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A Deep Learning-based Algorithm for the Routing Problem in 

Vehicular Delay-Tolerant Networks 

by 

Roberto Hernández  

Abstract 

 

The exponential growth of cities across the world has brought along important 

challenges such as waste management, pollution and overpopulation, and 

transportation administration. To mitigate these problems, the idea of Smart City 

was born, seeking to provide robust solutions integrating sensors and electronics, 

information technologies and communication networks. More particularly, to face 

transportation challenges, Intelligent Transportation Systems are a vital component 

in this quest. Intelligent Transportation Systems are intelligent systems that aim at 

providing the best solution to transportation-related matters, with the aid of 

information technologies, electrical and electronics and communication networks. 

In this context, communication networks are called Vehicular Networks, and they 

offer a communication framework for moving vehicles, road infrastructure and 

pedestrians. The extreme conditions of vehicular environments, nonetheless, make 

communication between high-speed moving nodes very difficult, so non-

deterministic approaches are necessary to maximize the chances of packet delivery. 

In this work, this problem is addressed using Artificial Intelligence from a hybrid 

perspective, focusing on both the best next message to replicate and the best next 

hop in its path in the network. Furthermore, DLR+ is proposed, a router with a 

prioritized type of message scheduler and a routing algorithm based on Deep 

Learning. Simulations done to assess the router performance show important gains 

in terms of network overhead and hop count, while maintaining an acceptable 

packet delivery ratio and delivery delays, with respect to other popular routing 

protocols in vehicular networks.  
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Chapter 1  

Introduction 
This first chapter begins with a preamble to the methodology used in the research 

process, and then follows directly into the main topic, which is routing protocols in 

vehicular delay tolerant networks.  

 

Research Methodology 

The methodology used in this research is based on the Design Science in Information 

Systems Research Framework proposed by Hevner et al. [31]. Such methodology 

(fig. 1.1) identifies two science paradigms based on behavioral and design science, 

both of which are essential to the Information Systems (IS) and can be used to make 

significant contributions to IS Research. The behavioral-science paradigm seeks to 

develop and verify theories or predict human or organizational behavior, whereas 

the design-science paradigm seeks to extend the boundaries of human and 

organizational capabilities by creating new and innovative artifacts.  

 

 

Figure 1.1. Design-science for Information Systems Research Framework. 
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According to the authors, the design-science paradigm has its roots in 

engineering and the science of the artificial, and it is fundamentally a problem-

solving paradigm, seeking to create innovations that define the ideas, practices, 

technical capabilities, and products through which the analysis, design, 

implementation, management and use of IS can be effectively and efficiently 

accomplished. The research in this paper is based precisely on the design of a new 

artifact that represents a significant contribution to the solution to an identified 

problem. As mentioned in [31], artifacts may vary from software, formal logic, and 

rigorous mathematics to informal natural language description, whose evaluation 

may include optimization proofs, analytical simulation, and quantitative 

comparisons with alternative designs. Figure 1.1 depicts this IS Research 

Framework.  

 

In this framework, the need or research problem is addressed from the two 

mentioned perspectives: the behavioral-science (used to develop and justify the 

theories that explain or predict phenomena related to the identified problem; it seeks 

truth) and the design-science (used to build and evaluate artifacts designed to meet 

that need; it seeks utility). The whole research process referred to in this paper will 

make use of this assessment approach in such a way that the justify/evaluate activities 

can result in the identification of weaknesses in the theory or artifact and thus refine 

and reassess as needed. Relevance and rigor are accomplished as the proper 

foundations (theories, frameworks, models, etc.) and methodologies (data analysis 

techniques, validation criteria, etc.) are applied to the research process to solve the 

identified problem in the environment of interest.  

 

As design-science is a problem-solving process, there are seven guidelines to 

follow through to guarantee a rigorous and relevant research in IS (Table 1.1). As 

stated by Hevner et al [31], the research artifact must meet the following criteria: 

have a purpose, be problem-relevant, be evaluated, be innovative, be rigorous, be 

properly selected, and be properly communicated. The design-science research 

requires the creation of an innovative purposeful artifact (guideline 1) to a specified 

problem domain (guideline 2), in which evaluation (guideline 3) is crucial to validate 

the purposefulness and utility of the artifact. 
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Table 1.1. Detailed description of the guidelines of the Design-Science in IS 

Research framework. 

Also, innovation is crucial (guideline 4) in order to be able to differentiate the 

design-science from the practice of design. Rigor, presentation and consistency 

(guideline 5) are characteristics of the artifact, which must be properly selected 

(guideline 6) from a variety of available means to reach the desired end. And finally, 

the results of the design-science research must be effectively communicated to the 

proper audience, both technical and managerial (guideline 7). Table 1.1 provides a 

more detailed view of the mentioned guidelines.  

 

Being packet routing one of the main challenges in such environments, in the 

context of Smart Cities (guideline 2), in this research, a method for the packet routing 

in Vehicular Delay Tolerant Networks using a deep learning architecture to optimize 

the quality of delivery is presented (guidelines 1, 4 and 6).  Furthermore, the efficacy 

of the proposed routing protocol was evaluated through suitable and rigorous 

simulations of the vehicular environment (guidelines 3 and 5). Finally, the research 

process and the obtained results have been properly presented in several research 

papers (Appendix) and in this report (guideline 7). 
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The rest of this Chapter focuses on the introduction of background concepts 

essential for the understanding of the identified problem, which leads to a more 

detailed discussion in Chapter 2. 

 

Smart Cities 

In the last decades cities around the world have grown formidably, concentrating a 

big percentage of the total population. Globally, more people live in urban areas 

than in rural areas, with 55.3% of the world’s population residing in urban areas in 

2018, according to the United Nations [73]. By 2030, urban areas are projected to 

house 60 per cent of people globally and one in every three people will live in cities 

with at least half a million inhabitants and it is estimated that by 2050 this number 

will rise to 68 percent of the world’s population to be urban, with over 2.5 billion 

people living in cities.   

 

This exponential growth of cities is considered in the 2030 Agenda for 

Sustainable Development, including Sustainable Development Goal 11, to make 

cities and human settlements inclusive, safe, resilient and sustainable [73]. One of 

the biggest concerns regarding the fast growth of cities is their administration and 

the capacity to give the best attention to their residents. Sustainability, security, 

waste management, information, traffic, etc. are important issues that need to be 

addressed in the administration of big cities. One of the most general ideas to 

address these concerns derived from the huge growth of urban areas mainly focus 

on applying the next-generation information technology to all walks of life, 

embedding sensors and equipment to hospitals, power grids, railways, bridges, 

tunnels, roads, buildings, water systems, dams, oil and gas pipelines and other 

objects in every corner of the world, and forming the “Internet of Things” via the 

Internet [70] This paradigm was defined as a “Smart City”, representing the use of 

information and communication technology to sense, analyze and integrate the key 

information of core systems in running cities. At the same time, a smart city can 

make intelligent responses to different kinds of needs, including daily livelihood, 

environmental protection, public safety and city services, industrial and commercial 

activities [70]. In general, there are many definitions of Smart City, but they all 

encompass the same idea of sustainable development of cities with the aid of 

technology. An acceptable definition of Smart City considers that a city can be 

defined as ‘smart’ when investments in human and social capital and traditional 

(transport) and modern (ICT) communication infrastructure fuel sustainable 

economic development and a high quality of life, with a wise management of natural 
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resources, through participatory governance [5]. Moreover, the Smart City is based 

on six key components including economy, governance, people, mobility, living and 

environment (Figure 1.2) [5][44].  

 

 
Figure 1.2. Building blocks of Smart City Architecture. 

 

Having such a model of city come to life can make the future world 

increasingly appreciable and measurable, increasingly interconnected and 

interoperable and increasingly intelligent [70]. As Smart City is considered to be the 

future  trend of urban development, its construction can generally be divided into 

three levels, including  the construction of public infrastructure, construction of 

public platform for smart city and the construction of application systems, being the 

later typically applied to several aspects including the construction of Smart Medical 

Treatment, the construction of Smart Tourism, the construction of Green City, the 

construction of Smart Urban Management,  the construction of Smart Public Services 

and Social Management, the construction of a Wireless City, the construction of 

Smart Home and the construction of Smart Transportation (Figure 1.3)[70]. 
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Figure 1.3. Construction frame of Application Systems for Smart cities. 

 

Another popular proposal for the building blocks of the architecture of a 

Smart City is shown in Figure 1.4. [59] We can see that in the two first blocks 

Transportation Systems are considered, as “Transport Network” (bottom block) and 

“Transport Services” (second block) mention it as key components in the 

architecture.  Thus, Transportation is an important element in this paradigm, and in 

the next section we are going to dig deeper in a second paradigm within Smart 

Cities.  
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Figure 1.4. Building blocks of a Smart City, as proposed in [59]. 

 

 

ITS: a transportation paradigm for big cities.  

The expansion of cities directly impacts the mobility and brings along an increase in 

the number of vehicles and the need of more communication means or an alternate 

transport system that makes infrastructure more efficient. Transport in big cities is 

one of the main concerns inherited from the accelerated growth of these metropolis 

and the number of inhabitants. More and more vehicles are sold every year and the 

streets suffer severe traffic jams, especially in large cities, where distances are bigger 

and consequently, vehicles are even more necessary for transportation purposes 

[13]. In particular, traffic congestions, emergencies and accidents reveal 

inefficiencies in transportation infrastructures. As part of the goals of a Smart City, 

Smart Transportation has a key role addressing this urban problematic. Even before 
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this idea of Smart Cities was born, the concept of Intelligent Transportation System 

(ITS) has been developed since the beginning of 1970s, which makes human, vehicles 

and roads united and harmonic and establishes a wider range, fully efficient, real-

time and accurate information manage system [56]. Such intelligent systems bring 

an increase in safety, efficiency and reliability to the actual systems, and make them 

more environmentally friendly [56][78]. A wide number of services and transport 

applications that provide security and comfort to the passengers can be enabled 

thanks to the ITS, including but not limited to electronic toll collection, traffic 

surveillance and management, collision avoidance, dynamic traffic optimization, 

information, news, online games, music, movies and others [13][71][78][56]. In fact, 

ITS general applications can be divided into the following [8]: 

 

• Advanced Travel Information System (ATIS), designed to make travel 

more efficient and safer with information on congestion, navigation 

and location, weather and traffic conditions, and alternative routing. 

• Advanced Traffic Management Systems (ATMS), designed for 

highway management and traffic control systems. 

• Advanced Public Transportation System (APTS), designed to improve 

the operation of mass transit services. 

• Advanced Vehicle Control and Safety System (AVCSS), designed to 

achieve efficiency and safety inside the vehicle. 

• Commercial Vehicle Operation (CVO), designed to effectively manage 

taxi and truck fleet operations by controlling alternative routing and 

time of transport delivery system 

 

Three key components are needed in order to sustain the functionality of such 

intelligent systems: sensors (required for data collection), communications (data, 

audio and video to and from vehicle to other units in the network) and Information 

Technologies (software, hardware, database management, etc.). However, in order 

for ITS to provide support for such a wide range of services, the communication 

systems must allow communication between vehicles (V2V) and between vehicles 

and infrastructure (V2I) [13]. Furthermore, more recently, with the rise of the 

Internet of Things (IoT), vehicle to anything (V2X) and vehicle to pedestrian (V2P) 

communications are also considered key components of communication in a fully 

connected transportation system (Figure ). Thus, the aim for communication 

systems is to be very complete and complex, but at the same time they must be safe, 

stable and reliable [52], which is naturally difficult to achieve due to the high 
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mobility constrains that vehicles present with respect to each other and with respect 

to fixed infrastructure, but there is where other disciplines come in into play.  

 
Figure 1.5. Vehicular communications in an ITS. 

 

Communication Networks in ITS 

Vehicular Communication is seen as a key technology for addressing problems in 

ITS due to its potential to improve the safety and comfort through various 

applications built upon it [52].  In order to allow that, seamless and heterogeneous 

communication must be possible, between any component in the network, namely, 

cars (V2V), infrastructure (V2I), pedestrians (V2P), and virtually any object capable 

of transmission or reception of data (V2X).  

 

Applications and services in vehicular networks 

Applications and services in vehicular networks aim at utilizing the information 

coming from vehicles to improve the efficiency in transport systems as well as 

security and safety of the passengers. In general, experts in the field have classified 

V2X services and applications in safety-related use cases, and non-safety related use 

cases, both with particular conditions, such as frequency and minimum latency.   

Table 1.2, summarizes safety-related use cases, and Table 1.3 lists the main uses cases 

for non-safety-related use cases.  
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Safety 

Service 

Use-case Type Communication Mode Minimum 

Frequency 

Minimum 

Latency 

Vehicle 

status 

warning 

Emergency 

electronic brake 

lights 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

10 Hz 100 ms 

Abnormal 

condition 

warning 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

1 Hz 100 ms 

Vehicle 

type 

warning 

Emergency 

vehicle warning 

CAM/V2X Periodic broadcast, 

vehicle-mode dependent 

10 Hz 100 ms 

Slow vehicle 

warning 

CAM/V2X Periodic broadcast, 

vehicle-mode dependent 

2 Hz 100 ms 

Motorcycle 

warning 

CAM/V2X Periodic broadcast 2 Hz 100 ms 

Vulnerable road 

user warning 

CAM/ 

VRU2X 

Periodic broadcast 1 Hz 100 ms 

Traffic 

hazard 

warning 

Wrong way 

driving 

warning 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

10 Hz 100 ms 

Stationary 

vehicle warning 

DEN/X2X Time limited, event-

based, periodic 

broadcast 

10 Hz 100 ms 

Traffic 

condition 

warning 

DEN/X2X Time limited, event-

based, periodic 

broadcast 

1 Hz 100 ms 

Signal violation 

warning 

DEN/I2X Time limited, event-

based, periodic 

broadcast 

10 Hz 100 ms 

Roadwork 

warning 

DEN/I2X Time limited, event-

based, periodic 

broadcast 

2 Hz 100 ms 

Dynamic 

vehicle 

warning 

Overtaking 

vehicle warning 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

10 Hz 100 ms 

Lange change 

assistance 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

10 Hz 100 ms 

Pre-crash 

sensing 

warning 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

10 Hz 50 ms 

Co-operative 

glare reduction 

DEN/V2X Time limited, event-

based, periodic 

broadcast 

2 Hz 100 ms 

Table 1.2. Safety-related use-cases. DEN stands for Decentralized Environmental 

Notification, CAM for Cooperative Awareness Message (adapted from [18]). 
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Non-safety 

services 

Use-case Type Communication 

mode 

Minimum 

frequency 

Minimum 

latency 

Traffic 

Management 

Speed limits I2V Periodic broadcast 1 Hz 100 ms 

Traffic light optimal 

speed advisory 

I2V Periodic broadcast 2 Hz 100 ms 

Intersection management I2V Periodic broadcast 1 Hz 500 ms 

Co-operative flexible line 

change 

I2V Periodic broadcast 1 Hz 500 ms 

Electronic toll collection I2V Periodic broadcast 1 Hz 500 ms 

Infotainment PoI notification I2V Periodic broadcast 1 Hz 500 ms 

Local Electronic 

commerce 

I2V, 

V2I 

Duplex, internet 

access 

1 Hz 500 ms 

Media download I2V Duplex, internet 

access 

1 Hz 500 ms 

Map download and 

update 

I2V Duplex, internet 

access 

1 Hz 500 ms 

Table 1.3. Non-safety-related use-cases (adapted from [18]). 

 

As can be seen, one of the main differences between both groups of applications is 

the latency: while in non-safety applications and services the latency can be as big 

as 100 to 500 ms, in safety applications is 100ms. This is relevant for certain vehicular 

scenarios, particularly when modeling and testing.   

 

Physical conditions, topology and performance 

In vehicular networks, the main representation of nodes is hold by vehicles, 

although pedestrians and infrastructure are also normally considered as part of the 

network. As such, both vehicles and pedestrians move following a movement 

pattern which of often subject to certain conditions such as road topology, weather 

and day and time [52]. Nonetheless, the highly dynamic and mobile nature of 

vehicular networks makes them very unstable and unreliable, resulting in unknown 

and constantly changing network topology (although sometimes can be partially 

know, if the presence of relay nodes, such as those form infrastructure or roadside 

units, is considered). In fact, connections between nodes are very intermittent 

(unstable), and normally there is a lack of and end-to-end (E2E) path between two 

different nodes due mainly to the node’s high speed in a VANET, and to the 

presence of obstacles like buildings [29][36][52][72], which reduces the reliance of 

communication and adds high error rates and communication delays. As a 

summary, vehicular networks present the characteristics listed in Table 1.4, which 

make them unique and require them to have special treatment [29][36][50][52][68]. 
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Physical 

aspects 

Vehicles are the nodes in the network 

Nodes have high mobility 

The network has specific mobility patterns 

Nodes move with random and high velocities 

Topology Sparse and intermittent connectivity among nodes 

Highly variable network topology 

Lack of E2E connectivity among nodes 

Performance High latency 

Long and variable delays 

Asymmetric data rate 

High error rates 

Table 1.4. Main characteristics of vehicular networks. 

 

Perhaps the most unique characteristic of these networks is the fact that nodes 

must withstand the harsh environment and yet, try to communicate with other 

nodes. In this sense, the network must be able to resist delays and disruptions. 

Indeed, often vehicular networks are precisely called Vehicular Delay-Tolerant 

Networks (VDTN, for short). The main purpose of Delay-Tolerant Networks is to 

guarantee communication (i.e. reliable message propagation) in environments 

where otherwise it would be impossible, while maintaining an acceptable quality of 

service (e.g. low error rates and satisfactory delivery ratio) [1][7][29]. In vehicular 

networks it is the same case, and as such, they deserve a special treatment, 

particularly in the directives, rules and resources they use to communicate.  

 

Main challenges in vehicular networks 

Vehicular networks can be seen as a subgroup of Delay-Tolerant Networks (DTN), 

which are a kind of network with special characteristics whose main objective is to 

guarantee communication in very harsh conditions that prevent links between 

nodes to establish in a permanent way (they have to “tolerate” delays and 

disruptions). Due to the particular conditions of these environments, there are some 

challenges specific to this kind of network.  

 

In [68], the authors expose the following research opportunities: network 

architecture (naming and addressing), node design (power, storage capacity, range, 

speed, physical link), node type (mobile, stationary), node interactions, node 

cooperation, network topology (known, partially known, unknown), mobility 

pattern (deterministic, stochastic, predictable, etc.), scheduling, traffic (static, 
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dynamic), routing protocols, bundle format, caching mechanisms, security, and 

supported applications.  

 

According to [47][68], major research issues in DTN include routing 

protocols, the investigation of DTN in various applications, and the performance 

analysis, as well as the queuing model, buffer management mechanism and the 

interaction among the traffic sources.  

 

Other authors claim that mobility models (useful to evaluate routing 

protocols), routing and scheduling decisions are the areas that need to be paid 

attention to, although they also mention network architecture, aggregation and 

disaggregation algorithms (buffer management), routing protocols, scheduling and 

dropping policies, fragmentation mechanisms, network monitoring, and  tools for 

the performance evaluation  as well as applications for VDTN [36][72].  

 

In [37], the authors hold that routing, network architecture, scheduling, 

forwarding issues and application designs, multicasting, delay and buffer 

management, congestion and flow control, cooperative schemes and mathematical 

modeling present research opportunities. A more essential challenging problem, 

according to the same authors, is the analytical modeling and performance 

evaluation of DTNs, since DTN characteristics vary from one environment to 

another, which difficult the development of a generalized DTN model. Also, none 

of the routing protocols proposed in the DTN  open literature specifies a clear-cut 

procedure for setting up paths between communicating nodes, and the design of 

more intelligent, efficient and chattiness free network learning procedures is of 

particular interest, useful when there is little to no link information available (e.g. 

highly  deterministic nodal contacts to absolutely unknown opportunistic 

encounters). Another problem arises when a bundle is received by its ultimate 

destination and its remaining replicas become useless, so it is important to know 

how to get rid of these additional unusable copies and free up resources. Finally, 

security issues are still at their early stages, since no security standards have been 

defined yet. Vehicular Networks, being a kind of Delay-Tolerant Networks, 

naturally inherit the same problems, with their particular conditions. 

 

As can be seen, most authors agree on physical design, data management, 

services and application deployment, security-related and performance evaluation 
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aspects as research fields in vehicular networks. Table 1.5 summarizes these 

challenges identified in the literature.  

 

Physical 

design 

Naming, addressing (network architecture) 

Node design (power, storage capacity, range, speed, physical link) 

Node type (mobile, stationary) 

Node interaction and cooperation 

Network topology (known, partially known, unknown) 

Mobility patterns and models (deterministic, stochastic, 

predictable, etc.) 

Data 

management 

Scheduling and queuing modeling 

Buffer management mechanisms (aggregation, disaggregation, 

etc.) 

Traffic (static, dynamic) 

Routing protocols (forwarding decisions) 

Bundle format 

Caching mechanisms 

Dropping policies 

Fragmentation mechanisms 

Congestion and flow control 

Network overhead control (useless msg copies elimination) 

Services and 

applications 

Supported applications (development, test and deploy) 

Non-safety applications (infotainment, ecommerce, etc.) 

Safety-related applications (crash assistance, collision avoidance, 

etc.) 

Security-

related 

Privacy and confidentiality issues 

Accessibility 

Network and data integrity 

Performance 

evaluation 

Performance analysis (analytical modeling, tools, scenarios, data 

sets) 

Table 1.5. Summary of research opportunities for VDTN. 

 

Wireless Access for Vehicular Environments standards 

The IEEE Society and the Standards Coordinating Committee of the IEEE Standards 

Association (IEEE-SA) Standards Board has developed a set of communication 

standards to provide support for Wireless Access for Vehicular Environment 

(WAVE) systems [33]. As the name suggests, the WAVE system as presently 
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envisaged is designed to meet the communication needs of mobile elements in the 

transportation sector. While in many of the usage scenarios at least one of the devices 

engaged in WAVE communications is expected to be associated with a vehicle, other 

devices, both fixed and portable (e.g., roadside and pedestrian) are envisaged as 

well. As its mission, the WAVE standards enable the development of interoperable 

low-latency, low overhead WAVE devices that can provide communications in 

support of transportation safety, efficiency and sustainability, and that can enhance 

user comfort and convenience. 

The WAVE set of standards are included as part of the IEEE 609 family of 

standards and the IEEE 802.11 – 2012 standard, through the amendment IEEE 

802.11p. The full-use WAVE standards are depicted in Figure 1.6, and briefly 

explained below. 

 

Figure 1.6. Full-use WAVE standards [33]. 

IEEE Std 1609.4 (Multi-Channel Operations) specifies extensions to the IEEE 802.11 

MAC layer protocol and includes the following features: 

— Channel coordination and routing, multi-channel synchronization 

— Use of IEEE Std 802.11 facilities [e.g., channel access, Enhanced Distributed 

Channel Access (EDCA)] outside the context of a BSS 

— Use of IEEE Std 802.11 Timing Advertisement frames in a WAVE system 

— MAC-layer readdressing in support of pseudonymity 
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— Management information base (MIB) maintenance (contains configuration 

and status information) 

 

IEEE Std 1609.3 (Networking Services) includes the following features: 

— WSA transmission and monitoring, channel access assignment 

— WSMP 

— Use of the local link control (LLC) sublayer and EtherType Protocol 

Discrimination (EPD) 

— Use of Internet Protocol version 6 (IPv6), including streamlined IPv6 

configuration 

— Exchange of specific management information between WAVE devices 

— MIB maintenance (contains configuration and status information) 

 

IEEE Std 1609.2 (Security Services for Applications and Management Messages) 

specifies communications security for WAVE Service Advertisements and WAVE 

Short Messages and additional security services that may be provided to higher 

layers. 

 

IEEE Std 1609.11 (Over-the-Air Electronic Payment Data Exchange Protocol for ITS) 

is the first application level IEEE 1609 standard and specifies a payment protocol 

referencing ISO standards. An example use case illustrating electronic fee collection 

is provided in D.2. 

 

IEEE Std 1609.12 (Identifiers) records the allocations of some identifiers used by the 

WAVE standards, including object identifier (OID), EtherType, and Management 

ID. PSID usage and encoding rules are also described. 

 

As for the spectrum allocation, it is expected that WAVE systems are deployed to 

use the channel allocation depicted in Figure 1.7, or a subset of them.  
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Figure 1.7. FCC Channel allocation. 

 

The spectrum is allocated as follows: 

— 5.850 GHz to 5.855 GHz is held in reserve. 

— Channel 178 is the Control Channel 

— Channels 172, 174, 176, 180, 182, and 184 are Service Channels. 

— Channels 174 and 176 and channels 180 and 182 could be combined to 

produce two 20 MHz channels, channels 175 and 181, respectively. 

— Channels 172 and 184 are designated for public safety applications involving 

safety of life and property. Specifically, channel 172 is dedicated “exclusively 

for vehicle-to-vehicle safety communications for accident avoidance and 

mitigation, and safety of life and property applications.” Channel 184 is 

dedicated “exclusively for high-power, longer distance communications to be 

used for public safety applications involving safety of life and property, 

including road intersection collision mitigation.” 

 

5G technologies for V2X communications 

The 5G technology for vehicles, as it stands out today, has yet to be standardize, 

deployed and adopted. There are some releases, however, that represent some 

efforts towards that technology. Currently, Cellular Vehicle-to-vehicle technology 

(C-V2X), also known as LTE-vehicle (LTE-V), is available as a fierce competitor of 

the IEEE 802.11p-based technology. C-V2X is a V2X radio access technology 

developed in its release 14 [19]. Perhaps the main advantage of C-V2X is the existing 

cellular infrastructure, but it lacks full support for low latency applications.  

 

There is currently a fierce fight between the WAVE technology and its 

competitor 5G (under the name of C-V2X technology). The IEEE 802.11p standard 

was designed, from the beginning, to meet every V2X application requirement, 

including both safety-related and non-safety-related applications (Tables 1.2 and 1.3, 
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respectively), with the most stringent performance specification [18], which was 

approved in 2009 and has had numerous field trials since then, and several 

semiconductor companies, such as Autotalks, NXP semiconductors, and Reneseas, 

have also designed and tested 802.11-compliant products [17][18]. According to the 

same authors, the IEEE 802.11 is ready to roll, and the market is expected to pick up 

significantly since 2016 in the US.  

 

The cellular technology, on the other hand, being the most widely adopted 

standard for cellular communications, addresses only basic V2X use-cases and lacks 

support for low-latency and high mobility cases, closely associated with safety-

related applications. The 5G technology, nonetheless, as it stands today, is well 

suited for non-safety related applications, associated with non-safety related use-

cases, which involve infrastructure (V2I and I2V), where content originates or is 

processed on the cloud. It is unclear, however, how the network would perform in 

very congested scenarios (for instance, messages for traffic management are 

particularly relevant to highly congested and highly mobile urban scenarios). A 

comparison between WAVE and C-V2X (LTE rel. 14) technologies is summarized in 

Table 1.6. 

 

Parameters WAVE C-V2X (LTE 

Rel. 14) 

Future 5G 

Currently available 

technology 

Yes Yes No 

Field trials (+10 years) Yes No No 

Applications V2V, 

V2I 

V2V, V2I, 

V2N 

V2V, V2I, 

V2N 

Latency 5 ms 20 ms <5ms 

Data rate 3-27 

Mbps 

150 Mbps 10 Gbps 

Multimedia and cloud 

services support 

No Yes Yes 

Table 1.6. WAVE (802.11p) and 5G-related standards (adapted from  [74]). 

 

As can be seen, both existing technologies are currently available, but IEEE 

802.11p could be the preferred standard for V2V communications, because it 

supports full coverage of all applications and has the work of 10+ years in field trials 

to backup this affirmation, whereas the 5G standard could be the preferred 
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technology for non-safety applications, due to the current latencies. According to the 

timeline presented in [18] (fig. 1.8), the 5G technology could be ready to support V2X 

applications by 2023, but as shown in the table above C-V2X (LTE rel. 14) is ready, 

but does not achieve a performance in latencies less than 20ms, which for some 

safety applications is critical.  

 

 
Figure 1.8. Timeline of IEEE 802.11p versus cellular technologies for supporting 

V2V (adapted from [18]). 

 

Despite the common sense that 5G technologies can make use of existing 

cellular infrastructure, this is not as simple as it sounds, because today’s 

infrastructure is not equipped to support the many V2X use cases that require very 

low latency in situations of high mobility and congestion. At the end of the day, 

nonetheless, as it stands out today, there is the need for broader compatibility in 

both technologies, and even though the IEEE 802.11p could be ready to roll, it’s 

deployment and adoption will take time, as well as the 5G technology in order to be 

able to support most V2X applications. Also, the trend is to adopt both technologies 

and let the market decide which one is more suited for commercial deployment and 

evolution [12]. Furthermore, the path to fully automated vehicles will require 

coexistence for a period of time between vehicles with no active control systems, 

different levels of automated vehicles and fully automated vehicles, and therefore 
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the coexistence in both V2X technologies is also a possibility, at least in the short 

term, when both of them are running towards its maturity [12][17].  

 

Summary of Chapter 1 

In this Chapter, the research methodology used in this work was presented, as well 

as the background of the research problem.  

 

The Design Science in Information Systems Research Framework proposed 

by Hevner et al., in its design-science paradigm, seeks to extend the boundaries of 

human and organizational capabilities by additions to the knowledge base and 

applications of existing theories and artifacts in the appropriate environments. As 

part of Intelligent Transportation Systems, in the context of Smart Cities, vehicular 

networks, also known as Vehicular Delay-Tolerant networks, are a key component 

in these ecosystems, and for their physical implementation, current efforts towards 

achieving V2X communication include the IEEE 802.11p standards, which are 

preferred for safety-related applications and the C-V2X technology, based on 

cellular communications. The former has advantages like it is ready to be 

implemented and has more than 10 years in field trials, although the main downside 

is that major changes in the infrastructure are needed, whereas the later has its 

strengths precisely in the infrastructure, although it is not preferred for safety-

critical applications, such as crash warnings, but for non-critical use-cases including 

traffic-related services and infotainment. As time goes by, the market will determine 

which technologies ultimately will be used for V2X applications, or if a combination 

of both is possible.  

 

Research opportunities identified in the literature include node design 

(power, node capabilities, etc.), data management (queuing and buffer management, 

scheduling and routing), security and supported applications. Of them, one of the 

main challenges to achieve seamless and reliable communication is routing 

protocols. In this research, a new packet routing protocol for vehicular networks is 

presented, based on a deep learning architecture, to explore the impact of this 

machine learning technique in the routing process. Furthermore, how the research 

framework and the research process fit together has been briefly explained. In the 

following chapters, this alignment will be discussed in more detail. 

 

  



21 
 

 

Chapter 2 

Research Problem 
 

In this section, the research problem is discussed in more detail.  

 

Problem statement  

As discussed in previous paragraphs, routing is one of the research challenges 

identified in the field of VDTN. As a key component in the functioning of this kind 

of networks, the lack of efficiency in routing brings delays in the unleash of their full 

potential. In this thesis, this problematic is addressed, and it is presented as: 

 

The routing algorithms in vehicular networks are not fully efficient 

 

The research problem has intrinsic theoretical relevance, and because  

i. Theoretically, communication in vehicular networks is possible but is not 

enough to offer superior communication services. This is due to the 

natural existence of big data loses, very long delays and thus very small 

packet delivery ratios.  

ii. Routing is the core of every communications network. The protocols used 

to achieve data transmission highly determine the efficiency of the whole 

communication process. 

 

The practical relevance of the research problem is met by the following affirmations:  

 

i. The relevance of having a highly efficient algorithm to route in vehicular 

networks is intrinsic since it helps to achieve the best performance in 

communication process in Intelligent Transportation Systems.  

ii. Having more efficient communications in ITS, particularly in vehicular 

networks, will make possible to have more and better services in different 

areas, such as security services, information services, entertainment 

services, transactional services (e-commerce, automated payments, etc.) 

and any other service derived from V2X communication (vehicle to 

anything), including V2P (vehicle to pedestrian).  
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iii. The successful implementation of routing algorithms in VDTN can serve 

as a model to improve similar networks; for instance, other kind of DTN 

network: sensor networks, underwater networks, etc.  

 

Research question  

The main idea behind the purpose of VDTN is that they must be able to provide 

seamless communication in very harsh conditions; given the intermittent 

connections and frequent disruptions in the network, their goal is to guarantee 

communication (e.g., delivery of messages) with the less possible amount  of delays. 

When assessing the performance of routing protocols, the most popular metrics are 

precisely delivery rates, delays and network overhead and number of hops [72]. 

These metrics are summarized in Table 2.1 and are more broadly explained in the 

next chapter.   

 

METRIC DEFINITION 

Packet Delivery Ratio (PDR) Ratio of delivered messages to created 

messages.  

Average Delivery Delay (ADD) Elapsed time since a message is created until it 

reaches its destination. 

Networks Overhead (OVH) Ratio of useless copies in the network, with 

respect to the amount of delivered messages. 

Hop Count (HOP) Number of nodes that a message traversed to 

get to its destination. 

Table 2.1. Summary of metrics for performance evaluation in VDTN. 

 

Even though the routers in the network must be able to guarantee 

communication, the balance in performance of these parameters is also important, 

because they all reflect important aspects of the network. Also, state of the art 

optimization techniques includes Artificial Intelligence, and more particularly, Deep 

Learning is gaining quite a lot of attention with recent advances in the mater. Hence, 

the research question is formulated as follows:  

 

To what extent can a routing algorithm based on Deep Learning influence the 

performance of routing in VDTN? 

 

The goal in this research is then to find out to what extent the use of Deep 

Learning influences the performance of routing in VDTN, reflected by changes in 
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the metrics when evaluated. For this, a router based on this AI technique was 

implemented, including its architecture and its routing algorithm, and its 

performance was compared with other known routing algorithms.  

 

Proposed Solution 

Nowadays and for the past few years, Artificial Intelligence has become an 

important field as it the advances in the matter have resulted in the solution of a 

wide variety of very complex problems, using this approach of leveraging the 

information in the environment to actually learn from it and make smart, accurate 

predictions. In this work, a Deep Learning – based Router that is capable of learning 

to make intelligent decisions based on local and global conditions from a dual 

perspective, called DLR+, is proposed. The goal with this solution is to provide an 

algorithm that results in improvements in at least one of the four more used metrics 

(namely, delivery ratio, delivery delay, network overhead and hop count), to be able 

to respond to the research question. As envisioned, the proposed solution has two 

main advantages listed below:  

i. The algorithm can be further refined harnessing the power of Deep 

Learning  

ii. The algorithm will make effective use of available resources in the 

network 

iii. The algorithm reduces the risk of security leaks, as sensitive and 

private information is processed locally 

 

The broadness of the routing problem and its environment of application 

make it difficult to address explicitly all their aspects. To be more specific, it is 

impossible to consider absolutely all the performance metrics due to the complexity 

of the so-resulting model. This research work is limited to the following metrics:  

 

i. Network Overhead 

ii. Hop Count 

iii. Average Delivery Delay 

iv. Packet Delivery Ratio 

 

Finally, the proposed solution is tested in a synthetic scenario, as is typically 

done by researchers in this field due to the high complexity of real-life 

implementations.  
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Related work 

There exist several routing algorithms for VDTN [7][11][34][72]. Some examples of 

routing algorithms in DTN include the Epidemic Protocol (probably the most 

known routing protocol) and the Probabilistic Routing Protocol using History of 

Encounters and Transitivity (PRoPHET protocol) [72], as well as different 

classifications and taxonomies proposed by different authors based on different 

parameters such as the objective of the protocol, the amount of information required 

by each protocol, the availability of information regarding the actual state of the 

topology and its future evolution (deterministic or stochastic  routing)[7], and the 

destination of a single packet (unicast, multicast and anycast routing) [11]. Some 

other protocols referring to opportunistic networks encountered in the literature 

include the Heterogeneous Context-aware Routing protocol (HCR) [77], BUBBLE 

Rap [2], Predict and Spread [49], the Epidemic Routing Protocol, the MV Routing 

Protocol, the Network-coding-based Routing, the Context-aware Routing (CAR) 

and many others [54].  More specific to VDTN, there are also some proposed routing 

algorithms such as CONHIS [58],  GeoDTN+Nav and Fast-Ferry Routing in DTN-

enabled Vehicular ad hoc networks (mentioned in [9]), GVGrid, GSR,  GyTAR 

(Greedy Traffic Aware Routing), TAPR (Traffic Adaptive Packet Relaying) and some 

others surveyed in [1],as well as proposed classifications and taxonomies for VDTN 

routing algorithms [1][7][51]. DTN protocols, however, need to be properly adapted 

to vehicular constrains in order to get better outcomes. For instance, unlike other 

types of DTN where the mobility patterns are purely random-based models, the 

mobility patterns of vehicles on highways are often times predictable due to the 

restrictions imposed by roads, traffic, intersections, etc. [1][55]. Another unique 

characteristic of vehicular networks is the existence of roadside infrastructure which 

can be leveraged in order to improve the efficiency of routing mechanisms [1]. Other 

than the network characteristics, the applications (e.g. safety related applications, 

traffic monitoring, etc.) which are expected to run on top of vehicular networks also 

make it a unique environment [1]. Also, the node’s high mobility (the network 

topology changes rapidly because of vehicle speeds), the inconstant topology in time 

and space (the network topology evolves depending on time (e.g., traffic jams) and 

location (urban, rural)), the large scale possibilities (all vehicles are potential nodes), 

and the no significant power constrains (cars can generate sufficient power) are 

specific conditions of vehicular networks that make them special [51][55]. As a 

result, VDTN do present some key differences from traditional DTN, so they justify 

special protocols to leverage those particular characteristics and improve the 

network performance.  
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Many dissemination algorithms are based on the popular epidemic 

dissemination principle (also called Epidemic Routing or Random Spray, depicted 

in Figure 2.), in which a node replicates the message to all contacted nodes that do 

not have the packets yet. Compared to other solutions, this one wastes much storage 

and bandwidth, though it is one of the simplest to implement and could guarantee 

the maximum delivery ratio regardless of the buffer space exhaustion 

[11][26][37][47][51][58][72].  

 

 
Figure 2.1. Flooding principle in epidemic-based routing protocols. 

 

Among routing algorithms derived from Epidemic Routing are Spray-and-

Wait [11][47][51], Two-Hope-Relay [11], Network Coding-based Epidemic Routing 

(NCER) [37], NECTAR [11], Distance-Aware Epidemic Routing (DAER) [11], 

Unicast Based Routing (UBR) [11], Message Suppression RSUs (MSRs) [34], DAWN 

(Density Adaptive routing With Node awareness) [26], and DARCC [26]. Besides 

the epidemic dissemination principle, these epidemic-based algorithms use 

additional information to get a better performance than the pure Epidemic Routing 

algorithm, such as topology information, history of connections in each node, 

distance between nodes and number of packets to disseminate.  

 

Other kind of algorithms consider different aspects for the dissemination 

process. For example, geographical routing is another approach for efficient routing, 

which takes the location information of the vehicle into consideration. With this idea 

in mind, GeOpps (Geographical Opportunistic Routing for Vehicular Networks) 

aims to enhance the performance of single-copy routing protocol in VDTNs as it 
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exploits the geo-location of vehicles to forward the geographical bundle 

opportunistically towards the final destination location [26][72]. Greedy DNT and 

MoVe are also location-based algorithms such as GeOpps [72]. Others take into 

account some kind of history of encounters or connections in order to estimate the 

probability of a node to be able to deliver the message to the final destination, such 

as PRoPHET [26][72],  ZebraNet [58] and CAR [58]. Finally, some other algorithms 

include social metrics, such as the number of links in the social graph or their 

centrality to choose the next forwarding node, such as in ZOOM and SinBet [72]. 

 

One last branch is the use of Machine Learning in routing algorithms. 

Machine Learning is a branch of Artificial Intelligence that aims at processing huge 

amounts of data to find and apply patterns [25]. In [62] the authors developed a 

routing algorithm based on Fuzzy Logic that reactively searches for the best route 

in a fixed graph, based on distance, overhead, power consumption and remaining 

active time of the route. In [61], an algorithm based on the Simulated Annealing 

technique was developed. In that work, the authors focus in finding the most 

suitable message to be transferred next in each connection. This algorithm will be 

explained in more detail at the end of this section. The authors in [66] propose 

KNNR, a router based on the KNN optimization algorithm; they focus on finding 

the best next hop in the route of a message framed as a binary classification 

algorithm. It is worth noticing that, to the best of our knowledge, none of the 

proposed algorithms use Deep Learning techniques in a realistic VDTN scenario. 

There are some efforts oriented in that direction, though. In [63], the authors present 

a routing strategy based on a neural network. The objective is to find the next node 

and the next instant of contact, but they consider the “predefined” path of buses and 

history of contacts, which is a very particular scenario of a vehicular network, with 

low density and predefined path. Also, they use a neural network only 1 hidden 

layer, which is not considered deep learning. In [41], the authors work on a routing 

strategy using neural networks as well, but they focus on security aspects and not 

on other performance metrics, such as delivery ratio and delay. Finally, the authors 

in [43] use a Radial Basis Function neural network (whose functioning is similar to 

that of the KNN technique). They try to fragment the network applying clustering 

in a straight highway.  The clustering is done using the Simulated Annealing 

technique, and a Radial Basis Function Neural Network to determine the Cluster 

Head using velocity and free buffer size as the parameters for the decision. To the 

best of our knowledge, none of the existing routing algorithms in VDTN use DL.  
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Table 2.2 summarizes the most popular protocols found in the literature.  

 

NAME TYPE DESCRIPTION 

Epidemic Flooding [75] Replicates each packet to nodes in range, which in turn 

replicate further to each new connection.  

MaxProp Controlled 

flooding 

[79] Uses frequency of contacts (hop count) as metric to 

schedule the incoming packages. Then, the algorithm uses 

epidemic transmissions until the TTL of the messages expire.  

Spray and 

Wait 

Controlled 

flooding 

[69] Controlled version of Epidemic: for a given packet in the 

queue, “sprays” a given number of copies the first time, and 

each subsequent node only delivers the msg to its final 

destination.  

PRoPHET  Probabilistic [41] Uses history of previous encounters to compute the 

delivery predictability of each node and select the next hop.  

GeOpps Location [47] Uses the location of the nodes to find the best route based 

on the shortest path.  

Fuzzy 

based 

Routing 

Protocol 

Fuzzy Logic [31] Reactively searches the best route in a fixed graph based on 

distance, overhead, power consumption and remaining active 

time of the route.  

SeeR ML [61] Based on the Simulated Annealing ML algorithm. They 

focus on the message with higher probability to be delivered.  

NN 

Routing 

strategy 

for buses  

ML [63] The objective is to find the next node and the next instant 

of contact (they consider the “predefined” path of buses and 

history of contacts). They use only 1 hidden layer.  

Trust-

based 

Routing 

with NN  

ML [80] Focusses on security aspects in terms of “trust”: their goal 

is to find the most “trustable” next node  

KNNR ML [42] Use KNN for binary classification to find the next hop 

SA-

RBFNN 

RP 

ML [4] Applies clustering in a straight highway.  Clustering: SA; 

Cluster Head: RBFNN using velocity and free buffer size.  

  

Table 2.2. Summary of most popular routing protocols for VDTN. ML stands for 

Machine Learning. 
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In practice, there is not a clear-cut way to know the performance of the 

existing algorithms. The fact that authors use different scenarios in their 

experiments, with different simulators and different metrics, and that they do not 

provide useful information for reproducibility make infeasible the reproduction of 

the algorithms. To be best of my knowledge, there is no complete study of 

performance of all existing algorithms that includes evaluation of the main metrics 

among all of them even for a single particular scenario. For instance, in existing 

surveys  and comparative analysis [83-87], the authors focus on different aspects 

such as type of router, simulation scenario, simulator, vehicle density estimation, if 

they use store-carry-forward, if the routers handle network disconnections, if the 

routers are traffic-aware, if they require maps or not, if they use  realistic scenarios 

or not and the complexity of computation, and they even propose different 

taxonomies and classifications but do not include how the routers’ performance is 

with respect to their counterparts in delivery ratio, delivery delay,  network 

overhead or any other metric, and I argue that the main reason for that is the lack of 

reproducibility. Indeed, one of the open issues is the need of a standard tool and 

procedure for evaluation of these protocols [84][85]. Those are the main reasons why 

in this research, the routing protocols used for comparative purposes were the 

following routers, which were already defined in the simulation environment (The 

ONE simulator): the Epidemic routing (probably the most widely known routing 

protocol for delay-tolerant networks), the Spray and Wait algorithm (a controlled 

version of the Epidemic protocol), the PRoPHET (the most popular probabilistic 

routing protocol), and the SeeR routing protocol (and AI-based algorithm for VDTN 

whose authors give the complete code for reproducibility). Next, such algorithms 

used in the experiment are explained in a broader way. 

 

Epidemic Routing. 

This routing protocol was proposed in 2000 by Vahdat, A. and Becker, D. [75] With 

this protocol, they aim at maximizing the message delivery rate (ADR) and 

minimizing the message latency (ADD), as well as minimizing the total resources 

consumed in message delivery. In the approached proposed in this router, they 

distribute packages to other hosts, called carriers, who in turn carry the messages 

and further replicate them when they are in contact with other nodes (see fig. 2.1). 

The hope is that with this flooding mechanism, the message will eventually reach its 

final destination.  
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Figure 2.1. Flooding principle used in the Epidemic Routing. 

 

While there is a high probability that the packets will eventually make it to 

their destination, providing that the routers have enough buffer space, that is not 

always the case. In fact, not only the buffer resources may be limited, but also the 

bandwidth resources will be compromised, since with this uncontrolled spreading 

a lot of useless copies will be left in the process.  

 

Spray and Wait.  

This routing protocol is a controlled version of the Epidemic Routing. It was 

proposed in [69] by Spyropolus, T., et al. in 2005. The main purpose behind this 

algorithm is to have a routing protocol that reduced the network overhead, 

optimizing resource usage. The proposed algorithm consists in two stages: the Spray 

and the Wait (fig. 2.2).  

 

 
Figure 2.2. Graphical description of the Spray and Wait routing protocol. 

 

In the Spray Phase, a router that creates a message spreads L copies of that 

message to some other hosts. During the Wait Phase, if the destination node is not 

found in the Spraying phase, each of the L nodes will carry the message and transmit 

it only to its final destination. This can be seen as a trade-off between a single copy 

and a multi-copy scheme, which ends up in a reduction of the number of copies in 

the network, thus reducing the network overhead. The performance in this 
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algorithm shows high delivery rates and acceptable delivery delays, with respect to 

the Epidemic Routing, and better performance in delivery rate for scenarios with 

high node density due to severe contention.   

 

PRoPHET protocol. 

This protocol, Probabilistic Routing Protocol using History of Encounters and 

Transitivity, was proposed by Lindgren, A. Doria, A. and Schelén, O. in 2004 [41] 

and is the most popular protocol that bases its routing decisions in a probabilistic 

mechanism. The goal in this algorithm is to improve the delivery rate while 

maintaining the network overhead and buffer space usage at low level. They define 

a metric called delivery predictability 𝑃(𝑎, 𝑏) ∈ [0,1] at every node 𝑎 for each known 

destination 𝑏, indicating how likely is it for 𝑎 to deliver a packet to 𝑏. When there is 

a connection between two nodes, they exchange information to update their delivery 

predictability tables (see fig. 2.3), and 𝑎 transmits to 𝑏 only if 𝑃(𝑎, 𝑋) < 𝑃(𝑏, 𝑋).  

 

 
Figure 2.3. Graphic description of the PRoPHET protocol. 

 

The update of their delivery predictabilities is done according to Equations 

2.1 and 2.2, where 𝑃𝑖𝑛𝑖𝑡 ∈ [0,1] is an initialization constant, and 𝛾 ∈ (0,1) is the aging 

constant used to age the probabilities of two nodes if they do not meet in 𝑘 time units.  

 

𝑃(𝑎, 𝑏) = 𝑃(𝑎, 𝑏)𝑜𝑙𝑑 + 𝑃𝑖𝑛𝑖𝑡 ⋅ (1 − 𝑃(𝑎, 𝑏)𝑜𝑙𝑑) (2.1) 

𝑃(𝑎, 𝑏) = 𝛾𝑘𝑃(𝑎, 𝑏)𝑜𝑙𝑑 (2.2) 

Furthermore, they consider that all nodes have a transitive property based on 

the observation that, if node A frequently encounters node B, and node B frequently 

encounters node C, then node A frequently encounters node C. This is shown in 
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Equation 2.3, where 𝛽 ∈ [0,1] is a scaling constant that decides how large is the 

impact of this transitivity.  

 

𝑃(𝑎, 𝑐) = 𝑃(𝑎, 𝑐)𝑜𝑙𝑑 + (1 − 𝑃(𝑎, 𝑐)𝑜𝑙𝑑) ⋅ 𝑃(𝑎, 𝑏) ⋅ 𝑃(𝑏, 𝑐) ⋅ 𝛽 (2.3) 

The authors tested some synthetic scenarios with PRoPHET and Epidemic, 

and they found that, under some conditions, the proposed protocol outperformed 

the Epidemic Protocol, though that was not always the case.  

 

SeeR routing 

This router was proposed by Saha, B. K., Misra, S., and Pal, S., in 2017. This algorithm 

is based on the Simulated Annealing, and they focus on trying to determine the 

messages best suited for a transmission at that moment.  Each message has a cost 

function associated to it, that depend on three locally observed variables: estimated 

inter-contact time (ICT) of a node, time-to-live (TTL) of a message and current hop 

count of a message. Inter-contact time of a node �̂�𝑖 at time 𝑡 is computed as in 

Equation 2.4, where 𝑇𝑖𝑗 is the instant when the previous contact of 𝑖 with 𝑗 

terminated and 𝛼 ∈ (0,1) determines how much weight should be given to the 

historical estimate of ICT.  

 

�̂�𝑖 = 𝛼�̂�𝑖 + (1 − 𝛼)(𝑡 − 𝑇𝑖𝑗) (2.4) 

The residual TTL 𝜌(𝑚, 𝑡) of a message 𝑚 ∈ 𝑀 at an instant 𝑡 is determined by 

Equation 2.5: 

 

𝜌(𝑚, 𝑡) = 𝑚. 𝑡𝑡𝑙 − (𝑡 − 𝑚. 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝐴𝑡) (2.5) 

where 𝑚. 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝐴𝑡 is the time instant where 𝑚 was created. Finally, the cost 

function of having a message 𝑚 at node 𝑖, 𝐶(𝑚, 𝑖) is given by Equation 2.6, where 

ℎ(𝑚, 𝑖) is the number of nodes that message 𝑚 traversed at that point, including 

node 𝑖.  

 

𝐶(𝑚, 𝑖) = �̂�𝑖(1 + ℎ(𝑚, 𝑖))  (2.6) 

Similarly, if there is a transmission from node 𝑖 to node 𝑗, the message 𝑚 

traversed one more node, ℎ(𝑚, 𝑗) = ℎ(𝑚, 𝑖) + 1. Consequently, the cost function at 𝑗 

changes according to Equation 2.7:  
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𝐶(𝑚, 𝑗) = �̂�𝑗(2 + ℎ(𝑚, 𝑖))  (2.7) 

Based on this function, the simulated annealing process consists of a cooling 

stage, where the initial temperature 𝜃0 of a message 𝑚 ∈ 𝑀 changes over time. More 

particularly, at the 𝑘𝑡ℎ replication attempt of 𝑚, its current temperature 𝜃(𝑚) is 

decreased according to Equation 2.8, where 𝛾 is usually taken between 0.85 and .99.  

 

𝜃(𝑚) = 𝛾𝑘𝜃0  (2.8) 

The replication of 𝑚 is attempted at every contact until its current 

temperature exceeds a lower threshold 𝜖. With these considerations, the algorithm 

is rather simple: the objective herein is to have a subset of the messages at any node 

that can be replicated to the other nodes when a contact is established. From them, 

the goal is to evaluate the fitness of every message to have the “best” message to 

replicate. Furthermore, the replication of message 𝑚 takes place from node 𝑖 to node 

𝑗 only if its temperature 𝜃 (𝑚) is greater than the threshold 𝜖 and having the message 

at 𝑗 is less “expensive” (i.e., if the cost function is smaller) than having the message 

at 𝑖. Figure 2.4 depicts the SeeR routing algorithm.  

 

 
Figure 2.4. Graphic representation of the SeeR algorithm. 

 

Metrics for performance evaluation 

Finally, different protocols take into consideration different metrics in order to 

improve their efficiency, but none of them take into account absolutely all of the 

parameters that play a role in the performance, as some assumptions have to be 
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made in order to simplify the algorithm and make it cost-effective. Many protocols 

are based on the criteria of how to select the forwarding node, but this is not the only 

aspect that can make a difference in the performance of different protocols. Indeed, 

very rarely do researchers evaluate the same metrics under the same scenarios, 

when comparing performance of different protocols [72]. Undoubtedly all VDTNs 

have in common some conditions such as opportunistic encounters, changing 

(though somehow predictable) topology, node’s high speeds and particular mobility 

models within the network (i.e. how the traffic flows within specific road 

topologies). As a result, a set of mechanisms that define the hop-by-hop and the end-

to-end communication schemes can heavily influence the delivery ratio, the delivery 

delay or other performance metrics. Generally, these mechanisms can be applied to 

any utility-based protocol. Some of the most representative mechanisms available in 

the bibliography are reliability, redundancy, path diversity and message priority 

[72]. 

 

One critical factor when proposing a new protocol is its evaluation, and since 

developing and conducting real implementation and tests for vehicular networks is 

very expensive in terms of time, human resources and money, simulation is the 

alternative used by researchers, although there is a lack of balance among different 

simulations that complicate the comparison of different results, being the following 

metrics the most used: delivery ratio, average delay, delay cumulative distribution 

function, overhead and average number of hops priority [72]. These metrics are 

described in more detail below. 

Packet Delivery Ratio 
We will call this metric PDR, for short. This value is defined as in Equation 2.9 

and is a value that is desired to be maximized, which would mean that a great 

amount of the messages that were created were successfully delivered to its 

destination.  

𝑃𝐷𝑅 =
# 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑚𝑠𝑔𝑠

# 𝑜𝑓 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑚𝑠𝑔𝑠
 (2.9) 

Ideally, we would like this number to be 1, but in practice this seems rather 

impossible, since there are other constrains in the network, such as buffer size and 

message TTL, resulting in dropping or destruction policies which prevent some of 

the messages to get to its destination. Because the resources in the network are 

limited, that is precisely why they must be optimized. This parameter shows the 

fraction of created messages that got to its destination. 
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Average Delivery Delay 
Also known as latency, this parameter is the elapsed time since a message is 

created until it reaches its destination. In other words, this number shows how long 

it takes for a message to be delivered. Ideally, we would like this value to be 0, but 

this is obviously impossible. Instead, the minimization of this parameter is pursued. 

We will call this parameter ADD, for short.  

Network Overhead Ratio 
This parameter (that we will call OVH, for short), shows the ratio of the 

messages that were relayed to the network that did not reach their destination with 

respect to the number of messages that did do it. Equation 2.10 shows this definition: 

𝑂𝑉𝐻 =
#𝑟𝑒𝑙𝑎𝑦𝑒𝑑 𝑚𝑠𝑔𝑠 − #𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑚𝑠𝑔𝑠

#𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑚𝑠𝑔𝑠
 (2.10) 

The impact of OVH in the network is directly in the resource usage on the entire 

network. Ideally, this value should be minimized to reduce the problems related to 

poor bandwidth allocation, such as network congestions and consequential delays 

and disruptions.  

Hop Count 
HOP, for short, this parameter shows the . The smaller this parameter is the less 

administrative overhead in the previous hosts this message may have caused, 

so it is ideal to keep this value low.  

All of the above described metrics are desired to be optimized, since all of them 

offer some advantages in the overall performance of the network, which can be 

critical under particular environments. For instance, a low OVH would be desired 

in networks with hosts with low buffer capacity, such as sensor networks.  

 

Summary of Chapter 2 

In this chapter, the research problem has been stated, introducing its theoretical and 

practical relevance, and the proposed solution has been broadly explained, 

including the advantages and limitations in this research. In addition, existing work 

towards a solution to the research problem has been presented, ranging from the 

simplest flooding routing protocols, like the Epidemic Protocol, to controlled 

flooding protocols (such as Spray and Wait) to the ones that use probabilistic 

approaches (like PRoPHET), to the ones that consider physical aspects such as 

geographic location, to others whose goal is to provide the router to be more capable 

of taking the routing decisions, and use heuristic approaches, such as SeeR and other 
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machine learning -based algorithms. Nonetheless, although some protocols use 

Machine Learning and other Artificial Intelligence techniques, none of the existing 

routing protocols use Deep Learning as its core.  

Also, different preliminary considerations on how to improve the efficiency 

of routing protocols are discussed, such as next hop selection and message 

scheduling. We found that routing is one of the primary concerns in VDTN, since a 

poor routing technique results in long delays and low delivery rates, let alone the 

network resource consumption. Finally, the use of simulations as testbeds is also 

informed, stressing the lack of a unified simulator and the fact that the proposed 

algorithms are not implemented as to be part of the public domain so more 

researchers can make use of them, compare against them and even improve them. 

Most researches do not provide technical details on the implementations, which 

difficult the replicability of their proposals and experiments.  

In practice, there are many aspects that need to take into consideration in a 

network design and as for the metrics used to evaluate the performance of routing 

algorithms, the most widely used are packet delivery ratio, average delivery delay 

and network overhead.  

In the following chapter, the research problem is formalized, and the 

proposed routing architecture and protocol are introduced and explained in detail.    
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Chapter 3 

Solution 
 

In this section, the design of the proposed solution is explained, including the 

formalization of the research problem as well as the proposed routing architecture 

and protocol. Also, the experiments carried out to evaluate the performance of the 

proposed solution are explained.  

 

Problem framing 

The VDTN scenario consists, in general, of nodes (vehicles) which move in random 

directions according to some mobility rules, and in their way, they can produce, 

carry and deliver data packets to other nodes in the network, making 

communication possible.  In this section the routing problem is introduced and put 

in a more formal way. 

Formalization 

Let 𝑁 = {𝑁𝑖|1 ≤ 𝑖 ≤ 𝐿𝑁} be the set of available nodes in a vehicular network with 

constant disruptions and non-fixed topology, and let 𝐴 ∈ 𝑁 be a given node in that 

set (Figure 3.). Given the fact that there are no predefined paths and the connections 

are intermittent, the nodes in the network must act opportunistically, taking 

advantage of any node that gets into their communication range, because whenever 

these encounters happen, the opportunity of replicating a message arises. In those 

situations, 𝐴 has to decide on a node to start a transfer, and several criteria can be 

used for this decision, but ultimately, 𝐴 would like to choose the node with better 

capabilities of further spreading the messages until hopefully they get to their 

destination. Following this approach, the routing problem can then be expressed as 

finding the best next hop (BNH) for the messages. This is, from all 𝑘 nodes that 𝐴 is 

connected to in a given moment, the one, 𝑁𝑥, with better fitness 𝑓𝑥 must be 

determined, in terms of its current features 𝑥1, … 𝑥𝑛.  Furthermore, in order to 

optimize the communication conditions, not only the best next hop 𝐵 must be 

selected, but we can also detect the best next message (BNM) to be transferred. This 

is, based on its current attributes 𝑦1, 𝑦2, … , 𝑦𝑚, we must be able to select from the 

message queue 𝑀 = {𝑀𝑖|1 ≤ 𝑖 ≤ 𝐿𝑀} the message 𝑀𝑦 ∈ 𝑀with the best fitness 𝑓𝑦. 

Because neural networks have the power to learn very complex non-linear patterns, 

they are the perfect fit for what we are traying to achieve here, so we can model both 

optimization scenarios as binary classification tasks to allow us to precisely quantify 
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the capabilities of such nodes 𝑁𝑖 as a function 𝐹 of some of their characteristics 𝑥𝑖 as 

𝑓𝑥 = 𝐹(𝑥1, 𝑥2, … 𝑥𝑛) and the capabilities of such messages 𝑀𝑖 as a function 𝐺 of some 

of their characteristics 𝑦𝑖 as 𝑓𝑦 = 𝐺(𝑦1, 𝑦2, … 𝑦𝑛). 

 

 

Figure 3.1. Opportunistic encounters for routing in VDTN and the message queue 

in a host. 

  

DLR+ Router Overview 

In this section we describe in more detail the fundamental principle and architecture 

of DLR+, the router in the proposed solution. The main idea is to have a router 

capable of learning from the conditions of its environment and use such information 

to make smart forwarding decisions. Those conditions in the environment are given 

by the current features of the messages in the msg queues of the nodes, and the 

current attributes of the nodes themselves. In order to achieve that, the router uses 

two pre-trained feed forward neural networks to process the information from both 

its neighbors and the messages in their queues in real time and selects, when a 

connection is formed (i.e., when a transmission is possible), from them the best next 

hop for the best next message, according to their current fitness. More details are 

given in the following subsections. 
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Router Architecture 

The core of the router has three fundamental modules that allow the router, upon a 

connection-up event, to choose the best next hop from its current connections and 

the best next message to send from its queue, but also to share information to other 

nodes (upon request), so they can decide whether or not to pass a packet to it. Such 

modules are called, respectively, the Connections Manager and the Fitness Center, 

which in turn has two independent modules for the messages and for the host itself 

(Figure 3.).  

 
Figure 3.2. The fundamental routing architecture of DLR+. 

The Fitness Center 

This part of the router has two pre-trained deep feed forward neural networks 

that use the available local information to compute the router’s current fitness 𝑓𝑥, 

defined as the value that determines its ability to correctly deliver data packets to 

the final destination, and the fitness 𝑓𝑦 for each message in the queue, with 𝑓𝑥 , 𝑓𝑦 ∈

𝑅, 0 ≤ 𝑓𝑥, 𝑓𝑦 ≤ 1. The closer these values are to 1, the fitter their owners are. More 

details on how to get these numbers are given in section 4.2 – The Neural Network. 

These values are automatically updated in each router right after a connection is 

ended and right after a new message has been received, so they are available and 

ready to be used at any moment.  

The Connections Manager 

The function that this module has is vital in the selection of the best next message 

for the best next hop. This module manages the incoming connections, requesting 

their 𝑓𝑥 values in order to select the fittest node. After this, if available, the message 

scheduler will send the fittest msg to such node.  
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The Neural Networks 

The problems of finding the BNH and BNM is treated as binary classification 

problems, given that the main goals are to know if the node and messages are in best 

conditions (i.e., fit) to carry and deliver the messages, or not. Thus, the neural 

networks used in the Fitness Center are Feed Forward Neural Networks with several 

hidden layers each and one output. The general architecture of these neural 

networks is presented in Figure 3..  

 

Figure 3.3. Architecture of the neural network used in the host’s fitness center to 

calculate the host’s fitness. 

Here, 𝑋 ∈ 𝑅𝑛 is the set of 𝑛 input values 𝑥𝑖 , ∀𝑖 ∈ {1,2, … , 𝑛} that reflect some of 

the characteristics of the host at that moment, such as its speed and buffer 

occupancy; 𝐻𝑖 ∈ 𝑅𝑛ℎ𝑖 is the vector that contains the values ℎ𝑖(computed according to 

Equation 3.3) of the 𝑛ℎ𝑖 neurons in the hidden layer number 𝑖, ∀𝑖 ∈ {1, … , 𝐾}, where 

𝐾 is the number of hidden layers in the network; and 𝑓 is the resulting fitness value 

of the host in the given conditions. The set of weights (synapsis) of the neural 

network, without its bias values, is given by 𝑆𝑁0 ∈ 𝑅𝑛×𝑛ℎ1  for the connections 

between the input layer and the hidden layer 1, and 𝑆𝑁𝑖 ∈ 𝑅𝑛ℎ𝑖 for the connections 

between the hidden layer 𝑖 and the next hidden layer 𝑖 + 1, for all 1 ≤ 𝑖 ≤ 𝐾, 

including the connections from the last hidden layer to the output layer. Finally, the 

bias values of each synapsis are given by 𝐵𝑁𝑖 ∈ 𝑅𝑛ℎ𝑖 , ∀𝑖 ∈ [0, 𝐾]. Similarly (see fig. 

3.4), 𝑆𝑀0 ∈ 𝑅𝑚×𝑚ℎ1  is the synapsis for the connections from the input layer to the first 

hidden layer, and 𝑆𝑀𝑖 ∈ 𝑅𝑚ℎ𝑖 are the synapsis for the connections from the 𝑖-th 

hidden layer to the next one, including the connections from the last hidden layer to 
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the output layer, and the bias values of each synapsis are given by 𝐵𝑀𝑖 ∈ 𝑅𝑛ℎ𝑖 , ∀𝑖 ∈

[0, 𝐾].  

 

 
Figure 3.4. Architecture of the neural network used in the host’s fitness center to 

calculate the messages’ fitness.  

 

The activation functions in a neural network are functions that transform an 

input value to another, which determines if it is “passed” to the rest of the network. 

In an analogy, these activation process can be seen as what neurons fire (e.g., are 

transmitted) to the rest of the network. The Rectified Linear Unit (ReLU, for short) 

was used as activation function for the neurons in the hidden layers (Equation 3.1), 

and the sigmoid function 𝜎(𝑧) (defined in Equation 3.2) as activation function for 

the neuron in the output layer. The ReLU function was used because it helps the 

neural networks have a faster conversion during the training stage (offline), which 

is necessary in and the sigmoid function was used because we want this value to 

reflect the fitness of the hosts, and the nature of this function returns values between 

0 and 1. Given the nature of the sigmoid function, the closer to 1 is a value 𝑓, the 

fitter the host will be, and vice versa.  

 

𝑅(𝑧) = {
0,    𝑧 ≤ 0
𝑧,    𝑧 > 0

 (3.1) 

𝜎(𝑧)  =
1

1 +  𝑒−𝑧
 (3.2) 
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Finally, the fitness value for the host is computed taking the current set of 

features 𝑋 of the host and making a forward pass through the neural network, as is 

shown mathematically by Equations 3.3 and 3.4, where 𝑃 · 𝑄 denotes the dot product 

between 𝑃 and 𝑄.  

𝐻𝑖 = 𝑅(𝐻𝑖−1 ⋅ 𝑆𝑖−1 + 𝐵𝑖−1), ∀𝑖 ∈ {1, … , 𝐾} (3.3) 

𝑓 = 𝜎 (𝐻𝐾 ·  𝑆𝐾 + 𝐵𝐾) (3.4) 

 

Notice that there a parameter, vector 𝐵, called the Bias vector. This set of 

values is important because it helps the output to adjust along the weighted sum of 

the inputs to the neuron (it is like the 𝑦-intercept in a linear equation). Without this 

vector, the learning model is not guaranteed to generalize the predictions to unseen 

data.  

 

The routing algorithm 

There are basically two stages in the proposed DLR+ router. The first stage is 

carried out in the Fitness Center module and is executed whenever the host receives 

a message and when a connection was terminated, and the second stage is executed 

when a new connection is established between the host an at least one other router. 

In the first stage, the former condition implies that if there is a new message in 

the queue, then there is the need of recomputing its fitness value, according to its 

current attributes, to ensure that the conditions in the environment are always up to 

date. This update is done by making a forward pass through the neural network in 

charge of the computation of the fitness Lack of E2E connectivity among nodes value 

of messages (there are dedicated neural networks for both the host’s fitness 

computation and the messages’ fitness computation). The second condition states 

that if a connection was just terminated, then very likely the attributes of the host 

changed, so there is the need of an update of its fitness value as well, which is done 

with a forward pass through its corresponding neural network in the fitness center.  

In the second stage, the selection of the best host and best message to start a 

transmission is performed, by asking for the current connection’s fitness and 

selecting the healthiest message in the message queue of the host. The routing 

algorithm is summarized below in Algorithm 1 and explained in more detail in the 

rest of this subsection.  
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Algorithm 1: DLR+ algorithm. Actions in node 𝑐 connected to a set of nodes 𝐶 and 

having a queue of messages 𝑀. 

Message received event – msg fitness update 

 Inputs: 

  𝑚 : incoming message 

  𝑀: 𝑐’s message queue 

 Outputs: 

  𝑀𝑜: 𝑐’s message queue, ordered by fitness value  

 Steps: 

1. 𝑌 ← current features 𝑦𝑖  of 𝑚 

2. Normalize 𝑌 according to Equation 3.5 

3. Compute the value 𝑓𝑦 of 𝑚 according to Equations 3.3 and 3.4 

4. Insert 𝑚 in 𝑀, in descending order 

5. Return 𝑀 

Connection down event – host fitness update 

 Inputs: 

  𝑋: the set of features 𝑥𝑖 of 𝑐 

 Outputs: 

  𝑓𝑥: the updated fitness value of 𝑐 

 Steps: 

1. 𝑋 ← current features 𝑥𝑖 of 𝑐  

2. Normalize 𝑋 according to Equation 3.5  

3. Compute the value 𝑓𝑥 of 𝑐 according to Equations 3.3 and 3.4 

Connection up event – Selection of BNH and BNM dispatch 

 Inputs:  

  𝐶: the set of nodes connected to 𝑐 at that moment 

  𝑀: 𝑐’s message queue 

 Outputs: 

  𝐶𝑜: the set of connection tuples ordered by fitness 

 Steps: 

1. Exchange messages whose final destination is in 𝐶 

2. Do: 

     for each 𝒄𝒊 ∈ 𝑪: 

          get 𝒇𝒙𝒊 

          if 𝒇𝒙𝒊 ≥ 𝜶: 

     store tuple (𝑐𝑖 , 𝑓𝑥𝑖) in 𝐶𝑜 

3. Sort 𝐶𝑜 in descending order 

4. Do: 

     for each 𝒎𝒊 ∈ 𝑴: 

                     get 𝒇𝒚𝒊 

          if 𝒇𝒚𝒊 ≥ 𝜷: 

       for each 𝒄𝒊 ∈ 𝑪𝒐: 

                                    replicate 𝑚𝑖 to 𝑐𝑖 
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To have some sensitivity with respect to other node’s fitness, DLR+ uses the 

parameter 𝛼,  with 0 ≤  𝛼 ≤  1, named as the host fitness threshold, that determines 

the fitness limit over which the incoming connections may be directly ignored. This 

value is a key component in the routing protocol in DLR+, because different 

threshold values result in different dynamics in the opportunistic environment. 

In a similar way, the message fitness threshold 𝛽 was introduced, which 

determines a limit of fitness for the messages in the queue, above which they can be 

directly ignored by the message dispatcher. Algorithm 1 summarizes the routing 

protocol as explained in the following subsections. 

f-value update 

This first stage takes place each time a connection between the host and another 

node in the vehicular network has ended. Since some of the host’s features may have 

changed (such as buffer occupancy, dropping rate and others), its fitness value has 

to be recomputed as well. For this, the considered features 𝑥𝑖 are obtained in the 

Fitness Center, and they are made pass through a process of normalization to obtain 

normalized features 𝑥𝑖
′, according to Equation 3.5, where 𝑥 is a feature that is being 

transformed, and 𝑥𝑚 and 𝑥𝑀 are the minimum and maximum registered values of 

that feature. 

𝑥′ =
𝑥 − 𝑥𝑚

𝑥𝑀 − 𝑥𝑚
 (3.5) 

 

This will give final input values 𝑥𝑖
′, with 0 ≤ 𝑥𝑖

′ ≤ 1, which in turn will make the 

prediction process more reliable. These normalized values are forward passed 

through the network, according to Equations 3.3 and 3.4 to get the final updated 𝑓 

value. 

A similar process is executed each time a message is received by the host. 

Whenever this happens, the 𝑓 value of the incoming message is computed according 

to Equations 3.3 and 3.4 in its corresponding neural network. Finally, the message is 

put in the queue according to its fitness. This way, the message queue is always 

ready with the messages ordered by the fittest message first.  

BNH selection and packet forwarding 

The second stage of the routing process occurs when a link is established 

between the current host and some of its neighbor nodes. At that moment, the router 

will attempt to exchange deliverable messages (i.e., messages whose final 

destination is among the current connections), if any. Then, the host router asks the 

connected nodes for their fitness values (which, thanks to their Fitness Center, are 

always up to date). After that, before entering the final selection, the router directly 
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discards those connections whose 𝑓 value is not at least the fitness threshold 𝛼, and 

orders in descending order the remaining connections, according to their fitness. 

With a complete list of fit candidates, the selection process is straight forward: the 

best next hop will be the fittest node (the one with the higher 𝑓 value), so the router 

will attempt to replicate a data package to the nodes in that order. 

 

Summary of Chapter 3 

In this chapter, the research problem has been formalized, presented as a binary 

classification task to quantify the capabilities of the available nodes and messages in 

a given connection as candidates for the next transmission.  Also, the routing 

architecture and the routing protocol have been introduced, detailing each of the 

modules, stages and steps in the transmissions.  In summary, the parameters (i.e., 

fitness values) that help the router know which message to transmit from its queue 

and to which node from the incoming connections are computed doing a forward 

pass through the corresponding neural networks in the fitness center upon a 

“message received” and “connection down” events, respectively. In this way, these 

decision values are always ready to be used when there is a new transmission or 

when a neighbor host asks for the host fitness value. Furthermore, the router 

parameters 𝛼 and 𝛽 (fitness threshold values) assist the router in the final decision 

as to what message from its queue transmit and to which of the routers connected 

to it at that moment. As we can intuitively infer, different values of these threshold 

result in different dynamics in the vehicular network and in the performance of the 

routers as well.  

 

In the next chapter, the design, setup and run of the experiment will be 

introduced and explained in more detail. 
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Chapter 4 

Experiment 
 

As explained in former sections of this report, the lack of common testbeds and a 

unique simulator besides the incomplete technical specifications given by many 

authors of the proposed routing algorithms found in the literature obstructs the 

implementation process of their algorithms, severely affecting reproducibility. In 

this Chapter, the design and execution of the experiment to validate the proposed 

solution is presented. First, the general setup is explained, and following the router 

and neural networks tuning as well as the evaluation metrics considered in this 

experiment. Also, for the benefit of the readers, technical aspects and datasets are 

given to ensure reproducibility of the experiment.  

 

Simulation setup 

The Opportunistic Network Environment simulator (The ONE simulator [39]), 

which is a virtual environment based on Java designed to test opportunistic 

networks, was used as the main tool to replicate a synthetic scenario for the 

experiment. This test scenario was a portion of Queretaro City, a medium sized state 

in Mexico, with little over 2 million inhabitants. The scenario was delimited by a 

1000m by 1200m squared terrain (fig. 4.1).  

 
Figure 4.1. The roads and streets used in the simulation. 
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The simulation time was 43200 seconds (12 hrs.), which is considered as a typical 

span of a working day, and even though the dynamics of the vehicles may be 

different at different hours, the same scenario was used for all the routers, so the 

influence that these selection has in the final routing performance of the routers is 

irrelevant.  

Mobility Model 

One of the features that helps make the simulation more realistic is the model 

that governs the movement of the nodes in the vehicular network, providing 

coordinates, speeds and pause times for the nodes.  Popular models include [64] 

random waypoint (nodes move randomly in arbitrary direction with random 

speeds), map-based movement (nodes move based on predefined paths, such as for 

streets and avenues), and shortest path map-based movement (nodes move based 

on predefined paths in a map, following the shortest path between origin and 

destination; see fig. 4.2).  

 

 
Figure 4.2. Shortest Path Map-based Movement mobility model. The model takes 

picks two random points A and B in the graph, and makes the vehicles move from 

A to B following the shortest route in the connected graph; when the vehicle gets to 

B, pauses for a random amount of time, and the process starts again. 

 

Even though this experiment was carried out in a synthetic scenario, having as 

many real life similarities helps to capture the dynamics of a more realistic 

environment, so the later model was used for the simulation, which constrains the 
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node movement to predefined paths, using Dijkstra's shortest path algorithm to find 

its way through the map area. Under this model, once one node has reached its 

destination, it waits for a pause time, and then another random map node is chosen, 

and the node moves there repeating the process. The same mobility model was used 

for all the routers in the simulation, and the comparative analysis of the influence of 

mobility models in the routing dynamics is left as part of the future work (several 

analysis of that influence are already in the literature, such as in [28] and [67], where 

they show that this model, the Shortest Path Map-based Movement model, results 

in higher packet delivery ratio than other popular mobility models). 

Host groups and routers 

It’s worth noticing that there is no clear-cut procedure to choose the number of 

vehicles and their features in a vehicular scenario, and the characteristics may 

influence the final performance of any router put to work under those conditions. 

For instance, the speed range at which vehicles move, the number of vehicles in the 

simulation (i.e., node density in the VDTN), and the transmission interface can 

heavily have an impact in the vehicular network dynamics. For this simulation, 

representative samples of agents in a vehicular network were used, including 

different moving speeds, transmission ranges, and transmission interface were used, 

but these conditions were chosen in a subjective way. Nonetheless, these conditions 

are the same for all routers in the experiment, so all of them are influenced in the 

same way (this synthetic environment was the same for each node and for each type 

of router).  

 

In the experiment, there was a total of 85 nodes, divided into 8 different groups, 

each with particular characteristics. The Wireless Access for Vehicular Environment 

(WAVE) IEEE 802.11p Standard [76] established a minimum of 3Mbps and a 

maximum of 27Mbps speeds for wireless communications. Thus, we decided to 

include connections at 6Mbps, 12Mbps and 24Mbps. Also, we included some 

Bluetooth connections at 2Mbps. Higher connection speeds where not considered in 

this experiment. That is an important research opportunity, i.e. the comparison 

between the IEEE 802.11p and C-V2X or even 5G standards when it comes to high 

transmission speeds and very high node densities (e.g., when there are extremely 

large number of vehicles), but that is left as part of future work. Finally, the buffer 

size, maximum node speed and number of nodes of each type are shown in Table 

4.1., along with the rest of the network simulation parameters.  
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Group Nodes ID 

Buffer 

size 

(MB) 

Speed 

range 

(m/S) 

Interface Description 

1 10 p1 5 0.5 – 1.5  Bluetooth A group of 

pedestrians 

2 10 p2 5 0.5 – 1.5 WAVE 

802.11p@6Mbps 

Another group 

of pedestrians 

3 5 b1 10 2.7 – 16.7  WAVE 

802.11p@6Mbps 

A group of 

buses 

4 10 b2 10 2.7 – 16.7 WAVE 

802.11p@12Mbps 

Another group 

of buses 

5 15 c1 15 5.5 – 

22.22 

WAVE 

802.11p@12Mbps 

A group of 

low-speed cars 

6 15 c2 15 5.5 – 

22.22 

WAVE 

802.11p@24Mbps 

Another group 

of low-speed 

cars 

7 10 c3 20 8.3 – 

30.56 

WAVE 

802.11p@12Mbps 

A group of 

high-speed 

cars 

8 10 c4 20 8.3 – 

30.56 

WAVE 

802.11p@24Mbps 

Another group 

of high-speed 

cars 

Table 4.1. Group of nodes in the simulation. 

 

As it is intuitively thought of, the time-to-live (TTL) of a message has a direct 

influence on the dynamics of the VDTN, because of the direct relationship to the 

availability of the messages in the network. This is, after certain amount of time 

messages are destroyed, regardless of whether they have reached their destination 

or not, so they are no longer available for transmission, and it also has an impact on 

the buffer availability. In this experiment, the TTL, in minutes, was iterated from the 

list TTL= {0, 25, 50, 75, 100, 150, 200, 300} to have a broader understanding of the 

behavior of the router.  

As for the routers, the main simulation was done with DLR+, and tests against 

Epidemic, Spray and Wait, PRoPHET and SeeR were performed. The selection of the 

routers is based on the fact that the aforementioned routers are the most popular 

routers in each category, as presented in the Related Work section. One issue of 

concern with most of the routing proposals in the literature is that the authors do 
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not include enough technical details to guarantee reproducibility of their work, and 

that makes the replication of the experiments and the utilization of their proposals 

in comparative analysis rather difficult. As for machine learning-related routers, for 

starters, none of the routers propose a Deep-Learning architecture, and for the 

routers that include significant traces of neural networks [4][63], unfortunately, the 

authors do not provide enough technical specifications to reproduce their models, 

so those routers were not included in the simulation.  

Finally, the metrics used in the experiment were Packet Delivery Ratio (PDR), 

Average Delivery Delay (ADD), Network Overhead (OVH) and Hop Count (HOP), 

which are the most popular metrics used for routing protocol evaluation [57]. These 

routers and metrics were explained in former sections in this report. 

 

The Neural Networks in DLR+ 

The Neural Networks general architecture used in DLR+ was presented in the 

previous section. As noted, all the neural network parameters were left as variables, 

meaning that they can be adjusted in future versions as desired. In this simulation, 

the following considerations were made.  

Layers 

The neural networks considered in this work are deep feed forward neural 

networks with 2 hidden layers, which provide the capability to capture complex 

non-linearities in the system. This way, the networks consisted in an input layer, two 

hidden layers, and an output layer. 

The input layers. These layers are the door of the model. Here, the data that 

reflects the current conditions of the host (features) is entered to be processed by the 

neural network and come up with a prediction (in the output layer) to see the fitness 

of the node. Feature selection is a key task in the prediction model, because such 

features will have an impact in the results of the predictive model. However, it’s not 

a not a trivial task when modeling systems, and a lot of the times it comes down to 

intuition and trial and error [53]. In the literature, the most used features of nodes in 

vehicular networks are the physical speed of the vehicles, the transmission speed, the 

transmission range and the buffer size [61][66] [81]. These features were included in 

the proposed model. Additionally, another feature that can intuitively influence the 

dynamics of the packet forwarding decisions is the number of connections over time 

(average number of connections), because it somehow reflects the number of 

encounters, and therefore the probability of forwarding to another hosts. One more 

feature in this direction is the buffer occupancy, which provides information not only 

on the total buffer size, but how much of it is available; this feature may have an 
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influence in the forwarding decisions because it has an impact on the incoming 

packets: it there’s enough buffer available, then they are accepted, or discarded 

otherwise. Finally, the dropping rate and the abort rate are also feature that may throw 

information on how the packets are normally treated (e.g., how frequently the 

packets are discarded, and that might mean issues such as lack of buffer space or 

poor memory allocation, or how frequently does the host abort transmissions, and 

that might mean issues on connectivity, such as short transmission ranges or 

inability to handle high speed connections). We have included all those features in 

the model. The number of neurons in the input layers is the number 𝑛 of features to 

process from each sample in the classification process, and thus, for this version of 

DLR+, for the host’s fitness, 8 different features 𝑥𝑖 were considered. Additionally, in 

order to help in the capture of the non-linearities in the system, 8 extra features 𝑥𝑗 =

𝑥𝑖
2, 1 ≤ 𝑖 ≤ 8 were introduced in the model, for a total of 𝑛 = 16 input features, listed 

in Table 4.2.  

 

Feature Name Description 

𝑥1 Host speed Speed (m/S) at which the 

vehicle is moving 
𝑥2 Transmission speed Transmission speed of the 

communications link (Mbps) 
𝑥3 Transmission range Maximum radial distance (m) 

at which the host can connect 

to other nodes 
𝑥4 Avg number of 

connections 

The number of connections, 

on average, that a host 

handle 
𝑥5 Buffer size Buffer size (MB) 
𝑥6 Buffer occupancy Percentage of buffer 

occupancy 
𝑥7 Dropping rate Rate at which a host drops 

packets 
𝑥8 Abort rate Rate at which a host aborts 

packet transmissions 

𝑥𝑖 = 𝑥𝑖−8
2  , for 9 ≤ 𝑖 ≤ 16    Composite features to help 

capture non-linearities 

Table 4.2. Features considered in the first neural network (for host fitness) in DLR+. 

 

Non-linear systems are systems whose output is not proportional to the change 

of the inputs, which is very common in systems of very complex dynamics such as 
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the one we are trying to model here, where vehicles move in a very unpredictable 

manner. Including non-linearities in a model results in a better prediction, because 

that means that the decision boundaries are not purely linear [82]. To illustrate this, 

in Figure 4.3 we can see an example of a linearly separable system (two features), 

with its corresponding equation, whereas in Figure 4.4 a non-linearly separable 

system (two features) is presented as an example, with its corresponding equations. 

Something similar is expected to happen in the model of the vehicular system, where 

having a function  𝐹(𝑥𝑖) that depends not only in linear terms of the parameters, but 

also in non-linear terms can increase the precision in the predictions. 

 
Figure 4.3. Example of a linearly separable system (adapted from [82]). Notice that the 

classification function only depends on linear terms of the features. 

 
Figure 4.4. Example of a non-linearly separable system (adapted from [82]). Notice that the 

classification function not only depends on linear terms of the features 𝑥1 and 𝑥2, but also 

in higher order terms, such as quadratic terms 𝑥1
2 and 𝑥2

2. This makes possible to have 

decision boundaries with different shapes other than just a straight line. 

For the second neural network (the one that takes care of the messages fitness), 

a total of 𝑚 = 3 different features were used, the features most used in the literature 

[61]. Those features are briefly described in Table 4.3. We also included the squared 
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features but did not notice any gains in accuracy during the training process, so we 

decided to just take them away in the final version of the proposed router.  

 

Feature Name Description 

𝑦1 Residual TTL Also known as time-out ratio, 

is the ratio of the remaining 

TTL to the initial TTL 
𝑦2 Message size Size of the message (Bytes) 
𝑦3 Hop count The number of nodes that the 

message has traversed so far 

Table 4.3. Features considered in the second neural network (for message fitness) 

in DLR+. 

The hidden layers. The Universal Approximation Theorem [6] establishes that “a 

neural network with a single hidden layer with a finite number of neurons can 

approximate any continuous function on compact subsets in 𝑅𝑛”; this implies that, 

finding the appropriate parameters, a neural network with one single hidden layer 

is enough to represent a great amount of problems. Nonetheless, the width of such 

layer might become exponentially big. Indeed, Ian Goodfellow, a pioneer researcher 

on Deep Learning, holds that “a neural network with a single layer is enough to 

represent any function, but the layer can become infeasibly large and fail to learn 

and generalize correctly” [20]. On the other hand, while not having hidden layers at 

all in the neural network would only serve to represent linearly separable functions, 

a hidden layer can approximate functions with a continuous mapping from a finite 

space to another, and two layers can represent an arbitrary decision boundary with 

any level of accuracy [27]. In summary, this means that one hidden layer helps to 

capture non-linear aspects from a complex function, but two layers help generalize 

and learn better. In fact, the authors hold that one rarely needs more than two hidden 

layers to represent a complex non-linear model. With this information, we opted for 

two hidden layers in this version of DLR+. As for the number 𝑛ℎ𝑖 of neurons in each 

hidden layer 𝐻𝑖 , there is no formula to have an exact number, although some 

empirical rules can be used [32]. The most common assumption is that the optimal 

size of the hidden layers is in general between the size of the input layer and the size 

of the output layer. For this module in DLR+, this would mean that 𝑛 =  16 ≥ 𝑛ℎ𝑖 ≥

1. Another suggestion is to keep this number as the mean between the number of 

neurons in the input and output layers and from here start decreasing the number 

of neurons in each subsequent layer without falling below 2 neurons in the last 

hidden layer. For this module in DLR+, this would imply that 𝑛ℎ1 = 8 and 2 ≤ 𝑛ℎ2 ≤

8. One last suggestion to avoid overfitting during the training process (which would 
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mean that the neural network would have great memory capacity, but no prediction 

capabilities over unseen data) is to keep the number of neurons in the hidden layers 

as in Equation 3.6, where 𝑁𝑠 is the number of simples in the training set, 𝑁𝑖 is the 

number of neurons in the input layer, 𝑁𝑜 is the number of neurons in the output 

layer, and 𝛾 is an arbitrary scaling factor, generally with 2 ≤ 𝛾 ≤ 10. 

𝑛ℎ𝑖 <
𝑁𝑠

𝛾 (𝑁𝑖  +  𝑁𝑜)
 (3.6) 

In this context, this would mean: 

𝑛ℎ𝑖 <
𝑁𝑠

𝛾 (10 +  1)
=

𝑁𝑆

11𝛾
 (3.7) 

 

Ultimately, nonetheless, the number of neurons in the hidden layers comes 

down to trial and error. Following these suggestions and seeking a short 

computational time, we opted for  𝑛ℎ1 =  14 and 𝑛ℎ2 =  10. In a similar way, we 

decided to use 𝑚ℎ1 = 5 and 𝑚ℎ2 = 3 for the messages’ neural network. 

The output layer. The output layer in both neural networks (the one for the host 

fitness and the one for the messages) has a single neuron, that, according to Equation 

3.2, will have a value between 0 and 1.  During the training process, this value is 

further converted to a digital value, so each sample has a unique label 𝑙 ∈ {0,1}, given 

by Equation 3.8, where 𝑓 is the value returned by the sigmoid function in the last 

part of the forward pass. 

𝑙 =  𝑟𝑜𝑢𝑛𝑑 (
𝑓 +  0. 5

2
) (3.8) 

This labeling process is used to compare and evaluate the prediction class 

during training. However, we have to remember that during the application of the 

neural networks in the VDTN environment this labeling process must not be done, 

because we are only interested in identifying the simples with the best fitness (this 

is, the sample with the highest 𝑓 value), which is directly given after the forward 

pass by the sigmoid function (see Equations 3.3 and 3.4). 

 

Training 

DLR+ uses 𝐾 + 1 synapses matrixes 𝑆𝑖 with their corresponding bias vectors 𝐵𝑖, 

with 𝑖 ∈ {0, … , 𝐾}, where 𝐾 is the number of hidden layers of the deep neural 

networks, as introduced before in section IV-B. These matrixes are obtained during 
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the training process by using a dataset with samples gotten from a simulation 

scenario with the conditions defined in section VI-A. More particularly, the hosts 

were configured to be one of the three popular routers PRoPHET, Spray and Wait 

and SeeR, and a total of 11,016,000 sample vectors 𝑋 = [𝑥1, 𝑥1, … , 𝑥8] were obtained 

from a simulation with a simulation time of 43200 seconds (12 hrs.), gathering the 

current features 𝑥𝑖 of each of the 85 hosts each second. The labels 𝑙 for each sample 

were directly obtained from the feature final delivery rate (FDR), considering that 

the more messages a host delivers to a final destination, the closes to a fit node it 

must be. For this, the samples were passed through a standardization process and 

the ones that got a positive 𝑧-score were considered as “fit” (𝑙 =  1) according to 

Equation 3.9, where 𝑥 is the value of the aforementioned feature 𝐹𝐷𝑅, �̅� is the mean 

of all those FDR values in the data set, and 𝜎 is the sample standard deviation. 

 

𝑙 = {
0,    𝑧 < 0 
1,     𝑧 ≥ 0

,  with 𝑧 =
𝑥 − �̅�

𝜎
 (3.9) 

In preprocessing, all duplicated records were deleted from the original data set, 

and all remaining values were normalized for each feature 𝑥𝑖/𝑦𝑖, according to 

Equation 3.5, to have a better mapping and a faster convergence during training; 

finally, the final dataset was randomly permuted. From this, the resulting data set 

was split into two subsets for real training (80% of the data) and validation (20%), to 

assess the learning process and generalization. Other hyperparameters of the neural 

networks were Adam optimizer (faster than the traditional stochastic gradient 

descent, [40]) and binary cross-entropy as an error function. This way, we got 90.12% 

accuracy in the training set and 90.55% in the validation set. This is how synapses 

and bias matrixes 𝑆𝑖 and 𝐵𝑖 used in DLR+ were obtained, whose final values are 

included in the source files. 

Last but not least, the training of the neural networks was done in Python 3.7, 

using the Spyder environment from the Anaconda 3 distribution. For the benefit of 

the reader, the python scripts, the whole dataset used for training and the 

implementation of the router in The ONE are provided in the following link: 

https://bit.ly/sourceFilesDLRplus  

  

https://bit.ly/sourceFilesDLRplus
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The fitness thresholds in DLR+ 

As described at the beginning of section 5, the fitness threshold 𝛼 ∈ [0,1] is a 

router parameter used to discriminate “bad” from “good” nodes as explained in the 

routing algorithm definition. This value can be any real number between 0 and 1, 

each possibility resulting in a different router performance, as can be seen in the 

results section (Chapter 5). It was found that α=0.65 offered the optimal 

performance, so that’s the default value for this parameter in DLR+. As for the 𝛽 

value, no significant differences for values different than 0 were observed, so it was 

decided to use 𝛽 = 0 as de default value. It is worth emphasizing, though, that 

different values of these parameters result in different dynamics and response of the 

router, in a given environment; however, the dynamics, and, therefore, the values of 

these parameters, might not be the optimal for other scenarios (e.g., because of the 

influence of TTL of the messages, node density or other parameters in the 

environment).  

Summary of Chapter 4 

In this Chapter, the design, setup and run of the experiment was presented in detail, 

explaining each of the features considered in the scenario, such as the mobility 

model, the TTL of the messages and the host groups. Additionally, the 

characteristics of the neural networks used as core of the proposed router 

architectures were explained, such as layers, features and activation functions. 

Finally, the training stage of the learning model and the corresponding evaluation 

metrics were also presented. As we can see, in Deep Learning techniques, such as 

Deep Neural Networks, one of the main tasks in the design is the parameter tuning, 

and many times different scenarios require different hyperparameter values of the 

neural network, and there is no clear-cut procedure to know this beforehand, and 

ultimately most of the design comes down to trial and error in order to get the best 

performance in the training data. Some rule of thumbs can be used, nonetheless, for 

the number of layers (a minimum of 2 hidden layers is recommended, so the model 

can capture the non-linearities of the system) and for the number of neurons in each 

hidden layer.  

 

In the next chapter, the results obtained in the experiment are discussed. 
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Chapter 5 

Results 
 

In this section, a description and comments on the simulation results are 

provided. 

 

Effect of TTL 

As can be seen in the subsequent plots, the time to live of the messages has a 

significant impact on the metrics to a certain extent, as the longer a message exists, 

the higher the probability it has to be delivered to its final destination. Any metric 

value, however, tends to plateau as more TTL is granted. It was found that the TTL 

value at which the metrics began to settle in a notable way is around 300 min. This 

means that adding more time-to-live to the messages will not add any significant 

improvements in the performance. Also, depending on the router, some of them will 

exhibit a better performance when the TTL is smaller than that of the settling point, 

as we see that, for instance, in the PRoPHET and Epidemic Routers (figs. 5.5 and 5.6). 

Therefore, at least a minimum of TTL=300 min is advised when evaluating router 

performance to capture the complete behavior. These threshold value, however, 

might be slightly different for different scenarios, but given the dependence of all 

the parameters in the vehicular networks, such as the buffer size of the hosts, the 

node density and even the map used for the physical movement of the vehicles, it is 

guaranteed that the TTL has a strong influence in the final performance of the 

routers, regardless of their type, so when running simulations, it is advised to 

include a sweep of TTL values up to around 300 minutes. 

 

Effect of the fitness thresholds 

As describe in the previous section, the 𝛼 parameter is a value that determines 

to what extent some of the connections are immediately discarded as next hop 

candidates. Intuitively, a very small value would mean that only a small portion of 

the current connections are discarded, so most of them have a chance to be chosen 

(although in descending order with respect to their fitness values). The limit is 𝛼 =

0, and since 1 ≥ 𝑓 ≥ 0, the condition 𝑓 ≥ 𝛼 means in this case that all the connections 

are considered as potential candidates. Similarly, a very large value of 𝛼 will result 

in a strong limiting condition, meaning that only the very best hosts (the ones with 

considerably large fitness) will be considered as possible next hops. This can be 

counterproductive, nonetheless, especially in very early stages of the simulation, 
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because at the beginning there might not be a lot of “healthy” nodes to carry the 

messages, and thus a lot of them are prone to be skipped, resulting in larger delays. 

As we can infer from this explanation, the dynamics of the environment are strongly 

influenced by the 𝛼 value. To better understand the effect of this fitness threshold, 

simulations were run changing this parameter with 𝛼 =

{0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.65, 0.8, 0.95, 1.0}. Also, the TTL of the messages 

varying from 𝑇𝑇𝐿 = {10,25,50,75,100,150,200,300}.  

Finally, a similar reasoning than that for 𝛼 was made for the 𝛽 fitness threshold, 

so we considered 𝛽 = {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.65, 0.8, 0.95, 1.0} in the 

simulations as well (all the plots can be found in Appendix 6-9).  

We distinguished two main differentiators in both the 𝛼 and 𝛽 values: 𝛼 = 0 and 

𝛼 > 0, and 𝛽 = 0 and 𝛽 > 0. In the first case, with 𝛼 = 0, we can see that the cases 

𝛽 = 0 and 𝛽 > 0 resulted in noticeable different dynamics (see figs. 5.1-2). We notice 

that for 𝛼 = 0, for TTL values smaller than 60, the performance of DLR+ is better 

with 𝛽 = 0 for PDR.  

 

Figure 5.1. Effect of the fitness thresholds in Packet Delivery Ratio. 
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Figure 5.2. Effect of the fitness thresholds in Average Delivery Delay. 

For ADD, in turn (fig. 5.2), 𝛽 = 0 is the choice, as it showed better results than 

for other 𝛽 values. In any case, however, for OVH and HOP the choice is any value 

different than 0 for 𝛽 (figs. 5.3 and 5.4). As we can see, there is a tradeoff mainly 

between network overhead and delivery ratio or delivery delays, and the final 

choice of the parameters ultimately depends on the final application of the router in 

delay-tolerant networks (i.e., if we are interested in minimizing latency, at the 

expenses of some overhead, or we have limited resources, such as in mobile sensor 

networks).  

 
Figure 5.3. Effect of the fitness threshold in Network Overhead. 
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Figure 5.4. Effect of the fitness threshold in Hop Count. 

 

For 𝛼 > 0, we did not notice any significant difference in the values of 𝛽. Finally, 

for 𝛼 > 0.5 there was a slightly improvement in overhead and number of hops. 

Based on these results, for this version of DLR+, we decided to use 𝛼 = 0.65 and 𝛽 =

0, although these parameters can be tweaked, depending on the scenario in which 

they are used. 

 

Performance of DLR+ 

In this subsection we discuss the final performance of DLR+ (𝛼 = 0.65/0, 𝛽 = 0) 

and compare it against other well-known routers (figs. 5.5-5.8).  

Performance on Packet Delivery Ratio 

As can be seen in Figure 5.5, DLR+ (𝛼 = 0.65) offers a greater PDR than the 

Epidemic router and PRoPHET for TTL greater than 60 and 130, respectively. And 

although its performance on this metric is not the best, it is very close to those who 

offer the best values, only about 6.07% below its better counterparts. On the other 

hand, with 𝛼 = 0, DLR+ outperforms all routers in PDR for 𝑇𝑇𝐿 < 25. This reflects 

an interesting dynamic in the response of DLR+ for this case, in contrast with other 

routers: the more TTL is provided, the more inefficient the router becomes; however, 

as TTL is smaller, the response of the proposed router increases, outperforming the 

other routers in this and other metrics, and particularly having a high PDR (very 

close to the ones shown by the best routers in this metric), and a low ADD, very 

similar to the one from the other routers at this point.  There is a tradeoff, 

nonetheless, in this range of operation, because in this part DLR+ (𝛼 = 0) does not 
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have the best performance in network overhead and hop count (figs. 5.7 and 5.8), 

although it shows acceptable values, very close to the ones shown by other routers.   

 
Figure 5.5. Performance of DLR+ in Packet Delivery Ratio. 

Performance on Average Delivery Delay 

In the long run, DLR+ does not provide the best performance on Average 

Delivery Delay (fig. 5.6). We can see that as the TTL increases, so do the delivery 

delay values, and although they tend to stabilize at some point, there are significant 

differences with respect to otter router performances. The proposed router, 

however, performs fairly well for small TTL values, laying in points very close to 

those resulted from their counterparts, with roughly the same ADD values than 

those of other routers for TTL≤25.  

 
Figure 5.6. Performance of DLR+ in Average Delivery Delay. 
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Performance on Network Overhead and Hop Count 

As can be seen in fig. 5.7, DLR+ (𝛼 = 0) did not have the best results in Network 

Overhead, with significant differences with respect to their counterparts, closely 

resembling the Epidemic routing. For 𝛼 = 0.65, however, DLR+ had the best 

performance, with nearly zero overhead, which means extremely efficient resource 

usage, way below the OVH values returned by other routers.  

 
Figure 5.7. Performance of DLR+ in Network Overhead. 

In hop count (fig. 5.8), on the other hand, with 𝛼 = 0 the number of hops used 

by DLR+ is very close to a constant 1.6 in the long run, which shows better values 

than other routers. Indeed, for TTL>50 the proposed router (𝛼 = 0) outperforms all 

other routers in the experiment, but even for TTL values smaller than 50, the number 

of hops used by DLR+ is between 2.2 and 2.8, which is a range in which all other 

routers lie as well. For 𝛼 = 0.65, however, the proposed router shows an impressive 

HOP of nearly 1, which is a very significant difference with respect to the rest, 

confirming the highly efficient usage of network resources. The intrinsic 

dependence of all the metrics, nonetheless, let us see that even though the 

performance in this metric was very good, that may have an influence in the 

performance in the other metrics, such as network overhead (to its favor) and packet 

delivery rates and average delivery delays, which in turn show a performance close 

to the maximum observed in other routers (for PDR) and a bad performance when 

it comes to ADD, with respect to other routers. Intuitively, an adjustment in this 

trade-off can result in better performance in the first two metrics.  
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Figure 5.8. Performance of DLR+ in Hop Count. 

Table 5.1 summarizes the information explained above, separated into the 

two ranges of TTL observed in the experiment (𝑇𝑇𝐿 ≤  25 min and 𝑇𝑇𝐿 > 25 min). 

And as can be seen, there are certain regions in the TTL spectrum where DLR+ 

stands out with respect to the other routers, or is close to the top performers.  

 TTL<25 TTL>>25 

PDR 𝛼 = 0  

Better than all 

routers 𝛼 = 0.65  Close to the top routers 

ADD 𝛼 = 0 

Similar to all 

routers 𝛼 = 0  

Close to PRoPHET and 

Epidemic 

OVH 𝛼 = 0.65 

Better than all 

routers 𝛼 = 0.65  Better than all routers 

HOP 𝛼 = 0.65 

Better than all 

routers 
𝛼 = 0,

0.65  Better than all routers 

Table 5.1. Summary of performance of DLR+. 

 

Finally, in Figure 5.9, the strengths in the long run (for very large TTL values) 

of each router against their counterparts is shown, where ✓ means, that the router 

was better in the corresponding metric with respect to the given router.  
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Figure 5.9. Summary of strengths of each router compared to the other routers. 

It can be seen that none of the routers is better than all the others in every 

metric. Furthermore, none of the routers is better than the others in a given metric, 

except SeeR, which is the best than everyone else when it comes to delays, and the 

proposed router, DLR+ (𝛼 = 0.65), which beats all the other routers in network 

overhead and hop count. This clearly reflect that there must be a trade-off between 

the metrics in a given router. Normally, it is possible to have a better packet delivery 

ratio or a better average delivery delay at the expense of network overhead and hop 

count. With this in mind, DLR+ can be used in situations where the resources are 

limited or the network suffers high congestions, whereas in critical, safety-related 

services and applications SeeR or Spray & Wait are preferred. It’s worth 

emphasizing, however, that these comparisons are true when TTL values are 

considerably big, which is a general assumption because in reality TTL values offer 

different dynamics for smaller values, as we compared before for TTL<25 minutes, 

so ultimately the final decision as to what router to use will depend on the particular 

scenario being addressed.  

 

Summary of Chapter 5 

In this chapter, the results obtained in the experiment were explained in detail. One 

of the main observations is that the TTL has an important effect on the performance 

of the network, and it is observed that for TTL close to 300 min, the values on the 
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evaluation metrics tend to plateau. It will be interesting, though, to see if for very 

large values of TTL, the ADD of the proposed router improves, given that a lot more 

of information can the hosts have access to of the environment during that time (this 

is, the hosts could learn in a more deepest way the dynamics in the very long run). 

Also, the effect of the fitness thresholds was discussed individually for each of the 

metrics in the simulation, and the values of 𝛼 = 0.65 and 𝛼 = 0 were the ones that 

show different responses with respect to other values of 𝛼, but for 𝛽 there were no 

significant differences in the performance, so 𝛽 = 0 was used for this synthetic 

scenario. It’s worth noticing that the values of these parameters can be different for 

other scenarios, and they can be tweaked as needed. Finally, the performance of the 

proposed solution was assessed according to each of the metrics, and one key 

conclusion is that there must be a trade-off between the metrics that are in play, due 

to an intrinsic dependency of them. For instance, when getting the minimum hop-

count, which is 1, the network overhead naturally decreases, too, but there’s an 

increase in delivery delay, because the nodes have to wait until the conditions for 

direct delivery are present, which may not always be the case, thus leading to very 

large delays or a decrease in delivery rates, if the time-to-live of the messages is 

short. These and other intrinsic relationships in the environment make getting the 

maximum of minimum values of all the metrics at the same time virtually 

impossible, and that is why the trade-off is necessary. For this scenario, however, we 

see that the proposed router (𝛼 = 𝛽 = 0), outperforms any other router for small 

TTL values (for TTL values less than around 25 minutes) in delivery ratio (PDR) 

while having delivery delays (ADD) very close to the ones shown by the other 

routers, though slightly larger network overhead. In the long run, however (for TTL 

values larger than 25, 𝛼 = 0.65 is preferred than 𝛼 = 0, having a PDR very close to 

the maximum value obtained, although more delay than other routers showed. In 

Network overhead, nonetheless, is where the proposed router excels.  

In the following chapter, the final thoughts on this research are provided.   
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Chapter 6 

Summary and conclusions 
 

This chapter closes this research report.  

Summary  

The integration of vehicular networks in Intelligent Transportation Systems, in 

the context of Smart Cities, will bring a vast set of novel services in areas such as 

traffic management, security and safety, e-commerce and entertainment, resulting 

in a global evolution of cities as we know them. More particularly, there is the 

paradigm of data networks where vehicles themselves are the nodes in the network, 

and the system itself provides valuable information to sustain services and 

applications such as assistance in traffic jams, collision warnings, pre-crash 

warnings, lane assistance and electronic brake notifications, among others, which in 

turn will help the future of transportation system safer and greener. Such networks, 

where the nodes are vehicles, are called Vehicular Delay-Tolerant Networks, 

because they have to withstand the harsh conditions of vehicular environments, 

where the high speeds and high mobility of the nodes provokes very frequent 

disruptions and a non-fixed topology.  

Several research opportunities are identified in the literature, such as node 

design (power consumption, communication range, etc.), buffer management 

(queuing, buffer allocation, scheduling, etc.) and routing (routing protocols, security 

in the transmissions, etc.). Routing in Vehicular Delay-Tolerant Networks is a 

research challenge that requires special attention, since their efficiency will 

ultimately dictate when these networks become real life implementations. In this 

paper and following the Design Science in Information Systems Research 

Framework, we have modeled a solution to the routing problem in VDTN and 

presented a router based on deep learning which uses an algorithm that leverages 

the power of neural networks to learn from local and global information to make 

smart forwarding decisions on the best next hop and best next message.  

As discussed in the previous section, the proposed router presents 

improvements in network overhead and hop count over some popular routers, 

while maintaining an acceptable delivery rate and delivery delay. For TTL≤ 25, if 

resources are not a problem, it is recommended to use DLR+ with α=β=0, as it will 

provide the highest delivery ratio. On the contrary, if network resources are a 

concern, the proposed router is recommended to use with α=65 and set the message 
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scheduler to β=0, so it has the highest performance despite the resource limitation. 

All in all, the proposed router with its architecture and routing protocol can be seen 

as a starting point to further research the routing problem in VDTN using Deep 

Learning.  

Conclusions on the research question 

The routing problem in VDTN is a research challenge that still needs to be 

addressed, as there is not yet an optimal solution that takes into consideration all the 

metrics in the communication process. Furthermore, as earlier discussed, there has 

to be a trade-off between some of the metrics that are sought to be optimized to 

achieve an overall better performance in the VDTN, and the quest for this continues. 

Ultimately, the corresponding trade-offs depend on the particular application of the 

network; for instance, in mobile sensor networks the delays may not be an important 

thing, but the limited resources might be, whereas in VDTN there can be a certain 

level of flexibility depending on even more specific applications, such as e-

commerce transactions versus entertainment applications.  

As for the research question, we have discussed in more detail the results and 

performance that a deep-learning solution like the proposed router has in the 

routing process in a VDTN. As conclusions, the use of Deep Learning in the 

proposed router to address the routing problem presents some advantages, as can 

be inferred from the results section. From the perspective used to address the 

routing problem in VDTN in this work, Deep Learning techniques can be used to 

minimize the search for the best conditions for transmissions (namely, the 

“healthier” nodes and the “best” candidate messages), but this can in turn naturally 

influence the delays in the delivery process, and therefore the delivery rate, 

depending on the TTL used. This makes sense, because the router has to wait until 

it comes into contact with those “healthy” nodes, and this is particularly true in early 

stages of the simulations, because none of the vehicles has enough history as to 

improve its conditions, and offer better features to their neighbors so they are 

considered potential candidates in the transmissions. As time elapses, nonetheless, 

it is expected that those conditions improve, and the router offers a better 

performance not only in network overhead and hop count, but also in delivery rate 

and delays. In the future, a lot of improvements to this router can be done, such as 

fine-tuning the features (e.g., feature engineering), additional control mechanisms 

to avoid getting trapped in direct delivery (e.g., spreading metrics similar to the ones 

used in Spread and Wait) and even the adaptation of different neural network 

architectures to the router architecture proposed in this work. Finally, very high 

vehicle densities and very high transmission speeds (e.g., C-V2X and 5G) can 

significantly impact the performance of the routers. As part of future work, these 
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scenarios are yet to be explored, which could change the balance in the performance 

of a DL-based solution. Table 6.1 summarizes the impacts that a Deep Learning-

based approach can have in the routing protocols. 

 Packet Delivery 

Ratio 

Average 

Delivery 

Delays 

Network 

Overhead 

Hop Count 

Conclusion Acceptable, needs 

improvement 

Needs 

improvement 

Is better (highly 

reduced) 

Is better (highly 

reduced) 

Comments The PDR is close to the 

maximum presented by 

other routers 

ADD is the 

metric with 

worst 

performance 

A DL-based solution offers the best 

performance in this metrics 

Improvements could be 

achieved by adjusting 

the trade-off between 

the metrics 

As the approach tends to find the fittest node and 

message to continue the transmission, high delays 

are possible, especially in the early stages of the 

interactions in the network  

Additional control mechanisms can be implemented in the forwarding 

decisions to give away on network overhead and hop-count in order to 

achieve improvements in PDR and ADD.  

Very high vehicle densities and very high transmission speeds (e.g., C-V2X 

and 5G) can significantly impact the performance of the routers. As part of 

future work, these scenarios are yet to be explored, which could change the 

balance in the performance of a DL-based solution. 

Table 6.1. Summary of the impacts on the metrics of a DL-based routing solution. 

It is true that there is a lot of work to be done when it comes to the application 

of Deep Learning to the routing problem in this kind of networks, and some points 

about this are given in the rest of this section, as well as some directions for future 

work. All in all, the DLR+ router provides an insight into how deep neural networks 

can be used to make smarter routers, and this work provides a framework than can 

serve as a starting point to build more intelligent routing algorithms, and there’s still 

a lot of work ahead in this matter.  

Future work and extended applications 

In the future, the DLR+ router can be further developed, including the full 

integration of the neural network to work in real time and automatic online 

parameter tuning to increase the overall performance. Also, more features of the 

host and messages can be added to the paradigm, so the router gets an even better 
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understanding of its environment, and additional control mechanisms can be 

included in the routing protocol to avoid falling into direct delivery, which can 

heavily affect the delivery rate and delays. Feature engineering is a field in this arena 

that can be exploited to guarantee that the selection and explosion of features will 

result in optimal values. Different mechanisms like feature partitioning, grouping, 

explosion, split can be used to further refine feature selection [15][53]. 

Furthermore, different neural network architectures can be explored as 

candidate approaches to solve the optimization problem in determining the best 

route either by finding the best next hop or finding the best next message (message 

scheduling) or a combination of both. On the different existing architectures of 

neural networks, Recurrent Neural Networks (RNN) are a kind of network that is 

optimized to work with sequential modeling. Also, other types of neural networks, 

such as the Generative Adversarial Networks (GAN), can help to deal with the lack 

of enough data to accurately train a deep learning model, which is particularly 

important towards a physical implementation. If the routing problem is modelled 

as finding the “cheapest” path in a space of possible paths (sequences), then these 

two neural networks might be an interesting approach, and the DLR+ architecture 

can be used as a starting point in the quest in this direction, even though slight 

changes in the approach (such as the problem framing) might be necessary to 

adequately adapt the RNN or GAN models for the predictions.  

The influence of other variables in the environment is also a research 

opportunity. For instance, the effect of TTL of the messages was explored in this 

work, but the influence of node density (i.e., highly congested scenarios) and the 

presence of relay nodes in the vehicular network (i.e., fixed, road-side units) is yet 

to be explored. It is a fact that these and other variables heavily influence the 

dynamics of the vehicular environments, and therefore the dynamics and response 

of the routers themselves with particular settings. It would be interesting to see the 

performance of the proposed router in highly dense vehicular networks, because 

neural networks are prone to perform better as much more data is fed into the 

systems.  

Another aspect that can heavily influence the performance of the routers and 

the VDTN dynamics is the presence of very high transmission speeds, which can 

enable high data consuming applications, like infotainment, which are higher than 

those offered by the IEEE 802.11p standard (up to 27 Mbps), like C-V2X technologies 

(up to 150 Mbps) or 5G (10 Gbps). These technologies were discussed in more detail 
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in the Introduction chapter, but the influence of such very high speeds in the 

dynamics was not explored in the experiments and is left as future work.  

Also, as the years go by, vehicles are equipped with better processing 

technology, with complete Operating Systems or ECUs (Engine Control Units) that 

are mostly AUTOSAR or OSEK-based, for safety and critical applications, or Linux 

(GENIVI), QNX or Android for ADAS and infotainment [57]. Thus, a research 

opportunity is also the implementation of such routing algorithms in the latest 

vehicle processing software, as well as the implementation of the aforementioned 

algorithms on top of a Software-Defined Network (SDN), which is a recent 

paradigm that provides a programmable network through decoupling the data, 

control and application planes [38].  

In reality, routing in VDTN is a very vast problem, and a lot of aspects that 

can affect the performance and dynamics of the networks can be explored. One last 

area that offers opportunities for research is the analysis of use-cases, namely those 

that fall into the safety-critical use-cases and those who are in the non-safety use-

cases set. While both groups of services and applications are part of the general 

applications of VDTN, the main difference between them is the minimum latency 

required for success execution. The first group deals with critical, safety-related 

applications, and the requires very low latencies from 1 to 10 milliseconds, while the 

second group can have longer latencies, above 10 and to 100 or more milliseconds. 

These two scenarios were not specifically addressed in this work, and it is a research 

opportunity also, since variables such as message drops and delivery delays have a 

critical dependence of the minimum allowed latencies in the services that the routers 

have to support, and the correlation with the rest of the variables and metrics can be 

affected, resulting in different levels of performance. It’s worth noticing, though, 

that in order to model the first scenarios, the safety use-cases, one must pay attention 

to the broadcasting that a particular node starts to their immediate nodes, which in 

turn will replicate the warning messages to neighboring vehicles. Thus, in those 

cases the focus must be in transmissions that are within a physical radius from the 

emitter, regardless of whether or not the final delivery is done using direct delivery 

(e.g., directly to the destination) or with minimum hop count, as to minimize the 

latencies. In that sense, different more specific scenarios can be tested, such as 

modeling of crashes at intersections, or any other of the particular use-cases 

considered for safety-critical services listed in Table 1.2 in chapter 1.   
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Finally, another field of research is the application of the same router to other 

scenarios can also be explored, such as in UAV networks or autonomous robot 

networks. As we approach to a technological era where autonomous and self-

adapting systems become a reality, self-organizing networks will be an asset for 

different kinds of delay-tolerant networks in transportation, logistics, natural 

disaster response and manufacturing. Table 6.2 summarizes these research 

opportunities.  

Router Additional routing control mechanisms 

Combination of buffer management and scheduling 

mechanisms (dropping and abort policies) 

Neural 

Networks 

Fine-tuning and additional features 

Feature engineering 

Automated parameter tuning (unsupervised and 

reinforcement learning) 

Different architectures (RNNs, GANs, etc.) 

Vehicular 

scenario 

Influence node density (e.g., highly congested scenarios)  

Effect of relay nodes (presence of road-side units)  

Effect of mobility patterns (i.e., performance under different 

models) 

Influence of high transmission speeds (e.g., C-V2X and 5G) 

Particular scenarios (safety-related scenarios, specific patterns 

(bus, working day, etc.)) 

Other 

applications 

UAV networks 

Cooperative autonomous robots 

General DTNs 

Table 6.2. Summary of research opportunities derived from this work. 

As can be seen, there’s still a lot to be explored in this field and the use of 

Deep Learning is a very promising approach to these research opportunities. All in 

all, the paradigm of deep learning itself is yet to unleash its full potential, but the 

most recent advances in the matter could be used to address any optimization 

problem, like the routing problem in VDTN, in unimagined and promising ways.  
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Appendix 6 – Performance of DLR+ on Packet Delivery Ratio with different 

threshold values (𝜶, 𝜷) 

 

Figure A-6.1. PDR with 𝛼 = 0. 

 

Figure A-6.2. PDR with 𝛼 = 0.5. 
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Figure A-6.3. PDR with 𝛼 = 0.1. 

 

 

Figure A-6.4. PDR with 𝛼 = 0.15. 
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Figure A-6.5. PDR with 𝛼 = 0.2. 

 

Figure A-6.6. PDR with 𝛼 = 03. 
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Figure A-6.7. PDR with 𝛼 = 0.5. 

 

 

Figure A-6.8. PDR with 𝛼 = 0.65. 
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Figure A-6.9. PDR with 𝛼 = 0.8. 

 

 

Figure A-6.10. PDR with 𝛼 = 0.95. 
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Figure A-6.11. PDR with 𝛼 = 1. 
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Appendix 7 – Performance of DLR+ on Average Delivery Delay with different threshold 

values (𝛼, 𝛽) 

 

Figure A-7.1. ADD with 𝛼 = 0. 

 

Figure A-7.2. ADD with 𝛼 = 0.05. 
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Figure A-7.3. ADD with 𝛼 = 0.1. 

 

 

Figure A-7.4. ADD with 𝛼 = 0.15. 
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Figure A-7.5. ADD with 𝛼 = 0.2. 

 

 

Figure A-7.6. ADD with 𝛼 = 0.3. 
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Figure A-7.7. ADD with 𝛼 = 0.5. 

 

 

Figure A-7.8. ADD with 𝛼 = 0.65. 
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Figure A-7.9. ADD with 𝛼 = 0.8. 

 

 

Figure A-7.10. ADD with 𝛼 = 0.95. 
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Figure A-7.11. ADD with 𝛼 = 1. 
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Appendix 8 – Performance of DLR+ on Network Overhead with different threshold 

values (𝛼, 𝛽) 

 

Figure A-8.1. OVH with 𝛼 = 0. 

 

Figure A-8.2. OVH with 𝛼 = 0.05. 
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Figure A-8.3. OVH with 𝛼 = 0.1. 

 

 

Figure A-8.4. OVH with 𝛼 = 0.15. 
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Figure A-8.5. OVH with 𝛼 = 0.2. 

 

 

Figure A-8.6. OVH with 𝛼 = 0.3. 
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Figure A-8.7. OVH with 𝛼 = 0.5. 

 

 

Figure A-8.8. OVH with 𝛼 = 0.65. 
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Figure A-8.9. OVH with 𝛼 = 0.8. 

 

 

Figure A-8.10. OVH with 𝛼 = 0.95. 
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Figure A-8.11. OVH with 𝛼 = 1. 
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Appendix 9 – Performance of DLR+ on Hop Count with different threshold values 

(𝛼, 𝛽) 

 

Figure A-9.1. HOP with 𝛼 = 0. 

 

 

Figure A-9.2. HOP with 𝛼 = 0.05. 
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Figure A-9.3. HOP with 𝛼 = 0.1. 

 

 

Figure A-9.4. HOP with 𝛼 = 0.15. 
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Figure A-9.5. HOP with 𝛼 = 0.2. 

 

 

Figure A-9.6. HOP with 𝛼 = 0.3. 
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Figure A-9.7. HOP with 𝛼 = 0.5. 

 

 

Figure A-9.8. HOP with 𝛼 = 0.65. 
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Figure A-9.9. HOP with 𝛼 = 0.8. 

 

 

Figure A-9.10. HOP with 𝛼 = 0.95. 
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Figure A-9.11. HOP with 𝛼 = 1. 
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