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with winsorization 

 
 

by 

 

María Fernanda Márquez Alderete 

 

Abstract 

 

With the development of Industry 4.0 (I4.0), companies are transforming the way 

products are designed,  manufactured and distributed. The application of new 

technologies in production and data acquisition exacerbates the need to foster 

quantitative approaches in the quality management of manufactured products, such 

as statistical process monitoring (SPM). A measuring system machine for evaluating 

die-casted workpieces was designed following the previous trend. This machine 

already applies part of the theoretical concepts of I4.0. The presented thesis 

complements the application of I4.0 concepts to the device, by using SPM methods, 

specifically, a multivariate CUSUM to assess small and sustained shifts; where 

winsorizing was used to create robustness over isolated changes that can be 

detected using complementing Shewhart-type charts. Additionally, an online 

dashboard was created to display the plotting statistics in real-time.  
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Chapter 1. Introduction 

 

When a product is manufactured, it is usually intended to meet or exceed customer 

expectations. The process should be capable of operating with little variability around 

the nominal dimensions of the product produced in order to achieve these 

requirements. Many statistical methodologies have been developed to assure the 

quality of products; a central part of these methodologies is statistical process 

control/monitoring (SPC/SPM). 

Although quality control and improvement methods are essentials components of 

our society, corresponding systematic theory and methods were introduced barely 

last century. In 1907, the Western Electric Company was reorganized by AT&T for 

inspection and testing of different products. By 1924 the inspection department of 

the Western Electric Company had more than 5000 members, including Joseph M. 

Juran. In 1925, a new Inspection Department was created in the newly formed Bell 
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Telephone Laboratories, in which several important statistical concepts and 

terminologies were created. For example, this is where Walter Shewhart first 

developed the concept of a control chart as a strategy to reduce the cost of quality 

assessment [1]. 

The US involvement in World War II (WWII) resulted in a rapid expansion of the 

manufacturing industry and, to assure the quality of the manufactured, goods training 

programs in the quality inspection were established. In the 1940s, research groups 

in quality control were established across the country. Later in 1947, the Hotelling’s 

T2 statistic for multivariate processes was proposed by Harold Hotelling [1]. 

Shewhart control charts are handy during early stages of a process monitoring, 

where the process is likely to be out-of-control (OC) due to several an isolated 

assignable causes of variation. Shewhart charts assess sampled observations 

individually, ignoring any information given by the entire sequence of points. This 

characteristic makes the Shewhart chart suitable when dealing with significant 

changes, but unsuitable for small sustained shifts (usually 1.5 standard deviations 

or less). Alternatives were created to avoid the problem of detecting small shifts. Two 

effective alternatives are the cumulative sum (CUSUM) control chart and the 

exponentially weighted moving average (EWMA) control chart [2]. 

With the development of Industry 4.0, industries are transforming the way products 

are designed,  manufactured and distributed. The application of new technologies in 

production and data acquisition should be able to merge with basic and new 

methodologies of SPM, to create a real-time process control. 

 

1.1 Background 

In 2017 a prototype measurement machine was designed at ITESM [3, 4]. The 

machine tells the operator if a previously die casting workpiece is within tolerance, 

displaying the shape of the workpiece with the 19 measured points, shown in  Figure 
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1, specifying which of the points are within tolerance and which ones are not. This 

function is possible with the use of a laser sensor that measures 19 points. Additional 

to this, a Bosch XDK sensor captures environmental temperature, humidity, 

pressure, and the maximum acceleration reached by the gantry. Also, an 

accelerometer located with the laser sensor records the maximum acceleration of 

the gantry for every measured point.  

 

Figure 1. Die-casting workpiece 

The machine was built to test novel features in the field, and a second version was 

built by modifying the original design; both versions are presented in Figure 2. The 

first version created by Castro and Guamán  [3, 4], consisted of a moving plate that 

holds the workpiece with three clamps and four guiding pins. A piston moves the 

plate to its position where three kinematic couplings position the plate so that the 

laser can measure the piece. The machine was resting over wooden tables. 

For the second version, the piston was removed, and the moving plate was replaced 

by a fixed plate. The gantry guides and the gantry itself in this new version were 

protected by bellow covers, and the machine was held over wheels. 

After thousands of cycles, particular components of the machine failed, Specifically: 

the positioning and locating pins got loose, and the linear motors could not track their 

positions because of debris. While not catastrophic, these problems caused delays 
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and motivated the development of a procedure to detect early changes to anticipate 

a major fault partially. Figure 3 presents how data from the final stage of the 

measurement process was accquired during the first test of the prototype in an 

industrial environment; each sample represents the overall error of the laser 

measured, hence, the lower the distance from the origin, the better. From sample 

600 onwards, there are some points that are far from the the ±0.40 mm limit. 

  

Figure 2. (a) First version. (b) Second and current version 

 

Figure 3. Raw data of the 19 points 

From the literature review presented in Chapter 2, several multivariate CUSUM 

methods were analyzed. Specifically, Healy’s CUSUM  [5] was found helpful to 

address specific out-of-control situations. However, because of the nature of the 

(a) (b) 
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industrial environment, external noise variables increases the risk of a false alarm, 

which in turn hinders the usefulness of the monitoring approach to detect sustained 

shifts. It was necessary to make the monitoring chart robust to isolated perturbations 

without sacrificing its ability to detect sustained changes in order to address this 

issue. 

Due to the previous conditions, extreme values can be detected by the monitoring 

scheme. To avoid considering situations like abrupt movements as false positives, 

limiting the change rate of those values can be useful. This procedure is called 

winsorization and is thoroughly explained in chapter 2 and 4. 

 The average run length (ARL) is a metric to characterize the control chart, and it is 

defined as the average number of samples that must be plotted before a point 

indicates an out-of-control condition [2]. This metric might be used to evaluate the 

chart’s performance when compared to an expected ARL value.  

 

1.2 Problem Statement and Context 

Since the introduction of I4.0, industries have been moving toward a digitalized 

environment. The first part of this process towards digitalization consisted of data 

generation from manufacture and machine performance. However, data is worthless 

if it is not analyzed to create knowledge that foster informed decision making. 

Processing data to address the newly implemented I4.0 processes might result in 

savings related the quality costs [2]. There are quality costs related with the 

inspection and testing of all materials and products, not analyzing data coming from 

the inspection might not affect the process performance negatively; however, by not 

analyzing data, more significant benefits may be lost. The previous enhancements 

may vary depending on the industry in context, and these can go from preventing 

maintenance to time/costs savings. 
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As machines become more capable of obtaining vast amounts of data, the analysis 

of this data becomes increasingly difficult. This situation is where data science 

comes as an essential part of the fourth industrial revolution, where data 

dimensionality, speed, complexity and size present new challenges in knowledge 

creation. In this research, part of the theoretical concepts of I4.0 is implemented in 

a machine that already applies other I4.0 concepts [3, 4]. 

Machines working on an industrial environment tend to present failures and 

problems during a regular work shift. For this case, a laser measurement machine 

prototype has presented some problems working on an industrial environment, 

although these problems compromise the measurement capabilities of the machine, 

fixing them was not very complicated. Fortunately, these problems did not cause any 

damages in the following processes, but if these problems are not early detected, 

they could cause a delay in production and a loss of time and money. For this reason, 

it is essential to monitor not only the production process but also the machine 

performance. 

The available data from the machine is related to its measuring performance. Hence, 

by analyzing this data, the overall performance of the machine can be estimated and 

forecasted. 

Events that directly affect the machine, such as impacts or loose components, are 

reflected in the output data from the machine; conditions such as shifts on the 

variance and mean could have a physical representation as one of the events 

previously mentioned. However, it is not possible to determine the origin of these 

anomalies in the data, as they might be a consequence of changes in the 

manufacturing process.  

Several control charts with different features and characteristics are available for 

data scientists to use, many of them with particular conditions for them to be used. 

For this particular case, subtle and sustained shifts are desired to be detected; 

therefore, the CUSUM control chart is considered to be adequate. Nevertheless, 
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punctual shifts are also significant; for this reason, a Hotelling T2 will also be 

analyzed. 

This thesis deals with the problem of designing a multivariate CUSUM monitoring 

scheme to detect sustained changes while being robust to isolated perturbations and 

with the use of I4.0 technologies to monitor and report the machine’s performance. 

 

1.3 Research Questions 

• How can process data can be used to forecast machine performance? 

• How can reports be produced promptly? 

• What is the performance difference of the winsorized in-control chart in 

comparison with Healy’s original proposal, for isolated changes? 

• What is the performance difference of the winsorized out-of-control chart 

in comparison with Healy’s original proposal? 

 

1.4 Hypothesis 

• Industry 4.0 tools can be used to facilitate monitoring and timely reporting 

of potential failures 

• The proposed SPM method will enhance the error detection capabilities 

of the prototype. 

• The effect of isolated changes will be smaller when the chart is winsorized. 

The in-control average run length will be closer to the expected 

performance on the winsorized chart compared to the chart without 

winsorization. 

• The winsorization will not change significantly the ability to detect 

sustained changes compared to Healy’s original control chart. 
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1.5 Objective 

The overall goal of this work is to implement SPC to the data obtained by the 

machine and to display of the resulting information in the form of an online dashboard 

and make data available for the future development of a digital twin. 

This work proposes to: 

1. Measure the in-control performance of the proposed approach in the 

presence of isolated changes and compare with the performance of Healy's 

original chart. 

2. Measure the out-of-control performance of the proposed approach, over 

different sustained shifts, and compare results with the corresponding 

performance or Healy's original chart. 

3. Code a real-time application based on the previous algorithms. 

4. Design a dashboard and deploy it as a web App. 

 

1.6 Scope 

The solution includes the implementation and use of SPM methods to the data 

obtained to detect errors in the process and the machine before they become 

problematic in order to avoid line stopping and machine failures. Also, the 

experimentation with winsorization to evaluate different scenarios. The charts will be 

displayed in a friendly user dashboard. The display of the data from the newest 

version of the machine is out of the scope of this project; as it is not available in the 

online database. However, statistical analysis was done for both the previous and 

new version of the machine. 
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1.7 Research Contribution 

The main contributions of this work are the application of multivariate control charts 

for practical and industrial use and measuring the effect of winsorization on Healy’s 

multivariate CUSUM. All these combined as a system that will make information 

available on a friendly user manner using free access and low-cost tools. All this 

work guided to the creation of a digital twin for the measurement machine as the 

same approach used for developing the dashboard might be well suited for the digital 

twin to have a closed-loop feedback system. 

 

1.8 Thesis Organization 

This work is laid out in six chapters, including this one as an introduction. Chapter 2 

deals with the literature review to study concepts and related works. The application 

of the methods studied in Chapter 2 and the construction of control charts is 

developed in Chapter 3. Chapter 4 presents an analysis of how winsorization will 

affect the detection of shifts. As for Chapter 5, the control charts created in Chapter 

3 are shown in an online dashboard. Finally, Chapter 6 presents conclusions and 

future work. 

 

1.9 Used Scripts 

All the codes used for this thesis are available in this repository:  

https://github.com/MariaMarquezA/SPC_Dashboard. The part referring to the 

request of data from the Hosting service was omitted for security reasons. 
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Chapter 2. Literature Review 

In this chapter, the literature reviewed to create this work is presented. In section 

2.1, the I4.0 state-of-the-art is shown, focusing on the topics with the most 

substantial relation to this work. In section 2.2, a review on multivariate process 

control is also presented, where the methods used with the proposed approach are 

thoroughly explained. Finally, in section 2.3, brief research on dashboards is 

presented. 

 

2.1. Industry 4.0 

After the first Industrial Revolution, manufacturing methods have changed radically. 

From water and steam-powered machines to electrical and digital automated 

production. Manufacturing processes have become more sophisticated, automatic 
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and sustainable, allowing people to operate machines simply and efficiently [6], with 

the integration between manufacturing operations systems and Information and 

Communication Technologies (ICT) – Internet of Things – forming the so-called 

Cyber-Physical Systems (CPS) [7]. With the development of these technologies, a 
new concept, Industry 4.0 (I4.0), was introduced in Germany during the Hannover 

Fair event in 2011, which symbolizes the beginning of the 4th Industrial Revolution 

[6, 8]. 

The trend of manufacturing process digitalization which characterizes I4.0 is based 

in 8 enabling technologies [9], shown in Figure 4: Internet of Things (IoT), Cyber-

Physical Systems (CPS), Additive manufacturing, Cobots, Augmented reality, 

Machine learning, Cloud computing, Big Data, and Real-time optimization. This 

thesis will focus aboard the last two technologies. 

 

Figure 4. Enabling technologies of I4.0 [9] 

 

 

2.1.1 Big Data 

The concept of big data has been used since the earliest days of computing; 

originally meant for the volume of data that could not be processed by traditional 

database methods and tools [10]. Big data analytics is the applications of advanced 
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analytic techniques, such as data mining, statistical analysis, or predictive analytics 

on big datasets, creating one of the most profound trends in business intelligence 

[11]. The enormous amount of data creates new opportunities of improvement; 

therefore many organizations started to develop and enhance their big-data 

analytics capabilities to gain a better understanding and uncover vital points hidden 

in the data [12]. The study of big-data is continuously evolving, but the main 

attributes are now enclosed into the “5V”  concept, which consists of volume, 

velocity, variety, verification, and value [13]. The overall process of extracting 

insights from a dataset is divided by Gandomi and Haider [14] into five stages, which 

are grouped into two main sub-processes: data management and analytics. Data 

management includes the stages of acquisition and recording; extraction, cleaning 

and annotation; and integration, aggregation, and representation. As for the 

Analytics sub-group, the included stages are modeling and analysis; and 

interpretation. These stages are graphically represented in Figure 5. 

 

Figure 5. Processes for extracting insights from big data [14].  

 

 

 



 

 

 

 

13 

2.1.2 Real-time optimization 

The objective of a real-time optimization is to respond to an essential quality 

characteristic in a continuously evolving environment, within a specific time frame, 

using limited resources and information which are usually incomplete or uncertain. 

Real-time decision problems typically include stochastic and dynamic components. 

In this context, system correctness depends on how appropriate the response is and 

also on how much time it took to get that response. Therefore a balance between 

the quality of the response and its computation time must be achieved. A real-time 

decision system (RTDS) must be able to support, assist or replace human operators 

for real-time decision making [15]. 

 

2.1.3 Digital Twin and Digital Twin Shop-floor 

The concept of Digital Twin (DT) was introduced by Grieves [16] in 2003 at the 

University of Michigan during a Product Lifecycle Management course. The DT 

concept contains three main parts: the physical products in real space, virtual 

products in virtual space, and the connections of data and information that ties both. 

Based on the DT concept, the Digital Twin Shop-floor (DTS) is proposed [17], making 

the physical and virtual parts optimized and combined effectively. Data from the 

physical and virtual sides, as well as the fused data, are provided to manage the 

production. DTS is conformed by four components, Physical Shop-floor (PS), Virtual 

Shop-floor (VS), Shop-floor Service System (SSS), and the Shop-floor Digital Twin 

Data (SDTD). 

PS consists on a series of entities, including humans, machines and materials, 

existing in a physical space; from this, the VS is formed by models built-in multiple 

dimensions, including geometry, physics, behavior and rule. SSS is an integrated 

service platform, which includes the functions of Enterprise Information System 

(EIS), computer-aided tools, models and algorithms. 
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SDTD includes PS, VS and SSS data, the fused data of the three parts, and the 

existing methods for modeling, optimizing, and predicting. The construction of SDTD 

begins with the conversion of all data into a unified form, and then the data is cleaned 

by detecting and removing dirty data or missing values. Finally, to achieve consistent 

and comprehensive interpretations, virtual and physical data are converged to form 

fused data. SDTD is optimized iteratively, and historical data are updated and 

expanded with the real-time data, while real-time data can be tested and corrected 

with the historical data. Another important aspect is that physical data can be 

evaluated and simulated by virtual data, and virtual data can be compared with real 

data to confirm the accuracy [18]. 

 

2.2 Multivariate Process Monitoring 

SPM techniques are widely used in the industry to monitor and improve production 

processes. Various control charts have been developed to monitor process 

parameters and detect out-of-control conditions [19]. 

Since the design of the first control chart by Shewhart in 1924, many control schemes 

were introduced in the literature. The CUSUM chart of Page [20], the EWMA scheme 

of Roberts [21], Healy’s CUSUM [5] or Castagliola, Celano and Fichera CUSUM-S2 

[22]. Bodnar and Schmid [23] analyzed control charts for the mean of a multivariate 

Gaussian process using the generalized likelihood ratio approach and the sequential 

probability ratio test, proposing various types of CUSUM control charts and 

comparing them with several other control schemes available in the literature. 

Noorosana and Vaghefi [19] studied how autocorrelation can deteriorate the 

performance of MCUSUM control charts, using the ARL criterion. The proposed 

solution was based on a time series model. Zaman et al. [24] proposed an adaptive 

EWMA control chart based on the CUSUM accumulation error, for detecting 

imbalanced mixed range shifts in process dispersion. 
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Miekley et al. [25] applied MCUSUM control charts for the early detection of mastitis 

and lameness diseases in cows. The values of each input variable were pre-

processed with wavelet filters or a multivariate vector autoregressive model to 

exclude biological trends and obtain independent observations; the residuals 

generated were transferred to both classic and self-starting MCUSUM. Haq, Munir 

and Khoo [26] proposed a dual MCUSUM (DMCSUM) and a mixed DMCUSUM 

(MDMCUSUM) chart for monitoring the mean of a multivariate normal process. 

 

2.2.1 Hotelling T2 

The first work concerning multiple variables of interest was done by Harold Hotelling. 

In 1947, he applied his procedure to bombsight data during WWII. It is a direct analog 

of the univariate Shewhart %̅ chart. For this work, the individual observations version 

is of interest, this means a subgroup '	 = 	1, with + samples and , number of quality 

characteristics that are observed in each sample. A summary of Hoteling’s work 

follows, as shown in [2]. Let -. and / be the sample mean vector and covariance 

matrix, respectively. The Hotelling T2 statistic for this case is presented in equation 

(1) [2]. 

!2 = ($ − $0)′'−1($ − $0)     (1) 

With upper control limit (UCL) and lower control limit (LCL): 

123 = !(#$%)(#'%)
#!'#! 4(,!,#'!     (2) 

    323 = 5 

When the number of +  samples is larger than 100, many practitioners use an 

approximate control limit, presented in equation (3) and (4); Tracy, Young and 

Mason [27] proposed limits for '	 = 	1 based on a beta distribution. These limits are 

shown in equation (5). 
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123 = !(#'%)
#'! 4(,!,#'!     (3) 

123 = 6(,!*        (4) 

123 = (#'%)!
# 7(,!/*,(#'!'%)/*    (5) 

323 = 0    

 

2.2.2 CUSUM 

The first CUSUM control chart was proposed by Page in 1954 [20]. Since then, many 

authors have contributed to the theory. In 1987 Healy [5] proposed a testing method 

for the shift in the mean of a multivariate normal, where the CUSUM procedure was 

reduced to a univariate normal CUSUM, this procedure is optimum when the in-

control mean, and the out-of-control mean are known. By optimum, we mean that 

this chart is the fastest chart, in term of average run length, to detect a change to the 

out-of-control mean vector when it happens. 

Assuming the multivariate data -, comes from a multivariate normal distribution with 

an acceptable mean µ9 or a multivariate normal distribution with a non-acceptable 

mean µ:; being F0 and F1 multivariate normal distributions with mean vectors of µ9 

and µ: and a known common covariance matrix ∑. All vectors have , number of 

elements, and all matrices are , × ,, being , the number of quality characteristics 

that are observed in each sample. The CUSUM statistic proposed by Healy is 

presented in equation (6). 

=- = max(=-'% + C.(-, − E/) − 0.5H, 0) > 23,    (6) 

where 

C. = (0"'0#).1$"
[(0"'0#)%1$"(0"'0#)]&/!

,      (7) 

and 
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H = K(E4 − E/).L'4(E4 − E/).     (8) 

 

The expression C.(-, − E/) has a standard univariate normal distribution when -, 

has its mean equal to E/ . When -,  has a mean equal to E4 , C.(-, − E/) has a 

univariate normal distribution with mean D variance 1. Therefore, for detecting a shift 

in the mean, the CUSUM procedure reduces to a univariate normal CUSUM 

procedure, which means all of the theory for calculating the average run length 

(ARL), Control Limit (CL) and the initial value of the CUSUM for a univariate normal 

CUSUM can be used for a multivariate CUSUM (MCUSUM). 

Healy’s procedure only looks in one particular direction from E/ to E4 = E/ + M, if 

changes are also expected in the opposite direction, this means from E/ to E4 =

E/ − M, the author recommends creating another one-sided CUSUM; this way, two 

one-sided CUSUM will be able to detect changes in both directions. More univariate 

charts can be used for other pre-specified types of control changes the practitioners 

might be interested in detecting quickly. 

The CUSUM chart starts at an initial state 25$, from this point, it may stay on the axis, 

or it may move to positive values. When a plotted point crosses the CL indicates that 

a shift has occurred and actions must be taken, and the CUSUM will be restarted. 

The sequence from the starting point to the first point out-of-control is called run. The 

number of observations appearing in the run is called run length. Sometimes signals 

will be generated even if no significant shift has occurred, and this is an example of 

a Type I error. On the order side, sometimes the chart might not detect a significant 

shift; this is a Type II error. The ARL, defined by Page [20] as a performance 

measure of a control chart, is used to balance both errors. Even though a run length 

is highly variable, the ARL is a good summary number of the general tendency. 
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Although the ARL does not guarantee false alarms is an easily interpreted and a 

well-defined measurement. 

Because Healy’s CUSUM can be treated as a univariate control chart, existing 

functions can be used to obtain a CL for a given a D, and ARL. Simulations can be 

used to corroborate results [28]. 

 

2.2.3 Winsorization 

A fundamental assumption in variables charting is that, in the absence of special 

causes, the readings tend to be normally distributed. The effectiveness of the ARL 

depends on this assumption. When the data does not follow a normal distribution, 

the calculated ARL can be significantly different from the actual ARL. For example, 

when the natural distribution of the data tends to have outliers it creates a heavy tail; 

causing more false alarms [29]. 

To achieve a long-in-control ARL with a quick response to persistent shifts, 

‘robustifying’ CUSUM charts was proposed to make the statistic less sensitive to 

isolated outliers, but still sufficient for detecting genuine shifts [29]. 

Lucas and Crosier [30], proposed a procedure in which a single suspected outlier is 

ignored, but two outliers in a row are considered to be an out-of-control signal. 

A second procedure investigated by Hawkins [31] and also by Lucas and Crosier 

[30] consists of replacing any signal exceeding a pre-established threshold value 

with that value. 

Winsorizing is an attractive manner of limiting de effect of outliers without not taking 

them into account for the control chart [29]. 

To evaluate and compare the different scenarios, Pignatiello and Runger [32] 

proposed comparing the ARL performance of the different CUSUM charts, using 

different standardized distances: 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, from a target mean 
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vector of E9 = 9, changing p variables of the process. Here 9 is the origin in a vector 

space. 

  

2.3 Data Visualization 

A dashboard is a single screen display that shows essential information about a 

company and processes so that the whole panorama can be quickly understood by 

providing real-time information across all levels of the company. As digitization 

acquire more importance in manufacturing industries, dashboards are becoming 

more commonly used [33]. 

Nadoveza and Kiritsis [34], presented an idea based on identifying the information 

relevancy by capturing the manufacturing context of the users since the system 

collects large amounts of information is vital to show the appropriate information to 

the specific user at a particular time. Mazumdar et al. [35] also exposed the 

importance of providing the right visual means to explore and analyze datasets 

flexibly and efficiently to the right end-user. 

Tokola et al. [33], published the results of a survey of manufacturing companies on 

preferred key performance indicators (KPIs) for dashboards and the use of them. 

Essential aspects to take into account are, display of the dashboard should be just 

a single screen display, where the most critical information should be on the top left 

and centre. Eckerson [36] emphasizes how different users must have different 

dashboards; for example, executives want to monitor the status of the company; 

managers analyze the performance-related information and shop-floor workers in 

production details. As conclusion [33] , designed three dashboard proposals, one for 

each of the three specific users, a strategy dashboard for executives, a tactical 

dashboard for production managers, and an operational dashboard for workers. 
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Chapter 3. Control Charts construction 

The methods reviewed in Chapter 2 were applied to the data obtained by the 

measurement machine. Section 3.1 presents the acquisition of data and the first 

analysis with Hotelling T2, to confirm and obtain an in-control dataset. On Section 

3.2, Healy’s CUSUM is implemented in all the dataset. Finally, in Section 3.3, the 

same analysis made on sections 3.1 and 3.2 is replicated for a dataset obtained from 

the new version of the machine. 

 

3.1 Data Acquisition and cleansing with Hotelling T2 

Data acquired by the machine is stored on a remote database; further explanation 

about it is presented in Chapter 5. The data is then imported to R for further analysis. 

The data analyzed in this exercise is from the first version of the prototype.  

Initially, it was assumed that the environmental parameters given by the Bosh sensor 

would show a correlation with the resulting data from the prototype, but an analysis 
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was done using these parameters and resulted in no apparent correlation between 

the measurement error and the data gathered by the sensors. This result might not 

mean that there is no correlation between the mesurement error and the 

environment, but the lack resolution from the sensors might be the an indicator of 

this result. Appendix A includes the resulting matrix plots from the correlation 

analysis. From the previous analysis it was concluded no to used the environmental 

parameters for the analysis. 

A first table was created with data considered to be in-control (IC). After eliminating 

ten measurements samples (for assignable causes, in this case, measurements that 

clearly show a wrong location of the piece) the resulting table is analyzed with 

equation (1), with a CL given by equation (5). With a confidence level of 99.73%, the 

resulting control chart is presented in Figure 6. 

 

Figure 6. Hotelling T2 chart for all 19 variables (1st version) 

Figure 6 shows five points which are out of control, with a CL of 38.71543. 

Consequently, each variable is analyzed with a univariate Shewhart control chart; 

the resulting 19 charts are presented in Appendix B. These charts demonstrate that 

before the 40th observation at least 13 variables present irregular variations, also 

called violations. These violations indicate that the machine was not working in a 

steady-state; hence, the first 40 observations were eliminated from the in-control 
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table, and the last observation, since it was from the next day. The Hotelling T2 is 

analyzed again. The resulting chart is presented in Figure 7, where the CL changed 

to 38.28504 with 186 observations. Even though three points are still out of the CL, 

no special causes are detected, and observations are left as part of the IC dataset. 

If in fact, those three observations were due to special causes, the power of the chart 

or detection capability will be reduced. 

 

Figure 7. New Hotelling T2 chart for all 19 variables (1st version) 

To evaluate the multivariate normality a Shapiro-Wilks test is implemented using the 

mvnormtest package in R. The result of the test gives a p-value of 1.8e-10 since 

this value is lower than 0.05 the test rejects the normality assumption, even tough 

as individual fifteen of the variables act as normal. A script was written to evaluate 

every possible combination of variables ( 2%6  combinations) and detect which 

combinations resulted in a p-value equal or greater than 0.05. The code outputs a 

table with the combination number and the p-value. The combination number is the 

decimal representation of a binary number, each digit of the binary number 

represents the used variables; where the least significant digit corresponds to the 

first variable. The results yielded more than one thousand possible combinations, 

and Table 1 shows the first thirteen combinations with the most variables. 
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Table 1. Multivariate normality test p-value 

p-value Included variables 

0.081475 1,2,5,6,7,8,11,12 

0.058856 3,4,5,6,7,8,11,12 

0.059664 1,2,3,4,6,8,12,13 

0.064806 1,3,4,5,6,7,12,13 

0.085901 1,2,5,6,7,8,11,16 

0.089736 3,4,5,6,7,8,11,16 

0.083509 1,2,5,6,8,11,12,16 

0.050421 1,2,3,6,8,11,13,16 

0.062248 1,2,5,6,10,11,13,16 

0.052698 1,5,6,7,8,11,12,18 

0.063778 4,5,6,7,8,11,12,18 

0.053805 1,3,4,5,7,8,13,18 

0.051684 1,5,6,7,11,12,15,18 

 

Even though observations are not multivariate normal, Figure 8 shows how a T2 

chart would behave when introducing a small part of a known out-of-control situation, 

where it can be easily noticed the change between the IC data and the out-of-control 

data. 
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Figure 8. Hotelling T2 test chart (1st version) 

 

 

 

3.2 Healy’s CUSUM implementation 

After obtaining the in-control dataset, the next step is to apply the CUSUM statistic. 

For coding the procedure, it is necessary to obtain the mean vector and the 

covariance matrix of the IC dataset, named E9 and Sigma respectively. The shift 

that is wanted to be detected, for which the chart is optimum, is given by E4 = E/ +

M, being M the shift expected to be detected. After obtaining these matrixes equations 

(6-8) can be applied for obtaining the CUSUM chart. The IC and OC datasets can 

be concatenated to obtain a chart that graphs both datasets. 

For the CL the R function getH from the CUSUMdesign package was used. For 

validating the obtained results for both study cases, simulations were done. With an 

ARL of 370, for the case where the shift is E: = E9 ± 0.01, the resulting CL is 

4.868675, and when the shift is  E: = E9 ± 0.02 the obtained CL is 2.713268. 



 

 

 

 

25 

The first two study cases analyzed where E: = E9 + 0.01, and the second one 

where E: = E9 + 0.02 , resulting graphs are shown in Figure 9 and Figure 10, 

respectively. 

 

Figure 9. CUSUM chart calibrated to be optimum for a shift to μ0+0.01 in all variables (1st 

version) 

 

Figure 10. CUSUM chart calibrated to be optimum for a shift to μ0+0.02 in all variables  (1st 

version) 
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As Healy recommends, two more one-sided CUSUM charts were designed, now for 

the negative direction, Figure 11 shows a shift of E9 − 0.01, while Figure 12 shows 

a shift of E9 − 0.02. The CL’s for both charts remain the same as their counterpart. 

 

Figure 11. CUSUM chart calibrated to be optimum for a shift to μ0-0.01 in all variables  (1st 

version) 

 

Figure 12. CUSUM chart calibrated to be optimum for a shift to μ0-0.02 in all variables  (1st 

version) 
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From all the previous charts, it is noticeable that a shift in the measurements is 

detected. Even the negative side of CUSUM shows a considerable change that 

makes difficult to evaluate all observations; the four charts present a close-up of the 

first 250 observation including the 186 IC table, where It can be seen the first change; 

this matches with a problem detected while the first version of the machine was being 

tested in the plant for a complete working shift. The second day of operation, a guide 

pin was found loose, but it was incorrectly adjusted shown in Figure 13, causing 

some incorrect measurements of the workpieces, especially at the end of the work 

shift. 

  

Figure 13. Guide pin positioning (a)Incorrect and (b) Correct 

 

A day later, a kinematic coupling got loose and fell as shown in Figure 14 (a), causing 

a significant problem in the measurements. Also, Figure 14 (b) shows a bad 

adjusting of the kinematic couplings, where they are not touching their supports. 

(a) (b) 
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Figure 14. Kinematic coupling. (a) fallen and (b) incorrect position 

 

For proving Healy’s assumption that the expression C.(-, − E/) has a standard 

univariate normal distribution when -, has a mean equal to E/, the IC dataset was 

analyzed with the previous expression with a given a’ from (6). The histogram is 

presented in  

Figure 15, proving that the dataset behaves as Healy’s proposed. The central limit 

theorem affects here, as the cumulative effect of the CUSUM normalized data, even 

though the original set was not normal. 

 

Figure 15. a'test histogram (1st version) 

(a) (b) 
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3.3 Second version model analysis 

Since the machine was remodeled (changes explained on 1.1) the previous analysis 

is no longer accurate, this is because any change in the structure may affect the 

measurement and the relation between variables. This second version was created 

to prevent some of the failures presented on the first version and optimizing the takt 

time previously measured as 29 seconds on average. For this new version, the takt 

time was reduced to 22 seconds. 

The analysis exposed on 3.1 and 3.2 was replicated for a new dataset obtained on 

another round of work shift testing with the second model of the prototype. During 

these test days, it was also reported a loose guide pin, which was readjusted. 

After detecting and suppressing six observations for assignable causes, leaving 185 

observations, the resulting Hotelling T2 chart is presented in Figure 16 with a 

confidence level of 99.73% and a UCL of 38.25968. 

 

Figure 16. Hotelling T2 chart for all 19 variables (2nd version) 

Even though Figure 16 those not present any points out of control, an analysis of 

every variable is done. The resulting charts are contained on Appendix C. From the 

19 charts it can be seen an irregular behavior on the 50 first observations these are 
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eliminated to avoid using data that was obtained when the machine was not yet 

working stable. Also, between observations 85 to 100 on eight variables, despite 

this, observations were left since not assignable causes were detected. The new 

Hotelling T2 chart is presented in Figure 17, with a UCL of 37.38131 and 135 

observations remaining. 

 

Figure 17. New Hotelling T2 chart for all 19 variables (2nd version) 

After having the IC dataset, the CUSUM statistic can be applied using equations (6-

8). Once again four scenarios were analyzed, for the positive shift E: = E9 + 0.01, 

and E: = E9 + 0.02, with a CL of 4.815231 and 2.674335 respectively. The resulting 

charts are presented in Figure 18 and Figure 19. For the negative shift E: = E9 −

0.01 and E: = E9 − 0.02, chart are shown in Figure 20 and Figure 21 respectively. 

The CL’s for both charts remain the same as their counterpart. 
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Figure 18. CUSUM chart calibrated to be optimum for a shift to μ0+0.01 in all variables. 

(2nd version) 

 

Figure 19. CUSUM chart calibrated to be optimum for a shift to μ0+0.02 in all variables. 

(2nd version) 
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Figure 20. CUSUM chart calibrated to be optimum for a shift to μ0-0.01 in all variables. 

(2nd version) 

 

Figure 21. CUSUM chart calibrated to be optimum for a shift to μ0-0.02 in all variables. 

(2nd version) 

A previously stated, some violations were detected between observations 85 and 

100 on the individual Hotelling T2 charts. These violations are visible in both Figure 

18 and Figure 19. The shift detected near observation 150 is closely related with the 

loose guide pin. The control charts show that after the readjustment, neither the 

machine nor the process returned to its regular operation. 
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Chapter 4. Winsorization 

As explained in subsection 2.2.3, winsorizing is limiting the effect of extreme values 

in the statistical data to reduce the risk of false alarms due to occasional outliers. 

This chapter will present experimentation made to evaluate the effect on Healy’s 

performance when winsorization is applied. 

Based on Healy’s CUSUM, a winsorized model is proposed. Equations (7) and (8) 

are still used. For generating the winsorized CUSUM equation (9) is proposed: 

=- = max(=-'% + O − 0.5H, 0) > 23,     (9) 

where 

O = PC
.(-, − E/), Q > C.(-, − E/)

Q, 	Q ≤ C.(-, − E/)
	,     (10) 

 

where Q  is a specified robustifying limit, and O  the standarized distance of the 

measurement. 
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Two scenarios were studied using equations (9) and (10), the first one presented in 

Section 4.1, analyzes the effect on the ARL when random OC outliers appear on an 

IC simulation. In Section 4.2, winsorization is analyzed in OC data and how the 

winsorized data might affect the earlier detection of shifts. Finally, in Section 4.3, 

winsorization is applied in the dataset analyzed in Section 3.2. 

 

4.1 The effect of winsorizing random outliers in the in-control performance 

An experiment was made to analyze the effect of spurious outliers appearing 

randomly in an IC dataset. Random data was generated with a 19-element mean 

vector of E/ = 0 and a , × , identity covariance matrix. 

Given a particular change with a Mahalanobis distance D given by equation (8), the 

probability of random outliers appearance, the size of those random outliers, and the 

winsorization threshold; the ARL was estimated in several simulations. The D 

distance defines the control chart calibration in order to detect the desired change in 

the mean. By detecting more significant changes in the mean, the ARL decreases. 

Outlier measurements were used to test the performance of the control chart against 

observations with a mean value different to the IC mean target. The outlier 

observation is composed of two parameters, the probability of appearance during 

runtime and the size of its mean given by a specific standard deviation. As the 

number of outlier observations increase, the ARL decreases, also depending on the 

outlier size. As stated before, winsorization limits the effect of extreme values; hence, 

a smaller winsorization value will increase the in-control ARL. 

Table 2, Table 3 and Table 4 contain the results of the simulations given different 

winsorization conditions. As seen in the Tables, when the winsorization value is 

relatively small, as shown in Table 3, the in-control ARL becomes the largest of all 

the scenarios. Table 3 and Table 4 show that from a specific standard deviation size, 

the in-control ARL behaves similarly. For instance, when the chart is calibrated with 

H = 0.50, and the probability of an outlier  is 0.01, an outlier of 6 standard deviations 
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generates an in-control ARL of 81.0 when no winsorization is used. When 

winsorization is used, the same scenario produces an in-control ARL of 273.5 and 

220.0 using Q = 2 and Q = 3, respectively. The same comparison can be made for 

any other combination. 

The Mahalanobis distance, referred to as dm, is defined as the amount of standard 

deviations times T = 0.3162278. The constant T  is defined in order to make the 

Mahalanobis distance as an integer. For example, by multiplying the mean vector by 

2, the resulting Mahalanobis distance is 2. 

 

 

Table 2. Random outliers without winsorization 

    Probability 

D dm 0.005 0.01 0.05 0.1 

0.5 

2 295.7 236.7 80.4 39.1 
3 235.2 166.6 47.1 22.8 
4 181.0 119.3 32.3 16.9 
5 143.3 89.9 22.9 12.7 
6 132.7 81.0 19.5 10.2 

1 

2 286.4 214.3 70.5 31.9 
3 188.1 129.1 32.7 17.7 
4 130.4 79.5 19.0 9.8 
5 131.6 78.2 19.3 9.9 
6 130.3 79.0 18.9 9.9 

2 

2 273.7 205.8 67.8 32.2 
3 130.7 80.7 19.4 9.6 
4 131.5 79.7 19.5 9.9 
5 132.3 80.1 19.1 9.7 
6 128.0 78.6 19.0 9.7 
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Table 3. Random outliers using a winsorization limit W=2 

    Probability 

D dm 0.005 0.01 0.05 0.1 

0.5 

2 321.0 276.3 117.7 58.1 
3 320.8 274.0 117.1 58.1 
4 318.1 278.6 116.6 60.7 
5 322.8 273.8 116.1 58.8 
6 314.4 273.5 119.0 58.8 

1 

2 313.9 270.8 112.5 55.4 
3 314.6 266.1 114.8 54.6 
4 315.7 271.9 110.0 54.7 
5 311.1 269.8 113.5 54.8 
6 314.0 278.1 113.5 54.7 

2 

2 302.9 253.8 94.8 45.7 
3 308.0 257.4 95.5 44.9 
4 307.3 254.7 95.3 45.1 
5 310.7 255.8 96.7 45.6 
6 303.1 260.2 95.0 45.6 

 

Table 4. Random outliers using a winsorization limit W=3 

    Probability 

D dm 0.005 0.01 0.05 0.1 

0.5 

2 288.7 240.5 79.5 38.5 
3 283.1 222.0 70.6 33.5 
4 278.2 224.0 70.3 33.5 
5 275.8 224.6 71.6 34.7 
6 280.4 220.0 69.9 34.3 

1 

2 277.5 220.2 68.4 32.2 
3 264.7 198.9 58.8 29.0 
4 255.8 197.3 59.8 28.0 
5 258.0 200.3 60.9 27.3 
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6 261.5 196.9 59.2 28.0 

2 

2 257.1 194.0 60.2 29.4 
3 236.4 166.6 49.1 24.1 
4 232.2 165.3 48.5 24.1 
5 232.4 164.7 47.7 24.0 
6 235.5 167.0 49.1 24.7 

 

 

 

4.2 The effect of winsorizing over the out-of-control performance 

The second experiment consisted of analyzing how long it would take to Healy’s 

CUSUM to detect OC observations with and without winsorization. Random data 

was generated with a 19-element mean vector, and a varying mean vector 

depending on the desired shift on the mean. The covariance matrix remains as a 

, × , identity matrix. The control chart was calibrated for a specific D value, with 

different T% mean vector values, applying winsorization, and modifying the number 

of variables changing to the T% mean vector, being T% the OC mean vector. 

Table 5, Table 6 and Table 7 present the results from the simulations in terms of 

ARL given the distinct D values. The effect of winsorization is slightly visible in the 

three tables, being the W=2 simulations the ones that had a more noticeable effect 

on the ARL, due to its increased detecting allowance. The ARL performance 

decreases considerably depending on how many variables are affected with T%. As 

the amount of variables reduces, the control chart looses its capability of early 

detection. Finally, as the T% increases, the control chart became more capable of 

detecting the shift, and this is not affected by the winsorization. As a summary of the 

previous statements, winsorization affects the resulting ARL enough for the chart to 

be considered robust to drastic changes while keeping the effect of subtle changes. 
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For example, assuming the chart is calibrated using H = 0.50 and every variable 

present a change in the mean of 0.2294 (representing a Mahalanobis distance of 

1.0), an out-of-control signal is generated for an ARL of 9.7, without winsorization. 

When winsorization is used, the same scenario produces an ARL of 9.9 and 9.8 

using Q = 2 and Q = 3, respectively. The same comparison can be made for any 

other combination. 

Table 5. OC simulation, D=0.5 

 
  Not winsorize 2 3 

Shift mu1 CL 100% 
(19) 

75% 
(14) 

50% 
(10) 

25% 
(5) CL 100% 

(19) 
75% 
(14) 

50% 
(10) 

25% 
(5) CL 100% 

(19) 
75% 
(14) 

50% 
(10) 

25% 
(5) 

0 0 6.7076 366.6 363.7 371.3 373.2 6.2397 367.1 368.9 373.0 365.2 6.6756 365.8 373.4 365.9 371.1 

0.50 0.1147 6.7076 23.5 36.7 59.1 128.6 6.2397 24.0 36.8 58.5 129.2 6.6756 23.4 36.1 58.0 128.3 

1.00 0.2294 6.7076 9.7 14.2 22.0 58.3 6.2397 9.9 14.2 22.8 58.4 6.6756 9.8 14.2 22.1 57.8 

1.50 0.3441 6.7076 6.1 8.6 12.9 33.1 6.2397 6.5 8.9 13.1 33.4 6.6756 6.2 8.6 13.0 33.1 

2.00 0.4588 6.7076 4.5 6.2 9.1 22.2 6.2397 5.2 6.7 9.4 22.3 6.6756 4.6 6.2 9.1 22.0 

3.00 0.6882 6.7076 3.0 4.0 5.7 12.9 6.2397 4.2 4.8 6.2 13.1 6.6756 3.3 4.2 5.8 12.9 

 

Table 6. OC simulation, D=1 

 
  Not winsorize 2 3 

Shift mu1 CL 100% 
(19) 

75% 
(14) 

50% 
(10) 

25% 
(5) CL 100% 

(19) 
75% 
(14) 

50% 
(10) 

25% 
(5) CL 100% 

(19) 
75% 
(14) 

50% 
(10) 

25% 
(5) 

0 0 4.0955 373.8 375.0 366.8 368.8 3.6928 369.8 366.1 368.7 374.8 4.0633 370.7 374.2 366.7 366.8 

0.50 0.1147 4.0955 27.6 46.7 76.7 160.5 3.6928 28.0 46.7 76.3 160.2 4.0633 27.7 47.2 75.9 157.8 

1.00 0.2294 4.0955 8.5 14.0 25.2 75.9 3.6928 8.9 14.3 25.9 78.2 4.0633 8.6 14.1 25.6 77.6 

1.50 0.3441 4.0955 4.9 7.4 12.5 41.1 3.6928 5.2 7.6 12.7 42.0 4.0633 4.9 7.4 12.3 41.7 

2.00 0.4588 4.0955 3.4 4.9 8.0 25.4 3.6928 3.9 5.3 8.2 25.7 4.0633 3.5 5.0 8.0 25.3 

3.00 0.6882 4.0955 2.2 3.0 4.5 12.5 3.6928 3.1 3.6 4.9 12.9 4.0633 2.4 3.2 4.6 12.6 

 

 

 



 

 

 

 

39 

Table 7. OC simulation, D=2 

 
  Not winsorize 2 3 

Shift mu1 CL 100% 
(19) 

75% 
(14) 

50% 
(10) 

25% 
(5) CL 100% 

(19) 
75% 
(14) 

50% 
(10) 

25% 
(5) CL 100% 

(19) 
75% 
(14) 

50% 
(10) 

25% 
(5) 

0 0 2.1756 373.3 370.2 374.3 370.3 1.7034 362.5 373.0 366.2 373.5 2.0530 373.9 374.3 375.8 365.3 

0.50 0.1147 2.1756 47.7 77.1 118.9 203.0 1.7034 46.4 76.3 115.0 201.8 2.0530 44.6 73.7 113.8 201.1 

1.00 0.2294 2.1756 11.3 22.0 43.9 117.0 1.7034 11.6 22.0 42.2 116.7 2.0530 10.8 20.8 41.0 114.9 

1.50 0.3441 2.1756 4.7 8.9 18.5 69.8 1.7034 5.0 9.3 19.3 68.3 2.0530 4.8 8.7 17.9 66.9 

2.00 0.4588 2.1756 2.9 5.0 9.9 43.6 1.7034 3.3 5.3 10.2 42.4 2.0530 3.1 4.9 9.6 41.0 

3.00 0.6882 2.1756 1.7 2.5 4.4 18.8 1.7034 2.2 2.9 4.6 18.7 2.0530 2.1 2.7 4.4 18.4 

 

4.3 Winsorizing Healy’s CUSUM 

The charts presented in subsection 3.2 are now replicated applying equations (9) 

and (10). Two winsorized escenarios were analyzed. For a change of E: = E9 ±

0.01, the charts presented in Figure 22 and Figure 23 have a Q = 2, both with a CL 

of 4.456167. Then, for the same change in the mean but, with a Q = 3, charts are 

shown in Figure 24 and Figure 25, both with a CL of 4.836532. 

 

Figure 22. CUSUM chart calibrated to be optimum for a shift of μ0+0.01, W=2 (1st version) 
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Figure 23. CUSUM chart calibrated to be optimum for a shift of μ0-0.01, W=2 (1st version) 

 

Figure 24. CUSUM chart calibrated to be optimum for a shift of μ0+0.01, W=3 (1st version) 



 

 

 

 

41 

 

Figure 25. CUSUM chart calibrated to be optimum for a shift of μ0-0.01, W=3 (1st version) 

 

 

The next charts present a change of E: = E9 ± 0.02, for a Q = 2, presented in 

Figure 26 and Figure 27, both with a CL of 2.298777. Also, for a change of E: =

E9 ± 0.02, with Q = 3, charts are shown in Figure 28 and Figure 29, both with a CL 

of 2.656877. 

 

Figure 26. CUSUM chart calibrated to be optimum for a shift of μ0+0.02, W=2 (1st version) 
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Figure 27. CUSUM chart calibrated to be optimum for a shift of μ0-0.02, W=2 (1st version) 

 

 

Figure 28. CUSUM chart calibrated to be optimum for a shift of μ0+0.02, W=3 (1st version) 
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Figure 29. CUSUM chart calibrated to be optimum for a shift of μ0-0.02, W=3 (1st version) 

 

Although the shape of graphed points does not changes, the value of each =' is 

smaller; this can be seen when comparing the y-axis of the winsorized and not 

winsorized charts. It can be seen how winsorization limits the effect of extreme 

values, especially in the charts having a winsorization value of two. The detected 

changes by all charts are more likely to have been sustained over a short period 

rated than isolated changes. 



 

 

 

 

44 

 

 

 

 

 

 

 

 

 

Chapter 5. Data Visualization 

As previously stated, a dashboard is an efficient tool for presenting information 

clearly and practically. This chapter is divided into two sections; the first one presents 

the procedure to obtain data from the machine until it is transformed into an R data 

frame. The second section explains the general view of the designed dashboard.  

 

5.1 Obtaining data from the database 

Many communication protocols are available to connect with an existing database, 

some of them consist of a specific protocol to connect to the database, but some 

others use an intermediary protocol such as HTTP. Since the existing solution 

already has a database interface, the proposed solution implies using and extending 

the features of the existing system. 

Being R a high-level language, many extended features not related to statistical 

analysis are available as if it were another programming language. Notably, the 
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httr library allows developers to perform HTTP requests such as GET and POST. 

The HTTP protocol is widely used for the average internet usages as browsers do; 

however, a new trend of online services called Rest API uses the HTTP protocol to 

interface with online programs. A Rest API is a program waiting to be triggered that 

is running in an online environment, an HTTP request carrying the appropriate 

parameters can trigger the API and reply to the request accordingly to the given 

parameters. 

A small Rest API was coded and deployed into the hosting service provider 

environment in order to interface the R application with the database in a cautious 

manner. The Rest API is deployed as a specific subdomain of the Consortium 

website and is executed whenever a POST request is received; no additional 

parameters are required. When triggered, the hosting controller running a PHP script 

gathers a subset of the measurement dataset that includes the nineteen 

measurements points and the date and time when uploaded. Then, the controller 

parses the subset as a comma-separated value (CSV) string and outputs it as the 

replied body for the HTTP request. 

As the CSV format is widely used for programming purposes, the R language 

natively supports this kind of format and is capable of converting the incoming CSV 

response into a data frame. 

APIs like this one are widely used by large service providers to link two pieces of 

software together for applications like IoT. This technique will also be critical for the 

development of a digital twin of the machine capable of monitoring and forecasting 

not just its conditions, but the status of the process as the virtual twin may be fed 

with an additional training set different from the incoming samples from the die 

casting process to enhance the performance of the real twin.  

The API developed for this application may be reused and extended to support 

various other links the twins may need, as a two way communication between the 

two. 
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5.2 Creating the Dashboard 

Often, deploying a Rest API written in a high-level language is hard to do, due to the 

hosting service providers restrictions and the complexity of making the application 

compatible with the hosting environment. Fortunately, RStudio provides the Shiny 

App framework which allows to develop and test both front and back ends of a Web 

App offline and only using the R language. 

The Shiny App framework is divided into two main scripts: the server and the user 

interface (UI). The UI section provides a simple interface for developing a graphical 

user interface that may include plots, buttons, checkboxes, and order standard 

widgets for the user to use as an interface. The server section runs a given program 

and can use inputs from the UI widgets and output results as plots or labels; any R 

script can be executed in this section. Once the application is ready to be deployed, 

the RStudio publish tool will include any dependency on the RStudio hosting 

environment, and finally, the application will be online and ready to be used. 

A dashboard was designed to execute the statistical algorithms explained in Chapter 

3. The process data comes from the existing database by using the procedure 

described in section 5.1. By default, the last fifty observations are displayed on the 

graphs, but the user can select a custom lapse using the calendar and time input 

boxes. Figure 30 presents the general view of the dashboard when accessing via 

computer, with the following parts: 

1. Date selection range 

2. Time selection range 

3. Execute button (Necessary to press after every change) 

4. “X-axis as sample” checkbox: when checked the x-axis on the graphs is the 

number of observation, when not checked the x-axis shows the hour in which 

the observations was registered. 

5. The number of observations presented in the actual graph 
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6. Utilization percentage 

7. Tabs for each graph 

8. Graph section 

The following algorithm was used to obtain the utilization percentage: 

1. Equation (12) describes the active time: 

XY = 3 ∙ +[\'(∆^-),  ∆^- ≤ 100    (12) 

Where ∆^- is a vector containing the elapsed time between observations. 

2. Get the ratio of the active and the available time of the machine and multiply 

by one hundred to get the percentage. 

 

Figure 30. Dashboard default view 

Figure 31 shows the connection diagram of every model in the current solution. As 

stated before, the measurement system uploads the observations to the existing 

database using the HTTP protocol (red arrows), while the Shiny App request data 

from that same database using the custom made readFromDB function. 
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Figure 31. Interconnection block diagram 
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Chapter 6. Conclusion and future work 

6.1 Conclusions 

The thesis presented the statistical analysis of a multivariate process dataset using 

Healy’s CUSUM and the study of how winsorization affects the performance of the 

used control chart to limit the effect of outliers. Also, the implementation of SPM in 

the measurement machine data and the visual presentation of the resulting charts. 

The three hypotheses were proven and did answer the research questions. 

Regarding how data can be used to forecast machine performance and how reports 

can be produced on time, Healy’s CUSUM is a good option for detecting subtle and 

sustained shifts for this case, as the already known situations were detected earlier 

before becoming noticeable in the raw data. However, this solution is not able to 

distinguish between an event caused by the process or the machine as the statistic 

only highlights an out-of-control situation. Also, the online dashboard has essential 
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information for allowing any person to observe the general behavior of the process 

and the machine. 

For the question regarding the performance difference of the winsorized in-control 

chart, winsorization does limit the effect of isolated changes in an IC chart, resulting 

in an ARL closer to the expected performance. However, the effect is slightly visible 

with a Q = 3 compared to the not winsorized scenario. 

As of the performance difference of the winsorized out-of-control chart in comparison 

with Healy’s proposal, winsorizing has minimal effect on the ARL when detection OC 

samples, the most noticeable difference is found by changing the number of 

variables affected by the change of mean. 

Finally, this work used techniques that will be useful for the development of a digital 

twin. Using an online API to get the data from an online hosting service would allow 

a seamless communication between the real and the virtual twins.  

 

6.2 Future work 

More variables can be added to the CUSUM analysis if these are significant for the 

process performance (i.e. environmental variables such as temperature, humidity, 

and pressure). 

As the dashboard designed in this thesis is a preliminary version, improvements can 

be made to it. First, replace the IC dataset with at least 200 observations from 

different workpieces under a control situation; this means observing when the pieces 

are being measured to corroborate all the measurements and suppress any 

assignable causes. The CUSUM statistic will be more accurate using the previous 

recommendations.  

Other control charts can be used, for example, a multivariate EWMA, which is also 

known to work with subtle and sustained changes. Other robustification methods can 
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be investigated, analyzed and compared with this work’s proposal; some examples 

of these methods could be trimmed mean, Huber, turkey bi-square, and Hampel [37]. 

Even though the Shapiro Wilks test did not show normality on data, by using Healy’s 

CUSUM, the problem could be treated as a normal scenario. Evaluating the dataset 

with other multivariate control charts might present the need for pre-processing data 

before the analysis. 

The work done in this thesis can be repeated using the previously proposed control 

chart and robustification methods when the machine collects enough data from 

different scenarios, including different types of perturbations. Also, the analysis can 

be repeated by evaluating the effect of robustifying methods using a non-normal 

dataset 

Machine learning might be a considerable followup for the automatic classification 

of the data. This work didn’t use Machine Learnng algorithms due to the simple 

nature of the analyzed data. However, if new sensors are included, many other 

combinations and patterns might be present in the output data, and it might not be 

as easy to identify for the a human as it would be for a Machine Learning classifier. 

The presented dashboard contains information from three days only and with known 

problems. As the machine is expected to work during regular work shifts, it is vital to 

be able to discriminate junk data; this because it has been proved that operators 

tend to trigger the measurement process without a workpiece and the control chart 

can detect this measurement as a shift when it is, in fact, a false alarm. 

Another critical aspect to include is a reset function that triggers when a shift is 

detected and corrected. The reset feature is needed because the CUSUM works as 

an error accumulator, and an error state will not stop showing until the error is 

corrected, and the error accumulator reset. 
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As for the dashboard, a useful feature would be to implement alarms messages that 

can be sent to a mobile or appear on the screen to alert workers about a possible 

problem. 

The same approach for developing the dashboard can be used to create a digital 

twin. By enhancing the API functionality, a closed-loop system can be developed for 

feeding the online data to a simulation program to forecast and compare the 

machine’s performance. 
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Appendixes 

Appendix A 

This appendix contains the correlation analysis between the nineteen variables and 

environmental parameters. 

 

Appendix A. 1. Correlation matrix plot 
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Appendix A. 2. Correlation matrix plot (cont.) 
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Appendix A. 3. Correlation matrix plot (cont.) 



 

 

 

 

56 

 

Appendix A. 4. Correlation matrix plot (cont.) 
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Appendix B 

This appendix presents the univariate Shewhart control chart of the IC dataset for 

the nineteen variables using the data gathered from the first version of the machine. 

  
Appendix B. 5. Shewhart chart for P2 (1st version) Appendix B. 6. Shewhart chart for P1 (1st version)) 

  
Appendix B. 7. Shewhart chart for P3 (1st version)) Appendix B. 8. Shewhart chart for P4 (1st version)) 

  
Appendix B. 9. Shewhart chart for P5 (1st version) Appendix B. 10. Shewhart chart for P6 (1st version) 
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Appendix B. 11. Shewhart chart for P7 (1st version) Appendix B. 12. Shewhart chart for P8 (1st version) 

  
Appendix B. 13. Shewhart chart for P9 (1st version) Appendix B. 14. Shewhart chart for P10 (1st version) 

  
Appendix B. 15. Shewhart chart for P11 (1st version) Appendix B. 16. Shewhart chart for P12 (1st version) 
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Appendix B. 17. Shewhart chart for P13 (1st version) Appendix B. 18. Shewhart chart for P14 (1st version) 

  
Appendix B. 19. Shewhart chart for P15 (March 2019) Appendix B. 20. Shewhart chart for P16 (March 2019) 

  
Appendix B. 21. Shewhart chart for P17 (1st version) Appendix B. 22. Shewhart chart for P18 (1st version) 
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Appendix B. 23. Shewhart chart for P19 (1st version) 
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Appendix C 

This appendix presents the univariate Shewhart control chart of the IC dataset for 

the nineteen variables using the data gathered from the second version of the 

machine. 

  
Appendix C. 1. Shewhart chart for P1 (2nd version) Appendix C. 2. Shewhart chart for P2 (2nd version) 

  
Appendix C. 3. Shewhart chart for P3 (2nd version) Appendix C. 4. Shewhart chart for P4 (2nd version) 

  
Appendix C. 5. Shewhart chart for P5 (2nd version) Appendix C. 6. Shewhart chart for P6 (2nd version) 
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Appendix C. 7. Shewhart chart for P7 (2nd version) Appendix C. 8. Shewhart chart for P8 (2nd version)

  

Appendix C. 9. Shewhart chart for P9 (2nd version) Appendix C. 10. Shewhart chart for P10 (2nd version) 

  
Appendix C. 11. Shewhart chart for P11 (2nd version) Appendix C. 12. Shewhart chart for P12 (2nd version) 
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Appendix C. 13. Shewhart chart for P13 (2nd version) Appendix C. 14. Shewhart chart for P14 (2nd version) 

  
Appendix C. 15. Shewhart chart for P15 (2nd version) Appendix C. 16. Shewhart chart for P16 (2nd version) 

  
Appendix C. 17. Shewhart chart for P17 (2nd version) Appendix C. 18. Shewhart chart for P18 (2nd version) 
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Appendix C. 19. Shewhart chart for P19 (2nd version) 
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