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Solving the Family Traveling Salesman Problem with Capacitated Agents 

by 
Kevin Alain Reyes Vega 

Abstract 

 

This thesis leads towards a new approach for the Family Traveling Salesman Problem 
(FTSP) using as an example a warehouse common problem. The enterprise owner of the 
warehouse wants to optimize the picking out total distance of the products, taking into 
account the available logistic resources.  

 
This new extension of the standard FTSP is denoted as Family Traveling Salesman 

Problem with Capacitated Agents (FTSP-CA). The formulation of the problem is a single 
objective model, with binary variables. For the computational experimentation two 
methodologies were applied: Integer programming and Heuristics.  
 
 From a set of 21 benchmark FTSP instances, a new group of 36 adapted instances 
were created that consider the FTSP-CA parameters. For the integer programming technique, 
the Cplex solver is used to obtain optimal integer solutions. For the second methodology, a 
Biased Random-Key Genetic Algorithm (BRKGA) was implemented to improve the 
performance in time and while maintaining a high-quality value of solutions. Both techniques 
are compared to show the efficiency solving the FTSP-CA.  
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Chapter	1		

Introduction		
 

The Family Traveling Salesman Problem (FTSP), is an extension of the classic 
Traveling Salesman Problem (TSP). Both are well known due to their logistics applications 
to minimize the cost of travelling, providing better solutions for enterprises and governments. 
TSP is commonly used to optimize vehicle routes inside the city to deliver goods and 
products from distribution centers to retailers and costumers [6]. On the other hand,  the FTSP 
is tailored to the flexibility of modern warehouses systems. In a free-pick-and-drop 
mechanism [19] the storekeeper can freely move inventory items using a RFID tracking 
system to locate each specific product in a virtual space. Consequently, different family types 
of items are placed randomly in the warehouse.  

 
The FTSP was introduced by Morán-Mirabal et al. [13], considering a modern warehouse 
configuration. The problem consist in a warehouse picker, that must visit specific locations 
of the facility in order to pick-up different products. As mentioned before, the products 
belongs to an specific family, and are placed randomly within the warehouse. Consequently, 
a solution of the FTSP consist in a closed tour where the warehouse picker passes through 
each checkpoint once, starting and ending the tour in the same point.  
 
As an extension of the FTSP, the Family Traveling Salesman Problem with Capacitated 
Agents (FTSP-CA) simulate the logistics operations in a warehouse where multiple agents 
(warehouse pickers) with finite capacity of products pick-ups are available. Taking into 
consideration that companies warehouses rely on a human workforce doing operations 
simultaneously. As a result, different warehouse pickers are going to work in parallel, to 
fulfill the demand of checkpoints required to visit.  
 
The FTSP-CA is motivated by the fact that there is a necessity for enterprises to align the 
logistics inside a warehouse, to reduce the total cost in distance, time or money, generated 
by the daily operations of the warehouse pickers, providing an optimal integer solution for 
this scenario.  
 
 

1.1 Problem	Statement	and	Context	
In	 the	 Supply	 Chain	Management	 of	 a	 company,	many	different	 products	 are	

sorted	randomly	in	a	warehouse	using	a	Radio	Frecuency	Identification	(RFID)	system.	
An	inventory	system	classifies	each	product	into	a	family	number,	according	to	their	
size,	weight,	color,	etc.	Due	to	the	RFID	system,	similar	family	products	are	distributed	
randomly	inside	the	warehouse.	
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A	list	of	shipping	products	must	be	taken	out	by	multiple	agents	(warehouse	pickers).	
The	product	list	is	made	up	by	a	determined	number	of	visits	to	the	different	families.	
In	 order	 to	 fulfill	 the	 order,	 multiple	 agents	 (warehouse	 pickers)	 must	 visit	 the	
complete	family	visits,	starting	the	routing	process	and	ending	in	the	same	point,	which	
is	called	“depot”.	However,	agents	inside	the	warehouse	can	only	visit	a	node	(product	
location)	once,	and	must	be	limited	to	a	maximum	capacity	of	nodes.	As	mentionned	
this	problem	is	the	FTSP-CA.	

	

1.2	Motivation	
Logistics	 has	 been	 one	 of	 the	most	 important	 areas	 for	 business	 competitive	

advantage	 to	 the	 possibility	 to	 speed	 up	 inbound	 companies	 processes	 and	 deliver	
goods	to	the	costumers	in	the	minimum	time	possible.	Nowadays,	enterprises	demand	
intelligent	solutions	to	improve	their	Supply	Chain	Management,	and	Inventory	Control	
and	Transportation	Routing	are	very	important	to	achieve	that	goal.		

There	are	many	studies	about	RFID	Technology	 inside	warehouse,	 that	demonstrate	
the	 benefits	 to	 allocate	 products	 using	 this	 alternative	 [7]	 [8]	 [18].	 Indeed,	 RFID	 is	
becoming	 a	 promising	 solution	 to	 avoid	 inventory	 inaccuracy.	 For	 that	 reason,	 the	
actual	global	tendency	is	to	adopt		this	newer	technology	demanded	by	the	retailers	to	
provide	a	better	response	time	between	the	different	stages	of	the	Supply	Chain.	

However,	 this	 new	 warehouse	 configuration	 demands	 complex	 alternatives	 to	 the	
standard	traveling	salesman	problem	to	achieve	a	routing	solution.		

	

	

1.3 Contribution	
Adopting	 RFID	 technology	 as	 an	 alternative	 to	 inventory	 system	 provides	 a	

justification	to	create	a	new	routing	control	system	inside	the	warehouses	which	adapts	
to	the	family	sorting	of	products.	

The	main	contribution	of	this	thesis	is	to	present	a	new	problem	as	an	extension	of	the	
standard	family	traveling	salesman	problem.	This	extension	is	called	Family	Traveling	
Salesman	Problem	with	Capacitated	Agents	 (FTSP-CA).	Furthermore,	 the	 strategy	 to	
solve	 this	 NP-	 hard	 problem	 is	 presented,	 developing	 the	 heuristics	 to	 obtain	 an	
approximate	value	of	the	optimal	integer	solution,	using	a	Biased-	Random	Key	Genetic	
Algorithm	(BRKGA).		
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1.4 Thesis	Structure	
The	first	chapter	presents	the	main	introduction	of	the	problem	and	its	context.	

Moreover,	the	motivation	and	contribution	of	the	scientific	research	is	described.		

The	 second	 	 chapter	 presents	 a	 literature	 review,	 with	 the	 state-of-the-art	 and	
theoretical	 framework	 about	 the	 classic	 Traveling	 Salesman	 Problem	 and	 two	
important	configurations:	Generalized	Traveling	Salesman	Problem	(GTSP)	and	Family	
Traveling	Salesman	Problem	(FTSP).	At	the	end	of	the	chapter,	a	review	in	Heuristics,	
specifically	in	Biased-Random	Key	Genetic	Algorithms	is	shown.		

The	mathematical	 framework	 is	 presented	 in	 chapter	 three.	 First	 the	 paramaeters,	
decision	 variables	 and	 auxiliary	 decision	 variables	 are	 described,	 followed	 by	 the	
mathematical	model.		

In	 chapter	 four,	 two	 important	 methodologies	 are	 described	 which	 are	 the	
methodologies	used	in	this	thesis:	Integer	Programming	and	Heuristics.		

The	 fifth	 chapter	presents	 the	 complete	 computational	 experimentation.	On	 the	one	
hand,	the	computational	characteristics	are	listed.	On	the	other,	the	description	of	the	
different	instances	is	presented	and,	finally,	the	final	results	are	analyzed	and	discussed.		

Finally,	the	sixth	chapter	is	dedicated	to	the	conclusions	and	future	work	of	this	thesis.		
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Chapter 2  
 
Literature Review 
 

In this chapter, a brief description of the concepts and algorithms used throughout the 
thesis is given. The first part describes the concept of Traveling Salesman Problem (TSP), 
and some of the current variations are presented. Second section is dedicated to the Family 
Traveling Salesman Problem (FTSP), the specific variation of the problem on which the 
thesis is focus on. Finally, a background of Biased- Random Key Genetic Algorithms 
(BRKGA) is presented.  

 
 

2.1 Traveling Salesman Problem  
 

The Traveling Salesman Problem is well known for being part of NP-hard problems 
(Karp, 1972). In terms of theoretical computational, this NP-hard computational class is a set 
of problems with high complexity for which no algorithm is capable to solve all instances in 
polynomial time. The TSP consists in a “salesman” person who is looking to travel by the 
most proficient sequence of cities or nodes within its territory, bearing in mind that the 
salesman can only visit a city once, and must finish the tour in the starting location. (Sathya, 
2015). 
 

 
 

Fig.1 Representation of three different feasible solutions for the TSP. 
 

The visual representation of the Traveling Salesman Problem consists in a graph, with a set 
of nodes. The arrow that connects two nodes shows the cost vector (time, distance, or other 
attribute), produced by the traveling movement.  
 
Since 1934, when the problem was proposed by Hassler Whitney at Princeton University, 
the notation of the Traveling Salesman Problem has been evolving (Flood,1956). 
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Table 1. TSP Parameters 
 

Parameter Description 
  

n The number of nodes in the area 
i, j Indexes of variables relating nodes i and j 
𝑥!,# Binary variable equal to 1 when salesman 

goes from node i directly to node  j and 0 
otherwise.   

𝑑!,# Cost related to the distance traversed from 
node i to node j 

 
 

2.2 Generalized Traveling Salesman Problem (GTSP) 
 

The Traveling Salesman Problem has different variants. One specific configuration is 
the Generalized Traveling Salesman Problem, arising from the “clustering” of nodes, where 
the salesman or agent must visit only one node per cluster. Similar to the standard traveling 
salesman problem, the objective is to minimize the distance traveled, starting and finishing 
the tour in a determined node, and creating a Closed Hamiltonian Cycle.   

 

                     
 

Fig.2 Representation of a Closed Hamiltonian Cycle (Zia, 2018). 
 

The Generalized Traveling Salesman Problem has been introduced by Srivastava et al. 
(Srivastava, 1970). On the basis that standard traveling salesman problem is a NP-hard 
problem, the GTSP is still part of this class of problems. If all the clusters presented by a 
GTSP instance consist of a single node, a standard NP-Hard configuration is shown.   
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New approaches in the topic has been introduced by Yuan et al. (Yuan, 2020), using a branch- 
and-cut algorithm; Yang et al (Yang, 2008 ), proposed a genetic algorithm. Moreover, some 
alternatives to transform a GTSP to TSP have been applied by Zia et al. (Zia, 2018) without 
producing an extensive computational time solution. Importance of the Generalized 
Traveling Salesman Problem lies in its variety of different applications in logistics 
(Baniasadi, 2020) (Laporte, 1987).  

 
According to Pintea et al. (Pintea, 2007) formulation, the Generalized Traveling Salesman 
Problem, can be interpreted by a graph 𝐺 = (𝑁	, 𝐸), where 𝑁 is partitioned into 𝑝 clusters, 
and the cost of an edge  𝑒 = {𝑖	, 𝑗}  is denoted by 𝑐!,# . The goal is to minimize the total cost 
of the Hamiltonian tour, where there is only one node per cluster visited.  

 

                                       
Fig.3 Example Tour of a GTSP (Pintea, 2007). 

 
 
 
2.3 Family Traveling Salesman Problem (FTSP)  
 
The FTSP is another configuration of the standard Traveling Salesman Problem (TSP), it was 
introduced by Morán-Mirabal et al. (Morán-Mirabal, 2014) as an application of routing 
solutions inside modern warehouse using RFDI technology. In this particular application the 
complete set of nodes are segmented into different families and a single agent must travel a 
determined number of family visits. Different from the GTSP, in the FTSP the agent can visit 
more than one node per cluster, in this case, per family.   
 
The FTSP is modeled using a complete graph 𝐺 = (𝒩	⋃ 	{0} ,E	). In this formulation, {0} 
is the depot (where all the routes start and end). 𝒩 represents the set of nodes or cities, which 
displays a specific warehouse location, where an inventory product has been placed. The 
distance cost between a pair of nodes is denoted by dij > 0, , where 𝑖	 ≠ 𝑗. All distances are 
indexed in the edge-set E . 
 
For solving the FTSP, a prescribed number of nodes 𝑛𝑓$ must be visited in order to pursue 
the total minimum distance tour. The nodes are selected from a set Fl, where 𝑙 is the index of 
𝐿 families. Consequently, the total amount of visits 𝑉, is given by 𝑉 = 	∑ 𝑛𝑓$$%&→( . The 
warehouse is conditioned to a total of 𝐾agents. Each agent has a finite capacity 𝑄 measured 
by the maximum number of nodes that an agent can visit.  
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Figure 4. Example of FTSP Solution (Morán-Mirabal,2014). 

 
Due to the importance of the Family Traveling Salesman Problem, different algorithm 
alternatives have been proposed by Bernardino and Paias such as: The neighborhood search 
procedure, the local search procedure, the perturbation method and the ILS algorithm 
(Bernardino and Paías, 2018). 

 
 
2.4 Biased Random-Key Genetic Algorithms (BRKGA)  
 

Genetic algorithms were introduced since the 60s to find feasible solutions to complex 
problem using a replication of the principles from Darwin´s natural evolution. A genetic 
algorithm starts with a constructed initial population of solutions. Similar to nature, the 
solutions pass on their codification to the next generation, using reproduction and crossover 
operations. These is described as the survival-of the-fittest, where the population became 
stronger over generations. The main idea is to reach a generation with a solution near the 
optimal.  

 
BRKGA is an extension of the traditional RKGA proposed by Bean (Bean, 1994). As 
mentioned before, each individual of the total population has a random key, defined as “a 
string, or vector, of randomly generated real numbers in the interval [0,1]” (Gonçalves, 
2011). The random-key codifies a solution of the optimization problem. However, in order 
to visualize the result and fitness of the codified individual, a decoder must be needed. The 
decoder is a deterministic algorithm that converts a codified individual with random key, to 
an objective value of the optimization problem.  
 
 The BRKGA assigns 𝑛) vectors of random keys to an initial population 𝑃*, each of size 𝑛+. 
Each allele 𝜆! with 𝑖	 ∈ 		1, … , 𝑛) (vector of random keys), is randomly generated in the real 
interval (0,1]. The alleles are translated into feasible solutions using a decoder. Fitness value 
of the feasible solution for the optimization problem is defined by 𝑓(𝜆!). 
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More recently, J.F. Gonçalves, M.G.C. Resende, and R.F. Toso (Gonçalves, 2012) 

present a differentiation between RKGA and BRKGA. The main difference between RKGA 
and BRKGA is the matting process. In RKGA both parents are selected at random from the 
entire population. In Biased-random algorithm the population is divided into elite and non-
elite populations, each individual is generated by matting one element from the elite current 
population (𝑎) and another from the non-elite class (𝑏). To determine which parent will 
transfer the key to the next generation a biased coin toss is executed for 𝑛+ times. For each 
coin toss	  𝑗 ∈ 1,… , 𝑛+ the offspring has a probability 𝑝, > .5 to inherit the 𝑗-th key from  𝑎 
(vector of elite individuals), and a probability 𝑝,̅ = 1 −	𝑝, to inherit from 𝑏 .  
 
Consequently, Biased Random-Key Algorithms have been used for multiple applications 
such as flowshop problems (Andrade et al., 2019), telecommunications and logistics 
(Resende, 2011). To provide more accurate solutions than the RKGA, in a shorter time.  
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Chapter 3  

3.1	Mathematical	Model		
 

In the following chapter, a description of a mathematical integer linear programming 
is present for the FTPS-CA. First a table with the parameters, decision variables, and 
auxiliary decision variables is presented, followed by the complete mathematical framework. 
At the end of the chapter, some specific considerations are justified related with the 
configuration of the problem.  

Table 2. Parameters, Decision Variables and Auxiliar Decision Variables  

Parameters: Description 
  
N Set of nodes 
L Set of families 
K 
V 
Q 

Set available agents 
Total number of visits 
Agents capacity 

Fl 
dij 
nfl 

Nodes in the family l,                                      l = 1,…, L 
Distance from node i to node  j,                  i, j = 0, …, N 
Number of nodes of family l to visit,              l = 1, …, 
L 

Decision Variables: 
 

Description 

xijk The variable is = 1, if the node i precedes node j, and its 
traversed by agent k,           i, j,= 0, 1, …, N, k = 1, …., 
K 
 

Auxiliar Decision 
Variables:  

Description 

uik ≥ 0 Node i potential,                             i = 1, …, k = 1, …, K 

 

The	 parameters,	 	 decision	 variable	 and	 auxiliary	 decision	 variable	 for	 the	
mathematical	 model	 are	 shown	 in	 Table	 2	 .	 For	 the	 next	 part,	 the	 mathematical	
formulation	of	the	problem	is	presented	with	the	respective	description.	
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respectively. The total number of visits is formulated by constraints (3.6). The next 
constraints (3.7), establish a finite capacity for the K agents. In addition, constraints (3.8) and 
(3.9) establish the number of arcs to enter and leave each of the families. Constraints (3.10) 
regulates the flow conservation, while the sub-tour elimination strategy is denoted by 
constraints (3.11).  

 
For the final consideration of the problem, the mathematical formulation assumes that 

all the agents must leave the deposit or starting point ((Constraints (3.2) and (3.3)). 
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Chapter 4 

Resolution	Methodologies	
 

 
4.1 Integer Programming Method 
 

The first methodology consists of an Integer Programming strategy using a 
formulation in AMPL software with CPLEX v.12.9 as a programming solver. The Family 
Traveling Salesman Problem with Capacitated Agents is an integer problem. It is well known, 
that most of scheduling, touring, routing, and sequencing problems are part the pure integer 
programming problems. Thus, the complete mathematical framework was translated into 
AMPL programming language to build the BIP of the FTSP-CA.  

 
AMPL provides an optimization modeling lifecycle that enables the correct 

formulation of the FTSP-CA, and also tests the different benchmark instances with CPLEX 
as a solver. For version 12.9, CPLEX uses a branch-and-bound search to find a feasible best 
solution for the instance. The branch-and-bound was initially proposed by Land and Doig 
(Land and Doig, 1960), as an alternative to obtain optimal integer solutions to complex 
problems which cannot be solved in polynomial time.  

 
According to Tomazella et al., the branch-and-bound method consists “of and implicit 

enumeration of the solution by creating partial sequences job per job and creating a tree that 
branches into complete solutions” (Tomazella, 2020). Due to the FTSP-CA complexity as a 
NP-hard problem, the Integer Programming technique will be applied in the computational 
experiments in order to find the optimal solutions or at least feasible solutions for the 
benchmark instances.  

 
 
 
4.2 BRKGA Method 
  

The second methodology consists of a Biased Random Key Genetic Algorithm 
(BRKGA) implementation. As mentioned in Chapter 2, BRKGA is an algorithm designed in 
the “survival of the fittest” in order to achieve complete optimal or near optimal solutions for 
complex optimization problems. A complete description of the algorithm is proposed by 
Bean (Bean,1994). In Figure 5, BRKGA is presented.  
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Figure 5. BRKGA´s algorithm (Morán-Mirabal,2014). 

 
To evolve the current population to the 𝑖-th generation of individuals,  𝑃*	is 

partitioned in two types of individuals: elite individuals (𝑃!,) and non-elite individuals (𝑃!,̅). 
Elite individuals are composed by 𝑛, individuals, which are the evaluated to fit the 
optimization problem. Non-elite individuals are the remaining ones, composed by 𝑛 − 𝑛,, 
where 𝑛, <	𝑛) − 𝑛,. After this segmentation process, all elite individuals in 𝑃!, are copied 
into the population of the following generation (𝑃!/&). Secondly, a mutant vector of random 
keys is inserted to the population 𝑃!/& . A mutant is a set of 𝑃0 of 𝑛0 individuals, with the 
restriction that 2	𝑥	 𝑛, <	𝑛) and  𝑛, + 𝑛0 	≤ 𝑛). Last group of individuals are found by 
matting 𝑛1 pairs of individuals from 𝑃! where 𝑛1 =	𝑛) − 𝑛,	−	𝑛0. The crossover selects 
one individual from the elite group and another from the non-elite group. The matting process 
is randomly selected with replacement. However, different form traditional RKGA, in 
BRKGA, to determine which parent will transfer the key to the next generation a biased coin 
toss is executed for 𝑛𝑐 times. For each coin toss 𝑗∈1,…,𝑛𝑐 the offspring has a probability 𝑝𝑒 
> .5 to inherit the 𝑗-th key from 𝑎 (vector of elite individuals), and a probability 𝑝𝑒=̅1− 𝑝𝑒 to 
inherit from 𝑏 . 
 

The BRKGA is stopped until the acceptance criterion is reached. The total number of 
generations produced by the metaheuristic is denoted by 𝑔. 𝑃𝑔 is returned as the final 
individual with the best fitness for the optimization problem. 
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From the BRKGA´s method description, a list of parameters are explained in Table 
3. These parameters are included in Toso and Resende´s Application Programming Interface 
(Toso and Resende, 2012). They provided this API with the following set of necessary 
parameters.  

 
Table 3. BRKGA´s Parameters Description 

Parameter Description 
n Total number of alleles per chromosome 
p Number of chromosomes in population 
𝑝, Size of elite set in population 
𝑝0 
 
𝑝, 
 
 

Number of mutants to be introduced in population at 
each generation 
Probability that an allele is inherited from the elite 
parent 
 

 
 

For the FTS-CA experimental computation, the complete population was composed by 1000 
chromosomes,  p= 1000 .The size of the elite population, 𝑝, = .20. For each new generation 
a percentage of 𝑝0 = .10, of mutant individuals is added to to the population 𝑃!/&. Finally, 
the probability to inherit from the elite parent in the crossover matting, is denoted by 𝑝, =
.70.  
 
When the algorithm achieves the stopping condition, 𝑃𝑔 is returned as the final individual 
with the best fitness for the optimization problem. To interpret this solution a decoder is used 
to retrieve the best feasible solution.  

The feasible solution in the FTSP-CA is encoded as an |N| + 2(KN) vector λ of random keys, 
where KN = j∈1,...,K nv j . The complete random vector key is divided in three segments for 
a better comprehension. The first part, |N|, produces a random number per each node in the 
FTSP-CA instance, this segment of the random key will be later use to determine which 
subset of nodes must be visited per family. For the second and third segments of the random 
key, each one of them haas a length of KN random keys. This parts of the random key are 
used to define the corresponding agent and the tour to be followed respectively.  

In order to interpret the solution the decoder can be understood in three different stages 
according to the initial segmentation of the complete random key. Figure 6. represents the 
correct segmentation per decoding stages. In this example, a FTSPCA instance with the 
following parameters is considered:  N= 20 , L=4 , K=3, Q=4, F(1)=5, F(2)=4, F(3)=6, 
F(4)= 4, V(1)=3, V(2)=2, V(3)=4, V(4)=3.  
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Figure 6. Decoding Stages of a FTSP-CA Random Key. 

In order to transalate 𝑃𝑔 into a feasible solution to the FTSP-CA, the decoding process stages 
are described, the nomenclature is based on the FTSP-BRKGA proposed by Morán-Mirabal 
et al. (Morán-Mirabal, 2014):  

1. Stage I - Nodes Selection: The first segment of N random keys are used to determine 
the subset of nodes will be visited per family. The segment is divided into L sets of 
families Ri, i = 1, 2, . . . , L, each of size nf i. For each family random key, the nf i 
keys are sorted in increasing order. Finally, select the nv j smallest key indices where 
j = 1, 2, . . . , L. 

 

2. Stage II – Agent Selection: The first KN segment represents the set of family nodes 
obtained in stage I . The selected nodes are sorted in increasing order, where the first 
random key of this segment corresponds to the family 1 node with the lowest random 
key from stage 1. In order to match the random key with the agent, an interval 
segmentation of length I = 3

34
 is stablished within [0,1] and a total of K segments. 

Finally, pair the random key value with the corresponding agent according its interval 
number.  

 

3. Stage III – Tour Selection: The remaining segment of KN random keys are sorted in 
increasing order. The indices are used to define the sequence in which the nodes from 
stage II will be visited.  
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Chapter 5  

Experimental	Results		
The experimental process was conducted by both methodologies: Integer 

programming and a biased random-key genetic algorithm.  A group of 21 instances were 
used to test the performance of both models. Instances are divided into 7 different blocks 
depending on the number of nodes contained. The total number of nodes vary between 13 to 
1001. Furthermore, the instances were taken from “Randomized Heuristics for the Family 
Traveling Salesman Problem” (Morán-Mirabal, 2014). 
 
Original instances were adapted in terms of Family Traveling Salesman Problem with 
Capacitated Agents (FTSP-CA), adding two new blocks of parameters: K (agents) and Q 
(capacity). For each block of instances, there are two scenarios considered:  Fixed-Agents 
and Fixed-Capacity. The fixed value varies from 2-18. 
 
All the experimental tests were conducted using a laptop with a 2.4 Gigahertz Intel 8th 
Generation Core i5 with 8GB of RAM. For integer programming method AMPL software 
using CPLEX version 12.9 was used, and X-code version 10.2.1 for the BRKGA algorithm.  
 

5.1 Instances Description 
 

The complete list of benchmark instances for FTSP are described in Table 4. Instances 
are in the standard form for family traveling salesman problem. The table consist in a group 
of 21 instances. They are divided according to the total number of nodes corresponding to 
the problem in blocks of three instances. There are 7 major blocks of instances: Burma14, 
Bayg29, Att48, A280, Gr666 and Pr1002. The parameters for each instance are: Total number 
of arcs denoted as | N | + 1, total number of families L, total number of visits V, the number of 
nodes per family Fl, and the number of nodes to visit per each family l, denoted as nfl. 

 
Table 4: Benchmark FTSP Instances  [Morán-Mirabal, 2014] 

 
Instance Name | N | + 1 L V              Fl nfl 

Burma14_3_1001_1001_2 14 3 6 [4, 5, 5] [2, 2, 2] 
Burma14_3_1001_1002_2   10  [4, 2, 4] 
Burma14_3_1001_1003_2   4  [2, 1, 1] 

      
Bayg29_4_1001_1001_2 29 4 16 [7, 9, 6, 6] [6, 4, 5, 1] 
Bayg29_4_1001_1002_2   17  [2, 9, 1, 5] 
Bayg29_4_1001_1003_2   18  [6, 6, 1, 5] 
Att48_5_1001_1001_2 48 5 34 [12, 9, 9, 7, 10] [10, 4, 9, 7, 4] 
Att48_5_1001_1002_2   25  [8, 2, 9, 1, 5] 
Att48_5_1001_1003_2   15  [6, 1, 3, 3, 2] 

Bier127_10_1001_1001_2 
 
127 

 
10 

 
62 

 
 

[10, 4, 13, 1, 12, 4, 6, 1, 5, 
6] 
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Bier127_10_1001_1002_2    
85 

[12, 12, 14, 8, 13, 
16, 13, 8, 17, 13] 

[8, 2, 12, 7, 9, 9, 5, 5, 17, 
11] 

Bier127_10_1001_1003_2 
   

60  [6, 1, 13, 3, 3, 13, 13, 2, 2, 
4] 

      

A280_20_1001_1001_2 280 20 179  
[14, 10, 14, 4, 13, 9, 15, 4, 
5, 14, 6, 7, 6, 8, 13, 7, 9, 13, 

6, 2] 

A280_20_1001_1002_2   156 

15, 14, 16, 11, 19, 
15, 18, 10, 17, 16, 
16, 8, 7, 15, 24, 8, 
11, 13, 15, 11] 

[8, 2, 12, 9, 9, 5, 17, 6, 3, 9, 
7, 2, 6, 11, 4, 6, 11, 7, 11, 

11] 

A280_20_1001_1003_2   141  
[14, 14, 6, 1, 13, 3, 18, 3, 2, 
4, 10, 4, 4, 8, 5, 4, 9, 4, 14, 

1] 
      

Gr666_30_1001_1001_2 666 30 357 
[27, 24, 24, 17, 
29, 19, 20, 17, 27, 
24, 26, 15, 15, 30, 
40, 11, 19, 28, 27, 
20, 28, 22, 24, 14, 
23, 15, 17, 18, 20, 

25] 

[14, 10, 15, 4, 13, 9, 15, 4, 
22, 5, 14, 6, 15, 30, 24, 7, 2, 
1, 19, 5, 6, 13, 18, 9, 21, 10, 

15, 2, 10, 19] 

Gr666_30_1001_1002_2   328 

[8, 2, 15, 9, 21, 17, 14, 3, 9, 
7, 10, 6, 11, 4, 39, 11, 11, 
26, 7, 8, 1, 8, 14, 7, 19, 5, 6, 

9, 9, 12] 

Gr666_30_1001_1003_2   328 

[6, 17, 13, 2, 4, 12, 4, 5, 12, 
14, 15, 9, 4, 14, 33, 10, 17, 
27, 17, 8, 6, 8, 2, 5, 8, 9, 17, 

15, 6, 9] 
      

Pr1002_40_1001_1001_2 1002 40 486 
[22, 28, 27, 30, 
32, 24, 21, 22, 29, 
30, 27, 16, 20, 30, 
38, 16, 21, 23, 27, 
28, 23, 25, 26, 26, 
21, 24, 20, 30, 18, 
25, 25, 27, 27, 21, 
26, 24, 28, 28, 25, 

21] 

[14, 10, 15, 4, 13, 9, 15, 4, 
22, 25, 5, 14, 6, 30, 24, 14, 
13, 7, 25, 22, 2, 1, 19, 5, 6, 
13, 18, 9, 15, 2, 22, 10, 19, 
11, 1, 8, 3, 8, 6, 17] 

Pr1002_40_1001_1002_2   538 

[8, 2, 15, 25, 9, 21, 17, 14, 
22, 22, 3, 9, 7, 10, 6, 11, 4, 
22, 27, 7, 11, 7, 8, 1, 8, 14, 
19, 21, 6, 9, 9, 12, 26, 8, 23, 

21, 8, 28, 18, 20] 

Pr1002_40_1001_1003_2   463 

[6, 17, 13, 19, 19, 18, 19, 2, 
4, 26, 12, 4, 5, 12, 15, 9, 4, 
14, 1, 15, 17, 17, 8, 6, 8, 2, 
5, 8, 17, 15, 6, 9, 3, 20, 15, 

5, 14, 26, 18, 10] 
 
 
 
 

Benchmark instances were adapted to the form of FTSP-CA. There is a complete set 
of 36 new instances described in Table 5. Furthermore, each new instance contains a specific 
number of agents K, with a maximum capacity Q. All of the instances were placed in two 
different scenarios. Scenario A consist in a fixed value for the capacity and this value is 
higher than the number of available agents.  On the other hand, scenario B alternates the 
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value of capacity-agents. All the instances in scenario B have a higher number of agents than 
capacity. Fixed values vary from 2 – 18.  

 
Table 5. List of FTSP-CA Adapted Instances  

 
Instance Name | N | + 1 L V 

 
  A 

 
   Q                     Fl 

Burma1001A 14 3 6 2 3 [4, 5, 5] 
Burma1001B   6 3 2  
Burma1002A 
Burma1002B 
Burma1003AB 

  
 10 
 10 
  5 

2 
5 
2 

5 
2 
2 

 

Bayg1001AB 29 4 16 4 4 [7, 9, 6, 6] 
Bayg1002A   17 4 5  
Bayg1002B   17 5 4  
Bayg1003A   17 4 5  
Bayg1003B   18  5 4  
Att1001A 48 5 34 5 7 [12, 9, 9, 7, 10] 
Att1001B   34 7 5  
Att1002AB   25 5 5  
Att1003A   15 3 5  
Att1003B   15 5 3  
Bier1001AB 127 10 62 8 8 [12, 12, 14, 8, 13, 16, 13, 

8, 17, 13] Bier1002A   85 8 11 
Bier 1002B   85 11 8 
Bier1003AB   60 8 8 
A1001A 280 20 179 12 15 15, 14, 16, 11, 19, 15, 18, 

10, 17, 16, 16, 8, 7, 15, 
24, 8, 11, 13, 15, 11] 

A1001B   179 15 12 
A1002A   156 12 13 
A1002B   156 13 12 
A1002AB   141 12 12 
Gr1001A 666 30 357 16 23 [27, 24, 24, 17, 29, 19, 

20, 17, 27, 24, 26, 15, 15, 
30, 40, 11, 19, 28, 27, 20, 
28, 22, 24, 14, 23, 15, 17, 

18, 20, 25 

Gr1001B   357 23 16 
Gr1002A   328 16 21 
Gr1002B   328 21 16 
Gr1003A   328 16 21 
Gr1003B   328 21 16 
Pr1001A 1002 40 486 18 27 [22, 28, 27, 30, 32, 24, 

21, 22, 29, 30, 27, 16, 20, 
30, 38, 16, 21, 23, 27, 28, 
23, 25, 26, 26, 21, 24, 20, 
30, 18, 25, 25, 27, 27, 21, 
26, 24, 28, 28, 25, 21] 

Pr1001B   486 27 18 
Pr1002A   538 18 30 
Pr1002B   538 30 18 
Pr1003A   463 18 26 
Pr1003B   463 26 18 
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5.2 CPLEX results 
 
The first part of the experimental analysis includes the results of the adapted FTSP-CA 
instances using AMPL system with CPLEX 12.9 solver. This integer programming solver is 
capable to evaluate the FTSP-CA instances directly.  
 
As mentioned in the description of the adapted instances, the classification of the instances 
blocks is according to the total number of nodes. Instances from the first block, Burma1001-
Burma1003, have 13 nodes. Second block (Bayg1001-Bayg1003) contains 28 nodes per 
instance. Instances Att1001-Att1003 have 47 nodes. Finally, the fourth block (Bier1001-
Bier1003) includes 126 nodes per instance.  
 

Table 6, shows the results of running CPLEX 12.9 on 19 FTSP-CA instances. The table 
contains the instance name, the total distance is presented as the final CPLEX solution. 
Furthermore, an explanation of the result condition is expressed. For Optimal Integer 
Solutions with MIP-gap, a relative MIP-Gap is presented. The relative MIP-Gap is presented 
which is the gap of the difference between the current upper and lower bounds on the optimal 
cost in the branch-and-bound procedure. When the relative MIP-Gap is zero, the result is an 
optimal integer solution (Angalakudati, 2014).  

Table 6. List of CPLEX results 

 
                                  *The branch-and-bound reached the time limit. 

 
 
Using CPLEX as a solver to find optimal solution for the FTSP-CA performs well using 
instances Burma and Bayg. In both cases the solution is either Optimal Integer Solution or 

Instance Name CPLEX Solution Result Condition Relative MIP-Gap Time 
Burma1001A 15.2479 Optimal Integer Solution 0.00 0.612863 
Burma1001B 18.2279 Optimal Integer Solution 0.00 0.448693 
Burma1002A 32.5140 I.S with MIP-gap 8.0571e-05 4.03052 
Burma1002B 48.9479 O.I.S with MIP-gap 1.45163e-16 3.01468 
Burma1003AB 13.630000 Optimal Integer Solution 0.00 1.00 
Bayg1001AB 8304.8700 I.S with MIP-gap 9.99414e-05 887.247 
Bayg1002A 8311.321494 I.S with MIP-gap 9.47143e-05 1419.53 
Bayg1002B 9131.590974 I.S with MIP-gap 9.33979e-05 496.129 
Bayg1003A 7687.72851 I.S with MIP-gap 9.87956e-05 2326.67 
Bayg1003B 8457.99851 I.S with MIP-gap 9.65243e-05 184.758 
Att1001A 42677.802 I.S with MIP-gap .372425 5400* 
Att1001B 53313.4318 I.S with MIP-gap   .475482 5400* 
Att1002AB 37216.58 I.S with MIP-gap   .168075 3600* 
Att1003A 14859.3619 I.S with MIP-gap   .312021 3600* 
Att1003B 20352.3683 I.S with MIP-gap   .286678 3600* 
Bier1001AB 73067.1538 I.S with MIP-gap   .584387 3600* 
Bier1002A 174083.9091 I.S with MIP-gap   .545304 3600* 
Bier1002B 189226.0689 I.S with MIP-gap   .538530 3600* 
Bier1003AB 103378.875 I.S with MIP-gap   .648457 3600* 
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O.I.S with a low relative MIP gap. However, the performance of integer programming solver 
is not accurate for larger instances and requires an extensive amount of time if a feasible 
solution is desired. Bold solutions represent an integer solution with high relative MIP-gap 
due to the limitation in computing time.  For that reason, a better solution technique is 
required for this type of NP-hard problem.  

 
5.3 BRKGA results 
 
For the second part of the computational experimentation, the performance of the Biased 
Random-Key Genetic Algorithm is compared with the result of the integer programming 
solver. The algorithm was coded in C++, using the API from Toso and Resende (Toso and 
Resende, 2012). All the experiments were executed with X-Code version 10.2 on a 2.4 
Gigahertz Intel 8th Generation Core i5 processor with 8GB of RAM.  
 
The BRKGA algorithm was calibrated with a population size |𝑃| = 1000. The fraction of 
the population to be the elite set is denoted by 𝑝𝑒 = .20, and the percentage of the population 
to be replaced by mutants is denoted by 𝑝𝑚 = .10. The probability of an offspring to inherit 
the key from an elite parent during the crossover stage is 𝑝5 = 0.7. The algorithm runs for a 
maximum of 10000 generations. BRKGA will run until one of the ending criteria is fulfilled. 
First ending approach is reached when the algorithm provides 100 iterations without an 
improvement in the solution. Second approach is a time limitation of 7200 seconds.  
 
The complete set of 36 adapted FTSPCA instances were solved with the BRKGA. Table 7 
summarizes the experimental computation of an individual instance. The experiment was 
conducted running the algorithm 10 times for each instance. For each run the best solution in 
distance, total number of iterations and total time are display.  
 

Table 7. Individal results for instance (Bayg1002B)  
Bayg1002B 

Run Number Best Solution Iterations Time 
1 8521.188477 178 3 
2 8491.591797 228 4 
3 8477.118164 193 3 
4 8521.188477 258 4 
5 8477.118164 201 3 
6 8477.118164 194 3 
7 8651.52832 257 5 
8 8477.118164 236 4 
9 8477.118164 220 3 
10 8491.59082 185 3 
Avg. 8506.2678711 215.00 3.500 
cMax. 8651.52832 258 5 
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Min. 8477.118164 185 3 

𝝈 53.9806 29.13 0.71 
C.V. 0.006 0.14 0.20 

    
To compare the performance of the BRKGA and CPLEX, the average results of the 10-times 
running experiment for each instance are compared with the integer programming solution. 
Table 8 shows the complete arrangement of the 36 adapted instances using the BRKGA 
solver. The table is divided into family blocks and contains the specific instance name, the 
average cost of all runs, the best solution found which is the minimum cost value of the total 
runs, the standard deviation of the 10 experimental solutions, the coefficient of variation per 
instance, the average number of iterations and average time.  
 

Table 8. List of BRKGA´s results 

Instance Name Avarage Cost Best Solution 𝜎 C.V. Iterations Time 
Burma1001A 15.251100* 15.251100* 0.00 0.00 103 1.00 
Burma1001B 18.230801* 18.230801* 0.00 0.00 102 1.00 
Burma1002A 32.514301* 32.514301* 0.00 0.00 123 1.10 
Burma1002B 48.938400* 48.938400* 0.00 0.00 103 1.20 
Burma1003AB 13.630000* 13.630000* 0.00 0.00 103 1.00 
Bayg1001AB 8479.673145 8304.870117* 125.50 .015 189 2.80 
Bayg1002A 8368.286426 8311.31543* 98.68 .012 233 3.90 
Bayg1002B 9428.143554 9363.804688 40.20 .004 234 4.00 
Bayg1003A 7731.651807 7687.728516* 45.38 .006 226 3.80 
Bayg1003B 8506.267871 8457.118164* 53.98 .006 215 3.50 
Att1001A 43780.2735 42242.19531 1369.98 .031 419 9.30 
Att1001B 53142.596484 50978.86719 1753.55 .033 478 10.90 
Att1002AB 36751.178125 35983.61719 566.61 .015 322 5.80 
Att1003A 14923.035742 14859.34961 90.83 .006 198 3.00 
Att1003B 20120.131445 20097.24805 55.03 .003 166 3.20 
Bier1001AB 62571.777734 58377.09766 3400.04 .054 777 35.00 
Bier1002A 155037.968750 145036.3125 8103.56 .052 418 72.80 
Bier1002B 173146.039063 165589.9688 4914.33 .028 929 56.30 
Bier1003AB 107131.796094 102284.0703 2275.27 .021 660 30.80 
A1001A 7339.306836 6820.202637 377.13 .051 886 127.06 
A1001B 8321.186621 7989.757812 387.02 .047 829 365.70 
A1002A 6797.047559 6500.269043 330.20 .049 2199 320.50 
A1002B 7112.204883 6701.203613 208.97 .029 2345 305.20 
A1003AB 6512.760498 6055.009277 234.50 .036 1856 265.10 
Gr1001A 7793.361133 7440.477539 249.87 .032 5818 3055.30 
Gr1001B 8926.770996 8404.858398 314.23 .035 5628 2797.90 
Gr1002A 6773.179688 6311.993652 326.91 .048 5479 2451.20 
Gr1002B 7374.678711 6979.422852 245.47 .033 5811 2803.90 
Gr1003A 6518.490283 5998.516113 243.72 .037 5344 2883.90 
Gr1003B 7397.069000 6775.063965 310.74 .042 6261 3448.50 
Pr1001A 918524.018750 877461.4375 28284.81 .031 7713 6894.50 
Pr1001B 1091218.781250 1041818.1880 36901.70 .034 7278 6871.10 
Pr1002A 1068720.562500 1019185.250 32579.67 .030 7537 7123.40 
Pr1002B 1309075.600000 1251161.880 38170.69 .029 7258 6539.50 
Pr1003A 907979.875000 861434.0625 35224.12 .039 7164 6012.20 
Pr1003B 1058516.275000 1018187.813 26688.11 .025 6437 6140.40 
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The behavior of the BRKGA in the Burma´s block of instances is similar to the CPLEX 
solver. In both alternatives all of the instances reach an optimal integer solution with a non-
significant relative gap value. For the Bayg´s group, CPLEX performs more accurate 
obtaining the lowest best solutions for all of the instances. However, the solutions provided 
by the BRKGA are also reliable. Although the variation of BRKGA, for Bayg´s instances 4 
out of 5 instances reaches the optimal value at least once.  
 
The main differences between both solution methods became visible in instances from block 
three and four. As mentioned in CPLEX results, the iteration process stopped due to limited 
time (3600-5400 seconds). For the BRKGA algorithm the program stopped when the criteria 
were reached, which takes from 3.00-72.80 seconds. In this short space of time BRKGA´s 
average results outperform CPLEX in 6 out of 9 instances. Furthermore, for individual best 
solution, the BRKGA develops a better or equal solution than the integer programming 
solver.  
 
For instances above the 279 nodes (A, Gr, Pr), the BRKGA solutions behave similarly 
providing feasible solutions for the generous amount of running time; moreover, the solutions 
deviation is considerably low. The BRKGA results presents a coefficient of variation ranging 
from 0.004 – 0.054. According to Gomes (Gomes, 2009), the experiments with a coefficient 
of variation below 10% have a high precision. Due to the low coefficient of variation, the 
BRKGA method will provide similar and high-quality solutions for the FTSP-CA. 
.  
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Chapter 6 

Conclusions	and	Future	Work	
In this thesis work, the Family Traveling Salesman Problem with Capacitated Agents 

(FTSP-CA) is developed as a BIP formulation and evaluated by two different solving 
techniques. As an extension of the standard FTSP, the new adaptation of the problem adds 
two important factors that should be considered in logistics situations involving a family 
traveling salesman problem: agents and capacity.  

 
The applied methodologies present feasible solutions for the FTSP-CA and can be 

used according to their strengths to deliver optimal integer solutions or optimal integer 
solutions with MIP-Gap. Integer programming strategy display an accurate alternative for 
solving smaller instances; however, the complexity of the problem does not allow to run 
instances above the fourth block of instances. Also, the amount of time used for solving 
instances from third and fourth block is limited to the computer specifications. On the basis 
of this constraints, the BRKGA methodology contributes for solving the FTSP-CA in a 
moderate time, providing feasible solutions with low variation.  
 
 Furthermore, for larger instances, the genetic algorithm outperforms the integer 
programming solver tool. There is no feasible way in time to provide an optimal integer 
solution with CPLEX for larger instances. The experimental computation displays a 
significant relative gap between the solution reached and the possible optimal integer 
solution.  
 

In BRKGA methodology, two scenarios were evaluated in order to measure the 
impact of the parameters K (agents) and Q (capacity), in the optimal integer solution. As a 
result, the algorithm demonstrates that a configuration with higher number of agents 
(Scenario B), increases the total distance cost of the tour; however, increasing the number of 
agents provides a lower service time to complete the touring process.  
 

In conclusion, solving the Family Traveling Salesman Problem with Capacitated 
Agents, requires the implementation of a heuristic solving technique, due to the complex 
structure of the NP-hard problem. The BRKGA heuristic performed as fast and accurate for 
the smaller instances compared to CPLEX solver, and for larger instances shows a good 
approximate value of the optimal integer solution, with lower coefficients of variation.  

 
The presentation of the FTSP-CA enables future research for developing new 

specifications in the problem. As mentioned in the mathematical framework, the problem 
forces to all agents to leave the depot; however, in real life, some feasible solutions should 
not require employing all the available resources. This and other similar conditions can be 
applied to FTSP-CA in order to adjust to more demanding real-life parameters and 
constraints.   
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