature, Texture, Weight & Pain: Apply to all living things, e.g., 

boy, mouse, duck, bird, tree; to events and places, e.g., summer, beach; to 

buildings and natural disasters, e.g., church, hospital, hurricane; to human roles, 

e.g., criminal, teacher, lawyer; to verbs, e.g., fly, kick, walk; and to artifacts, e.g., 

car, plane, newspaper. 

Auditory System The auditory cortex includes low-level areas tuned to frequency, 

amplitude, and spatial location, as well as higher levels that specialize in auditory objects 

such as environmental sounds and speech sounds. The following list outlines how each 

Auditory feature applies to different concepts: 
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•   Low pitch, High pitch and Loud: Apply to concepts with auditory characteristic, 

e.g., mouse noise, bell chime, piano sound, explosion sound. 

•   Music: Applies to concepts that refer to musical features, e.g., sing, song, melody, 

harmony, rhythm; and to entities, e.g., instruments, artist, theater. 

•   Speech: Applies to concepts that refer to speech-like sound, e.g., reporter, farmer, 

party, duck, church, embassy. 

Gustatory & Olfactory Systems Both features refer to concepts with Taste and/or Smell 

experiences such as food, drinks, places, events, animals, humans, plants and actions, 

e.g., bread, tea, coffee, restaurant, beach, forest, party, dog, boy, tree, dead. 

Motor System These features capture the degree to which a concept is associated with 

actions involving specific body parts. The following list outlines how each Motor feature 

applies to different concepts: 

•   Head: Applies to concepts related to face, mouth, and tongue movements, e.g., 

spoke, dinner, reporter, school, interview. 

•   Upper limb: Applies to concepts related to arm, hand, or fingers movement, e.g., 

restaurant, injured, write, pencil, football, piano, play, pilot, throw. 

•   Lower limb: Applies to concepts associated to leg or foot movement, e.g., kick, 

walk, football, steal, beach, cross. 

•   Object & Manipulation: Apply to concepts that refer to actions and personal 

experience performed with an object or instrument, e.g., steal, kick, walk, 

damage, flower, boat, television, pilot, author. 

Spatial System Spatial features generally involve multimodal inputs. For instance, 

perception of three-dimensional space is experienced via movement of the body 

through space, and often include the Visual and Auditory systems. Prepositions (i.e., 

about, from, in, far, behind) express most of the spatial content that occurs in English 
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language, but this semantic representation focus instead on verbs, nouns and 

adjectives. The following list outlines how each Spatial feature applies to different 

concepts: 

•   Landmark: Applies to concepts referring to large entities that have a fixed 

location, like mountains, buildings, and parks, e.g., church, hospital, library, lake, 

forest. 

•   Path: Applies to concepts denoting direction of motion and a type of path, e.g., 

hurricane, ascend, climb, rise, fall, jump, circle, run, walk, swim, mouse, horse, 

pilot. 

•   Scene: Applies to concepts describing spaces and buildings, e.g., kitchen, library, 

hospital, church; and to concepts that evoke scenes by thematic relations such as 

oven evokes kitchen. 

•   Near: Applies to concepts related to paths from an observer, e.g., arrive, depart, 

leave, return; and to entities associated with a path, e.g., bird, butterfly, bicycle, 

plane. 

•   Toward & Away: Apply to concept objects that are within reach, to actions 

performed on objects, and to objects that move toward and away to the self, e.g., 

pencil, book, give, punch, tell, throw, acquire, catch, receive, eat, car, hurricane, 

football, plane. 

Temporal & Causal Systems Temporal features refer to duration and temporal order 

of events. Causal features pertain to cause-and-effect relationship between concepts. 

The following list outlines how Temporal and Causal features apply to different 

concepts: 

•   Number: Applies to concepts referring to recurrent events, e.g., shower, breakfast, 

lunch, weekend, summer, school, payday. 
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•   Duration: Applies to concepts associated with a typical duration, e.g., breakfast, 

lecture, movie, shower; and to concepts that specifically refer to duration, e.g., 

minute, hour. 

•   Long & Short: Apply to concepts associated with a long or short duration, e.g., 

childhood, college, life, blink, flash, sneeze. 

•   Time: Applies to concepts associated with a particular or predictable point in time 

like recurring daily events, e.g., shower, breakfast, commute, lunch, dinner; to annual 

events, e.g., holidays, seasonal phenomena; and to phases of life, e.g., infancy, 

childhood, retirement. 

•   Causal: Applies to concepts associated with a clear preceding cause such as an 

event or situation, e.g., infection, kill, laugh, spill; and to those that occur without 

an apparent cause like natural phenomena, e.g., tornado, flood. 

•   Consequence: Applies to concepts referring to events and actions that have 

probable consequences, e.g., dead mouse, accident, summer, party, steal, injured, 

protest, break, hurricane. 

Social & Cognitive Systems Social features capture intentionality. They include 

events with social interactions as well as the degree to which a thing or an action 

reflects human or human-like intentions, plans, or goals. These features usually refer 

to people’s roles and actions. Social and Cognitive concepts involve partial 

simulation of the Cognitive system and a partial activation of the Somatosensory and 

Motor systems. The following list outlines how Social and Cognitive features apply 

to different concepts: 

•   Self: Applies to concepts (nouns and verbs) related to one’s view of oneself, and 

to concepts that describe an activity that is typical of oneself, e.g., party, school, 

dinner, teacher, scientist, write, walk. 
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•   Communication: Applies to verbal and nonverbal concepts associated with social 

interaction and communication, e.g., speech, book, meeting, speak, read, meet, 

give, editor. 

•   Human & Cognition: Apply to concepts that evoke human activities and thought, 

e.g., teacher, scientist, steal, write, voter, party, watch, school. 

Emotion & Evaluation Systems Emotion features include the degree of association of a 

target concept with each of Ekman’s basic emotions: anger, disgust, sadness, happiness, 

and surprise (Ekman, 1992). Also, the features include affective states that arise from a 

combination of more fundamental dimensions known as valence and arousal, leading to a 

separate features for pleasantness and unpleasantness. The following list outlines how 

Affect and Evaluation features apply to different concepts: 

•   Happy, Sad, Angry, Disgusted, Fearful, and Surprised: Apply to concepts related 

to an entity, object, event or place that evoke happiness, e.g., party, summer, 

beach; sadness, e.g., hurricane; accident, injured; anger, e.g., politician, protest, 

break; disgust, e.g., steal, terrorist, mouse; fear, e.g., policeman, flood, hospital; 

and surprise, e.g., interviewed, jury, party. 

•   Benefit, Harm, Pleasant, and Unpleasant: Apply to concepts associated to an 

entity, object, event or place that cause benefit, e.g., school, minister, book; harm, 

e.g., storm, steal, criminal; pleasantness, e.g., forest, theater, vacation; 

unpleasantness, e.g., commander, trial, storm. 

Drive System These features represent the degree of general motivation associated 

with the target concept, and to which the concept itself refers as a basic need. The 

following list outlines how each feature applies to different concepts: 
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•   Drives: Applies to concepts that motivates to do something. They are closely 

related to emotions, which are produced when needs are fulfilled or frustrated, 

e.g., school, teacher, steal, write, read, voter, run, vacation. 

•   Needs: Applies to concepts that help reach homeostasis (equilibrium) or enable 

growth-like physiological needs, e.g., food, rest, sleep, sex; also, security, social 

contact, and approval, e.g., walk, food, water, hospital, happy, friendly, bed. 

Attention System These features represent the degree to which a concept is 

associated to an entity, object, event or place that elicits attentiveness or alertness. 

Some concepts (e.g., scream) are so strongly associated with attention that the 

attentional event becomes part of the conceptual representation. The following list 

outlines how Attention and Arousal features apply to different concepts: 

•   Attention: Applies to concepts that prompt mental focus, e.g., flower, mouse, 

theater, dog, pilot, listen, television, protest, storm. 

•   Arousal: Applies to concepts that are associated to being awake or reactive, e.g., 

school, books, morning, criminal, hospital, party, football, happy, negotiate. 

Putting all these together, the following section reviews the neuroanatomical 

model of the semantic memory proposed by Binder et al. (2009, 2011, 2016a, 2016b) by 

recognizing the regions underpinning the brain systems described here. 

2.5.2 Heteromodal Semantic Processing Model 

As explained in Section 2.2.2, the heteromodal semantic system proposed by 

Binder et al. (2009, 2011, 2016a, 2016b) is based on the idea that semantic knowledge is 

built from multiple levels of abstraction of sensory, motor, and affective input. Hubs or 

convergence zones then process semantic information (Damasio, 1989; Patterson, 2007). 

These hubs receive and combine input from multiple modality-specific areas. They bind 
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together features and transform their input such that they represent similarity among 

concepts that cannot be captured based on individual sensory or motor modalities 

(Patterson et al., 2007).  

Analogously to the distributional models of text (Landauer & Dumais, 1997; 

Lund & Burgess, 1996), heteromodal representations capture conceptual similarity by 

combining weighted inputs from multiple neural channels. In addition, these abstract 

representations capture thematic relations between concepts (as explained in Section 

2.3.3) arising from spatial, temporal or functional proximity rather than from feature 

similarity. Most importantly, they provide a direct mapping to symbolic representations 

allowing for a rapid response in language interactions and to support communication 

tasks that do not require access to details (i.e., small talk).  

The proposed neural architecture is shown in Figure 2.3. Concepts are abstracted 

from perceptual, motor, and affective experiences that engage strongly modal, low-level 

brain systems, indicated in green. This abstraction process produces modality-specific 

conceptual representations in modal convergence zones, indicated in yellow. Multimodal 

generalization and language promote gradual development of supramodal concept 

representations in the areas indicated in red. They include a temporal lobe convergence 

zone emphasizing object knowledge, an inferior parietal convergence zone emphasizing 

event knowledge, and a posterior cingulate/precuneus convergence zone emphasizing the 

encoding of meaningful events into episodic memory (functioning as an interface 

between the semantic neural systems and the hippocampal system). This hierarchical 

abstraction scheme is most obvious in the ventral visual object recognition pathway on  
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Figure 2.3: Neural architecture for semantic processing. Modality-specific sensory, 
action, and emotion systems (green regions) provide experiential input to high-level 
temporal and inferior parietal convergence zones (yellow regions). Multimodal 
generalization and language promote gradual development of abstract representations of 
entity/object and event knowledge in the high-level temporal and inferior parietal 
convergence zones (red regions). Dorsomedial and inferior prefrontal cortices (blue 
regions) control the goal-directed activation and selection of the information stored in 
temporoparietal cortices. Neural architecture of conceptual representations assumed to be 
hierarchical and convergent over multiple levels (Reproduced with permission Binder et 
al., 2011). 

 

the right side of the figure, but can also be observed in the auditory object recognition 

pathway running from superior to lateral temporal lobe, the pathway for action concepts 

running from sensorimotor cortex to inferior parietal lobe, and the pathway for emotion 

representation running from subgenual cingulate and amygdala to orbital frontal cortex 

and temporal pole. Blue indicates prefrontal regions linked specifically with semantic 

retrieval and selection processes. 

Binder et al. (2009) asserted that the semantic neural systems are widespread and 

take a large part of the cortex in the human brain. The areas implicated in these processes 
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can be grouped into three broad categories: posterior heteromodal association cortex 

(AG, MTG, and fusiform gyrus), specific subregions of heteromodal prefrontal cortex 

(dorsal, ventromedial, and inferior prefrontal cortex), and medial paralimbic regions with 

strong connections to the hippocampal formation (parahippocampus and posterior 

cingulate gyrus). These neural systems support conceptual processing such that humans 

can use language, make plans, solve problems, and be creative (Binder et al., 2009). 

Appendix A includes a Glossary that lists the functions for each of these brain regions. 

Next section introduces the CAR theory, the semantic vectors proposed to map concept 

representations (i.e., set of features) to brain systems as a way to represent the semantic 

space of the brain. 

2.5.3 Concept Attribute Representation (CAR) Theory  

In CAR theory, neurobiologically defined “experiential attributes” form a set of 

primitive features for semantic representations. This set of features capture aspects of 

experience that are central to the acquisition of event and object concepts, both abstract 

and concrete. The features correspond to the brain systems described in Section 2.5.1. 

This approach establishes direct correspondence between conceptual content and neural 

representations, that is conceptual grounding (Section 2.2.2). By defining conceptual 

content in terms of brain systems results in a closed and relatively small set of basic 

features and offers a powerful solution to the problem of feature selection. 

The features are weighted according to statistical regularities. The semantic 

content of a given concept is estimated from ratings provided by human participants. For 

example, concepts referring to things that make sounds (e.g., explosion, thunder) receive 

high ratings on a feature representing auditory experience, relative to things that do not 

make a sound (e.g., milk, flower). 
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Each word is modeled as a collection of 66 features that captures the strength of 

association between each neural attribute and word meaning. Specifically, the degree of 

activation of each attribute associated with the concept can be modified depending on the 

linguistic context, or combination of words in which the concept occurs. Thus, people 

weigh concept features differently to construct a representation specific to the 

combination of concepts in the sentence.  

Figure 2.4 shows the weighted CARs for the concepts bicycle and table. The 

weight values represent average human ratings for each feature. Given that both concepts 

are objects, they get low weighting on animate attributes such as Face, Body, Speech, 

Human, Communication, and emotions such as Sad, Angry, Disgust and Fear, and high 

weighting on attributes like Vision, Shape, Touch, and Manipulation. However, they also 

differ in expected ways, including stronger weightings for bicycle on Motion, Biomotion, 

Fast Motion, Lower Limb and Path, and stronger weightings for table on Large, Smell, 

Head, Scene, Near, and Needs. 

In contrast to concrete concepts, abstract concepts refer directly to cognitive 

events (such as adventure, marriage, future, death), states (such as decide, judge, recall, 

think), mental “products” of cognition (such as idea, memory, opinion, thought), social 

cognition (such as justice, liar, promise, trust), and affective states (such as anger, fear, 

sad, happy, disgust). These concepts are learned in large part by generalization across 

these cognitive experiences in exactly the same way as concrete concepts are learned 

through generalization across perceptual and motor experiences.  

One key aspect of CAR theory, compared to the strong embodied approaches, is 

that these cognitive and affective mental experiences count as much as sensory-motor 

experiences. Experiencing an affective event is like experiencing a sensory-motor event 

except that the perception is internal rather than external. The 66 features on this model  
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Figure 2.4: Bar plot of the 66 semantic features for the words bicycle and table (Binder et 
al., 2009, 2011, 2016). Given that both concepts are objects, they have low weightings on 
animate attributes such as Face, Body, Speech, Human, and emotions including Sad, and 
Fear and high weighting on attributes like Vision, Shape, Touch, and Manipulation. 
However, they also differ in expected ways, including stronger weightings in Motion, 
Fast, Lower Limb and Path for bicycle and stronger weightings in Smell, Scene, Near, 
and Needs for table. Weighted features for the words bicycle and table. 

 

provide a powerful representation of abstract concepts.  

During conceptual combination, CAR theory overlaps neural representations of 

two or more concepts, mutually enhancing features. This enhancement alters the 

similarity between them, resulting in some functional groupings or categorizations. This 
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process is known as ad hoc categories (Barsalou, 1983), formed when concepts share the 

same context-related attribute enhancement. This type of combination corresponds to the 

attribute combination reviewed in Section 2.3.3 (e.g., red apple).  

Other types of concept combinations illustrate how individual semantic factors 

allow words to combine. For example, plastic bottle is a bottle made out of plastic, but 

baby bottle is not a bottle made out of babies. There are some general principles that 

govern such combinations as part of people’s world knowledge. In CAR theory, 

interactions occur when two concepts activate a similar set of brain systems, to the degree 

their features overlap. In the case of baby bottle, there is animacy involved, i.e., 

Biological motion, Affective, Social cognition, but bottle does not activate such systems. 

They do not have common semantic structures, therefore the meaning of the combination 

is strongly determined by attribute congruence. As a result, CARs cannot capture the 

thematic associations between concepts unless additional sources provide it Binder et al., 

(2009). 

Chapter 3 will discuss the processes and materials used to instantiate the CAR 

theory through interviews of human subjects. For a more detailed account of feature 

selection and definition see Binder et al., (2009, 2011, 2016a, and 2016b). Next section 

will review the algorithmic details of the neural network architectures that inspired the 

model proposed in this dissertation, to quantify how word representations change to 

account for context. 

2.6 ARTIFICIAL NEURAL NETWORKS  

Artificial neural networks are computational models inspired by the brain. They 

consist of an input and output layers and one or more hidden layers of connected nodes 

that can receive and transfer activation to each other through weighted connections, like a 
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population of neurons interconnected by synapses to carry out a specific function. Several 

kinds of neural networks exist and many variations have been proposed. In the following 

sections the design of a simple feed-forward neural network and a variation called 

FGREP (Forming Global Representations with Extended Backpropagation) will be 

reviewed. 

 

 
Figure 2.5: Three-layer feed-forward back-propagation neural network. Each node is 
connected to every other node in the next layer in a feedforward fashion. The input layer 
𝑙 − 1	  contain 𝑚 units or nodes, the hidden layer 𝑙	  contains 𝑝 nodes and the output layer 
𝑙 + 1 contains 𝑛 nodes. The input layer shows the term 𝑜(89:); that represents the output 
of unit 𝑓 in layer 𝑙 − 1. The connections shown between layers include 𝑤(89:);>  which 
refers to the weight between unit 𝑓 in layer (𝑙 − 1) and unit 𝑝 in layer 𝑙. Similarly, 𝑤8>?  
refers to the weight between unit 𝑝 in layer 𝑙 and unit ℎ in layer (𝑙 + 1). The term 𝑏8>	   is 
the bias of unit 𝑙𝑝, and has the effect to adjust the output. The output layer shows the term 
𝛿(8C:)? that stand for the error signal for node ℎ layer (𝑙 + 1). A basic three-layer neural 
network that maps input to output patterns. 
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2.6.1 Feedforward Back-propagation Neural Network (BPNN) 

Figure 2.5 shows an example of a small neural network consisting of three layers. 

Each node is connected to every other node in the next layer in a feedforward fashion. 

Neural networks learn by examples (e.g., repetitive presentations of input and desired 

output patterns). The goal is to learn a mapping between the input and the desired output 

(target) patterns. Before learning, the set of input and target examples is prepared. 

Learning proceeds through modification of the weights that transfer the activation of the 

input nodes to the output nodes. 

The algorithm proceeds as follows: The nodes or units receive one or more inputs. 

Each input is weighted and the sum is passed through a nonlinear function, known as 

activation function. Usually a Sigmoid function is used (it can be a Step function or other 

nonlinear function).  

In the forward process, the input layer is loaded with the input patterns. In the 

subsequent layers, each unit computes its output value as  

𝑜8> = 𝑔F𝑦8>H = 𝑔F∑ 𝑤(89:);>𝑜(89:); + 𝑏8>	  	  ; H,                              (2.1) 

where 𝑜8> is the output of unit 𝑝 in layer 𝑙, 𝑦8>  refers to the weighted sum of its inputs, 

and 𝑤(89:);>  is the weight between unit 𝑓 in layer (𝑙 − 1) and unit 𝑝 in layer 𝑙. The term 

𝑏8>  is the bias of unit 𝑙𝑝, and has the effect of adjusting the response threshold of the unit; 

it allows to shift the activation function to the right or to the left. The logistic (sigmoid) 

activation function that limits the values between 0 and 1 is used to map the inputs of the 

unit to its outputs:  

𝑔F𝑦8>H =
:

:CJKLMN
                                                       (2.2) 

Once the entire pattern is produced for the output layer, it is compared to the 

target pattern. An error signal is formed for each output unit in the output layer 𝑥 as  

𝛿PQ = 𝑜PQ[1 − 𝑜PQ][𝑡Q − 𝑜PQ],                                       (2.3) 



 51 

where 𝑡Q is the target activation value for the output unit 𝑚. 

In the backward propagation process, the error signal for unit 𝑝 in a previous layer 

𝑙	  is formed by  

𝛿8> = 𝑜8>U1 − 𝑜8>V∑ 𝛿(8C:)?𝑤8>?? .                                   (2.4) 

The learning process involves changing each connection weight in proportion to 

the error signal and the activation going through the connections. It thus implements 

gradient descent in the error. Often, a momentum term is included in order to reduce 

oscillations:  

𝑤8>?(𝑡) = 𝜂𝛿(8C:)?𝑜8> + 𝛼𝑤8>?(𝑡 − 1),                          (2.5) 

where 𝜂 is the learning rate. 

This process is known as Supervised learning because each example is guided by 

the input and the target patterns. An epoch measures the number of times the full set of 

input and target patterns are presented to the network. For each epoch, error signals are 

usually collected to account for the total error over all patterns. Such global error as well 

as the epoch count, can be used as a stopping criteria, i.e., if the sum of all differences 

between the target pattern and the output, averaged across all patterns, is below some 

threshold value, or the number of epochs is above some threshold value. 

BPNN is a very powerful statistical learning mechanism. It can be used for 

predictive tasks, adaptive control and data analysis applications (e.g., forecasting, 

airplane sensors, financial analysis, news classification). For a successful learning, these 

networks highly depend on the I/O encoding representations. Next section reviews the 

FGREP approach where global representations emerge automatically while at the same 

time the network learns the assigned task. This mechanism plays a central role in 

understanding the effect of context on word meanings in this dissertation. 
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Figure 2.6: A simple FGREP architecture consists of a three-layer BPNN with an external 
lexicon that stores the I/O representations (Miikkulainen et al., 1988). The input and 
output patterns are fed into the network from the lexicon, and it learns the task by 
adapting the connection weights according to the standard backpropagation algorithm. At 
the end of each backpropagation cycle, the current input pattern is modified by extending 
backpropagation to the input layer. A neural network mechanism that forms global I/O 
representations with extended backpropagation.  

 

2.6.2 The FGREP Mechanism  

The similarities between artificial and biological neural networks have motivated 

researchers to use the artificial neural networks to explain several cognitive tasks. For 

example, Miikkulainen et al. (1988) designed a neural network with an additional 

mechanism called FGREP to develop meaningful distributed representations of words 

(Figure 2.6). 

An FGREP network is similar to the three-layer BPNN. It follows the same 

dynamics and learns the task by adapting the connection weights as outlined above. 
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However, in order to develop meaningful word representations, the error signal was 

extended to the input layer.  

FGREP was designed to meet two goals: (1) Learn the processing task by 

adapting the connection weights using standard backpropagation, and (2) Develop 

meaningful distributed representations in the process. In fact, both learning processes 

(task and representations) are done at the same time.  

The representations are stored in an external lexicon. Initially, the lexical 

representations have random values. In processing a sentence, they are collected from the 

lexicon and used as input and target vectors in the BPNN. Standard backpropagation is 

used to update the weights in the network, but it is extended into the input vector: the 

component values in this vector are updated and stored back into the lexicon. Since the 

same words can appear both in the input and output, the learning is chasing a moving 

target. 

The principle to change the representations is to consider the input units as 

ordinary nodes (i.e., hidden and output nodes). Since the input units have the 

characteristic that the activation function is the identity function, i.e., input signal is 

passed to output without any change, backpropagation can be extended one step further to 

update the input patterns, by treating them as an extra layer. Therefore, the error signal of 

an input unit is computed as  

𝛿:;	   = ∑ 𝛿Y>𝑤:;>? ,                                              (2.6) 

where 𝛿:;	   represents the error signal for unit 𝑓 in the input layer 1, and 𝑤:;>  is the 

weight between unit 𝑓 from the input layer and unit 𝑝 in the first hidden layer. Then, the 

representations are changed as  

𝑟[; = 𝜂𝛿:;,                                                         (2.7) 
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where 𝑟[; is the 𝑓th element of item 𝑐’s representation, 𝛿:;	  is the error signal of the 

associated input layer unit, and 𝜂 is the learning rate. Whereas weighted values are not 

limited, the I/O representations have maximum and minimum activation values of the 

units. The new value for the representation of item 𝑐 element 𝑓𝑡ℎ is obtained as  

𝑟[;(𝑡 + 1) = maxF𝑜_, minF𝑜b, 𝑟[;(𝑡) + 𝑟[;HH,                   (2.8) 

where 𝑜_	  is the lower limit and 𝑜b is the upper limit for the unit activation, i.e., usually 0 

and 1 with the standard sigmoid activation function. 

FGREP is based on the philosophy that concepts are defined by the way they are 

used (Harris, 1970). Thus, the meanings of the concepts are encoded in their final 

representations and defined by all the contexts where the concept appeared. The 

representation as well as the meaning evolves continuously as more experience is gained. 

As a consequence, all aspects of a concept are distributed over the whole set of units 

making the system robust.  

The FGREP mechanism has been used in several natural language processing 

tasks, such as assigning roles to sentence constituents (Miikkulainen and Dyer, 1991). It 

was also used as part of a script-based story understanding model (DISCERN, short for 

DIstributed Script processing and Episodic memory Network, Miikkulainen 1993), for 

disambiguating prepositional phrase attachment (Takahashi et al., 2001), and in 

developing language representations automatically, so that there is no need for humans to 

predefine feature vectors into the data set for an NLP system; the features automatically 

emerge during the FGREP process (Kleiweg & Nerbonne, 1998). In this dissertation, 

FGREP is used in a different role: to identify how the CAR weights should be changed to 

take context into account. 
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2.7 DISCUSSION AND FUTURE WORK 

Concept and word meaning representations are the main focus of this dissertation. 

Several issues were reviewed in this Chapter: How are concepts represented in the brain? 

How is word meaning represented? How are concepts grounded in sensorimotor 

experiences? How do word meanings change in context? Where is the semantic system? 

What tools and approaches exist to model the brain’s semantic organization?  

Currently, the answers to all these questions are open to debate, i.e., 

•   Whether concepts are strongly embodied (grounded in perception and 

motor systems), completely disembodied, or somewhere in the middle, 

i.e., Embodied Abstraction; 

•   Whether there is an integration of information in the brain from different 

modalities via hubs and convergence zones; 

•   Whether the organization of semantic knowledge is based on categories, 

prototypes, or feature representations; and 

•   Whether semantic features are better defined in terms of explainable 

features such as the neural-based features defined by Binder et al. (2009) 

or text-based models with distributed (unexplainable) representations. 

Ongoing research is far from finding a unique representation model that can 

capture all kinds of semantic knowledge. This dissertation focuses on the last point, the 

neural-based semantic features. The research follows the theory proposed by Binder et al. 

that includes Embodied Abstraction, hierarchical multimodal integration, and uses 

explainable semantic features for prediction and interpretation of imaging data.  

In the following chapters, the experiments will test the hypothesis that different 

properties of word meaning are activated in different contexts, and it is possible to 

capture those changes in the corresponding fMRI images using a neural network model.  
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To avoid confusion, throughout the rest of this dissertation the terms attributes, 

properties, and features will be used interchangeably to refer to properties of concepts 

such as color or size. Similarly, weights, activations, and values all refer to the CAR 

weighted attributes. 

CONCLUSION 

As background for the overall focus of this dissertation, this chapter presented an 

overview of how semantic knowledge is represented in the brain, and which tools and 

approaches help in understanding such mechanism better. Semantic knowledge was 

defined in terms of its content (i.e., conceptual knowledge, word meaning, conceptual 

combinations, context effect), providing the psychological and neurological perspectives. 

Also, the neural correlates of the semantic system were outlined, based on experimental 

findings in the literature.  

Four computational models of semantic representation were reviewed, addressing 

different ways of constructing semantic representations (e.g., text-based, & vision-based 

modalities). Additionally, a true multimodal representation that accounts for the full array 

of human senses was reviewed: The CAR theory of Binder et al. (2009, 2011), suggests 

that concept representations can be decomposed into a set features that are directly 

mapped to individual brain systems.  

fMRI technology was reviewed as a non-invasive method to study semantic 

knowledge in vivo. Furthermore, simple backpropagation and FGREP neural networks 

were reviewed as part of the framework described in Chapter 3 for interpreting imaging 

data. In fact, the FGREP mechanism plays a central role quantifying the effect of context 

on word meanings. 
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In sum, this chapter not only presented a review of the literature on semantic 

representations, but also introduced the theoretical and experimental backgrounds 

adopted for the work presented in the subsequent chapters. Particularly, Binder’s brain-

based semantic model is the theoretical foundation, and the FGREP neural network the 

foundation for the computational experiments. Combined, they form the basis for 

characterizing how word meaning changes in the context of a sentence.  
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Chapter 3 
 
A Computational Model to Account for Context Effects 
in the Brain 

 

Building on the theory of grounded word representation, this research aims to understand 

how word meanings change depending on context. This chapter describes the 

computational model that characterizes such context-dependent meaning representations 

and the data needed to construct it. The model, CEREBRA, or Context-dependent 

mEaning REpresentation in the BRAin, is founded in the CAR theory (Section 2.5.3) and 

implemented using neural networks with FGREP (Section 2.6.2). The idea is to train a 

neural network to predict approximately what the sentence fMRI should be, based on the 

CARs, and then use FGREP to adjust the CARs so that the prediction becomes correct. 

The modified CARs then indicate how the meaning changed in context. In this Chapter, 

the CEREBRA model is first introduced, including a neural network that learns to predict 

fMRI sentences and the FGREP method that identifies the semantic changes on CAR 

words to account for context. Then, the sentence collection that forms the basis for the 

fMRI experiments, the fMRI data itself, and the CAR ratings obtained from human 

subjects, follows. At the end, a comparison between CEREBRA and the original FGREP 

mechanism is described. 

 3.1 THE CEREBRA MODEL 

CEREBRA uses sentence fMRI patterns and the CAR semantic feature model of 

concept representations to characterize how word meanings are modulated within the 

context of a sentence. With CARs of words as input, the neural network is trained to 
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generate first approximations of fMRI patterns of subjects reading sentences. Then, the 

FGREP mechanism is used to determine how the CARs would have to change to predict 

the fMRI patterns more accurately. These changes represent the effect of context; it is 

thus possible to track the brain dynamic meanings of words by tracking how the CARs 

feature-weightings change across contexts. 

 

 

Terminology

CARWord: The neural network input. CARWords are formed based on ratings by human
subjects (Section 3.3). They are the original brain-based semantic representations of
words, i.e., word without context. Each CARWord is a vector of 66 attributes.

CARWordRevised: The input of the neural network after FGREP. CARWordsRevised
are formed by FGREP modifying the original CARWords. They are the context-
dependent meaning representations of words for each sentence where they occurred.
Each CARWordRevised is a vector of 66 attributes.

!": The error signal. The SynthSent is subtracted voxelwise from the fMRISent to
produce an error signal. Each error is a vector of 396 changes.

fMRISent: The neural network target. They are the original brain data collected from
human subjects using neuroimaging. Each fMRISent is a vector of 396 voxels.

SyntSent: The predicted fMRI sentence after training. The SynthWords in the sentence
are averaged to form this prediction. Each SynthSent is a vector of 396 values.

SyntSentRevised: The modified SyntSent after applying the error signal changes. Each
of these SynthSentRevised is a vector of 396 values.

SyntWord: The neural network target. They are derived by averaging the fMRISent.
They are synthetic because individual fMRI data for words do not exist, thus they are
obtained by averaging each fMRISent where the word occurred. Each SynthWord is a
vector of 396 voxels.

SyntWordRevised: The target for the neural network after FGREP. They are derived
from the SynthSentRevised using the error signal changes.

W1..W3: labels for each CARWord in a sentence.

W’1..W’3: labels for each SynthWord in a sentence.
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3.1.1 System Design 

The overall design of CEREBRA is shown in Figure 3.1. The neural network 

model serves two main tasks: Prediction and Interpretation. During the Prediction task, 

the model forms a predicted fMRI for each sentence, without the context effects. Each 

sentence is thus compared against the observed fMRI sentence to calculate an error 

signal. This error signal is used repeatedly by the Interpretation task. During the 

Interpretation task, the model is used to determine how the CARs should adjust to 

eliminate the remaining error. The error is used to change the inputs (CARs) using 

Extended-backpropagation (which is the FGREP method described in Section 2.6.2). The 

process iterates until the error goes to zero. 

The following sections present a detailed description of the architecture at each 

stage of the system implementation. The specific terms to the CEREBRA model are 

denoted by abbreviations throughout the chapter (e.g., CARWord, fMRISent, 

SynthWord). For reference, they are described in the Terminology box.  

3.1.2 Mapping CARs to Synthetic Words 

The CEREBRA model is first trained to map the CARWord representations in 

each sentence to SynthWords (The “forward” side of Figure 3.1). It uses a standard three-

layer backpropagation neural network (BPNN). Gradient descent is performed for each 

word, changing the connection weights of the network to learn this task (Rumelhart et al., 

1986). 

Algorithm 3.1 describes the model implementation and training in detail. A three-

layer feed-forward BPNN with 66 input units, 66 hidden units and 396 output units was 

implemented to map CARs of words to fMRI of words. The training parameters included 

a learning rate of 𝜂=0.3, decreasing at a rate of 0.001 to 0.000001, to control how quickly 
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the weights will change and avoid converging into a suboptimal solution; and a 

momentum rate of 𝛼=0.3, to accelerate the training process by helping guide the weights 

toward the right direction (reducing oscillations). The neural network weighted 

connections and the bias were randomly initialized between -0.5 and 0.5. The BPNN was 

trained for each of the eleven fMRI subjects for a total of 20 repetitions each, using 

different random seeds.  

The first part of the algorithm (Step 1 to 6) consists of training the BPNN to map 

CARWord representations (i.e., input) to SynthWord representations (i.e., target). After 

training is completed for each subject, it yields 20 different networks, plus 20 sets of 786 

predicted SynthWord representations, that is, one word representation for each sentence 

where the word appears.  

3.1.3 Predicting Sentences and Propagation Error Back to Words 

The next segment of Algorithm 3.1 (Steps 7 to 14) describes the Prediction and 

Interpretation tasks mentioned at the beginning of this section. For the Prediction task, 

the sentences are assembled using the predicted SynthWords by averaging all the words 

that occur in the sentence (Step 9), yielding the prediction sentence called SynthSent. For 

the Interpretation task, in addition to the construction of the predicted sentence, further 

steps are required (Steps 10 to 14). First, the prediction error is calculated by subtracting 

the newly constructed predicted SynthSent from the original fMRISent. Then, the error is 

backpropagated to the inputs CARWords for each sentence (The “backward” side of 

Figure 3.1). The weights of the network no longer change. Instead, the error is used to 

adjust the CARWords in order for the prediction to become accurate.  
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Algorithm 3.1 Neural network to map CAR words to sentence fMRI & back to CARs 

 

Using&a&three,layer&feed&forward&back&propagation&neural&network&&(BPNN)&with&66&input&units,&66&hidden&

units&and&396&output&units&do&as&follow:&

1:! For&Subject=1&to&11&

2:! For&repetitions=1&to&20&

3:! && Generate&different&random&seeds&to&initialize&the&weights&of&the&BPNN&

4:! Repeat&&for&1000&epochs&(or&until&the&average&of&the&sum&of&all&errors&between&the&output&

and&the&target&patterns&is&less&than&epsilon:&&OPP < R,&where&S = 0.001)&

5:! && For&ctxt_word=1&to&786&(for&each&word&that&occurs&in&every&sentence)&

6:! && & Train&&the&BPNN&mapping&CARWord&(66&attributes)&to&SynthWord&(396&voxels)&

&

7:! & Repeat&until&the&prediction&error&is&very&small&(near&zero)&or&no&additional&change&is&possible&

(CARWord&already&met&their&maximum&or&minimum&values)&

8:! && & For&ctxt_word&=1&to&786&(for&each&word&that&occurs&in&every&sentence)&&

9:! & & & & Assemble&the&SynthWords&into&the&237&predicted&SynthSent&by&averaging&the&

appropriate&words:&&

& & & & & ^_`Oℎ^b`O(Pb Ò,1: 396) = [d(e, 1:396) +d(g, 1:396)+. . . +d(_, 1:396)]/ &̀

!! Pb`O&&& &is&number&of&sentences&(1&to&237)&

!! e, g, … , _&&&represent&the&correct&word&index&&for&each&SynthSent&content&words&

!! n&&&is&the&number&of&words&for&each&SynthSent&

10:&& & & Obtain&the&prediction&error&by&subtracting&the&predicted&SynthSent&from&the&observed&

fMRISent&for&each&voxel:&

nobpqrOsoo(Pb Ò,1: 396) = tuvw(Pb`O, 1:396) −^_`Oℎ^b`O(Pb`O,1:396)&

!! Pb`O&&& &is&number&of&sentences&(1&to&237)&

11:! & & Use&the&error&to&change&the&values&of&the&original&SynthWord&&by&replacing&the&target&

values&with&&the&adjusted&SynthWord(ctxt_word,1:396).&&

12:&& & Propagate&the&CARWord&(ctxt_word,1:66)&using&the&same&trained&network&(from&

point&6)&

13:& & With&the&adjusted&SynthWord&values&calculate&the&new&target&minus&output&error&

using&the&BPNN&&

14:&& & Backpropagate&the&error&all&the&way&to&CARWord(ctxt_word,1:66)&changing&the&

inputs&without&changing&the&weights&(with&extended&backpropagation,&the&FGREP&

method)&

&
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This process is performed until the prediction error is very small (near zero) or 

cannot be modified (CARWord already met their limits, between 0 and 1), which is 

possible since FGREP is run separately for each sentence.  

These steps (7 to 14) are repeated 20 times for each subject. At the end, the 

average of the 20 representations is used to represent each of the 786 context-based 

words (CARWord Revised), for every single fMRI participant. 

Eventually, the Revised CARWord represents the word meaning for the current 

sentence such that, when combined with other Revised CARWords in the sentence, the 

estimate of sentence fMRI becomes correct. 

3.2 SENTENCE COLLECTION 

The sentence set was prepared for the fMRI study as part of the Knowledge 

Representation in Neural Systems (KRNS) project (Glasgow et al. 2016, 

www.iarpa.gov/index.php/researchprograms/krns), sponsored by the Intelligence 

Advanced Research Projects Activity (IARPA) under the White House BRAIN Initiative 

Program (BRAIN Initiative, 2013). The words used in the sentences stand for imaginable 

and concrete words such as:  

1.   Objects: Things that exist physically, can be animate or inanimate, natural or 

man-made. They are often nouns and can be count nouns or mass nouns. 

Examples: ball, bicycle, dog, and water. 

2.   Actions: Things that are done or experienced by living things. They are often 

verbs that describe moving, perceiving, feeling, and creating. Examples: 

walked, ate, built, and drank. 
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3.   Settings: Locations where or when things happen. They are often nouns that 

describe indoor or outdoor locations, seasons, and time of day. Examples: 

church, forest, spring, and morning.  

4.   Roles: What people do or who they are. They are often nouns that describe 

vocations, professions, and kinship. Examples: banker, doctor, minister, and 

family. 

5.   State and emotions: Descriptive and characterizing words. They are often 

adjectives that portrays or typifies a noun. Examples: hot, little, old, red, and 

sad. 

6.   Events: Things that take place in space and time, such as human-organized 

encounters or natural incidents. They are often nouns that describe activities 

or situations. Examples: party, flood, and hurricane.  

There were a total of 242 such words (141 nouns, 39 adjectives and 62 verbs) in 

the sentences. A total of 240 sentences were composed from two to five of those words. 

Sentences are in active voice and consist of a noun phrase followed by a verb phrase in 

past tense, with no relative clauses. Two hundred of these sentences contain an action 

verb and the remaining 40 contain the verb was. Examples of the sentences include The 

family survived the powerful hurricane, The scientist spoke to the student, The diplomat 

negotiated at the embassy, The reporter interviewed the politician during the debate, The 

small church was near the school. The complete collection is included in Appendix B. 

3.3 CAR RATINGS 

In a separate study Binder et al. (2009, 2016a, 2016b) collected CAR ratings for 

the original set of 242 words through Amazon Mechanical Turk. In a scale of 0-6, the 

participants were asked to assign the degree to which a given word is associated to a 
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specific type of neural component of experience (e.g., “To what degree do you think of a 

chair as having a fixed location, as on a map?”). Figure 3.2 shows an example used 

during attribute rating collection. Participants responded by selecting a number where 0 

indicates "not at all" and 6 indicates "very much". A "Not Applicable" option was also 

available to cover cases in which the participant felt the question has no logical relation 

to the word; these responses were coded as 0. Approximately 30 ratings were collected 

for each word in this manner. After averaging all ratings and removing outliers, the final 

attributes were transformed to unit length yielding a 66-dimensional feature vector such 

as the one shown in Figure 3.3 for the word chair. The concept chair is an object, 

therefore it was rated with low activations on animate attributes such as Face, Speech, 

Head, and emotions including Happy, Sad, and Angry, and high activations on attributes 

like Vision, Small (compared to a table), Shape, Touch, Lower-limb, Upper-limb, and 

Manipulation.  

The final collection of CAR words consists of 242 word vectors with a 66-

dimensional attribute ratings that constitute the generic representation of the words, and 

is the first essential input to the CEREBRA model: These are the CARWords introduced 

in Section 3.1. 

Note that this semantic feature approach builds its vector representations by 

directly mapping the conceptual content of a word (expressed in the questions) to the 

corresponding neural processes and systems for which the CAR dimensions stand 

(Binder et al., 2009, 2016a, 2016b). This approach thus contrasts with systems where the 

features are extracted from text corpora and word co-occurrence with no direct 

association to perceptual grounding (Baroni et al., 2010; Burgess, 1998; Harris, 1970; 

Landauer & Dumais, 1997). 
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Figure 3.2: Example query for word chair addressing the attribute Landmark. Landmark 
in one of the dimensions of the Spatial brain zone that refers to large entities that have 
fixed location (e.g., mountains and buildings). They are critical for navigation. This is 
part of the questionnaire used to assemble each of the 66 dimensions for the 242 CAR 
word representations (Binder et al., 2009, 2011, 2016). 
 

 
Figure 3.3: Bar plot of the 66 semantic features for the concept chair (Binder et al., 2009, 
2011, 2016). The values represent average human ratings for each feature. Given that 
chair is an object, it gets low activations on animate attributes such as Face, Speech, 
Head, and emotions including Happy, Sad, and Angry, and high activations on attributes 
like Vision, Small (compared to a table), Shape, Touch, Lower-limb, Upper-limb, and 
Manipulation. Original CARs for the word chair. 

chair
As in: “The angry activist broke the chair”

To what degree do you think of this thing as having a fixed location, as 
on a map?

For comparison. “school ” would receive a high rating on this question, 
because schools and other buildings have a very fixed location.

In contrast, “table ” might receive a medium rating, because tables can be 
moved even though they typically stay in one place.
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3.4 NEURAL DATA COLLECTION 

If indeed word meaning changes depending on context, it should be possible to 

see such changes by directly observing brain activity during word and sentence 

comprehension. As reviewed in Section 2.5, Binder et al. (2009, 2011, 2016b) identified 

a large-scale network with individual brain systems involved in the representation of 

specific attributes of conceptual knowledge (e.g., knowledge of actions, concrete and 

abstract concepts). Accordingly, Binder and his team collected brain imaging data from 

several subjects reading the sentences described in Section 3.2, by recording visual, 

sensory, motor, affective, and other brain systems contained in such network. The 

following sections describe the materials and methods used. 

3.4.1 Neural fMRI Representation of Sentences  

The study population consists of eleven healthy, right-handed, monolingual 

English-speaking adults, aged 20-60, with no history of neurological or psychiatric 

disorders. Each participant took part in this experiment producing 12 repetitions each.  

To obtain the neural correlates of the 240 sentences, subjects viewed each 

sentence on a computer screen while in the fMRI scanner through a mirror attached to the 

head coil. The sentences were presented word-by-word using a rapid serial visual 

presentation paradigm. More specifically, images of nouns, verbs, adjectives, and 

prepositions were presented at the same spatial location for 400ms each, followed by a 

200ms inter-stimulus interval. The mean sentence duration was 2.8 seconds. Participants 

were instructed to read the sentences and think about their overall meaning. 

The fMRI patterns were acquired with a whole-body Three-Tesla GE 750 scanner 

at the Center for Imaging Research of the Medical College of Wisconsin (Anderson et al., 

2016). The fMRI data were preprocessed using standard methods, including slice timing 
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and head motion correction (AFNI software, Cox 1996). The most stable, active and 

discriminative voxels were then selected, and Principal Component Analysis and zero 

mean normalization were performed on them. 

These transformed brain activation patterns were converted into a single-sentence 

fMRI representation per participant by taking the voxel-wise mean of all repetitions 

(Anderson et al., 2016; Binder et al., 2016, 2016b). The most significant 396 voxels per 

sentence were then chosen. The size selection mimics six case-role slots of content words 

consisting of 66 attributes each. The voxels were further scaled to [0.2..0.8]. This 

collection of 11 subject images for the 240 sentences constitutes the second essential 

input to the CEREBRA model: These images are the fMRISent representations 

introduced in Section 3.1. 

3.4.2 Synthetic fMRI Representations of Words 

The Mapping CARs task in CEREBRA (described in Section 3.1.2) requires 

fMRI images for words in isolation. Unfortunately, the neural data set does not include 

such images. A technique developed by Anderson et al. (2016) was adopted to 

approximate them. The voxel values for a word were obtained by averaging all fMRI 

images for the sentences where the word occurs. These vectors, called SynthWords, 

encode a combination of examples of that word along with other words that appear in the 

same fMRI sentences. Thus, the SynthWord representation for mouse (Figure 3.4) 

contains aspects of running, forest, man, seeing, and dead, from the sentences 56:The 

mouse ran into the forest and 60:The man saw the dead mouse.  

Although the collection includes a small set of sentences, the CEREBRA process 

of mapping semantic CAR words to the synthetic words and further to fMRI sentences  



 70 

 

 
Figure 3.4: Example of SynthWord representation for the word mouse using the average 
of the two fMRI sentences where the word occurs. SynthWords encode a combination of 
examples of that word along with other words that appear in the same sentences, that is, 
the word mouse contains aspects of ran, forest, man, saw, and dead, by averaging the two 
fMRI sentence representations. SynthWord is derived by averaging the fMRI sentences 
where the word occurs. 
 

helps refine the synthetic representations by removing noisy information. This process of 

combining contextual information is similar to many semantic models in computational 

linguistics (Baroni et al., 2010; Burgess, 1998; Landauer et al., 1997; Mitchell & Lapata, 

2010). Additionally, in other studies, this approach has been used successfully to predict 

brain activation (Anderson et al., 2016; Binder et al., 2016a, 2016b; Just et al., 2017).  

Due to the limited number of sentences, some SynthWords became identical and 

were excluded from the dataset. Therefore, the final collection includes 237 sentences 

and 236 words (138 nouns, 38 adjectives and 60 verbs). The list of words and sentences 

is included in Appendix B. This SynthWord collection represents the third essential input 

to the CEREBRA model: These are the SyntWord representations introduced in Section 

3.1. 

SynthWord
mouse

2

The 
mouse
ran into 
the forest

The man 
saw the 
dead 
mouse
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3.5 FGREP TAILORED TO FIND FEATURED-BASED SEMANTIC REPRESENTATIONS  

The original FGREP mechanism reviewed in Chapter 2 (Miikkulainen, 1988) was 

designed to meet two goals: (1) learn the processing task by adapting the connection 

weights using standard backpropagation and (2) develop meaningful distributed 

representations in the process. Most importantly, both learning processes (task and 

representations) are done simultaneously (Miikkulainen, 1988).  

In CEREBRA, FGREP is applied in a different manner, and it carries different 

goals. CEREBRA uses (1) a neural network trained in the task of mapping words from 

CARs to fMRI word patterns (Section 3.1.2), and (2) based on an error signal at sentence 

level, FGREP modifies the baseline meaning of the words (Section 3.1.3). What is 

important here is that the task and the representations are learned separately. 

On that account, the main difference is that CEREBRA develops representations 

through the error signal between sentences (i.e., fMRISent and SynthSent) calculated 

outside the neural network. In contrast, the original FGREP develops representations 

through the error signal from the neural network assigned task (i.e., case roles).  

Ultimately, the original FGREP and CEREBRA were used for different purposes, 

and the way CEREBRA employs the FGREP mechanism is to characterize context-

dependent meaning representations in the brain (i.e., from words to sentences and back). 

Additional dissimilarities are listed next: 

1.   FGREP starts with random input representations. The neural network 

develops its own representations. CEREBRA begins with CAR ratings 

that represent the generic meaning of words, they were collected from 

human subjects (described in Section 3.3). 

2.   In FGREP there are no identifiable microfeatures or categorizations in the 

representations. The meaning of a word is distributed over the entire set of 
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units. In CEREBRA, word representations are based on the CAR semantic 

model where each of the 66 features represents the association between a 

specific neural attribute and the word meaning (list of features described 

in Section 2.5.1).  

3.   In FGREP, the representation is determined by all the contexts where the 

word appeared, as a result it is a representation of all those contexts. In 

CEREBRA, each word representation is modified by a particular context 

and results in different representations for different contexts. It is used to 

find how each generic word in CARs should be adjusted for each context. 

3.6 DISCUSSION AND FUTURE WORK 

As reviewed in Section 2.5.3, the CAR theory proposes that conceptual 

knowledge can be decomposed into a set of attributes, and such attributes are mapped to 

brain systems that play a role during learning and recall. This theory hypothesizes that 

context (i.e., other concepts in a sentence), modify the baseline meaning of a concept. 

This hypothesis is central to this research. CEREBRA will test it by characterizing how 

CARs can be modified to account for the changes in the neural activation pattern of the 

concept. 

CEREBRA decomposes sentence fMRI into words and words into embodied 

brain-based semantic features (CARs). Characterizing how words could change under the 

context of a sentence, this research will demonstrate that (1) context-dependent meaning 

representations are embedded in the sentence fMRI and (2) CARs semantic theory can be 

used as a foundation for modeling the neural representation of word meaning.  

The next four chapters present three computational experiments as well a 

behavioral analysis to demonstrate CEREBRA’s capability to characterize the effect of 
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sentence context on word meanings. Chapter 4 will analyze interesting context effects for 

different shades of meaning (e.g., dangerous flood vs. dangerous criminal). Chapter 5 

will focus on the different types of conceptual combinations and their effect on word 

meanings by analyzing statistically significant changes for individual sentence cases 

across multiple fMRI subjects (e.g., boat crossed vs. car crossed; bird flew vs. plane 

flew). Chapter 6 will demonstrate that the outcome is robust and general across the entire 

corpus of sentences and case roles. Chapter 7 will corroborate that these effects (changes) 

are actually meaningful to humans. 

CONCLUSION 

This chapter introduced a computational model called CEREBRA that uses fMRI 

patterns of sentences, CAR words, and a neural network with the FGREP mechanism to 

characterize context-dependent meaning (i.e., implicit in the sentence fMRI). The 

essential inputs to CEREBRA were reviewed: the Glasgow word and sentence collection, 

the human-judgement based CAR ratings, and the neural data collection of the sentence 

fMRI. The chapter also highlighted how the FGREP mechanism was used to discover 

sentence-level meaning from word-level features.  
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Chapter 4 
 
Characterizing the Context Effect on Word Meanings  

 

Building on CAR theory, this chapter1 characterizes the effect of grounding, i.e., how 

word meaning changes within the context of a sentence. This question will be addressed 

anecdotally by analyzing a few example cases. The goal is to predict sentence fMRI 

using two computational models to map CARs of words into fMRI data of subjects 

reading everyday sentences.  

4.1 MOTIVATION 

Multimodal vector representations have been found to outperform text-based 

vector representations in the task of representing word meanings (Bruni et al., 2014; 

Silberer & Lapata, 2014, Vinyals et al., 2015). However, most of those multimodal 

approaches consider the different modalities to the same degree, even though each 

modality contributes in different ways to word meanings (Bruni et al., 2014; Silberer & 

Lapata, 2014; Silberer et al., 2017). For example, the concept of mouse is learned through 

perceptual experiences like visual, somatosensory, and auditory situations, compared to 

the abstract concept dead, which is learned from cognitive experiences such as events, 

states, or thoughts (Binder, 2016a, 2016b).  

In contrast, for the brain-based semantic representations (CARs, Chapter 2, 

Binder et al., 2009), the meaning of a concept corresponds directly with the neural 

                                                
1 The content of this chapter was previously presented at the 39th Annual Meeting of the Cognitive Science 
Society (Aguirre-Celis & Miikulainen, 2017). Aguirre-Celis worked on experimental design, 
implementation and analysis; while Miikkulainen provided guidance and feedback through discussions. 
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processes. Concepts are represented as a set of experiential attributes that reflect the 

sensory, motor, affective, and other brain networks involved in concept learning.  

Building on CAR theory, this chapter evaluates experimentally how word 

meaning changes across different sentences. It aims to explain these changes by testing 

whether Multiple Linear Regression approach and the CEREBRA nonlinear neural 

network can discriminate between sentences based on feature weightings. The 

experiments analyze a few example cases where word attributes are weighted differently 

in various contexts for verbs, nouns and adjectives. Each model identifies significant 

changes on CARs for the same word in different sentences. The experiments support the 

hypothesis that context adapts the meaning of words in the brain.  

Next, the semantic model and the collection of contrasting sentences used to 

investigate the effect of context are presented. The general system framework and data 

flow as well as the mechanisms for determining the semantic changes, i.e., multiple linear 

regression and the CEREBRA model, follow. Three experiments are presented and the 

results analyzed, demonstrating how context affects word meanings. 

4.2 THE SEMANTIC MODEL AND DATA SETS 

The CAR theory was reviewed in Chapter 2. Essentially, it represents the basic 

components of meaning defined in terms of known neural processes and brain systems. 

Each word is represented as a collection of a 66-dimensional feature vector that captures 

the strength of association between each neural attribute and the word meaning. More 

detailed account of the attribute selection and definition is given by Binder et al. (2009, 

2011, 2016a, and 2016b). 

To run the experiments, several data sets are required, as described in detail in 

Chapter 3. As a reference these are: a sentence collection prepared by Glasgow et al. 
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(2016), the semantic vectors (CAR ratings) for the 236 words obtained via Mechanical 

Turk, and the fMRI images for the 237 sentences, both collected by the Medical College 

of Wisconsin (Anderson et al., 2016; Binder et al., 2016). Additionally, fMRI 

representations for individual words (called SynthWord) were synthesized by averaging 

the sentence fMRI producing 236 synthetic words.  

The Glasgow sentence collection is not fully balanced and systematic, but instead 

aims to be a natural sample. To investigate the effect of context, finding mutual 

similarities between words or sentences sounds like a good approach. However, 

similarity alone is not enough, because anything is similar to anything else to some 

degree. Contrasting words or sentences is a better mechanism to address such effect. 

Therefore, several pairs of contrasting sentences were identified in this collection. 

A group of 77 such sentences, with different shades of meaning for verbs, nouns 

and adjectives, as well as different contexts for nouns and adjectives was assembled 

(Table 4.1). This collection is used to prompt words of interest during the experimental 

process. These pairs include differences and similarities such as live mouse vs. dead 

mouse, good soldier vs. soldier fighting, built hospital vs. damaged hospital, and playing 

soccer vs. watching soccer. Such list will allow the computational models to evaluate 

distinctive attribute representations and consequently adjust the baseline meaning of a 

word to convey the effects of context and conceptual combination. Table 4.1 lists the 

contrasting sentences. It includes the semantic classification, the sentence number and the 

sentence itself. For example, the verb flew in sentences 200, 204 and 207 appears in two 

different contexts: animate (as in bird and duck) vs. inanimate (as in plane). Such 

contrasting sentences illustrate the idea of conceptual combination and provides the basis 

for computational models that characterize the effect of context. 
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Table 4.1: Collection of 77 contrasting sentences. Sentence examples with differences 
and similarities in meaning. For instance, the verb kicked in the first two sentences, is 
used in two different contexts, playing with a ball (as in a soccer game) vs. breaking the 
door (as an aggressive behavior). Such sentence pairs illustrate the idea of conceptual 
combination providing the basis for computational models that characterize the effect of 
context. 

 
 

 

SEMANTIC CONTRAST No.            SENTENCES (verbs) SEMANTIC CONTRAST No.            SENTENCES (adjectives)
SOCCER 236 The artist kicked the football HOT AIR 208 The summer was hot  

62 The boy kicked the stone along the street  HOT LIQUID 224 The coffee was hot 
BREAKING 111 The soldier kicked the door  BAD PEOPLE 118 The dangerous criminal stole the television
ANIMAL 200 The yellow bird flew over the field  151 The mob was dangerous 

204 The duck flew NATURE 98 The flood was dangerous 
PLANE 207 The red plane flew through the cloud STYLE OF PLAY 217 The aggressive team took the baseball  
BLOCKING LIGHT 99 The cloud blocked the sun   ANGER 218 The duck was aggressive  
BLOCKING PHYSICAL OBJECT 209 The bicycle blocked the green door   185 The diplomat bought the aggressive dog   
HUMAN COMMUNICATION 89 The mayor listened to the voter  SMALL OBJECT 42 The teacher broke the small camera   

90 The jury listened to the famous businessman   YOUNG 55 The small boy feared the storm 
24 The commander listened to the soldier LARGE OBJECT 57 The boat crossed the small lake   

NOISE FROM A MACHINE 92 The lonely patient listened to the loud television  58 The army built the small hospital
DANGEROUS SITUATION 81 The reporter interviewed the dangerous terrorist  YELLOW FUR 43 The yellow dog approached the friendly teacher
QUIET SITUATION 82 The policeman interviewed the young victim   YELLOW PAPER 68 The magazine was yellow    
INFORMATION FOCUS 77 The author interviewed the scientist after the flood  YELLOW METAL 104 The accident damaged the yellow car   
SEMANTIC CONTRAST No.            SENTENCES (nouns) SEE-THROUGH, LARGE 31 The window was dusty   
GOOD 93 The soldier delivered the medicine during the flood SMALL 63 The dusty feather landed on the highway
AGGRESSIVE 111 The soldier kicked the door     LEAVES 51 The tree was green  
INFORMATION 92 The lonely patient listened to the loud television  FEATHERS 202 The green duck slept under the tree  
OBJECT 101 The dog broke the television    DIFFERENT CONTEXTS No.            SENTENCES (nouns)

118 The dangerous criminal stole the television  DEAD 60 The man saw the dead mouse   
PLAYING 230 The young girl played soccer   ALIVE 56 The mouse ran into the forest
WATCHING 234 The businessman watched soccer  POSITIVE 5 The parent watched the sick child
BAD 29 The doctor stole the book NEGATIVE 9 The parent shouted at the child   
GOOD 115 The doctor helped the injured policeman POSITIVE, EMPATHY 5 The parent watched the sick child

164 The old doctor walked through the hospital  NEGATIVE, DISCIPLINE 21 The angry child threw the book   
OPAQUE 99 The cloud blocked the sun NEGATIVE 7 The priest approached the lonely family  
TRANSPARENT 207 The red plane flew through the cloud  POSITIVE 2 The family was happy     
LIGHT 199 The cloud was white  3 The family played at the beach   
DARK 134 The old judge saw the dark cloud NEGATIVE 218 The duck was aggressive  
BLUE 50 The feather was blue  ACTIVE 204 The duck flew  
WHITE 62 The white feather was under the tree PEACEFUL 202 The green duck slept under the tree  
EXPLOSION 103 The accident destroyed the empty lab    NEGATIVE 185 The diplomat bought the aggressive dog  
TRAFFIC 112 The banker was injured in the accident   POSITIVE 181 The dog ran in the park
SOLID 31 The window was dusty 43 The yellow dog approached the friendly teacher 
BROKEN 100 The baseball broke the window   ACTIVE 157 The victim feared the criminal    
AGGRESSIVE 102 The angry activist broke the chair   PASSIVE 82 The policeman interviewed the young victim   
PASSIVE 117 The soldier arrested the injured activist  ACTIVE POSITIVE 3 The family played at the beach    
PLANT 51 The tree was green   
SHELTER 202 The green duck slept under the tree   PASSIVE, NEGATIVE 27 The beach was empty   
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Figure 4.1: General System framework and data flow to predict sentence fMRI from 
CAR words. Mapping CARWord to SynthWord (top). Then SynthWord is combined by 
averaging to form SyntSent and to be compared to the actual fMRISent (middle). Invert 
the process to modify the CARWords via SynthWord revised (bottom). The Revised 
CARWord includes different word meaning across sentences. 

 

4.3 COMPUTATIONAL MODELS 

A new mechanism was proposed in Chapter 3 that maps semantic vectors into 

sentence fMRI. It is grounded on CAR theory and implemented using the CEREBRA 

model (Chapter 3). In this chapter, CEREBRA is compared with Multiple Linear 

Regression (LReg) in this task. 
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The goal is to predict sentence fMRI from CAR words. Figure 4.1 presents the 

general system framework and data serving as a general description for the two 

approaches. The inputs are the concepts or neutral CARWords and the outputs are the 

context-based CARWords. It starts by mapping CARWord to SynthWords; gotten from 

the fMRI sentences (top of Figure 4.1). The SynthWord is then combined by averaging 

all words that occur in the sentence to form SyntSent for the predicted sentence. Next, the 

SynthSent is compared to the actual fMRISent (middle of Figure 4.1). The differences are 

included by modifying each of the SynthWord that map to fMRISent and by modifying 

each of the CARWord that map to the modified SynthWord (bottom of Figure 4.1). The 

resulting CARWord indicates how word meaning changes across sentences. 

4.3.1 Multiple Linear Regression 

At the word level, Multiple regression (LReg) is used to learn the mapping 

between CARWord and SynthWord voxels. The training set has attribute vectors of 

words as independent variables and the corresponding SynthWord vectors as the 

dependent variable, predicting one voxel at the time. Similarly, at the sentence level, the 

training contains assembled sentences (SynthSent) as independent and the corresponding 

observed fMRISent as the dependent variable. Once the prediction error is calculated, 

LReg is inverted (which is possible because it is linear), to determine what the CARWord 

values should have been to make the error zero. Algorithm 4.1 describes the LReg 

approach in detail. Note that the initial number of CARWords is 236 as explained in 

Chapter 3; however, for the analysis the list of words expands into a larger group of 786 

context-based words or CARWord-revised. This expansion is indicated in Steps 8 and 13 

of the algorithm. 
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The prediction task is run for each of the 11 subjects of the fMRI study. The 

Matlab function fitml is used to run multiple linear regression to map the CARWord to 

the SynthWord and the inverted linear process to map the SynthWord-revised to produce 

the CARWord-revised. It uses least squares to predict more than one dependent variable 

(𝑌) for one or more independent variables (𝑋).  

   𝑌e	  = 𝛽g	   +	  𝛽:	  𝑋e: 	  	  + 	  𝛽Y	  𝑋eY 	  + ⋯+ 𝛽>	  𝑋eY 	  + 	  𝜀      (4.1) 

where 𝑖	   is the number of observations (depending on the level of process, after 236 words or 237 

sentences),	   𝑌e	  	   represents the dependent variable,	   𝑋e	   represents the independent variable,	  

𝛽g	  represents y-intercept	   (constant	   term),	   𝛽>	  is the slope coefficient for each 

independent variable, and 𝜀	  represents	  the error or residual.	   

Additional processes such as assembling the sentences (averaging all words in a 

sentence) and calculating the predicted and proportional errors are implemented in 

Matlab scripts.  

4.3.2 Nonlinear Neural Network CEREBRA  

It is possible that the linear prediction based on LReg is not powerful enough to 

account for the context effects. Therefore, the nonlinear approach based on the model 

proposed in previous chapter is tested as well. That is, a backpropagation neural network 

is trained to map CARWord to SynthWord for all sentences. Then, the words are 

averaged (as before) into a prediction of the sentence SynthSent. The prediction error is 

used (through backpropagation) to train the network. 

After training, this network is used to determine how the CARWords should 

change to eliminate the error. That is, for each sentence, the CARWords are propagated 

and the error is formed as before, but during backpropagation, the network is no longer 

changed. Instead, the error is used to change the CARWords themselves (which is the 
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FGREP method; Miikkulainen et al., 1991). This modification can be carried out until the 

error goes to zero, or no additional change is possible (because the CAR values are 

already at their max or min limits). Ultimately, the revised CARWord represents the 

word meanings for the current sentence. 

 

 

Algorithm 4.1 Linear Regression mapping CAR words to sentence fMRI & back to CARs 

 

1:! For&Subject=1&to&11&
2:! && For&voxels=1&to&396&

3:! Run&Matlab&f i tlm&function&using&CARWord&(66&attributes)&as&independent&var&X&and&SynthWord&

(one&voxel)&as&dependent&var&Y&
4:! &&& Concatenate&all&the&single&Y&results&for&SynthWords&

5:! & For&sent=1&to&237&
6:! & & Assemble&the&SynthWords&into&the&237&SynthSent&by&averaging&the&appropriate&words:&&

NOPQℎNSPQ(TSPQ,1:396) = [W(X,1:396)+ W(Z,1:396)+. . .+W(O,1:396)]/P& &

!! X, Z, … , O&&&represent&the&correct&word&index&&for&each&SynthSent&content&words&
!! n&&&is&number&of&words&for&each&SynthSent&

7:! && & Obtain&the&prediction&error&by&subtracting&SynthSent&from&the&observed&fMRISent&for&each&voxel:&
abScdeQfbb(TSPQ,1:396) = ghij(TSPQ,1:396)− NOPQℎNSPQ(TSPQ,1:396)&

8:! && For&ctxt_word=1&to&786&

9:! && Calculate&the&contribution&of&each&word&in&the&sentence:&
NOPQℎWnbcenPQbdZ(eQoQ_pnbc, 1:396) =&

NOPQℎWnbc(X:P, 1:396)/[NOPQℎWnbc(X, 1:396)+ ⋯+ NOPQℎWnbc(P, 1:396)]&
!! n&&&is&number&of&words&for&each&sentence&

10:&& & Change&the&values&of&the&original&SynthWord,&distributing&the&proportional&error:&
NOPQℎWnbcbSsdTSc(eQoQ_pnbc, 1:396) = &NOPQℎWnbc(eQoQ_pnbc, 1:396)−&

[NOPQℎWnbcenPQbdZ(eQo_pnbc, 1:396) ∗ abScdeQfbb(TSPQ,1:396)]&
!! sent&& &changes&according&to&which&word&belongs&to&the&appropriate&sentence&

11:& For&attributes=1&to&66&

12:&& & Run&Inverted&LReg&(f i tlm)&for&SynthWord&revised&(396&Voxels)&as&independent&var&X&and&

CARWord&(one&attribute)&as&dependent&var&Y&
13:&& Concatenate&all&the&single&Y&results&for&revised&CARWords&

&

!
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4.4 EXPERIMENTS AND RESULTS 

The two approaches LReg and CEREBRA were evaluated in a preliminary 

experiment to characterize the different meanings of the verb listened. LReg was found to 

be inadequate in this task and therefore in two subsequent experiments, focusing on the 

adjective dangerous and in the noun mouse only the CEREBRA approach was used. This 

analysis was performed on the individual subjects for which the fMRI data in general was 

most consistent. 

4.4.1 Different contexts for the verb “listened “ 

Both models were used in this experiment to compare the contrasting meanings of 

HUMAN COMMUNICATION vs. NOISE FROM A MACHINE for the word listened as 

expressed in 89: The mayor listened to the voter, 92: The lonely patient listened to the 

loud television. The top of Figure 4.2 shows the results for LReg between the original and 

transformed CARs. Although the CARs adjusted in all sentences, the changes were small 

and unprincipled, unable to characterize the difference between human communication 

versus noise from a machine. In contrast, the outcome for CEREBRA resulted in context-

dependent changes as shown, for sentences 89 and 92 in the bottom of Figure 4.2.  

CARs in Sentence 89 presented salient activations in human-related attributes like 

Face, and Body, Audition, and Speech, as well as Human, Communication, and 

Cognition, presumably denoting human verbal interaction. For Sentence 92, high 

activations on Vision, Bright, Color, Pattern, Large, Shape, Complexity, Touch, 

Temperature, Weight, Scene, Near, Harm, Unpleasant, Happy, and Angry describe a loud 

and large object such as a television. Other subjects and words were also evaluated 

(injured, visited, watched, ate, kicked, accident, family) with similar outcomes. These  
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(a) Linear Regression 

 (b) Neural Network CEREBRA 
Figure 4.2: Results for the word listened in two contrasting sentences. LReg (top) did not 
capture context. All changes were insignificant to characterizing the context-dependent 
representations. The green line shows the original CARs for comparison. CEREBRA 
(bottom) did grasp context. The CARs for Sentence 89 have increased activations in 
human-related attributes like Face and Body, Auditory attributes, as well as Human, 
Communication and Cognition. In contrast, Sentence 92 activations on Vision, Color, 
Large, Shape, Complexity, Touch Temperature, High sound, and Unpleasant, depict a 
loud object such as a television. 
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results suggest that the linear mapping that LReg performs is not powerful enough to 

capture context, but the nonlinear mapping of CEREBRA is. A possible explanation is 

that the relations between the concept attributes and the voxels are too complex to be 

linearly separable. Therefore, the following experiments only used the CEREBRA 

method for characterizing the effect of context. 

4.4.2 Different contexts for the adjective “dangerous” 

This experiment compared the contrasting meanings of NATURE vs. BAD PEOPLE for 

the word "dangerous", as expressed in 98: The flood was dangerous, 118: The dangerous 

criminal stole the television. Figure 4.3 shows the differences resulting from the 

CEREBRA method. As with the verb listened, context-dependent changes did emerge. 

CARs in Sentence 98 present changes on activation for Large, Motion, SOMS 

attributes Texture and Weight, and event attributes Time, Short, and Caused, reflecting 

moving water. The attributes Toward, Harm, Unpleasant, and the emotion of Angry, 

represent the experiential and personal nature of danger. Conversely, Sentence 118 shows 

high activation for Vision, Complexity, Face, and Speech, because they represent human 

types and roles such as a criminal. Motor attribute Lower Limb as well as evaluation 

attributes Benefit, Angry, Disgusted, and Fearful can be associated with a dangerous act 

by a criminal. The CEREBRA method, therefore, was largely able to differentiate 

between the contrasting relevant dimensions of dangerous act of nature and humans. 

4.4.3 Different contexts for the noun “mouse” 

This experiment compared the contrasting meanings of DEAD vs. ALIVE for the 

word mouse as expressed in sentences 56: The mouse ran into the forest, 60: The man  
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Figure 4.3: CEREBRA results for the adjective dangerous across two contrasting 
sentences. CARs in Sentence 98 changed activation for Large, Motion, Texture and 
Weight, Time, Short, and Caused, reflecting moving water. The attributes Toward, Harm, 
Unpleasant, and Angry, represent the experiential nature of danger. Sentence 118 shows 
high activation for Vision, Complexity, Face, and Speech, because they represent human 
types and roles. Lower Limb, Benefit, Angry, Disgusted and Fearful can be associated 
with a dangerous act by a criminal.  

 

saw the dead mouse. Figure 4.4 shows the differences resulting from the CEREBRA 

method, which are again systematic and meaningful. 

CARs in Sentence 56 have increased activation for Vision, Motion, Complexity, 

High, and Sound, possibly suggesting animate properties of the live mouse. Upper Limb, 

spatial attributes Path and Away, and event attributes Time, Duration, Short, and 

Consequence, symbolize activity such as running. Emotions of Fearful and Surprised 

may well be associated with seeing a live mouse. In contrast, Sentence 60 shows 

increased activation for Temperature, Weight, and Smell, as well as emotions Sad, 

Angry, Disgusted and Fearful, which may be associated to the dead mouse. These 

changes indicate different aspects of mouse in two contrasting contexts. 
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Figure 4.4: CEREBRA results for the noun mouse across two contrasting sentences. 
CARs in Sentence 56 increased activation for Vision, Motion, Complexity, High, and 
Sound, presumably to indicate the animate properties of the live mouse. Upper Limb, 
Path, Away, Time, Duration, Short, and Consequence, suggest activity such as running. 
In contrast, Sentence 60 shows increased activation for Temperature, Weight, and Smell, 
as well as Sad, Angry, Disgusted and Fearful, which can be associated to the dead mouse. 
These changes indicate different aspects of mouse in two contrasting contexts. 

 

4.4.4 Analysis of the distribution of changes produced by CEREBRA 

It is informative to analyze the overall distribution of changes produced by 

CEREBRA. Figure 4.5 shows that on average the new CAR values increased. The results 

suggests that the new representations are gaining content. This is a remarkable result, 

because a simple statistical learning system could be expected to instead regress to the 

mean. In contrast, the modified representations in CEREBRA become (1) more 

descriptive and (2) more distinctive, which provides a good foundation for understanding 

the structure of the semantic space and for building applications (as will be discussed in 

Chapter 8).  
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 Figure 4.5: Distribution of the average changes produced by CEREBRA. The 
distribution is performed for all words, all sentences, and all subjects. The results show 
that on average, the new CAR values increased. This results suggest that the new CARs 
are gaining content. The new CARs are more descriptive and distinctive. 

 

4.5 DISCUSSION AND FUTURE WORK 

Experiments with available fMRI data show that the approach is feasible, 

demonstrating meaningful differences for e.g., human communication vs. noise from a 

machine; dangerous storm vs. dangerous person; live mouse vs. dead mouse. These 

changes are principled and can be captured by the neural network model. It may then be 

possible to create them dynamically and forming a basis for a more robust and grounded 

natural language processing system. 
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The results suggest that different aspects of word meaning are activated in 

different contexts, and it is possible to see those changes in the corresponding fMRI 

images using the CEREBRA model. These changes are likely to be nonlinear: The linear 

mapping approach (regression) tends to muddle them, but a nonlinear mapping 

(CEREBRA neural network) can tease them apart.  

As the first step, only single subjects were analyzed in this chapter. In the next 

chapters, the analysis is extended to more subjects identifying which changes are 

consistent across subjects, and which ones are more unique. For instance, the subject in 

experiment 3 was Sad that the mouse was dead; another subject could show a different 

emotion.  

CONCLUSION 

Concepts are always changing; their meaning depends on context and recent 

experience. In this chapter, word meaning was represented as a collection of attributes 

(CARs), grounded in observed brain systems. Multiple Linear Regression analysis and a 

nonlinear neural network CEREBRA were used to understand how the CARs could 

change to construct the actual sentence representations seen in fMRI images. The linear 

mapping approach yielded disorganized results, but the nonlinear mapping characterized 

the results in a meaningful manner. The results suggest that there are indeed systematic 

changes in CARs, and they make sense in each sentence context: Different features of 

word meaning are activated in different contexts.  
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Chapter 5 
 
Exploring the Conceptual Combination Effect  
Under the Context of Sentences  

 

Embodied theory of cognition represents concepts through weighted attributes and the 

weights may change in context. The challenge is to characterize these words’ dynamic 

meanings by measuring how the attribute weighting changes across contexts. The 

CEREBRA model is used to capture those changes in the context of the sentence by 

combining the meaning of the individual words. This chapter2 characterizes the context 

effect on word meanings by analyzing the changes produced by the CEREBRA model 

through different experiments: (1) Characterizing the effect of similar context on two 

different words, (2) Characterizing differences in two contexts, (3) Characterizing the 

effect of two different contexts on the same word, and (4) Characterizing the centrality of 

meaning. Each experiment analyzes the changes observed in the concept attributes across 

context and illustrates how individual conceptual combinations develop. 

5.1 MOTIVATION 

Embodiment theories of knowledge representation reviewed in Chapter 2 suggest 

that word meaning consist of a collection of weighted attributes defined in terms of 

different neural systems, and the weights change in context. This chapter aims at 

quantifying such adaptive meanings using a computational modeling. 

                                                
2 The content of this chapter was previously presented at Brain Informatics 2018 (Aguirre-Celis & 
Miikulainen, 2018). Aguirre-Celis worked on experimental design, implementation and analysis; while 
Miikkulainen provided guidance and feedback through discussions. 
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An intriguing challenge to such theories is that concepts are dynamic, i.e., word 

meanings are not fixed entries or lists of attributes, but dynamically processed each time 

a word is encountered (Barclay et al., 1974; Barsalou, 1987; Gennari et al., 2007; 

Murphy, 1988; Pecher et al., 2004; Yee et al., 2016). For example, an art painter 

searching in a supermarket for a fresh apple with the perfect shape and glossy green color 

would invoke different aspects of the word apple depending on whether she will be 

painting or making and apple pie. When thinking about art, the emphasis will be on the 

apple’s physical appearance, including perfect round shape and spotless green color. 

When thinking about baking, the emphasis will be on the apple’s flavor and maturity, as 

in tart tasting and crispy texture (Pecher et al., 2004). It is possible to track such dynamic 

meanings of words by measuring how the attribute weighting changes across contexts. 

In Chapter 4 these changes were reported anecdotally in two separate 

experiments. Multiple Linear Regression and the nonlinear CRERBRA model were used 

to map the CARs to the FMRI data in order to understand how the CARs could change to 

approximate the actual sentence representations seen in fMRI images. The results 

suggested that different features of word meaning were activated in different contexts. 

The linear mapping approach yielded disorganized results, but the nonlinear mapping 

characterized the results in a meaningful manner. 

The experiments presented in this chapter analyze the CAR changes more 

systematically in two ways. First, they characterize the changes that occur when a word is 

used in the context of a sentence, and second, they explain how different conceptual 

combinations emerge from such context.  

First, in CAR theory the activation of attribute representations is modulated 

continuously through attention and the interaction with context. Since the importance 
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given to individual attributes of a word varies with context, four analyses to visualize 

those changes are included in this chapter: 

(1)  Characterizing the effect of similar context on two different words. The 

goal is to analyze the similarities and differences between the concepts 

boat and car across subjects, indicating how context emerges producing 

distinct members of the same category of vehicles. 

(2)  Characterizing differences in two contexts. The idea is to quantify the 

emotional context of laughed and celebrated by analyzing how context 

appears from thematic associations, and demonstrating how such cognitive 

content can be a powerful source of context beyond the more obvious 

physical context.  

(3)  Characterizing the effect of two different contexts on the same word. The 

purpose is to examine the conceptual noun-verb combination using the 

representations of bird flew vs. plane flew, to evaluate how context gives 

rise to different degrees of animacy.  

(4)  Characterizing the centrality of meaning. The point is to characterize 

centrality of meaning between the concepts small camera vs. small 

hospital, evaluating how the same attribute is true for both concepts, but 

more central to one than to the other.  

Second, Chapter 2 reviewed the types of processes involved during conceptual 

combination. The first three experiments in this chapter illustrate Wisniewski’s (1997): 

attribute combination (e.g., red apple is an apple of a red color), relational combination 

(e.g., apple basket is a basket that holds apples), and hybrid combination (e.g., apple pie 

is a pie made of apples). The last experiment illustrates the centrality effect (e.g., the 
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attribute Small is more central for a bird than a whale) proposed by Medin & Shoben 

(1988).  

The following sections describe the four different experiments, analyze statistical 

significance with context aggregation across subjects, and demonstrate how conceptual 

combinations emerge. 

5.2 CHARACTERIZING EFFECTS OF SIMILAR CONTEXT 

In the first experiment the salient attributes for the words boat and car are 

compared under the semantic category of transportation vehicles as expressed in 57: The 

boat crossed the small lake and 142: The green car crossed the bridge. In principle, boat 

and car should occur in the same sentence context, but due to data availability, the 

experiment is designed with sentences that are similar and typical of those nouns. Context 

draws attention to a subset of attributes, which are then enhanced, forming the basis for 

object categories. CEREBRA model quantifies such enhanced representations for boat 

and car, revealing common underlying properties in the transportation vehicle category 

(Binder, 2016). Other words were also considered (dog vs. mouse; horse vs. fish; tea vs. 

water), with comparable results. 

Figure 5.1 shows the results averaged across subjects. For boat in sentence 57, 

there are changes on Vision, Large, Motion, Shape, Complexity, Weight, Sound, 

Manipulation, Path and Scene and event attribute Away, reflecting a large moving object. 

Evaluation and Emotion attributes of Benefit, Pleasant and Happy represent the 

experiential and personal nature of using a boat. Similarly, car in sentence 142 shows 

analogous activation for the same brain areas. Since both belong to the same semantic 

category, they share similar context-related attribute enhancement. However, the 
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distinctive weighting on these attributes sets them apart. The CEREBRA model was thus 

able to identify the effect of similar context on these two concepts across subjects. 

By demonstrating the concept of vehicle categories, this experiment exhibits the attribute 

combination process (Wisniewski, 1997). One or more attributes from the combination 

are transferred to the other words in the sentence. For example, Motion, Manipulation, 

Path and Scene, Benefit, and Pleasant are some of the attributes shared by all these words 

before context: boat, car, crossed, lake and bridge. The conceptual combination produces 

overlapping dimensions that enhance context-relevant attributes of the concepts. This 

process can be seen as forming “ad hoc categories” (Barsalou, 1983). An ad hoc category 

is a novel category constructed spontaneously to achieve a goal relevant in the current 

situation (Barsalou, 1983). When concepts share the same context-related attribute 

enhancement, ad hoc categories are formed. This process may be considered as an 

instance of attributes combination (Wisniewski, 1997). The context enhancement of 

context-relevant attributes for one or more concepts alters the relative similarity between 

them, thus forming an ad hoc category. 

5.3 CHARACTERIZING DIFFERENCES IN TWO CONTEXTS  

The second experiment examines the common emotional context in Sentences 4: 

The wealthy family celebrated at the party, and 14: The couple laughed at dinner, by how 

such cognitive content can be an instrumental source of context and demonstrating how 

context develops from external relations. 

Many concepts such as celebrated and laughed refer to affective states and 

emotions, and other cognitive experiences. One advantage on using CARs is that such 

experiences count as much as sensorimotor experiences in grounding conceptual 
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   (a) Boat                    (b) Car 
Figure 5.1: The effect of similar context for the words boat and car averaged across 
subjects. Results are shown for the new CARs as an average of all subjects. The dotted 
lines indicate the original CARs and solid lines specify the context-based representations. 
Both plots display similar changes, but the different weightings set them apart. The 
attribute combination process is validated (Wisniewski, 1997). One or more concepts 
share the same context-related attribute enhancement thus forming the vehicle category. 

 

representations. When people “feel happy”, they experience this phenomenon the same 

way as the sensory or motor events, except that the perception is internal. Similarly, to 

evaluate context in these sentences, CARs alone cannot capture the thematic associations 

between concepts (i.e., party, celebration, birthday cake, candles, laugh) unless additional 

sources provide it. Hence, the second experiment is designed to quantify that sort of 

context developed from external relations, i.e., spatial and temporal co-occurrence of 

events, captured by CEREBRA.  

Figure 5.2 shows that these sentences resulted in very similar contexts, emphasizing 

Scenes, Events, and positive Emotions. Figure 5.2(a) shows the context CARs averaged 

for each sentence for all subjects. Both sentences are mostly similar on Spatial, Event, 
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and Emotion attributes. Figure 5.2(b) aggregates these dimensions across the 12 

corresponding brain areas according to the CAR theory. All subject brain signatures 

mainly differ in Gustatory, Motor, and Attention, possibly highlighting that laughing at 

dinner involves food and requires more head and upper body movements. In contrast, 

celebrating demands more Attention and Arousal. The results thus suggest that 

CEREBRA captured the thematic relations where the two contexts intersect semantically. 

They also validated that emotional content is a prominent and potentially powerful factor 

in sentence context, and there are subtle differences in it that can cause subtle differences 

in word meanings.  

Finding how sentence meaning is represented in the brain remains a major 

challenge (Anderson et al., 2018; Just et al., 2017). The results in this experiment verify 

the relational combination process (Wisniewski, 1997). CEREBRA captures the thematic 

knowledge of the sentences by mapping the heteromodal semantic representations (CAR) 

to fMRI data. Context emerges from external relations, i.e., from the spatial and temporal 

co-occurrence of events. By using CEREBRA, it is possible to uncover the weightings of 

the brain systems for the entire sentence (as was done in Figure 5.2b), however, the 

thematic associations exposed by the model require further examination. CAR theory is 

capable of representing similar concepts across a large number of categories, but this 

classification of concepts become extremely similar (e.g., human roles --- lawyer, 

reporter, and judge), as a result, CARs is not able to capture the thematic associations. 

For example, the difference between judge and lawyer is related to the type of job they 

do, where they work etc. but the existing set of attributes in the CAR do not capture this 

type of relation. In the Discussion and Future Work Chapter this point will be addressed 

and a potential solution proposed.  
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(a) Celebrated vs Laughed 

 

 
(b) Averaged 

Figure 5.2: Results featuring differences between two contexts averaged across subjects. 
(a) A comparison of the averaged attributes for each sentence representing celebrated and 
laughed. (b) Aggregation analysis across subjects for each brain zones. These context-
based representations differ mostly in the Gustatory, Motor, and Attention zones, 
possibly emphasizing that laughing at dinner involves food and requires more movement 
than celebrating at the party, but the latter demands more Attention and Arousal. The 
relational combination process is demonstrated (Wisniewski, 1997) by the way context 
emerges from external relations, i.e., spatial and temporal co-occurrence of events. The 
results in this experiment indicate that CEREBRA captures the thematic knowledge of 
the sentences by mapping the heteromodal semantic representations (CAR) to the fMRI 
data. 
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5.4 CHARACTERIZING EFFECTS OF DIFFERENT CONTEXTS 

In the third experiment, the attributes of the noun-verb combination are analyzed 

for the word flew, as expressed in 200: The yellow bird flew over the field, and 207: The 

red plane flew through the cloud. According to the foundations of CAR theory (Section 

2.5), noun-verb interaction arises within multiple brain systems, activating similar brain 

zones for both concepts, plus the interaction between concepts that activate similar 

attributes. These interactions determine the meaning of the conceptual combination 

(Binder, 2016). Since bird is a living thing, animate sensory, motor, affective, and 

cognitive experiences are activated, including attributes like Face and Speech. In contrast, 

plane has salient activations along animate dimensions such as Emotion, Cognition, and, 

Attention. These simple differences demonstrate the hybrid combination process 

(Wisniewski, 1997). Knowledge about animacy is a combination of several types of 

experiences including perception of causality, perception of motion, perception of 

individual’s own internal affective and drive states, and the development of theory of 

mind (Binder, 2016). Such knowledge arises from interacting heteromodal brain 

networks in addition to the activation of similar attributes between concepts.  

Figure 5.3 shows the differences for flew in the two contexts. The top part 

displays all the 66 attributes for subject S9701, and the bottom part shows the average for 

all subjects with the statistically significant attributes highlighted. The analysis was done 

for all subjects using other conceptual combinations (banker drank vs. dog drank; 

dangerous criminal vs. dangerous flood; injured horse vs. injured person; horse walked 

vs. person walked) producing similar effects. 

The results demonstrate context-dependent changes on Sentence 200 with salient 

activations on animate attributes like Face, Small, and Body, Audition, Music, Speech, 

Taste and Smell, as well as Communication. On the other hand, Sentence 207 yields  
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significant changes on Size, Color and Shape, Weight, Audition, Loud, Sound, Duration, 

Social, Benefit, and Attention. These results suggest that CEREBRA was able to 

determine the effect of two different contexts into the resulting CARs. As the context 

varies for each sentence representation, the overlap on neural representations creates a 

mutual enhancement: the attributes of the target concept (e.g., bird flew) that are relevant 

to the context (e.g., animacy), are those that overlap with the conceptual representation of 

the context, and this overlap results in a clear difference between animate and inanimate 

contexts. The hybrid combination process involves additional processing within the 

neural systems where attribute representations overlap (Wisniewski, 1997). In the 

CEREBRA model, the context of animacy has a conceptual representation that overlaps 

with the noun-verb combination of bird flew, thus demonstrating a hybrid combination 

process (Wisniewski, 1997). 

5.5 CHARACTERIZING THE CENTRALITY OF MEANING 

In the fourth experiment, the attributes of the adjective-noun combinations are 

analyzed on the centrality effect for the word small, as expressed in 42: The teacher 

broke the small camera, and 58: The army built the small hospital. Centrality expresses 

the idea that some attributes are true to many different concepts, but they are more 

important to some concepts than others (Medin & Shoben, 1988). Figure 5.4 shows the 

differences for small in these two contexts. The top part displays all 66 attributes for the 

two sentences across subjects, and the bottom part displays the new camera and hospital 

representations averaged across all subjects.  

The size dimensions (e.g., Small and Large), demonstrated the centrality principle for 

these specific contexts. The top of the figure shows Sentence 42 (e.g., small camera) with 

salient activation for the central attribute Small and low activation for the non-central 
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attribute Large. In contrast, Sentence 57 (e.g., small hospital) presents a low activation on 

the non-central Small attribute but a high activation on the central Large attribute. These 

findings suggest that these attributes are essential to small objects and big structures, 

respectively. However, the size dimension alone cannot represent the centrality effect 

completely. Adding other attributes such as Weight would help, but other cases may 

require additional knowledge. For example, small boy not only includes the size 

dimension but also young age; the Size and Weight dimensions do not represent such a 

concept completely. This type of conceptual combination requires additional world 

knowledge to determine the centrality for a particular adjective, and the relationships 

between the dimensions for various contexts.  

Additionally, given that both camera and hospital are inanimate objects, the 

bottom part of the figure shows that they share low weightings on human-related 

attributes Biomotion, Face, Body, and Speech. However, they also differ in expected 

ways, including salient activations on Darkness, Color, Small and Large size, and 

Weight. As part of the sentence context, the activations include human-like attributes 

such as Social, Human, Communication, Pleasant, Happy, Sad and Fearful. Overall, each 

sentence representation moves towards their respective sentence context (e.g., camera or 

hospital).  

These observations are robust and general: analysis was done for all subjects 

using other conceptual combinations (small bird vs. small boy; small boy vs. small lake; 

small boy vs. small church), producing comparable results. 
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(a) Averaged sentences across subjects 

 
(b) Camera and Hospital averaged across subjects 

Figure 5.4: The effect of centrality on two contexts for the word small. (a) Shows the 
average for all subjects for the two sentences. (b) Displays the new camera and hospital 
representations averaged for all subjects. In the top figure, the new CARs for Sentence 42 
have salient activations on small object, denoting the camera properties like Dark, Small, 
Manipulation, Head, Upper Limb, Communication, and emotions such as Sad (e.g., broke 
the camera). Sentence 58 has high feature activations for large buildings describing a 
Large, and Heavy structure such as a hospital. In the bottom figures the central attributes 
are highlighted to emphasize how same attributes are more important to some concepts 
than others. Demonstrating the centrality effect (Medin & Shoben, 1988), each 
combination requires additional knowledge, and the interaction between concepts that 
activate similar set of attributes. 
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5.6 DISCUSSION AND FUTURE WORK 

The experiments in this chapter suggest that different aspects of word meaning are 

weighted differently in distinct contexts, and it is possible to identify those changes for 

individual concepts, a combination of concepts, and for sentences by analyzing the 

corresponding fMRI images through the CEREBRA model. The changes in the CARs 

were averaged across subjects and found to be statistically significant.  

The experiments demonstrated that different conceptual combinations include 

features that are not derived from their component parts only but require additional 

knowledge. The fMRI images possibly include such external knowledge, as was 

demonstrated in the third experiment by discovering the animate/inanimate differences 

for the noun-verb combinations bird flew vs. plane flew. Therefore, by using the 

CEREBRA model it is possible to characterize such conceptual combinations by 

observing the changes in CARs. What exactly is represented and how, is still unknown. 

The results are significant considering that the dataset was not originally designed 

to answer the question of dynamic meaning. Limited by the data available, the 

experiments presented here address specific cases, however, by expanding the collection 

(e.g., identical contexts and contrasting contexts) the number of potential observations 

would increase, making it possible to test more systematically.  

Synthetic words built by combining sentences where the word occurs, is similar to 

many semantic models in Computational Linguistics (Landauer & Dumais, 1997; 

Mitchell & Lapata, 2010; Vinyals et al., 2015). Also, synthetic words formed by fMRI 

sentence representations has been successful in cases like predicting brain activation 

(Anderson et al., 2016; 2018; Grand et al., 2018; Just et al., 2017). Although this study 

does not have a large set of sentences, the CEREBRA process of mapping semantic CAR 

words to the synthetic words and further to sentences fMRI refined the synthetic 
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representations by removing noisy information. Still, fMRI images for individual words 

instead of having to synthesize them, should amplify the observed effects.  

The next step is to aggregate the analysis across sentence contexts. The goal is to 

determine how similar sentences cause similar changes in word representations. The 

process starts by forming clusters of the 237 sentence representations. For each cluster, 

all new CARs with similar roles are identified and the changes between the new and the 

original CARs averaged and correlated with possibly the other words in the sentence. 

This experiment is the topic of the next chapter. 

CONCLUSION 

Concepts are dynamic; their meaning depends on context and recent experience. 

In this chapter, word meaning was represented as a collection of attributes (CARs), 

grounded in observed brain systems. This chapter characterized the context effect on 

word meanings by analyzing the changes produced by the CEREBRA model through 

four different experiments. The experiments analyzed the CAR changes systematically 

and illustrated the different conceptual combination mechanisms. The changes in the 

CARs were demonstrated in many different sentences and averaged across subjects, and 

found to be statistically significant. Essentially, the CEREBRA model was able to capture 

the context of the sentence by measuring how the attribute weighting changed across 

context. 
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Chapter 6 
 
Quantifying the Effect of Conceptual Combination  
on the Concept Attributes 

 

This chapter focuses on the conceptual combination process. It describes how such a 

dynamic construction of concepts in the brain can be quantified. This idea was presented 

anecdotally in Chapter 5, by analyzing a few example cases of how the concept attributes 

are weighted differently in various sentence contexts. The current chapter3 expands on 

this prior work by evaluating the robustness and generality of these conclusions across an 

entire corpus of sentences and semantic roles. 

6.1 MOTIVATION 

What is the “glue” between words like banana and pepper that allows individuals 

to understand the resulting conceptual combination banana pepper? People weight 

concept features differently based on context. Whenever they encounter a combination of 

concepts, they start searching for a coherent explanation that put together the concepts 

usually by the relational combination or attribute combination. Conceptual combination 

was introduced in Chapter 2 and characterized anecdotally in Chapter 4. Essentially a 

relational combination forms some relation between two concepts to create a new one, 

and the attribute combination uses an attribute of one concept to describe another. Both 

combinations play an important role in the construction of new or complex concepts 

(Gagné & Shoben, 1997; Murphy 1990; Pecher, Zeelenberg, & Barsalou, 2004). This 

                                                
3 The content of this chapter was previously presented at the 41th Annual Meeting of the Cognitive Science 
Society (Aguirre-Celis & Miikulainen, 2019). Aguirre-Celis worked on experimental design, 
implementation and analysis; while Miikkulainen provided guidance and feedback through discussions. 
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chapter focuses on attribute combination. Here, the modifier features (e.g., noun, 

adjective) adapt other concepts in the combination to some degree, and as a result, the 

words involved are more alike (Wisniewski, 1998). For example, listeners must realize 

that banana pepper could mean just a fruit having a certain color by selecting salient 

features that dominate in the combination. The noun pepper is defined by color, size, 

shape, taste etc. and one or more of those dimensions will be modified during the 

attribute combination (i.e., curved shape and yellowish color resembles a banana).  

This chapter demonstrates how such a dynamic construction of concepts in the 

brain can be quantified. Chapters 4 and 5 showed (1) that words in different contexts 

have different representations, and (2) these differences are determined by context. These 

effects were demonstrated by analyzing individual sentence cases across multiple fMRI 

subjects (Chapter 5). This study verifies these same conclusions in the aggregate through 

a statistical analysis across an entire corpus of sentences: It measures how the CARs of a 

word changes in different sentences, and correlates these changes to the CARs of the 

other words in the sentence. In other words, it quantifies the conceptual combination 

effect statistically across sentences and subjects. 

In the following sections an analysis across sentence contexts is described 

followed by an example on how conceptual combinations modify word meanings across 

clusters of sentences and roles. Then, the aggregation methodology is reviewed, and the 

results presented and discussed. 

6.2 ANALYSIS ACROSS SENTENCE CONTEXTS 

The aggregation study hypothesis is based on the idea that similar sentences have 

a similar effect, and this effect is consistent across all words in the sentence. In order to 

test this hypothesis, it is necessary to (1) form clusters of similar sentences for the entire 
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collection, and (2) calculate the average changes on the words identified by the role they 

play for the same cluster of sentences. After that, it will be possible to demonstrate how 

similar sentences cause analogous changes in words that play identical roles in those 

sentences using correlations.  

6.2.1 Sentence Clustering 

First, synthetic sentences are assembled by using the new CARs produced by the 

CEREBRA model. The sentences are formed by averaging the representation of all words 

occurring in the sentences as described in Chapter 3, diagrammed concisely as: 

 

 

 

Then, the 237 by 66 sentence representations are grouped into clusters (e.g., 

according to their context similarity) using the Matlab function linkage to form an 

agglomerative hierarchical cluster. It uses the Ward method to measure the distance 

between clusters and Euclidean metric to measure the distance between observations. 

Ward's linkage consists of computing the distance between clusters by the minimum 

variance algorithm. At each step, it finds the pair of clusters that leads to the minimum 

increase in total within-cluster variance after merging. The within-cluster sum of squares 

is a measure of the variability of the observations in each cluster. It is defined as the sum 

of the squared distances between all the observations inside the cluster and the centroid of 

3

The$mob$approached$the$embassy
embassyapproachedmob
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the cluster. The sum of squares metric is equivalent to the following distance metric 

formula: 

 

   𝑑(𝑟, 𝑠) = r Ystsu
(stCsu)

‖𝑥wxxx − 𝑥yz ‖ Y        (6.1) 

 

where ‖ ‖ Y  is Euclidean distance, 	  𝑥wxxx	  and	  𝑥yz  are the centroids of clusters 𝑟	  and	  𝑠, 

𝑛w	  and	  𝑛y are the number of elements in clusters 𝑟	  and	  𝑠. 

A series of cluster analyses are performed with the number of clusters ranging 

from 20-50. Thirty clusters are found to be the optimal number, displaying the most clear 

classifications and reflecting similar groupings to the semantic categories for the original 

CARs addressed by Binder et al. (2016).  

Figure 6.1 shows a dendrogram example illustrating a few interesting contexts 

that emerged. Animals, which formed three clusters 28, 19, and 14, are shown at the top 

of the figure. It includes two sentences (marked in parenthesis) that do not have any 

animals in the constituents 162: The magazine was in the car and 172: The car 

approached the river. They do not fit naturally within the context but are closer to other 

sentences possibly due to some features that are shared with sentences like the change in 

location for approached, ran, and flew in cluster 14. Furthermore, Animals branched into 

a subgroup related to open locations as in clusters 19 and 14. Weather events, Accidents 

and Violence group together environmental and human phenomena in addition to some 

criminal violence as in stole and damaged objects or structures. Social Interaction, the 

cluster in the bottom of the figure, contained context associated with interviewed, spoke, 

shouted, negotiated, met, listened, and protest, featuring simple interaction between two 

or more people. For each of the 11 Subjects some distinctive clusters were formed.  
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Figure 6.1: Dendrogram segments from the hierarchical cluster analysis using new 
sentence representations for Subject S9701. Animals, Weather events, Accidents, 
Violence, and Social Interaction, each clustered in separate branches. Only displays 7 
clusters for better visualization. The sentences in parenthesis indicate that they do not fit 
intuitively in such context. Clusters of new sentence representations for the aggregation 
study. 

6.2.2 Average Changes by Word Roles 

Each cluster of sentences is expected to reveal similar changes in some of the 

dimensions. To recognize common patterns of changes modulated by context, the next 

step is to calculate the average of the changes for words with similar roles, e.g., hospital, 
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hotel, and embassy (within the same cluster of sentences). That is, measure the difference 

between the new and the original CARs for each similar word roles and perform a 

statistical significance analysis using the Student’s t-test to prove that those changes are 

meaningful. 

Next, a detailed individual example of the conceptual combination effect on two 

different clusters is presented followed by the aggregation study and the results. 

6.3 The Conceptual Combination Effect across Sentence Clusters  

The aggregation analysis across sentence contexts targets a higher-level 

characterization by clustering sentence representations to find context. Hence, those 

clusters of similar sentences are expected to display equivalent changes on the words that 

play identical roles. 

One way to identify the context of the sentences that cluster together and the 

effect on the roles is by looking at the centroid sentences for each cluster. The next three 

figures (Figure 6.2, 6.3 and 6.4), present an example that considers the concept 

interactions in the centroid Sentence 7: The priest approached the lonely family (Cluster 

1, Subject S9324), and the centroid Sentence 150: The mob approached the embassy 

(Cluster 7, Subject S9726). Figure 6.2 displays the two clusters of sentences with similar 

contexts including the centroid sentences. Figure 6.3 shows the original CARs for the 

content words of the centroid sentences, and Figure 6.4 shows the word changes for the 

centroid sentences’ concepts, playing the same role. 

Figure 6.2 shows two different clusters representing a variety of sentences where 

the context similarity might be built upon the agent as in priest vs. mob or the 

patient/location as in family vs. embassy. For priest (top part), the cluster groups together 

context associated with nice people helping or interacting with other individuals (i.e., 
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minister, policeman, activist, woman, and doctor). In contrast for mob (bottom part), the 

cluster groups together rather violent or aggressive people (i.e., army, terrorist, and 

criminal). Analogously for family (top part), animate dimensions cluster together various 

human beings (i.e., patient, victim, tourist, policeman), as opposed for embassy (bottom 

part), the inanimate dimensions cluster together objects or locations (i.e., hospital, car, 

hotel, and television).  

Figure 6.3 shows the original CARs, displaying the weights of the generic 

representation (before context-based modifications) for each content word of the centroid 

sentences. This figure is important in order to verify how similar sentences cause 

analogous changes in word roles by comparing the generic meanings in the original 

CARs to the changes on the context-based representations for each of the word roles. The 

top part shows salient activations on dimensions related to agency for priest and family 

and relevant activations on dimensions associated with actions for motor, spatiotemporal, 

and events for the verb approached. In the same manner, the bottom part displays salient 

activations on dimensions related to agency and location for mob and embassy, 

respectively, and significant activations on dimensions associated with motion for motor, 

spatiotemporal, and events for the action word approached.  

The top three plots in Figure 6.4 show only the statistically significant changes for 

the three roles on agent-like attributes like Small and Motion, Audition, Music, Speech, 

and Taste, as well as Cognition, Pleasant and Sad. Additionally, motor and 

spatiotemporal dimensions are overlapping in like manner among the word roles, sharing 

similar attributes related to the verbs in the cluster. For example, comparing the generic 

representation of the nouns priest and family (Figure 6.3), both have about the same 

activation for the attribute Path (0.2), however the verb approached has a very high 

activation (0.9). By analyzing the same attribute in the top three plots in Figure 6.4, the 
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changes on each role display common modifications toward the context (i.e., 

approached). Similar effect was observed for other attributes. In the same manner the 

adjectives (e.g., lonely), which are not considered in this experiment but are part of the 

process of producing the new context representations, possibly influenced the changes in 

the new concept representations as well, but those changes will not be addressed here.  

The bottom three plots in Figure 6.4 also show only the statistically significant 

changes for the three roles on agent-like attributes like Pain, Audition, Music, Speech, 

Taste and Smell, as well as Consequential, Short, Cognition, Self, and particularly 

negative emotions (e.g., Disgust) regarding the noun mob. On the other hand, for the 

inanimate nouns, attributes like Visual, Large, Landmark and Scene present congruent 

changes. Additionally, motor and spatiotemporal dimensions are overlapping in related 

manner among the word roles, sharing similar attributes related to the verbs in the cluster. 

For example, comparing the generic representation of the words approached and embassy 

(Figure 6.3), both have very low activation for the attribute Disgust (~0.01) compared to 

the noun mob (0.4). By analyzing the same attribute in the bottom three plots of Figure 

6.4, the changes on each role display significant modifications toward the context (i.e., 

mob). Similarly, this effect was consistent for many other attributes.  

These results illustrate the effect of conceptual combination on word meaning. As 

the context varies, the overlap on neural representations creates a mutual enhancement, 

producing a clear difference between good and bad people in addition to animate and 

inanimate contexts. The CEREBRA model encodes this effect into the CARs where it can 

be measured. Similar effect was observed for several other cluster pairs. In the next 

section this effect is quantified statistically across the entire corpus of sentences. 
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Figure 6.2: Sentences with similar contexts for clusters 1 and 7. The context similarity 
was organized around the agent as in priest vs. mob or the patient/location as in family vs. 
embassy. For priest (top part), the cluster groups together context associated with nice 
people helping or interacting with other individuals. In contrast, for mob (bottom part), 
the cluster groups together rather violent or aggressive people. Comparably for family 
(top part), animate dimensions cluster together different human beings, in the contrary 
for embassy (bottom part), the inanimate dimensions cluster together objects or locations. 
Plots display similar context sentences clustered together. 
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Figure 6.3: Original CARs displaying the weights of the generic representation (before 
context-based modifications) for each content word of the centroid sentences. The top 
part shows salient activations on dimensions related to agency for priest and family and 
activations on dimensions associated with the verb approached. The bottom part displays 
salient activations on dimensions related to agency and location for mob and embassy 
respectively, and activations on dimensions associated with motion for the word 
approached. Bar plots show the original CARs obtained by Binder (2016) for different 
words. 
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Figure 6.4: Word changes for the concepts playing the same role for the clusters. The top 
three plots display only the statistically significant changes for the three roles on agent-
like attributes like Motion, Speech, and Taste, as well as Cognition, Benefit, Pleasant, 
and Surprise. The bottom three also display only the statistically significant changes for 
the three roles on agent-like attributes like Pain, Audition, Speech, Taste and Smell, as 
well as Consequential, and negative emotions (e.g., Disgust) regarding the noun mob. On 
the other hand, inanimate attributes (bottom plot) like Visual, Large, Complex, and Scene 
referring to objects. For the two clusters, motor and spatiotemporal dimensions are 
overlapping in like manner among the word roles. Box plots show only the statistically 
significant attribute changes for each role of the centroid sentences for clusters 1 and 7. 
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6.4 AGGREGATION ANALYSIS 

So far, the conceptual combination effect has been demonstrated in a number of 

example cases, like the one presented in Section 6.3, and others in earlier chapters 

(Chapter 4 and 5). The aggregation methodology is reviewed next, and the goal is to 

demonstrate that the effect is robust and general across the entire corpus of sentences and 

case roles. Once more, the hypothesis that similar sentences have a similar effect, and this 

effect is consistent across all words in the sentence was verified in the following process: 

1.   For each subject, modified CARs for each word in each sentence were formed 

through CEREBRA as described in Chapter 3.  

2.   A representation for each sentence, SynthSent, was assembled by averaging the 

modified CARs (Chapter 3).  

3.   Agglomerative hierarchical clusters of sentences were formed using the set of 

SynthSents. The Ward method and Euclidean metric were used to measure the 

distance between clusters and observations respectively, as explained in Section 

6.2.1. The process was stopped at 30 clusters, i.e., at the point where the 

granularity appeared most meaningful (e.g., sentences describing open locations 

vs. closed locations).  

4.   Each cluster of sentences is expected to reveal similar changes in some of the 

dimensions. To recognize such common patterns of changes, the next step is to 

calculate the average of the changes for words with similar roles, e.g., hospital, 

hotel, and embassy (within the same cluster of sentences). To that end, the 

differences between the modified and original CARs are measured separately for 

each CAR dimension in each word role, and their significance estimated using 

Student's t-test (Section 6.2.2).  

5.   The modified CARs of the other words in the sentence were averaged.  
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6.   Pearson's Correlations were then calculated between the modified CARs and the 

average CARs of other words across all the dimensions.  

7.   Similarly, correlations were calculated for the original CARs.  

8.   These two correlations were then compared. If the modified CARs correlate with 

the CARs of other words in the sentence better than the original CARs, there is 

evidence of context effect based on conceptual combination. 

That is, this process aims to demonstrate that changes in a word CAR originate 

from the other words in the sentence. As in the example presented in the previous section 

mob approached embassy vs. priest approached family, showed how some of the noun 

properties (good/bad, animate/inanimate) were transferred to the other words in the 

sentence, adapting the combination to the extent that the words share similar features. For 

example, if the other words in the sentence have high values in the CAR dimension for 

Landmark (e.g., embassy and approached), then that dimension in the modified CAR 

should be different than in the original CAR for the target word (e.g., mob). The 

correlation analysis measures this effect across the entire CARs. It measures whether the 

word meaning changes towards the context meaning. 

6.5 RESULTS 

The results are shown in detail in Figure 6.5. The top part of the figure presents 

the correlation results per subject and word roles, and the bottom part of the figure 

displays the results in graphic form. The correlations are significantly higher for new 

CARs than for the original CARs across all subjects and all roles. Additionally, the 

AGENT role represents a large part of the context in both analyses. In other words, the 

average correlations of the original and modified CARs are most similar in the Agent 

panel suggesting that this role encodes most of the context. It is important to note that the  
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(a) Correlation results 

 

(b) Correlation results in graphic form 

 
Figure 6.5: Correlation results per subject cluster. The top part displays the correlation 
data per subject and word role, and the bottom part presents the same results in graphic 
form. Average correlations analyzed by word class for 11 subjects comparing the original 
and new CARs vs. the average of the other words in the sentence. A moderate to strong 
positive correlation was found between new CARs and the other words in the sentence 
suggesting that features on one word are transferred to other words in the sentence during 
conceptual combination. Interestingly, the original and new patterns are most similar in 
the AGENT panel, suggesting that this role encodes much of the context The results 
show that the conceptual combination effect occurs consistently across subjects and 
sentences. 

!!!!!AVERAGE!!CORRELATIONS!!PER!!SUBJECT!!(3!ROLES)
ORIGINAL! NEW

SUBJECTS AGENT VERB PATIENT AGENT VERB PATIENT
5051 0.2956 0.2884 0.3138 0.3908 0.3760 0.4147
5146 0.3272 0.3103 0.3476 0.3854 0.3585 0.4096
9322 0.3097 0.3049 0.3209 0.3746 0.3661 0.3905
9324 0.3264 0.3021 0.3456 0.3613 0.3373 0.3800
9362 0.3595 0.3029 0.3252 0.3918 0.3621 0.3959
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MEAN 0.33293 0.30417 0.32312 0.39494 0.37182 0.40865
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clusters obtained for each subject’s sentences in the aggregation analysis (Section 6.4), 

dictates the way the correlation analysis is conducted for the modified and the original 

CARs. Each subject produced a different arrangement of sentence clusters that is why the 

average correlations of the original CARs are different within each role (i.e., they depend 

on the subject’s cluster organization), even though the original CARs include a single set 

of 236 words compared to the modified CARs that include eleven sets of 786 context-

based words, or revised CARWords (Chapter 3). 

Thus, the results indeed confirm that the conceptual combination effect occurs 

consistently across subjects and sentences, and it is possible to quantify it by analyzing 

the fMRI images using the CEREBRA model on the CARs. As a summary, the average 

correlation was 0.3201 (stdev 0.020) for original CARs and 0.3918 (stdev 0.034) for new 

CARs. 

6.6 DISCUSSION AND FUTURE WORK 

This study aimed to verify the hypothesis that during sentence comprehension, 

people adjust the word meanings according to the combination of the concepts that occur 

in the sentence. This effect had been demonstrated in individual cases before, and the 

goal was to demonstrate it more broadly across many subjects, an entire corpus of 

sentences, and different semantic case roles in those sentences. The correlation results 

indeed demonstrated that the effect is robust and can be quantified by analyzing fMRI 

images through the CEREBRA mechanism. 

These findings are significant considering that the dataset was limited and was not 

designed to answer the question of dynamic effects in meaning. In the future, it may be 

possible to extend the data with identical contexts and contrasting contexts, such fully 

balanced stimuli could be used to test the hypothesis more systematically. Similarly, it 
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would be desirable to extend the data with fMRI images of individual words to lead to 

stronger and clearer results. 

One important advantage of CAR theory is that it is grounded on brain 

representations, and therefore a good choice when mapping semantic representations to 

fMRI. In the future, it would be interesting to compare whether similar effects can be 

observed with semantic representations based on co-occurrence in text corpora, or 

perhaps even a combination of the two.  

CONCLUSION 

This chapter shows how word meanings adjust depending on context. All of these 

dynamic effects create a moving target that is (1) experience-based to allow 

representations to change over time, and (2) distributed such that various features can 

become active in different settings. Using CEREBRA as a mechanism it was possible to 

show that the difference between the expected and observed fMRI images can indeed be 

explained by a change in CARs. Across an entire corpus of sentences, the new CARs are 

more similar to the other words in the sentence than to the original CARs, demonstrating 

how features of the context are transferred to each word in the sentence.  
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Chapter 7 
 
Mapping Brain to Behavior: Evaluating CEREBRA  

 

Semantic feature models have become a popular tool for prediction and interpretation of 

fMRI data. In particular, prior work has shown that differences in the fMRI patterns in 

sentence reading can be explained by context-dependent changes in the semantic feature 

representations of the words. However, whether individuals are aware of such changes 

and agree with them has been an open question. This chapter4 aims to answer this 

question through a human-subject study. In the survey, subjects were asked to judge how 

the word change from their generic meaning when the words were used in specific 

sentences. That is precisely what the CEREBRA model produces. Thus, the survey is 

intended to evaluate the results produced by the computational model. 

7.1 MOTIVATION 

Semantic feature theory suggests that a word meaning is instantiated by weighting 

its semantic attributes according to the context. (Barclay et al., 1974; Hampton, 1997; 

Kiefer & Pulvermüller 2012; Medin & Shoben, 1988; Mitchell & Lapata, 2010; Murphy, 

1990; Wisniewsky, 1998). For example, when people think of the word football, they 

heavily weigh features like ‘shape’ and ‘lower limbs’ and features like ‘smell’ and ‘size’ 

lightly. In contrast, when they think of forest, the weighing on those features is likely to 

reverse. However, when the words appear in the context of a sentence such as The team 

lost the football in the forest, the context might bring up more unusual features like 
                                                
4 The content of this chapter was previously presented at the 6th Workshop on Cognitive Aspects of the 
Lexicon (Aguirre-Celis & Miikulainen, 2020). Aguirre-Celis worked on experimental design, 
implementation and analysis; while Miikkulainen provided guidance and feedback through discussions. 
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‘Landmark’, ‘Fearful’, and ‘Surprise’. Thus, when words share features, those aspects of 

the word representation that are relevant to the context are strengthened (Hampton, 1997; 

Kiefer & Pulvermüller 2012; Medin & Shoben, 1988; Mitchell & Lapata, 2010; Murphy, 

1990; Wisniewsky, 1998).  

If this theory is correct, it should be possible to see such changes in the fMRI 

patterns of subjects that are reading words in different contexts. The contextual effect of 

the words semantic encoding was demonstrated in earlier chapters. In Chapter 4, 

interesting context effects were observed for different shades of meaning (dangerous 

flood vs. dangerous criminal). In fact, the CEREBRA model captured the context of the 

sentence combining the meaning of the individual words. In Chapter 5, CEREBRA 

model was able to identify the effect of similar context on different concepts across 

subjects (boat crossed vs. car crossed), as well as the effect of different contexts on same 

concept (bird flew vs. plane flew). In Chapter 6, the effect was quantified across a large 

corpus of sentences. It was demonstrated that the meaning of the sentence context is 

transferred to a degree, to each word in the sentence, i.e., the new CARs were more 

similar to the other words in the sentence than to the original CARs. In this manner, 

contextual modulation was characterized by the CEREBRA mechanism. What remains to 

be shown is that these effects (changes) are actually meaningful to the subjects, i.e., that 

they are aware of them and agree on the predictions of the model. To that end, a human 

subject study is presented in this chapter. Subjects were given words in context and asked 

to evaluate possible changes.  

The hypothesis is that sentence context influences the interpretation of target 

words by modifying some of their semantic attributes. Consequently, if this attribute 

changes under the context of a sentence, the fMRI images should embed those changes. 

By using the CEREBRA model, the generic representation of the word attributes should 
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adjust to reflect those changes as well. The human judgements can thus be compared to 

those predicted by the CEREBRA model.  

In the next sections, the methods and results of the human subject study are 

described, followed by the methods and results of the computational study. The methods 

and results of comparing the human judgements and the computational model predictions 

concludes the chapter. 

7.2 MEASURING HUMAN STUDY 

The purpose of the survey is to evaluate the computational model predictions 

addressing the central question: How does the meaning of a word change in different 

sentences? As stated in Section 2.5.3, different attributes of the target word are weighted 

differently depending on context. Thus, the model is used to determine how the generic 

meaning of a word would have to change in order to account for the context. Specifically, 

the survey was designed to characterize these changes by asking the subject directly: In 

this context, how does this attribute change? 

7.2.1 Materials and Design 

The survey design was based on the fMRI subject data and sentence collection, 

the CEREBRA predictions, and the CAR’s literal descriptions. A script was implemented 

to select the most representative subjects, sentences, words, and word attributes. To make 

the questions more understandable for the participants, the original descriptions of the 66 

attributes (Table 2.1) were rephrased in simple English. 

The data from the aggregation analysis described in Chapter 6 was used as the 

starting point and filtered further to make it systematic and uniform. Only the centroid 

non-copula sentences, only three-word classes, and only the top 10 statistically 
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significant attribute changes for the target words (classes) were used. The final stimuli 

that met these criteria consisted of 64 different sentences from the Glasgow corpora 

containing the Agent, Verb, and Patient/Object/Location/Event (POLE). They contained 

123 words: 38 Agents, 39 Verbs, and 46 POLE words. Table 7.1 lists the sentences. It 

includes the original sentence number from the Glasgow collection, the sentence itself, 

and the number of times each particular sentence was selected by the script (as a result of 

different subjects). Table 7.2 lists the three classes, the word in alphabetical order, and 

the word number from the original collection. Red indicates words used in two different 

roles in various sentences (e.g., scientist as Agent or Patient).  

The complete survey is an array of 24 questionnaires that include 15 sentences 

each. For each sentence, the survey measures 10 attribute changes for each target word. 

Overall, each questionnaire thus contains 150 evaluations. For example, a questionnaire 

might measure changes on 10 specific attributes such as ‘is visible’, ‘living thing that 

moves’, ‘is identified by sound’, ‘has a distinctive taste’, for a specific word class such as 

politician, for 15 sentences such as The politician celebrated at the hotel. An example 

sentence questionnaire is shown in Figure 7.1.  

One way to select which attributes to test is to find those where the CEREBRA 

changes are the largest, for each subject, sentence, and role. Initially that choice appeared 

appropriate, however, the selection seemed incoherent for many sentences. For example, 

one attribute selected in this manner for the target word played in The girl played in the 

forest was ‘has distinctive taste’. In this context, it did not make sense to measure the 

change in ‘taste’, even though in principle it is possible under feature sharing in concept 

combination and contextual modulation (girl has distinctive taste and forest has 

distinctive taste to a smaller degree, therefore, ‘taste’ might be transferred to the verb 

played). But such transfer seems to be taking it too far.  
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Table 7.1: The 64 different sentences used in the questionnaires. Shown are the original 
sentence number, the sentence itself, and the number of times each sentence was included 
in the survey (e.g., 120 total). In addition, the Subject, Verb, and Object were evaluated 
for each sentence, therefore the entire survey consisted of 360 sentences. 

 

                                      Questionnaries Unique Sentences
No. Sentence Occ No. Sentence Occ

10 The parent bought the magazine 3 113 The author kicked the desk 4
12 The couple planned the vacation 2 116 The injured horse slept at night 1
16 The wealthy couple left the theater 1 117 The soldier arrested the injured activist 2
17 The child broke the glass in the restaurant 3 119 The doctor bought the used boat 1
18 The happy child found the dime 2 123 The witness went to the trial 2
21 The angry child threw the book 2 131 The angry lawyer left the office 1
28 The judge met the mayor 4 144 The duck lived at the lake 1
39 The scientist spoke to the student 1 149 The banker watched the peaceful protest 1
40 The engineer gave a book to the student 4 150 The mob approached the embassy 2
43 The yellow dog approached the friendly teacher 1 154 The politician celebrated at the hotel 2
48 The mayor dropped the glass 3 157 The victim feared the criminal 1
54 The girl saw the small bird 1 168 The famous diplomat left the hospital 5
56 The mouse ran into the forest 1 170 The banker bought the expensive boat 2
57 The boat crossed the small lake 5 174 The farmer liked soccer 2
59 The judge lost the dime 1 177 The wealthy author walked into the office 2
61 The boy kicked the stone along the street 1 180 The tourist hiked through the forest 2
67 The woman bought medicine at the store 1 187 The tree grew in the park 1
73 The witness spoke to the lawyer 1 188 The commander ate chicken at dinner 4
75 The reporter spoke to the loud mob 2 195 The reporter ate at the new restaurant 3
77 The author interviewed the scientist after the flood 1 197 The boy held the football 1
78 The commander negotiated with the council 1 200 The yellow bird flew over the field 2
81 The reporter interviewed the dangerous terrorist 3 202 The green duck slept under the tree 1
82 The policeman interviewed the young victim 1 203 The girl saw a horse in the park 3
83 The mayor negotiated with the mob 2 205 The man lost the ticket to soccer 4
88 The activist listened to the tired victim 1 215 The tourist found a bird in the theater 1
89 The mayor listened to the voter 1 216 The old farmer ate at the expensive hotel 2
90 The jury listened to the famous businessman 2 226 The policeman read the newspaper 1
91 The woman helped the sick tourist 3 227 The criminal put the book on the desk 1
93 The soldier delivered the medicine during the flood 1 229 The happy girl played in the forest 3

108 The mob damaged the hotel 1 230 The young girl played soccer 1
109 The flood damaged the hospital 2 231 The old man threw the stone into the lake 1
111 The soldier kicked the door 1 235 The guard slept near the door 1
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Table 7.2: The 123 words used in the questionnaires divided into 38 Agent, 39 Verb, and 
46 Patient/Object/Location/Event (POLE) classes. Shown in alphabetical order. Words 
shown in red appeared in two different roles in separate sentences.  

 

       Questionnaries Unique Words
No. Agent No. Verb No. POLE

2 activist 8 approached 2 activist
13 author 10 arrested 21 bird
15 banker 12 ate 25 boat
21 bird 27 bought 26 book
25 boat 31 broke 33 businessman
28 boy 38 celebrated 41 chicken
42 child 56 crossed 52 council
48 commander 57 damaged 55 criminal
53 couple 62 delivered 63 desk
55 criminal 74 dropped 65 dime
67 diplomat 88 feared 70 door
68 doctor 94 flew 80 embassy
69 dog 99 found 92 field
75 duck 101 gave 95 flood
83 engineer 105 grew 97 football
87 farmer 109 held 98 forest
95 flood 110 helped 103 glass

102 girl 112 hiked 113 horse
106 guard 119 interviewed 114 hospital
113 horse 124 kicked 116 hotel
122 judge 130 left 126 lake
123 jury 131 liked 129 lawyer
129 lawyer 132 listened 137 magazine
138 man 133 lived 140 mayor
140 mayor 135 lost 141 medicine
144 mob 142 met 144 mob
147 mouse 148 negotiated 150 newspaper
155 parent 163 planned 151 night
165 policeman 164 played 152 office
166 politician 171 put 156 park
175 reporter 172 ran 170 protest
180 scientist 173 read 176 restaurant
188 soldier 178 saw 180 scientist
213 tourist 184 slept 186 soccer
214 tree 190 spoke 194 stone
219 victim 209 threw 198 student
231 witness 222 walked 204 teacher
232 woman 224 watched 207 terrorist

227 went 208 theater
210 ticket
213 tourist
214 tree
215 trial
218 vacation
219 victim
221 voter
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Figure 7.1: Example sentence in a questionnaire prepared to evaluate the computational 
model results. The sentence is The politician celebrated at the hotel, the target word is 
politician in the role of Agent. Ten different attribute changes are measured by selecting 
whether the attribute increased (“more”), decreased (“less”) or remained “neutral”. The 
human judgements were thus matched with those predicted by the CEREBRA model 
trained with the fMRI data. 
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An alternative and better selection was to: (1) use the sentences with at least 10 

statistically significant attribute changes (ssa), (2) from the 25 attributes with the largest 

change, (or the number of ssa available), randomly select 10 within a sentence, (3) 

organize the attribute collection for each question using Binder's (Binder, 2016), original 

list arrangement. 

The statistically significant attribute changes thus selected represent meaningful 

differences between the new and the original CARs. The point of the random selection 

within the top 25 was that: (1) there is a large number of potentially meaningful 

attributes, i.e., 25 at least, (2) for simplicity, the survey must not contain many questions, 

(3) the differences among the top 25 are not very large, and (4) it is necessary to get a 

varied selection of attributes. Choosing the top 10 instead would have resulted in too 

many visual features for most sentences, either because they frequently changed more, or 

because there is a significant number of visual attributes (i.e., 15 out of the 66). Two 

questionnaire examples and the link to find the complete set of 24 questionnaires are 

included in Appendix C.  

The original descriptions of the CARs (i.e., the word attributes) were rephrased to 

make the questionnaires short and easy to read and to respond to, while retaining the 

meaning of the original descriptions elaborated by Binder et al. (Section 2.5.1). Table 7.3 

lists these new descriptions.  

7.2.2 Participants  

Human judgements were crowdsourced using Google Forms in accordance with 

the University of Texas at Austin Institutional Review Board (2018-08-0114). The 

experiments were completed by 27 unpaid volunteers (nine females). The participants’ 

ages ranged from 18 to 64 years, with the mean of 33. Nineteen of them were self-
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reported bilinguals (English as a second language) and eight English native speakers. 

Four subjects were affiliated with University of Texas at Austin; the rest of the 

population consisted of working people residing in different parts of north and central 

America (Texas, Seattle, California, Costa Rica, and Mexico). The subjects had no 

background in linguistics, psychology, or neurosciences. 

 
Table 7.3: A rephrased description of the 66 attributes organized by domain, in order to 
maintain the questions’ description short and easy to read and to respond to. 

 
 

BRAIN 
SYSTEMS FEATURES EXPLANATION BRAIN 

SYSTEMS FEATURES EXPLANATION
Vision is visible S Landmark has a fixed location
Bright is bright P Path changes location

V Dark is dark A Scene is a particular setting
I Color has a defining color T Near is near
S Pattern has texture or pattern Toward comes close
I Large is large Away goes away
O Small is small Number is countable
N Motion moves Time is an event in time

Biomotion living thing that moves E Duration has a certain duration
Fast moves fast V Long lasts a long time
Slow moves slow E Short lasts a short time
Shape has a defining shape N Caused caused by something
Complexity is visually complex T Consequential has consequences
Face has a face Social triggers social interaction
Body has body parts C Human has intentions/plans/goals

S Touch is identified by touch O Communication exchanges information
O Temperature feels hot G Self relates to oneself
M Texture feels smooth Cognition increases mental activity
S Weight is heavy E Benefit is beneficial

Pain is associated with pain V Harm is harmful
Audition is audible A Pleasant is pleasant

A Loud is loud L Unpleasant is unpleasant
U Low makes a low pitch Happy is happy
D High makes a high pitch E Sad is sad
I Sound is identified by sound M Angry causes anger
T Music makes a musical sound O Disgusted is disgusting

Speech talks T Fearful causes fear
G Taste has a distinctive taste Surprised causes surprise
S Smell has a distinctive smell   DR Drive causes to act in certain way
M Head uses the face or mouth Needs is an essential part
O UpperLimb uses the arm or hand   ATT Attention is a center of attention
T LowerLimb uses the leg or foot Arousal increases alertness
O Manipulation is physically manipulated
R Object is an object

�1
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7.2.3 Procedures 

The twenty-four questionnaires were designed using Google Forms. The 

respondents were asked to think how the meaning of a specific word changes within the 

context of a sentence compared to its generic meaning, by evaluating which word 

attributes change “more”, “less”, or stay the same.  

Subjects were recruited by sending emails or text messages directly along with the 

survey link to access their assigned questionnaire. The data collection was done online, 

and the participants responded using their cell phone or personal computer. They did not 

need to login or have a Google account in order to participate. Each questionnaire 

consists of an Introduction, a Description of the Experiment, an Example, and the Survey. 

If the participant chose to be part of the experiment, she/he press the NEXT button from 

the Example section to the Survey section, then, they press the SEND button when they 

were done. Each questionnaire takes 15 minutes to complete.  

Three of the participants responded to all of the 24 questionnaires. The entire 

survey consisted of a total of 3600 questions, so it took them four to seven days to 

complete this task at a pace of approximately four questionnaires an hour per day. The 

responses were considered correct whenever two out of the three participants agreed on 

their answers. Unfortunately, human raters do not often agree, and their judgement was 

influenced by their own perception or uncertainty. With three possible answers and three 

participants, the results were still inconclusive. This task was a lot of work, the fourth set 

of responses was obtained by distributing it among multiple raters: twenty-four additional 

participants were recruited to each respond to one of the 24 questionnaires.  



 130 

7.2.4 Results 

As stated before, the hypothesis was that sentence context influences the 

interpretation of target words by modifying some of their attributes. The survey directly 

asks for the direction of change in a particular word attribute (i.e., CAR dimension), in a 

particular word, in a particular sentence, compared to the words generic meaning. In 

other words, the responses directly measure the changes that CEREBRA derived from the 

fMRI. These changes can therefore be used to find the level of agreement between 

humans and CEREBRA. 

Human responses were first characterized through data distribution analysis. 

Table 7.4 shows the number of answers “less” (-1), “neutral” (0), and “more” (1) for each 

respondent. Columns labeled P1, P2, and P3, show the responses of the three participants 

that were assigned the entire survey (24 questionnaires, 3600 answers). Column labeled 

P4 shows the combined answers of the 24 different participants responding to one 

questionnaire each. The top part of the table shows the distribution of the rater’s 

responses and the bottom part the level of agreement among them. As can be seen, the 

participants agreed only 47% of the time.  

When inter-subject reliability is too low, it is not worth comparing system 

predictions vs. human judgements (Grand et al., 2018). However, since there were a lot 

of questions, it was possible to include only questions that were the most reliable, i.e., 

where all subjects agreed. There were 631 such questions or 18% of the total set of 

questions. 
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Table 7.4: Distribution analysis and inter-rater agreement. Top table shows human 
judgement distribution for the three possible questionnaire responses “less” (-1), 
“neutral” (0), and “more” (1). Bottom table shows percent agreement for the 4 raters. The 
task was difficult and the agreement low. Only those questions where all participants 
agreed were considered reliable and compared to the CEREBRA model. 

 
 

7.3 MEASURING MODEL PREDICTIONS 

Three different approaches were designed to quantify the predictions of the 

CEREBRA model. Likewise, a model fitting procedure was implemented in order to 

measure the level of agreement between humans and CEREBRA. 

7.3.1 Quantifying the CEREBRA Results 

The survey directly asks for the direction of change of a specific word attribute in 

a particular sentence, compared to a generic meaning. Since the changes in the 

CEREBRA model range within (-1, 1), in principle that is precisely what CEREBRA 

produces. However, many times during the progress of this research, it was found that 

some word attributes always change (increase or decrease) and do so more in some 

contexts than others. This effect is well known in conceptual combination (Hampton, 

HUMAN&RESPONSES
&&&&&&DISTRIBUTION

Resp/Part P1 P2 P3 P4 AVG %
!1 2065 995 645 1185 1223 34.0%
0 149 1120 1895 1270 1109 30.8%
1 1386 1485 1060 1145 1269 35.3%

TOT 3600 3600 3600 3600 3600 100%

&&&&&&&&PARTICIPANT
AGREEMENT&ANALYSIS&

P1 P2 P3 P4 AVERAGE %
P1 0 1726 1308 1650 1561 43%
P2 1726 0 1944 1758 1809 50%
P3 1308 1944 0 1741 1664 46%
P4 1650 1758 1741 0 1716 48%

TOTAL 6751
AVG&xPART 1688

AVERAGE //Particip/match/each/other 47%
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1997; Wisniewsky, 1998), contextual modulation (Barclay, 1974), or what Medin and 

Shoben (1988) refer to as word attribute centrality: the same property is true for two 

different concepts but may be more central to one than to the other (e.g., it is more 

important for boomerangs to be curved than for bananas).  

The direction of change in CEREBRA is therefore not a good predictor of human 

responses; instead, these changes need to be measured relative to changes in other words. 

Thus, the problem was addressed by three different approaches: 

1)   What is the effect of the rest of the sentence in the target word? This effect 

was measured by computing the average of the CEREBRA changes (i.e., 

new-original) of the other words in the sentence, and subtracting that 

average change from the change of the target word:  

 

2)   What is the effect of the entire sentence in the target word? This effect was 

measured by computing the average of the CEREBRA changes (i.e., new-

original) of all the words in the sentence including the target word, and 

subtracting that average change from the change of the target word: 
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3)   What is the effect of CARs used in context as opposed to CARs used in 

isolation? This effect was measured by computing the average of the 

CEREBRA changes (i.e., new-original) of the different representations of 

the same word in several contexts, and subtracting that average change 

from the change of the target word: 

 

Although the first two approaches seem simple, a “bag-of-words” representation 

by averaging all the content words in the sentence, similar construction methods have 

proven to be effective in neural activity prediction (Anderson et al., 2016; Binder et al., 

2016a, 2016b; Just et al., 2017) and computational linguistics (Baroni et al., 2010; 

Burgess, 1998; Landauer et al., 1997; Mitchell & Lapata, 2010). However, the third 

approach is motivated by neurological evidence suggesting that sentence comprehension 

involves a common core representation of multiple word meanings encoded into a 

network of regions distributed across the brain (Anderson et al., 2016; Gennari et al., 

2007). In line with this view, a generic (or isolated) word representation can be formed 

by averaging the activity in multiple sentence contexts. 

In each of these cases, the resulting vectors are expected to accurately represent 

the direction of change asked in the questionnaires. They are the ratings used in the 

evaluation procedure described in the following section. 
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7.3.2 Procedure 

Starting from a different random seed, the CEREBRA model was trained 20 times 

for each of the eight best fMRI subjects (i.e., where the fMRI data in general was most 

consistent). Responses for each model where thus obtained for the 631 questions where 

all participants agreed. In order to demonstrate that the CEREBRA model has captured 

human performance, the agreements of the CEREBRA changes and human surveys need 

to be at least above chance. Therefore, a baseline model that generated random responses 

from the distribution of human responses was created. The chance model was queried 20 

times for each of the 631 questions, for each of the eight subjects. In this manner, 20 

means and variances for each of the eight subjects for both CEREBRA and chance were 

created.  

To estimate the level of agreement of CEREBRA and chance models with 

humans, a single parameter in each model was fit to human data: the boundary value 

above which the change was taken to be an increase (i.e., “more”) or decrease/no change 

(i.e., “less”/”neutral”). The “less” and “neutral” categories were combined because they 

were much smaller than the “more” category in human data. The optimal value for this 

parameter was found by simply sweeping through the range (-1..1) and finding the value 

that measured on the highest number of matching responses where the 631 questions are.  

In the next section the experimental results between humans, the computational 

model, and the baseline (chance) are presented.  

7.4 MATCHING PREDICTIONS WITH HUMAN JUDGEMENTS 

The three approaches to measuring the predictions of the CEREBRA model, i.e., 

the context effect of the rest of the sentence, the context effect of the entire sentence, and 

the context effect of the word in different contexts, were implemented and fit to human 
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data using single-boundary model fitting. The first two approaches produced very similar 

results. In fact, they achieved slightly better results than the third one (by about 2%). All 

three approaches are reported in this chapter.  

The match results are presented in Table 7.5 and the statistical significance in 

Table 7.6. The CEREBRA change model for approaches one and two matches human 

responses in 77% of the questions, the CEREBRA change model for approach three 

matches human responses in 75% of the questions while the chance level is 68% - which 

is equivalent to always guessing “more”, i.e., the largest category of human responses. 

The differences shown in Table 7.6 are highly statistically significant for all of the eight 

subjects in the three approaches shown. These results indicate that the changes in word 

meanings due to sentence context that are observed in the fMRI and interpreted through 

semantic feature representations are real and meaningful to the subjects. More 

comprehensive analyses between humans and the models such as the analysis of the 

responses where three out of four participants agreed, are found in Appendix D.  

 
Table 7.5: Matching CEREBRA predictions with human data (approaches one to three), 
compared to chance. The table shows the average agreement of the 20 repetitions across 
all subjects. CEREBRA approaches one and two agree with human responses 77%, 
CEREBRA approach three agrees 75%, while the chance level is 68%. Comparison 
agreement with human judgements. 

 

 

!!!!!!!!!!!!!PARTICIPANTS!AVERAGE!AGREEMENT
RATINGS HUMAN CEREBRA1 CEREBRA2 CEREBRA3 CHANCE
!"1/0 205 145 149 134 1
1 426 341 336 339 426

TOTAL 631 486 485 473 427
!!!!!!!!!!!!!!!!!!AVERAGE 77% 77% 75% 68%
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Table 7.6: Statistical analyses for CEREBRA approaches one to three, and chance. The 
table shows the means and variances of the CEREBRA change models and the chance 
model for each subject, and the p-values of the t-test, revealing that the differences are 
highly significant. Thus, the context-dependent changes are actionable knowledge that 
can be used to predict human judgements. 

 

 

7.5 DISCUSSION AND FUTURE WORK 

The study provides a missing piece on the theory of semantic feature 

representations: The context-dependent changes in them are actionable knowledge that 

can be used to predict human judgements. Given how noisy human responses data is, the 

7% or 9% differences between the CEREBRA approaches and Chance is a strong result.  

An interesting direction for future work would be to replicate the study on a more 

extensive data set with a fully balanced stimuli and with fMRI images of individual 

words. The differences should be even stronger and should be possible to uncover even 

more refined effects. Such data should also improve the survey, since it would be 

possible to identify questions where the effects can be expected to be more reliable. Inter-

raters’ reliability could also be improved by training the raters better so that they are 

comfortable with the concept of generic meaning and the concept of variable meanings. It 

may also be possible to design the questions such that they allow comparing alternatives 

which may be easier for the participants. 

SUBJECTS CHANCE CEREBRA,#1 CEREBRA,#2 CEREBRA,#3 p"value p"value p"value
MEAN VAR MEAN VAR MEAN VAR MEAN VAR CEREBRA,#1 CEREBRA,#2 CEREBRA,#3

S5051 427 0.91 486 46.74 486 56.42 466 152.98 5.42E&32 1.66E&30 1.17E&16
S9322 427 1.10 481 32.62 480 21.54 466 105.61 1.67E&33 2.02E&36 2.30E&19
S9362 426 0.57 486 42.58 485 37.85 480 39.29 6.50E&33 1.65E&33 6.22E&32
S9655 427 1.69 486 21.95 486 27.73 481 32.62 1.46E&37 6.25E&36 2.55E&33
S9701 427 1.71 490 57.00 488 57.09 470 89.12 3.80E&31 7.56E&31 8.82E&22
S9726 427 2.87 486 44.06 484 34.04 469 80.66 6.59E&32 3.17E&33 6.29E&22
S9742 427 2.77 489 24.77 489 21.21 483 54.05 3.09E&37 2.93E&38 1.62E&29
S9780 427 1.67 480 75.78 480 54.22 471 92.68 1.82E&26 4.62E&29 5.56E&22
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CONCLUSION 

The hypothesis was tested, the results suggest that the three different approaches 

were consistent to human judgements in average 76%. This consistency confirms three 

significant findings: (1) context-dependent meaning representations are embedded in the 

fMRI sentences, and (2) they can be characterized. Using brain-based semantic 

representations (CARs) together with the CEREBRA change model (3) such changes are 

real and meaningful to the subjects. It therefore takes a step towards understanding how 

the brain constructs sentence-level meanings from word-level attributes. 
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Chapter 8 
 
Discussion and Future Work 

 

This chapter reviews some of the key issues that emerged through the development of 

this dissertation. First, evaluating the soundness of the CAR theory as a measure of 

semantics is discussed. Second, limitations of the CEREBRA model are reviewed. Third, 

the semantic representations between CEREBRA and Word2vec are analyzed. Fourth, 

Understanding individual and cultural differences with CEREBRA is described, Fifth a 

potential application of an NLP system that includes CEREBRA’s context-based 

representations is outlined. Sixth, a possible extension of CEREBRA is proposed by 

incorporating text-based representations to enhance the interpretation of the fMRI 

patterns.  

8.1 EVALUATING SOUNDNESS OF CAR THEORY 

Research in semantic representation seeks answers to questions like: How are 

concepts represented in the brain? How is word meaning represented? How do word 

meanings change during concept combination or under the context of a sentence? What 

tools and approaches contribute to quantifying such meaning representation changes? The 

CEREBRA model (i.e., a tool) and the CAR theory (i.e., an approach) were combined to 

address these questions and to evaluate the soundness of CAR theory. 

CAR theory has already been validated in many studies (Anderson 2016, 2018; 

Binder, 2016b; Fernandino, 2015), so this research took it as a starting point in building 

CEREBRA. However, whereas the original CAR concerns static representations, 

CEREBRA extends it to dynamic representations, and shows how they can modified 
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based on context. Essentially, CEREBRA was able to capture dynamic meanings of 

words by tracking how the CARs feature-weightings changed across sentences. It 

demonstrated that (1) context-dependent meaning representations are embedded in the 

sentence fMRI, and (2) CAR theory is well-grounded and can be used as the foundation 

for modeling neural representations of word meaning. Thus, the computational and 

behavioral studies presented in this dissertation provided useful insight into the central 

issues in semantic representation listed above. 

The first set of CEREBRA experiments found significant context effects for 

different shades of meaning for individual subjects. Different types of conceptual 

combinations were studied systematically, and the changes were found to be statistically 

significant across the entire corpus, and actionable knowledge across human judgements. 

Interestingly, some of the experiments showed that some combination of concepts have 

context-based changes that could not have been derived from the concept’s features alone 

(i.e., celebrated), but only from external knowledge to form thematic relations. Then, 

how could CEREBRA find such thematic associations? On the one hand, it was expected 

that the fMRI images embody such knowledge, and CEREBRA verified it by 

systematically changing the CARs. On the other hand, many abstract words (i.e., happy, 

survived, injured, dangerous, friendly, celebrated, laughed, feared) contained affective 

connotations in the corpus; CEREBRA was able to encode different contexts for these 

words, confirming that abstract concepts are grounded on affective experiences 

(Vigliocco et al., 2014). However, CEREBRA is not well suited to capturing the different 

meanings of words with a higher level of abstraction (e.g., fiction, interest, purpose), 

which are described in terms of their relationships to other words. Such words lack 

physical referents and in many cases an emotion or an internal state to which their 

meaning can be grounded. Essentially, CEREBRA was able to address the differences on 
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meaning for words that can be grounded in the twelve brain systems outlined in the 

original CARs, but for words with no relation to the physical world, in order to be able to 

disambiguate their different meanings, it would require additional linguistic knowledge; 

that is, a full account of ambiguity requires a hybrid model of linguistic and experiential 

knowledge (as will be discussed in Sections 8.4 and 8.5). 

8.2 LIMITATIONS OF THE CEREBRA MODEL 

The CEREBRA model generates good interpretations of word meanings 

considering that the dataset was limited and was not originally designed to address the 

dynamic effects in meaning. In future work, it would be interesting to replicate the 

studies on a more extensive data set. A fully balanced stimuli including sentences with 

identical contexts (e.g., The yellow bird flew over the field vs. The yellow plane flew over 

the field) and contrasting contexts (e.g., The vicious dog chased the boy vs. The friendly 

dog chased the boy), could help test the hypothesis more systematically. The context-

based changes should be even stronger, and it should be possible to uncover more refined 

effects.  

Similarly, it would be desirable to extend the fMRI data with images of individual 

words. The current approach of synthetizing words (SynthWords) is an approximation 

often used in computational linguistic (Baroni et al., 2010; Burgess, 1998; Landauer et 

al., 1997; Mitchell & Lapata, 2010) and neural activity prediction research (Anderson et 

al., 2016; Binder et al., 2016a, 2016b; Just et al., 2017). The CEREBRA process of 

mapping semantic CARs to SynthWords and further to sentence fMRI refines the 

synthetic representations by removing noise. However, such representations blend 

together the meanings of many words in many sentences. Thus, by acquiring actual word 

fMRI, the observed effects should become even more clear. 
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Also, CEREBRA does not consider word order in assembling sentences. Instead, 

it averages all words that occur in the sentence and uses the representation to find the 

difference between the predicted (SynthSent) and observed fMRI (fMRISent). Although 

the approach seems simple, similar “bag-of-words” methods have proven effective in 

neural activity prediction (Anderson et al., 2016; Binder et al.,2016a, 2016b; Grand et al., 

2018; Just et al., 2017) and computational linguistics (Baroni et al., 2010; Mitchell & 

Lapata, 2010).  

Instead of averaging, it would be interesting to use case-role representations to 

organize the content words. Case-role slots could include Agent, Verb, Patient, 

Instrument, Location, Agent-Modifier, and Patient-Modifier. Each slot would be assigned 

a role, and for every sentence, the word representation placed in the correct slot according 

to the word’s role. For example, for The minister interviewed the injured policeman, the 

role assignments could be Agent (minister), Verb (interviewed), Patient-Modifier 

(injured), and Patient (policeman). The case-role set must fit all types of sentences. One 

drawback is that it would produce a more high-dimensional representation of the 

sentence. Consequently, the original fMRISent voxel representation would need to be 

large enough in order to apply the pairwise comparison. Usually, the fMRI voxel 

representations run well over the thousand voxels which should be enough. In case there 

are not enough voxels, a dimensionality reduction approach (e.g., PCA) could be adopted 

before developing the case-role representations. 

CEREBRA was trained using all content words in the sentence collection, 

however for the aggregation analysis only those sentences that included the following 

three content words were considered: Agent, Verb, and Patient/Object/Location/Event. 

Undoubtedly, with a broader data set, this analysis could be expanded. Likewise, the 

fMRI data was collected for eleven subjects, but uncontrolled situations (i.e., subjects not 
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focused), and noise (i.e., head movement) precluded using four of them. Only S5051, 

S9322, S9362, S9655, S9701, S9726, S9742, S9780 were eventually used. All 

experiments could be expanded with a larger collection of fMRI subjects.  

8.3 HOW DO DISTRIBUTIONAL SEMANTIC MODELS MAP THE SEMANTIC SPACE OF THE 
BRAIN?  

How distributional semantic representations compare to CARs in terms of 

mapping the semantic space of the brain? CAR theory enables direct correspondence 

between conceptual content and neural representations. Conceptual knowledge is 

distributed across a small set of modality-specific neural systems that are engaged when 

instances of the concept are experienced. In contrast, distributional semantic models 

(DSM) construct conceptual knowledge from text co-occurrence. They are not grounded 

on perception and motor mechanisms, instead their representations reflect the semantic 

knowledge acquired through a lifetime of linguistic experience. Brain mapping analysis 

can be performed by correlating the fMRI and the DSM word representations, on the 

whole brain and for each anatomical region (frontal, parietal, temporal and occipital 

lobes). Although such partitioning is very coarse, since each lobe is large and serves 

many different functions, each lobe has specializations that can be used for interpretation.  

DSMs based on co-occurrence have been successfully correlated to neural semantic 

representations in this manner (Anderson et al., 2013; Bruni et al., 2014; Mitchell, 2008; 

Mitchell & Lapata, 2010).  

A different DSM based on prediction, Word2vec, has gained popularity due to its 

simplicity and remarkable performance on computational semantic tasks (Mikolov et al., 

2013). It is based on the recurrent neural network proposed by Elman (1990), while using 

different training methods to scale up to extremely large corpora. Particularly, skip-gram 
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model is one of the two Word2vec semantic models that has been widely used on neural 

activity prediction research (Anderson et al., 2019; Bulat et al., 2017; Ruan et al., 2016; 

Silberer et al., 2017).  

Many studies agreed that skip-gram is moderately to strongly correlated with 

neural activations in the fMRI patterns. For instance, Ruan et al. (2016) found that skip-

gram word representations are significantly correlated with the fMRI data of all brain 

lobes except the occipital lobe. Previous neuroscience research has revealed that the 

frontal, temporal, and parietal lobes play important roles in semantic cognition, such as 

high-level and abstract knowledge processing, integration of lexical information, speech 

comprehension, and knowledge retrieval. These findings confirm that the skip-gram 

model can partly account for the semantic processing in the cortex and contain little 

visual information about words. 

In contrast, the richness and complexity of the representations in the CAR theory 

is based on a direct mapping between the conceptual content of a word and the 

corresponding neural representations. Distributing conceptual knowledge across 

modality-specific neural systems offers a powerful model to further explore the semantic 

space of the brain. To this end, experiments in this dissertation demonstrated that CARs 

can capture fine distinctions in meaning, therefore creating many possibilities of 

improvements of the theory itself.  
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8.4 UNDERSTANDING INDIVIDUAL AND CULTURAL DIFFERENCES WITH CEREBRA 

CEREBRA can be used to further understand how semantic knowledge is 

represented across cultures and individuals. Individual experiences are embedded into the 

fMRI patterns; thus CEREBRA could be used to study how each individual perceives the 

world (i.e., cultural differences). Note that such an analysis is not possible with the DSM 

representations obtained from averaging millions of documents from millions of 

individuals. Further, CEREBRA’s representations could be used to analyze whether 

groups of individuals with a similar cultural background modify CARs the same way and 

differently from other cultural backgrounds.  

For example, during the analysis of individual words Aguirre-Celis & 

Miikkulainen (2017) found that for the CEREBRA's context-modified representation of 

the word mouse, used in the sentence The man saw the dead mouse, some subjects 

showed salient activation on the emotional attribute Sad (because the mouse was dead), 

compared to other subjects. Thus, CEREBRA could be a useful tool to identify 

individualities across subjects and groups, and to find where those differences in 

conceptual content occur. 

8.5 BUILDING AN NLP APPLICATION USING CEREBRA REPRESENTATIONS  

Language grounding refers to understanding the meaning of words as it applies to 

the physical world. It assumes that the perceiver is aware of the world, the context, and 

the communication techniques (e.g., oral, written, visual). To build real-world 

applications (i.e., Natural Language Processing systems) it is crucial to use conceptual 

grounding, and multimodal CEREBRA representations could be used to make such 

applications more robust.  
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Many studies (Anderson et al., 2019; Andrews et al., 2009; Martin, 2007) have 

emphasized that DSMs capture encyclopedic, functional and discourse-related properties 

of word meanings (e.g., a carrot is a root vegetable, usually orange, Dutch invented the 

orange carrots, it contains high carotene, human body turns carotene into vitamin A), but 

tend to miss their concrete aspects (e.g., a carrot refers to an object whose attributes 

describes it as orange, conical/cylindrical, juicy, crispy, sweet). Current text-based NLP 

applications could be improved by combining experiential and linguistic data. In this 

section a neural network model that learns to represent context simultaneously from both 

large corpora and the multimodal CEREBRA representations will be outlined. This 

model could be used as part of a natural language understanding system for service robot 

applications (i.e., Agriculture, Medicine, Security).  

The proposed model expands that of Melamud et al. (2016). It consists of a 

recurrent neural network for learning generic sentence context representations 

(context2vec). Specifically, it learns from large text corpora of sentence contexts and 

target words through bidirectional LSTM. CEREBRA representations, which provide a 

different kind of context (i.e., experiential context), can be added to it to provide 

supplementary knowledge that should improve the natural language understanding 

process. 

This model resembles the original FGREP mechanism (Miikkulainen et al., 1988) 

in regard to the learning process: it develops the target word and the sentence context 

representations at the same time. Context2vec uses a neural network based on 

word2vec’s CBOW architecture (Mikolov et al., 2013). Melamud et al. (2016) replaces 

the context modeling of averaging word representations in a fixed window with a 

bidirectional LSTM. The context2vec architecture with the CEREBRA extension (red 

box) is outlined in Figure 8.1. 
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Figure 8.1: Context2vec neural network model enhanced with multimodal CEREBRA 
representations. Context representations for linguistic knowledge are developed using a 
bidirectional LSTM. One LSTM network reads words from left to right, and another from 
right to left. The outputs of the two LSTM networks are concatenated and fed into a 
multilayer perceptron (MLP) together with the CEREBRA vector. At the same time, the 
target word is represented with the same dimensionality as that of the sentence contexts. 
The output of this layer is the representation of the combined sentence context. Thus, the 
architecture learns generic context representations by integrating linguistic and 
experiential knowledge for NLP. 
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In a bidirectional LSTM, one LSTM network reads words from left to right, and 

another from right to left. The parameters of these two networks are independent, 

including the left-to-right and right-to-left context word representations. For example, to 

represent the context of a target word in the sentence Peter [bought] a car, the 

architecture concatenates the LSTM output vector representing its left-to-right context 

(Peter) with the one representing its right-to-left context (a car). This concatenated 

vector and the CEREBRA vector are fed into a multilayer perceptron (MLP) to learn 

dependencies between the different contexts. At the same time, the target word is 

represented with the same dimensionality as the sentence contexts. The output of this 

layer is thus the representation of the combined sentence context. To learn the parameters 

of the network, the word2vec’s negative sampling objective function is used. A positive 

pair consists of a target word and its entire sentential context, and k negative pairs consist 

of random target words sampled from a (smoothed) unigram distribution over the 

vocabulary and paired with the same context (Melamud et al., 2016).  

The difference between context2vec and the proposed extension is the 

incorporation of the CEREBRA representations. Although a simple modification, 

together the context2vec and CEREBRA representations make an important contribution: 

Not only their representations contain a full sentence context, but also, they bring 

experiential knowledge into the representations. This knowledge contrasts with other 

models such as word2vec that usually consider the representations of neighboring words 

with a strict window size. As a result, they carry only limited information regarding the 

relations between the target word and the entire sentence context, and use only the type of 

information related to DSMs.  

In conclusion, the proposed model combines linguistic and experiential 

information at the contextual level. Thus, the CEREBRA representations would provide 
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the experiential-based data (i.e., concrete words) and the text-based representations 

would provide the association-based data (i.e., abstract words), leading to a better 

performance. For instance, agricultural service robots with such representations would 

have the capability to understand natural language commands (i.e., watering plants), to 

have encyclopedic knowledge (i.e., to make decisions regarding weed or pest control), to 

ground language by adapting to the environment (i.e., object recognition and location to 

plant seeds, prune, or harvest), and by understanding novel concepts (i.e., “rain water”). 

For dynamic environments, such robots could accommodate an additional mechanism 

(e.g., a library of modified CARs) in an attempt to adapt to new contexts, by using the 

closest new CAR representation to deliver a possible solution. Next section presents a 

promising extension of the CEREBRA model inspired by this hybrid model application. 

8.6 INTEGRATING TEXT-BASED AND BRAIN-BASED REPRESENTATIONS 

Many semantic memory researchers would agree that most of the semantic knowledge 

comes from direct experience with objects and actions. However, a great deal of semantic 

knowledge is also acquired from spoken and written language. People have knowledge of 

exotic animals, facts, places, science fiction books, and historic events that they have 

never experienced. For example, they might know about polar bears, Apollo 11, the Great 

Wall of China, Frankenstein, and the Jewish Holocaust without ever seen or experienced 

them. Recent work on DSMs reported that these models successfully capture many 

aspects of human semantic memory. A new type of semantic models that integrate 

linguistic and multimodal knowledge suggest that fMRI activations are more correlated 

to the combined model than to each model in isolation (Anderson et al., 2019; Bulat et 

al., 2017; Ruan et al., 2016; Silberer et al., 2017). 
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A natural next step would be to adapt CEREBRA to use such combination of 

linguistic and multimodal approaches (i.e., text-based and brain-based representations) to 

explore whether similar effects or improved differences of meaning are observed. To 

modify CEREBRA in this manner, it is necessary to add two extra steps: (1) An 

additional neural network trained to map distributional semantic representations (text-

based representations) of words (DSMWords) to SynthWord (fMRI synthetic words). 

This network has the same role as the network that maps CARWords to SynthWords. As 

before, the SynthWords are combined into the predicted sentence (SyntSent), by 

averaging all words in the sentence. However, this step is performed for each kind of 

semantic input, and therefore there will be two predicted sentences (SynthSentCAR & 

SynthSentDSM). Each SynthSent is compared to the actual fMRISent (original fMRI 

data) to form two error signals. (2) These error signals, obtained independently from the 

two different networks, are averaged and used to backpropagate the proportional error 

accordingly. Subsequently, the trained neural networks are utilized to determine how the 

CARWords and the DSMWords should change in the context of the sentence. As before, 

the networks no longer change; the averaged error is used to change the CARWords and 

DSMWords through the FGREP method (Miikkulainen et al., 1988). These modifications 

can be carried out until the error goes to zero, or no additional change is possible 

(because the CAR attributes are already at their max or min limits). CAR limits control 

the stopping criteria. During the prediction process, both semantic inputs are changed to 

calculate the two errors, but in the end, only the revised CARWord would include the 

explainable feature representations of the word for each sentence. The DSWord 

representations could not be interpreted.  

Essentially, the process consists of adding linguistic knowledge to help predict the 

fMRI sentences and consequently fully interpret the neural activation patterns associated 
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with meaning. DSMs have been found to contribute linguistic abstract concepts to 

sentence interpretation; in particular the kind of abstract concepts that are not clearly 

associated with emotion or sensorimotor systems and are difficult to identify with the 

CAR theory, e.g., purpose (Anderson et al., 2017; 2019). The proposed modification to 

the CEREBRA model should thus improve interpretation of such concepts. 

CONCLUSION 

This chapter reviewed the CEREBRA approach from the point of view of the 

central questions in semantic theory. The different experimental analyses of CEREBRA’s 

context-based representations serve to assess the soundness of the CAR theory. The 

alternative skip-gram semantic model is limited in its mapping to brain semantic space, 

suggesting that CAR theory and CEREBRA together are a better approach to learn about 

concept representation in the brain. A computational model can be devised to use 

CEREBRA’s context-based representations to enhance NLP applications. A further 

extension may include distributional semantic representations as part of the model inputs, 

resulting in a more comprehensive interpretation of the neural activation patterns 

associated with meaning. 
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Chapter 9 
 
Conclusion  
 

In this dissertation, the CEREBRA model was developed to characterize the effect of 

sentence context on word meanings. It uses CAR theory and FGREP mechanism to take a 

step forward in understanding how the brain constructs sentence-level meanings from 

word-level features. This chapter reviews the main contributions of this dissertation and 

concludes with a general perspective: How CEREBRA provides a framework for novel 

experiments and applications that could benefit future research on brain diseases (e.g., 

dementia), disorders (e.g., dyslexia), and head injuries, as well as to further explore how 

the brain functions. 

9.1 CONTRIBUTIONS 

Chapter 3 introduced a computational model to account for context effects in the 

brain. The chapter described the CEREBRA approach, grounded in CAR theory and 

implemented using neural networks with the FGREP mechanism. CAR theory assumes 

that context modifies the baseline meaning of a concept, and CEREBRA tested it, by 

characterizing how different parts of the concept attribute representation can be modified 

to account for changes in the neural activation patterns. Particularly, CEREBRA used a 

neural network to predict approximately what the sentence fMRI should be, based on the 

CARs, and then used FGREP to adjust the CARs so that the prediction became correct. 

The modified CARs then indicate how the meaning changed in context.  
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CEREBRA’s capability to characterize the effect of sentence context on word 

meanings was demonstrated through several computational experiments, presented in 

Chapters 4 to 6, as well as a behavioral analysis in Chapter 7. 

Chapter 4 analyzed context effects for different shades of meaning. Image (fMRI) 

data for individual subjects were analyzed in this chapter. Experiments showed that the 

approach is feasible, demonstrating meaningful differences for e.g., human 

communication vs. noise from a machine; dangerous natural disaster vs. dangerous 

person; live animal vs. dead animal. The results suggest that different aspects of word 

meaning are activated in different contexts, and it is possible to see those changes in the 

corresponding fMRI images using the CEREBRA model. The linear mapping approach 

(regression) was disorganized, but the nonlinear mapping (CEREBRA) identified the 

relevant changes.  

Chapter 5 examined the different types of conceptual combinations and their 

effect on word meanings by analyzing statistically significant changes for individual 

sentences across multiple fMRI subjects. Four experiments in this chapter aimed to: (1) 

characterize the changes that occur when a word is used in the context of a sentence, and 

(2) explain how different types of conceptual combinations emerge from such context.  

The first experiment focused on a of similar context for two different words such 

as boat crossed vs. car crossed. The effect on boat and car produced parallel changes 

with different weightings. Because word attributes and context attributes changed in 

similar ways, they were associated with the vehicle category. The second experiment 

characterized differences in two contexts such as laughed vs. celebrated. In this case, the 

effect of context developed from external relations. The results suggested that CEREBRA 

captures the thematic relations where the two contexts intersect. Also, this experiment 

demonstrated that an affective state of emotions is a relevant experience just like any 
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sensorimotor experience based on CAR theory. The third experiment characterized the 

effect of two different contexts on the same word such as bird flew vs. plane flew. There 

was a large overlapping effect within the attributes of the context (e.g., animacy) and the 

attributes of the target concept (e.g., bird flew), resulting in a clear difference between 

animate and inanimate contexts. The fourth experiment characterized the centrality of 

meaning such as small camera vs. small hospital. The Size dimensions is central in this 

case distinguishing between a small object and a large structure. However, each 

conceptual combination required additional knowledge to determine what is central for a 

particular adjective. 

Each experiment thus analyzed the changes observed in the concept attributes 

across contexts and illustrated how unique conceptual combinations develop. A further 

intriguing result emerged in the last three experiments: The process of interpreting 

conceptual combinations involves additional external knowledge. The fMRI images 

include such knowledge, and consequently, CEREBRA was able to capture the changes 

in CARs. However, with the current set of attributes, thematic associations are not 

captured accurately or completely. A solution was proposed in Chapter 8 to extend CAR 

with a set of attributes that target convergence zones that integrate distributed 

representations into a more general knowledge.  

Chapter 6 aggregated the analysis across sentence contexts. CEREBRA showed 

that the difference between the expected and observed fMRI images can indeed be 

explained by changes in CARs. Across the entire corpus of sentences, the new CARs 

were more similar to the other words in the sentence than the original CARs were, 

demonstrating how features of the context were transferred to each word in the sentence. 

This result is robust and general across the entire corpus of sentences and case roles. 
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Correlation analysis demonstrated that the conceptual combination effect is consistent 

and can be quantified by analyzing fMRI images through the CEREBRA mechanism.  

Chapter 7 evaluated CEREBRA’s context-based representations via human 

judgements. First, CEREBRA was used to characterize the changes between generic and 

contextual representations of words in a number of sentences. The survey was then 

designed to characterize these changes in human subjects. The results confirmed that the 

changes produced by CEREBRA were actually meaningful to humans. The study 

provided the last piece on the theory of semantic feature representations: The 

CEREBRA’s context-dependent changes represent structured semantic knowledge that 

can be used to predict human judgements.  

In sum,  

1.   CEREBRA allows discerning how concepts are dynamically encoded in the 

brain. 

2.   CEREBRA demonstrated the soundness of the CAR theory by explaining the 

observed fMRI sentence representations based on context-dependent changes 

in CARs. 

3.   The experiments demonstrated that CARs can capture fine distinctions in 

meaning, therefore creating possibilities for improving the theory itself. 

4.   CEREBRA validates different types of conceptual combinations originally 

performed in behavioral studies as contextual effect in the brain. 

5.   CEREBRA demonstrated that the changes are meaningful to human subjects.  

6.   With CEREBRA, domain experts can gain insights and form new hypotheses 

about the functioning of the brain through fMRI data. 

7.   CEREBRA extends CARs static representations by showing that the CARs 

can be dynamic 
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8.   CEREBRA’s context-modified CARs could be used for building artificial 

natural language processing systems by dynamically adapting the vector 

representations to fit context (i.e., thus adding experiential knowledge).  

9.2 GENERAL CONCLUSION  

A great deal of research in neuroscience has focused on how the brain creates 

semantic memories, and what brain regions are responsible for the storage and retrieval 

of the semantic knowledge. Early studies focused on behavior of individuals with brain 

damage and with various types of semantic disorders, but more modern studies employed 

neuroimaging techniques to learn how the brain creates, stores and integrates semantic 

memories. Despite recent success in text-based semantic modeling and multimodal 

meaning representations, there is still a great deal of disagreement about how semantic 

knowledge is represented, and how these models correlate and reflect the semantic space 

of the brain. While all of these studies report correlation between semantic models and 

neural activations, they use different datasets and prediction methods which make the 

results difficult to compare. This dissertation followed the theory proposed by Binder et 

al. (2011) to develop a computational framework that addresses several issues on 

semantic memory. CEREBRA is an instrumental tool for interpreting fMRI patterns. It 

uses experiential-based distributed semantic features that are directly grounded on brain 

systems involved during semantic processing. The distributed features allow for a 

hierarchical multimodal integration through convergence zones or hubs. The 

experimental findings suggest that the representations are dynamic, changing with 

context. Building on this foundation, the CEREBRA approach makes novel experiments 

and applications possible. It provides a way to understand how word meanings change in 

the context of a sentence. 
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At present time, behavioral and neuropsychological evidence emphasizes how 

semantic representations are constructed from a lifetime of linguistic data and perceptual 

experience. There are obvious problems with the different views that prefer one data type 

over the other. Knowledge acquired experientially is not sufficient to fully account for the 

brain’s semantic representations. In contrast, distributional approaches are disembodied 

from the physical world. How, then, can linguistic knowledge be grounded? CEREBRA’s 

context-based representations capture information embedded in the fMRI patterns, which 

are based on the semantic space of the brain, and are multimodal, therefore they could be 

used to ground linguistic knowledge. Consequently, they can be used to interpret neural 

activation patterns associated with meaning. 

Although the work on this dissertation does not reveal how sentence context is 

constructed, it provides a glimpse of meaning in action: (1) Contextual modulation is 

embedded in the fMRI sentences; (2) Every single attribute points to neural brain systems 

involved in contextual modulation. 

Overall, this dissertation is expected to contribute to the development of a unified 

theory of concepts, the organization of the semantic space, and the processes involved on 

concept representation. In addition, this dissertation should serve as a useful tool for 

researchers studying brain diseases, disorders, or injuries related to language processing, 

as well as to provide enhanced context-based representations for systems such as Siri, OK 

Google, and Alexa, to advance grounded natural language understanding systems 

supporting service robot applications.  
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Appendix A 

 

Terminology of Brain Areas and Function

Occipital lobe: This is found in the back of the brain. The area is involved with the
brain's ability to recognize objects. It is responsible for our vision.

Temporal lobe: The temporal lobes are found on either side of the brain and just above
the ears. The temporal lobes are responsible for hearing, memory, meaning, and
language. They also play a role in emotion and learning. The temporal lobes are
concerned with interpreting and processing auditory stimuli.

Parietal lobe: The parietal lobes are found behind the frontal lobes, above the temporal
lobes, and at the top back of the brain. They are connected with the processing of nerve
impulses related to the senses, such as touch, pain, taste, pressure, and temperature.
They also have language functions.

Frontal lobe: It is concerned with emotions, reasoning, planning, movement, and parts
of speech. It is also involved in purposeful acts such as creativity, judgment, and problem
solving, and planning

Cerebral cortex: The cerebral cortex controls your thinking, voluntary movements,
language, reasoning, and perception. In higher mammals the cortex looks like it has lots
of wrinkles, grooves and bumps.

Cerebellum: controls your movement, balance, posture, and coordination. New research
has also linked it to thinking, novelty, and emotions. The limbic system, often referred to
as the "emotional brain", is found buried within the cerebrum.

Hypothalamus: controls your body temperature, emotions, hunger, thirst, appetite,
digestion and sleep. The hypothalamus is composed of several different areas and is
located at the base of the brain. It is only the size of a pea (about 1/300 of the total brain
weight), but is responsible for some very important behaviors.

Thalamus: controls your sensory integration and motor integration. Receives sensory
information and relays it to the cerebral cortex. The cerebral cortex also sends
information to the thalamus which then transmits this information to other parts of the
brain and the brain stem.

Pituitary gland: it controls your hormones and it helps to turn food to energy. Without
this gland you could eat but you wouldn't get any energy from the food.

Pineal gland: This part controls your growing and maturing. It is activated by light so if
you were born and lived all your life in a place without a trace of light your pineal gland
would never start to work.

Amygdala: The amygdala (there are two of them) control your emotions such as
regulating when you're happy or mad. Your amygdala is very important. Without it you
could win the lottery and feel nothing. You wouldn't be happy.

The brain

References
http://serendip.brynmawr.edu/bb/kinser/definitions/def-medulla.html
www.library.thinkquest.org/J002391/functions.html
http://www.ninds.nih.gov/disorders/brain_basics/know_your_brain.htm
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Terminology of Brain Areas and Function (continue)

Amygdala is one of two almond-shaped clusters of nuclei located deep
and medially within the temporal lobes of the brain in complex vertebrates. Shown to
perform a primary role in the processing of memory, decision-making and emotional
responses (including fear, anxiety, and aggression), the amygdalae are considered part
of the limbic system.

Angular Gyrus: is a region of the brain lying mainly in the anterolateral region of parietal
lobe, that lies near the superior edge of the temporal lobe, and immediately posterior to
the supramarginal gyrus. Its significance is in transferring visual information
to Wernicke's area, in order to make meaning out of visually perceived words. It is also
involved in a number of processes related to language, number processing and spatial
cognition, memory retrieval, attention, and theory of mind.

Fusiform Gyrus: also known as the lateral occipitotemporal gyrus,[1] is part of
the temporal lobe and occipital lobe in Brodmann area 37.[2] The fusiform gyrus is
located between the lingual gyrus and parahippocampal gyrus above, and the inferior
temporal gyrus below. Though the functionality of the fusiform gyrus is not fully
understood, it has been linked with various neural pathways related to recognition.
Additionally, it has been linked to various neurological phenomena such
as synesthesia, dyslexia, and prosopagnosia.

Hippocampus is a major component of the brain of humans and other vertebrates.
Humans and other mammals have two hippocampi, one in each side of the brain. The
hippocampus is part of the limbic system, and plays important roles in
the consolidation of information from short-term memory to long-term memory, and
in spatial memory that enables navigation.

Middle temporal Gyrus is a gyrus in the brain on the Temporal lobe. It is located
between the superior temporal gyrus and inferior temporal gyrus.

Posterior Cingulate Cortex (PCC) is the caudal part of the cingulate cortex, located
posterior to the anterior cingulate cortex. This is the upper part of the "limbic lobe". The
cingulate cortex is made up of an area around the midline of the brain. It has been shown
to communicate with various brain networks simultaneously and is involved in diverse
functions.[1] Along with the precuneus, the PCC has been implicated as a neural
substrate for human awareness in numerous studies of both the anesthesized and
vegetative (coma) states. Imaging studies indicate a prominent role for the PCC in pain
and episodic memory retrieval.

Precuneus is the portion of the superior parietal lobule on the medial surface of each
brain hemisphere. It is located in front of the cuneus (the upper portion of the occipital
lobe). The precuneus is bounded in front by the marginal branch of the cingulate sulcus,
at the rear by the parietooccipital sulcus, and underneath by the subparietal sulcus. It is
involved with episodic memory, visuospatial processing, reflections upon self, and
aspects of consciousness.
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Terminology of Brain Areas and Function (continue)

Subgenual Cingulate Brodmann area 25 (BA25); area in the cerebral cortex of
the brain. This region is extremely rich in serotonin transporters and is considered as a
governor for a vast network involving areas like he hippocampus, which plays an
important role in memory formation; and some parts of the frontal cortex responsible for
self-esteem. This region is particularly implicated in the normal processing of sadness.

References
https://en.wikipedia.org/wiki/
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Appendix B 
Glasgow sentence and word Collections. Sentences 35, 157, and 183 and words 37, 95, 
109, 138, 146, 239, marked in red, were not included in this dissertation for reasons 
explained in Section 3.4.2. 
 

  

No. Glasgow*Sentence*Collection*(Part*I)
1 The%%%%family%%%%survived%%%%the%%%%powerful%%%%hurricane.
2 The%%%%family%%%%was%%%%happy.
3 The%%%%family%%%%played%%%%at%%%%the%%%%beach.
4 The%%%%wealthy%%%%family%%%%celebrated%%%%at%%%%the%%%%party.
5 The%%%%parent%%%%watched%%%%the%%%%sick%%%%child.
6 The%%%%politician%%%%visited%%%%the%%%%family.
7 The%%%%priest%%%%approached%%%%the%%%%lonely%%%%family.
8 The%%%%parent%%%%visited%%%%the%%%%school.
9 The%%%%parent%%%%shouted%%%%at%%%%the%%%%child.
10 The%%%%parent%%%%bought%%%%the%%%%magazine.
11 The%%%%happy%%%%couple%%%%visited%%%%the%%%%embassy.
12 The%%%%couple%%%%planned%%%%the%%%%vacation.
13 The%%%%parent%%%%took%%%%the%%%%cellphone.
14 The%%%%couple%%%%laughed%%%%at%%%%dinner.
15 The%%%%couple%%%%read%%%%on%%%%the%%%%beach.
16 The%%%%wealthy%%%%couple%%%%left%%%%the%%%%theater.
17 The%%%%child%%%%broke%%%%the%%%%glass%%%%in%%%%the%%%%restaurant.
18 The%%%%happy%%%%child%%%%found%%%%the%%%%dime.
19 The%%%%child%%%%gave%%%%the%%%%flower%%%%to%%%%the%%%%artist.
20 The%%%%child%%%%held%%%%the%%%%soft%%%%feather.
21 The%%%%angry%%%%child%%%%threw%%%%the%%%%book.
22 The%%%%girl%%%%dropped%%%%the%%%%shiny%%%%dime.
23 The%%%%actor%%%%gave%%%%the%%%%football%%%%to%%%%the%%%%team.
24 The%%%%commander%%%%listened%%%%to%%%%the%%%%soldier.
25 The%%%%soldier%%%%crossed%%%%the%%%%field.
26 The%%%%editor%%%%drank%%%%tea%%%%at%%%%dinner.
27 The%%%%beach%%%%was%%%%empty.
28 The%%%%judge%%%%met%%%%the%%%%mayor.
29 The%%%%doctor%%%%stole%%%%the%%%%book.
30 The%%%%artist%%%%drew%%%%the%%%%river.
31 The%%%%window%%%%was%%%%dusty.
32 The%%%%teacher%%%%worked%%%%at%%%%the%%%%new%%%%school.
33 The%%%%school%%%%was%%%%famous.
34 The%%%%school%%%%was%%%%empty%%%%during%%%%the%%%%summer.
35 The%%%%student%%%%walked%%%%along%%%%the%%%%long%%%%hall.
36 The%%%%young%%%%student%%%%read%%%%at%%%%the%%%%desk.
37 The%%%%small%%%%church%%%%was%%%%near%%%%the%%%%school.
38 The%%%%teacher%%%%used%%%%the%%%%computer.
39 The%%%%army%%%%marched%%%%past%%%%the%%%%school.
40 The%%%%scientist%%%%spoke%%%%to%%%%the%%%%student.
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No. Glasgow*Sentence*Collection*(Part*II)
41 The&&&&engineer&&&&gave&&&&a&&&&book&&&&to&&&&the&&&&student.
42 The&&&&student&&&&planned&&&&the&&&&protest.
43 The&&&&teacher&&&&broke&&&&the&&&&small&&&&camera.
44 The&&&&yellow&&&&dog&&&&approached&&&&the&&&&friendly&&&&teacher.
45 The&&&&teacher&&&&visited&&&&the&&&&beach&&&&in&&&&summer.
46 The&&&&red&&&&pencil&&&&was&&&&on&&&&the&&&&desk.
47 The&&&&team&&&&played&&&&soccer&&&&in&&&&spring.
48 The&&&&council&&&&read&&&&the&&&&agreement.
49 The&&&&mayor&&&&dropped&&&&the&&&&glass.
50 The&&&&street&&&&was&&&&dark.
51 The&&&&feather&&&&was&&&&blue.
52 The&&&&tree&&&&was&&&&green.
53 The&&&&diplomat&&&&was&&&&wealthy.
54 The&&&&dime&&&&was&&&&new.
55 The&&&&girl&&&&saw&&&&the&&&&small&&&&bird.
56 The&&&&small&&&&boy&&&&feared&&&&the&&&&storm.
57 The&&&&mouse&&&&ran&&&&into&&&&the&&&&forest.
58 The&&&&boat&&&&crossed&&&&the&&&&small&&&&lake.
59 The&&&&army&&&&built&&&&the&&&&small&&&&hospital.
60 The&&&&judge&&&&lost&&&&the&&&&dime.
61 The&&&&man&&&&saw&&&&the&&&&dead&&&&mouse.
62 The&&&&boy&&&&kicked&&&&the&&&&stone&&&&along&&&&the&&&&street.
63 The&&&&white&&&&feather&&&&was&&&&under&&&&the&&&&tree.
64 The&&&&dusty&&&&feather&&&&landed&&&&on&&&&the&&&&highway.
65 The&&&&cellphone&&&&was&&&&black.
66 The&&&&fish&&&&lived&&&&in&&&&the&&&&river.
67 The&&&&activist&&&&dropped&&&&the&&&&new&&&&cellphone.
68 The&&&&woman&&&&bought&&&&medicine&&&&at&&&&the&&&&store.
69 The&&&&magazine&&&&was&&&&yellow.
70 The&&&&minister&&&&found&&&&cash&&&&at&&&&the&&&&airport.
71 The&&&&businessman&&&&laughed&&&&in&&&&the&&&&theater.
72 The&&&&big&&&&horse&&&&drank&&&&from&&&&the&&&&lake.
73 The&&&&pilot&&&&was&&&&friendly.
74 The&&&&witness&&&&spoke&&&&to&&&&the&&&&lawyer.
75 The&&&&minister&&&&spoke&&&&to&&&&the&&&&injured&&&&patient.
76 The&&&&reporter&&&&spoke&&&&to&&&&the&&&&loud&&&&mob.
77 The&&&&young&&&&author&&&&spoke&&&&to&&&&the&&&&editor.
78 The&&&&author&&&&interviewed&&&&the&&&&scientist&&&&after&&&&the&&flood.
79 The&&&&commander&&&&negotiated&&&&with&&&&the&&&&council.
80 The&&&&diplomat&&&&negotiated&&&&at&&&&the&&&&embassy.
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No. Glasgow*Sentence*Collection*(Part*III)
81 The&&&&journalist&&&&interviewed&&&&the&&&&judge.
82 The&&&&reporter&&&&interviewed&&&&the&&&&dangerous&&&&terrorist.
83 The&&&&policeman&&&&interviewed&&&&the&&&&young&&&&victim.
84 The&&&&mayor&&&&negotiated&&&&with&&&&the&&&&mob.
85 The&&&&reporter&&&&interviewed&&&&the&&&&politician&&&&during&&the&&&&debate.
86 The&&&&witness&&&&shouted&&&&during&&&&the&&&&trial.
87 The&&&&artist&&&&shouted&&&&in&&&&the&&&&hotel.
88 The&&&&diplomat&&&&shouted&&&&at&&&&the&&&&soldier.
89 The&&&&activist&&&&listened&&&&to&&&&the&&&&tired&&&&victim.
90 The&&&&mayor&&&&listened&&&&to&&&&the&&&&voter.
91 The&&&&jury&&&&listened&&&&to&&&&the&&&&famous&&&&businessman.
92 The&&&&woman&&&&helped&&&&the&&&&sick&&&&tourist.
93 The&&&&lonely&&&&patient&&&&listened&&&&to&&&&the&&&&loud&&television.
94 The&&&&soldier&&&&delivered&&&&the&&&&medicine&&&&during&&&&the&&flood.
95 The&&&&engineer&&&&built&&&&the&&&&computer.
96 The&&&&terrorist&&&&stole&&&&the&&&&car.
97 The&&&&artist&&&&found&&&&the&&&&red&&&&ball.
98 The&&&&scientist&&&&watched&&&&the&&&&duck.
99 The&&&&flood&&&&was&&&&dangerous.
100 The&&&&cloud&&&&blocked&&&&the&&&&sun.
101 The&&&&baseball&&&&broke&&&&the&&&&window.
102 The&&&&dog&&&&broke&&&&the&&&&television.
103 The&&&&angry&&&&activist&&&&broke&&&&the&&&&chair.
104 The&&&&accident&&&&destroyed&&&&the&&&&empty&&&&lab.
105 The&&&&accident&&&&damaged&&&&the&&&&yellow&&&&car.
106 The&&&&hurricane&&&&damaged&&&&the&&&&boat.
107 The&&&&storm&&&&destroyed&&&&the&&&&theater.
108 The&&&&editor&&&&damaged&&&&the&&&&bicycle.
109 The&&&&mob&&&&damaged&&&&the&&&&hotel.
110 The&&&&flood&&&&damaged&&&&the&&&&hospital.
111 The&&&&horse&&&&kicked&&&&the&&&&fence.
112 The&&&&soldier&&&&kicked&&&&the&&&&door.
113 The&&&&banker&&&&was&&&&injured&&&&in&&&&the&&&&accident.
114 The&&&&author&&&&kicked&&&&the&&&&desk.
115 The&&&&storm&&&&was&&&&powerful.
116 The&&&&doctor&&&&helped&&&&the&&&&injured&&&&policeman.
117 The&&&&injured&&&&horse&&&&slept&&&&at&&&&night.
118 The&&&&soldier&&&&arrested&&&&the&&&&injured&&&&activist.
119 The&&&&dangerous&&&&criminal&&&&stole&&&&the&&&&television.
120 The&&&&doctor&&&&bought&&&&the&&&&used&&&&boat.
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No. Glasgow*Sentence*Collection*(Part*IV)
121 The&&&&guard&&&&opened&&&&the&&&&window.
122 The&&&&egg&&&&was&&&&blue.
123 The&&&&glass&&&&was&&&&cold.
124 The&&&&witness&&&&went&&&&to&&&&the&&&&trial.
125 The&&&&trial&&&&ended&&&&in&&&&spring.
126 The&&&&politician&&&&watched&&&&the&&&&trial.
127 The&&&&reporter&&&&wrote&&&&about&&&&the&&&&trial.
128 The&&&&activist&&&&marched&&&&at&&&&the&&&&trial.
129 The&&&&tired&&&&jury&&&&left&&&&the&&&&court.
130 The&&&&jury&&&&watched&&&&the&&&&witness.
131 The&&&&lawyer&&&&was&&&&friendly.
132 The&&&&angry&&&&lawyer&&&&left&&&&the&&&&office.
133 The&&&&tired&&&&lawyer&&&&visited&&&&the&&&&island.
134 The&&&&lawyer&&&&drank&&&&coffee.
135 The&&&&old&&&&judge&&&&saw&&&&the&&&&dark&&&&cloud.
136 The&&&&judge&&&&stayed&&&&at&&&&the&&&&hotel&&&&during&&&&the&&vacation.
137 The&&&&policeman&&&&arrested&&&&the&&&&angry&&&&driver.
138 The&&&&tired&&&&patient&&&&slept&&&&in&&&&the&&&&dark&&&&hospital.
139 The&&&&man&&&&read&&&&the&&&&newspaper&&&&in&&&&church.
140 The&&&&criminal&&&&wanted&&&&cash.
141 The&&&&clever&&&&scientist&&&&worked&&&&at&&&&the&&&&lab.
142 The&&&&editor&&&&gave&&&&cash&&&&to&&&&the&&&&driver.
143 The&&&&green&&&&car&&&&crossed&&&&the&&&&bridge.
144 The&&&&vacation&&&&was&&&&peaceful.
145 The&&&&duck&&&&lived&&&&at&&&&the&&&&lake.
146 The&&&&bird&&&&landed&&&&on&&&&the&&&&bridge.
147 The&&&&protest&&&&was&&&&loud.
148 The&&&&voter&&&&went&&&&to&&&&the&&&&protest.
149 The&&&&council&&&&feared&&&&the&&&&protest.
150 The&&&&banker&&&&watched&&&&the&&&&peaceful&&&&protest.
151 The&&&&mob&&&&approached&&&&the&&&&embassy.
152 The&&&&mob&&&&was&&&&dangerous.
153 The&&&&reporter&&&&met&&&&the&&&&angry&&&&doctor.
154 The&&&&voter&&&&read&&&&about&&&&the&&&&election.
155 The&&&&politician&&&&celebrated&&&&at&&&&the&&&&hotel.
156 The&&&&wealthy&&&&politician&&&&liked&&&&coffee.
157 The&&&&worker&&&&fixed&&&&the&&&&door&&&&at&&&&the&&&&church.
158 The&&&&corn&&&&grew&&&&in&&&&spring.
159 The&&&&victim&&&&feared&&&&the&&&&criminal.
160 The&&&&young&&&&engineer&&&&worked&&&&in&&&&the&&&&office.
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No. Glasgow*Sentence*Collection*(Part*V)
161 The&&&&tourist&&&&was&&&&friendly.
162 The&&&&baseball&&&&was&&&&in&&&&the&&&&office.
163 The&&&&used&&&&book&&&&was&&&&on&&&&the&&&&table.
164 The&&&&magazine&&&&was&&&&in&&&&the&&&&car.
165 The&&&&bridge&&&&survived&&&&the&&&&flood.
166 The&&&&old&&&&doctor&&&&walked&&&&through&&&&the&&&&hospital.
167 The&&&&patient&&&&survived.
168 The&&&&patient&&&&put&&&&the&&&&medicine&&&&in&&&&the&&&&cabinet.
169 The&&&&medicine&&&&was&&&&on&&&&the&&&&table.
170 The&&&&famous&&&&diplomat&&&&left&&&&the&&&&hospital.
171 The&&&&commander&&&&opened&&&&the&&&&heavy&&&&door.
172 The&&&&banker&&&&bought&&&&the&&&&expensive&&&&boat.
173 The&&&&storm&&&&ended&&&&during&&&&the&&&&morning.
174 The&&&&car&&&&approached&&&&the&&&&river.
175 The&&&&door&&&&was&&&&blue.
176 The&&&&farmer&&&&liked&&&&soccer.
177 The&&&&engineer&&&&walked&&&&in&&&&the&&&&peaceful&&&&park.
178 The&&&&horse&&&&walked&&&&through&&&&the&&&&green&&&&field.
179 The&&&&wealthy&&&&author&&&&walked&&&&into&&&&the&&&&office.
180 The&&&&young&&&&policeman&&&&walked&&&&to&&&&the&&&&theater.
181 The&&&&artist&&&&hiked&&&&along&&&&the&&&&mountain.
182 The&&&&tourist&&&&hiked&&&&through&&&&the&&&&forest.
183 The&&&&editor&&&&carried&&&&the&&&&magazine&&&&to&&&&the&&meeting.
184 The&&&&dog&&&&ran&&&&in&&&&the&&&&park.
185 The&&&&woman&&&&took&&&&the&&&&flower&&&&from&&&&the&&&&field.
186 The&&&&street&&&&was&&&&empty&&&&at&&&&night.
187 The&&&&wealthy&&&&farmer&&&&fed&&&&the&&&&horse.
188 The&&&&diplomat&&&&bought&&&&the&&&&aggressive&&&&dog.
189 The&&&&dog&&&&drank&&&&water.
190 The&&&&tree&&&&grew&&&&in&&&&the&&&&park.
191 The&&&&commander&&&&ate&&&&chicken&&&&at&&&&dinner.
192 The&&&&dog&&&&ate&&&&the&&&&egg.
193 The&&&&computer&&&&was&&&&new.
194 The&&&&company&&&&delivered&&&&the&&&&computer.
195 The&&&&computer&&&&was&&&&on&&&&the&&&&desk.
196 The&&&&businessman&&&&lost&&&&the&&&&computer&&&&at&&&&the&&airport.
197 The&&&&expensive&&&&camera&&&&was&&&&in&&&&the&&&&lab.
198 The&&&&reporter&&&&ate&&&&at&&&&the&&&&new&&&&restaurant.
199 The&&&&minister&&&&lost&&&&the&&&&spiritual&&&&magazine.
200 The&&&&boy&&&&held&&&&the&&&&football.
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No. Glasgow*Sentence*Collection*(Part*VI)
201 The''''bird''''was''''red.
202 The''''cloud''''was''''white.
203 The''''yellow''''bird''''flew''''over''''the''''field.
204 The''''flower''''was''''yellow.
205 The''''green''''duck''''slept''''under''''the''''tree.
206 The''''girl''''saw''''a''''horse''''in''''the''''park.
207 The''''duck''''flew.
208 The''''man''''lost''''the''''ticket''''to''''soccer.
209 The''''team''''celebrated.
210 The''''red''''plane''''flew''''through''''the''''cloud.
211 The''''summer''''was''''hot.
212 The''''bicycle''''blocked''''the''''green''''door.
213 The''''park''''was''''empty''''in''''winter.
214 The''''driver''''wanted''''cold''''tea.
215 The''''minister''''visited''''the''''prison.
216 The''''tourist''''ate''''bread''''on''''vacation.
217 The''''tourist''''went''''to''''the''''restaurant.
218 The''''tourist''''found''''a''''bird''''in''''the''''theater.
219 The''''old''''farmer''''ate''''at''''the''''expensive''''hotel.
220 The''''aggressive''''team''''took''''the''''baseball.
221 The''''duck''''was''''aggressive.
222 The''''chicken''''was''''expensive''''at''''the''''restaurant.
223 The''''artist''''liked''''chicken.
224 The''''restaurant''''was''''loud''''at''''night.
225 The''''woman''''left''''the''''restaurant''''after''''the''storm.
226 The''''banker''''drank''''cold''''water.
227 The''''coffee''''was''''hot.
228 The''''boy''''threw''''the''''baseball''''over''''the''''fence.
229 The''''policeman''''read''''the''''newspaper.
230 The''''criminal''''put''''the''''book''''on''''the''''desk.
231 The''''man''''saw''''the''''fish''''in''''the''''river.
232 The''''happy''''girl''''played''''in''''the''''forest.
233 The''''young''''girl''''played''''soccer.
234 The''''old''''man''''threw''''the''''stone''''into''''the''''lake.
235 The''''team''''lost''''the''''football''''in''''the''''forest.
236 The''''businessman''''slept''''on''''the''''expensive''''bed.
237 The''''businessman''''watched''''soccer.
238 The''''guard''''slept''''near''''the''''door.
239 The''''artist''''kicked''''the''''football.
240 The''''ticket''''was''''on''''the''''red''''desk.
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No. Word No.' Word' No.'' Word'' No.'''' Word'''' No.''''' Word''''' No.''''''Word''''''
1 accident 42 chicken 83 ended 124 journalist 165 pencil 206 survived
2 activist 43 child 84 engineer 125 judge 166 pilot 207 table
3 actor 44 church 85 expensive 126 jury 167 plane 208 tea
4 aggressive 45 clever 86 family 127 kicked 168 planned 209 teacher
5 agreement 46 cloud 87 famous 128 lab 169 played 210 team
6 airport 47 coffee 88 farmer 129 lake 170 policeman 211 television
7 angry 48 cold 89 feared 130 landed 171 politician 212 terrorist
8 approached 49 commander 90 feather 131 laughed 172 powerful 213 theater
9 army 50 company 91 fed 132 lawyer 173 priest 214 threw
10 arrested 51 computer 92 fence 133 left 174 prison 215 ticket
11 artist 52 corn 93 field 134 liked 175 protest 216 tired
12 ate 53 council 94 fish 135 listened 176 put 217 took
13 author 54 couple 95 fixed 136 lived 177 ran 218 tourist
14 ball 55 court 96 flew 137 lonely 178 read 219 tree
15 banker 56 criminal 97 flood 138 long 179 red 220 trial
16 baseball 57 crossed 98 flower 139 lost 180 reporter 221 used
17 beach 58 damaged 99 football 140 loud 181 restaurant 222 used
18 bed 59 dangerous 100 forest 141 magazine 182 river 223 vacation
19 bicycle 60 dark 101 found 142 man 183 saw 224 victim
20 big 61 dead 102 friendly 143 marched 184 school 225 visited
21 bird 62 debate 103 gave 144 mayor 185 scientist 226 voter
22 black 63 delivered 104 girl 145 medicine 186 shiny 227 walked
23 blocked 64 desk 105 glass 146 meeting 187 shouted 228 wanted
24 blue 65 destroyed 106 green 147 met 188 sick 229 watched
25 boat 66 dime 107 grew 148 minister 189 slept 230 water
26 book 67 dinner 108 guard 149 mob 190 small 231 wealthy
27 bought 68 diplomat 109 hall 150 morning 191 soccer 232 went
28 boy 69 doctor 110 happy 151 mountain 192 soft 233 white
29 bread 70 dog 111 heavy 152 mouse 193 soldier 234 window
30 bridge 71 door 112 held 153 negotiated 194 spiritual 235 winter
31 broke 72 drank 113 helped 154 new 195 spoke 236 witness
32 built 73 drew 114 highway 155 newspaper 196 spring 237 woman
33 businessman 74 driver 115 hiked 156 night 197 stayed 238 worked
34 cabinet 75 dropped 116 horse 157 office 198 stole 239 worker
35 camera 76 duck 117 hospital 158 old 199 stone 240 wrote
36 car 77 dusty 118 hot 159 opened 200 store 241 yellow
37 carried 78 editor 119 hotel 160 parent 201 storm 242 young
38 cash 79 egg 120 hurricane 161 park 202 street
39 celebrated 80 election 121 injured 162 party 203 student
40 cellphone 81 embassy 122 interviewed 163 patient 204 summer
41 chair 82 empty 123 island 164 peaceful 205 sun
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Appendix C 

 

For illustration, two questionnaires are included in the next pages. Each questionnaire is 

composed of the Introduction, an Example and the list of 15 questions. To find the entire 

set follow this link: 

 

https://drive.google.com/drive/folders/1jDCqKMuH-SyTxcJ7oJRbr7mYV6WNNEWH?usp=sharing 
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Sentence Rating Survey
How does the meaning of a word change in different sentences? For example, a subject would 
invoke different properties of the word PIANO depending on what he read. The concept of piano 
is composed of visual features like size and weight, auditory features like sound, and motor 
features like manipulation, and so on. Depending on context, the weighting of those properties 
will show different activation. When thinking about "moving the piano", the focus of attention will 
be on size, shape, weight, and larger limbs movement . If thinking about "playing the piano", the 
emphasis will be on the piano’s function such as sound and fine hand movement properties.

Brain imaging tools provide a new approach to understanding this phenomenon by directly 
observing brain activity during word and sentence comprehension. We collected brain image 
data from 11 subjects reading everyday sentences. Brain activity was recorded on their visual, 
sensory, motor, and other brain systems during the experiments.

Our research aims at explaining this data in a computational model. In the model, different 
properties of words are weighted differently depending on context. The model is then used to 
determine how the generic meaning of a word would have to change in order to account for 
context. This survey is intended to evaluate the results produced by the computational model. 
You will make judgements about which properties changed, and your judgement will be 
compared to those suggested by the model.
* Required

1.

Mark only one oval per row.

1:The banker bought the expensive boat *
Think of the generic meaning of the word 'BANKER'. Now think of the same word used in the sentence above.
How is 'BANKER' in this sentence different from its generic meaning?

more less neutral

is bright

feels hot

feels smooth

makes a musical sound

has a distinctive taste

uses the leg or foot

is an object

lasts a short time

is happy

causes fear

is bright

feels hot

feels smooth

makes a musical sound

has a distinctive taste

uses the leg or foot

is an object

lasts a short time

is happy

causes fear

2.

Mark only one oval per row.

2:The author interviewed the scientist after the flood *
Think of the generic meaning of the word 'INTERVIEWED'. Now think of the same word used in the sentence
above. How is 'INTERVIEWED' in this sentence different from its generic meaning?

more less neutral

is bright

has a face

is identified by touch

is heavy

makes a musical sound

has a distinctive taste

triggers social interaction

is sad

causes anger

increases alertness

is bright

has a face

is identified by touch

is heavy

makes a musical sound

has a distinctive taste

triggers social interaction

is sad

causes anger

increases alertness



 169 

 

3.

Mark only one oval per row.

3:The scientist spoke to the student *
Think of the generic meaning of the word 'STUDENT'. Now think of the same word used in the sentence
above. How is 'STUDENT' in this sentence different from its generic meaning?

more less neutral

is bright

has a face

is associated with pain

makes a musical sound

is an object

goes away

has consequences

causes anger

causes surprise

is an essential part

is bright

has a face

is associated with pain

makes a musical sound

is an object

goes away

has consequences

causes anger

causes surprise

is an essential part

4.

Mark only one oval per row.

4:The judge met the mayor *
Think of the generic meaning of the word 'JUDGE'. Now think of the same word used in the sentence above.
How is 'JUDGE' in this sentence different from its generic meaning?

more less neutral

has texture or pattern

is identified by touch

makes a high pitch

makes a musical sound

talks

has a distinctive smell

uses the leg or foot

has a fixed location

has a certain duration

causes anger

has texture or pattern

is identified by touch

makes a high pitch

makes a musical sound

talks

has a distinctive smell

uses the leg or foot

has a fixed location

has a certain duration

causes anger

5.

Mark only one oval per row.

5:The engineer gave a book to the student *
Think of the generic meaning of the word 'GAVE'. Now think of the same word used in the sentence above.
How is 'GAVE' in this sentence different from its generic meaning?

more less neutral

is dark

has a face

is heavy

is audible

makes a musical sound

has a distinctive smell

is physically manipulated

goes away

causes anger

is disgusting

is dark

has a face

is heavy

is audible

makes a musical sound

has a distinctive smell

is physically manipulated

goes away

causes anger

is disgusting

6.

Mark only one oval per row.

6:The criminal put the book on the desk *
Think of the generic meaning of the word 'BOOK'. Now think of the same word used in the sentence above.
How is 'BOOK' in this sentence different from its generic meaning?

more less neutral

is bright

has texture or pattern

moves slow

has body parts

is associated with pain

makes a high pitch

has a distinctive taste

is an object

changes location

causes anger

is bright

has texture or pattern

moves slow

has body parts

is associated with pain

makes a high pitch

has a distinctive taste

is an object

changes location

causes anger
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7.

Mark only one oval per row.

7:The girl saw a horse in the park *
Think of the generic meaning of the word 'GIRL'. Now think of the same word used in the sentence above.
How is 'GIRL' in this sentence different from its generic meaning?

more less neutral

has a defining shape

makes a musical sound

is an object

comes close

goes away

is countable

has a certain duration

is sad

causes fear

causes surprise

has a defining shape

makes a musical sound

is an object

comes close

goes away

is countable

has a certain duration

is sad

causes fear

causes surprise

8.

Mark only one oval per row.

8:The yellow dog approached the friendly teacher *
Think of the generic meaning of the word 'APPROACHED'. Now think of the same word used in the sentence
above. How is 'APPROACHED' in this sentence different from its generic meaning?

more less neutral

is bright

moves

feels smooth

is heavy

is associated with pain

makes a high pitch

has a certain duration

lasts a short time

causes fear

is a center of attention

is bright

moves

feels smooth

is heavy

is associated with pain

makes a high pitch

has a certain duration

lasts a short time

causes fear

is a center of attention

9.

Mark only one oval per row.

9:The man lost the ticket to soccer *
Think of the generic meaning of the word 'TICKET'. Now think of the same word used in the sentence above.
How is 'TICKET' in this sentence different from its generic meaning?

more less neutral

is bright

has body parts

makes a musical sound

uses the face or mouth

is an object

goes away

has intentions

exchanges information

is beneficial

causes anger

is bright

has body parts

makes a musical sound

uses the face or mouth

is an object

goes away

has intentions

exchanges information

is beneficial

causes anger

10.

Mark only one oval per row.

10:The boat crossed the small lake *
Think of the generic meaning of the word 'CROSSED'. Now think of the same word used in the sentence
above. How is 'CROSSED' in this sentence different from its generic meaning?

more less neutral

is visually complex

is heavy

makes a high pitch

has a distinctive taste

is physically manipulated

has a certain duration

lasts a short time

is sad

causes surprise

is a center of attention

is visually complex

is heavy

makes a high pitch

has a distinctive taste

is physically manipulated

has a certain duration

lasts a short time

is sad

causes surprise

is a center of attention
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11.

Mark only one oval per row.

11:The victim feared the criminal *
Think of the generic meaning of the word 'FEARED'. Now think of the same word used in the sentence
above. How is 'FEARED' in this sentence different from its generic meaning?

more less neutral

is visible

is visually complex

has a distinctive taste

has a distinctive smell

is countable

lasts a short time

triggers social interaction

is unpleasant

is happy

is an essential part

is visible

is visually complex

has a distinctive taste

has a distinctive smell

is countable

lasts a short time

triggers social interaction

is unpleasant

is happy

is an essential part

12.

Mark only one oval per row.

12:The boy held the football *
Think of the generic meaning of the word 'FOOTBALL'. Now think of the same word used in the sentence
above. How is 'FOOTBALL' in this sentence different from its generic meaning?

more less neutral

moves slow

has a face

has body parts

talks

has a distinctive taste

has a certain duration

lasts a short time

has intentions

relates to oneself

is disgusting

moves slow

has a face

has body parts

talks

has a distinctive taste

has a certain duration

lasts a short time

has intentions

relates to oneself

is disgusting

13.

Mark only one oval per row.

13:The famous diplomat left the hospital *
Think of the generic meaning of the word 'DIPLOMAT'. Now think of the same word used in the sentence
above. How is 'DIPLOMAT' in this sentence different from its generic meaning?

more less neutral

is bright

has texture or pattern

living thing that moves

has a distinctive smell

uses the leg or foot

has a fixed location

is a particular setting

is near

goes away

has a certain duration

is bright

has texture or pattern

living thing that moves

has a distinctive smell

uses the leg or foot

has a fixed location

is a particular setting

is near

goes away

has a certain duration

14.

Mark only one oval per row.

14:The injured horse slept at night *
Think of the generic meaning of the word 'SLEPT'. Now think of the same word used in the sentence above.
How is 'SLEPT' in this sentence different from its generic meaning?

more less neutral

is bright

has texture or pattern

is large

is associated with pain

is loud

makes a musical sound

is physically manipulated

has a fixed location

caused by something

is a center of attention

is bright

has texture or pattern

is large

is associated with pain

is loud

makes a musical sound

is physically manipulated

has a fixed location

caused by something

is a center of attention
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15.

Mark only one oval per row.

This content is neither created nor endorsed by Google.

15:The commander ate chicken at dinner *
Think of the generic meaning of the word 'CHICKEN'. Now think of the same word used in the sentence
above. How is 'CHICKEN' in this sentence different from its generic meaning?

more less neutral

has texture or pattern

has a face

is heavy

is an object

has a certain duration

lasts a short time

is unpleasant

is happy

is sad

is a center of attention

has texture or pattern

has a face

is heavy

is an object

has a certain duration

lasts a short time

is unpleasant

is happy

is sad

is a center of attention

 Forms
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Sentence Rating Survey
How does the meaning of a word change in different sentences? For example, a subject would 
invoke different properties of the word PIANO depending on what he read. The concept of piano 
is composed of visual features like size and weight, auditory features like sound, and motor 
features like manipulation, and so on. Depending on context, the weighting of those properties 
will show different activation. When thinking about "moving the piano", the focus of attention will 
be on size, shape, weight, and larger limbs movement . If thinking about "playing the piano", the 
emphasis will be on the piano’s function such as sound and fine hand movement properties.

Brain imaging tools provide a new approach to understanding this phenomenon by directly 
observing brain activity during word and sentence comprehension. We collected brain image 
data from 11 subjects reading everyday sentences. Brain activity was recorded on their visual, 
sensory, motor, and other brain systems during the experiments.

Our research aims at explaining this data in a computational model. In the model, different 
properties of words are weighted differently depending on context. The model is then used to 
determine how the generic meaning of a word would have to change in order to account for 
context. This survey is intended to evaluate the results produced by the computational model. 
You will make judgements about which properties changed, and your judgement will be 
compared to those suggested by the model.
* Required

1.

Mark only one oval per row.

1:The happy girl played in the forest *
Think of the generic meaning of the word 'GIRL'. Now think of the same word used in the sentence above.
How is 'GIRL' in this sentence different from its generic meaning?

more less neutral

is dark

feels hot

makes a high pitch

has a distinctive taste

is an object

has a fixed location

is near

exchanges information

causes to act in certain way

is an essential part

is dark

feels hot

makes a high pitch

has a distinctive taste

is an object

has a fixed location

is near

exchanges information

causes to act in certain way

is an essential part

2.

Mark only one oval per row.

2:The jury listened to the famous businessman *
Think of the generic meaning of the word 'LISTENED'. Now think of the same word used in the sentence
above. How is 'LISTENED' in this sentence different from its generic meaning?

more less neutral

has texture or pattern

moves fast

is visually complex

has a face

makes a high pitch

has a distinctive taste

has a distinctive smell

changes location

lasts a short time

is an essential part

has texture or pattern

moves fast

is visually complex

has a face

makes a high pitch

has a distinctive taste

has a distinctive smell

changes location

lasts a short time

is an essential part
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3.

Mark only one oval per row.

3:The mob damaged the hotel *
Think of the generic meaning of the word 'HOTEL'. Now think of the same word used in the sentence above.
How is 'HOTEL' in this sentence different from its generic meaning?

more less neutral

moves fast

is identified by touch

is loud

has a distinctive taste

changes location

is near

is an event in time

lasts a short time

has intentions

is sad

moves fast

is identified by touch

is loud

has a distinctive taste

changes location

is near

is an event in time

lasts a short time

has intentions

is sad

4.

Mark only one oval per row.

4:The parent bought the magazine *
Think of the generic meaning of the word 'PARENT'. Now think of the same word used in the sentence above.
How is 'PARENT' in this sentence different from its generic meaning?

more less neutral

is bright

has a defining color

living thing that moves

has a defining shape

feels hot

talks

has a distinctive taste

uses the leg or foot

has a certain duration

is an essential part

is bright

has a defining color

living thing that moves

has a defining shape

feels hot

talks

has a distinctive taste

uses the leg or foot

has a certain duration

is an essential part

5.

Mark only one oval per row.

5:The green duck slept under the tree *
Think of the generic meaning of the word 'SLEPT'. Now think of the same word used in the sentence above.
How is 'SLEPT' in this sentence different from its generic meaning?

more less neutral

is visible

is dark

feels hot

is loud

has a distinctive taste

has a distinctive smell

has a certain duration

lasts a short time

has consequences

is disgusting

is visible

is dark

feels hot

is loud

has a distinctive taste

has a distinctive smell

has a certain duration

lasts a short time

has consequences

is disgusting

6.

Mark only one oval per row.

6:The yellow bird flew over the field *
Think of the generic meaning of the word 'FIELD'. Now think of the same word used in the sentence above.
How is 'FIELD' in this sentence different from its generic meaning?

more less neutral

has a defining color

is large

moves fast

has body parts

is associated with pain

has a distinctive taste

is an event in time

has consequences

increases mental activity

causes surprise

has a defining color

is large

moves fast

has body parts

is associated with pain

has a distinctive taste

is an event in time

has consequences

increases mental activity

causes surprise



 175 

 

7.

Mark only one oval per row.

7:The wealthy author walked into the office *
Think of the generic meaning of the word 'AUTHOR'. Now think of the same word used in the sentence above.
How is 'AUTHOR' in this sentence different from its generic meaning?

more less neutral

has a defining shape

has body parts

is loud

has a distinctive taste

has a distinctive smell

has a certain duration

caused by something

exchanges information

causes to act in certain way

is an essential part

has a defining shape

has body parts

is loud

has a distinctive taste

has a distinctive smell

has a certain duration

caused by something

exchanges information

causes to act in certain way

is an essential part

8.

Mark only one oval per row.

8:The child broke the glass in the restaurant *
Think of the generic meaning of the word 'BROKE'. Now think of the same word used in the sentence above.
How is 'BROKE' in this sentence different from its generic meaning?

more less neutral

has a defining color

is visually complex

is loud

is physically manipulated

has a fixed location

is an event in time

has a certain duration

causes fear

causes surprise

is an essential part

has a defining color

is visually complex

is loud

is physically manipulated

has a fixed location

is an event in time

has a certain duration

causes fear

causes surprise

is an essential part

9.

Mark only one oval per row.

9:The happy child found the dime *
Think of the generic meaning of the word 'DIME'. Now think of the same word used in the sentence above.
How is 'DIME' in this sentence different from its generic meaning?

more less neutral

is small

moves fast

is visually complex

is identified by touch

is loud

has a certain duration

lasts a short time

increases mental activity

causes anger

is disgusting

is small

moves fast

is visually complex

is identified by touch

is loud

has a certain duration

lasts a short time

increases mental activity

causes anger

is disgusting

10.

Mark only one oval per row.

10:The reporter interviewed the dangerous terrorist *
Think of the generic meaning of the word 'REPORTER'. Now think of the same word used in the sentence
above. How is 'REPORTER' in this sentence different from its generic meaning?

more less neutral

living thing that moves

moves fast

is identified by touch

feels hot

makes a high pitch

is an object

has a fixed location

lasts a short time

relates to oneself

is beneficial

living thing that moves

moves fast

is identified by touch

feels hot

makes a high pitch

is an object

has a fixed location

lasts a short time

relates to oneself

is beneficial
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11.

Mark only one oval per row.

11:The old man threw the stone into the lake *
Think of the generic meaning of the word 'THREW'. Now think of the same word used in the sentence above.
How is 'THREW' in this sentence different from its generic meaning?

more less neutral

is visible

has a defining color

is visually complex

has a distinctive taste

uses the arm or hand

is near

goes away

lasts a long time

caused by something

is a center of attention

is visible

has a defining color

is visually complex

has a distinctive taste

uses the arm or hand

is near

goes away

lasts a long time

caused by something

is a center of attention

12.

Mark only one oval per row.

12:The author kicked the desk *
Think of the generic meaning of the word 'DESK'. Now think of the same word used in the sentence above.
How is 'DESK' in this sentence different from its generic meaning?

more less neutral

is dark

moves fast

is heavy

is loud

is an object

changes location

has a certain duration

has intentions

is disgusting

causes fear

is dark

moves fast

is heavy

is loud

is an object

changes location

has a certain duration

has intentions

is disgusting

causes fear

13.

Mark only one oval per row.

13:The flood damaged the hospital *
Think of the generic meaning of the word 'DAMAGED'. Now think of the same word used in the sentence
above. How is 'DAMAGED' in this sentence different from its generic meaning?

more less neutral

is bright

is visually complex

has a face

is heavy

talks

comes close

has a certain duration

lasts a short time

caused by something

is happy

is bright

is visually complex

has a face

is heavy

talks

comes close

has a certain duration

lasts a short time

caused by something

is happy

14.

Mark only one oval per row.

14:The witness spoke to the lawyer *
Think of the generic meaning of the word 'SPOKE'. Now think of the same word used in the sentence above.
How is 'SPOKE' in this sentence different from its generic meaning?

more less neutral

is bright

is dark

has a face

is identified by touch

feels hot

has a distinctive smell

changes location

lasts a short time

caused by something

is beneficial

is bright

is dark

has a face

is identified by touch

feels hot

has a distinctive smell

changes location

lasts a short time

caused by something

is beneficial
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15.

Mark only one oval per row.

This content is neither created nor endorsed by Google.

15:The commander ate chicken at dinner *
Think of the generic meaning of the word 'CHICKEN'. Now think of the same word used in the sentence
above. How is 'CHICKEN' in this sentence different from its generic meaning?

more less neutral

has a face

makes a high pitch

makes a musical sound

talks

changes location

has intentions

is unpleasant

is disgusting

causes fear

is an essential part

has a face

makes a high pitch

makes a musical sound

talks

changes location

has intentions

is unpleasant

is disgusting

causes fear

is an essential part

 Forms
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Appendix D 

The following results represent the analyses between humans, the three CEREBRA 

approaches, and chance. They are similar to the those presented in Section 7.4. However, 

the evaluation here was done using 1966 responses (i.e., where three out of four 

participants agreed) from the 3600 questions posed by the questionnaires. 

 
Table D.1: Matching CEREBRA predictions with human data (approaches one to three), 
compared to chance. The table shows the average agreement of the 20 repetitions across 
all subjects. CEREBRA approaches one and two, agree with human responses 55%, 
CEREBRA approach three agrees 54%, while the chance level is 45%. Comparison 
agreement with human judgements. 

 

 
Table D.2: Statistical analyses for CEREBRA approaches one to three, and chance. The 
table shows the means and variances of the CEREBRA change models and the chance 
model for each subject, and the p-values of the t-test, revealing that the differences are 
highly significant.  

 
 

The next results include the analyses between humans, the three CEREBRA approaches, 

and chance. They are similar to Table 7.5 presented in Chapter 7 and Table D.1 in this 

appendix. The results are consistent to those presented before. However, the evaluation in 

!!!!!!!!!!!!!PARTICIPANTS!AVERAGE!AGREEMENT
RATINGS HUMAN CEREBRA#1 CEREBRA#2 CEREBRA#3 CHANCE
!"1/0 1074 480 486 466 8
1 892 608 599 587 886

TOTAL 1966 1088 1085 1053 894
!!!!!!!!!!!!!!!!!!AVERAGE 55% 55% 54% 45%

SUBJECTS CHANCE CEREBRA,#1 CEREBRA,#2 CEREBRA,#3 p"value p"value p"value
MEAN VAR MEAN VAR MEAN VAR MEAN VAR CEREBRA,#1 CEREBRA,#2 CEREBRA,#3

S5051 894 6.01 1082.5 149.0 1083 131.32 1033 707.25 2.94E&41 2.99E&42 3.92E&24
S9322 894 7.21 1076.8 199.0 1073 128.31 1035 233.91 2.15E&38 1.80E&41 6.10E&33
S9362 894 11.52 1089.4 186.6 1086 166.91 1063 224.41 8.89E&40 2.48E&40 5.22E&36
S9655 894 7.21 1086.7 39.0 1087 36.64 1077 94.79 1.51E&51 5.06E&52 3.89E&44
S9701 895 12.03 1099.1 183.8 1097 157.71 1048 252.79 1.19E&40 1.12E&41 1.83E&33
S9726 894 4.62 1088.0 179.5 1082 161.88 1048 205.82 2.64E&40 1.24E&40 1.73E&35
S9742 895 7.21 1097.6 64.1 1096 41.73 1075 216.77 8.52E&49 8.54E&52 1.65E&37
S9780 894 2.52 1079.6 229.6 1077 129.91 1039 366.06 1.09E&37 5.10E&42 6.10E&30
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this case was done using the three ratings (-1, 0, 1) to show more details for each 

category used in the questionnaires (decrease, no change, increase).  

 
Table D.3: Matching CEREBRA predictions with human data (approaches one to three), 
compared to chance and considering all category ratings (decrease, no change, increase). 
Responses for each model where thus obtained for the 631 questions where all 
participants agreed. The table shows the average agreement of the 20 repetitions across 
all subjects. CEREBRA approaches one and two, agree with human responses 77%, 
CEREBRA approach three agrees 75%, while the chance level is 68%. None of the 
approaches matched any of the neutral responses. Comparison agreement with human 
judgements. 

 

 
Table D.4: Matching CEREBRA predictions with human data (approaches one to three), 
compared to chance. Responses for each model where thus obtained for the 1966 
questions where 3 out of 4 participants agreed. The table shows the average agreement of 
the 20 repetitions across all subjects. CEREBRA approaches one and two, agree with 
human responses 55%, CEREBRA approach three agrees 54%, while the chance level is 
45%. The three CEREBRA approaches matched some of the neutral responses to some 
degree. Comparison agreement with human judgements. 

 
 

!!!!!!!ALL!4!PARTICIPANTS!AVERAGE!AGREEMENT!(3!Ratings)
RATINGS HUMAN CEREBRA#1 CEREBRA#2 CEREBRA#3 CHANCE

!1 190 145 149 134 1
0 15 0 0 0 0
1 426 341 336 339 426

TOTAL 631 486 485 473 427
!!!!!!!!!!!!!!!!!!AVERAGE 77% 77% 75% 68%

!!!!!!!3!OF!4!PARTICIPANTS!AVERAGE!AGREEMENT!(3!ratings)
RATINGS HUMAN CEREBRA#1 CEREBRA#2 CEREBRA#3 CHANCE

!1 618 478 484 463 8
0 456 2 2 3 0
1 892 608 599 587 886

TOTAL 1966 1088 1085 1053 894
!!!!!!!!!!!!!!!!!!AVERAGE 55% 55% 54% 45%
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