
1

2

Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

School of Engineering and Sciences

Solving the Family Traveling Salesman Problem with Capacitated Agents

A thesis presented by

Kevin Alain Reyes Vega

Submitted to the

School of Engineering and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

In

Manufacturing Systems

Monterrey Nuevo León, June 5th, 2020

5

Dedication

To my parents… for their love, support and encouragement.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

6

Acknowledgements

I would like to express my deepest gratitude to my parents for supporting me since
my entrance into Tecnológico de Monterrey. My gratitude to all those who have been side
by side with me during this project; in particular, to my sister and fiancée that have always
supported me.

This would not have been possible without the support of Tecnológico de Monterrey

and CONACyT. I want to thank both institutions for the scholarships that were granted to
me. I would particularly like to thank Dr. José Luis González Velarde for advising me during
the elaboration of this thesis. Thanks to Dra. Yasmín Águeda Ríos Solis, Dr. José Manuel
Sánchez García and Eng. Saúl Domínguez Casasola, for their great support. I also want to
thank Dr. Horacio Ahuett Garza for accepting me in the master´s program.

Lastly, I would like to recognize my friends support. Thanks for always be there.

7

Solving the Family Traveling Salesman Problem with Capacitated Agents

by
Kevin Alain Reyes Vega

Abstract

This thesis leads towards a new approach for the Family Traveling Salesman Problem
(FTSP) using as an example a warehouse common problem. The enterprise owner of the
warehouse wants to optimize the picking out total distance of the products, taking into
account the available logistic resources.

This new extension of the standard FTSP is denoted as Family Traveling Salesman

Problem with Capacitated Agents (FTSP-CA). The formulation of the problem is a single
objective model, with binary variables. For the computational experimentation two
methodologies were applied: Integer programming and Heuristics.

 From a set of 21 benchmark FTSP instances, a new group of 36 adapted instances
were created that consider the FTSP-CA parameters. For the integer programming technique,
the Cplex solver is used to obtain optimal integer solutions. For the second methodology, a
Biased Random-Key Genetic Algorithm (BRKGA) was implemented to improve the
performance in time and while maintaining a high-quality value of solutions. Both techniques
are compared to show the efficiency solving the FTSP-CA.

	

8

List	of	Figures	

2.1 Representation of three different feasible solutions for the TSP. 14

2.2 Representation of a Closed Hamiltonian Cycle. 15

2.2 Example Tour of a GTSP .15

2.3 Example of FTSP Solution. 16

4.2 . BRKGA´s algorithm. 23

4.2 Decoding Stages of a FTSP-CA Random Key. 25

9

List	of	Tables	

2.1 TSP Parameters. 15

3. Parameters, Decision Variables and Auxiliar Decision Variables 19

4.2 BRKGA´s Parameters Description. 24

5.1 Benchmark FTSP Instances 26

5.1 List of FTSP-CA Adapted Instances. 28

5.2 List of CPLEX results. 29

5.3 Individal results for instance (Bayg1002B). 30

5.3 List of BRKGA´s results. . .. 31

5.3 List of BRKGA´s results. . .. 31

10

Contents

Abstract v

List of Figures vi

List of Tables vii

1 Introduction
1.1 Problem Statement and Context 11
1.2 Motivation 11
1.3 Contribution 11
1.4 Thesis Structure 12

2 Chapter II
2.1 Traveling Salesman Problem 14
2.2 Generalized Traveling Salesman Problem 15
2.3 Family Traveling Salesman Problem 16
2.4 Biased Random Key Genetic Algorithm 17

3 Chapter III
3.1 Mathematical Model. 19

4 Chapter IV
4.1 Integer Programming Method 22
4.2 Biased Random Key Genetic Algorithm Method 22

5 Chapter V
5.1 Instances Description 26
5.2 CPLEX Results 29
5.3 BRKGA Results 30

6. Chapter VI
6.1 Conclusions and Future Work 33

Bibliography 34

Curriculum Vitae 37

11

Chapter	1		

Introduction		

The Family Traveling Salesman Problem (FTSP), is an extension of the classic
Traveling Salesman Problem (TSP). Both are well known due to their logistics applications
to minimize the cost of travelling, providing better solutions for enterprises and governments.
TSP is commonly used to optimize vehicle routes inside the city to deliver goods and
products from distribution centers to retailers and costumers [6]. On the other hand, the FTSP
is tailored to the flexibility of modern warehouses systems. In a free-pick-and-drop
mechanism [19] the storekeeper can freely move inventory items using a RFID tracking
system to locate each specific product in a virtual space. Consequently, different family types
of items are placed randomly in the warehouse.

The FTSP was introduced by Morán-Mirabal et al. [13], considering a modern warehouse
configuration. The problem consist in a warehouse picker, that must visit specific locations
of the facility in order to pick-up different products. As mentioned before, the products
belongs to an specific family, and are placed randomly within the warehouse. Consequently,
a solution of the FTSP consist in a closed tour where the warehouse picker passes through
each checkpoint once, starting and ending the tour in the same point.

As an extension of the FTSP, the Family Traveling Salesman Problem with Capacitated
Agents (FTSP-CA) simulate the logistics operations in a warehouse where multiple agents
(warehouse pickers) with finite capacity of products pick-ups are available. Taking into
consideration that companies warehouses rely on a human workforce doing operations
simultaneously. As a result, different warehouse pickers are going to work in parallel, to
fulfill the demand of checkpoints required to visit.

The FTSP-CA is motivated by the fact that there is a necessity for enterprises to align the
logistics inside a warehouse, to reduce the total cost in distance, time or money, generated
by the daily operations of the warehouse pickers, providing an optimal integer solution for
this scenario.

1.1 Problem	Statement	and	Context	
In	 the	 Supply	 Chain	Management	 of	 a	 company,	many	different	 products	 are	

sorted	randomly	in	a	warehouse	using	a	Radio	Frecuency	Identification	(RFID)	system.	
An	inventory	system	classifies	each	product	into	a	family	number,	according	to	their	
size,	weight,	color,	etc.	Due	to	the	RFID	system,	similar	family	products	are	distributed	
randomly	inside	the	warehouse.	

12

A	list	of	shipping	products	must	be	taken	out	by	multiple	agents	(warehouse	pickers).	
The	product	list	is	made	up	by	a	determined	number	of	visits	to	the	different	families.	
In	 order	 to	 fulfill	 the	 order,	 multiple	 agents	 (warehouse	 pickers)	 must	 visit	 the	
complete	family	visits,	starting	the	routing	process	and	ending	in	the	same	point,	which	
is	called	“depot”.	However,	agents	inside	the	warehouse	can	only	visit	a	node	(product	
location)	once,	and	must	be	limited	to	a	maximum	capacity	of	nodes.	As	mentionned	
this	problem	is	the	FTSP-CA.	

	

1.2	Motivation	
Logistics	 has	 been	 one	 of	 the	most	 important	 areas	 for	 business	 competitive	

advantage	 to	 the	 possibility	 to	 speed	 up	 inbound	 companies	 processes	 and	 deliver	
goods	to	the	costumers	in	the	minimum	time	possible.	Nowadays,	enterprises	demand	
intelligent	solutions	to	improve	their	Supply	Chain	Management,	and	Inventory	Control	
and	Transportation	Routing	are	very	important	to	achieve	that	goal.		

There	are	many	studies	about	RFID	Technology	 inside	warehouse,	 that	demonstrate	
the	 benefits	 to	 allocate	 products	 using	 this	 alternative	 [7]	 [8]	 [18].	 Indeed,	 RFID	 is	
becoming	 a	 promising	 solution	 to	 avoid	 inventory	 inaccuracy.	 For	 that	 reason,	 the	
actual	global	tendency	is	to	adopt		this	newer	technology	demanded	by	the	retailers	to	
provide	a	better	response	time	between	the	different	stages	of	the	Supply	Chain.	

However,	 this	 new	 warehouse	 configuration	 demands	 complex	 alternatives	 to	 the	
standard	traveling	salesman	problem	to	achieve	a	routing	solution.		

	

	

1.3 Contribution	
Adopting	 RFID	 technology	 as	 an	 alternative	 to	 inventory	 system	 provides	 a	

justification	to	create	a	new	routing	control	system	inside	the	warehouses	which	adapts	
to	the	family	sorting	of	products.	

The	main	contribution	of	this	thesis	is	to	present	a	new	problem	as	an	extension	of	the	
standard	family	traveling	salesman	problem.	This	extension	is	called	Family	Traveling	
Salesman	Problem	with	Capacitated	Agents	 (FTSP-CA).	Furthermore,	 the	 strategy	 to	
solve	 this	 NP-	 hard	 problem	 is	 presented,	 developing	 the	 heuristics	 to	 obtain	 an	
approximate	value	of	the	optimal	integer	solution,	using	a	Biased-	Random	Key	Genetic	
Algorithm	(BRKGA).		

13

	

1.4 Thesis	Structure	
The	first	chapter	presents	the	main	introduction	of	the	problem	and	its	context.	

Moreover,	the	motivation	and	contribution	of	the	scientific	research	is	described.		

The	 second	 	 chapter	 presents	 a	 literature	 review,	 with	 the	 state-of-the-art	 and	
theoretical	 framework	 about	 the	 classic	 Traveling	 Salesman	 Problem	 and	 two	
important	configurations:	Generalized	Traveling	Salesman	Problem	(GTSP)	and	Family	
Traveling	Salesman	Problem	(FTSP).	At	the	end	of	the	chapter,	a	review	in	Heuristics,	
specifically	in	Biased-Random	Key	Genetic	Algorithms	is	shown.		

The	mathematical	 framework	 is	 presented	 in	 chapter	 three.	 First	 the	 paramaeters,	
decision	 variables	 and	 auxiliary	 decision	 variables	 are	 described,	 followed	 by	 the	
mathematical	model.		

In	 chapter	 four,	 two	 important	 methodologies	 are	 described	 which	 are	 the	
methodologies	used	in	this	thesis:	Integer	Programming	and	Heuristics.		

The	 fifth	 chapter	presents	 the	 complete	 computational	 experimentation.	On	 the	one	
hand,	the	computational	characteristics	are	listed.	On	the	other,	the	description	of	the	
different	instances	is	presented	and,	finally,	the	final	results	are	analyzed	and	discussed.		

Finally,	the	sixth	chapter	is	dedicated	to	the	conclusions	and	future	work	of	this	thesis.		

14

Chapter 2

Literature Review

In this chapter, a brief description of the concepts and algorithms used throughout the
thesis is given. The first part describes the concept of Traveling Salesman Problem (TSP),
and some of the current variations are presented. Second section is dedicated to the Family
Traveling Salesman Problem (FTSP), the specific variation of the problem on which the
thesis is focus on. Finally, a background of Biased- Random Key Genetic Algorithms
(BRKGA) is presented.

2.1 Traveling Salesman Problem

The Traveling Salesman Problem is well known for being part of NP-hard problems
(Karp, 1972). In terms of theoretical computational, this NP-hard computational class is a set
of problems with high complexity for which no algorithm is capable to solve all instances in
polynomial time. The TSP consists in a “salesman” person who is looking to travel by the
most proficient sequence of cities or nodes within its territory, bearing in mind that the
salesman can only visit a city once, and must finish the tour in the starting location. (Sathya,
2015).

Fig.1 Representation of three different feasible solutions for the TSP.

The visual representation of the Traveling Salesman Problem consists in a graph, with a set
of nodes. The arrow that connects two nodes shows the cost vector (time, distance, or other
attribute), produced by the traveling movement.

Since 1934, when the problem was proposed by Hassler Whitney at Princeton University,
the notation of the Traveling Salesman Problem has been evolving (Flood,1956).

15

Table 1. TSP Parameters

Parameter Description

n The number of nodes in the area
i, j Indexes of variables relating nodes i and j
𝑥!,# Binary variable equal to 1 when salesman

goes from node i directly to node j and 0
otherwise.

𝑑!,# Cost related to the distance traversed from
node i to node j

2.2 Generalized Traveling Salesman Problem (GTSP)

The Traveling Salesman Problem has different variants. One specific configuration is
the Generalized Traveling Salesman Problem, arising from the “clustering” of nodes, where
the salesman or agent must visit only one node per cluster. Similar to the standard traveling
salesman problem, the objective is to minimize the distance traveled, starting and finishing
the tour in a determined node, and creating a Closed Hamiltonian Cycle.

Fig.2 Representation of a Closed Hamiltonian Cycle (Zia, 2018).

The Generalized Traveling Salesman Problem has been introduced by Srivastava et al.
(Srivastava, 1970). On the basis that standard traveling salesman problem is a NP-hard
problem, the GTSP is still part of this class of problems. If all the clusters presented by a
GTSP instance consist of a single node, a standard NP-Hard configuration is shown.

16

New approaches in the topic has been introduced by Yuan et al. (Yuan, 2020), using a branch-
and-cut algorithm; Yang et al (Yang, 2008), proposed a genetic algorithm. Moreover, some
alternatives to transform a GTSP to TSP have been applied by Zia et al. (Zia, 2018) without
producing an extensive computational time solution. Importance of the Generalized
Traveling Salesman Problem lies in its variety of different applications in logistics
(Baniasadi, 2020) (Laporte, 1987).

According to Pintea et al. (Pintea, 2007) formulation, the Generalized Traveling Salesman
Problem, can be interpreted by a graph 𝐺 = (𝑁	, 𝐸), where 𝑁 is partitioned into 𝑝 clusters,
and the cost of an edge 𝑒 = {𝑖	, 𝑗} is denoted by 𝑐!,# . The goal is to minimize the total cost
of the Hamiltonian tour, where there is only one node per cluster visited.

Fig.3 Example Tour of a GTSP (Pintea, 2007).

2.3 Family Traveling Salesman Problem (FTSP)

The FTSP is another configuration of the standard Traveling Salesman Problem (TSP), it was
introduced by Morán-Mirabal et al. (Morán-Mirabal, 2014) as an application of routing
solutions inside modern warehouse using RFDI technology. In this particular application the
complete set of nodes are segmented into different families and a single agent must travel a
determined number of family visits. Different from the GTSP, in the FTSP the agent can visit
more than one node per cluster, in this case, per family.

The FTSP is modeled using a complete graph 𝐺 = (𝒩	⋃ 	{0} ,E). In this formulation, {0}
is the depot (where all the routes start and end). 𝒩 represents the set of nodes or cities, which
displays a specific warehouse location, where an inventory product has been placed. The
distance cost between a pair of nodes is denoted by dij > 0, , where 𝑖	 ≠ 𝑗. All distances are
indexed in the edge-set E .

For solving the FTSP, a prescribed number of nodes 𝑛𝑓$ must be visited in order to pursue
the total minimum distance tour. The nodes are selected from a set Fl, where 𝑙 is the index of
𝐿 families. Consequently, the total amount of visits 𝑉, is given by 𝑉 = 	∑ 𝑛𝑓$$%&→(. The
warehouse is conditioned to a total of 𝐾agents. Each agent has a finite capacity 𝑄 measured
by the maximum number of nodes that an agent can visit.

17

Figure 4. Example of FTSP Solution (Morán-Mirabal,2014).

Due to the importance of the Family Traveling Salesman Problem, different algorithm
alternatives have been proposed by Bernardino and Paias such as: The neighborhood search
procedure, the local search procedure, the perturbation method and the ILS algorithm
(Bernardino and Paías, 2018).

2.4 Biased Random-Key Genetic Algorithms (BRKGA)

Genetic algorithms were introduced since the 60s to find feasible solutions to complex
problem using a replication of the principles from Darwin´s natural evolution. A genetic
algorithm starts with a constructed initial population of solutions. Similar to nature, the
solutions pass on their codification to the next generation, using reproduction and crossover
operations. These is described as the survival-of the-fittest, where the population became
stronger over generations. The main idea is to reach a generation with a solution near the
optimal.

BRKGA is an extension of the traditional RKGA proposed by Bean (Bean, 1994). As
mentioned before, each individual of the total population has a random key, defined as “a
string, or vector, of randomly generated real numbers in the interval [0,1]” (Gonçalves,
2011). The random-key codifies a solution of the optimization problem. However, in order
to visualize the result and fitness of the codified individual, a decoder must be needed. The
decoder is a deterministic algorithm that converts a codified individual with random key, to
an objective value of the optimization problem.

 The BRKGA assigns 𝑛) vectors of random keys to an initial population 𝑃*, each of size 𝑛+.
Each allele 𝜆! with 𝑖	 ∈ 		1, … , 𝑛) (vector of random keys), is randomly generated in the real
interval (0,1]. The alleles are translated into feasible solutions using a decoder. Fitness value
of the feasible solution for the optimization problem is defined by 𝑓(𝜆!).

18

More recently, J.F. Gonçalves, M.G.C. Resende, and R.F. Toso (Gonçalves, 2012)

present a differentiation between RKGA and BRKGA. The main difference between RKGA
and BRKGA is the matting process. In RKGA both parents are selected at random from the
entire population. In Biased-random algorithm the population is divided into elite and non-
elite populations, each individual is generated by matting one element from the elite current
population (𝑎) and another from the non-elite class (𝑏). To determine which parent will
transfer the key to the next generation a biased coin toss is executed for 𝑛+ times. For each
coin toss	 𝑗 ∈ 1,… , 𝑛+ the offspring has a probability 𝑝, > .5 to inherit the 𝑗-th key from 𝑎
(vector of elite individuals), and a probability 𝑝,̅ = 1 −	𝑝, to inherit from 𝑏 .

Consequently, Biased Random-Key Algorithms have been used for multiple applications
such as flowshop problems (Andrade et al., 2019), telecommunications and logistics
(Resende, 2011). To provide more accurate solutions than the RKGA, in a shorter time.

19

Chapter 3

3.1	Mathematical	Model		

In the following chapter, a description of a mathematical integer linear programming
is present for the FTPS-CA. First a table with the parameters, decision variables, and
auxiliary decision variables is presented, followed by the complete mathematical framework.
At the end of the chapter, some specific considerations are justified related with the
configuration of the problem.

Table 2. Parameters, Decision Variables and Auxiliar Decision Variables

Parameters: Description

N Set of nodes
L Set of families
K
V
Q

Set available agents
Total number of visits
Agents capacity

Fl
dij
nfl

Nodes in the family l, l = 1,…, L
Distance from node i to node j, i, j = 0, …, N
Number of nodes of family l to visit, l = 1, …,
L

Decision Variables:

Description

xijk The variable is = 1, if the node i precedes node j, and its
traversed by agent k, i, j,= 0, 1, …, N, k = 1, ….,
K

Auxiliar Decision
Variables:

Description

uik ≥ 0 Node i potential, i = 1, …, k = 1, …, K

The	 parameters,	 	 decision	 variable	 and	 auxiliary	 decision	 variable	 for	 the	
mathematical	 model	 are	 shown	 in	 Table	 2	 .	 For	 the	 next	 part,	 the	 mathematical	
formulation	of	the	problem	is	presented	with	the	respective	description.	

20

 (3.1)

Subject to:

 (3.2)

 (3.3)

 (3.4)

 (3.5)

 (3.6)

 (3.7)

 (3.8)

 (3.9)

 (3.10)

 (3.11)

 (3.12)

The problem is formulated using a binary integer program (BIP), where the binary

variable 𝑥!,#,. = 1, when the arc from node 𝑖 → 𝑗 is traversed by the agent k, and 𝑥!,#,. = 0	
otherwise. The objective function (3.1) minimizes the total distance traveled for the selected
tours of the agents. The following constraints (3.2) and (3.3) regulate that all the routes of
the multiple agents start and end in the depot {0}, and all the agents must leave the origin.
Constraints (3.4) and (3.5) specify that at most one arc must enter and leave each node,

ååå
= = =

N N

j
ijk

K

k
ijxd

0 i 0 0
min

Kkx
N

j
jk ,...,1 ,1

1
0 ==å

=

Kkx
N

i
ki ,...,1 ,1

1
0 ==å

=

Kkx
N

i
ki ,...,1 ,1

1
0 ==å

=

Njx
N

i

K

k
ijk ,...,1 1

0 1
=£åå

= =

Nix
N

j

K

k
ijk ,...,1 1

0 1
=£åå

= =

ååå
= = =

+=
N

i

N

j

K

k
ijk KKNx

0 0 1

KkQx
N

i

N

j
ijk ,...,1

0 1
=£åå

= =

Llnfx l

N

i Fj

K

k
ijk

l

,...,1
0 1

==ååå
= Î =

Llnfx l
Fi

N

j

K

k
ijk

l

,...,1
0 1

==ååå
Î = =

KkNjxx
N

i
jik

N

i
ijk ,...,1,,...,0 ,0

00
===-åå

==

KkjiNjiQQxuu ijkjkik ,...,1,,,...,1, 1 =¹=-£+-

21

respectively. The total number of visits is formulated by constraints (3.6). The next
constraints (3.7), establish a finite capacity for the K agents. In addition, constraints (3.8) and
(3.9) establish the number of arcs to enter and leave each of the families. Constraints (3.10)
regulates the flow conservation, while the sub-tour elimination strategy is denoted by
constraints (3.11).

For the final consideration of the problem, the mathematical formulation assumes that

all the agents must leave the deposit or starting point ((Constraints (3.2) and (3.3)).

22

Chapter 4

Resolution	Methodologies	

4.1 Integer Programming Method

The first methodology consists of an Integer Programming strategy using a
formulation in AMPL software with CPLEX v.12.9 as a programming solver. The Family
Traveling Salesman Problem with Capacitated Agents is an integer problem. It is well known,
that most of scheduling, touring, routing, and sequencing problems are part the pure integer
programming problems. Thus, the complete mathematical framework was translated into
AMPL programming language to build the BIP of the FTSP-CA.

AMPL provides an optimization modeling lifecycle that enables the correct

formulation of the FTSP-CA, and also tests the different benchmark instances with CPLEX
as a solver. For version 12.9, CPLEX uses a branch-and-bound search to find a feasible best
solution for the instance. The branch-and-bound was initially proposed by Land and Doig
(Land and Doig, 1960), as an alternative to obtain optimal integer solutions to complex
problems which cannot be solved in polynomial time.

According to Tomazella et al., the branch-and-bound method consists “of and implicit

enumeration of the solution by creating partial sequences job per job and creating a tree that
branches into complete solutions” (Tomazella, 2020). Due to the FTSP-CA complexity as a
NP-hard problem, the Integer Programming technique will be applied in the computational
experiments in order to find the optimal solutions or at least feasible solutions for the
benchmark instances.

4.2 BRKGA Method

The second methodology consists of a Biased Random Key Genetic Algorithm
(BRKGA) implementation. As mentioned in Chapter 2, BRKGA is an algorithm designed in
the “survival of the fittest” in order to achieve complete optimal or near optimal solutions for
complex optimization problems. A complete description of the algorithm is proposed by
Bean (Bean,1994). In Figure 5, BRKGA is presented.

23

Figure 5. BRKGA´s algorithm (Morán-Mirabal,2014).

To evolve the current population to the 𝑖-th generation of individuals, 𝑃*	is

partitioned in two types of individuals: elite individuals (𝑃!,) and non-elite individuals (𝑃!,̅).
Elite individuals are composed by 𝑛, individuals, which are the evaluated to fit the
optimization problem. Non-elite individuals are the remaining ones, composed by 𝑛 − 𝑛,,
where 𝑛, <	𝑛) − 𝑛,. After this segmentation process, all elite individuals in 𝑃!, are copied
into the population of the following generation (𝑃!/&). Secondly, a mutant vector of random
keys is inserted to the population 𝑃!/& . A mutant is a set of 𝑃0 of 𝑛0 individuals, with the
restriction that 2	𝑥	 𝑛, <	𝑛) and 𝑛, + 𝑛0 	≤ 𝑛). Last group of individuals are found by
matting 𝑛1 pairs of individuals from 𝑃! where 𝑛1 =	𝑛) − 𝑛,	−	𝑛0. The crossover selects
one individual from the elite group and another from the non-elite group. The matting process
is randomly selected with replacement. However, different form traditional RKGA, in
BRKGA, to determine which parent will transfer the key to the next generation a biased coin
toss is executed for 𝑛𝑐 times. For each coin toss 𝑗∈1,…,𝑛𝑐 the offspring has a probability 𝑝𝑒
> .5 to inherit the 𝑗-th key from 𝑎 (vector of elite individuals), and a probability 𝑝𝑒=̅1− 𝑝𝑒 to
inherit from 𝑏 .

The BRKGA is stopped until the acceptance criterion is reached. The total number of
generations produced by the metaheuristic is denoted by 𝑔. 𝑃𝑔 is returned as the final
individual with the best fitness for the optimization problem.

24

From the BRKGA´s method description, a list of parameters are explained in Table
3. These parameters are included in Toso and Resende´s Application Programming Interface
(Toso and Resende, 2012). They provided this API with the following set of necessary
parameters.

Table 3. BRKGA´s Parameters Description

Parameter Description
n Total number of alleles per chromosome
p Number of chromosomes in population
𝑝, Size of elite set in population
𝑝0

𝑝,

Number of mutants to be introduced in population at
each generation
Probability that an allele is inherited from the elite
parent

For the FTS-CA experimental computation, the complete population was composed by 1000
chromosomes, p= 1000 .The size of the elite population, 𝑝, = .20. For each new generation
a percentage of 𝑝0 = .10, of mutant individuals is added to to the population 𝑃!/&. Finally,
the probability to inherit from the elite parent in the crossover matting, is denoted by 𝑝, =
.70.

When the algorithm achieves the stopping condition, 𝑃𝑔 is returned as the final individual
with the best fitness for the optimization problem. To interpret this solution a decoder is used
to retrieve the best feasible solution.

The feasible solution in the FTSP-CA is encoded as an |N| + 2(KN) vector λ of random keys,
where KN = j∈1,...,K nv j . The complete random vector key is divided in three segments for
a better comprehension. The first part, |N|, produces a random number per each node in the
FTSP-CA instance, this segment of the random key will be later use to determine which
subset of nodes must be visited per family. For the second and third segments of the random
key, each one of them haas a length of KN random keys. This parts of the random key are
used to define the corresponding agent and the tour to be followed respectively.

In order to interpret the solution the decoder can be understood in three different stages
according to the initial segmentation of the complete random key. Figure 6. represents the
correct segmentation per decoding stages. In this example, a FTSPCA instance with the
following parameters is considered: N= 20 , L=4 , K=3, Q=4, F(1)=5, F(2)=4, F(3)=6,
F(4)= 4, V(1)=3, V(2)=2, V(3)=4, V(4)=3.

25

Figure 6. Decoding Stages of a FTSP-CA Random Key.

In order to transalate 𝑃𝑔 into a feasible solution to the FTSP-CA, the decoding process stages
are described, the nomenclature is based on the FTSP-BRKGA proposed by Morán-Mirabal
et al. (Morán-Mirabal, 2014):

1. Stage I - Nodes Selection: The first segment of N random keys are used to determine
the subset of nodes will be visited per family. The segment is divided into L sets of
families Ri, i = 1, 2, . . . , L, each of size nf i. For each family random key, the nf i
keys are sorted in increasing order. Finally, select the nv j smallest key indices where
j = 1, 2, . . . , L.

2. Stage II – Agent Selection: The first KN segment represents the set of family nodes
obtained in stage I . The selected nodes are sorted in increasing order, where the first
random key of this segment corresponds to the family 1 node with the lowest random
key from stage 1. In order to match the random key with the agent, an interval
segmentation of length I = 3

34
 is stablished within [0,1] and a total of K segments.

Finally, pair the random key value with the corresponding agent according its interval
number.

3. Stage III – Tour Selection: The remaining segment of KN random keys are sorted in
increasing order. The indices are used to define the sequence in which the nodes from
stage II will be visited.

26

Chapter 5

Experimental	Results		
The experimental process was conducted by both methodologies: Integer

programming and a biased random-key genetic algorithm. A group of 21 instances were
used to test the performance of both models. Instances are divided into 7 different blocks
depending on the number of nodes contained. The total number of nodes vary between 13 to
1001. Furthermore, the instances were taken from “Randomized Heuristics for the Family
Traveling Salesman Problem” (Morán-Mirabal, 2014).

Original instances were adapted in terms of Family Traveling Salesman Problem with
Capacitated Agents (FTSP-CA), adding two new blocks of parameters: K (agents) and Q
(capacity). For each block of instances, there are two scenarios considered: Fixed-Agents
and Fixed-Capacity. The fixed value varies from 2-18.

All the experimental tests were conducted using a laptop with a 2.4 Gigahertz Intel 8th
Generation Core i5 with 8GB of RAM. For integer programming method AMPL software
using CPLEX version 12.9 was used, and X-code version 10.2.1 for the BRKGA algorithm.

5.1 Instances Description

The complete list of benchmark instances for FTSP are described in Table 4. Instances
are in the standard form for family traveling salesman problem. The table consist in a group
of 21 instances. They are divided according to the total number of nodes corresponding to
the problem in blocks of three instances. There are 7 major blocks of instances: Burma14,
Bayg29, Att48, A280, Gr666 and Pr1002. The parameters for each instance are: Total number
of arcs denoted as | N | + 1, total number of families L, total number of visits V, the number of
nodes per family Fl, and the number of nodes to visit per each family l, denoted as nfl.

Table 4: Benchmark FTSP Instances [Morán-Mirabal, 2014]

Instance Name | N | + 1 L V Fl nfl

Burma14_3_1001_1001_2 14 3 6 [4, 5, 5] [2, 2, 2]
Burma14_3_1001_1002_2 10 [4, 2, 4]
Burma14_3_1001_1003_2 4 [2, 1, 1]

Bayg29_4_1001_1001_2 29 4 16 [7, 9, 6, 6] [6, 4, 5, 1]
Bayg29_4_1001_1002_2 17 [2, 9, 1, 5]
Bayg29_4_1001_1003_2 18 [6, 6, 1, 5]
Att48_5_1001_1001_2 48 5 34 [12, 9, 9, 7, 10] [10, 4, 9, 7, 4]
Att48_5_1001_1002_2 25 [8, 2, 9, 1, 5]
Att48_5_1001_1003_2 15 [6, 1, 3, 3, 2]

Bier127_10_1001_1001_2

127

10

62

[10, 4, 13, 1, 12, 4, 6, 1, 5,
6]

27

Bier127_10_1001_1002_2
85

[12, 12, 14, 8, 13,
16, 13, 8, 17, 13]

[8, 2, 12, 7, 9, 9, 5, 5, 17,
11]

Bier127_10_1001_1003_2

60 [6, 1, 13, 3, 3, 13, 13, 2, 2,
4]

A280_20_1001_1001_2 280 20 179
[14, 10, 14, 4, 13, 9, 15, 4,
5, 14, 6, 7, 6, 8, 13, 7, 9, 13,

6, 2]

A280_20_1001_1002_2 156

15, 14, 16, 11, 19,
15, 18, 10, 17, 16,
16, 8, 7, 15, 24, 8,
11, 13, 15, 11]

[8, 2, 12, 9, 9, 5, 17, 6, 3, 9,
7, 2, 6, 11, 4, 6, 11, 7, 11,

11]

A280_20_1001_1003_2 141
[14, 14, 6, 1, 13, 3, 18, 3, 2,
4, 10, 4, 4, 8, 5, 4, 9, 4, 14,

1]

Gr666_30_1001_1001_2 666 30 357
[27, 24, 24, 17,
29, 19, 20, 17, 27,
24, 26, 15, 15, 30,
40, 11, 19, 28, 27,
20, 28, 22, 24, 14,
23, 15, 17, 18, 20,

25]

[14, 10, 15, 4, 13, 9, 15, 4,
22, 5, 14, 6, 15, 30, 24, 7, 2,
1, 19, 5, 6, 13, 18, 9, 21, 10,

15, 2, 10, 19]

Gr666_30_1001_1002_2 328

[8, 2, 15, 9, 21, 17, 14, 3, 9,
7, 10, 6, 11, 4, 39, 11, 11,
26, 7, 8, 1, 8, 14, 7, 19, 5, 6,

9, 9, 12]

Gr666_30_1001_1003_2 328

[6, 17, 13, 2, 4, 12, 4, 5, 12,
14, 15, 9, 4, 14, 33, 10, 17,
27, 17, 8, 6, 8, 2, 5, 8, 9, 17,

15, 6, 9]

Pr1002_40_1001_1001_2 1002 40 486
[22, 28, 27, 30,
32, 24, 21, 22, 29,
30, 27, 16, 20, 30,
38, 16, 21, 23, 27,
28, 23, 25, 26, 26,
21, 24, 20, 30, 18,
25, 25, 27, 27, 21,
26, 24, 28, 28, 25,

21]

[14, 10, 15, 4, 13, 9, 15, 4,
22, 25, 5, 14, 6, 30, 24, 14,
13, 7, 25, 22, 2, 1, 19, 5, 6,
13, 18, 9, 15, 2, 22, 10, 19,
11, 1, 8, 3, 8, 6, 17]

Pr1002_40_1001_1002_2 538

[8, 2, 15, 25, 9, 21, 17, 14,
22, 22, 3, 9, 7, 10, 6, 11, 4,
22, 27, 7, 11, 7, 8, 1, 8, 14,
19, 21, 6, 9, 9, 12, 26, 8, 23,

21, 8, 28, 18, 20]

Pr1002_40_1001_1003_2 463

[6, 17, 13, 19, 19, 18, 19, 2,
4, 26, 12, 4, 5, 12, 15, 9, 4,
14, 1, 15, 17, 17, 8, 6, 8, 2,
5, 8, 17, 15, 6, 9, 3, 20, 15,

5, 14, 26, 18, 10]

Benchmark instances were adapted to the form of FTSP-CA. There is a complete set
of 36 new instances described in Table 5. Furthermore, each new instance contains a specific
number of agents K, with a maximum capacity Q. All of the instances were placed in two
different scenarios. Scenario A consist in a fixed value for the capacity and this value is
higher than the number of available agents. On the other hand, scenario B alternates the

28

value of capacity-agents. All the instances in scenario B have a higher number of agents than
capacity. Fixed values vary from 2 – 18.

Table 5. List of FTSP-CA Adapted Instances

Instance Name | N | + 1 L V

 A

 Q Fl

Burma1001A 14 3 6 2 3 [4, 5, 5]
Burma1001B 6 3 2
Burma1002A
Burma1002B
Burma1003AB

 10
 10
 5

2
5
2

5
2
2

Bayg1001AB 29 4 16 4 4 [7, 9, 6, 6]
Bayg1002A 17 4 5
Bayg1002B 17 5 4
Bayg1003A 17 4 5
Bayg1003B 18 5 4
Att1001A 48 5 34 5 7 [12, 9, 9, 7, 10]
Att1001B 34 7 5
Att1002AB 25 5 5
Att1003A 15 3 5
Att1003B 15 5 3
Bier1001AB 127 10 62 8 8 [12, 12, 14, 8, 13, 16, 13,

8, 17, 13] Bier1002A 85 8 11
Bier 1002B 85 11 8
Bier1003AB 60 8 8
A1001A 280 20 179 12 15 15, 14, 16, 11, 19, 15, 18,

10, 17, 16, 16, 8, 7, 15,
24, 8, 11, 13, 15, 11]

A1001B 179 15 12
A1002A 156 12 13
A1002B 156 13 12
A1002AB 141 12 12
Gr1001A 666 30 357 16 23 [27, 24, 24, 17, 29, 19,

20, 17, 27, 24, 26, 15, 15,
30, 40, 11, 19, 28, 27, 20,
28, 22, 24, 14, 23, 15, 17,

18, 20, 25

Gr1001B 357 23 16
Gr1002A 328 16 21
Gr1002B 328 21 16
Gr1003A 328 16 21
Gr1003B 328 21 16
Pr1001A 1002 40 486 18 27 [22, 28, 27, 30, 32, 24,

21, 22, 29, 30, 27, 16, 20,
30, 38, 16, 21, 23, 27, 28,
23, 25, 26, 26, 21, 24, 20,
30, 18, 25, 25, 27, 27, 21,
26, 24, 28, 28, 25, 21]

Pr1001B 486 27 18
Pr1002A 538 18 30
Pr1002B 538 30 18
Pr1003A 463 18 26
Pr1003B 463 26 18

29

5.2 CPLEX results

The first part of the experimental analysis includes the results of the adapted FTSP-CA
instances using AMPL system with CPLEX 12.9 solver. This integer programming solver is
capable to evaluate the FTSP-CA instances directly.

As mentioned in the description of the adapted instances, the classification of the instances
blocks is according to the total number of nodes. Instances from the first block, Burma1001-
Burma1003, have 13 nodes. Second block (Bayg1001-Bayg1003) contains 28 nodes per
instance. Instances Att1001-Att1003 have 47 nodes. Finally, the fourth block (Bier1001-
Bier1003) includes 126 nodes per instance.

Table 6, shows the results of running CPLEX 12.9 on 19 FTSP-CA instances. The table
contains the instance name, the total distance is presented as the final CPLEX solution.
Furthermore, an explanation of the result condition is expressed. For Optimal Integer
Solutions with MIP-gap, a relative MIP-Gap is presented. The relative MIP-Gap is presented
which is the gap of the difference between the current upper and lower bounds on the optimal
cost in the branch-and-bound procedure. When the relative MIP-Gap is zero, the result is an
optimal integer solution (Angalakudati, 2014).

Table 6. List of CPLEX results

 *The branch-and-bound reached the time limit.

Using CPLEX as a solver to find optimal solution for the FTSP-CA performs well using
instances Burma and Bayg. In both cases the solution is either Optimal Integer Solution or

Instance Name CPLEX Solution Result Condition Relative MIP-Gap Time
Burma1001A 15.2479 Optimal Integer Solution 0.00 0.612863
Burma1001B 18.2279 Optimal Integer Solution 0.00 0.448693
Burma1002A 32.5140 I.S with MIP-gap 8.0571e-05 4.03052
Burma1002B 48.9479 O.I.S with MIP-gap 1.45163e-16 3.01468
Burma1003AB 13.630000 Optimal Integer Solution 0.00 1.00
Bayg1001AB 8304.8700 I.S with MIP-gap 9.99414e-05 887.247
Bayg1002A 8311.321494 I.S with MIP-gap 9.47143e-05 1419.53
Bayg1002B 9131.590974 I.S with MIP-gap 9.33979e-05 496.129
Bayg1003A 7687.72851 I.S with MIP-gap 9.87956e-05 2326.67
Bayg1003B 8457.99851 I.S with MIP-gap 9.65243e-05 184.758
Att1001A 42677.802 I.S with MIP-gap .372425 5400*
Att1001B 53313.4318 I.S with MIP-gap .475482 5400*
Att1002AB 37216.58 I.S with MIP-gap .168075 3600*
Att1003A 14859.3619 I.S with MIP-gap .312021 3600*
Att1003B 20352.3683 I.S with MIP-gap .286678 3600*
Bier1001AB 73067.1538 I.S with MIP-gap .584387 3600*
Bier1002A 174083.9091 I.S with MIP-gap .545304 3600*
Bier1002B 189226.0689 I.S with MIP-gap .538530 3600*
Bier1003AB 103378.875 I.S with MIP-gap .648457 3600*

30

O.I.S with a low relative MIP gap. However, the performance of integer programming solver
is not accurate for larger instances and requires an extensive amount of time if a feasible
solution is desired. Bold solutions represent an integer solution with high relative MIP-gap
due to the limitation in computing time. For that reason, a better solution technique is
required for this type of NP-hard problem.

5.3 BRKGA results

For the second part of the computational experimentation, the performance of the Biased
Random-Key Genetic Algorithm is compared with the result of the integer programming
solver. The algorithm was coded in C++, using the API from Toso and Resende (Toso and
Resende, 2012). All the experiments were executed with X-Code version 10.2 on a 2.4
Gigahertz Intel 8th Generation Core i5 processor with 8GB of RAM.

The BRKGA algorithm was calibrated with a population size |𝑃| = 1000. The fraction of
the population to be the elite set is denoted by 𝑝𝑒 = .20, and the percentage of the population
to be replaced by mutants is denoted by 𝑝𝑚 = .10. The probability of an offspring to inherit
the key from an elite parent during the crossover stage is 𝑝5 = 0.7. The algorithm runs for a
maximum of 10000 generations. BRKGA will run until one of the ending criteria is fulfilled.
First ending approach is reached when the algorithm provides 100 iterations without an
improvement in the solution. Second approach is a time limitation of 7200 seconds.

The complete set of 36 adapted FTSPCA instances were solved with the BRKGA. Table 7
summarizes the experimental computation of an individual instance. The experiment was
conducted running the algorithm 10 times for each instance. For each run the best solution in
distance, total number of iterations and total time are display.

Table 7. Individal results for instance (Bayg1002B)
Bayg1002B

Run Number Best Solution Iterations Time
1 8521.188477 178 3
2 8491.591797 228 4
3 8477.118164 193 3
4 8521.188477 258 4
5 8477.118164 201 3
6 8477.118164 194 3
7 8651.52832 257 5
8 8477.118164 236 4
9 8477.118164 220 3
10 8491.59082 185 3
Avg. 8506.2678711 215.00 3.500
cMax. 8651.52832 258 5

31

Min. 8477.118164 185 3

𝝈 53.9806 29.13 0.71
C.V. 0.006 0.14 0.20

To compare the performance of the BRKGA and CPLEX, the average results of the 10-times
running experiment for each instance are compared with the integer programming solution.
Table 8 shows the complete arrangement of the 36 adapted instances using the BRKGA
solver. The table is divided into family blocks and contains the specific instance name, the
average cost of all runs, the best solution found which is the minimum cost value of the total
runs, the standard deviation of the 10 experimental solutions, the coefficient of variation per
instance, the average number of iterations and average time.

Table 8. List of BRKGA´s results

Instance Name Avarage Cost Best Solution 𝜎 C.V. Iterations Time
Burma1001A 15.251100* 15.251100* 0.00 0.00 103 1.00
Burma1001B 18.230801* 18.230801* 0.00 0.00 102 1.00
Burma1002A 32.514301* 32.514301* 0.00 0.00 123 1.10
Burma1002B 48.938400* 48.938400* 0.00 0.00 103 1.20
Burma1003AB 13.630000* 13.630000* 0.00 0.00 103 1.00
Bayg1001AB 8479.673145 8304.870117* 125.50 .015 189 2.80
Bayg1002A 8368.286426 8311.31543* 98.68 .012 233 3.90
Bayg1002B 9428.143554 9363.804688 40.20 .004 234 4.00
Bayg1003A 7731.651807 7687.728516* 45.38 .006 226 3.80
Bayg1003B 8506.267871 8457.118164* 53.98 .006 215 3.50
Att1001A 43780.2735 42242.19531 1369.98 .031 419 9.30
Att1001B 53142.596484 50978.86719 1753.55 .033 478 10.90
Att1002AB 36751.178125 35983.61719 566.61 .015 322 5.80
Att1003A 14923.035742 14859.34961 90.83 .006 198 3.00
Att1003B 20120.131445 20097.24805 55.03 .003 166 3.20
Bier1001AB 62571.777734 58377.09766 3400.04 .054 777 35.00
Bier1002A 155037.968750 145036.3125 8103.56 .052 418 72.80
Bier1002B 173146.039063 165589.9688 4914.33 .028 929 56.30
Bier1003AB 107131.796094 102284.0703 2275.27 .021 660 30.80
A1001A 7339.306836 6820.202637 377.13 .051 886 127.06
A1001B 8321.186621 7989.757812 387.02 .047 829 365.70
A1002A 6797.047559 6500.269043 330.20 .049 2199 320.50
A1002B 7112.204883 6701.203613 208.97 .029 2345 305.20
A1003AB 6512.760498 6055.009277 234.50 .036 1856 265.10
Gr1001A 7793.361133 7440.477539 249.87 .032 5818 3055.30
Gr1001B 8926.770996 8404.858398 314.23 .035 5628 2797.90
Gr1002A 6773.179688 6311.993652 326.91 .048 5479 2451.20
Gr1002B 7374.678711 6979.422852 245.47 .033 5811 2803.90
Gr1003A 6518.490283 5998.516113 243.72 .037 5344 2883.90
Gr1003B 7397.069000 6775.063965 310.74 .042 6261 3448.50
Pr1001A 918524.018750 877461.4375 28284.81 .031 7713 6894.50
Pr1001B 1091218.781250 1041818.1880 36901.70 .034 7278 6871.10
Pr1002A 1068720.562500 1019185.250 32579.67 .030 7537 7123.40
Pr1002B 1309075.600000 1251161.880 38170.69 .029 7258 6539.50
Pr1003A 907979.875000 861434.0625 35224.12 .039 7164 6012.20
Pr1003B 1058516.275000 1018187.813 26688.11 .025 6437 6140.40

32

The behavior of the BRKGA in the Burma´s block of instances is similar to the CPLEX
solver. In both alternatives all of the instances reach an optimal integer solution with a non-
significant relative gap value. For the Bayg´s group, CPLEX performs more accurate
obtaining the lowest best solutions for all of the instances. However, the solutions provided
by the BRKGA are also reliable. Although the variation of BRKGA, for Bayg´s instances 4
out of 5 instances reaches the optimal value at least once.

The main differences between both solution methods became visible in instances from block
three and four. As mentioned in CPLEX results, the iteration process stopped due to limited
time (3600-5400 seconds). For the BRKGA algorithm the program stopped when the criteria
were reached, which takes from 3.00-72.80 seconds. In this short space of time BRKGA´s
average results outperform CPLEX in 6 out of 9 instances. Furthermore, for individual best
solution, the BRKGA develops a better or equal solution than the integer programming
solver.

For instances above the 279 nodes (A, Gr, Pr), the BRKGA solutions behave similarly
providing feasible solutions for the generous amount of running time; moreover, the solutions
deviation is considerably low. The BRKGA results presents a coefficient of variation ranging
from 0.004 – 0.054. According to Gomes (Gomes, 2009), the experiments with a coefficient
of variation below 10% have a high precision. Due to the low coefficient of variation, the
BRKGA method will provide similar and high-quality solutions for the FTSP-CA.
.

33

Chapter 6

Conclusions	and	Future	Work	
In this thesis work, the Family Traveling Salesman Problem with Capacitated Agents

(FTSP-CA) is developed as a BIP formulation and evaluated by two different solving
techniques. As an extension of the standard FTSP, the new adaptation of the problem adds
two important factors that should be considered in logistics situations involving a family
traveling salesman problem: agents and capacity.

The applied methodologies present feasible solutions for the FTSP-CA and can be

used according to their strengths to deliver optimal integer solutions or optimal integer
solutions with MIP-Gap. Integer programming strategy display an accurate alternative for
solving smaller instances; however, the complexity of the problem does not allow to run
instances above the fourth block of instances. Also, the amount of time used for solving
instances from third and fourth block is limited to the computer specifications. On the basis
of this constraints, the BRKGA methodology contributes for solving the FTSP-CA in a
moderate time, providing feasible solutions with low variation.

 Furthermore, for larger instances, the genetic algorithm outperforms the integer
programming solver tool. There is no feasible way in time to provide an optimal integer
solution with CPLEX for larger instances. The experimental computation displays a
significant relative gap between the solution reached and the possible optimal integer
solution.

In BRKGA methodology, two scenarios were evaluated in order to measure the
impact of the parameters K (agents) and Q (capacity), in the optimal integer solution. As a
result, the algorithm demonstrates that a configuration with higher number of agents
(Scenario B), increases the total distance cost of the tour; however, increasing the number of
agents provides a lower service time to complete the touring process.

In conclusion, solving the Family Traveling Salesman Problem with Capacitated
Agents, requires the implementation of a heuristic solving technique, due to the complex
structure of the NP-hard problem. The BRKGA heuristic performed as fast and accurate for
the smaller instances compared to CPLEX solver, and for larger instances shows a good
approximate value of the optimal integer solution, with lower coefficients of variation.

The presentation of the FTSP-CA enables future research for developing new

specifications in the problem. As mentioned in the mathematical framework, the problem
forces to all agents to leave the depot; however, in real life, some feasible solutions should
not require employing all the available resources. This and other similar conditions can be
applied to FTSP-CA in order to adjust to more demanding real-life parameters and
constraints.

34

Bibliography
[1] Andrade, C. E., Silva, T., & Pessoa, L. S. (2019). Minimizing flowtime in a flowshop
scheduling problem with a biased random-key genetic algorithm. Expert Systems with
Applications, 128, 67-80.

[2] Angalakudati, M., Balwani, S., Calzada, J., Chatterjee, B., Perakis, G., Raad, N., &
Uichanco, J. (2014). Business analytics for flexible resource allocation under random
emergencies. Management Science, 60(6), 1552-1573.

[3] Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation
technique for the clustered generalized traveling salesman problem with applications to
logistics. European Journal of Operational Research.

[4] Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA journal on computing, 6(2), 154-160.

[5] Bernardino, R., & Paias, A. (2018). Solving the family traveling salesman
problem. European Journal of Operational Research, 267(2), 453-466.

[6] Chang, Y. S., & Lee, H. J. (2018). Optimal delivery routing with wider drone-delivery
areas along a shorter truck-route. Expert Systems with Applications, 104, 307-317.

[7] Fan, T., Tao, F., Deng, S., & Li, S. (2015). Impact of RFID technology on supply chain
decisions with inventory inaccuracies. International Journal of Production
Economics, 159, 117-125.

[8] Fan, T. J., Chang, X. Y., Gu, C. H., Yi, J. J., & Deng, S. (2014). Benefits of RFID
technology for reducing inventory shrinkage. International Journal of Production
Economics, 147, 659-665.

[9] Flood, M. M. (1956). The traveling-salesman problem. Operations research, 4(1), 61-
75.

[10] Gomes, F.P. Curso de estatística experimental. 15.ed. Piracicaba: Esalq, 2009. 477p.

[11] Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17(5), 487-525.

[12] J.F. Gonçalves, M.G.C. Resende, and R.F. Toso. Biased and unibiased random key
genetic algorithms: An experimental analysis. Technical report, AT&T Labs Research,
Florham Park, NJ, 2012.

[13] Karp, R. M. (1975). On the computational complexity of combinatorial
problems. Networks, 5(1), 45-68.

35

[14] Land, A. H., & Doig, A. G. (2010). An automatic method for solving discrete
programming problems. In 50 Years of Integer Programming 1958-2008 (pp. 105-132).
Springer, Berlin, Heidelberg.

[15] Laporte, G., Mercure, H., & Nobert, Y. (1987). Generalized travelling salesman
problem through n sets of nodes: the asymmetrical case. Discrete Applied
Mathematics, 18(2), 185-197.

[16] Morán-Mirabal, L. F., González-Velarde, J. L., & Resende, M. G. (2014). Randomized
heuristics for the family traveling salesperson problem. International Transactions in
Operational Research, 21(1), 41-57.

[17] Pintea, C. M., Pop, P. C., & Chira, C. (2007). The generalized traveling salesman
problem solved with ant algorithms. Journal of Universal Computer Science, 13(7), 1065-
1075.

[18] Sathya, N., & Muthukumaravel, A. (2015). A review of the optimization algorithms on
traveling salesman problem. Indian Journal of Science and Technology, 8(29), 1-4.

[19] S. S. Srivastava, S. Kumar, R. C. Garg, and P. Sen. Generalized traveling sales- man
problem through n sets of nodes. J. of the Canadian Operational Research Society, 7:97–
101, 1970.

[20] Tomazella, C. P., & Nagano, M. S. (2020). A comprehensive review of Branch-and-
Bound algorithms: Guidelines and directions for further research on the flowshop
scheduling problem. Expert Systems with Applications, 113556.

[21] R.F. Toso and M.G.C. Resende. A C++ application programming interface for biased
random-key genetic algorithms. Technical report, AT&T Labs Research, Florham Park, NJ,
2012.

[22] Yang, J., Wu, C., Lee, H. P., & Liang, Y. (2008). Solving traveling salesman problems
using generalized chromosome genetic algorithm. Progress in Natural Science, 18(7), 887-
892.

[23] Yuan, Y., Cattaruzza, D., Ogier, M., & Semet, F. (2020). A branch-and-cut algorithm
for the generalized traveling salesman problem with time windows. European Journal of
Operational Research.

[24] Zhang, L. H., Li, T., & Fan, T. J. (2018). Radio-frequency identification (RFID)
adoption with inventory misplacement under retail competition. European Journal of
Operational Research, 270(3), 1028-1043.

[25] Zhou, W., Piramuthu, S., Chu, F., & Chu, C. (2017). RFID-enabled flexible
warehousing. Decision Support Systems, 98, 99-112.

36

[26] Zia, M., Cakir, Z., & Seker, D. Z. (2018). Spatial Transformation of Equality–
Generalized Travelling Salesman Problem to Travelling Salesman Problem. ISPRS
International Journal of Geo-Information, 7(3), 115.

.

