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the uninitiated. A closer examination reveals the form, beauty and even color of carbon
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Search for high-molecular weight linear polymers for the formulation of novel
solutions for the fabrication of micro fibers by electromechanical spinning

by Antonio Osamu Katagiri Tanaka

Abstract

Carbon nano-wires are versatile structures composed of carbon chains with a wide
range of applications due to their high chemical resistance and electric properties.
Regardless of the high interest in the implementation of carbon nano-wires in
energy, environmental and health-care applications, no feasible processes have been
developed to fabricate carbon nano-wires with spatial control at a reasonable cost.
Carbon nano-wires have been fabricated with the use of a photoresist, but little
is known about polymers that can produce conductive carbon nano-wires after
pyrolysis. Various polymer solutions have been tested in near field electrospinning
(NFES) and photopolymerization separately, however, few have been tested for
nano-wire fabrication purposes through the process of spatio-temporal deposition
with NFES, photo-polymerization for cross-linking and pyrolysis. The intention
behind the thesis proposal is to use rheological analyses of different polymer
solutions to determine if they can be easily electrospun at low voltages and then
fabricate nano-wires with them. This thesis work arises from the need to test
a greater variety of polymer-solvent combinations with the goal of designing a
polymer solution to fabricate carbon nano-wires with higher conductivity than
the current SU-8 polymeric nano-fibers. The present work includes the design of
polymer solutions that can be electrospun, with the hope that the selected high
molecular weight polymers can be photo-polymerized, and then pyrolyzed into
conducting carbon nanowires. The overarching goal is to contribute towards
the development of novel designed polymer solutions to achieve mass scale
manufacturing of conductive carbon nano-wires in an inexpensive, continuous,
simple and reproducible manner as central components for nano-sensors.

keywords: nanotechnology, carbon, nano-wires, Near-Field Electrospinning, NFES
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Chapter 1

Introduction

Carbon nano-materials are subjected of great interest for research purposes
due to their various potential applications in diverse areas that take
advantage of the nano-scale properties. Carbon nano-materials are
suitable for catalysis, adsorption, carbon capture, energy and hydrogen
storage, drug delivery, bio-sensing, and cancer detection. [1, 2] Some
matchless properties that allow carbon nano-materials to be utilized within
multiple functionalities include high porosity, distinguished structures,
uniform morphologies, high stability, high magnetic properties, and high
conductivity. [3–10]

This document bestows a thesis project to perform research to engineer
a polymer solution to contribute towards the long-term goal of achieving
mass scale manufacturing of high conductive glass-like carbon nano-wires
with a control of the jet diameter in an inexpensive, continuous, simple and
reproducible manner. This thesis discusses several manufacturing processes
such as near field electrospinning, photo-polymerization, pyrolization, and
carbonization, as they have shown to be promising methods for the
fabrication of carbon nano-materials. [11] See Figure 1.1. A number
of processes have been developed for specific purposes of polymeric
nano-fibres, some include surface deposition, composites, and chemical
adjustments. Polymeric nano-fibers must be also pyrolyzed to generate
carbon nano-wires with conductive capabilities [12] for electrochemical
sensing and energy storage purposes.

Nanotechnology has led to the study of different polymer patterning
techniques to integrate carbon nano-wires structures. One technique is
known as far-field electrospinning (FFES), a process in which electrified jets
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FIGURE 1.1: Fabrication process and characterization techniques of
conductive carbon nano-wires to achieve through the dissertation.

of polymer solution are dispensed to synthesize nano-fibres which can then
be pyrolyzed. One sub-technique derived from electrospinning is near-field
electromechanical spinning or NFEMS. Unlike FFES, NFEMS has proved to
deliver sufficient spatial control for patterning polymeric nano-fibres. [11]

The present work was proposed to continue the work done by others
[11, 13] in regards to the synthesis of carbon nano-wires. Previous
work includes the fabrication of suspended carbon nano-wires by two
methods: electro-mechanical spinning and two-photon polymerization with
a photoresist. [11, 13] This work is intended to focus on electro-mechanical
spinning processes only, to bring off polymer solutions that can be
electrospun by NFEMS to yield polymer fibers than can hopefully be
crosslinked by UV light and the pyrolyzed and pyrolyzed into conducting
carbon nano-wires. The polymer solutions described by Cárdenas and Flores
[11, 13] were used as benchmarks and starting points for the present studies.

Traditional near-field electrospinning or NFES allows large-scale
manufacturing combined with spatial control of material deposition.
[12] However, the reported efforts required the use of electric fields in excess
of 200 kV/m for continuous operation, this seems to contradict the previous
sentence. [12] concluded that the state-of-the-art fabrication processes for
polymer nano-fibers are still lacking in terms of precision, cost, speed and
throughput.

1.1 Carbon Nanowires Research Developments in Terms of
Published Papers, Synthesis and Fabrication

Nanotechnology’s ability to control and piece together materials at the
nano-scale has enabled the development of various carbon nano-materials
and carbon nano-structures, such as nano-dots, nano-fibres, nano-tubes



Chapter 1. Introduction 3

and nano-wires. [14–17] This section focuses on the applications at
the micro-scale and nano-scale levels, as well as the current research of
carbon-based nano-materials (CBNs).

1.1.1 Carbon and carbon-based nanomaterials

FIGURE 1.2: Molecular to meso-scale structural features of synthetic
polymers influence the emergence of specific micro-structural

features in polymer-derived carbon materials after pyrolysis.

Carbon is a versatile element capable of forming a number of bonds
with other elements or with itself. Cabon-based nano-materials (CBNs)
exist in diverse forms, depending on the precise values of each degree
of freedom that specify the material properties at multiple scales.
Hybridization, crystallization, percolation, anisotropy, porosity, impurities
and imperfections are some of the relevant features that determine the CBN
set of properties. The combination of these features at the micro- and
meso-scale burst a variety of macro-scale properties that comprise the CBN
fingerprint (1.2). The interminable collection of possible CBN fingerprints
range from soft, conductive lubricants to very hard, low conductivity solids
[18]; and from black colour, bulks to transparent, disordered thin films.
[3] Figures 1.3 and 1.4 show the existence of different allotropes based on
carbon orbitals which have the ability to hybridize in sp1, sp2 and sp3
configurations, assembling different carbon allotropes.

In terms of porosity, CBNs exhibit different properties according to the
degree of ’open’ and ’closed’ pores. A ’closed pore’ is a void or empty space
in solid materials where a discontinuity is present within the array of atoms
and molecules. On the other hand, an ’open pore’ refers to a void which is



Chapter 1. Introduction 4

FIGURE 1.3: Three carbon allotropes (diamond, carbyne and
graphene) are the building blocks of additional deriving
carbon-based materials such as fullerenes, porous carbon and

glass-like carbon.

FIGURE 1.4: Ternary phase diagram of amorphous carbon regions
based on hybridization degree. Adapted from [19–25].

connected to the outer surface of the solid, in other words a ’open pore’ is a
’closed pore’ with an opening to the external surface. [26] Figure 1.5 shows a
classification of carbon allotropes according to their porosity.

Thermal conductivity and electrical conductivity decrease with increasing
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FIGURE 1.5: Ternary phase diagram of amorphous carbon regions
based on structure order and porosity. Regions are colored by
the degree of crystalline order within the carbon structure. White
represents highly ordered structures, whereas white represents

disordered structures. [18, 26]

porosity due to the reduced amount of material to conduct electrons and
energy. Furthermore, porosity negatively affects the mechanical properties
like strength and elastic modulus as it reduces the volume in which stresses
are distributed. [18] Moreover, stresses are concentrated at the pores which
makes the material prone to mechanical failure. [18, 26]

Due to the versatility and variety of CBNs, CBNs have been fabricated and
implemented for various purposes. [4, 6–10]. For instance, field effect
transistors (FET) have been studied by Novoselov [27] and Heersche et.
al. [19]. Carbon FET devices have reported field-effect mobility one order
of magnitude higher than that of silicon FETs. Other literature suggests
CBNs to be favorable to detect a variety of gases and bio-molecules. [28,
29] As molecules are absorbed by the CBN, the carrier density and electrical
resistivity of the carbon material changes. Moreover, CBNs have showed
good performance in applications in energy (prevent wastage of energy),
water (purification) and diagnostics (lab-on-chip systems and nano-sensors).
[17, 30] As mentioned above, the morphology of CBNs has an impact on the
electrochemical and mechanical properties. [18, 26, 31] In this regard, carbon
nano-structures, such as nano-wires [32, 33], have been fabricated to achieve
improved electrochemical characteristics.
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1.1.2 Carbon Nano-wires

As depicted in Figure 1.4, carbon nano-wires (CNFs) have been classified
as linear, sp2-rich structures. [19–25] Nano-fibers own good electrical,
optical and mechanical characteristics, however those properties are highly
dependent on the morphology of the fibers. [34] The material properties of
1D nano-structures depend on fiber diameter, porosity, crystallinity degree
and crystallite orientation. Consequently, the fabrication parameters and
environment conditions have an impact on the reproducibility of high
quality fibers. [34] Carbon nano-fibers (CNFs) have diameters of several
micrometers (Figure 1.8) and are different from carbon nano-tubes (CNT).
[35–39] Unlike carbon nano-tubes with hollow cores, carbon nano-fibers can
be represented as stacked layers along the thread length. [39–41] The stacked
geometry of carbon nano-fibers results in unique electrical, chemical and
mechanical properties. [42–44] Unlike CNFs, carbon nano-tubes inherent
problems such as high cost and low effective surface area, which limit their
practical use. [25]

FIGURE 1.6: Various types of fibrous carbon materials bear different
characteristics according to their molecular structure. Adapted from

[25]

Carbon nano-wires have been used for the improvement of power density
and specific energy in lithium-ion batteries. [45–47] Authors posit that
the performance and capacity of Li-ion batteries depend on the CNF
structure and texture. Through the right combination of electrospinning
and carbonization parameters, electrically conductive, mechanically tough
and low diameter fibers have been achieved by Yoon et al. [41]. Yoon
reported 431 mili-ampere-hour per gram batteries with vitreous carbon
nanofibers. Yoon states that the battery capacity highly depends on the
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pyrolysis process parameters as the morphology of the fiber develops pores
and hence different surface properties. CNFs supercapacitors have been
investigated as energy storage devices due to their high power bearability
and long lifecycles. [48–51] The studies’ authors posit that carbon nano-fibers
can be implemented as high-power supercapacitors due to their large surface
area and high electrical conductivity.

On the other hand, the low reactivity and unique morphology of CNFs make
them promising catalyst supports for metal nano-particles. [52–54] It is well
known that the morphology and nano-structure of the supporting material
are the main factors that prevent agglomeration of nano-particles. [55, 56]
Moreover, in bone tissue scaffold applications, collagen is the most popular
scaffold. However, collagen scaffolds bring xenogenicity issues which
leads to disease transfer or immunogenic reactions, besides its inhability to
preserve its shape once placed in the body. [57–64] Currently, carbon fibers
have been studied for bone tissue scaffold, however early attempts yield too
thick fibers for cell cultivation and tissue regeneration. [65, 66] As depicted in
previous research of CNFs for different applications, fiber morphology seems
to have a significant impact on their performance.

Typically, carbon nano-fibers (CNFs) are synthesized by a combination
of a patterning process and a pyrolysis process. Electrospun CNFs
have characteristics such as high surface area, thin morphology with
nano-scale diameters. The properties of electrospun fibers allow CNFs
to be implemented in nano-sensing devices, energy storage applications,
and tissue scafflods. [30, 67–72] Several patterning techniques have
been attempted to achieve the desired fiber morphology. In addition
to electrospinning, CNFs have been also fabricated by two-photon
polymerization (TPP) and photo-lithography techniques. [73] Cardenas et al.
implemented TPP and conventional UV lithography to study the fabrication
of CNFs within carbon micro-electromechanical systems (C-MEMS). The
fabrication of these kind of carbon devices has been previously reported
for techniques, such as electrospinning and photoresist patterning by
photolithography using SU-8. The typical fabrication process of C-MEMS
begins with a spin-coating of a photoresist unto a substrate (typically SU-8),
followed by patterning techniques with UV-exposure by photolithography.
Followed by the development of the desired features. Finally, the device is
carbonized in a pyrolysis furnace in an inert environment. [74]
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Near-field electrospinning can be regarded as a complementary technique,
by which polymeric nanofibers can be produced, since the structural
geometries created by photolithography are restricted by the diffraction
limit. [74, 75] SU-8 is designed to produce vitrous carbon structure via
photolithography, it is not design for electrospinning procedures as it lacks
the right viscosity and solution conductivity. Cardenas [11] and Flores [13]
have adapted the SU-8 formulation by the addition of tetrabutylammonium
tetrafluoroborate (TBF) and poly(ethylene oxide) (PEO). TBF was added
to increase the solution conductivity and PEO provides the required
viscosity. Both additives are required to yield smooth solution flow during
electrospinning. Figure 1.7 illustrates the ingredients that comprise the SU-8
formulation.

TABLE 1.1: Polymer Solutions from Previous Work [11, 13]

Sample Concentration wt%

SU-8 PEO TBF

1 99.25 0.25 0.50

2 99.00 0.50 0.50

3 98.75 0.75 0.50

4 98.50 1.00 0.50

The thinnest fibers fabricated by Cardenas [11] were achieved with sample
1 of Table 1.1, with the following characteristics: a) Fiber yield rate of
81%; b) Fiber diameter before pyrolysis of 4.966µm; c) Fiber diameter after
pyrolysis of 204nm; d) Average fiber length of 60.54.3µm; and e) Fiber
electrical resistance from 407KΩ to 1.727MΩ. Cardenas results have areas
of opportunity regarding the fiber yield rate and the high variability on
the fiber electrical resistance. These undesirable characteristics could be a
consequence of the addition of PEO to the solution. SU-8 based vitreous
carbon is obtained after a pyrolysis process in which the oxygen already
present in the SU-8 formulation allows the formation of close pores during
annealing. However, the further addition of oxygen content present in the
PEO molecules may be the cause of the low yield rate and high variability in
electric resistivity from sample to sample.



Chapter 1. Introduction 9

FIGURE 1.7: Components of SU-8 2000 Series Resists. Adapted from
[76]

1.2 Problem definition and motivation

The role of carbon nano-wires in nano-sensor devices play an important role,
as portable instruments require light-weight and small-sized components.
[30] Table 1.2 lists some advantages of nano-sensors that can be accomplished
by the fabrication of CNFs via near-field electrospinning and a thermal
treatment in an inert environment.

TABLE 1.2: Advantages of Nano-sensors. Adapted from [30]

Advantage Description

High sensitivity More accuracy, single molecule detection

Small size Light-weight, portability, low-power consumption, small
sample size, reduced sample preparation, and ease of use

Low response time High-frequency, real time analysis

Low cost Disposable devices

Sensors of small size require less time to output a stable signal as signals
require less time to travel shorter lengths, hence signal noise is also reduced.
Nano-sized sensors allow data collection and measurements to be performed
in real time at faster speeds. [30] The nano-scale also allows sensors to
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increase the active surface area, enabling the absorption and detection of
analytes at low concentrations. [30] Conventional sensors are bulky and
require higher amounts of power to operate. In gas sensing, neither a
large sensing surface or a large sample is required to get a readable output
signal from the sensor. Power consumption can be saved by reducing the
thermal mass of the sensor. [30] Furthermore, if several gases are to be
detected, an array of several gas sensors are to be assembled into an array.
A multi-gas sensor array can increase the size and cost, whereas an array
of gas nano-sensors (each functionalized to detect a specific analyte) can be
implemented into a single device. [30] Nano-sensors can be classified by
the kind of energy or physical phenomena that is detected, as depicted in
Table 1.3 for instance: biological, mechanical, thermal, chemical, and optical
sensors. [2, 30]

FIGURE 1.8: Diagram examples of carbon-based nano-sensors.
Adapted from [2]

Carbon nanowires have been fabricated with a photoresist by two-photon
polymerization techniques. However little is known about polymers that
can produce conductive carbon nano-wires after pyrolysis, as it is generally
believed that most polymers do not form significant amounts of graphitic
carbon when carbonized. In the past, photopolymerization processes have
been applied to the fabrication of nano-structures with the use of an epoxy
based photoresist. [77] Photopolymerization techniques deliver patterning
resolutions with nano-scale tolerances through two-photon lithography for
the production of highly detailed structures [78].
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TABLE 1.3: Classification of Nano-sensors. Adapted from [30]

Classification Phenomena / Energy

Mechanical Position, acceleration, stress, strain, force, pressure, mass,
density, viscosity, moment, torque

Acoustic Wave amplitude, phase, polarization, velocity

Optical Absorbance, reflectance, fluorescence, luminescence, refractive
index, light scattering

Thermal Temperature, flux, thermal conductivity, specific heat

Electrical Charge, current, potential, dielectric constant, conductivity

Magnetic Magnetic field, flux, permeability

Chemical Components (identities, concentrations, states)

Biological Biomass (identities, concentrations, states)

On the other hand, electrospinning has been classified as a process with
promising results at nano-structure fabrication [77], yet there is little research
regarding the implementation of electrospinning for the fabrication of carbon
nano-wires. Electrospinning has the potential to be a more straightforward
process for the design and fabrication of nano-structures, as it can achieve
mass scale manufacturing in a continuous, simple and reproducible manner.
Cardenas [11] showed that electrospinning can be implemented with
ease for carbon nano-wire fabrication. Mechano-electrospinning, a new
variant of electrospinning shows promising results in the production of
ordered carbon nano-wires. As stated in [11], mechano-electrospinning
is a recent technology invention and brings new challenges, such as the
reproducibility of carbon nano-wire production. Furthermore, the study
of a new fabrication process to produce carbon nano-wires that involves
mechano-electrospinning will enable spatial control of the fiber deposition.

Since electrospinning seems to be a better alternative for carbon nano-wire
fabrication processes; and for that purpose of its implementation, it is
required to develop polymer solutions that can be mechano-electrospun,
photopolymerized and pyrolyzed into conducting carbon nano-wires. Most
applications of carbon-based materials are not currently feasible due to
the lack of a continuous, simple and reproducible fabrication method with
inexpensive processes. With the newly designed polymer solution, it
would be possible to produce carbon nano-wires in large quantities, and
therefore more applications will become feasible. On the other hand, the
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new technique will overcome some limitations of other methods such as
lithography. For instance, patterns created by lithography processes cannot
be originated, only replicated, all constituent points of the pattern can only
be addressed at the same time, and the process requires the pattern to be
encoded into a mask. [79]

1.3 Hypothesis

The viscoelastic properties of polymer solutions along with synthesis
parameters can be controlled through rheological analyses to obtain low
voltage electrospun-able, photopolymerizable and graphitizable solutions
for the fabrication conductive of carbon nano-wires. The viscoelastic
properties of polymer solutions along with synthesis parameters can be
modified by replacing the PEO (Poly(ethylene) oxide) component within the
existing polymer solutions described in Flores [13] and Cardenas [11] work.
PEO is to be replaced as its only purpose is to allow the electrospinning
process to take place, but no benefit is obtained from it after pyrolysis.
The hypothesis is that oxygen-less polymers will yield carbon nano-wires
of better quality than those made from PEO blends, therefore the study is to
verify the eletrospinnability of high carbon content oxygen-less polymers in
solution.

1.4 Research Questions

• Is there any evidence of conductive carbon nano-wire fabrication
though electrospun-able and pyrozable polymer solutions?

• What are the process parameters to consider/control for the fabrication
processes of carbon nano-wires?

• What viscoelastic properties are to be controlled/tested to deliver an
electrospun-able and pyrozable polymer solution?

• What are the optimal fabrication parameters for the synthesis of carbon
nano-wires through near-field electromechanical spinning?

• What materials can be used to ease the electrospinning process and
favor the carbon nano-wire properties after pyrolysis?



Chapter 1. Introduction 13

1.5 Objectives

1.5.1 General objective

Formulate polymer solutions by selection of linear high-molecular weight
polymers and solvents and then match their viscoelastic properties to
those of the benchmark SU-8/PEO solution to select the polymer/solvent
combinations that have the greatest protential to replace or modify the
SU-8/PEO formulation for the fabrication of microscopic polymer fibers that
may be converted to conductive suspended carbon nano-wires.

1.5.2 Specific objectives

• Propose polymer solutions that can be electrospun by Near-Field
Electrospinning.

• Through rheological analyses, determine if polymer solutions can
have comparative viscoelastic properties to those of the SU-8/PEO
benchmark.

• Learn how the diameter of the electrospun polymer fiber can be
controlled by appropriate tuning of the NFES parameters and solution
properties.

• Propose alternatives to the SU-8/PEO benchmark formulation for
the production of microscopic polymer fibers with potential for the
fabrication of carbon nano-wires.

1.6 Dissertation Outline

The dissertation is organized as follows. Chapter 1, an introduction
to carbon-based nanomaterials is presented. The applications and
characteristics of carbon structures are listed with an emphasis on carbon
nano-wires. Chapter 2 is comprised by a review of the electrospinning
process. The process parameters such as process variables, ambient
parameters and solution properties and their influence in fibers formation
are studied. Data collection of near-field electrospinning publications
was done to execute an adimensional analysis to describe and predict
the fiber diameterfrom the process parameters. Chapter 3 focuses on
the selection of candidate polymer-solvent combinations to replace the
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PEO-SU-8 formulation. Rheological tests (frequency sweeps) were done
to study the visoelasticity of polymer solutions. Chapter 3 estimates the
optimal polymer concentrations to fabricate continuous fibers through NFES.
Chapter 4 presents the fabrication of polymeric fibers. The near-filed process
parameters, materials and methods are discussed, where a replicate of
experiments of PEO solutions from literature is used as an experimental
control. The last chapter shows the results of the fiber characterization of
different sets of polymer solutions, though an optical microscope. Finally,
the conclusions of this work and the considerations to future works are
presented.
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Chapter 2

Near-Field Electrospinning as an
Affordable Way to Gain Spatial Control

2.1 Review of Polymer Solutions for NFES with Spatial
Control

Near-field electrospinning (NFES) is identified to be a technique able to
fabricate polymer nano and micro fibers with accurate placement. [80] In
the past years (2006-2020) [11–13, 81–159], several polymer solutions have
been successfully electrospun into fibers through several variants of the
conventional NFES process. Each NFES variant intended to tailor the process
parameters in order to improve the fibers’ properties.

Near-field electrospinning (NFES) is known as a versatile nano-fabrication
technique, suitable for several applications such as tissue engineering,
chemical sensing, filtration, energy storage, besides others (see Figure 2.1).
Fast developments in electrospinning has been observed in recent years.
However, this process is limited by the electric field wiping instability effects
during polymer deposition. This leads to a major challenge: how to surpass
this limitation of planar two-dimensional prints. The current trend in this
area lies on the research of new materials, techniques to increase precision
patterning in NFES systems.

Even though electrospinning is an old invention [160], it is currently
a trending topic among researchers [161–163]. One of the reasons
electrospinning is to be studied is its potential to fabricate polymer nano
fibers from a variety of polymers. The technique allows the production of
thin continuous fibers with ease, with micro and sub-micrometer diameters,
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FIGURE 2.1: Syntheses and Applications of Nanofibers. Adapted
from [1]

which is something difficult to achieve by other techniques. Furthermore,
the basic setup can be modified with ease to fabricate different fibers with
diversified functionalities from different materials. The produced fibers
can be aligned or unaligned. Besides, the electrospinning equipment is
inexpensive and of small size, compared to the equipment of standard
spinning techniques [164]. On the other hand, the understanding of the
electrospinning process has improved in the last years.

Current literature dictates the typical spinning setup is comprised by
three main components: a polymer reservoir, a fiber collector, and some
way to dispense the fibers onto the collector. The spinning process is
an electro-hydrodynamic (EHD) technique that yields continuous polymer
fibers. Other EHD techniques are spraying and atomization which produce
polymer droplets and polymer particles respectively, seeFigure 2.2.

FIGURE 2.2: Electrohydro-dynamic techniques
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2.1.1 Stretching forces

Electric Field

Electrospinning (electrostatic fiber spinning) is a fiber fabrication approach
that implements an electric field to produce fibers by applying an electrical
potential difference between the syringe needle and the collector. With the
influence of high electric fields, the fibers are prone to brake into separate
layers due to the whipping instabilities as the jet travels to the substrate. The
instability can be mitigated by adding additional ring electrodes between the
spinneret and the grounded collector. [165]

The typical electrospinning setup applies an electrostatic charge to the
polymer fluid at the tip of the needle nozzle, which results in the formation
of the Taylor cone [166], from which a single polymer jet is ejected to the
grounded collector. From the Taylor cone, the supplied polymer jet (typically
a polymer solution) accelerates and reduces in diameter. The fiber finally
develops upon complete solvent evaporation. Electrospun fibers are prone to
splitting with the increase in acceleration due to high applied voltages, where
multiple fibers are produced in a process known as electrospraying [167].

The electrospinning process starts with charging a polymer solution droplet.
When a polymer solution is administrated with a syringe pump, solution
droplets will fall under the influence of gravity. The solution dripping
stops when the electric field is strong enough to break the solution’s surface
tension, causing the droplet to change shape forming a jet [168].

Shin et al. [169] reported that the growth of the whipping instability is one
important element within the electrospinning technique. As detailed in
Shin’s work, weak electric fields produce a single uniformly thinning jet,
and at strong electric fields the jet becomes unstable after traveling a short
distance.

High voltage power supply: DC & AC - Direct current (DC) is typically used
in electrospinning with the electrons flowing in one direction. Alternate
current (AC) implementations are also studied as the AC creates a change
in the direction of the current flow. Kessick et al. [170] demonstrated the
implementation of AC power supplies in the production of polymer fibers.

The AC electrospinning setup is similar to that for the DC variant. AC
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electrospinning apparatus do not require a grounded collector as the current
alternates. In AC, the produced fibers are prone to carry an electric charge,
while those generated shortly after have an opposite charge. The difference
in charges lead the fibers to discharge on each other, creating an aerogel
plume of fibers [171]. The optimal AC frequency depends on the materials
used and is typically within 50Hz and 1kHz [172].

The AC technique has been studied for drug loaded related applications.
Balogh et al. [173] compared fibers fabricated by DC and AC spinning
techniques. Their work reports that AC and DC electrospinning can
produce fibers with all three polymers, where the AC process allowed
the implementation of faster flow rates than in the DC setup. The DC
electrospinning technique generated fibers with a maximum flow rate of 5
ml/h; on the other hand, the AC setup allowed an increase in flow rate up to
40 ml/h.

Centrifugal force

The spinning processes require the implementation of a force to break the
polymer source into a polymer jet. Centrifugal spinning intends to produce
fibers by the use of a rotating polymer source. The centrifugal force generated
from typical rotatory speeds above 2000 rpm, results in fiber formation. [174,
175].

FIGURE 2.3: Typical setup used in pressurized gyration processes

The centrifugal force technique has been applied to polymer solutions and
melts. This approach is used in applications were the precise deposition
of the fibers is not relevant and production rate is to be maximized [176].
Efforts in centrifugal spinning are focused on drug delivery applications.
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Zander [177] fabricated polycaprolactone (PCL) fibers using the solution and
melt variants of the centrifugal approach. Zander’s fibers were produced
with rotatory speed between 3000 and 18000 rpm obtaining 10µm diameters.

On the other hand, PCL and PVP fibers were generated by Amalorpava et
al. [178]. Amalorpava achieved sub micron/size fiber diameters for drug
release purposes and bacteria growth inhibition properties. Literature [179]
has shown that centrifugal approach has a simple setup that promises a large
scale fabrication of fibers.

In some cases the centrifugal force implementations and pressurized
gyration can be combined with an electric field. The implementation of
two stretching forces (centrifugal and electrical forces), can help solvent
evaporation [180]. Centrifugal electrospinning implements the same setup
as the standard centrifugal spinning with the addition of a high voltage
power supply between the rotating dispensing nozzle and the collector. The
combined method has been proven to yield parallel fibers [181–184] at a
higher rate [181, 182] than the standard electrospinning approach.

Blowing forces

Nano-fibers can be produced with the implementation of pressurized gas
with a polymer solution. The setup used for blow spinning is similar to
the one used in coaxial electrospinning, where the polymer precursor is
dispensed at a controlled rate. Unlike traditional electrospinning, in the
solution blow spinning setup the needle nozzle applies pressurized gas to
the polymer solution through an outer spinneret [185], see Figure 2.4.

FIGURE 2.4: Dispensing nozzle used for solution blow spinning or
melt blowing. [185]

Poly(lactic acid) (PLA) fibers have been produced by solution blow
spinning. Oliveira et al. [186] fabricated fibers from 6wt% PLA solutions
with progesterone for live stock reproductive cycle regulation applications.
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On the other hand, Souza et al. [185] conducted a study to compare
the standard electrospinning and the solution blow spinning techniques.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) were fabricated by both
methods. The fibers produced by traditional electrospinning had thicker
diameters and the size uniformity was higher in the fibers produced by
solution blow spinning. The experimental setup requires a coaxial needle
nozzle with a pressurized gas flow along with a potential difference between
the dispensing needle and the grounded collector.

Mechanical force

FIGURE 2.5: Typical mechanical fiber drawing process

Mechanical drawing comprises the simple technique to produce fibers by
stretching the polymer solution with a glass pipette. [187] Nevertheless,
the drawing technique is not scalable or with practical complications. [188]
Touch-spinning methods have been developed to introduce a scalable
technique for the production of nano fibers where the fiber is created by
stretching the polymer precursor with a moving collector, as depicted in
Figure 2.5. Touch-spinning is another mechanical technique that comprises a
moving stage with an embedded glass rod (Figure 2.6), where a polymer
solution is supplied from a syringe needle such that the tip of the glass
rod makes contact with the polymer solution as it rotates, creating fibers.
The rotation stretches the fiber, causing the fiber to increase in length and
decrease in diameter. The increase in length causes the fiber surface are
to increase and therefore making the polymer solution solvent to volatilize,
ending with a dry fiber within the collector.

The touch spinning technique implies that the fiber diameter can be
controlled by the moving collector’s speed and the polymer solution
concentration. The main difference lies on the fact that the touch spinning
method implements mechanical control to manipulate and stretch the fibers
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FIGURE 2.6: Touch-spinning technique.

during the fabrication process, guiding the fiber in the collector enabling
better control over fiber alignment. [189]

Microfluidic forces

The microfluidic spinning technique manipulates and controls the polymer
solution in networks of micrometer channels. The channel network are
typically embedded in a microfluidic chip, where the solution deposition rate
is controlled by active components (pumps and valves) with a computer.
Cheng et al. [190] compared and combined the microfluidic spinning and
electrospinning techniques. Heterogeneous materials and cell patterning
within a single microfiber can be designed by the integration of microfluidic
channels. Therefore, microfluidic spinning is more suitable for cell
encapsulation and tissue regeneration and tissue engineering [190].

On the other hand, Kang et al. [191] managed to fabricate micro fibers
by imitating the "silk spinning" process of spiders. Kang’s micro fibers
properties were modified using a microfluidic system with a programmable
flow control (See Figure 2.7). The current microfluidic spinning approach is
not scalable to a large fiber production, however it enables the fabrication of
high-complex fibers that are not easily achieved by other methods.

Microfluidic techniques offer the possibility to embed several components
into a single fiber, where each component can be released at different parts
of the fiber.

2.1.2 Dispensing nozzle

Unlike traditional electrospinning, coaxial electrospinning
(co-electrospinning) requires de implementation of a dual needle nozzle,
where one needle is nested concentrically inside another needle, see
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FIGURE 2.7: Microfluidic device used by Kang et al. [191]

Figure 2.8 [192, 193]. The purpose of the co-electrospinning setup is to
produce core/shell fibers, unlike mono axial electrospinning that yields
monolithic fibers. Sun et al. [194]. Addressed electrospinning setups, where
both the core and shell are comprised by PEO (poly(ethylene oxide)) and
for a PEO shell with a poly(dode-cylthiophene) core. Sun et al. state that
co-electrospinning has the potential to extend the range of materials that can
be used for electrospinning. The shell solution can be modified to make the
core solution spunable. It was also discovered that non-spunable solutions
can by implemented as shell solutions in conjunction with a spunable core
solution. [195]

FIGURE 2.8: Needle configurations in coaxial electrospinning. (a) the
outer needle encasing the inner; (b) the inner needle protruding from

the outer; (c) both needles inline with each other;

Some advantages of co-electrospinning setups are the breaking of the
polymer drop surface tension, initiating the jet burst from the spinneret
nozzle. On the other hand, as the morphology and shape of the fibers depend
on the polymer solution properties, the use of a co-axial nozzle allows the
modification of the material properties by producing bubbles, scaffolds and
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particles. [196, 197]. As in conventional NFES, in co-electrospinning, the
needle tip is connected to a high voltage power supply with a grounded
collector.

2.1.3 Polymer Reservoir (Polymer Melt & Polymer Solution)

Electrospinning processes can be classified based on the type of polymer
reservoir. As Brown et al. [198] discussed, the polymer melt is equivalent to
the polymer solution electrospinning. The use of a polymer melt increases
the complexity of the process, because the nozzle syringe and spinneret
required to be heated to maintain the polymer in a liquid state. The fibers
produced in melt spinning are typically found to have larger diameters than
those from the polymer solutions due to the higher viscosity of a polymer
melt. The apparatus used by Brown et al. [198] is depicted in Figure 2.9.

FIGURE 2.9: Typical Melt Electrospinning Setup

Despite the added complexity and thicker diameters, the melt
electrospinning technique is safer to be performed on larger scales as it
does not have the need to handle volatile solvents. Therefore, polymer
melt reservoirs get rid of any solvent contamination. The first report of a
melt electrospun drug delivery system came from Nagy et al. [199], who
prepared fibers by melt electrospinning of Eudragit EPO with carvedilol.
The drug and polymer were melted and mixed to form a homogeneous
solid mixture prior to spinning. The melt-spun fibers reached diameters of
5–30 µm, compared to 300–1000 nm diameters produced from solution-spun
fibers [199].
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Balogh et al.’s work has built on this idea by blending plasticizes with the
polymer Eudragit EPO and carvedilol active ingredient. [200] The plasticizes
Triacetin, Tween 80 and Polyethylene Glycol were investigated in order to
reduce the melting point of the polymer-drug mixture. A lower temperature
is desirable to minimize the degradation of the drug.

Lian and Meng [201] performed a comparison of poly(ε-caprolactone) (PCL)
fibers fabricated by the melt and solution electrospinning techniques. They
arrived to the conclusion that melt spinning is preferable when the polymer
presents a low solubility. On the other hand, the melt fibers were produced
in a slower release rate. Gernot et al. [202] demonstrated that submicron-size
fibers are possible through melt electrospinning. In their effort, they achieved
a precise deposition of PCL fibers with diameters of 817 ± 165nm.

In literature, melt electrospinning has less evidence than the solution
approach. However, melt electrospinning promises to be as flexible as its
solution counterpart in handling multiple polymers, as reported in McCann’s
work [203]. Currently, the melt electrospinning setup is harder to analyze
or study and the lack of research on this technique explains its unexplored
potential.

2.1.4 Polymer Solution

In electrospinning, it is typically agreed that the diameter of the fibers
increases as the polymer concentration increases due to greater viscosity,
which resists the forces pulling on the solution. In near field electrospinning,
similar observations have been reported where concentration increases, fiber
diameter appears to increase proportionally [204, 205], seeFigure 2.20.

TABLE 2.1: Approximation process to estimate the critical polymer
concentration.

Observation Concentration Adjustment
Dripping, no stream Increase
Splitting small droplets Increase slightly
Steady stream No concentration adjustment
Splitting large globs Decrease slightly
Nozzle clogging Decrease
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Polymers

The polymer selection is typically guided by the intended final application
of the fibers produced therefrom. For example, a fast dissolving hydrophilic
polymer such as poly(ethylene oxide) (PEO) is used for fast drug delivery
systems. Otherwise, slow dissolving polymers such as poly(ε-caprolactone)
(PCL) or poly(lactic-co-glycolic acid) (PLGA) are implemented. [206]

The polymer molecular weight along with the polymer concentration and
solvent selection have a direct effect on the solution viscosity, conductivity
and surface tension, hence the solution behavior in the electrospinning
process. The spinnable viscosity range varies with the polymer and solvent.

Solutions with low viscosity result in insufficient polymer chain
entanglements to produce fibers. [206] If the solution is too viscous,
then the surface tension cannot easily be overcome by the electric field. In
both cases, the result can be droplets or particles forming rather than fibers
as described in Table 2.1.

Solvents

The solvent used must be capable of dissolving the polymer of interest at
an appropriate concentration to form fibers, and must posses a suitable
volatility. A low-volatility solvent like water may fail to evaporate
completely over the distance between the spinneret and the collector. Hence,
when the fibers form, they will contain residual water owing to this
incomplete evaporation. The solvent will subsequently evaporate from the
fibers upon storage, resulting in ribbon-like (flattened) fibers, wrinkles on
the fiber surface or fused fibers. On the other hand, a high-volatility solvent
may evaporate very quickly, leading to larger fiber diameters (less time for
elongation before solidification) and clogging of the spinneret (due to drying
of the liquid at the spinneret before jetting, or drying of the Taylor cone
during jetting). Solvents commonly used for electrospinning include ethanol,
chloroform, trichloroethane and hexafluoroisopropanol [162, 207, 208].

Mixtures of miscible solvents can be used to ensure that sufficient polymer
can be dissolved to give a solution of appropriate viscosity and volatility
with suitable dielectric constant range to allow fiber formation. However,
care must be taken because using a mixture of solvents with very different
volatilities can result in porous fiber structures, as reported by Katsogiannis
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et al. for organic solvent mixtures with dimethyl sulfoxide (DMSO). [209]
DMSO evaporates much more slowly than the organic solvents used, which
results in its incorporation into the fibers. The DMSO will eventually
evaporate, yielding porous fibers.

It is also important to take into account the surface tension of the solution.
Solvents with very high surface tensions (e.g. water) can result in instability
arising during the spinning process, and a broad range of fiber diameters in
the products. If necessary, a surfactant can be added to reduce the surface
tension, but this will be incorporated into the fibers produced.

FIGURE 2.10: Different Electrospinning Methods in Terms of Spatial
Control, Fiber Throughput and Resolution. Adapted from [210]

As depicted in Figure 2.10, solution electrospinning yields fibers with
higher resolution than melt electrospinning techniques, and near-field
electrospinning offers greater spatial control of the deposition of fibers than
the far-field technique. Moreover, solution electrospinning often involves the
use of toxic solvents, whereas melt electrospinning is a solvent free process
but with the additional complexity as a heater needs to be installed. [210]

2.2 Properties that Improve Accuracy of Nano-Fiber
Deposition

Near-field electrospinning is considered to be an outstanding technique to
fabricate polymer fibers with spatial control and it has evolved through
several modifications to improve the precision and accuracy of the fiber
deposition. This work is intended to collect the NFES variants of
electrospunable polymer solutions with spatial control in recent research.



Chapter 2. Near-Field Electrospinning as an Affordable Way to Gain Spatial
Control

27

Appendix E is a collection of the relevant NFES process parameters and
achieved fiber morphology.

Some differences have been discovered between Low-Voltage Near-Field
Electrospinning (LV-NFES) and conventional NFES. Low voltage near field
electrospinning produces thinner fibers with lower voltages; as shown in
Figure 2.23. Moreover, when implementing a moving stage, the fibers are
affected by the mechanical stretching. Bisht et al. and Chang et al. [211,
212] reported that thinner diameters are obtained with the increase of the x-y
stage velocity, and larger diameters by decreasing the stage velocity.

Bisht and Chang’s work [211, 212] reports a controlled technique to fabricate
polymeric nano fibers in a continuous manner, using a low-voltage setup.
Their purpose is to find a workaround to the drawbacks of traditional
NFES by using a superelastic polymer precursor, which allows continuous
patterning without breaking. In low voltage near-field electrospinning (LV
NFES), a visco-elastic polymer is used to allow continuous spinning at about
200V.

Kim et al. [212] experimented with a NFES variation where the fiber
deposition is guided by conductive rails, see Figure 2.11. As stated by the
authors, the induced electric field is enhanced by the conductive pattern,
which allows the fibers to follow the desired deposition path. As the
fibers are prone to follow the conductive pattern, additional fibers can be
stacked on top of the previously deposited fibers. The stacking process was
successfully achieved in high electric field conditions at: 750µm substrate
to collector distance, and a 600 µm needle to rail (offset) distance, see
Figure 2.11.

Gupta et al. [213] introduced a new technique to fabricate polymer scaffolds
for tissue engineering applications and organ development. As described by
Gupta et al. [213], the fiber deposition equipment is comprised by a stainless
steel needle with a internal diameter of 750 µm , connected to a high voltage
power supply of up to 30 kV with a deposition rate of about ≥ 1µLmin−1.
The setup was embedded to a motorized collector capable of controlled
programmable motions The proposed technique was able to produce fibers
of 150µm in diameter with pre-designed patterns.

Wang, et al., Huang, et al., and Chen, et al. [214–216] experimented with
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FIGURE 2.11: NFES setup for controlled fiber deposition on
pre-patterned conductive electrodes. Adapted from [212]

several multi-nozzle near-field electrospinning of aligned nano fibers. The
multi-nozzle NFES apparatus is similar to the one used in conventional
NFES with some modifications to the needle, see Figure 2.12. The authors
implemented similar NFES setups where the installed linear array of nozzles
is supplied with a constant flow rate of solution.

FIGURE 2.12: The geometry distribution of linear array multi-nozzle
system. Adapted from [215].

The authors came to the conclusion that the distance between the deposited
fibers increased as the needle-to-collector distance increased, due to the
influence of the applied voltage dissipates.
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Huang, et al. [217] studied the mechanoelectrospinning (MES) technique
for the fabrication of nano-fibers. The MES technique tries to improve
deposition accuracy by the introduction of a mechanical drawing force.
The MES is predominantly controlled by the collector stage velocity, the
nozzle-to-collector distance, and the applied voltage. The authors believe
that MES can compete as a low-cost, high precision fabrication of electronics
and enable the direct writing of structures for nano-scale lithography.
Figure 2.13 shows the polymer jet behavior when a mechanical force is
implemented within the NFES process.

FIGURE 2.13: Schematic diagram of leap direct-writing. Adapted
from [217]

Micro and nano-fibers have been written using AC pulse-modulated
electrospinning by Bu et al. with polyethylene terephthalate (PET) as
substrate [218]. The AC electrical field influences the electrospinning jet.
The alternate current tends to decrease the repulsive electrical force allowing
a stable straight jet between the dispensing nozzle and the insulating PET
substrate. Bu et al. varied the stage velocity; faster stage velocities enable the
deposition of straighter fibers [218].

A mechano-electrospinning technique was presented by Nagle et al. [219].
With the implementation of a mechanical drawing force, a higher resolution
nano fibrous pattern can be produced with lower voltages as the Taylor
cone becomes more stable. Nagle et al. studied PEO fibers at different
nozzle-to-collector distances. Evidence suggests that better patterning
accuracy increases with increasing nozzle to collector distance as the solution
is effectively dried [219]. Near field mechano-electrospinning enables the
collection of non-woven fibers over large areas.

To spin nano-fibers at close distances, the initial diameter of the jet is required
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FIGURE 2.14: Near-Field ES Process Parameters

to be as small as possible since stretching of the thread is limited. Kameoka
et al. [220] demonstrated that a small initial spinning radius can be achieved
using an atomic force microscope tip with a small polymer solution drop at
the tip.

Near-field electrospinning, has been shown to enable the fabrication of
nano-fibers and nano-fibrous patterns [221]. Nevertheless, having a small
polymer solution drop at the nozzle tip limits the length of the fibers that can
be fabricated in a continuous manner. Using a spinneret with a reservoir
(e.g. syringe) of solution generally produces fibers with diameter of a
few micrometers [213, 222], since it creates a limit to which the nozzle
inner diameter can be reduced to allow the solution to flow through. The
implementation of thicker needle nozzles translates into an increase in
diameter of the deposited polymer fibers.

Coppola et al. [223] have showed a NFES variant that allows polymer
nano-fibers to be deposited directly from a polymer drop, averting the issue
of nozzle clogging. The fibers are also prone to soaking after deposition
thus giving the fibers a semi-circular cross-section as shown by Xue and
coworkers [222].

2.2.1 Nozzle spinneret

The thinnest nozzles in literature so far are about 50 nm in diameter,
by Chang et al. [204] who used a 100 µm inner diameter needle tip
to electrospin poly(ethylene oxide) (PEO). Camillo et al. [224] used a
micro-diameter-tip Tungsten spinneret in a 26G needle to electrospin
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co-polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
(MEH-PPV) with poly(ethylene oxide) (PEO). The nozzle most commonly
comprises a simple narrow-bore, blunt-end metal needle. The diameter
of the needle can vary, but most commonly researches work with internal
diameters below 1 mm . This translates to needles of gauge 18–22. In general,
this simple spinneret design can be used to achieve successful spinning. A
blunt-end rather than a tapered-end for the needle exit is important as the
size distribution of the products increase with an increase in needle tip angle.
However, it should be noted that there will be some interactions between the
solvent and polymer molecules in the solution and the metal surface of the
spinneret. There will exist some attractive forces between the polar groups in
the polymer and the electro-positive metal surface, which can act counter to
the drawing force of the electric field and can pull the polymer solution back
into the spinneret. It has been found that coating the spinneret exterior in a
non-conductive and non-stick polymer such as Teflon or epoxy coating can
reduce these interactions. [225, 226] As a result, the electrical energy can be
more efficiently used to elongate and narrow the polymer jet, and narrower
fibers can be produced. In addition, strong attractive forces between the
polymer jet and the metal spinneret can result in fibers becoming attracted
to the needle, leading to lower yields and potentially to blocking of the exit
orifice.

2.2.2 Applied Voltage

In recent literature, near field electrospinning has been studied to reduce the
fiber diameter and to improve the control over fiber deposition. Madou et
al. [211] and Chang et al. [204] came to the conclusion that higher voltages
yield thicker micro-fibers with a loss in jet stability. This relationship
between the applied voltage and resulting fiber diameter is influenced by
other variables such as nozzle-to-substrate distance and solution deposition
rate. For instance, if a high voltage is applied at a low deposition
rate then electrospraying is achieved, meaning the formation of several
non-continuous fibers. The applied voltage shall be sufficient to break the
surface tension and initiate the jet, but low enough to avoid multiple jets at
the nozzle tip.

Madou et al. [211] achieved the fabrication of thinner fibers with spatial
control by reducing the applied voltage to 200-600 V at a nozzle-to-substrate
distance of 0.5-1 mm. The low voltage setting alone does not create
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enough charge to break the polymer solution surface tension to initiate the
electrospinning process. Madou et al. [211] and Chang et al. [204] initiated
the electrospun fibers by mechanically pulling the polymer solution at the
nozzle tip using a micro-probe tip. Chang and coworkers reduced the
applied voltage from 1.5 kV to 600 V with a nozzle-to-substrate distance of
500 µm to yield a fiber diameter between 3 µm and 50 nm . With an applied
voltage of 200 V and a nozzle-to-substrate distance of 1 mm.

In near-field electrospinning, the applied voltage has an impact on the
morphology of the fiber. For instance, a voltage higher or lower to the
optimum voltage will translate into an increase in fiber diameter. Song et
al. [227] demonstrated that an increase in voltage from 400 to 500 V can
reduce the fiber diameter from 160 to about 60 nmwith a nozzle-to-substrate
distance of 20 µm. A workaround to break the polymer solution surface
tension is to initialize the NFES process with a higher voltage and then
lower the voltage once the jet is created. Huang et al. [217] implemented
the previous and obtained ordered fibers with a distance between adjacent
fibers of 50 µm.

2.2.3 Nozzle-to-substrate distance

FIGURE 2.15: a) Typical Far-field Electrospinning (FFES) Setup. b)
Typical Near-field Electrospinning (NFES) Setup.

Figure 2.15.a, depicts the typical setup for the conventional far-field
electrospinning (FFES). As stated in previous sections, the precursor polymer
droplet becomes charged with the employment of an electric field between
the polymer solution and the collector [228]. When the polymer solution
surface tension is overcome by the electric field potential difference, a jet is
formed, starting the electrospinning process. The electrospinning process
can be broken down into two steps: i) first the jet travels in a straight line,
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and ii) the jet begins to curl due to bending and whipping instabilities [170,
229]. The fiber spatial control in far-field electrospinning is limited due to the
instabilities, inhibiting the precise deposition of fibers.

With the goal of achieving controlled fiber deposition, Sun et al. [221]
reported an electrospinning variation known as near-field electrospinning
(NFES),Figure 2.15.b, describes the near-field electrospinning setup, where
the distance between the dispensing nozzle and the collector is reduced
to write fibers while the jet travels in a straight line. Moreover, some
mechanical influence is required to deposit fibers with higher precision. The
mechanical force is introduced by moving collector. If the polymer solution
jet speed is faster than the speed of the moving collector, the written fiber
will curl; on the other hand, if the collector moves faster than the polymer
jet, the fiber will gradually diminish [222, 230]. Currently, due to the lack of
theoretical models, the near-field electrospinning process parameters (such
as the collector speed) are typically tuned by experience and experimentation
only. Adimensional analyses have been done [81, 210, 231–238] and can be
used as a guide to design and prepare electrospinning setups, however these
analyses are recently developed and hence their little appearance in literature
publications.

The main difference between NFES and FFES is the distance between
the needle and the collector which is higher in FFES (about 10 cm)
compared to NFES, which ranges in the mm scale. The short distance
allows the production of well-aligned fibers within particular designs. In
NFES, the fiber morphology can be altered by the control of the distance
between the nozzle and the substrate (collector). With the decrease of the
nozzle-to-substrate distance, the electric field strength increases; however
it can cause incomplete solvent volatilisation and possible short circuits
between the collector and the nozzle tip.

An optimal nozzle-to-substrate distance shall be defined to ensure the
fabrication of dry continuous fibers. If the solvent is not well evaporated,
the produced fibers are prone to defects; on the other hand, if solidification
happens too fast, the solids can block the spinneret which can prevent a
continuous fiber yield. Furthermore, the polymer jet will discharge itself as
soon as possible, therefore long distances can result in low yields.
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2.2.4 Substrate

Due to the close distance between the grounded substrate and the charged
spinneret in NFES, the set up is prone to electrical shorts. In NFES, when a
short circuit takes place, the electrospinning process is interrupted resulting
in the fabrication of discontinuous fibers. Two workarounds to avoid
electrical shorts is to lower the applied voltage and to use less conductive
substrates [239, 240].

Liu et al. [239] discovered that the fiber alignment is improved by using a
glass-cooper foil substrate, however the alignment of the fibers is spoiled
after prolonged depositions due to residual charges. Additionally, the effect
of residual charges is amplified when the used collector substrate contains a
conductive layer and a non-conductive layer [239].

In contrast, Choi et al. [240] implemented a hydrophilic substrate to deposit
the fibers with plasma treatment to increase the conductivity of selected
areas. NFES was carried out with precise deposition as the fibers were placed
as per the desired design within the hydrophilic substrate.

2.3 Data collection of NFES fiber morphology and process
parameters

The near-field electrospinning process parameters and the morphological
data (diameters and images) reported in papers reviewed was collected and
classified into a single database with the purpose of analyzing and finding
correlations between the process parameters and the obtained fiber diameter
after a NFES process. The analysis was based from data ranging from the first
reported NFES apparatus built in 2003 by J. Kameoka et al. [116] to recent
studies conducted in 2020. [11–13, 82–159] The data was divided in three
groups depending on the format of the available information, as follows:

1. Case 1 : data is collected as-is from literature. This procedure was
implemented when the data is listed within tables and/or as text
format.

2. Case 2 : data is only presented in a figure as plots.

3. Case 3 : data is not available in text format or plots, however Scanning
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Electron Microscopy (SEM) images are reported from the obtained
fibers.

2.3.1 Image Analysis - Data extraction from plots

Most numerical data of NFES process parameters and fiber diameters
is available only in the form of plots. The reported figures provide a
visual relationship between the variables of interest, however recovering
the numerical values of the data is a tedious process prone to errors.
To avoid mistakes and accelerate the acquicition of data from the plots,
WebPlotDigitizer was used. WebPlotDigitizer is a HTML5 tool that facilitates
accurate data extraction with ease of use. Figure 2.16 is a screenshot of the
software in use.

FIGURE 2.16: Open session of WebPlotDigitizer github.com

2.3.2 Image Analysis - Data extraction from Scanning Electron
Microscopy Images

Scanning Electron Microscopy Images (SEM) images contain information in
a two-dimensional grid that can be extracted using point and line counting
techniques, however this can be a laborious process for a large number
of images. To decrease the complex and lavorious aspect of the counting
process, a Python script was developed to measure fiber diameters from the
available SEM images. As shown in Figure 2.17, the image analysis algorithm
follows three main steps: pre-processing, segmentation, object detection, and
data processing.

https://github.com/ankitrohatgi/WebPlotDigitizer
https://github.com/ankitrohatgi/WebPlotDigitizer
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FIGURE 2.17: Image Analysis Algorithm to Measure Fiber Diameters
from SEM images. Ilustration uses Yousefi et al.’s work as an

example. [158]

The adopted image analysis was implemented with the Python package
OpenCV (Appendix F). First a segmentation procedure is executed over
an input image to delimit the objects to be measured (fiber sections and
scale-bars). The segmentation step is the only step needed to be done
manually in a image processing software, in this case Inkscape was used.
Next, the segmented image is passed into the Pyhton script, which will
convert its input image into a binary image. A binary image is a black and
white image (with no gray scale) that facilitates the detection of the object
edges as the color intensity change between the objects and the background is
well-defined. Once the binary image is computed, the Canny edge detection
algorithm is executed. Once the edges are well-defined, the image is dilated
to make the edges more visible. The final step before measurement, the
OpenCV findContours function is called to store the objects in memory. The
first object to be measured is the scale bar as this is needed as a reference
to convert the pixel counts to a metric unit. Finally, the objects are located
within the image with four edge points, and the reference object is used to
compute the metric length as the ratio of counted pixels between two edge
points and the scale bar dimension in meters.
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Measurements were validaded with Camillo’s, Gupta’s, Jiang’s, Min’s, Sun’s,
Wang’s, and Xue’s [85, 91, 98, 120, 127, 144, 156] results as those authors
reported both, a SEM image and the measured fiber diameter. For instance,
Figure 2.18 shows in black the reported diameters by Min and in white the
diameters measured by the Python script of two samples. The measurement
error of the developed script is about 3.2% in average. It is considerable to
mention that the reported measurement error is mainly contributed to the
fact that most fibers are not of the same diameter along the fiber length. In
most cases, measurements at the end of the fibers are thicker than the ones
measured in the center.

FIGURE 2.18: Validation of the developed image analysis
meassurement tool. SEM images of Min’s work are used as an

example. [156]

2.4 Discussion & NFES Challenges

Helix electrodynamic printing (HE-printing) was presented by Duan et
al. [241] with the intention of depositing aligned fibers. The authors
fabricated a stretchable piezoelectric device using micro- and nano-fibers
to demonstrate the possible applications of HE-printing for electronics
manufacturing. Duan et al. concluded that the fiber morphology is
mainly affected by: the stage velocity, the applied voltage, and the
nozzle-to-collector distance.

Figures 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25 are scatter plots that depict the
relationship of various process parameters (polymer concentration Cpolymer,
nozzle inner diameter Dnozzle, NFES working distance L, NFES applied
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FIGURE 2.19: Correlation matrix comprised by the NFES data from
recent literature. [11–13, 82–159] Fiber diameter is highly correlated
with polymer solution concentration and slightly correlated with

solution flow rate, zero-shear viscosity and nozzle diameter.

voltage Φ0, flow rate Q, and stage velocity vstage) with the final fiber diameter
D f iber. In a generalized summary, these figures suggest that thin fibers are
produced with the implementation of low polymer concentrations, small
nozzle diameters, short working distances, low applied voltages, low flow
rates, and high stage xy velocities. Moreover, based on the degree of
dispersion of the data points, polymer concentration Cpolymer is the most
reliable process parameter to describe and predict the behavior of the fiber
diameter, as most of the data can be grouped in a single cluster. Unlike
Cpolymer in Figure 2.20, various data clusters can be identified within the other
scatter plots. For instance, Song’s results [153] deviate from the main cluster
in Figures 2.21, 2.22, 2.23, and 2.25, this may be because Song et al. used
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Au/Pd coated glass capillary nozzles instead of the traditional stainless steel
precision tips. However in the Cpolymer vs. D f iber figure, Song’s results fit
within the main cluster.

FIGURE 2.20: Scatter Plot of Polymer Concentrations and Fiber
Diameters from Literature Experimental Results. [11–13, 82–159]

The trend of Figure 2.21 shows that thicker nozzle diameters yield thicker
fibers. However, the final fiber diameter can be reduced without changing
the nozzle diameter. For instance Chang et al. [138] achieved the thinnest
fibers of about 50 nm in diameter even though Chang implemented nozzle
needles of similar diameter as Shin, Min and Xu by the implementation
of different settings on the other process parameters. For instance: the
glass glass capillary nozzles by Song [153], the melt-NFES setup by [123,
137], the long working distances implemented by Husain [121], the low
stage velocities by Shin [84] to fabricate coiled fibers, and the high polymer
concentrations by Parajuli [86] are some differences from the traditional
NFES setup that are represented as isolated clusters within Figures 2.20, 2.21,
2.22, 2.23, 2.24 and 2.25. It is worth nothing that Chang’s thinnest fiber may
be a one-time result where, neither the yield rate nor the reproducibility of
their technique was not reported.

The relationship between the fiber diameter, the working distance L and
applied voltage Φ0 can be depicted in Figures 2.22 and 2.23. The near-field
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FIGURE 2.21: Scatter Plot of Nozzle Inner Diameters and Fiber
Diameters from Literature Experimental Results. [11–13, 82–159]

electrospinning jet is ejected from the Taylor cone when the applied
voltage generates an electric field strong enough to break the solution
drop. Changing the applied voltage will change initial drop shape, thereby
resulting in a change in the fibers’ diameters. However, the effect of the
applied voltage on the fiber diameter is not well understood. On one
hand, many researchers posit that high applied voltages lead to larger
fiber diameters, whereas other researchers have reported reductions in fiber
diameter with high applied voltages as the electric field force increases on
the charged jet. [242] Furthermore, Reneker and Chun observed that applied
voltage does not significantly affect the diameter of electrospun polyethylene
oxide (PEO) fibers. [243] Applied voltage has an influence on the fiber
diameter, but the degree and direction of the effect on the diameter varies
with other process parameters such as polymeric solution concentration and
on the working distance [244, 245].

Looking at Figures 2.22 and 2.23, the data points from Husain, Lee
and Sonntag [121, 130, 139] are outside the principal cluster since they
implemented working distances around 10−1m, which is considered to be
the threshold between NFES and far-field electrospinning (FFES). One can
observe that: a) in NFES fiber diameter increase with increasing applied
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voltage; and b) in FFES fiber diameter decrease with increasing applied
voltage. On the other hand, data related to Liu’s and Beachey’s work [117,
126] do not fit the main trend as they performed the electrospinning process
with a rotating drum as the collector, instead of the typical xy stage.

FIGURE 2.22: Scatter Plot of NFES Working Distances and Fiber
Diameters from Literature Experimental Results. [11–13, 82–159]

The effect of parameters such as ink concentration, working distance, applied
voltage, and stage speed on the diameter of the printed nano-fibers was
investigated, a summary is presented in Table 2.2.

2.5 Diameter Prediction of Electrospun Fibers

Electrospinning is a simple process to fabricate fibers of different diameters.
However, the final diameter of a fiber depends on various solution, process,
and ambient parameters (Table 2.2) with interaction with rheology and fluid
dynamics. Given the connection of various parameters, it is not trivial
to derive a mathematical model to describe the complete electrospinning
process. Current attempts involve limited models that can only describe
the steady jet region for specific polymer solutions. [68, 248, 249] From
literature [126, 250–252] and as described in Figure 2.19, zero-shear viscosity,
flow rate and applied voltage are the main drivers that determine the
final fiber morphology and dimensions. Other parameters such as solution
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FIGURE 2.23: Scatter Plot of NFES Applied Voltages and Fiber
Diameters from Literature Experimental Results. [11–13, 82–159]

FIGURE 2.24: Scatter Plot of Polymer Solution Flow Rates and Fiber
Diameters from Literature Experimental Results. [11–13, 82–159]
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FIGURE 2.25: Scatter Plot of Collector xy Stage Velocities and Fiber
Diameters from Literature Experimental Results. [11–13, 82–159]

surface tension, conductivity and working distance have less impact on the
electrospun fibers. [67] As shown in Figures 2.24 and 2.20, literature states
that flow rate Q and solution concentration Cpolymer are directly proportional
to the fiber diameter D f iber. [253–255]

As mentioned in the previous section, the correlation between the final
fiber diameter D f iber and the applied voltage Φ0 is not well understood.
Most authors posit that the fiber diameter decreases with increasing voltage.
[242, 256–263] Nevertheless, other publications state the inverse correlation.
[264, 265] This discrepancy between the final fiber diameter D f iber and the
applied voltage Φ0 may be attributed to the fact that Φ0 is also related to
the electric field Φ0/L, which in turn is related to the working distance L.
As the electric field Φ0/L increases, the electric field forces loose influence
under the polymer jet as the increased force results into faster evaporation
of the solvent promoting faster solidification. On the other hand, polymer
concentration Cpolymer, and conductivity K also have an effect on the electric
field. [258, 266]

On the other hand, Zhang et al., Kim et al., and Mituppatham et al. studied
the relationship between the solution surface tension γ and its conductivity
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TABLE 2.2: Summary of the main parameters that drive the
electrospinning process, ordered by: polymer solution parameters,
process parameters, and ambient parameters. Adapted from [246,

247]

NFES Process Parameters Effect

Solution Parameters:

Concentration Concentration shall be high enough to produce
uniform nano-fibers, but low enough to prevent
nozzle clogging

Molecular weight High-molecular-weight polymers yield smoother
fibers

Viscosity Zero-shear viscosity shall be optimal to generate a
constant jet from the needle

Conductivity Solution shall be conductive enough for the electric
field to have influence on the jet

Process Parameters:

Applied voltage Higher voltages eject more material from the nozzle

Flow rate Slow flow rates yield thinner fibers, but it shall be
fast enough to prevent clogging and keep the Taylor
cone in a constant size and shape

Working distance Long distances result in thinner fibers, however the
spatial control is hampered

Ambient Parameters:

Humidity Increasing humidity produces thicker diameters

Temperature Increasing temperature yields thinner fibers,
however high temperatures make the nozzle prone
to clog as the solvent evaporates at a faster rate

K. [242, 267, 268] Kim’s and Mituppatham report a increase in fiber
diameter with increasing conductivity in the polymer solution, while Zhang
reports the inverse relationship. The existing interdependence between the
process and solution parameters adds complexity and ambiguity to the
effect of each parameter. The fiber morphology not only depends on the
process parameters, but also on the type of electrospinning process and on
polymer-solvent system. [238]

Helgeson and Wagner [81] have presented a dimension-less analysis to
predict the fiber diameter with conservation equations of momentum, mass,

electric charge and four dimensionless numbers: Peclet number Pe =
2ε̄v0

KR0
,
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Reynold number Re =
ρv0R0

η0
, Weber number We =

ρv0
2R0

γ
, and the

dimensionless electric field strength Ψ =
ε̄E0

2

ρv02 . Where ε̄ is the dielectric

permitivity of the atmosphere, K the solution conductivity, ρ the density, η0

the zero-shear viscosity, γ the surface tension, E0 the applied electric field, R0

the initial jet radius, and v0 the initial jet velocity. Since R0 and v0 can neither
be controlled nor measured, Helgeson arrived to a correlation between the
electrostatic and viscous forces Π1 describing the stress directing the polymer
jet elongation from the source to the collector plate. [81]

Π1 = RePeΨ =
2ε̄2Φ0

2

Kη0L2 (2.1)

the Ohnesorge number, resulting from the manipulation of the Reynolds
number Re and the Weber number We, is used to explain the behavior of
the polymeric solution jet under small disturbances, due the presence of a
voltage, leading to the capillary rupture of the fluid jet. [81]

Oh =
Re2

We
=

η0√
ργRjet

(2.2)

Where Rjet = R f

√
1

ws
is the wet radius of the jet solution, which is calculated

from the radius of the dry fiber R f and the mass fraction of the polymer in
solution ws. [81]

Figure 2.26 plots the Π1 and Oh values reported by [81] along with new
data points from the data collection of NFES fiber diameters and process
parameters. It is possible to observe the predominance of the viscous and the
electrostatic forces within the solution by the magnitude Π1 (Equation 2.1).
On the other hand Oh (Equation 2.2) reflects the capacity of the viscous forces
over the polymeric jet, which allows stability in the electrospinning process.
The data points gathered by Helgeson et al. are from far-field electrospinning
studies, whereas the new data points belong to near-field electrospinning
studies.

The analysis suggests that both types of electrospinning behave in a similar
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FIGURE 2.26: Image Analysis Algorithm to Measure Fiber Diameters
from SEM images. Ilustration uses Yousefi et al.’s work as an

example. [11–13, 81–159]

manner, where the FFES data fits better a linear behavior of slope −1. As
the working distance closes in NFES, the data points fit a shallower slope
with higher Π1 values and lower Oh values. This suggests that in NFES less
viscous solutions have been used, since in long working distances a higher
viscosity is needed to keep the integrity of the fiber in the whole traveling
distance until it reaches the collector. For high Oh values and elevated
viscosity, the entanglement of the polymeric chains is higher, resulting in the
formation of individual fibers; also, the jet is prone to faster solidification,
due to an early evaporation of solvent, due to the resistance to the change of
momentum, caused by the high viscosity in the polymeric solution, hence the
need of higher voltages in FFES. Helgeson et al. suggest that the following
relationship in Equation 2.3 can be used to predict the fiber diameter, as in
the trend in Figure 2.26 Oh has an inverse linear relationship with Π1. [81]

Π1Oh =
2ε̄2Φ0

2

KL2
√

ργRjet
= 2.5 ± 0.2 × 10−8 (2.3)

The absence of the solution zero-shear viscosity in Equation 2.3 suggests



Chapter 2. Near-Field Electrospinning as an Affordable Way to Gain Spatial
Control

47

that η0 by its own is insufficient to predict the fiber diameter. The solution
conductivity, process parameters and surface tension are also needed to
describe the diameter of electrospun fibers [81], as stated in section 2.4.
Moreover, the viscosity term is embedded within the mass fraction of the
polymer in solution ws in the Rjet term. Finally, Equation 2.3 can be validated
by the observations from the correlation matrix and scatter plots as the
same parameters are present in both analyses with the same proportional
relationship.
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Chapter 3

Selection of Compatible Polymer-Solvent
Combinations for Near-Field
Electrospinning and Pyrolysis

Zhenan Bao et al. [155] investigated the effect of the polymer chemical
structure (the effect of benzene rings) on the morphology, dimensions,
composition, graphitization degree, crystallinity, and electrical conductivity
of graphene nano-ribbons derived from four different types of electrospun
polymers as templating agents. The authors studied four polymers
polystyrene (PS), poly(vinyl alcohol) (PVA), polyvinylphenol (PVP), and a
phenolic resin known as Novolac. See Figure 3.1. The authors created
electrospun polymer fibers out of the four selected polymers. PVP, Novolac
and PVA have hydroxyl groups that can be functionalized with metal cations,
while PS does not have such binding capability. On the other hand, PVP and
Novolac have one benzene ring in each repeating unit, wheras PVA is mainly
made out of sp3-hybridized carbon.

FIGURE 3.1: Studied Polymers by Zhenan Bao et al. [155]

Zhenan Bao et al. [155] found that higher sp2 carbon content (or more
benzene rings) in the polymer chemical structure translates into higher
graphitization degree and higher electrical conductivity in the final carbon
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structures. This finding can be use as a guide when choosing polymer
precursors for the fabrication of carbon structures. Furthermore, the authors
posit that polymers with functional OH groups are required for the creation
of smooth and continuous fibers throw electrospinning. [155]

3.1 Selection of Candidate Spunable Polymer Solutions

Given the conclusions from Zhenan Bao et al. [155] along with the
extensive literature review and data analysis of Chapter 2, the following
polymer-solvent combinations were selected to be studied in this work.
Polymer selection was based on the their high carbon content and presence
of benzene rings. The purpose of the polymer selection is to focus the efforts
to maximize the likelihood of polymers to yield carbon structures with high
electrical conductivity and a higher degree of graphitization as compared to
the previously used SU-8/PEO combination in cyclopentanone; as testing
every possible polymer-solvent system is not a practical way to carry on this
research. Figure 3.2 lists the polymers that are going to be investigated along
with their proposed solvents. The selected polymers have been electrospun
via far-field electrospinning for the fabrication of fibrous mats [156, 158, 269],
but no records of being spunable by NFES.

FIGURE 3.2: Selection of Polymer-Solvent Systems to Investigate in
this Work. [156, 158, 269]
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3.2 Rheology of candidate polymer solutions

As stated in previous sections, near-field electrospinning requires the control
of several parameters to obtain fibers with the desired properties. One
of the main parameters are related to the polymer precursor such as
molecular weight and its concentration in solution. The evaluation of
polymer chain entanglements is an effective way to address the spunability
of a polymer-solvent system. [270] Polymer concentration and molecular
weight are the main factors in determining the entanglement degree between
polymer chains.

FIGURE 3.3: Effect of the polymer concentration on the structure of
polymer chains in solution. Adapted from [271]

Solutions at low concentrations do not allow polymer chains to entangle,
leading the viscoeslasticity of the solution dependent only on the interaction
of individual polymer chains. As the polymer concentration increases,
the chains overlap and becomes entangled. The concentration at
which the entanglement initially takes place is the critical concentration
c∗. Concentrations above the critical concentration c∗ generate a fast
increase in chain entanglement (Figure 3.3). This rapid change in chain
entanglement is translated into a fast increase in the viscosity of the solution.
Figure 3.4 illustrates the relationship between polymer concentration and
viscoelasticity. [255, 271]

Electrospinning of smooth, continuous fibers require a polymer
concentration equal or higher than the critical concentration. As shown
in Figure 3.4, the critical concentration can be estimated from the change
in slope of the log-viscosity to log-concentration curve. [142, 255, 271]
Therefore, in order to find the critical/spinnable concentrations of
the candidate polymer-solvent solutions (poly(styrene-co-butadiene) in
tetrahydrofuran, poly(9-vinyl carbazole) in chloroform, polyestyrene in
tetrahydrofuran, and poly(styrene-co-a-methylstyrene) - See Figure 3.2), it
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FIGURE 3.4: Effect on solution viscosity, polymer concentration and
spinnability. Adapted from [142, 255, 271]

is necessary to build the appropriate viscosity vs. concentration plots as
described in the following sections.

3.2.1 Materials and Sample Preparation

Seven polymer-solvent combinations are to be tested. The Poly(Ethylene
Oxide) and SU-8 2002 combination is what has been used in previous
work [11, 13], and will be used as the control sample set. The selected
polymer-solvent combinations were selected to investigate the ability of
oxygenless polymers to be electrospun and then carbonized into vitreous
carbon. Tables D.1, 3.3, 3.4, 3.5, 3.2, 3.6, and 3.7 list the prepared polymer
systems. Tetrabutylammonium tetrafluoroborate (TBF) was added to all
solutions to increase the conductivity of the solution. SU-8 contains 71% of
cyclopentanone (CPO), which acts as the solvent (Figure 1.7) [76].

TABLE 3.1: Poly(Ethylene Oxide) and SU-8 2002 : Sample Preparation

Sample Weight Percent wt%

SU-8 PEO TBF

1 99.50 0.00 0.50

2 99.25 0.25 0.50

3 99.00 0.50 0.50

4 98.75 0.75 0.50

5 98.50 1.00 0.50

density [g/ml] 1.123
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TABLE 3.2: Polystyrene in Tetrahydrofuran : Sample Preparation

Sample Weight Percent wt%

THF PS TBF

6 99.25 0.25 0.50

7 94.50 5.00 0.50

8 89.50 10.00 0.50

9 84.50 15.00 0.50

10 79.50 20.00 0.50

11 69.50 30.00 0.50

12 64.50 35.00 0.50

13 59.50 40.00 0.50

density [g/ml] 0.888

TABLE 3.3: Poly(Styrene-co-Butadiene) in 1-Methyl-2-Pyrrolidinone :
Sample Preparation

Sample Weight Percent wt%

NMP PSB TBF

14 98.50 1.00 0.50

15 95.50 4.00 0.50

16 91.50 8.00 0.50

17 87.50 12.00 0.50

density [g/ml] 1.027

TABLE 3.4: Poly(Styrene-co-Butadiene) in Tetrahydrofuran and
N,N-Dimethylformamide : Sample Preparation

Sample Weight Percent wt%

THF DMF PSB TBF

18 70.87 23.63 5.00 0.50

19 69.00 23.00 7.50 0.50

20 67.12 22.38 10.00 0.50

21 65.25 21.75 12.50 0.50

22 63.37 21.13 15.00 0.50

23 59.62 19.88 20.00 0.50

24 55.87 18.63 25.00 0.50

density [g/ml] 0.888 0.950
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TABLE 3.5: Poly(Styrene-co-alpha-Methylstyrene) in
N,N-Dimethylformamide : Sample Preparation

Sample Weight Percent wt%

DMF PSMS TBF

25 99.00 0.50 0.50

26 94.50 5.00 0.50

27 89.50 10.00 0.50

28 84.50 15.00 0.50

density [g/ml] 0.950

TABLE 3.6: Poly(9-Vinylcarbazole) in Chloroform : Sample
Preparation

Sample Weight Percent wt%

CHL PVK TBF

29 99.50 0.00 0.50

30 99.49 0.01 0.50

31 84.50 15.00 0.50

32 79.50 20.00 0.50

33 69.50 30.00 0.50

density [g/ml] 1.492

TABLE 3.7: Poly(9-Vinylcarbazole) and SU-8 2002 : Sample
Preparation

Sample Weight Percent wt%

SU-8 PVK TBF

34 99.50 0.00 0.50

35 99.495 0.005 0.50

36 98.75 0.75 0.50

37 94.50 5.00 0.50

38 79.50 20.00 0.50

density [g/ml] 1.123
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SU-8 2002 was obtained from MicroChem (Newton, MA, USA),
while Tetrabutylammonium Tetrafluoroborate (TBF) of 99%
purity were, Poly(Ethylene Oxide) (PEO), Polystyrene (PS),
Poly(Styrene-co-Butadiene) (PSB), Poly(Styrene-co-alpha-Methylstyrene)
(PSMS), Poly(9-Vinylcarbazole) (PVK), Tetrahydrofuran (THF),
1-Methyl-2-Pyrrolidinone (NMP), N,N-Dimethylformamide (DMF), and
Chloroform (CHL) were obtained from Sigma-Aldrich (Saint Louis, MI,
USA). PEO has a viscosity-average molecular weight Mw of 4,000,000, with
less than 1000 ppm of Butylated Hydroxytoluene (BHT) as an inhibitor. PS
has an average molecular weight Mw of 192,000. PSB has a melt index of
6g/10min(200◦C/5kg), where the butadiene comprises 4 wt% PSMS has a
melt viscosity of 10Pa · s at 161◦C. PVK has an average molecular weight Mw
of 1,100,000 in powder form. THF is anhydrous and contained no inhibitor
with 99.9% purity. NMP is anhydrous with 99.5% purity. DMF is anhydrous
with 99.8% purity. CHL has 99.5% purity, a melting point of −63◦C, boiling
point of 60.5◦C, and a density of 1.492g/ml at 25◦C. CHL contains between
100 to 200 ppm amylenes as stabilizer. SU-8 is a high contrast, epoxy-based
negative photoresist. All of the reactants were used as received.

Samples of 3 milliliters were prepared with the adecuate amounts of polymer,
salt and solvent. Solutions were stired at 160 rpm for 2 hours at 60◦C.
Samples with higher polymer concentrations often required more stirring
time to eliminate all polymer aggregates. All solutions were left undisturbed
for 3 hours in 4 ml vials to eliminate bubbles from the solution.

3.2.2 Rheological Characterization of polymer Solutions

All of the rheological tests were performed in a rotational rheometer
(Discovery Hybrid Rheometer DHR, TA Instruments) equipped with a
cone-and-plate (CP) geometry (diameter of 60 mm, angle of 0.9969◦, and
truncation of 23 µm) in a steel Peltier plate (Figure 3.5a). The experiments
were conducted at 20◦C and 3 hours after polymer solution preparation.
Flow curve (FC) tests were conducted to obtain viscosity curves as a function
of the shear rate. Analysis were performed at shear rate range from
10−3 1/s to 104 1/s. A solvent trap cover (Figure 3.5f) and solvent trap
geometry (Figure 3.5a) were used to create a thermally stable vapor barrier,
virtually eliminating any solvent loss during the rheological experiments and
improving temperature uniformity. Distilled water was used to create a seal
between the CP geometry and the solvent trap cover (Figure 3.5e).
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FIGURE 3.5: Rheometer - Solvent Trap Setup

Flow curves determine the flow behaviour of a sample by measuring the
viscosity as a function of shear rate. For shear rates under 10−2.25 1/s the
rheometer was unable to take viscosity measurements, on the other hand for
shar rates over 10−3.5 1/s the measurements are discarded. At high shear
rates, several factors such as inertial effects, and viscous heating can alter
the rheometric measurements [272, 273]. As the shear rate increases, the
centrifugal stresses become large enough to overcome the surface tension
stresses that keep the sample within the gap between the geometry and the
plate. High centrifugal stresses result in the sample being thrown out of
the measuring area; a phenomenon known as ’radial migration effect’ [274].
Once the ’radial migration effect’ partially ejects the sample, the viscosity
measurements are lower than expected due to a drop in torque. [275]

As depicted in the rheological results in Figures A.1, A.2, A.3, A.4, A.5, A.6
and A.7, the constant-viscosity (Newtonian-like) behavior before the shear
thinning onset was captured. In all samples, a noticeable shear-thinning
behavior is observed with an increase in viscosity with concentration
increments. The shear-thinning behavior can be interpreted as the alignment
of polymer chains to the flow in the direction of the applied shear stress.
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[276] The Carreau–Yasuda model (Equation 3.1) [272] was fitted to the
cone-and-plate measurements to compute the zero-shear viscosity of each
sample.

η =
η0 − η∞[

1 + (κγ̇)a] (1−n)
a

+ η∞ (3.1)

Where: η is the viscosity, γ̇ the shear rate, η∞ the infinite shear rate viscosity,
η0 the zero shear rate viscosity, κ is the time constant, n the Power Law
index, a the width of the transition region between the zero shear viscosity
and the Power Law region. The features of the flow curves shown in
Appendix A can be modeled using the Carreau-Yasuda model, with the
benefits that it is possible to describe the shape and curvature of a flow
curve through six fitting parameters and to predict behavior at unmeasured
shear rates. The Carreau-Yasuda model is most applicable model due to
the range of the measured data. Unlike the Sisko and Williamson models,
the Carreau-Yassuda model considers both the infinite- and zero-shear rate
viscosities.

The Carreau-Yasuda model was fitted to the rheologial data to estimate
η0. Then, η0 values are used to create diagrams that describe the effect of
polymer concentration on the solution viscosity, as described in Figure 3.4.
The critical concentrations are calculated from the change in slope in the
zero-shear viscosity to concentration relationship as depicted in Figure 3.6
for the PEO in SU-8 solutions. Appendix B contains the diagrams of the
other polymer-solvent systems.

TABLE 3.8: Calculated Critical/Spinnable Concentrations for each
Polymer-Solvent System

Polymer Molecular Weight [g · mol] Solvent c∗[wt%] η0[Pa · s]

PEO 4,000,000 CPO (SU-8) 0.25 60.022

PS 192,000 THF 20.00 0.166

PSB 490,000 [277] NMP 8.00 0.028

PSB 490,000 [277] THF and DMF 15.00 0.092

PSMS 2,658,076 [278] DMF 5.00 0.282

PVK 1,100,000 CHL 15.00 41.861

PVK 1,100,000 CPO (SU-8) 0.75 49.657
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FIGURE 3.6: The change in slope is given at 25 wt% PEO, which
suggests that at 25 wt% the polymer chains are entangled.

FIGURE 3.7: Estimation of the Critical Concentration of the Candidate
Polymer-Solvent Combinations. Individual plots are available in

Appendix B
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Table 3.8 was built from Figure 3.7, and summarizes the calculated critical
concentrations for each system. In general, the critical concentration c∗

has a directly proportional relationship with the polymer molecular weight,
as a polymer’s molecular weight greatly influences the solution viscosity.
First, the structure of the polymer chain has an effect on its solubility as
the inter-molecular interactions between long molecules are stronger and
the solvent molecules take longer to diffuse within the polymer aggregates.
[67, 276] Second, the viscosity of a polymer solution will be smaller when a
polymer of low molecular weight is dissolved than a solution of the same
polymer but of a higher molecular weight. [67] The molecular weight of the
polymer describes the length of the polymer chain, which has an effect on
the viscosity of the solution. Since the polymer length defines the amount of
entanglement of the polymer chains in the solvent, a lower molecular weight
shall be compensated by higher concentrations to reach the desired viscosity,
see Figure 3.8.

FIGURE 3.8: Relationship between the critical concentrations,
molecular weights, and zero-shear viscosities of the selected polymer

solutions.
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Chapter 4

Fabrication and Characterization of
Polymeric Fibers through Near-Field
Electrospinning

The fabrication and characterization of polymeric fibers is addressed in this
chapter as the last screening procedure to select the PEO/SU-8 replacement.
The PEO/SU-8 replacement is to produce microscopic polymer fibers with
potential for the fabrication of carbon nano-wires. This chapter reports
PEO, PS, PSB, and PVK micro-fibers fabricated by low-voltage near-field
electrospinning. The fabrication process is carried on to study the influence
of applied voltage on the fiber diameter. The materials and sample
preparation for the LV-NFES process are the same as those used in the
rheological analyses in Chapter 3.

4.1 Near-Field Electrospinning Setup

FIGURE 4.1: NFES experimental setup. Adapted from [276]
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The near-field apparatus (Figure 4.1) is comprised by a high voltage supply
(HVS448 3000 V, LabSmith, Livermore, CA, USA), a three-axis stage, syringe
pump (Pump 11 Elite, Harvard Apparatus, Cambridge, MA, USA). Samples
were prepared as per the rheology measurements in Chapter 3. Experiments
were conducted with 1 milliliter slip-tip insulin syringes with 21 gauge
precision tips (Nordson Engineered Fluid Dispensing, Westlake, OH, USA).
The power supply and 3-axis stage are controlled through a desktop
computer, while the syringe pump is controlled manually. Fiber depositions
were placed on a Si − SiO2 wafer. The voltage between the nozzle tip and
the collector was varied between 200[V] and 600[V] in increments of 100[V],
keeping a constant current of 10 µA. For applied voltages under 400[V], the
electric field was not strong enough to overcome the surface tension of the
polymer solution and initiate the jet. To enable the fiber deposition at low
voltages, the polymer jet was manually initialized by breaking the surface
tension with a sharp glass tip. The working distance L and stage velocity
was set at a constant values for all the experiments at 0.5mm and 10mm/s
respectively. The syringe pump was set at a steady flow rate of 0.04µL/min.

FIGURE 4.2: Correct, Seiwa Optical - Optical Microscope

The applied voltage range was set in a range between 200[V] and 600[V],
since within that range fibers were able to electrospun into continuous and
straight fibers. As shown in Figure 4.3, PEO/SU-8 fibers are produced with
a meander morphology when the applied voltage is around 900[V]. Under
600[V], straight and aligned fibers were fabricated and characterized.

The calculated critical concentrations in Chapter 3 (Table 3.8) are used for
the fabrication of polymeric fibers. One set of experiments was conducted
for each polymer-solvent system to study the effect of applied voltage on
fiber diameter. The morphology of the fibers was characterized with an
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optical microscope (Correct, Seiwa Optical, Dallas, TX, USA, Figure 4.2).
Each sample was measured at 30+ points within the microscope field of view
(Appendix C).

FIGURE 4.3: Effect of applied voltage in fiber morphology

4.2 Results

FIGURE 4.4: Diameter of fibres for all the experiments with varing
applied voltage Φ0. Appendix D

Figure 4.4 shows a dependence of fiber diameter as a function of the
applied voltage and confirms what was already noticed in the correlation
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matrix and the adimensional analysis in Chapter 2, as lower voltages yield
fibers with thinner diameters. This results verify the electro-spinnability of
oxygen-less polymers by NFES into fibers of 1µm to 5µm in diameter. PS
presented complications during the NFES process as fibers of this polymer
do not adhere onto the substrate making them prone to fracture or substrate
abandonment, specially when printing fibers of thin diameters. To ease this
complication the working distance L can be reduced to let the fibers dry on
the surface and prevent complete solidification while traveling the distance
L. The increase in applied voltage can also help with this problem as more
material is pulled out of the dispensing needle, however this two fixes will
translate into thicker fibers.

The effect of applied voltage on fiber diameter can be contributed to the
effect of the electric field on the surface tension of the polymer solution drop.
Bateni and coworkers [279] have shown that surface tension increases with
increasing applied voltage. Bateni also states that the effect of an electric field
is stronger on alcohols with higher molecular weights [279]. Bateni’s findings
agree with Zhenan Bao’s statements regarding polymers with OH functional
groups are more easily electrospun than those without functional groups
[155, 279]. Since the tested polymers are of different molecular weights, the
effect of applied voltage is more significant in the PEO/SU-8 formulation as
PEO has the highest molecular weight. On the other hand, the PSB in THF
and DMF solution was the least affected by changes in applied voltage as PSB
has the smallest molecular weight. Disregarding the molecular weight, the
PS formulation has higher variation in fiber diameter. This outcome can be
explained by the poor adhesion of the fibers to the substrate, as explained
above. The effect of the applied voltage between the two PVK samples
present some differences. The PVK in CHL solution has a stronger reaction
to the electric field than the PVK in SU-8 formulation. This difference can be
attributed to the fact that SU-8 is comprised by a series of monomers of low
molecular weight.

The PVK and CHL system was the one that behaved with more similarity as
the control sample of SU-8 and PEO. Uniform, 700 nm diameter fibers were
achieved with PVK and CHL at the lowest voltage setting (200 V). Given the
similarities with the control sample, PVK was choosen to replace the PEO
to increase the spinnability of SU8. Therefore, the PVK in SU-8 system was
tested in the same conditions as the previous experiments. Both polymers
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(PEO and PVK) in SU-8 yield parallel results in fiber morphology and in
electrospinning preformanc. However, at high voltages, the PVK solution
produced thinner fibers than those produced by the PEO solution. Moreover,
as PVK does not contain any additional oxygen content in its structure,
adding PVK can be a better alternative to electrospun SU-8 based fibers
intended for carbonization as thinner fibers will have better opportunities
to survive the pyrolysis process without breaking.

On the other hand, the polymer-solvent systems comprised by
Poly(Styrene-co-Butadiene) (PSB) in 1-Methyl-2-Pyrrolidinone (NMP) and
Poly(Styrene-co-alpha-Methylstyrene) (PSMS) in N,N-Dimethylformamide
(DMF) were unable to yield fibers. In the case of the PSB/NMP solutions,
a hard shell was formed around the polymer drop at the tip of the nozzle
preventing the jet to initiate, which causes clogging. Seems that rapid
volatilization of NMP is not the case as PSB was successfully electrospun
with more volatile solvents (THF and DMF). Notice that vapor pressure of
NMP is around 39Pa at 25◦C, THF and DMF have vapor pressures of about
19.3kPa at 20◦C and 0.49kPa at 25◦C respectively. [280] On the other hand,
PSMS in DMF was not able to produce fibers as the jet was not initiated.
After noticing that que calculated critical concentration c∗ is not spinnable
the solutions of 10 and 15 wt% were also tested in the NFES apparatus with
no success. The cause of the non-spinnable nature of PSMS can be laid on
the fact that PSMS pellets were brittle and capable of making fine PSMS dust
with ease, unlike PS and PSB pellets which have an elastic behavior.
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Chapter 5

Concluding Remarks

5.1 Conclusions

As stated within the introductory chapter 1, this thesis is to verify
the near-field electrospinnability of high-carbon oxygen-less polymers in
solution. The spinnability of the tested solutions is used as a screening to
choose candidate formulations that can replace the PEO in SU-8 solution.
A near-field electrospinning literature review was used to learn about the
effect of the process parameters and solution properties in the control of the
fiber diameter. The review analyses (data analysis, parameter correlation,
and adimensional analysis) declare that the polymer concentration is the
parameter with the biggest impact on the fiber diameter, followed by the
applied voltage, the working distance, and the zero-shear viscosity.

Rheological analyses were performed to determine the viscoelastic
properties of the candidate polymer solutions. Zero-shear viscosities of the
solutions in interest are measured to find solutions with spunable polymer
concentrations. As explained in the following, viscosity and polymer
concentration have a significant impact on the spinnablity of polymer
solutions, but they are not sufficient by themselves. As demonstrated by
the experiments to fabricate fibers through NFES, PSMS in DMF and PSB in
NMP formulations were not spinnable at their critical concentrations.

A series of experiments were carried out in order to find a correlation
between the rheological properties of different polymer solutions in
near-field electro-mechanical spinning for carbon structures. Flow curve
measurement tests where carried out in an oscillatory rheometer to estimate
the critical concentrations of various polymer-solvent systems at which they
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are spinnable by NFES. Since the formulation is 0.25 wt% PEO in SU-8 2002
has been studied in the past and is known to yield good polymer solutions
but fails at the pyrolysis, this work intends to find spinnable and pyrolyzable
systems as well as a method to discover new spinnable polymer solutions.

From the flow curve measurements, the zero-shear viscosity was estimated
using the Carreau-Yassuda model. For all solutions, a shear thinning
behavious was noticed. It was found that the viscosity-concentration plot is a
good method to find the critical concentration at which the solution is able to
produce fibers through NFES. However the method failed at calculating the
spinnable concentration of PSMS. An significant takeaway is that a polymer
does not have elastic properties in the pellet form, it will probably not work
as a NFES polymer precursor.

Fibers were fabricated at different applied voltages for each set of solutions
in order to very that in NFES fiber diameter increases with increasing applied
voltage, whereas the inverse relationship is true for FFES. Other parameters
such as working distance, stage velocity, nozzle diameter, flow rate were
kept constant for all experiments; however, for low applied voltages the
jet shall be initialed by manually breaking the polymer drop. the thickest
average fiber diameter was achieved with the PS in THF system (Φ0 = 600V,
D f iber = 5.304µm) and the thinnest was 0.976µm using the PVK in CHL
system and an applied voltage of 200V. It was proved that attainable
rehological information can be used to modify the NFES process parameters
to yield the desired fiber morphology.

Moreover a data analysis was done on the NFES publications of the last
13 years to identify relationships between fiber diameter and the process
parameters. For instance, it was confirmed that thin fibers are achived with
los polymer concentrations, small nozzle diameters, low applied voltage,
slow flow rates and high stage velocities. Also, using the collected data and
the input of Helgeson’s work [81], an dimensionless analysis was done to
predict fiber diameters with easy to get parameters.

Finally, the fabricated fibers can be classified into three groups: a) the control
sample (PEO in SU-8); b) poor quality fibers (PS in THF, and PSB in THF and
DMF); and c) good quality fibers (PVK in CHL and PVK in SU-8). PS and PSB
fibers have rough textures and low adhesion to the collector substrate. The
rough surface and low adhesion is due to the rapid solvent volatilization,
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which results in fibers to solidify before landing on the substrate. The fast
solidification minimize the fiber adhesion to the collector, causing the fibers
to slip, and therefore the mechanical drag force in the fibers is reduced. Due
to the low influence of the mechanical force, fibers are not stretched by the
moving stage, which may explain the rough surface.

On the other hand, the formulation regarding PVK deposited smooth fibers
with good adhesion to the substrate, similar to the PEO/SU-8 solution. The
thinnest fibers (700 nm in diameter) were achieved PVK in CHL formulation.
Moreover, the PVK in SU-8 solution seems to be the formulation to replace
the PEO in SU-8 solution. Assuming that the additional oxygen content in
PEO negatively affects the fiber yield rate and electrical resistivity variance
due to degassing during pyrolysis, the PCK does not contain additional
oxygen content and has sp2-hybridized carbon which can promote the
formation of graphitic carbon during pyrolysis. The already oxygen in
SU-8 is necesary to create closed pores during annealing, characteristic of
glass-like carbon.

5.2 Future work

Apart from the work done, this dissertation opens pending research to enable
NFES for the fabrication of carbon structures. The following lists future work
that could be done as a continuation of this thesis.

• Helgeson’s model [81] was thought to work with far-field
electrospinning, hence the deviation of the NFES data from the
model trend. For an accurate NFES fiber diameter prediction, the
mechanical stresses introduced by the moving stage shall be considered
in the model (Equation 2.3).

• This work verifies the electro-spinnability of four new formulations,
however fibers were not carbonized into carbon structures. Further
work shall study the pyrolysis process of the proposed fibers
to get carbon structures with good electrical conductivity. A
photo-polymerization process could be introduced before pyrolyzation
to increase the order of the molecules and achieve carbon with higher
conductivity.

• Near-field electrospinning solutions require specific viscosities to
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initialte a polymer jet. The viscosity-concentration plot is a helpful tool
to estimate the critical spinnable concentration of a polymer-solvent
system. However there is room for improvement as this method
only considers reological data. Other methods could be adopted to
better tune other process parameters such as stage velocity, and applied
voltage.
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Acronyms and Abbreviations

CEM Campus Estado de México

CNWs Carbon Nano-wires

DC Direct Current

EMS Electromechanical Spinning

FFES Far Field de Electrospinning

ITESM Instituto Tecnonólogico y de Estudios Superiores de Monterrey

MA Massachusetts

MEMS Microelectromechanical Systems

MNT Maestría en Nanotecnología (Master of Science in Nanotechnology)

MTY Monterrey or Campus Monterrey

NFEMS Near-Field Electromechanical Spinning

NFES Near Field de Electrospinning

USA United States of America

UV Ultraviolet
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Variables and Symbols

Symbol Name Unit

Mw Molecular Weight g/mole

η0 Zero-shear Viscosity Pa · s

K Electrical Conductivity S/m

γ Surface Tension N/m

γ̇ Shear Rate 1/s

ρ Density Kg/m3

Cpolymer Polymer concentration wt%

Dnozzle Nozzle Inner Diameter m

Q Flow Rate m3/s

L NFES Working Distance m

Φ0 NFES Applied Voltage V

vstage Collector/Stage velocity m/s

D f iber Fiber Diameter m

FiberGap Distance between fibers m

Rjet NFES Jet Radius m

Oh Ohnesorge number NA.

Pe Peclet number NA.

Re Reynolds number NA.

We Weber number NA.

Ψ Dimensionless Field Strength NA.
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Appendix A

Flow Curves

FIGURE A.1: Viscosity as a function of shear rate for Poly(Ethylene
Oxide) (PEO) and SU-8 2002 solutions
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FIGURE A.2: Viscosity as a function of shear rate for Polystyrene (PS)
and Tetrahydrofuran (THF) solutions

FIGURE A.3: Viscosity as a function of shear rate for
Poly(Styrene-co-Butadiene) (PSB) and 1-Methyl-2-Pyrrolidinone

(NMP)
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FIGURE A.4: Viscosity as a function of shear rate for
Poly(Styrene-co-Butadiene) (PSB), Tetrahydrofuran (THF) and

N,N-Dimethylformamide (DMF) solutions

FIGURE A.5: Viscosity as a function of shear rate
for Poly(Styrene-co-alpha-Methylstyrene) (PSMS) and

N,N-Dimethylformamide (DMF) solutions
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FIGURE A.6: Viscosity as a function of shear rate for
Poly(9-Vinylcarbazole) (PVK) and Chloroform (CHL) solutions

FIGURE A.7: Viscosity as a function of shear rate for
Poly(9-Vinylcarbazole) (PVK) and SU-8 2002 solutions
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Appendix B

Critical Concentrations

FIGURE B.1: Viscosity as a function of shear rate for Poly(Ethylene
Oxide) (PEO) and SU-8 2002 solutions
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FIGURE B.2: Viscosity as a function of shear rate for Polystyrene (PS)
and Tetrahydrofuran (THF) solutions

FIGURE B.3: Viscosity as a function of shear rate for
Poly(Styrene-co-Butadiene) (PSB) and 1-Methyl-2-Pyrrolidinone

(NMP)
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FIGURE B.4: Viscosity as a function of shear rate for
Poly(Styrene-co-Butadiene) (PSB), Tetrahydrofuran (THF) and

N,N-Dimethylformamide (DMF) solutions

FIGURE B.5: Viscosity as a function of shear rate
for Poly(Styrene-co-alpha-Methylstyrene) (PSMS) and

N,N-Dimethylformamide (DMF) solutions
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FIGURE B.6: Viscosity as a function of shear rate for
Poly(9-Vinylcarbazole) (PVK) and Chloroform (CHL) solutions

FIGURE B.7: Viscosity as a function of shear rate for
Poly(9-Vinylcarbazole) (PVK) and SU-8 2002 solutions
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Appendix C

Optical Microscopy Characterization of
Electrospun Fibers

FIGURE C.1: Morphology and Characterization of Electrospun Fibers
at Different Voltages : Poly(Ethylene Oxide) (PEO) and SU-8 2002
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FIGURE C.2: Morphology and Characterization of Electrospun Fibers
at Different Voltages : Polystyrene (PS) in Tetrahydrofuran (THF)
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FIGURE C.3: Morphology and Characterization of Electrospun
Fibers at Different Voltages : Poly(Styrene-co-Butadiene) (PSB) in

Tetrahydrofuran (THF) and N,N-Dimethylformamide (DMF)
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FIGURE C.4: Morphology and Characterization of Electrospun Fibers
at Different Voltages : Poly(9-Vinylcarbazole) (PVK) in Chloroform

(CHL)
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FIGURE C.5: Morphology and Characterization of Electrospun Fibers
at Different Voltages : Poly(9-Vinylcarbazole) (PVK) and SU-8 2002
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Appendix D

Average Fiber Diameters, Minimums and
Maximums

D f iber[µm]

Sample Cpolymer[wt%] Φ0[V] average minimum maximum

PEO in SU8 0.25 200 1.96 ± 0.185 1.48 2.41

300 2.39 ± 0.156 2.09 2.67

400 3.16 ± 0.129 2.81 3.41

500 3.15 ± 0.247 2.63 3.86

600 4.03 ± 0.201 3.69 4.37

PS in THF 20.00 200 1.82 ± 0.101 1.64 2.08

300 2.50 ± 0.105 2.29 2.73

400 2.71 ± 0.140 2.37 2.98

500 4.85 ± 0.172 4.41 5.22

600 5.30 ± 0.388 4.76 6.57

PSB in THF
and DMF

15.00 200 1.83 ± 0.251 1.25 2.25

300 1.91 ± 0.221 1.51 2.54

400 1.92 ± 0.138 1.61 2.27

500 1.94 ± 0.201 1.58 2.53

600 2.15 ± 0.208 1.77 2.76

PVK in CHL 15.00 200 0.97 ± 0.106 0.71 1.26

300 2.11 ± 0.179 1.71 2.54

400 2.47 ± 0.134 2.16 2.86

500 2.88 ± 0.199 2.58 3.37
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600 3.39 ± 0.236 2.98 3.96

PVK in SU8 0.75 200 2.12 ± 0.169 1.75 2.45

300 2.27 ± 0.117 2.04 2.52

400 2.37 ± 0.117 2.12 2.65

500 2.50 ± 0.169 2.06 2.88

600 3.13 ± 0.109 2.97 3.35

TABLE D.1: Average Fiber Diameter for All the Experiments
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Appendix E

Appendix NFES Review Table
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Appendix F

Image Analysis Python Source Code

1 # import the necessary packages

2 import numpy as np

3 import argparse

4 import imutils

5 import cv2 # pip install opencv -python

6 import matplotlib.pyplot as plt

7 # import torch

8 # import torchvision.transforms as T

9

10 from IPython.display import display , Image

11 from easydict import EasyDict

12 from scipy.spatial import distance as dist

13 from imutils import perspective

14 from imutils import contours

15

16 def midpoint(ptA , ptB):

17 return ((ptA [0] + ptB [0]) * 0.5, (ptA [1] + ptB [1]) * 0.5)

18

19 def order_points(pts):

20 # sort the points based on their x-coordinates

21 xSorted = pts[np.argsort(pts[:, 0]), :]

22

23 # grab the left -most and right -most points from the sorted

24 # x-roodinate points

25 leftMost = xSorted [:2, :]

26 rightMost = xSorted [2:, :]

27

28 # now , sort the left -most coordinates according to their

29 # y-coordinates so we can grab the top -left and bottom -left

30 # points , respectively

31 leftMost = leftMost[np.argsort(leftMost[:, 1]), :]

32 (tl, bl) = leftMost

33

34 # now that we have the top -left coordinate , use it as an
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35 # anchor to calculate the Euclidean distance between the

36 # top -left and right -most points; by the Pythagorean

37 # theorem , the point with the largest distance will be

38 # our bottom -right point

39 D = dist.cdist(tl[np.newaxis], rightMost , "euclidean")[0]

40 (br, tr) = rightMost[np.argsort(D)[::-1], :]

41

42 # return the coordinates in top -left , top -right ,

43 # bottom -right , and bottom -left order

44 return np.array([tl , tr , br , bl], dtype="float32")

45

46 def measureImg(

47 orimgname_ , imgname_ , refIsXval , refImg , refVal , edgeType ,

48 minObjArea , invertPimg , Threshold =128, denoise =0):

49

50 #TUNE fineTuning TO MATCH THE REFERENCE OBJECT

51

52 ### IMAGE PRE -PROCESSING

53 # load the image

54 orimg = cv2.imread(orimgname_)

55 img = cv2.imread(imgname_)

56

57 # Image Denoising

58 dst = cv2.fastNlMeansDenoisingColored(

59 src=img ,

60 dst=None ,

61 h=denoise ,

62 hColor=denoise ,

63 templateWindowSize =7,

64 searchWindowSize =21)

65

66 # Convert to grayscale

67 grey = cv2.cvtColor(dst , cv2.COLOR_BGR2GRAY)

68

69 cv2.imwrite('./ img_grey.png', grey)

70

71 # define a threshold , 128 is the middle of black and white

72 # in grey scale

73 thresh = Threshold #256/2

74

75 # assign blue channel to zeros

76 binary = cv2.threshold(grey , thresh , 256, cv2.THRESH_BINARY)[1]

77

78 cv2.imwrite('./ img_binary.png', binary)

79

80 # # Inverting the colors

81 # invert = abs (255 - binary)

82
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83 ### IMAGE PROCESSING

84 # perform edge detection , then perform a dilation + erosion

85 # to close gaps in between object edges

86 if invertPimg:

87 edged = cv2.Canny(binary , Threshold , Threshold)

88 else:

89 edged = cv2.Canny(grey , Threshold , Threshold)

90

91 cv2.imwrite('./ img_edged.png', edged)

92

93 dilated = cv2.dilate(edged , None , iterations =1)

94 eroded = cv2.erode(dilated , None , iterations =1)

95

96 cv2.imwrite('./ img_dilated.png', dilated)

97 cv2.imwrite('./ img_eroded.png', eroded)

98

99 if edgeType == "dilated":

100 Pimg = dilated

101 elif edgeType == "eroded":

102 Pimg = eroded

103 else:

104 Pimg = edged

105

106 # Show and save image

107 print ()

108 print('Image to Process:')

109 imgname='./ img_out.png'

110 cv2.imwrite(imgname ,Pimg)

111 display(Image(filename=imgname))

112

113 ### GET IMAGE MEASUREMENTS

114 # find contours in the edge map

115 cnts = cv2.findContours(

116 Pimg.copy(),

117 cv2.RETR_EXTERNAL ,

118 cv2.CHAIN_APPROX_SIMPLE)

119 cnts = imutils.grab_contours(cnts)

120

121 # sort the contours from left -to-right and initialize the

122 # 'pixels per metric ' calibration variable

123 (cnts , _) = contours.sort_contours(cnts)

124

125 # if the pixels per metric has not been initialized , then

126 # compute it as the ratio of pixels to supplied metric

127 # (in this case , inches) to match the reference object

128 pixelsPerMetric = None

129 i = 0

130 for c in reversed(cnts):
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131 if cv2.contourArea(c) < minObjArea:

132 continue

133

134 if i == refImg and pixelsPerMetric is None:

135 box = cv2.minAreaRect(c)

136 box = cv2.cv.BoxPoints(box)

137 if imutils.is_cv2 ()

138 else cv2.boxPoints(box)

139 box = np.array(box , dtype="int")

140 box = perspective.order_points(box)

141 (tl, tr, br , bl) = box

142 (tltrX , tltrY) = midpoint(tl, tr)

143 (blbrX , blbrY) = midpoint(bl, br)

144 (tlblX , tlblY) = midpoint(tl, bl)

145 (trbrX , trbrY) = midpoint(tr, br)

146 dA = dist.euclidean ((tltrX , tltrY), (blbrX , blbrY))

147 dB = dist.euclidean ((tlblX , tlblY), (trbrX , trbrY))

148 if refIsXval:

149 pixelsPerMetric = dB *(25400000/ refVal)

150 else:

151 pixelsPerMetric = dA *(25400000/ refVal)

152 i += 1

153 #print(pixelsPerMetric)

154

155 # loop over the contours individually

156 i = 0

157 for c in reversed(cnts):

158 # if the contour is not sufficiently large , ignore it

159 if cv2.contourArea(c) < minObjArea:

160 continue

161

162 # compute the rotated bounding box of the contour

163 orig = orimg.copy()

164 box = cv2.minAreaRect(c)

165 box = cv2.cv.BoxPoints(box)

166 if imutils.is_cv2 ()

167 else cv2.boxPoints(box)

168 box = np.array(box , dtype="int")

169

170 # order the points in the contour such that they appear

171 # in top -left , top -right , bottom -right , and bottom -left

172 # order , then draw the outline of the rotated bounding

173 # box

174 box = perspective.order_points(box)

175 cv2.drawContours(

176 orig ,

177 [box.astype("int")],

178 -1,
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179 (0, 255, 0),

180 1)

181

182 # loop over the original points and draw them

183 for (x, y) in box:

184 cv2.circle(orig , (int(x), int(y)), 2, (0, 0, 255), -1)

185

186 # unpack the ordered bounding box , then compute the

187 # midpoint between the top -left and top -right

188 # coordinates , followed by the midpoint between

189 # bottom -left and bottom -right coordinates

190 (tl, tr, br , bl) = box

191 (tltrX , tltrY) = midpoint(tl, tr)

192 (blbrX , blbrY) = midpoint(bl, br)

193

194 # compute the midpoint between the top -left and

195 # top -right points , followed by the midpoint between the

196 # top -righ and bottom -right

197 (tlblX , tlblY) = midpoint(tl, bl)

198 (trbrX , trbrY) = midpoint(tr, br)

199

200 # draw the midpoints on the image

201 cv2.circle(orig , (int(tltrX), int(tltrY)),

202 2, (255, 0, 0), -1)

203 cv2.circle(orig , (int(blbrX), int(blbrY)),

204 2, (255, 0, 0), -1)

205 cv2.circle(orig , (int(tlblX), int(tlblY)),

206 2, (255, 0, 0), -1)

207 cv2.circle(orig , (int(trbrX), int(trbrY)),

208 2, (255, 0, 0), -1)

209

210 # draw lines between the midpoints

211 cv2.line(

212 orig ,

213 (int(tltrX), int(tltrY)),

214 (int(blbrX), int(blbrY)),

215 (255, 0, 255), 1)

216 cv2.line(

217 orig ,

218 (int(tlblX), int(tlblY)),

219 (int(trbrX), int(trbrY)),

220 (255, 0, 255), 1)

221

222 # compute the Euclidean distance between the midpoints

223 dA = dist.euclidean ((tltrX , tltrY), (blbrX , blbrY))

224 dB = dist.euclidean ((tlblX , tlblY), (trbrX , trbrY))

225

226 # compute the size of the object
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227 dimA = dA / pixelsPerMetric

228 dimB = dB / pixelsPerMetric

229

230 # convert inches to nm

231 dimA = dimA *25400000

232 dimB = dimB *25400000

233

234 # draw the object sizes on the image

235 txtcolor =(255, 171, 0)

236 cv2.putText(orig , "{:.2f}nm".format(dimB),

237 (int(tltrX - 15), int(tltrY - 10)),

238 cv2.FONT_HERSHEY_SIMPLEX ,

239 0.6, txtcolor , 2, 5)

240 cv2.putText(orig , "{:.2f}nm".format(dimA),

241 (int(trbrX + 10), int(trbrY)),

242 cv2.FONT_HERSHEY_SIMPLEX ,

243 0.6, txtcolor , 2)

244

245 # Show and save output image

246 print ()

247 print('Measurements in progress ... ' + str(i))

248 print('dimX=' + str(round(dimB ,2)) + 'nm; dimY=' +

249 str(round(dimA ,2)) + 'nm;')

250 imgname='./ img_out.png'

251 cv2.imwrite(imgname ,orig)

252 display(Image(filename=imgname))

253 i += 1

254

255 help(measureImg);

256 display(Image(filename='./img/UScoinRef.png'));

257 measureImg(

258 './img/example_01.png',

259 './img/example_01.png',

260 True , 5, 24260000 ,

261 'eroded ',

262 100,

263 False ,

264 Threshold =150,

265 denoise =15);

LISTING F.1: Image Analysis Source Code
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