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Abstract
Simulation of Skeletal Muscles in Real-Time with Parallel Computing in GPU

by Octavio Navarro Hinojosa

The animation of humanoid characters is an ongoing research area, with a special focus within

the entertainment industry. However, the need of detailed human models has extended to areas

such as medicine, and biomechanics, each with its own set of performance and functional re-

quirements. While visual realism is more desirable in the entertainment industry, biomechanical

accuracy and interactivity are most crucial in designing medical applications.

Creating biomechanically accurate human models is a great challenge because it requires a

precise reconstruction of the different structures of the human body, as well as the biological

and physiological functions that control them. Specifically, the modeling and simulation of

the skeletal muscles have received special attention because they generate movement and help

maintain the poses of the human body.

Most of the approaches that attempt to simulate the skeletal muscles of the body are based on

models that are not ideal due to several reasons: biomechanical models, which are mechanical

simplifications of the actual behavior of the muscles, are used; focus is given to their macroscopic

behavior, leaving behind the mechanics and internal structures of the muscles; simulations are

not processed in real-time, which is not ideal for specific applications, such as Computer Assisted

Surgery, where interactivity is crucial.

In this work, a meshfree model that simulates skeletal muscles considering their functioning and

control based on electrical activity, their structure based on biological tissue, and that computes

in real-time, is presented. Meshfree methods were used because they are able to surpass most

of the limitations that are present in mesh-based methods. The muscular belly was modelled as

a particle-based viscoelastic fluid, which is controlled using the monodomain model and shape

matching. The smoothed particle hydrodynamics (SPH) method was used to solve both the

fluid dynamics and the electrophysiological model. To analyze the accuracy of the method,

a similar model was implemented with the Finite Element Method (FEM). Both FEM and

SPH methods provide similar solutions of the models in terms of pressure and displacement,

with an error of around 0.09, with up to a 10% difference between them. The model was

tested with simulations of contraction and extension of the long head of the triceps brachii

and the vastus lateralis. The muscle’s geometry was able to return to its original configuration

after being innvervated with a stimulus current, displaying contractions and bulging similar to

that of a real muscle. Through the use of General-purpose computing on graphics processing

units (GPGPU), real-time simulations, with at least 70 frames per second, that offer a viable

alternative to mesh-based models for interactive biological tissue simulations was achieved.
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Chapter 1

Introduction

1.1 Motivation

Computational human modeling is an ongoing research area: from films and video games, to

surgical planning simulations and medical training. Such simulations must often depict all

aspects of a human being, ranging from its appearance to making them move and function in a

believable manner.

The human body is composed of an intricate and complex anatomical structure which is made

up of a variety of interacting tissues. Computational human modeling requires accurate re-

construction of this anatomical structure, the relevant biological and physiological functions,

and their mathematical formulation into practical physical and mechanical models. Among the

various tissues composing the body, those that form muscles carry out diverse physiological

functions and collectively perform body movement.

The skeletal muscular system forms one of the major components of the human body mainly

responsible for movement. They serve as major body components which make up nearly 50%

of total body weight, characterizing the shape of a body and its tone. They also provide

physiological functions to stabilize body posture and drive body movement. While the former

is a key feature for the representation of the body, which demands accurate modeling of muscle

morphology, the latter is crucial to produce accurate simulations of body movement driven

by muscle activation. Skeletal muscles are composed of different materials like muscle, tendon,

connective tissues, fat, etc. which form an inter-dependent system to work together and perform

different kinds of activities. Considerable efforts have been made in the past few decades, related

to the modeling of the skeletal muscles represented by various suitable mechanical models, but

development of mechanically accurate and computationally effective models is still an open area

of research.

1
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Researchers have developed increasingly sophisticated biomechanical models of individual body

parts based on skeletal muscles, such as hands [1, 2], head and neck[3], legs [4], facial anima-

tion [5–7], and the upper body [8]. However, even in the most detailed anatomical models,such

as the ones presented by Zordan and Lee [8, 9], muscles are grouped and treated as single rigid

objects, and their behaviour is modelled following the Hill muscle model [10]; which is a me-

chanically inspired simplification of the muscle’s behaviour based on mass-less spring systems.

Even more recent applications and models, such as the ones that can be implemented in the

OpenSim [11, 12] software represent muscles as rigid lines, and focus on the analysis of move-

ment, not on the complete tissue deformation and internal force, which limit their application in

simulations such as in Computer-Assisted Surgery (CAS). Applications that could benefit from

such a detailed biomechanical model of the tissue include: dynamic simulations and analysis

of human movement [11, 13, 14], gait analysis [15, 16], evaluation of musculoskeletal pathology

and assessment of treatment efficacy [17–20], prevention and rehabilitation [21–23], and even

for sport medicine [24, 25].

Different approaches to simulating humans respond to different performance and functional

requirements. For example, interactivity is required for real-time applications, such as virtual

surgery simulators, but visual realism is more desirable in the entertainment industry. Moreover,

biomechanical accuracy is most crucial in designing medical applications. A notable example is

in CAS, where a connection to biomechanics has helped by defining a theoretical and numerical

framework that provides information about the mechanics of the tissues after a clinical treat-

ment or surgical intervention [26]. CAS has addressed a larger spectrum of clinical domains

such as cardiology [27], neurosurgery [28], urology [29], and abdominal surgery [30]. For these

applications, biomechanics faces a new challenge since the involved tissues are required to move

and be deformed by stress generated by clinical actions. Moreover, soft tissues are difficult

to model accurately since they typically exhibit complex, time dependent, non-linear, inhomo-

geneous and anisotropic behaviors. Such models are very computationally demanding and are

therefore limited to pre-operative use, since the simulations often require many minutes or hours

to compute. For clinical applications interactivity is critical, and reduced computational times

are essential.

Many problems in biomechanics can be solved computationally using mesh-based methods such

as the finite element method (FEM) [31]. However, finite element (FE) techniques, much like

many other mesh-based methods, suffer from certain drawbacks in the modeling and simulation

of biological systems such as soft tissue and cell deformation, or minimally invasive surgical

simulation. The FEM has been successfully applied to modeling simplified models of the mus-

cles [32–35], but modeling of complicated 3D muscle geometries increases the complexity of mesh

generation for FE analysis. Poorly built meshes lead to mesh distortion and significant errors

in FE analysis due to mesh distortion. Standard FE approaches are still ineffective in handling
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extreme material distortions owing to severe mesh distortion as it could occur in muscle defor-

mations. In 3D subject specific models, fiber direction is measured at each of the muscle pixel

points, which need to be interpolated at the integration points in FE model, which introduces

additional approximation errors in the FE analysis.

Additional issues with the use of FE to simulate soft tissues include:

• Contact between tool and tissue must correspond to nodal points; hence, to prevent loss

of accuracy, the density of the nodal points must be relatively high. This leads to high

computational costs.

• Mesh distortion and entanglement during the large deformation of soft materials such as

muscles, internal organs, or skin results in reduced accuracy. Remeshing can be used to

overcome this, but it leads to increased computational time.

• In situations where local stresses/strains are extremely large, the creation of quality meshes

for use within the problem domain is a prerequisite with FEM, which ultimately leads to

a loss of manpower time.

• It is difficult to represent complex geometry with unstructured meshes, which is necessary

for the remodeling process of biological tissues and the rupture of such biomaterials.

Recently, meshfree, or meshless, methods became a focus of interest for solving partial differen-

tial equations. In meshless methods the solid domain can be discretized with an unstructured

cloud of nodes [36–39]. Truly meshless methods [39, 40] allow to acquire the nodal cloud di-

rectly from the Computerized Axial Tomography (CAT) scan or the Magnetic Resonance Image

(MRI) by considering the pixels (or voxels) position and then obtain the nodal connectivity, the

integration points and the shape functions using only the nodal spatial information. Using the

grey tones of medical images, truly meshless methods are even capable of recognizing distinct

biomaterial and then affecting directly to the nodes the corresponding material properties.

Meshfree methods, contrary to the FEM, allow the simulation of biological fluid flow (hemo-

dynamics, swallowing, respiration, among others), and can deal with the large distortions of

soft materials (internal organs, muscles, tendons, skin, etc.). Additionally, the smoothness and

accuracy of displacements, stresses, and strain obtained with meshless methods are very useful

to predict the remodelling process of biological tissues. Moreover, recent works have shown that

the combination of medical imaging techniques (CAT scan and MRI) with meshless methods

are more efficient than using the FEM [41, 42].

With the goal of simulating the mechanics of musculoskeletal systems, this thesis develops a

method and useful set of meshless biophysical primitives that can be applied in the fields of
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biomechanics, anatomy or entertainment. The key challenge will be the creation of a muscle

model that can represent a large array of shapes, and that behaves as their real counterpart.

Furthemore, anatomy and biomechanics, in addition to their need of real-time simulators, require

a higher standard of accuracy than applications for entertainment purposes.

1.2 Problem statement

A dynamic musculoskeletal system consists of several biological structures (bones, muscles,

tendons, ligaments, connective tissue, etc.), and is an essential component for the simulation and

analysis of human movement. However, simulating these structures is somewhat complicated

due to the inherent complexity of both the system and the elements that comprise it. Existing

simulators typically model the muscles as rigid objects, joining the physical properties of these

with other nearby structures, such as bones, and apply phenomenological models to simulate

their activation. Although there are several works that apply biophysical models, which try

to simulate the correct structure of the muscles and their interaction with the other structures

of the musculoskeletal system, the use of method such as FEM limit their use for real-time

applications.

The FEM was one of the traditional means of modeling deformable solid and fluid dynamics [43],

as well as the electromechanics of the biological tissue [34, 44]. While FEM is considered to be

the gold standard for accuracy in computational methods, it is an unrealistic expectation that

with the current technology included in a reasonable desktop PC that FEM could be made to

perform interactively [45]. Even with the use of GPUs and with speedups of more than 20 [46],

the simulations still are not run in real-time. Other solutions still have this issue, as is the case

of Johnsen et. al. [47], who take around 20 seconds to complete an individual simulation; or

Strbac et. al. [48], who achieve speedups between 30 and 120, but still take at least 4̃0 seconds

for their simulations.

The computational cost of the FEM for real-time applications is such an issue that alternative

methods for its solution have been proposed. For example, Lorente et. al. [49] proposed the use

of machine learning techniques for modelling the biomechanical behaviour of human liver. A

similar technique for soft tissue was proposed by Meister et. al. [50].

Another issue with FEM is that the generation of complex meshes is necessary, and it represents

a bottleneck for the method; specifically for the clinical translation of biological modeling tools;

since it is difficult to have a streamlined and automated pipeline to generate accurate FE

simulations from imaging data [51] (even though works such as [34] used a three-dimensional,

anatomically based representation of the muscle, obtained from the Visible Human male data

set [52]). Another non-trivial step of FEM is the coupling between physical properties and
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mechanics when meshes with different resolution for both problems are used. It is expected that

a way to overcome these difficulties could be through a meshless approach, such as smoothed

particle hydrodynamics (SPH) [53].

In recent years, SPH has become increasingly popular in computer graphics. It has been suc-

cessfully used for the simulation of various fluid phenomena, such as multiphase fluids, rigid

and elastic solids, deformable objects, fluid features, such as spray, foam and tiny air bubbles,

granular materials, and other complex scenes that use multi millions of sampling points [54–57].

Recently, the SPH based method has been applied to solve non-hydrodynamic partial differential

equations such as the wave equation, the diffusion equation, Maxwell’s equations and Poisson’s

equation [58], as well as to electronic structure calculations [59].

Regarding the simulation of biological tissue, meshless approaches, such as SPH, have proven to

be ideal to model the complex structures needed for soft tissue simulations [45, 60]. Joldes et.

al. [61] have even suggested that because of the simplicity of meshless methods, they are better

suited than FEM for integration with clinical workflows. Several works tackled such simulations

while exposing some advantages of using SPH: Gastélum et al. [62, 63] integrated the effect

of internal and external forces, and demonstrated the advantage of using SPH for large tissue

deformations; Boyer and Joslin [45] considered the fibers of articular cartilage, and considered

elastic and stress models to represent them; Palyanov et al. [64] used SPH to simulate different

types of tissue, both solid and fluid, and introduced contractile fibers based on mass-spring

systems; Rausch et al. [60] used SPH to simulate tissue that experience large deformations and

damage, to the point of failure. Most of these works results were in agreement with analytical

solutions, as well as FEM solutions. However, mass-spring models are impractical for tissue

simulations, since they are non-volumetric methods where spring elements connecting point

masses must be tuned for each desired scenario [45, 65].

These solutions do not consider biophysical models to control the activation and deformation

of the tissues. Additionally, the tissues are modeled using mass-spring, elastic, or stress-based

models that are not necessarily applicable to biological tissue simulations. Furthermore, previous

models do not consider the physical properties of the tissue, or use approaches which are not

completely able to capture the properties of tissue [64]. These are issues present in many

works that simulate skeletal muscles. Current computational models of skeletal muscle models

typically focus on simplified phenomenological relationships mimicking the overall (mechanical)

behavior of a single skeletal muscle.

There are many challenges that have to be solved before being able to properly simulate the

skeletal muscles. Some of the main ones are mentioned below:

• Most existing simulations simplify the musculoskeletal system, either by simplifying its

architecture, its internal components, or its form of activation and control. Models such
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as Hill’s 2.2.3 do not consider the mass of the muscle, since they are based on mass-less

spring systems.

• Most musculoskeletal systems often ignore the muscle’s anatomical characteristics.

• Even though some simulations of biological tissue presented have achieved real-time pro-

cessing, most have not. The resulting simulations are used for offline processing of specific

conditions, but are not suitable for interactive simulations, such as training environments.

• Almost all the tissues of the system are deformable, and have physical properties. Some

effects such as the bulging of active muscles depends on the fact that the muscles are

incompressible solids. In most previous work, the volumetric tissue is ignored or simulated

using techniques such as FEM, requiring additional techniques or models to represent the

tissue’s deformation.

• Simulators based on solids mechanics, such as FEM, are not ideal for interactive applica-

tions because they require collision detection and conflict resolution, which are computa-

tionally expensive when applied to FEM models.

• The main methods to control the activation of the muscles are phenomenological. These

are simplifications of the actual behavior of the muscles, and they have been shown to have

a strong error level when compared to actual muscle activation data. These models are

more similar to simple mechanical systems, and only model the force generated between

two points, the origin and the insertion of the muscle. In addition, the muscles are

controlled by the nervous system, and there are few works that focus on simulating their

activation in such a way.

• Most of the simulations use FEM, the finite difference method (FDM), or the finite volume

method (FVM), to model the geometry, and to solve the electrophysiology of the tissue.

However, these methods have several disadvantages, from the formation of the mesh, the

computational cost, to the significant errors in the analysis due to mesh distortion that

occurs in muscle deformation.

• The use of parallel techniques for computing have dramatically improved execution times,

but real-time applications require more processing power. The use of general purpose

graphics processing unit (GPGPU) can lead to the reductions in time needed to develop

such applications.

• The use of alternative solution methods have to be explored to model biological tissues.

Methods such as the lattice Boltzmann method (LBM) have already been used to solve

the electrophysiology of the tissue, and show, through good agreement with analytical

solutions and numerical results, their viability. Meshfree methods and, in particular, SPH,
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have also been used to simulate volume conserving solids. Because of its adaptability, it

could also be used to model biological tissue more effectively.

Currently there is no model of the musculoskeletal system that simulates the muscles of the

human body considering its internal structure, the biological tissues that compose them, their

physical properties, and that are activated using biophysical models similar to activation by the

nervous system.

Additionally, previous work focuses on modeling a specific muscle, or a specific group of muscles,

without seeking to generate more general methods that allow modeling a wide variety of muscles,

or even different biological tissues. An example of this is the work done using FEM, since they

have a strong limitation regarding the shape of the muscles, since the most complex are not

easily modelled using hexahedrons or tetrahedra. Similarly, several works simplify the muscles to

the extent that they are only modeled as a line segment, regardless of its shape or configuration

in three dimensions.

The computational costs to solve the different mathematical models, as well as to render the

muscles, make obtaining simulations in real-time difficult; very few works use GPGPU to paral-

lelize the calculations related to the simulations in order to be able to execute them in real-time.

This makes it difficult to use the proposed works in more interactive solutions, such as train-

ing or learning simulators of anatomy and medicine, or in video games or animated films with

humanoid characters.

1.3 Hypothesis

The use of meshless methods and GPGPU to simulate biological tissue, specifically, skeletal

muscle, will allow the development of accurate, real-time, interactive simulations. Additionally,

by defining the tissue as a viscous fluid, the model will be based more like an actual muscle,

while being able to include biophysical properties.

1.4 Objectives

Develop and implement a computational framework designed for the real-time physical simu-

lation of biomechanical tissue, specifically, skeletal muscle belly, that must consider the bio-

physical properties of the tissue. This is achieved by developing a meshfree method, based

on SPH, that simulates tissues as viscoelastic fluids. The simulation model can be obtained

from a number of sources, including MRI, without the need of additional mesh generation. To

activate and produce contractions and extensions in the skeletal muscles, a biophysical model
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of electrophysiology, particularly, the monodomain model, is to be integrated into the method.

The electrophysiology model will also be solved using the SPH formulation. Further, develop

the method considering parallel paradigms, specifically using GPGPU, to achieve efficient and

interactive simulations of tissues. Additionally, the proposed model aims to be an alternative

to mesh-based methods, such as FEM, by reducing the computational costs and pre-processing

and post-processing steps needed.

1.5 Specific objectives

1) Define a meshfree biophysical tissue model that can guarantee the conservation of volume,

and that considers the biophysical properties of the tissue to be simulated. The tissue will

be simulated as a viscoelastic fluid.

2) Integrate the properties, and necessary control formulations, of skeletal muscle belly.

3) Present efficient algorithms, and optimize the use of computational resources to achieve

real-time and interactive simulations. Integrate GPGPU to accelerate the model and

achieve real-time simulations.

4) Develop, as a case study, the simulation of the muscle belly of the long head of the triceps

brachii and of the vastus lateralis, which are able to contract and relax when an electric

current innervates them.

5) Develop a simulation of tissue using FEM to validate the accuracy of the proposed solution.



Chapter 2

Background

For this work different concepts and methods are used in the areas of anatomy, biomechanics,

computer graphics, parallel and concurrent programming, among others. This chapter details,

for each of the areas, relevant information that will be used for modeling muscles and to under-

stand the concepts and terms of the following chapters in this proposal.

2.1 Anatomy

The biology of humans is a fairly broad area of study. Therefore, there is a set of relevant tissues

that define the shape and function of the muscles of the body: bones, ligaments, tendons, and

muscles. These structures are the ones that allow the movement of different parts of the body

and that directly impact the changes in its surface. These structures are categorized into active

and passive. Muscles are considered active structures as they are capable of producing forces

on their own. Passive structures consist of materials that do not actively produce force on their

own; these materials exhibit tension when pulled by other external forces. The bones, tendons,

and ligaments belong to this group. An example of such structures can be seen in the Figure 2.1.

All these structures form a cohesive and efficient organic system. The bones create a skeleton

that provides a structural support of the body, as well as protection of internal organs. Me-

chanically, together with the muscles and tendons, a complex system of pulleys is created that

allows the locomotion of the body. Ligaments provide stability at joints by preventing segments

of adjacent bones from being separated. They act as a guide for movement as the joints move.

The muscles are the main generators of force and are attached to the tendons, which transmit

the force of the muscles to the bones where they are united [67].

9
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Figure 2.1: Example of active and passive structures of the arm. Adapted from [66].

2.1.1 Muscles

The muscular system consists of three types of muscles: the cardiac muscle, which makes up

the heart; smooth muscle (non-striated or involuntary), which make up the walls of hollow

internal organs and blood vessels; and skeletal muscle (striated or voluntary), which is attached

to the skeleton by the tendons, and is responsible for generating the necessary force to generate

movements. The first two types of muscles are controlled by the autonomic nervous system, and

contract without the need for conscious effort. Unlike the first two types of muscle, the skeletal

muscle is controlled through the somatic nervous system, and contractions are mainly done

consciously. These voluntary contractions produce forces that are transferred to the skeleton,

resulting in body movements [67]. Due to this property of movement generation of the skeletal

muscles, this work will study the structure and properties only of this type of muscles.

2.1.1.1 Skeletal muscles

Skeletal muscles are among the most abundant tissues in the human body, consisting of between

40 % and 45 % of the total body weight. There are more than 430 skeletal muscles, found in

pairs on the left and right sides of the body. The most vigorous movements are produced by less

than 80 pairs. These muscles provide protection and strength to the skeleton by distributing

loads and absorbing impacts. They allow the bones to move in the joints (through dynamic

work), and maintain the body posture (through static work). Usually, these actions represent

the joint action of muscle groups, not just individual muscles.
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2.1.1.2 Composition, organization, and structure of muscles

The muscles of the body consist of two discrete units: the muscle belly, and two tendinous limbs

that attach the muscle belly to the bone. The muscular belly consists of the muscle cells, or

fibers, that produce contraction, and the connective tissues that wrap around the muscle fibers.

The muscles have a hierarchical structure, which can be seen in the Figure 2.2. The outer layer

of connective tissue that covers the muscle belly is called the epimysium; this joins the muscle

belly with the tendon. Internally, the muscle belly is composed of a large number of groups of

muscular fibers, called fascicles, which are separated from each other by a layer of connective

tissue called perimysium. At the same time, each fascicle is composed of muscle fibers, which

are isolated from each other by the endomysium. These muscle fibers are the main structures of

the muscles; each fiber ranges from 1 to 400 mm in length, and from 10 to 60 µm in diameter.

Each muscle fiber consists of parallel groups of myofibrils. Finally, each myofibril is composed of

a series of contractile units, called sarcomeres, which are responsible for producing contractions

associated with muscles.

Figure 2.2: Hierarchical structure of skeletal muscles. [68].

The architecture of the muscles refers to the internal arrangement of the fascicles. A small

number of muscles have simple architectures, where the fascicles fit in parallel to each other

along the muscle. These are typically long muscles, such as the biceps. However, in most

muscles, the fascicles have an orientation characterized by the angle they form respect to the

tendons that are attached to them. This accommodation of fibers is known as pennate muscle.

There are several types of patterns in pennate muscles, as can be seen in the Figure 2.3. These

different types of architectures determine the range of movements and the force that is produced

by each muscle. A muscle will contain a greater number of small muscle fibers in a pennate

configuration than in a parallel one. Because of this, the pennate muscles do not contract

enough, but can produce much more force than parallel muscles of the same size [66].
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Figure 2.3: Examples of different architectures of muscles. [66].

In general, each end part of the muscle is connected to a bone through tendons, which have

no active contractile properties. The muscles are those that form the contractile components

and the tendons have elastic elements in series. The epimysium, perimysium, endomysium, and

sarcolemma act as elastic elements in parallel. The forces that are produced by the contraction

of the muscles are transmitted to the bones through the tendons. These transmit the forces

produced from the muscle to which they are attached towards the bones. Tendons connect

muscles either in a narrow area or along a broad, flat area, known as the aponeurosis. The

union of the muscles to more stationary bones (proximal place) is called the origin, while the

part that joins more movable bones (distal place) is called the insertion.

2.1.1.3 The motor unit

The functional unit of the skeletal muscles is the motor unit, which includes a motor neuron,

and all the muscle fibers that are innervated by it. This unit is the smallest part of a muscle

that can be made to contract independently. When stimulated, all muscle fibers in the motor

unit respond as one. When the fibers of a motor unit receive a stimulus, they have one of two

possible behaviors: they contract to the maximum, or they do not contract [67, 69].

The number of muscle fibers that make up a motor unit is related to the level of control needed

for each muscle in particular. In small muscles that perform very fine movements, such as

extraocular muscles, each motor unit may contain less than a dozen muscle fibers, whereas a

large muscle that performs rough movements, each motor unit can contain between 2000 muscle

fibers. The muscles that control subtle yet complex movements have fewer fibers per motor

unit (less than 10 fibers), while the muscles that control larger movements have more fibers per
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motor unit (between 100 and 1000 fibers). Normally, motor units with less fibers are activated

before motor units with more fibers.

The fibers of each motor unit are not contiguous, but are scattered along the muscle with fibers

from other units. Therefore, if a motor unit is stimulated, a long portion of the muscle appears

to contract. If additional motor units are stimulated, the muscle contracts with greater force.

Using additional motor units in response to increased stimulation is called recruiting.

Voluntary contractions of a muscle start in the frontal motor cortex of the brain, where the

impulses travel along the corticospinal track to the muscles. These impulses of the motor cortex

are called action potentials, and each impulse is related to only one motor unit.

A muscle can be represented as n motor units that are controlled by n nerve axons that origi-

nate from the central nervous system, each with its own neural excitation function u(t), which

generates a muscular activation a(t). The muscle fibers of each motor unit i together generate

a force FMi , which always add up with the forces of other motor units to produce the force of

the muscle FM [70].

2.1.1.4 The muscle-tendon unit

Muscles and tendons work together to create a functional unit of force generation and trans-

mission, that structure is called the muscle-tendon unit. Hill [10] demonstrated that tendons

represent a spring-like elastic component located in series, a series element (SE), with a contrac-

tile element (CE) representing the contractile proteins of myofibrils, actin, and myosin, whereas

the epimysium, perimysium, endomysium, and sarcolemma are represented by a second elastic

component in parallel, a parallel element (PE), to the CE. An example of the muscle-tendon

unit can be seen in the Figure 2.4.

2.1.1.5 Muscle contraction

The mechanism that allows muscles to generate movement is muscle contraction. The contrac-

tion of a complete muscle is the sum of singular contractions that occur within each of the

sarcomeres. It is controlled by the central nervous system, where nerve impulses are generated

which travel through motor neurons to the sensory somatic branch in the muscle. The place

where the termination of a motor neuron and the muscle fiber are connected is called the neu-

romuscular junction. Each motor neuron innervates a set of muscle fibers where each impulse

stimulates the flow of calcium to the sarcomeres, causing the filaments to slide. Sarcomeres

have protein-based structures, thin filaments with high tensile strength (actin), coarse filaments

(myosin), elastic filaments (tiltin), and inelastic filaments (nebulin). The actin and myosin are

stacked on top of each other alternately, forming cross-bridges to produce force.
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Figure 2.4: The muscle-tendon unit consists of a CE in parallel with an elastic component,
PE, and in series with another elastic component, SE. [67].

The theory of sliding filaments and cross-bridge [71, 72], describes the process of muscle contrac-

tion. During muscle contraction, the length of the actin and myosin filaments remains constant

and they slide on each other to increase their overlap, generating a shortening in the muscle, as

can be seen in Figure 2.5. The force of contraction is generated by the myosin heads, or cross

bridges, in the region where actin and myosin overlap. The cross bridges rotate in an arc around

their position on the myosin filaments. This movement of the crossed bridges in contact with

the filaments of actin causes the sliding of these towards the center of the sarcomere. Muscle

fiber contracts when the sarcomeres are shortened simultaneously.

Figure 2.5: Example of muscle contraction. [66].

The contraction of the muscles can be classified according to the change in length of the muscle

fibers or the level of force produced. In isotonic contraction, the length of the muscle changes
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and a force is generated; the muscle either contracts or expands, depending on whether the

force produced is sufficient to withstand an external load. In isometric contraction, the muscle

remains unchanged while producing force, such as, for example, when holding an object without

movement. Although no movement is generated in this type of contraction, energy is used and

is almost always dissipated as heat.

The amount a muscle fiber can shorten is proportional to its length [66, 73–75]. A fiber can

shorten roughly 50 to 60% of its length [73, 76], although there is some evidence that fibers

exhibit varied shortening capabilities [75]. An individual whole muscle is composed mostly of

fibers of similar lengths [75]. However there is a wide variation in fiber lengths found in the

human body, ranging from a few centimeters to approximately half a meter [77, 78].

2.2 Biomechanics

Biomechanics is the science that examines the forces acting on and within a biological structure,

and the effects produced by those forces. External forces acting on a system are quantified

using sophisticated measuring devices. Internal forces, which are generated by muscle activity,

by external forces, or both, are evaluated using measurement devices implanted in areas of

interest, or with estimates of a mathematical model. Possible results of internal or external

forces are:

• Movements of segments of interest.

• Deformation of biological material.

• Biological changes in the tissues on which they act.

For this reason, biomechanics studies or quantifies the following:

• Movements of different body segments, and factors that influence movement, body align-

ment, weight distribution, among others.

• Deformation of biological structures, and the factors that influence their deformation.

• The biological effects of forces acting locally on living tissue; effects such as growth and

development, or overload and injury.

In the present work, we will focus on quantifying and simulating the behavior of skeletal muscles.

For this, it is necessary to mention the different models with which the generation of force in

the muscle is calculated.
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2.2.1 Phenomenological models and biophysical models

Based on the modeling and muscle simulations approach, most models can be grouped into two

categories: phenomenological models, and biophysical models [34, 79]. Phenomenological mod-

els use mathematical representations to describe the mechanical properties of skeletal muscles,

based on experimental measurements of them. One of the most used phenomenological models

is the Hill muscle model [10].

In contrast, biophysical models seek to predict the response of muscles to a given stimulus,

considering the underlying physiology of skeletal muscles. An example of a biophysical model

is Huxley’s muscle contraction theory, which considers the function and interaction of muscle

fibers to generate movement. These models focus on simulating the internal arrangement of

muscle fibers, allowing visualization of the breeding patterns within the volume of a muscle, as

well as a more detailed analysis of the distribution and size of the fibers within the muscles [80].

This knowledge would be essential for physiotherapists, surgeons and orthopedists, especially

for rehabilitation programs for patients with neuromuscular problems.

2.2.2 Spring-shock absorber-based muscle actuators

One way to model the forces generated by muscles is to use linear actuators whose direction

is determined by a line segment connecting two members at the points of origin and insertion.

Alexander [81] refers to muscles as springs in various situations, particularly when the length

of the tendon is relatively long compared to the muscle.

In computer graphics, the force lines are modeled as spring-damper systems. These systems have

already been used to simulate animals, such as fish [82], and snakes [83]. However, modeling

muscles and tendons requires a model that has parameters similar to the characteristics of such

structures. This model would allow the use of empirical measures to parameterize and capture

different characteristics of any muscle in the body. In addition, it would allow the generation a

large number of movements without having to adjust the different parameters. One such model

is the three-element model of Hill [10].

2.2.3 The three-element model of Hill

Hill’s three-element model, or Hill’s model of muscles, is a phenomenological model, based on a

series of controlled experiments on frog muscles, which models the force-length and force-velocity

dependencies observed in an activated muscle. Even though it is one of the main models used,

which is able to estimate qualitative patterns of muscular activation, as well as the mechanical

properties of the muscle, it does not capture all the characteristics of the muscles. The model has
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three main components: a SE representing the tendon, a PE representing the connective tissues,

and a CE representing the contractile proteins [67]. The Figure 2.6 shows the three-element

model of Hill.

Figure 2.6: The Hill model describes the strength of a muscle as the sum of three elements,
the CE, the SE, and the PE. B is the viscosity of the muscle. a(t) is the activation signal.

Adapted from [68].

2.2.3.1 Element in series

The SE groups several of the effects of various biological materials on the muscle. This element

mainly represents the elastic effects of the tendon, and the elasticity of the structures within the

sarcomere; the latter is usually omitted since the elasticity of the tendon dominates. Another

property of the tendon that is omitted from the simulations is its viscosity. This since the

damping factor offered by the viscosity is negligible.

2.2.3.2 Parallel element

This element represents the passive elastic properties of the muscles, regardless of the active

contraction of the muscle. PE represents the passive elasticity of the connective tissues (en-

domysium, perimysium, and epimysium) of the muscles. The PE is responsible for the passive

behavior of the muscle when stretched. Due to the material properties of these tissues, tension

only occurs when the PE is actively stressed beyond its resting length.

2.2.3.3 Contractile Element

The CE is responsible for the active generation of force, which depends on the length of the

muscle lm, and the time-varying activation signal a(t), which originates from the nervous system

central and reaches the muscle motor units.

Since a neural stimulation occurs as a pulse train, the frequency determines whether a complete

activation can occur. At low frequencies, each pulse is followed by a nerve contraction. If

contractions occur at short intervals of time as the frequency increases, the contractions are
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joined in a continuous flow of force production. Usually there are several milliseconds of delay

before an initial stimulation is made and the muscle contracts.

2.2.4 Cellular model of skeletal muscles

The study of interactions between different molecular components (such as calcium, sodium,

myosin, or actin) leads to the generation of mathematical models that are typically described by

Ordinary Differential Equations (ODEs). At the cellular scale, these phenomenological models

have to describe the interactions of ionic concentrations at the intra- and extra-cellular levels.

The electrical potentials generated by variations in concentration levels trigger the molecular

bonds of actin and myosin and thus influence the mechanical properties and the generation of

force in the muscle [84, 85].

Hodgkin and Huxley [86] formulated a first model based on experiments with giant squid axons.

The transport of ions along cell membranes (membranes separating the interior of cells from an

outside environment) is mathematically described by a set of ODEs. The Hodgkin and Huxley

model is limited to the interactions of Sodium (Na) and potassium (K), in addition, leaks can

occur along the cell membrane.

The transmembrane potential (ie potential that occurs or occurs through a cell membrane) Vm

is found in:

CmVm = Q (2.1)

where Cm is the capacitance of the membrane, and Q is the electric charge. Assuming that the

capacitance does not change over time, you get:

Cm
dVm
dt

=
d

dt
Q = I (2.2)

Using Kirchhoff’s law, you can get:

Cm
dVm
dt

= Iext − INa − IK − Il (2.3)

Being INa, IK the ionic currents for the sodium and potassium molecules, respectively, Il the

leakage current, and Iext is the excitation current (current required for the model to start

working).
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2.2.4.1 FitzHugh/Nagumo model

FitzHugh [87] and Nagumo et al. [88] independently published a generalisation of Van der Pol’s

equation (the first model that represented the heart’s dynamics) for a relaxation oscillator to

provide a simplified unifying concept for the theoretical study of axon physiology. This model

has become known as the FitzHugh-Nagumo model of nerve membrane [89].

By considering the Hodgkin & Huxley model as one member of a large class of non-linear systems

showing excitable and oscillatory behaviour and through the application of phase space methods,

FitzHugh reduced the four state variable Hodgkin & Huxley model to a two state variable model.

This model can be taken as representative of a wide class of non-linear excitable-oscillatory

systems which show threshold and refractory properties as well as oscillations or infinite trains

of responses.

While the original two-variable model described a non-dimensional activation variable (x or u)

and a non-dimensional recovery variable (y or v), here the model is formulated in terms of the

‘real’ action potential given by the time course of the transmembrane potential V m. In so doing,

the time rate of change of the activation variable describes the total ‘ionic current’ through the

membrane with the original model parameters adjusted to give the correct dimensionality.

2.2.5 Bidomain Model

The most common approach for modeling the electrical activity of biological tissue [34, 84],

which do not describe the electrophysiology of a single cell, is to solve the bidomain model.

The bidomain model [90–92] is the most complete description of cardiac electrical activity. It de-

scribes both the intracellular and extracellular potential fields, linking them through membrane

behavior. The bidomain model, coupled with accurate models of cell membrane kinetics, is gen-

erally believed to provide a reasonable basis for numerical simulations of electrophysiology [93].

This model has also been used to simulate skeletal muscle electrophysiology [34, 84].

In general, mathematical models of biological electrophysiology consist of a system of partial

differential equations (PDEs), coupled nonlinearly to a system of ODEs modeling the membrane

dynamics.

The electrical activity of a cell is usually described by a system of ODEs of the form

du

dt
= f(u, Vm) (2.4)
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where u is a vector of dependent variables, f is a prescribed vector-valued function, Vm is

the transmembrane electrical potential, and t is time. This system of ODEs is coupled to a

differential equation used to calculate Vm.

The basic bidomain equations [94–96] are given by

χ

(
Cm

∂Vm
∂t

+ Iion

)
−∇ · (σi∇(Vm + φe)) = Isi (2.5)

∇ · ((σi + σe)∇φe + σi∇Vm) = Ise (2.6)

where σi and σe are respectively the intracellular and extracellular conductivity tensors, χ is

the surface to volume ratio of the cardiac cells, φe is the extracellular potential, Cm is the

membrane capacitance per unit area, Vm is an electrical potential, Iion is the ionic current, Isi is

the external stimulus applied to the intracellular space, and Ise is the external stimulus applies

to the extracellular space. The ionic current Iion is calculated using an electrophysiological

cell model. There are a large number of cell models that give rise to systems of equations

such as Equation 2.4; refer to [89] for a comprehensive collection of cell models for cardiac

electrophysiology.

2.2.5.1 Monodomain Model

Since the bidomain model consists of a complex PDE system, that involves computational

expensive numerical solution, it is common to assume that the intra and extracellular domains

have equal anisotropy ratios to obtain a simplified model called the monodomain model [94, 97].

Following this assumption, the monodomain model can be obtained by a reduction from the

bidomain model and is entirely written in terms of the transmembrane potential, defined as the

difference between the intra and extracellular potentials.

The monodomain model is given by

χ

(
Cm

∂Vm
∂t

+ Iion

)
= ∇ · (σ∇Vm) (2.7)

where σ is a conductivity tensor given by

σ = σi(σi + σe)
−1σe (2.8)
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This simplification is motivated by the reduced computational effort required to solve the single

PDE of the monodomain model compared with the two coupled PDEs of the bidomain model.

However, this gain may be at the cost of reduced accuracy (especially close to the propagating

wavefront where Vm is most likely to be non-constant), hence it is important to verify the

accuracy of monodomain simulations compared with the equivalent bidomain simulation [98].

2.3 Deformable objects simulations

Since Terzopoulos’ pioneering work on simulating deformable objects in the context of computer

graphics [99], many deformable models have been proposed. These approaches focus on an ac-

curate material representation, on stability aspects of the dynamic simulation and on versatility

in terms of advanced object characteristics that can be handled, e. g. plastic deformation or

fracturing.

This inherently interdisciplinary field combines newtonian dynamics, continuum mechanics,

numerical computation, differential geometry, vector calculus, approximation theory and Com-

puter Graphics (to name a few) into a vast and powerful toolkit, which is being further explored

and extended. The field is in constant flux and, thus, active and fruitful, with many visually

stunning achievements to account for.

In this section, some of the main techniques and tools that have been used to visualize, simulate,

and animate deformable objects will be mentioned (for detailed summaries please refer to [100,

101]. These techniques can be applied to represent muscle geometry, to encourage muscle

contraction, and to deform the shape of tissues when they interact with other elements of a

scene.

2.3.1 Finite Difference Method (FDM)

A method that approximates solutions to PDEs that are used to simulate solids is the FDM [102].

A FDM proceeds by replacing the derivatives in the differential equations with finite difference

approximations. This gives a large but finite algebraic system of equations to be solved in place

of the differential equation.

The principle of the FDM is close to the numerical schemes used to solve differential equations.

It consists in approximating the differential operator by replacing the derivatives in the equation

using differential quotients. The domain is partitioned in space and in time and approximations

of the solution are computed at the space or time points. The error between the numerical

solution and the exact solution is determined by the error that is commited by going from a

differential operator to a difference operator. This error is called the discretization error or
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truncation error. The term truncation error reflects the fact that a finite part of a Taylor series

is used in the approximation.

For the sake of simplicity, the one-dimensional case only will be considered. The main concept

behind any finite difference scheme is related to the definition of the derivative of a smooth

function u at a point x ∈ R:

u′(x) = lim
h→0

u(x+ h)− u(x)

h
(2.9)

and to the fact that when h tends to 0 (without vanishing), the quotient on the right-hand side

provides a “good” approximation of the derivative. In other words, h should be sufficiently small

to get a good approximation. It remains to indicate what exactly is a good approximation, in

what sense. Actually, the approximation is good when the error commited in this approximation

(i.e. when replacing the derivative by the differential quotient) tends towards zero when h tends

to zero.

The FDM is well suited for problems with simple geometry, and was widely used before the

invention of a more efficient, robust method: the Finite Element Method (FEM).

2.3.2 Finite Element Method

One of the most important advances in the field of numerical methods was the development of

the FEM. In the FEM, a continuum with a complicated shape is divided into finite elements

(ie 3D hexes, or tetrahedrons in 3D, quadrilaterals or triangles in 2D). The individual elements

are connected together by a topological map called a mesh. The FEM is a robust and thor-

oughly developed method, and hence it is widely used in engineering fields due to its versatility

for complex geometry and flexibility for many types of linear and non-linear problems. Most

practical engineering problems related to solids and structures are currently solved using well

developed FEM packages that are commercially available.

The displacements and positions of an element are approximated from discrete values using

interpolation functions:

Φ(x) ≈
∑
i

hi(x)Φi (2.10)

Where hi is the interpolation function for the x element and Φi is a scalar weight associated with

hi. There are many options for element type and interpolation functions. The choice depends on

the geometry of the objects, the desired precision, and the computing power available. Larger

order interpolation functions, and more complex elements require more processing time for each
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element, but can generate more accurate approximations [31]. Given a dynamic problem to

be solved, the equilibrium equations are derived in terms of quantities of interest (ie, stress or

stress) and are expressed as PDE. These PDEs are subsequently approximated by the FEM

model. The result are algebraic equations representing linear or non-linear systems. While

small linear systems can be solved with simple methods (eg, Gaussian elimination), large or

non-linear systems require iterative methods (eg, Newton’s method) [103].

There are many algorithms for the implementation of the FEM, but they all contain the basic

steps: Preparation of input, the formation of global matrices of stiffness and forces, and the

solution of the system of equations. The overall computational complexity of the method, as

obtained by Farmaga et al. [104], is O(NW 2), where N is the number of nodes, and W is the

stiffness matrix bandwidth.

However, the FEM shares some limitations of numerical methods that rely on meshes or elements

that are connected together in a predefined manner [38]:

1. High cost in creating a FEM mesh: The creation of a mesh for a problem domain is

a prerequisite in using any FEM code and package. Usually the analyst has to spend most

of the time in such a mesh creation, and it becomes the major component of the cost of a

computer aided design (CAD) project. Since operator costs now outweigh the cost of CPU

time of the computer, it is desirable that the meshing process can be fully performed by the

computer without human intervention. This is not always possible without compromising

the quality of the mesh for the FEM analysis, especially for problems of complex three-

dimensional domains.

2. Difficulty in adaptive analysis: One of the current new demands on FEM analysis

is to ensure the accuracy of the solution. To achieve this purpose, a so-called adaptive

analysis must be performed. In an adaptive analysis using FEM, re-meshing (re-zoning)

is required to ensure proper connectivity. For this re-meshing purpose, complex, robust

and adaptive mesh generation processors have to be developed. These processors are

limited to two-dimensional problems. Technical difficulties have precluded the automatic

creation of hexahedron meshes for arbitrary three-dimensional domains. In addition, for

three-dimensional problems, the computational cost of re-meshing at each step is very

expensive, even if an adaptive scheme were available. Moreover, an adaptive analysis

requires “mappings” of field variables between meshes in successive stages of the analysis.

This mapping process can often lead to additional computation as well as a degradation

of accuracy in the solution.

3. Limitation in the analyses of some problems: Under large deformations, consider-

able loss in accuracy in FEM results can arise from the element distortions: it is difficult

to simulate crack growth with arbitrary and complex paths which do not coincide with
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the original element interfaces; it is very difficult to simulate the breakage of material with

large number of fragments; the FEM is based on continuum mechanics, in which the ele-

ments cannot be broken; an element must either stay as a whole, or disappear completely.

This usually leads to a misrepresentation of the breakage path.

The root of these problems is the use of elements or mesh in the formulation stage. The idea

of getting rid of the elements and meshes in the process of numerical treatments has naturally

evolved, and the concepts of meshfree or meshless methods have been shaped up.

2.4 Meshfree methods

A Meshfree method is a numerical method used to approximate the solution to differential

equations without the use of a predefined mesh for the domain discretization [38]. Meshfree

methods use a set of nodes scattered within the problem domain as well as sets of nodes scattered

on the boundaries of the domain to represent (not discretize) the problem domain and its

boundaries. These sets of scattered nodes are called field nodes, and they do not form a mesh,

meaning it does not require any a priori information on the relationship between the nodes for

the interpolation or approximation of the unknown functions of field variables.

When compared to the FEM, there are several key differences:

1. Meshfree methods do not require a mesh. The problem domain and its boundaries are

fist modelled and represented by using a set of nodes scattered within. Since these nodes

carry the values of the field variables, they are often called field nodes. The density of the

nodes depends on the accuracy required and resources available. This allows the meshfree

formulations to be more accurate than FEM.

2. Since there is no mesh of elements in an meshfree method, the field variable (e.g., a com-

ponent of the displacement) u at any point at x within the problem domain is interpolated

using function values at field nodes within a small local support domain of the point at x,

i.e.,

u(x) =

n∑
i=1

φi(x)ui (2.11)

where n is the number of nodes that are included in the local support domain of the point

at x, ui is the nodal field variable at the ith node, and φi(x) is the shape function of the

ith node determined using these nodes.
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2.4.1 Meshless deformations based on Shape Matching

A relatively new approach for simulating deformable objects, called Shape Matching, was pre-

sented by Müller et al. [105]. The underlying model is geometrically motivated, handles point-

based objects, and does not need connectivity information. Additionally, no pre-processing is

needed, it is simple to compute, and provides unconditionally stable dynamic simulations.

The main idea of the deformable model is to replace energies by geometric constraints and forces

by distances of current positions to goal positions. These goal positions are determined via a

generalized shape matching of an undeformed rest state with the current deformed state of the

point cloud. Since points are always drawn towards well-defined locations, the overshooting

problem of explicit integration schemes is eliminated. The versatility of the approach in terms

of object representations that can be handled, the efficiency in terms of memory and computa-

tional complexity, and the unconditional stability of the dynamic simulation make the approach

particularly interesting for video games or real-time simulations.

The basic idea behind is simple: all that is needed as input is a set of particles with masses

mi and an initial configuration (i. e. the initial positions x0
i of the particles). No connectivity

information or mesh is needed. The particles are simulated as a simple particle system without

particle-particle interactions, but including response to collisions with the environment and

including external forces such as gravity. After each time step, each particle is pulled towards

its goal position gi. To compute the individual goal positions, the original configuration (or

shape) defined by the x0
i with the actual configuration defined by the actual positions of the

particles xi (see Figure 2.7) is matched.

Figure 2.7: First, the original shape x0
i is matched to the deformed shape xi. Then, the

deformed points xi are pulled towards the matched shape gi.[105].

2.4.1.1 Shape Matching Extensions

The method can be extended to simulate several additional properties. Some of them are:

• Rigid Body Dynamics The method can be used to imitate a rigid body simulator by

setting α = 1. In this case, the points are moved to the goal positions gi exactly at each

time step. These positions represent a rotated and translated version of the initial shape.
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Given an arbitrary surface mesh, only a small subset of the vertices need to be animated

as particles.

• Linear Deformations The method described so far can only simulate small deviations

from the rigid shape. To extend the range of motion, the linear transformation matrix A

is used. This matrix describes the best linear transformation of the initial shape to match

the actual shape in the least squares sense.

• Volume conservation To make sure that volume is conserved, A is divided by 3
√
det(A)

ensuring that det(A) = 1. For the standard approach, only Apq is computed. For extended

approaches, the matrix Aqq = (
∑

imiqiq
T
i )−1 is also needed.

• Quadratic Deformations Linear transformations can only represent shear and stretch.

To extend the range of motion by twist and bending modes, quadratic transformations

are used instead of linear transformations.

2.4.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) [53] is a meshfree method originally used to simulate

astrophysical phenomena. A remarkable feature of this method is that its computational struc-

ture involves a large number of common abstractions, while at the same time it is distinguished

by the fact that it is inherently linked to the physics of the simulated systems.

The movement of nodes, or particles, is based on the efficient calculation of the forces and

pressures each particle experiences every time step. Each particle has an associated spatial

distance h (the smoothing distance, or core radius) over which the forces that act upon it are

estimated by a smoothing kernel function. The capability of SPH to deal with the issues of

varying density and unbounded flows stemmed from its meshfree nature, since the central idea

of this method is to follow moving particles, free of any mesh/grid constraints.

The success of SPH is due to the relative ease with which SPH simulations have been able to

produce results for cases involving complicated nonlinear and often multi-phase phenomena.

With little modification of the basic methodology, SPH has been able to generate results in

close agreement with reference solutions/data in validation tests, without highly sophisticated

algorithms required in mesh-based schemes. Most of the aforementioned fields are deemed too

difficult (not to say impossible) for other numerical methods. For these reasons, in complex

free-surface flow modelling, SPH has challenged the dominance of volume-of-fluids (VOF), level

set (LS) or other promising approaches dedicated to these special kinds of flows.

Moreover, recent progress in the numerical features of SPH has increased its credibility and made

it increasingly attractive to mathematicians, so far exclusively concerned with more traditional,
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well-established techniques like the FEM and FVM. An important issue with these approaches,

which approximate the body by a mesh of nodes of fixed topology, is that they are not adapted

to animate substances able to undergo large inelastic deformations [106].

In many situations, SPH has recently proven to be just as efficient as FEM and FVM [45, 57, 107–

109]. However, the SPH method is inappropriate for certain applications and is known to provide

poor predictions for some phenomena, such as long-distance water wave propagation [110].

As a relatively young computational method, SPH has some disadvantages [110], including:

• Large computational time, particularly in 3-D simulations. This can be overcome by using

parallel computing, specially on the Graphics Processing Unit (GPU).

• Difficulties in prescribing wall boundary conditions, and even greater problems at open

(inflow/outflow) boundaries.

• Lack of a consistent theory in relation to the mathematical foundation of the method

(convergence, stability).

• Inaccuracy of pressure prediction, at least for the original WCSPH variant.

• Difficulties in dealing with variable space resolution for (nearly) incompressible flows.

2.4.3 SPH approximation techniques

The conventional SPH method was originally developed for hydrodynamics problems in which

the governing equations are in strong form of PDEs of field variables such as density, velocity,

energy, etc. There are basically two steps in obtaining a SPH formulation. The first step is to

represent a function and/or its derivatives in continuous form as integral representation, and

this step is usually termed as kernel approximation. In this kernel approximation step, the

approximation of a function and its derivatives are based on the evaluation of the smoothing

kernel function and its derivatives. The second step is usually referred to as particle approxima-

tion. In this step, the computational domain is first discretized by representing the domain with

a set of initial distribution of particles representing the initial settings of the problem. After

discretization, field variables on a particle are approximated by a summation of the values over

the nearest neighbor particles. For an in depth introduction to SPH refer to [53, 54, 111].

2.4.4 SPH method description

With SPH, field quantities that are only defined at discrete particle locations can be evaluated

anywhere in space. For this purpose, SPH distributes quantities in a local neighborhood of each
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particle using radial symmetrical smoothing kernels. According to SPH [112], a scalar quantity

A is interpolated at location r by a weighted sum of contributions from all particles:

AS(r) =
∑
j

mj
Aj
ρj
W (r− rj , h) (2.12)

where j iterates over all other particles, mj is the mass of particle j, rj its position, ρj the

density, and Aj the field quantity at rj . The function W (r, h) is called the smoothing kernel

with core radius h. Smoothing Kernels will be further explained in Section 2.4.4.1.

The particle mass and density appear in Eqn. 2.12 because each particle i represents a certain

volume V i = mi/ρi . While the mass mi is constant throughout the simulation, the density

ρi varies and needs to be evaluated at every time step. SPH is also be used to calculate the

density: through substitution of ρ into AS in Eqn. 2.12 we get, for the density at location r:

ρS(r) =
∑
j

mj
ρj
ρj
W (r− rj , h) =

∑
j

mjW (r− rj , h) (2.13)

With the SPH approach, derivatives only affect the smoothing kernels. The gradient of A is

simply

∇AS(r) =
∑
j

mj
Aj
ρj
∇W (r− rj , h) (2.14)

while the Laplacian of A evaluates to

∇2AS(r) =
∑
j

mj
Aj
ρj
∇2W (r− rj , h) (2.15)

2.4.4.1 Smoothing kernels

One of the central issues for the mesh-free methods is how to effectively construct a proper

shape function using only nodes scattered in an arbitrary manner without using a predefined

mesh that provides the connectivity of the nodes. For the SPH method, the smoothing kernel

is of utmost importance since it not only determines the pattern to interpolate, but also defines

the width of the influencing area of a particle. To choose or construct a suitable kernel for a

given problem, the following properties [113, 114] are required:
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• The smoothing function must be normalized:∫
W (r, h)dr = 1 (2.16)

where W (r, h) is the smoothing kernel, r is the position vector, h is the smoothing length

that determines the supporting area of the smoothing kernel.

• The smoothing function should have the compact support property, which is defined by

the smoothing length h and a scale factor k that determines the spread of the specified

smoothing kernel. The compact support property can be defined as:

W (r− rj) = 0 for |r− rj | > kh

W (r− rj) ≥ 0 for |r− rj | ≤ kh
(2.17)

• The kernel function should tend to the Dirac delta function as the smoothing length tends

to zero:

lim
h→0

W (r, h) = δ(r) (2.18)

• The function should be even (symmetric):

W (r, h) = W (−r, h) (2.19)

The use of different kernels is the SPH analogue of the use of different difference schemes in

FDM [53]. The advantage of SPH is that the kernel can be calculated in a subroutine, or a table,

and a code can be changed from one kernel to another. Typical kernels are the B-splines [115]

and the Wendland [116, 117] kernels.

The kernels based on B-spline functions have some advantages: they have compact support;

the second derivatives are continuous, and the dominant error term in the integral interpolant

is O(h2). The compact support means that interactions are exactly zero for r > 2h; the

continuity of the second derivative means that the kernel is not sensitive to disorder and the

errors in approximating the integral interpolants by summation interpolants are small provided

the particle disorder is not too large. The cubic spline kernel is defined as:

W (r, h) =
σ

hv


1− 3

2q
2 + 3

4q
3 0 ≤ q < 1

1
4(2− q)3 1 ≤ q ≤ 2

0 otherwise

(2.20)

where v is the number of dimensions, q is defined as r
h , and σ is a normalization constant with

the values 2
3 ,

10
7π ,

1
π in one, two, and three dimensions respectively.



Chapter 2. Background 30

The Wendland kernel has continuous and smooth first second derivatives, and is defined as:

W (r, h) =
αd
hd

(1− 1

2
q)4(2q + 1) 0 ≤ q ≤ 2 (2.21)

where q = r
h , d is the spatial dimension (d = 2, 3), and αd is a normalization constant (αd = 7

4π

for d = 2, and 21
16π for d = 3).

2.4.5 SPH neighbor search optimization

Since the smoothing kernels used in SPH have finite support h, a common way to reduce the

computational complexity [112] is to use a grid of cells of size h. Then potentially interacting

partners of a particle i only need to be searched in i’s own cell and all the neighboring cells. This

technique reduces the time complexity of the force computation step from O(n2) to O(nm), m

being the average number of particles per grid cell.

2.5 Parallel and concurrent programming

For several years the interest in parallel and concurrent computation has been increasing. With

the paradigm shift of CPU manufacturers to only increase the clock speed to add multiple

processing cores to their chips (multi-core processors), and with the introduction of the use

of programmable video cards (Graphical Processing Units, GPUs), application and systems

developers have been forced to adapt the [118] application development paradigms in order to

take full advantage of the resources at their disposal.

2.5.1 Concurrence and parallelism

At its simplest level, when talking about concurrency, it refers to two or more activities that

are happening at the same time. Concurrence can be found as a natural part of life: you can

walk on a street and perform actions with your hands, for example. Concurrence in systems

development refers to a system performing different activities at the same time, rather than

sequentially (one after another); a concurrent system can be said to be parallel if more than

one task is physically active, ie with more than one [119] processor.

This is not a new concept: multitasking operating systems allow a computer to run multiple

applications at the same time by scheduling task execution; as the task changes are so fast, it

can not be said at what point one task was suspended and the processor changed to another.

For several years now, computers with multi-core processors are becoming the standard. Unlike
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Figure 2.8: Parallel execution on a dual core CPU against scheduling tasks on a single core
CPU. [119].

single-core processors, on a computer with a multi-core processor each task can be run at its

own core. This has the name of hardware concurrency [119]. In the Figure 2.8 you can see an

idealized scenario of a computer with two tasks, and how tasks are divided into a single core

and a multicore processor.

Each core has a certain number of execution threads. A thread can be viewed as a process that

runs independently of others, and executes a different sequence of instructions. Considering this,

there are two approaches to using concurrency in an application: concurrency with multiple

processes, and concurrency with multiple threads [119].

• Concurrence with multiple processes: This approach seeks to divide the tasks into

several execution threads that are processed at the same time. An example would be to

run a word processor and an Internet browser at the same time.

• Concurrence with multiple threads: This approach seeks to execute multiple threads

for a single process, and to divide the instructions of that process into the different threads.

All threads share the same memory space, and many of the data can be accessed directly

from all threads. An example would be to divide the calculation of an IP approximation

into several threads of execution.

Having defined what the concurrence is, you can glimpse the main objectives of parallel and

concurrent computing: improve the processing times of software applications, and make a sep-

aration of tasks in applications[119].

• Improve processing times: Multiprocessor systems have been around for decades (on

supercomputers, mainframes, and servers). However, with the current prevalence of multi-

core processors in personal computers, the computing power of newer systems is perceived

by running many tasks in parallel. To improve processing times, developers have several
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ways to take advantage of the different cores and threads available: either by separating a

process into several parts, and running them in parallel, or by using the threads to solve

bigger problems; for example, instead of processing one file at a time, multiple files can

be processed in each thread. This is known as data parallelism.

• Separation of tasks: This refers to the separation of code that does a certain task in

different threads of execution. It can be seen mainly when separating different function-

alities of a system, although these are executed at the same time. For example, you can

see the separation of tasks in a video game. One thread takes care of the graphics engine,

another run the sounds, and another of the processing of actions within the game. This

is known as task parallelism.

2.5.2 Compute using GPUs

Until a few years ago, computers contained only one processor designed to perform general tasks.

Since the last decade, it has been given importance to the use of other elements of processing,

being the most prevalent the GPU. These were originally designed to perform specialized tasks

of computer graphics in parallel. However, GPUs have become more powerful and widespread,

allowing for general-purpose parallel computing to be realized, resulting in considerable im-

provements in performance and energy efficiency [120]. This concept is also known as GPGPU,

General Purpose Graphical Processing Unit.

Compute using GPU looks to use both GPUs and CPUs of a computer to improve the per-

formance of different applications by using data parallelism. Unlike multi-core CPUs, GPUs

can count thousands of processing cores, and each core can run hundreds of threads of execu-

tion. Despite this difference, the GPUs are not intended to replace the CPU; each has certain

advantages for certain types of programs. The CPU is good for processing intensive control

tasks, while the GPU is good for intensive data parallelization tasks, where many calculations

with parallel data are required. Therefore, to obtain optimum performance when running an

application, you have to use both CPU and GPU, leaving the sequential code to the CPU and

the code parallel to the GPU, allowing the characteristics of both to complement each other

(see Figure 2.9). To support the overall execution of the CPU and GPU, NVIDIA designed a

programming model called CUDA [120].

2.5.2.1 CUDA

CUDA, which stands for Compute Unified Device Architecture, is a general-purpose parallel

computing platform and programming model that leverages the parallel compute engine in

NVIDIA GPUs to solve many complex computational problems in a more efficient way. Using
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Figure 2.9: Running different parts of a code in parallel on a GPU, and in sequence on a
CPU. [120].

CUDA, a programmer may access the GPU for computation, as is usually done for the CPU.

The CUDA platform is accessible through CUDA-accelerated libraries, compiler directives, ap-

plication programming interfaces, and extensions to industry-standard programming languages,

including C, C++, Fortran, and Python [120].

CUDA provides two Application Program Interfaces (API) for handling the GPU, and the

organization of the cores and their respective threads. The driver API is a low-level API,

relatively difficult to program, but provides a lot of control over the devices used. The runtime

API is a high-level API, implemented over the API driver, which provides relatively simple

tools and directives for GPU programming. The runtime is the most used by the application

developers.

A CUDA C program consists of a mixture of two parts: host code that runs on the CPU, and

device code that runs on the GPU. The NVIDIA CUDA compiler, nvcc, separates the host

code from the device code at compile time. The host code is standard C code and compiled

with C compilers, in RAM. The device code is written using CUDA C with specific keywords

to define the parallel functions, called kernels. The device code is compiled using nvcc, using

video memory. In the bind process, CUDA runtime libraries are added to handle calls from

kernels (it does not have to do with the operating system kernel) and explicit manipulation of

the GPU. This can be seen in the Figure 2.10.

When a kernel function is launched from the host side, execution is moved to a device where a

large number of threads are generated and each thread executes the statements specified by the

kernel function. CUDA exposes a two-level thread hierarchy decomposed into blocks of threads

and grids of blocks, which can be seen in Figure 2.11.
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Figure 2.10: CUDA C code compilation. [120].

Figure 2.11: CUDA Thread hierarchy.

All threads spawned by a single kernel launch are collectively called a grid. All threads in a

grid share the same global memory space. A grid is made up of many thread blocks. A thread

block is a group of threads that can cooperate with each other using block-local synchronization

and block-local shared memory. CUDA employs a Single Instruction Multiple Thread (SIMT)

architecture to manage and execute threads in groups of 32 called warps. All threads in a warp

execute the same instruction at the same time. These characteristics make it possible to process

a problem with a GPU by dividing it into blocks and threads, as well as by using the different

memory models to improve performance. Refer to [120–122] for additional details on CUDA

and its programming model.



Chapter 3

Simulation and control of skeletal

muscles

In this chapter the different approaches and techniques that have been used to tackle the prob-

lem of simulation and control of the muscles of the human body are discussed. Based on its

fundamental methodology, the different approaches were classified into the following categories:

muscle deformation, control and simulation, and fiber-based simulation. Additionally, a review

of the work that has been done with the bidomain model, was presented. Finally, the use of

the SPH method for the simulation of biological tissue was reviewed. Here, works that model

solids, biological tissue, or electromagnetic problems using the SPH method, were considered.

Special attention was given to simulations that use GPGPU for computing.

3.1 Muscle deformation

The muscles provide the physiological functions that generate the movement of the body and

give it shape, making them a key component in the animation and modeling of human figures.

A realistic deformation of the muscles was necessary to have high quality animated humanoid

characters. There were many works that develop mathematical, physical, and computational

models for the simulation of muscles (from a muscle to complete bodies) with the purpose of

increasing their realism and accuracy in a wide range of applications: video games and movies,

virtual and augmented reality, telepresence, medicine, biomechanics, among others.

Depending on different performance and visualization requirements, each of the works takes a

different approach with respect to the modeling of their simulations. For example, visual realism

was desirable in film productions, or video games, so there was a greater focus on graphing and

35
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visualizing the muscles; while anatomical or biomechanical accuracy was preferable in medical

applications, so focusing on its proper functioning was the priority.

Despite the amount of work, the complexity of the human body and its muscles, make its

modeling a challenge. In this part of this chapter, emphasis was placed on different works

that have attacked the problem of muscle deformation with different approaches: geometric

approaches, physics-based approaches, and data-based approaches.

3.1.1 Geometric approaches

Geometric approaches were used in the first simulations performed because they were practical

and efficient. Most of the work done focused on modeling the effects of muscle contraction

animation, such as bulging or swelling, which can be fundamental factors for skin deformation,

or for facial animations. These were successful in modeling simple muscles (for example, spindle

muscles) but there may not be a direct extension to the complex muscles [123, 124]. In addition,

as the deformation of the muscles was determined by the arrangement of the bones, these

techniques had problems achieving a high level of realism from physiological or biomechanical

perspectives. Because of this, in order to better manage these problems, the muscles were

constructed in several layers, or physical approaches had to be applied.

Chadwick et al. [125] used Free Form Deformations (FFD)s to represent muscle deformation.

An articulated skeleton transformed a lattice of FFDs, which in turn represented the change of

shape of a muscle. Although FFDs provided a simple form of control, they did not allow direct

manipulation, and they did not allow producing more complex forms. Moccozet et al. [126] ad-

dressed this limitation by introducing Dirichlet Free Form Deformations (DFFDs), which were

based on a dispersed data interpolation technique. They removed the requirement of regularly

spaced control points by replacing local rectangular coordinates with natural neighboring coor-

dinates (ie, Sibson coordinates). Given a point, its natural neighbors were collected based on

Delaunay and Dirichlet / Voronoi diagrams, and its displacement was calculated using inter-

polation. Authors used a multi-layered deformation model to generate hand animations where

the muscle layer was modeled by a set of DFFD control points that corresponds to a simplified

topography of a hand.

Komatsu [127] used Bezier surfaces to model the deformation of the body. The surfaces were

patched cylindrically around a skeleton, and were controlled together to transform the body.

Wilhelms [128] and Scheepers et al. [123] used parametric ellipsoids as the basic primitive

to model the muscular bellies of the skeletal muscles of the human body. They adjusted three

main axes to represent the bulge of the muscles, while the volume was preserved using predefined

relationships between those axes. Although an ellipsoid was sufficient to model simple shapes,

such as a fusiform muscle, it could not be easily adapted to model more complex shapes. The
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Figure 3.1: The shape of the muscle was defined by the control of the cross sections of the
cylinder. The upper part shows the muscle with a skin, while the lower part shows the deformed

cylinder. [124].

work of Scheepers et al. was distinguished since it extended the basic model of ellipsoids to

represent muscles with multiple bellies (for example, the pectoralis) where n pairs of points

of origin and insertion were specified, and n ellipsoids were laterally aligned along each pair.

That model was used to represent more complex muscles that were bent or wrapped around

a structure (for example, brachioradialis in the forearm). The direct path between the points

of origin and insertion was replaced by a Bezier curve that represents the direction of muscle

strength, and by ellipses of varying sizes along that curve to define the volume and shape of

the muscle. Wilhelms and Gelder [124] presented a work where cylinders with transversal cuts

were used to represent the muscles. Each cross section was modeled using B-Spline curves and

its radius was controlled to express the volumetric changes in the muscle. Cylinders can also be

bent to model muscles that bend at the joints of the body. In addition, the length, width, and

thickness of the muscle were scaled to maintain a constant volume. This form of modeling can

be seen in Figure 3.1.

Ramos and Larboulette [129] presented a method to deform the skin of characters using the

underlying muscles. To simulate the muscles, authors used parametric curves to generate the

different forms of the muscles. The general shape of your muscle model was a generalized

cylinder defined by the sweep of a thickness curve CT (t) along a sweeping curve CS(t). CS(t)

was a three-dimensional Bezier curve that represented the profile of the muscle. That curve was

defined by two points: the origin O and the insertion I of the muscle. CS(t) was a function

that represents the thickness of the muscle as a function of t. In this way, each muscle section

in t was defined by an ellipse that was along CS(t) whose thickness was given by CT (t). Each

of Bezier’s curves CS(t) and CT (t) were composed of two Bezier curves called Origin segment

and Insertion segment. Each of these curves had four control points pj , j ∈ [0, 3].

An important part of this muscle model was that it considered the tension generated by isometric

and isotonic contractions. In the case of isometric contractions, the bones did not move and the
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muscle length does not change. However, its form did change. When the tension increased, the

muscle bulged in one direction while tapering perpendicularly. In an isotonic contraction, the

bones moved but the tension in the muscle remained constant. The change in shape occured

only by shortening or elongation of the muscle. If it shortens, the muscular belly bulged; it

decreased in the opposite case. Disadvantages of this model were that it was not considered

an interaction between muscles or between muscles and bones, and only the most superficial

muscles were modeled.

Bloomenthal et al. [130] used convolution surfaces to model a human hand and arm, by bringing

bones, muscles, tendons, and veins closer to the underlying skeleton. Thalmann et al. [131]

presented a model of a human based on multiple layers, where the primitives of the body (ie,

muscles, extremities, tissues, etc.) were constructed from a skeleton of lines that was covered

with ellipsoidal surfaces of metaballs. Although the implied surfaces were soft and continuous

when modeling objects, undesirable mixing effects could occur when modeling deformations in

body joints.

3.1.2 Approaches based on physics

Although geometric models had proven to be sufficient for some graphic applications that de-

mand acceptable visual quality, their simplicity and the need for human intervention to con-

figure models, made it difficult to extend them to represent complex scenes involving dynamic

behaviour. Additionally, they did not have the physical or mechanical precision that was re-

quired to generate more realistic models, animations, and simulations. For these reasons, many

researchers have worked on models where complicated problems such as the dynamics of muscle

and tissue properties were solved with physics. To model physics-based muscles, the following

problems have to be considered: 1) determining the contractile forces of the muscles, and 2)

representing the changing geometry of the muscles during a contraction. To solve these prob-

lems, several muscle models have been generated based on a variety of computational methods,

such as mass-spring systems, FEM, and FVM.

3.1.2.1 Mass-spring systems

In the case of mass-spring systems, an object was modeled as a collection of mass points linked

together by massless springs. Chadwick et al. [125], linked FFD control points to mass points in

a mass-spring system, allowing the dynamic system to influence deformations based on geometry.

By increasing the muscle model based on FFD with the mass-spring system, authors were able

to represent visco-elastic properties that simulations based on articulated skeletons did not

normally have. Lee et al. [6] and Albrecht et al. [2] inserted a muscular layer based on a mass-

spring system between the surface of the skin and the skeletal structure to be able to model facial
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Figure 3.2: Use of mass-spring system for muscle simulation. The behavior of the lines of
action on the related surfaces of a pectoral muscle was simulated.[133].

expressions and hands, respectively. The spring forces generated by the movement of skeletal

bones caused the attached skin surface to deform more realistically. Nedel and Thalmann [132],

similarly to Aubel and Thalman [133], proposed a muscle model consisting of a line of action

and the muscular surface. The action line was modeled using either a straight line [132] or a

one-dimensional mass-spring [133] to define the profile of a muscle (that is, its orientation and

the points of attachment to the bone). The skeleton kinematically controls the lines of action

to deform the adjacent muscular surfaces, which in turn were based on mass-spring systems.

In Figure 3.2 an example of this behavior can be seen.

In addition to linear springs that represent a surface, angular springs have been incorporated

to control the volume of the muscles [132]. Ng-Thow-Hing [134] proposed a more sophisticated

model that was based on anatomical and biomechanical considerations. Their solid muscles were

extracted from medical imaging data or sectional images, and were modeled using volumetric

B-Splines. For the interior of the muscles, a muscle fiber architecture was built, which was

based on data from digitally scanned fibers; in this case, a system based on the Hill model

[10] to express the dynamics of the muscle fibers, and a mass-spring system to represent the

viscoelastic deformations of the muscle. Zordan et al. [9] developed a human torso that was

capable of animating breathing movements, such as inhaling and exhaling. The interaction

between the muscles of the thoracic cage, the diaphragm, and those of the abdomen at the

time of breathing, was developed based on the mechanics of breathing and simulated using a

mass-spring system; this can be seen in the Figure 3.3. In order to preserve the volume of the

human body in the simulation, pressure forces were incorporated based on anticipated volume

changes.
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Figure 3.3: Use of mass-spring system for breathing simulation. The lines of action and the
surfaces related to a torso that simulates breathing are shown. [9].

3.1.2.2 Simulations with the FEM

Chen and Zeltzer [135] proposed a biomechanical approach by integrating Hill’s muscle model

with a solid elastic model. The active forces of the muscles were approximated as parametric

functions and inserted at specific edges between the vertices of a solid based on FEM. While

muscle flexion was encouraged, the biomechanical validity of the model was emphasized when

compared to experimental measurements, such as strength length, and rapid release properties.

Zhu et al. [136] used the Stern muscle model [137] where simplified bone-union-muscle behaviors

were described. Both works were computationally efficient, but they were only valid for infinites-

imal deformations. Conversely, Hirota et al. [138] and Lemos et al. [139] adopted models of

nonlinear materials that allowed them to simulate a robust deformation of large deformations,

and they express the passive response of the tissues during a contact.

In biomechanics, FEM has been also been used for the study of skeletal muscles. Several muscle

models have been proposed to analyze and predict the distribution of muscle tension during

contraction. Yucesoy et al. [140] modeled the mechanical behavior of the skeletal muscles as an

interaction between an intracellular domain (ie, muscle fibers) and an extracellular matrix (ie,

connective tissue). In that way, the geometry of the muscles was represented as two separate

meshes that were elastically linked to take into account the force transmissions between those

two domains. Because most models of skeletal muscles represented the geometry of muscles using

line segments, Blemker and Delp [141] developed models of the muscles and their underlying

bones (see Figure 3.4, using FEMs of three dimensions, from magnetic resonance imaging (MRI)

of a living subject.

Courtecuisse et al. [32] presented several contributions to the field of real-time simulations of

soft tissue biomechanics using the FEM. Specifically, soft tissue deformation, contact modelling,

simulation of cutting, and haptic rendering, which were all relevant to a variety of medical

interventions. All these contributions relied on a co-rotational implicit FEM formulation and
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Figure 3.4: Simulation based on FEM of the gluteus maximus and gluteus medius during
flexion.[141].

efficient GPU parallelizations. The simulations, demonstrated on a patient-specific laparoscopic

hepatectomy training system, ran consistently below 35 msec.

The work of Spyrou and Aravas [33] described a constitutive model to generate muscles and

tendons. Author’s model considered the dependence of the length of the muscle fibers, the levels

of activation, and the speed of deformation, on the tension of the muscle fibers. The model was

applied to a mesh of FEM muscles, whose geometry was obtained by MRI.

Röhrle et al. [34] presented a biophysically based model, which included several structural and

functional characteristics of skeletal muscle. The result was a physiologically based, multi-

scale skeletal muscle FEM that was capable of representing detailed, geometrical descriptions of

skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit

recruitment, the electro-physiological behavior of single muscle fibers within motor units was

computed and linked to a continuum-mechanical constitutive law.

In [35], Spyrou and Aravas described a FEM scheme to simulate the movement of human feet,

which was able to estimate internal stress levels, as well as changes in the shape of the tis-

sues during movement. They develop a three-dimensional FEM of a foot and a leg, and foot

movement was generated based only on the contraction of the plantar flexor muscle. Although

the scheme was able to more realistically represent the movement of the foot during a flexion,

it had an important limitation: the models of the feet and the leg were based on computed

tomography images, which limited the segmentation of soft tissues and prevented the interac-

tions between them from being simulated correctly. In addition, it was not possible to simulate

the deformation that those tissues generated. Therefore, the use of MRI was preferred for the

development of three-dimensional methods.
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Figure 3.5: Simulation based on FVM of the muscular deformation, where around 30 muscles
were shown [143].

3.1.2.3 Simulations with the FVM

Teran et al. [142, 143] proposed a FVM-based approach to simulate the deformation of muscles,

as can be seen in Figure 3.5. It was argued that using FVM required less computational

resources for processing, as well as less memory. To represent a non-linear response of the

muscles, authors used a model similar to that of Hirota [138]. In addition, they incorporated

anisotropic properties based on a fiber architecture, which were modeled using the B-spline

solids technique [134].

3.1.3 Data-based approaches

Instead of developing methods that focus on modeling the physical components and processes of

humans, data-based methods focus directly on the shape of the skin, deformed by the underlying

muscle of a human who makes certain movements or poses. The data was captured on the surface

using MOCAP systems or using different types of sensors and measuring devices. With these

data, several techniques were used to generate a new surface to simulate the skin, given a pose

of the skeleton. Although these approaches were relatively new, several works have shown the

advantage they provide.

Min et al. [144] presented a model based on the fact that the shape of the skin in a human

was determined by the underlying skeleton and muscles, and uses an anatomical model based

on different layers: skeleton, muscles, and skin. When the skeleton was moved, the isosurface

of the muscle was deformed, preserving its volume, which in turn deformed the skin layer. In

this work the upper body was modeled, and the resulting animation showed the bending and

stretching of an arm. Another approach to arm animation was that of Sloan et al. [145]. Here,

several example arm shapes were used, as well as an interpolation scheme based on linear and

radial functions to create a continuous range of poses.
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Figure 3.6: Simulation of humanoid bodies based on data. [148].

Ma et al. [146] took advantage of the fact that more data sources with human poses began

to exist. Using the technique of range scanning, where a person poses for a short time while

a scanner creates thousands of data points on the subject with a density of a few millimeters,

they were able to create an animation model of the human body. The resulting model allowed

the generation of animations in real-time, by manipulating the skeleton while maintaining the

level of detail of the surface of the human body. Allen et al. [147] created a high quality

model of the upper body, which was capable of generating several poses, based on a range scan.

In [148] previous work was extended to include data from the full-body full-range scan data

base, CAESAR (Civilian American and European Surface Anthropometry Resource project).

Morphing (changing one image or object to another by means of gradual steps) by interpolation

between two scans, or adjusting a model to scant MOCAP marker data, were two important

results of this technique. The transfer of textures, surface data, or animations between two

models was also allowed, in order to correct scanning problems, alter the appearance, or to

animate a wide range of characters. In the same way, several extra parameters of a person

could be defined, such as their height, or their weight, in order to be considered when modifying

a part of a character. An example of the characters that can be created can be seen in Figure 3.6.

Seo and Thalmann [149] presented a similar system based on templates, with additional pa-

rameters to generate new human forms that were animatable in real-time. Sand et al. [150]

proposed an alternative technique, in which silhouettes of a video were used instead of range

scan data to generate a human form that was animatable. Anguelov et al. [151] extended that

work, by focusing on representing the muscular deformation that was generated as a result of

body movement, in order to perform an animation of the shape of people. A limitation of this

system was that the same model of muscle deformation was used for all people generated, so a

person who was more muscular may not show as much muscle deformation as he should.

Park and Hodgins [152, 153] further refined the deformation of muscles and skin based on

MOCAP data. Authors modeled static deformations as a function of skeleton pose, and dynamic
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deformations as a function of the acceleration of each part of the body. For this, movements

were captured, both slow and fast, of an actor using 350 markers on his body. The two types

of deformation were modeled and new animations could be generated from between 40 and 50

markers, in subsequent sessions of MOCAP. Although this approach has the limitations that

it was based on the fact that a skeleton generates movement, and that it does not express a

movement of the muscles without there being changes in the angles of the joints of the body,

high quality animations were produced.

3.2 Control and simulation

While the previous section focused on examining several works related to the deformation of

skeletal muscles, this section will review the works that focus on the control of muscles, in order

to generate more realistic human movements.

In general, the musculo-skeletal system was modeled as a combination of three models: activa-

tion dynamics, contraction dynamics, and skeletal dynamics. Activation dynamics describe the

dynamic relationships between neural excitation and activation of muscles.

The dynamics of contraction relate the activation to the resulting muscular forces, taking into

consideration the physical characteristics of the muscles, such as the arrangement of the muscle

fibers and the passive properties of the tissues. Hill’s model was commonly used to model

contraction dynamics.

In biomechanics, the computation of muscle functions has been studied through several ex-

periments, and several models have been generated and validated against experimental data.

However, the determination of functions that model the behavior of muscles was a challenge due

to the large amount of redundancy of the muscular system: the number of muscles that con-

tribute to a movement was greater than the degrees of freedom related to the movement of the

skeletal muscles, so it can generate a problem of indetermination. This problem was commonly

solved by using optimization approaches, which were generally classified in static and dynamic

optimization. Usually, they were defined as finite, restricted, and non-linear optimizations, and

were commonly solved using quadratic sequential programming methods [154].

3.2.1 Static optimization

Static optimization, also known as inverse dynamics, takes non-invasive measures of body move-

ments, such as their position, speed, acceleration, and external loads, as inputs to calculate

muscle forces.
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Figure 3.7: Neuromuscular simulation of head and neck. The biomechanical system consists
of skeleton, muscles, neural control system, and a face with expressions.[3].

In static optimization, since there were no dynamic dependencies between the muscular forces

at different instants of time, an integration of time was not required, which makes the problem

computationally easier. However, it was difficult to integrate the physiology of the muscle (for

example, excitation and activation dynamics) as well as the objective of the motor task (for

example, maximum jump height). In addition, its validity was dependent on the precision of

the experimental measures of movements.

Komura et al. [155, 156] calculated the activation of the muscles based on human postures of

the lower extremities obtained using key-frames, and used an objective function that minimized

muscle strength and the amplitude of the activation. In [156] their model was extended to con-

sider physiological characteristics, such as fatigue and muscle injuries. Tsang et al. [1] presented

a muscle-tendon model of a human hand and a forearm. Using data from MOCAP or key-frame

animation, a set of optimal muscle activations was determined using static optimization, and

then used as an input to simulate a model where the hand and forearm achieve a desired pose

or movement.

Lee and Terzopoulos [3] developed a biomechanical model of the neck and head using a hier-

archical structure to generate the simulations (see Figure 3.7). The system was controlled by

two subsystems: a high level voluntary controller, and a low level reflex controller. The volun-

tary controller generates anticipated neural signals related to the desired poses, muscle tone,

and feedback based on a monitoring of the movement in progress. When the reflex controller

receives these signals, it determines how the muscles were activated, and modulates the tension

levels of the muscles in relation to their current state. An artificial neural network was used

to model the voluntary controller. It was trained off-line using precalculated signal functions

of a target pose. Finally, to model the force actuators for each muscle, the Hill muscle model

was used, defining each muscle-tendon unit as a uniaxial line segment on which the model was

applied.

The previous work was extended to simulate the upper part of the human body, by integrating

the torso, and the arms [8]. In addition to the muscle and skeletal dynamics model already

described, a physics-based system was incorporated to simulate the soft tissue of the body, in
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Figure 3.8: Thorough modeling of the relevant tissues to exert control over the body. A
skeleton that moves with modeled muscular actuators with a uniaxial line segment of Hill (left)
was presented. The generated movement deforms the soft tissue (center) and the skin (right).

[8].

order to represent realistic deformations of the flesh and skin during body movement. Their

body model was composed of 68 bones, with 147 degrees of freedom, as well as 814 muscles

(both superficial, intermediate, and deep), each modeled as a line segment with a Hill uniaxial

force actuator, and each of them exerts a force on the related bones. The complete model of

the upper body can be seen in the Figure 3.8.

Sueda et al. [157] presented a simulation of the musculo-tendinous system of a hand, where the

behavior of the muscles and tendons was directed by a dynamics of spline curves. This dynamic

was formulated by joining the muscle contraction and the restrictions of forces that were applied

to muscles and tendons.

Ruiz [158] addressed the actuation redundancy challenge of muscle-based virtual character con-

trol. Actuation redundancy results when the character has more actuators than needed to

perform a specific task; this was an important control challenge due to the fact that the charac-

ter’s motion controller must be able to select an appropriate actuation solution among numerous

possibilities to achieve a desired task. A control solution for muscle-based characters was pro-

posed consisting of identifying and adapting low-dimensional control representations according

to kinematic goals, and it was tested on overhead throwing motions. Surface EMG signal data

coupled with MOCAP data of subjects throwing a ball were used in a motion analysis stage.

Results showed that only 2 control variables were necessary to encode the important activation

trends of sets containing 6-14 muscles. These variables were used as input to control 6 muscles

and reproduce the motion of 3 Degrees of Freedom of the character’s throwing arm.

3.2.2 Dynamic optimization

Dynamic optimization, also known as direct dynamics, was usually formulated by combining

the total force generated by the muscle-tendon unit, the activation dynamics, and the skeletal
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dynamics. The excitation of the muscles, usually electromyography, was taken as input, in order

to produce a movement of the body and then determine the optimal excitation trajectory. Unlike

static optimization, which only takes into account a moment of time, dynamic optimization

considers the complete duration of the movement, requiring a time integration. Therefore,

dynamic optimization is much more computationally demanding than static. However, unlike

static optimization, physiological or time-dependent properties can be included as jumps trying

to reach the highest possible height [159], vertical jumps in three dimensions [160], or walking

[161]. In the case of Anderson and Pandy [161, 162] the minimization of metabolic energy

expenditure per unit distance during normal human walking was used.

In [162], Anderson and Pandy demonstrated that static and dynamic optimization generate vir-

tually the same results in predicting muscle forces and contraction forces during normal human

walking. They argue that similarity occurs since minimizing muscle fatigue at each instant of

time was almost the same as minimizing the metabolic energy expended per unit of distance

traveled to complete a walking cycle. In addition, they comment that certain physiological

properties, such as strength, length, and speed of the muscles, as well as activation dynamics,

have little influence on static optimization.

3.3 Fiber-based simulation

As can be seen in previous sections, the muscle models presented in the literature usually

use phenomenological models, and focus on the muscles as a whole, without paying attention

to internal structures. Normally, these represent the real anatomy of muscles with simplified

geometries in order to minimize computational costs or to apply phenomenological models to

their simulations. Simulations based on solid mechanics, such as those based on FEM or FVM,

have to use varied techniques to detect collisions, and simulate the effect of contact between

muscles. However, these techniques were computationally expensive, and do not work very well

with deformable bodies. In addition, the basic primitives of these models, such as tetrahedra

or hexahedra, were not deformed in the same way as muscle fibers. [163].

In addition, most of the papers presented use phenomenological models to simulate the forces

produced by the muscles; specifically, Hill’s muscle model was used. The muscle models based

on Hill’s work have certain limitations. One of the main ones was that the forces produced by

these models were applied along a line of action represented as a line segment in a dimension

that joins the bones of the body on which it acts. However, the three-dimensional shape of

muscles and intermuscular forces were often overlooked, or simplified. Another problem with

this type of models was the one Epstein et al found [164]. In their work they demonstrate that

models where muscle fibers, aponeurosis, and tendons were simplified tend to generate erroneous

transmission forces, and that it was necessary to consider all the relationships between muscle
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fibers, connective tissues, aponeurosis, and the tendons. In the same way, Herzog [165] found

that Hill muscle models can generate errors in force production of up to 50%, compared to

isometric human muscle reference forces, even in controlled scenarios.

The following works focus on making simulations of the muscles considering the different internal

structures, focusing mainly on muscle fibers. In addition, they use different biophysical models

to simulate the contraction of fibers and the generation of muscle strength.

Ng-Thow-Hing et al. [166] defined B-spline solids (extension of curves and B-spline surfaces to

a volume domain) to create deformable models shaped like muscles. Muscle data was used to

obtain the shape of the muscles through images of The Visible Human Project [167]. Although

these images give an indication of the muscle perimeter, they do not provide information on the

internal arrangement of the muscle fibers. To obtain the coordinates of the groups of muscle

fibers, an optical triangulation was made of images of three chambers of specimens dissected in

series from the soleus muscle of the leg. Using the fiber arrangement information, they generated

a method to fit a B-spline solid to the fibers, and thus have a fiber-based solid that approximates

the muscle. In order to deform the generated muscle, a viscoelastic network was applied to the

control points of the solid.

In [168] previous work was extended to include: collisions between muscles using a method that

finds the points closest to a solid; add mass points to the control points, to allow physical reac-

tions of the muscle, and be able to apply muscular forces to the points of mass; use Lagrangian

equations to preserve volume; and finally use the fibers as generators of force on bones and

generate movement. Figure 3.9 shows the fiber arrangement and the resulting B-spline solid.

In [80], previous work was continued by including the aponeurosis of the muscles, and a force

model for each fiber was included. The aponeurosis was modeled as an elastic leaf that restricts

the deformation of the soleus muscle along the surfaces where it was attached. Each fiber has a

Hill model that allows it to contract and generates a non-uniform distribution of the contractile

forces within the same muscle.

Blemker and Delp [141] created FEM meshes in three dimensions of the muscles shape based

on MRI, and developed a method to prescribe the geometry of the muscle fibers within the

mesh, depending on the architecture of each muscle. His method was based on cube-shaped

templates of the geometry of the muscle fibers, which were subsequently adjusted to create the

geometry of the fibers within the muscle. To achieve this, the cubic template was divided into

several sections, which were then projected to similar sections of the target mesh. The base of

each fiber geometry template was an interpolation between multiple B-spline curves, to simulate

different muscle architectures. A disadvantage of this method was that it was very impractical

to represent muscles in three dimensions, because the computational cost of simulating the final

meshes was high. This made it not feasible to integrate them with simulations that were already

expensive, such as controlling the movement dynamics of the muscles.
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Figure 3.9: On the left side, the fibers that were inside the B-spline solid were shown. In the
right part it shows how the muscles were attached to the bones and their deformation when

generating a rotation movement. [168].

Kohout et al. [169] presented a method to represent the muscles by means of realistic groups of

muscular fibers that were generated automatically in a volume defined by a mesh of a muscle.

Its implementation could decompose the volume of a muscle into muscle fibers by adjusting a

template of fibers to the volume of the muscle. However, their model had no biomechanical

considerations, and can produce unrealistic fiber paths, and that were not close to their actual

points of attachment to the bone.

Tang et al. [79] presented a model of FEM in three dimensions to simulate the mechanical

behavior of the muscles during their lengthening or shortening. The entire muscle was modeled

as a hyperelastic material with active muscle fibers. The model considered that the muscle

fibers would join two central points of hexahedrons that form the final mesh of the muscle. The

mechanical properties of muscle fibers were described based on the Hill muscle model. However,

the model was restricted to applications where the muscle was modeled as ordered hexahedra,

and could not be applied to models with more complex geometries.

Pai et al. [163] did an analysis of the deficiencies of simulations of previous muscles, and pro-

poses a muscle model based on fibers to consider biophysical properties that had not been

considered. They mention that in previous simulations, muscle mass was not considered cor-

rectly. A convenient way to consider it was to unite it with the mass of the bones and that of the

soft tissue along a segment of the body. However, when the muscle was stretched or shortened,

muscle mass also moves in the direction of stretching or contraction, and will contribute to the

inertia of the system. Another problem they encounter in the previous simulations was that

the musculoskeletal systems could not deal correctly with contact and with routing restrictions.

Finally they mention that simulations based on FEM or FVM, were not ideal for simulations

with elements together or tight, since it requires collision detection and resolution algorithms,

which were computationally expensive and do not work well with deformable objects. Because
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Figure 3.10: On the left a simulation of the shoulder is shown modeling the muscles with
strands. On the right is a simulation of the movements of a hand using strands. [163].

of these limitations, they propose a strand simulator that was capable of simulating soft, thin,

fiber-like fabrics with biophysical properties, and capable of having complex routing constraints

(such as those of tendons, muscles, and ligaments). Using Pai’s terminology [170], the term

strand was used to indicate that the fibers were not only curves in a space, but that they

have mass, elasticity, and other physical properties that influence their dynamics. In the figure

Figure 3.10 you can see two simulations resulting from the proposed simulator.

3.4 Control with the Bidomain and monodomain models

Recently the fields of computational modeling and medical image processing have advanced

significantly allowing the biomedical engineering community to focus on the development of

patient-specific models. In the context of cardiac electrophysiology, such personalized models

offer the ability to better understand the heart in pathological conditions, to develop and improve

new therapies and also to optimize complicated procedures. However, before introducing these

computer models for clinicians, efficient numerical and computational techniques for the fast

solution of the mathematical models underlying the complex phenomena of electrical activity

of the heart have to be pursued. One of the first simulations of cardiac electrophysiology was

presented by Leon and Horáček [171]. Their model of propagated excitation and recovery in

anisotropic cardiac tissue consisted of a large number of excitable elements whose interactions

were governed by the anisotropic bidomain model. The authors’ objective was to develop

a model for simulating large and complex cardiac structures with different tissue types and

anisotropic properties. This was accomplished by tesselating a tissue region into subregions

characterized by two static parameters: a cell type T and a principal fiber direction. Associated

with each T was a set of electrophysiologic properties, which allowed modeling of inhomogeneous

tissue.
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The bidomain equations are the most complete description of cardiac electrical activity. Their

numerical solution is, however, computationally demanding, especially in three dimensions,

because of the fine temporal and spatial sampling required. Vigmond et al. [172] proposed

several techniques to speed up this computation. The first one was to recast the equations into

a parabolic part and an elliptic part. The parabolic part was solved by either the FEM or the

interconnected cable model (ICCM). Since the elliptic equation was more demanding, it was

solved by FEM on a coarser grid and at a reduced frequency. The ICCM was found to be about

twice as fast as the FEM for solving the parabolic portion of the bidomain problem.

Nickerson [89] developed a computational modelling and simulation framework for cardiac elec-

tromechanics which for the first time tightly coupled cellular, tissue, and whole heart modelling

paradigms. Applications of the framework were demonstrated in simulations of the electrical

activation and mechanical contraction of cardiac myocytes, myocardial tissue, and models of

ventricular structure and function. The framework was implemented as part of the Continuum

Mechanics, Image analysis, Signal processing, and System identification (CMISS) computational

modelling environment. This allowed for a detailed specification of tissue microstructure and the

variation of cellular models and their material parameters over a geometric domain of interest.

Keener and Bogar [173] presented a numerical scheme for efficient integration of the bidomain

model. The scheme was a mixed implicit–explicit scheme with no stability time step restrictions

and requires that only linear systems of equations be solved at each time step. Authors suggested

that by numerically integrating the non-linear, time-dependent bidomain equations, using a

Crank–Nicolson step for the spatial discretization, and a multigrid inversion of the linear system

at each time step, the method was faster than a fully explicit method.

Austin et al. [174] followed the idea of using multigrid methods, and presented a more robust

method, called Black Box Multigrid, as an alternative to conventional geometric multigrid.

Additionally, the effect of discontinuities on solver performance for the elliptic and parabolic

part was investigated. Results indicated that for certain discontinuous bidomain problems, Black

Box Multigrid provides 60% faster simulations than using conventional geometric multigrid.

Since the solution of the bidomain equations was computationally expensive, due to the fine

spatial and temporal discretization needed, the size and duration of the problem which can be

modeled were limited. Vigmond et al. [175] presented a review of the methods that had been used

to solve the equations, giving particular interest to multigrid methods. Authors noted that these

methods offer the fastest solution time, as well as having only modest memory requirements.

The monodomain model of electrophysiology was often used to approximate the more accurate

bidomain model because of the huge computational requirements of the latter. It has been

claimed that there was a difference of two orders of magnitude between these models. Sundnes

et al [93] provided numerical and analytical arguments discussing this relation in the presence

of both simple and complex cell models. Authors observed that for simple cell models, the PDE
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part of the solution procedure dominates the CPU efforts, and the bidomain model requires

about six times the CPU efforts of the monodomain model. For the complex model, the ODE

part requires much more CPU efforts, and since these computations were virtually the same

for the monodomain and the bidomain model, the factor was reduced to below two. Authors

also note other reasons than CPU considerations for approximating the bidomain solutions with

solutions of monodomain-type models. The monodomain model was easier to understand from

a mathematical point of view. Also, from a viewpoint of computation and programming, a

scalar PDE was much easier to handle than a system of PDEs.

Most numerical schemes for solving the monodomain or bidomain equations use a forward ap-

proximation to some or all of the time derivatives. This approach, however, constrains the

maximum timestep that may be used by stability considerations as well as accuracy consider-

ations. Whiteley [96] proposed a semi-implicit algorithm that ensures stability. This method

uses either a semi-implicit approximation or a Crank-Nicolson approximation to update the

transmembrane and extracellular potentials, and requires only the solution of a linear system.

The author reported a substantial reduction in computation time at the cost of only a slight

reduction in accuracy. Whiteley [176] then extended the previous work to create an efficient

numerical scheme which utilized the observation that the only component of the ionic current

that had to be calculated on a fine spatial mesh and updated frequently was the fast sodium

current. Other components of the ionic current could be calculated on a coarser mesh and

updated less frequently, and then interpolated onto the finer mesh. The use of this technique

induced very little error in the solutions.

Röhrle [84] developed an electromechanical model of the skeletal muscles. The model coupled

the electrophysiological properties at the cellular level (the contractile unit of the muscle) with

the biomechanical principles at the organ level (the whole muscle), focusing on the generation

of muscle strength. To model the electrical activity of muscle fibers, without describing the

electro-physiological properties of a single cell, the bidomain equations [34, 84, 172] were used.

These equations provide a continuous modeling approach, where the extracellular and intracel-

lular spaces were modeled as if they occupied the same space. Finally, force equations were

generated to manage the muscle contraction, considering as input to the system an electric cur-

rent, which supplies the fibers. Muscle fibers were modeled as one-dimensional objects, which

were discretized using linear finite elements of a Lagrange dimension. These fibers were aligned

in a three-dimensional space along the actual direction of the fibers of a muscle (these data were

obtained from [167]). Also included was a level of detail for fiber graphing, where you could

determine if a one-dimensional chain represents a fascicle, a fiber, or a group of fibers.

Röhrle et al. [34] extended the previous work by presenting a physiological model of skeletal

muscles that was capable of representing geometric descriptions of muscle fibers and their group-

ing. In conjunction with a motor neuron activation model in muscles, the electrophysiological
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Figure 3.11: Anterior tibial muscle shown in blue (A). It shows a motor unit, and the muscle
fibers related to that unit (B). Muscle fibers related to 5 (C) and 10 (D) motor units are

shown.[34].

behavior of muscle fibers within a motor unit was calculated and applied to obtain the muscular

forces that generate movements. In this case, it was considered that all fibers were innervated

at their midpoint, so it was sufficient to model the activation of one muscle fiber per motor

unit, and use its output for all other associated fibers. The fibers were inside a finite element,

an anatomically realistic mesh generated from images of the visible human project [167], of the

anterior tibial muscle. The presented model was also capable of simulating the fatigue generated

in the muscles. In Figure 3.11 the arrangement of muscle fibers for different motor units can be

seen.

Heidlauf and Röhrle [177] presented an extensible, flexible, multiscale, and multiphysics model

for nonisometric skeletal muscle behavior. The skeletal muscle model was based on the entire

excitation-contraction pathway by coupling a biophysical model to the propagation of action

potentials along skeletal muscle fibers. Since the macroscopic electrical conductivity of muscle

tissue perpendicular to the fiber direction is up to one magnitude lower than the conductivity

along the fiber direction [178, 179], and electrical stimulation from one fiber to adjacent ones is

not observed, the propagation of action potentials along the fibers was modeled as a 1D system.

In such case, the bidomain equations reduce to the simpler monodomain equation, which was

used to solve the bioelectrical field. Even though authors used parallel techniques to speed up

their model, they only achieved a 2.185 speedup for a simulation of 200 time steps which took

81360.24 seconds to compute. Additionally, said performance was obtained on a cubic geometry

with 2cm edge lengths, and discretized using eight finite elements.
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For a detailed description of the numerical methods for the solution of the bidomain equations,

refer to Linge et al. [180].

3.4.1 Using the Lattice Boltzmann method

One method that has recently been used to simulate cardiac electrical activity using the mon-

odomain model, was the Lattice Boltzmann method (LBM). Campos et al. [97] proposed a

GPU model based on the LBM that solved the reaction–diffusion model 2.4, that describes the

electrical activity in cardiac tissue. Authors later validated and compared against a traditional

FEM solution in a benchmark problem [181].

For simulations using the LBM, the domain was discretized by an equally spaced Cartesian

grid. Every node of the grid has N velocity directions ei (i = 0, . . . , N − 1) and N particle

distribution functions fi which describe the probability of a certain number of particles moving

in the velocity direction ei. In the LBM framework, the distribution function of the scalar

quantity v at time t, position x with velocity in the direction ei was denoted by fi(x, t). Here

v was the transmembrane potential.

The lattice Boltzmann equation that describes the evolution of the particle distribution functions

fi(x, t) may be written as:

fi(x + ei∆x, t+ ∆t)− fi(x, t) = Ω(x, t) (3.1)

where Ω(x, t) was the collision operator for v and depends on distribution functions fi(x, t), and

∆t and ∆x were the time step and grid interval, respectively. The left-hand side represents free

transport of the particles (streaming), while the right-hand side describes interactions of the

particles through collisions. Authors proposed a modification to the collision term to that it may

be written as the sum of a reactive term ΩR and a non-reactive term denoted by ΩNR. The non-

reactive part of the collision operator was described by the traditional Bhatnagar–Gross–Krook

(BGK) approximation [182], which models the collision as a single-time relaxation towards a

local equilibrium. The reaction term R that appears in the reactive collision operator was

determined by the cell model used to describe the kinetics of the cellular membrane; in this

case, the monodomain model.

Corre and Belmiloudi [183] also proposed a LBM simulation of cardiac electrophysiology, using

the bidomain model, in order to capture the detailed activities of macro-to micro-scale transport

processes. Authors took into account domain anisotropical properties using intracellular and

extracellular conductivity, such as in a pacemaker or an electrocardiogram, in both parallel and

perpendicular directions to the fibers.
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3.4.2 Parallel implementations

Various parallel implementations of solvers have been developed and applied for simulations of

tissue electrophysiology. For example, some simulators [184] were based on OpenMP (Open

Multi-Processing), an implementation of multithreading that supports shared memory archi-

tectures. The main advantage of OpenMP was that implementations can be easily adapted for

parallel execution, since the serial implementation needs only to be slightly modified or can

use OpenMP indirectly by interfacing with specific linear algebra packages able to deal with

OpenMP. An alternative approach was based on Message Passing Interface (MPI), a message-

passing application programming interface that allows codes running on many computers to

communicate with one another. In this case, specific code has to be developed to deal with

MPI, but high scalability can be achieved. MPI based code can run on both distributed and

shared memory architectures. The principal advantage of MPI was that it allows usage of sys-

tems with distributed memory architectures, which have only a fraction of the cost of systems

with shared memory. Examples of this programming strategy applied to tissue electrophysiology

simulations can be found in [185, 186].

Bordas et al. [98] described the available procedures for numerical modelling of the bidomain

equations and reviewed developments in adaptive numerical algorithms, the development of

spectral element (SE) methods as a high-performance alternative to FE, and state-of-the-art

parallel linear solvers for large-scale algebraic systems. Additionally, authors discussed the

alterations that would be required in order to ensure that the code designed for sequential

machines or clusters, would be able to run and scale appropriately con High Performance Com-

puting (HPC) facilities. These, at the time, were necessary to achieve the speedups required for

interactive applications.

3.4.2.1 Using Graphical Processing Units (GPU) for computation

The increased computational power and memory of graphics processing units (GPUs), combined

with decreasing costs, has generated significant interest in utilizing graphics hardware for other

applications. GPUs have been optimised for traditional computer graphics, which was focused

on highly data-parallel operations on floating-point numbers, and provide less of an advantage

for activities outside this range, such as intensive memory communication and integer and

double precision calculations [187]. Nevertheless, many computationally demanding calculations

may benefit from GPUs, which have already been applied to simulations outside graphics and

visualisation applications, including cellular automata, dendritic growth, fluid and gas dynamics,

signal and image processing, geometric computing, and reactione diffusion equations [187].

Vigmond et al. [188] considered the use of GTX 280 GPUs to accelerate cardiac models based

on the bidomain equations, and analyzes results in the context of simulating a small mammalian
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heart in real-time. The ODEs associated with membrane ionic flow were computed on tradi-

tional CPU and compared to GPU performance, for one to four parallel processing units. The

scalability of solving the PDE responsible for tissue coupling was examined on a cluster using

up to 128 cores. Results indicate that the GPU implementation was between 9 and 17 times

faster than the CPU implementation and scaled similarly.

Sato et al. [189] simulated the electrical wave propagation in cardiac tissue using Nvidia Geforce

9800 GPUs. The cardiac tissue was modeled using the monodomain equations. Authors found

that the computational speed of two-dimensional (2D) tissue simulations with a single com-

mercially available GPU was about 30 times faster than with a single 2.0 GHz Advanced Micro

Devices (AMD) Opteron processor. GPU simulations of wave conduction in a three-dimensional

(3D) anatomic heart were 1.6 times slower, when compared to a 32-central processing unit (CPU)

Opteron cluster. However, a cluster with two or four GPUs was faster than the CPU-based clus-

ter.

Bartocci et al. [190] presented GPU simulations of realistic, detailed cardiac-cell models whose

compute times were close to real-time using a desktop computer equipped with a Tesla C1060

GPU. Authors considered five different models of cardiac electrophysiology that span a broad

range of computational complexity. To achieve the maximum gains in computational efficiency,

it was necessary to consider model-specific aspects of the implementation, including appropriate

division of the model among multiple kernels and careful use of the available levels of memory.

Jararweh et al. [191] presented an evaluation study for porting a cardiac simulator of the bido-

main equations to the high performance Tesla C1060 GPUs. Authors also conducted a com-

parative evaluation using conventional computing platforms: a single CPU and a CPU Cluster

system. A speedup of up to 81.5 was achieved when compared to a single CPU core, while a

speedup of up to 21.1 was achieved when compared to a CPU cluster.

Neic et al. [192] used Tesla c2070 GPUs instead of HPC hardware to simulate anatomically

realistic and biophysically detailed multiscale models of the heart. Authors demonstrated the

feasibility of multi-GPU bidomain simulations by running strong scalability benchmarks using

a state-of-the-art model of rabbit ventricles. Results obtained revealed that there were consid-

erable speedups, from 11.8 to 16.3, for all components of the computational scheme.

Xia et al. [193] tackled the issue of large-scale 3D simulations of heart models by developig a

GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the

3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one

was the single cell model (ordinary differential equation) and the other was the diffusion term

of the monodomain model (partial differential equation). Furthermore, several optimization

strategies were proposed based on the features of the virtual heart model, which enabled a

200-fold speedup as compared to a CPU implementation.
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Gouvêa de Barros et al. [194] developed a cardiac electrophysiology model described by the

monodomain equations, that captured the microstructure of cardiac tissue and used a cell model

based on Markov chains for the characterization of ion channel’s structure and dynamics. The

model was parallelized using cluster computing and GPUs. The implemented model was able to

reduce the execution times of the simulations from more than 6 days (on a single processor) to

21 minutes (on a small 8-node cluster equipped with 16 GPUs, i.e., 2 GPUs per node). Cordeiro

et al. [195] extended the Multi-GPU solver by coalescing the data and GPU kernels executions

in the multi-GPU environment. This new scheme was tested only for the solution of the systems

ODEs. The results showed that the proposed scheme was very effective, having reduced the

execution time to solve the systems of ODEs by half, when compared to a scheme that does

not implemented the proposed data and kernel coalescing. The total execution time of cardiac

simulations was 25% faster.

Nimmagadda et al. [196] evaluated the performance of single and multi-GPU implementations

of the bidomain model, and simulated interactions between the cells. Authors evaluated the ar-

chitecture specific fine grained parallelization and optimization strategies, identified the suitable

threads per block configuration, and study the impact of memory organization and coalesced

memory access on performance. Simulating one action potential duration (350 msec real-time)

for a 256 x 256 x 256 tissue took 453 hours on a high-end general purpose processor, while it

took 664 seconds on a four-GPU based system including the communication and data transfer

overhead.

Amorim and dos Santos [197] presented a GPU cardiac simulator based on the bidomain equa-

tions. The use of a Geforce GTX260 GPU accelerates the cardiac simulator by about 6 times

compared to the best performance obtained in CPU. In addition, the GPU implementation

was compared to an efficient parallel implementation developed for cluster computing. A single

desktop computer equipped with a GPU was shown to be 1.4 times faster than the parallel im-

plementation of the bidomain equations running on a cluster composed of 16 processing cores.

Authors also tested the monodomain model, and achieved speedups around 20 times faster than

the CPU implementation.

Vigueras et al. [198] ported to the GPU a number of components of CHeart—a CPU-based

finite element code developed for simulating multi-physics problems. Specifically, authors im-

plemented on the GPU the ODE and PDE solution steps for the monodomain equations. Results

show that for a human scale left ventricle mesh, GPU acceleration, using the Nvidia G80 GPU,

provided speedups of 164 compared with single-core (SC) and 5.5 times compared with multi-

core (MC) for the solution of the ODE model. Speedup of up to 72 compared with SC and 2.6

compared with MC was also observed for the PDE solve.

Zhang et al. [199] presented the G-Heart system where GPU-based acceleration technologies

were adopted for both the simulation of cardiac electrophysiological activities and the online



Chapter 3. Related work 58

rendering of 3D anatomical and electrophysiological data. Authors used the model of human

ventricle presented by Tusscher et al. [200] to represent the excitable dynamics of cardiac tissue.

Authors computed the simulation of cardiac electrophysiology on a Tesla C1060 GPU, and

rendered the visualizations on a Geforce 9600 GPU.

Wülfers et al. [201] used OpenCL to develop a cross-platform software to compute the macro-

scopic monodomain model for excitation conduction and an atrial myocyte model for ionic cur-

rents. On a CPU with 12 HyperThreading-enabled Intel Xeon 2.7 GHz cores, authors achieved

a speed-up of simulations by a factor of 1.6 against existing software that uses OpenMP. On

two high-end AMD FirePro D700 GPUs the OpenCL software ran 2.4 times faster than the

OpenMP implementation. The more nodes the discretized simulation domain contained, the

higher speed-ups were achieved.

Menta et al. [202] took advantage of newer GPU and CUDA versions available, and developed

a novel electrophysiology simulation software entirely developed in Compute Unified Device

Architecture (CUDA). The software implemented fully explicit and semi-implicit solvers for the

monodomain model, using operator splitting. With the GPU based solver on a Tesla C2090

GPU using double precision arithmetic, a speedup of over 50 was obtained for three-dimensional

problems.

Considering that the LBM was very suitable to parallel computing due to its high locality, it

turns out that a parallel GPU implementation of the LBM for solving cardiac electrophysiology

models was a promising approach for performing near real-time simulations.

Campos et al. [97] presented a LBM solver for computational simulations of the cardiac electri-

cal activity using the monodomain equations. Authors validated and compared their solution

against a traditional FEM solution in a benchmark problem [181]. The results showed speedups

of up to 500 for the overall simulation and for the LBM a performance of 419 mega lattice up-

dates per second was achieved. With near real-time simulations in a single computer equipped

with a modern GPU these results demonstrated that the proposed framework was a promising

approach for application in a clinical workflow.

To speed up cardiac simulations and to allow more precise and realistic ones, 2 different tech-

niques have been traditionally exploited: parallel computing, with multi-code CPUs and GPus,

and sophisticated numerical methods. To test which technique was more effective at acceler-

ating cardiac simulations, and test whether the combination of either results in a greater or

smaller speedup, Oliveira et al. [203] evaluated them to test the achieved speed up for cardiac

electrophysiology simulations based on the monodomain equations. Authors used the bench-

mark proposed by Niederer et al. [181] to verify the different solvers and configurations. The

obtained results suggested that by combining all the techniques, the speedups ranged between

165 and 498. The tested methods were able to reduce the execution time of a simulation by



Chapter 3. Related work 59

more than 498 for a complex cellular model in a slab geometry and by 165 in a realistic heart

geometry simulating spiral waves.

3.5 Meshless methods for Biomechanical simulations

The FEM is one of the most popular discretization technique available for biomechanics sim-

ulations. However, its performance relies strongly on the model’s mesh quality. Additionally,

any mesh modification or mesh refinement during the analysis represent an extra computational

cost, which is a significant drawback in biomechanics.

Meshless methods have several advantages over the FEM, and as such have been used to simulate

a wide range of biomechanical phenomena. The work of Doweidar et al. [204] showed that

meshless methods possess clear advantages over the FEM in biomechanical problems dealing

with large strains, such as in the simulation of the human lateral collateral ligament and the

human knee joint. Additionally, Zhang et al. [205] extended a meshless method to the nonlinear

explicit dynamic analysis of the brain tissue response. The results confirmed the accuracy of

meshless methods to deal with highly demanding nonlinear hyperelastic biomaterials.

Furthermore, meshless methods have been used to simulate hemodynamics. Tsubota et al. [206]

used meshless methods to simulate the motion of a deformable red blood cell in flowing blood

plasma, while Mori et al. [207] studied the effect of red blood cells on the primary thrombus

formation. Another popular computational biomechanical field in which meshless methods

proved to possess clear advantages is the in-silico prediction of bone tissue remodelling [208].

Lee et al. [209] applied meshless methods to simulate the bone tissue remodelling process with

success. Recently, Belinha et al. [210] presented a new bone tissue remodelling algorithm relying

on the meshless method accuracy. The methodology was capable to obtain numerical solutions

very close with the clinical X-ray images of natural bones, and natural bones with implants.

Soft tissue simulations have also benefited from the meshless formulation. Horton et al. [211]

presented a meshless method for computing the deformation of soft tissue. The model ran at half

the speed of a hexahedral-based finite element simulation but three times faster than a similar

tetrahedral-based simulation. Additionally, authors developed a finite element simulation for

comparisson, and obtained less than 5% differences in forces and displacement of elements

between the simulations. Banihani et al. [212] introduced the point collocation method of finite

spheres to model hyper-realistic responses of soft biological tissue for virtual surgery simulations.

The method is a physics-based meshless technique that models the behavior of organs in real-

time. Similarly, Zhang et al. [205] used a meshless algorithm for the simulation of hyper-realistic

soft tissue mechanical responses of brain indentation. Their approximation uses a large number
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of nodes which significantly delays mesh distortion when large deformations are present. Authors

verified the accuracy of their approach against a FEM simulation.

Specifically, for skeletal muscle simulations, Basava [213] presented the meshless Reproduc-

ing Kernel Collocation Method (RKCM) in context of nonlinear hyperelasticity. The method

achieved both computational efficiency and controllable accuracy for large scale problems. Chen

et al. [214] introduced the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-

based modeling of skeletal muscles. This approach allows for construction of simulation model

based on pixel data obtained from medical images. The pixel points from these images can be

directly used as nodes for domain discretization in the meshless modeling. Valizadeh et al. [215]

implemented a 3D patient specific leg-muscle pixel-based model using isogeometric analysis

(IGA) and the RKPM. Authors preserved geometric exactness by using IGA for the represen-

tation of the exact geometry of the problem domain boundary, while the RKPM discretization

is employed in the interior of the domain.

3.5.1 SPH for Biomedical simulations

The extension of SPH to simulate biological tissue was relatively sparse, with a few examples

of fluid SPH confined by meshes [216–219], and simulations of a virtual liver [220], lips [62],

cartilage [45], and generic biological tissues [60, 64]. In this section, a brief description of said

simulations was presented, focusing on the way in which SPH was used in soft tissue simulations.

3.5.1.1 Virtual surgery

SPH has been used in virtual surgery to simulate biological fluids, such as blood, which were

contained by tissues modeled by different methods, such as FEM or mass-spring.

Müller et al. [216] presented an interactive method based on SPH to simulate blood as a fluid

and with deformable solids represented by a Finite Element approach. The finite element mesh

(simulating tissue) was able to fracture due to pressure forces in the blood stream.

Qin et al. [217] proposed a particle-based solution to simulate the interactions between blood flow

and vessel wall for virtual surgery. By coupling two particle-based techniques, SPH and mass-

spring model (MSM), authors simulated the blood flow and deformation of vessel seamlessly. At

the vessel wall, particles were considered as both boundary particles for SPH solver and mass

points for the MSM solver.

Farazi et al. [219] presented a 3D biomechanical swallowing model of the oral, pharyngeal and

laryngeal (OPAL) muscles and structures. The model consists of a mixture of rigid bodies

with 6-degrees of freedom (DOF) frames and finite element models (FEMs) with 3-DOF for
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each node within the volumetric body. The bony structures (jaw and teeth) were modeled as

rigid bodies and the soft structures (tongue and soft palate), which exhibit large deformations

during swallowing, were simulated as FEMs with tetrahedral elements. Authors used the SPH

formulation described in [221] to model water-like and nectar-like fluid boluses, simulated within

an airway-skin mesh that encompasses the modeled 3D structures and follows the model’s

dynamics. This airway skin-mesh acted as the deforming boundary for the boluses: as the

airway-mesh deformed due to the change in the OPAL geometry during a swallow, it created

forces on the fluid particles which then move to represent the bolus movement.

Chui et al. [218] introduced a particle-based rheologic modeling framework for simulating throm-

bus formation in medical simulation applications. The effect of blood rheology was simulated

with SPH, and by modeling vessel wall and embolizing coil as virtual particles, a pure Lagrange

particle formulation for fluid-structure interaction was proposed for modeling the blood-vessel

or blood-coil interaction. To simulate the blood vessel, authors used constitutive equations for

modeling rubber-like solids as proposed by Chui and Heng [222].

3.5.1.2 SPH for Biological soft tissue simulations

In computer aided surgery the accurate simulation of the mechanical behavior of human organs

was essential for the development of surgical simulators. One of the first works that simulated

biological systems with said objective was presented by Heiber et al. [220], who introduced the

remeshed Smoothed Particle Hydrodynamics (rSPH) method to simulate viscoelastic solids, and

their interaction with fluids. A key aspect of this approach was its flexibility which allowed the

simulation of complex time varying topologies with large deformations. Authors presented a

reconstruction of the liver topology and its strain distribution under a small local load.

Gastélum et al. [62] presented a user-specific 3D mechanical lips model where lips were modeled

as a set of particles whose dynamic behaviour was governed by SPH with an elastic material

smoothing kernel introduced by Solenthaler et al. [55]. Internal forces were defined by the elastic

forces presented between the particles, obtained using the strain energy (potential energy) stored

in each particle. An ellipsoid force field encircling the lips simulated the muscles controlling the

lips’ motion. The muscles were also represented by particles so that they could interact with

the lips using the same scheme. Using similar techniques for the simulation of tissue, in [63]

Gastélum et al. modelled the esophagus and the stomach using SPH. Authors considered a

multilayer model of particles related to a single triangle mesh, where each layer represents

distinct biological tissues of the esophagus and the stomach. The model was able to simulate

esophagus changes due to internal muscular changes and user input forces, and presented the

advantage of avoiding to redefine the system after morphological modifications of the mesh,

such as in cases of large deformations.
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Preoperative simulations of real patients that could be manipulated during the planning of

procedures would be of great benefit to surgeons. However, the methods that were used to

simulate biological structures, such as FEM, were not suited to perform interactively in such

simulations. To address that problem for the case of Femoral Acetabular Impingement (FAI),

Boyer and Joslin [45] used SPH to simulate articular cartilage as a biphasic fibril-reinforced

poroviscoelastic material. The objectives were to implement such a model and validate it using

indentation and unconfined compression tests while considering the necessity of computational

efficiency as applicable to a future real-time hip simulation. To simulate the fibers, authors

followed the method proposed by Gupta et al. [223], where the placement of fibres within the

material was simplified with the assumption that a fibre was created between every particle and

each of its neighbours, which in this case were arranged in a regular lattice.

Biological entities often have physical features that were not found in standard mechanical

devices such as elastic matter for an outer shell (skin or cell membranes) and internal reservoirs

of liquids or gels (blood, brain fluid, cytoplasm). Parts responsible for active movement (such

as muscles) also require elastic matter that can contract on demand. These often interact with

liquids or gels that were incompressible in an external environment as well, which means that

the surfaces of the elastic matter interact with the surfaces of the liquids.

Palyanov et al. [64] presented an open source software built using OpenCL called Sibernetic,

designed for the physical simulation of biomechanical matter (membranes, elastic matter, con-

tractile matter) and environments (liquids, solids and elastic matter with variable physical

properties). It was built as an extension to Predictive–Corrective Incompressible Smoothed

Particle Hydrodynamics (PCISPH) [224]. The authors also introduced elastic connections that

can be used to create contractile matter which can act in a muscle-like manner. Contractile

matter was implemented by adding the ability to connect particles together with a special kind

of connection refered to as a “contractile fiber”. A contractile fiber connects two particles and

can exert an equal and opposite force on them. A contractile fiber was a special type of elastic

interaction, and therefore has a spring stiffness co-efficient associated with it.

A contractile fiber can contract in response to an incoming signal outside of the physics of the

system. Therefore the force applied by the contractile fiber, in addition to having a spring

component, has a second component that was driven by a time-varying parameter that can be

modulated as an input to the simulation. As this parameter changes, a force proportional to its

value was applied to the pair. This force acts in the direction of the midpoint of the straight line

connecting the ith and jth particles. With the ability to chain particles together in this manner,

it was possible to organize contractile fibers into larger lattices of contractile matter. Lattices

can also include elastic matter relationships, enabling the construction of simple muscle-like

tissue.
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Rausch et al. [60] tackled the issue of biological soft tissue damage and failure by modeling it

using a particle/continuum approach; specifically, authors combined continuum damage theory

with the Normalized Total Lagrangian SPH. The total lagrangian SPH consists in establish-

ing a reference configuration of particles neighbors, instead of frequently updating the list of

neighbors for each particle. The proposed method lend itself well to the implementation of

standard constitutive relations of finite strain anisotropic elasticity and thus applied to soft

tissue modeling. Authors demonstrated that, for simple cases of uniaxial and biaxial extension

as well as clamped uniaxial extension, the SPH method predicted elastic responses under large

deformations.

3.6 Deformable solid simulations with the SPH method

SPH has more sparingly been applied to solids, beginning with the work of Desbrun and

Cani [106], and extended to bending, fracturing, and high impact tests [107, 109]. Solenthaler

et al. [55], provided an approach to derive the deformation field of an elastic solid, which was

improved upon by Becker et al. [57] by a corotation method to prevent unrealistic forces in

rotations. Here, a summary of the SPH based solid solvers was presented.

Desbrun and Cani [106] where the first to present a simulation of highly deformable and sepa-

rable bodies with the SPH method. Authors extended the method to the animation of inelastic

bodies with a wide range of stiffness and viscosity, and concluded that the smoothed particles

paradigm leads to a coherent definition of the object’s surface as an iso-surface of the mass

density function. The choice of the smoothing kernel h was very important: it gives the radius

of influence of interaction forces created by a particle. Different behaviors can be obtained by

tuning h: A small value will create very local interactions so the body will separate more easily

into pieces. Authors concluded that particle systems provided an easy approach for modeling

large changes in shape and in topology.

Bonet et al. [107] described a variational formulation of SPH for both fluids and solids appli-

cations. The resulting equations treated the continuum as a Hamiltonian system of particles

where the constitutive equation of the continuum was represented via an internal energy term.

For solids this internal energy was derived from the deformation gradient of the mapping in

terms of a hyperelastic strain energy function. Since the energy terms were independent of rigid

body rotations and translations, this formulation ensured the preservation of physical constants

of the motion such as linear and angular momentum.

Paiva et al. [225] presented a visually realistic animation technique for objects that melt and

flow. It simulated viscoplastic properties of materials such as metal, plastic, wax, polymer and

lava. The technique consists in modeling the object by the transition of a non–Newtonian fluid
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with high viscosity to a liquid of low viscosity. During the melting, the viscosity was formulated

using the General Newtonian fluids model, whose properties depend on the local temperature.

The phase transition was then driven by the heat equation. The fluid simulation framework

uses a variation of SPH.

Solenthaler and Pajarola [55] presented a method for the simulation of melting and solidification

in a unified particle model based on the SPH method for the simulation of liquids, deformable

as well as rigid objects, which eliminates the need to define an interface for coupling different

models. With said approach, it was possible to simulate fluids and solids by only changing the

attribute values of the underlying particles. Melting and solidification were also introduced,

where arbitrary sets of particles can solidify into deformable bodies. Since previous kernels

turned out to be unsuitable for those situations, authors designed the following new kernel

function:

W (r, h) =

c
2h
π cos( (r+h)π2h ) + c2hh 0 ≤ r ≤ h

0 otherwise
(3.2)

c =
π

8h4(π3 −
8
π + 16

π2 )
(3.3)

Cleary and Das [109] described the advantages of using mesh free simulation methods such as

SPH for elastic and elastoplastic deformation and for brittle fracture. Using only particles with

no prescribed geometric linkages (such as in a mesh or a grid) allowed high deformations to be

dealt with easily in cases where finite element methods would either fail and/or require expen-

sive and diffusive re-meshing. SPH was able to solve elastic deformation problems with accuracy

comparable to finite elements and demonstrated excellent stability and adequate convergence.

The method had powerful abilities to model material free surfaces, extreme deformation in-

cluding self-collision and automatically carries stress and strain history and material dependent

information. Brittle fracture of rocks during impact and compression was demonstrated and

with good predictions for fragmentation patterns.

Becker et al. [57] extended the work of Solenthaler and Pajarola [55] to include a novel corota-

tional SPH formulation for elastic deformable solids, which allowed to use the linear Cauchy-

Green tensor to calculate elastic forces for a wide range of scenes. Authors adopted the original

corotational idea for the FEM [226, 227] to SPH. The rotations in the deformation field were

computed using an SPH variant of the shape matching method [105].
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3.7 GPU-based SPH simulations

SPH has traditionally been an expensive computational method, mainly due to two factors [110].

First and foremost, compared to many mesh-based schemes, the number of interactions with

neighbouring particles for each particle can be up to 100 in 2-D simulations and 200–500 in 3-D

simulations, which was far greater than the number of neighbouring cells for FVM and FEM

stencils. Secondly, the main options for simulating (almost) incompressible fluids were using

the Weakly Compressible SPH (WCSPH) [228] which has a very small time step (typically on

the order of 10−6 - 10−5 s) due to the use of explicit time integrators, or Incompressible SPH

(ISPH) [229] which uses time steps an order of magnitude larger, but requires the solution of a

pressure Poisson equation (not a trivial task for simulations with many millions of particles).

Until recently, the only viable option was to use high-performance computing (HPC) using many

thousands of cores with a standard message passing interface (MPI) to handle communication

between processors on distributed memory systems [230]. Multi-core processors have become

more popular in recent years, where the CPU on each processor can have up to dozens of

cores (at the time of writing) with shared memory requiring programming frameworks such

as OpenMP. Obtaining the maximum performance from multiple nodes with multiple cores

with a mixture of distributed and shared memory has required a combination of OpenMP-MPI

approaches working across heterogeneous architectures [231]. This was technically difficult,

expensive in terms of hardware investment and maintenance, and highly restrictive in terms of

code portability across other architectures – an important consideration for disseminating use

throughout industry.

More recently, GPUs have been used to take the place of HPC clusters. Originating from com-

puter games and the computer graphics industry, GPUs were highly portable devices designed

for high throughput data processing. With SPH ideally suited to the streaming multi-processor

parallel architecture of GPUs, several works have been developed for said architecture instead

of depending on expensive HPC systems. Here, a brief survey of such work was presented.

3.7.1 Using GPU texture memory

The first implementation of the SPH method totally on GPU was realized by Kolb and Cuntz [232]

in 2005, Hegeman et al. [233] in 2006, and Harada et al. [234] in 2007. These approaches used

GPU texture memory, because there was no dedicated GPU compute platform available at the

time.

Hegeman et al. [233] proposed a dynamic quadtree structure to find the neighbors for a given

particle; the quadtree was efficiently rebuilt at each time step of the simulation. The GeForce
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FX 7800 GPU implementation ran nearly an order of magnitude faster than CPU versions for

2D experiments with up to 65k particles.

By 2007, Harada et al. [234] also tackled the problem of neighbor search on the GPU by

proposing the use of a bucket data structure: For each particle, the texel in texture memory to

which each particle belongs to was computed, and the particle index was stored in it; neighbor

search operations were performed via shaders. Authors also used a 3D texture in which a 3D

array was divided into a set of two-dimensional arrays and was then placed in a large texture,

in order to simulate 3D fluids. With a Geforce 8800GTX GPU, 3D simulations of fluids with

65k particles ran 17.3 times faster than the CPU versions. In 2008, Zhang et al. [235] proposed

a similar method, but included adaptive sampling of fluids to improve the accuracy of the

simulation in geometrically complex regions. Authors also visualized the fluid via metaballs and

isosurfaces. A similar approach was presented by Yan et al. [236] who, additionally, proposed

a generalized distance field function which considers not only geometrical complexity but also

physical complexity of fluid body, and new sampling rules for splitting and merging of particles

to greatly reduce the computation time of the dynamic fluid simulation. Authors simulated

16000 particles with an average frame rate of 66 fps.

3.7.2 Using specialized compute frameworks

It was until 2010 when Hérault et al. [237] implemented the SPH method on a GPU using the

Compute Unified Device Architecture (CUDA) developed by Nvidia. For the neighbor search,

authors used the algorithm described in the Particles example of the CUDA toolkit [238]. The

computational domain was divided into a grid of linearly indexed cells; each particle was assigned

the cell index it lies in as a hash value, and then the particles were reordered by their hash

value. The neighbor list for each particle was then built by looking for neighbors only in nearby

cells. The list was updated only each 10 iterations, using more memory, but resulting in faster

executions. The speedup achieved using a GTX 280 GPU was up to two orders of magnitude

faster than the equivalent CPU code for a simulation with 677,360 particles. A similar approach

was presented by Gao et al. [239], who reported speedups of up to 140 on a Geforce GTX 480

GPU. Authors tested different block and thread configurations, and found that the correct

selection of a a configuration can lead to better GPU utilization. Krog and Elster [240] added

support for Newtonian and Non-Newtonian fluids, and achieved speedups of 6 when compared

to the work by Yan et al. [236], and up to 91 when compared to a CPU version, simulating 16k

particles with a Geforce GTX 470 GPU.

The main disadvantage of the previous grid based approaches was that there was an excess of

memory consumption per grid cell for the neighbor search part of the algorithm. Goswami et

al. [241] based the neighbor search on Z-indexing and parallel sorting which eliminates GPU
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memory overhead due to grid or hierarchical data structures, such as buckets. This approach

still used texture memory for the indexing, and authors reported faster times than Zhang [235]

and Harada [234]. Results presented by Krog and Elster [240] were still faster (around 400

fps for a 16k particle simulation), but the GPU used was a deciding factor for the speedup:

Goswami et al. used a Geforce GTX 280, while Krog and Elster used a Geforce GTX 470. The

GTX 280 had almost half the compute cores, and around 25% less memory than the GTX 470.

In 2011, Crespo et al. [242] developed a SPH GPU solver named DualSPHysics to deal with

free-surface flow problems requiring high computational cost. The code was validated using

a dam break impacting with an obstacle. Authors reported results for simulations with one

million particles, achieving speedups of up to 64 with a GTX 480 GPU. Test results from

a TESLA M1060 GPU, which presented some of the highest computational specifications in

terms of memory (4 GB), were still not as efficient as the ones from the GTX 480.

By 2013, Huang et al. [243, 244] presented an efficient GPU-based simulation and rendering

framework for large scale SPH fluids. A robust particle classification algorithm was introduced to

classify particles into either active or inactive, and reduces the computational burden in inactive

areas where many particles with stable properties and low local pressure cluster together. Even

though authors used a mobile GPU (Geforce 9500M), real-time processing was achieved for

simulations with 30k particles.

Domı́nguez et al. [245] described different strategies for CPU and GPU optimizations applied to

the GPU SPH solver DualSPHysics [242]. Some of the GPU optimizations were described in the

CUDA programming guide [246], such as maximizing occupancy and reducing global memory

accesses. However authors mentioned other GPU optimizations intrinsic to the SPH method.

One of them was a method to simplify the neighbor search by defining ranges of particles for

searching decreases the memory accesses and the number of divergent warps. Another was a

division of the domain into smaller cells. The procedure consisted in dividing the domain into

cells of size r/2 instead of size r in order to increase the percentage of real neighbors. The

disadvantage was the increase in memory requirements. The optimized GPU version of the

code outperformed the GPU implementation without optimizations by a factor on the order of

1.65 using a GTX 480 and 2.15 using a Tesla 1060.

Xiong et al. [247] presented a GPU implementation of Adaptive Particle Splitting and Merging

(APS) in the framework of SPH. Particle splitting and merging process were carried out based

on a prescribed criterion. Results showed that APS actually achieves comparable accuracy but

reduces computational effort considerably. In addition, a single-GPU implementation can give

up to a 35 speedup when compared to CPU.

In 2015 Nie et al. [248] presented a parallel framework for simulating incompressible fluids with

the Predictive-Corrective Incompressible Smoothed Particle Hydrodynamics (PCISPH) on the
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GPU in real-time. Authors proposed an efficient GPU streaming pipeline to map the entire

computational task onto the GPU. Specifically, an efficient parallel sorting method for the

neighbor search step, which combined the benefits of index sorting [238] and z-index [241], was

introduced. Additionally, a Structure of Arrays (SoA) instead of an Array of Structures (AoS)

was used to achieve memory coalescing. Simulations achieved a speedup of up to 23 on a GTX

780 GPU in comparison to single-threaded CPU-based implementation.

Joselli et al. [249] introduced a novel and efficient data structure, called neighborhood grid,

capable of supporting large number of particle based elements on GPUs, and was used for

optimizing SPH fluid animations. The neighborhood grid method implemented with a GTX

580 GPU achieved speedups of up to 9 times when compared to traditional GPU approaches,

and up to 100 times when compared against CPU implementations.

In 2016, Xia et al. [250] designed a new GPU-based SPH model for solving the two-dimensional

Shallow Water Equations (SWEs) with variable smoothing lengths. Authors implemented a

quad-tree neighbour searching method to further optimize the model performance. Compared

with the commonly used uniform grid searching method, quad-tree neighbor searching could

reduce redundant computation when searching neighbor particles. Because this, the particle

interaction, i.e. calculation of water depth and forces, was also accelerated due to better memory

coalescing. The combination of these two elements allowed simulations to achieve speedups of

up to 2 times against the uniform grid searching based model implemented on GPU. Tests were

performed on a Testla M2075 GPU.

3.7.3 Multi-GPU solvers

In 2012, Rustico et al. [251] presented a multi-GPU, CUDA version of the SPH method. Authors

extended the work of Hérault et al. [237] to run simulations on multiple GPUs and obtained a

gain in speed and overcame the memory limitations of using a single device. The computational

domain was spatially split with minimal overlapping and shared volume slices were updated at

every iteration of the simulation. The obtained speedup factor differed from the ideal one by a

small cost function linear in the number of devices, and it was possible to run simulations with

a higher number of particles than would fit on a single device. Authors were able to simulate

up to ten million particles using 6 GTX 480 GPUs. The simulation scaled almost linearly with

the number of GPUs used.

In 2013, Valdez-Balderas et al. [252] extended the work of DualSPHysics [242, 245] to include

computation on multiple GPUs. The approach was based on a spatial decomposition technique,

whereby different portions (sub-domains) of the physical system under study were assigned to

different GPUs. Communication between devices was achieved with the use of the MPI API.

Authors also introduced a radix sort algorithm for inter-GPU particle migration and sub-domain
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“halo” building, which enabled interaction between SPH particles of different sub-domains.

Accelerated simulations were performed with up to 32 million particles on six compute nodes,

each hosting two NVIDIA Tesla M2050 GPUs.

Rustico et al. [253] extended, in 2014, their previous work [251] to include several minor opti-

mizations that improve single-GPU performance. The optimizations led to a speed-up of over

2 in single-GPU execution that also reflected on multi-GPU runs. First, an analysis of cache

utilization was done on devices belonging to the Fermi architecture, and direct access to the

underlying arrays was performed instead of using texture cache, resulting in a more effective use

of both texture cache and the L2 cache available on Fermi devices. Second, the layout of the

neighbor list was changed: instead of storing the neighbors of the first particle followed by the

neighbors of the second particle, authors interleaved neighbors, so that the first neighbor of all

particles come first, followed by the second neighbor of all particles, and so on. On GPU, this

ensured memory coalescence when particles handled by threads in the same warp traverse the

neighbor list. Finally, the neighbor list construction now relied on the thrust library shipped

with CUDA.



Chapter 4

Real-time meshless simulation of

skeletal muscle

Considering the challenges and issues presented in section 1.2, and the need for efficient and

accurate biological tissue simulations, in this work a meshfree method that allows the real-time

simulation of biological tissue, specifically, skeletal muscle belly, is presented.

In order to simulate skeletal muscle belly, the use of SPH to simulate tissue as a viscous fluid

is proposed. The idea to simulate skeletal muscles as fluids arose because they are composed of

70% water [254], and because most methods consider them as solids and focus only on simulating

the external deformations of the material, and not necessarily the entire tissue. For this work,

the activation of the tissue itself will dictate how it deforms. Meshfree methods are preferred

over FEM because of their flexibility, efficiency, and ease of use.

To get the fluid to conserve its volume, and allow it to behave as a deformable solid, the

integration of the fluid with Shape Matching, through a velocity correcting scheme, similar to

Takahashi et al. [255], will be used. Furthermore, to activate and deform the tissue, the use of a

biophysical model of electrophysiology, particularly, the monodomain model, is proposed. This

method was selected because it is computationally less expensive than the bidomain model [93].

Additionally, if we consider the muscle fibers in the simulation, the bidomain equations can be

reduced to the monodomain equations [177–179].

Since most works use the FEM to simulate the tissue, the method is also used to solve the

electrophysiology needed to deform the tissue. For this work, the use of SPH to solve the

monodomain model is proposed. Not only has it not been previously used, to our knowledge, to

solve the monodomain model, but its use will also allow for a more efficient use of computational

resources, since the calculations will be performed at the same step as the deformable solid

computations.

70
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By using the monodomain model, an electric stimulation that innvervates the tissue is used to

calculate an electric transmembrane potential. To determine how the stimulation propagates

throughout the tissue, the Fitzhugh-Nagumo cell model will be used. Since the electric poten-

tial can be considered as pressure in hydraulic systems, the resulting electric potential will be

considered in the pressure force calculation of the fluid simulation, and the changes in pressure

of the fluid will in turn deform the tissue. Fiber orientation of the tissue will be considered for

the deformation of the tissue due to this pressure. With this proposed method, the particles

will move from a high pressure area to a low pressure area, and effects such as the bulging of

the muscles should be present because of this movement.

In general, the proposed meshfree method consists on the integration of Shape matching for

shape definition, deformations, and volume conservation; SPH for the simulation of a viscous

fluid that resembles biological tissue; and the solution of the monodomain model using SPH for

the activation and control of the tissue. All the mentioned steps will be developed with GPGPU

to achieve real-time interactive simulations.

Even though the use of these methods for the simulation of skeletal muscles consider the shape,

and the internal functioning of the muscle, they had not been previously integrated together

for this specific purpose. Additionally, the simplicity and flexibility of the method is ideal for

real-time simulations, which is something that other methods lack. Furthermore, the flexibility

of the method could allow it to be used to simulate other biological tissues just by modifying

its properties and behaviour defining equations (which in turn could be solved using SPH).

4.1 Proposed architecture

The proposed architecture can be seen in Figure 4.1. In the following sections, each of the

blocks will be described in detail. Here, a brief description of each is presented:

Velocity Correction. So that the method achieves the incompressibility and volume preserva-

tion of the fluid, a correction of the particle velocities to approximate the dynamics of viscoelastic

fluids is calculated first. The velocity correction is based on the Shape Matching scheme [255].

This step considers the position and velocity of the particles, as well as external forces, such as

gravity, to project the positions based on their original positions. With those goal positions, a

corrected velocity can be calculated, and using the unknown factor (X) SPH method, XSPH [53],

an intermediate velocity is obtained.

Calculate Cell Model. A specific cell model which defines how the current propagates in the

tissue is calculated. For each of the particles, the Fitzhugh-Nagumo model is solved to obtain

the ionic current and the recovery variable. This step does not require the SPH method since

the cell model only depends on the transmembrane potential and the recovery variable, and is
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Figure 4.1: Proposed architecture.

integrated in time with a forward Euler time integration. However, since the proposed solution

is a meshfree method, the calculation of the variables and the time integration had to receive a

special treatment, which is covered in section 4.3.

Viscous Fluid Simulation. This block is the main SPH viscous fluid simulation. Here,

both the fluid and the monodomain properties are calculated. First, the density and pressure

of the fluid are calculated, then the acceleration of the particles is obtained, and finally, an

intermediate transmembrane potential is calculated. In this step, the pressure is also modified

with the transmembrane potential, so that the fluid moves from areas of high pressure to areas

of low pressure.

Update Properties. The velocity, position, acceleration, and transmembrane potential are

updated using a Forward Euler integration. The velocity is updated using the intermediate

velocity and the acceleration. The position is updated using the recently calculated velocity.

And, finally, the transmembrane potential is updated using the intermediate transmembrane

potential.

Render. Once the position and transmembrane potential of the particles are updated, the

values are applied to the particles and a muscle is simulated using OpenGL.

The use of intermediate values throughout these steps is essential because the properties of a

given particle, at a determined time step, may still be used by another neighboring particle.
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This consideration is even more important because it will prevent potential race conditions since

the method will be parallelized.

4.2 Viscoelastic fluid simulation

To simulate volume preserving viscoelastic fluids, it is necessary to separately deal with the

volume preservation and with the viscoelasticity. While preserving the fluid volumes by enforcing

the incompressibility of fluid using SPH, a velocity correction for viscoelastic effects based on

Shape Matching is used.

4.2.1 SPH applied to fluid simulations

The first step to simulate a viscoelastic fluid is to use SPH to solve fluid flow. Most fluid flow

is governed by the incompressible Navier-Stokes equations [256], a set of partial differential

equations that are to hold throughout the fluid. The equations are usually written as:

∂u

∂t
+ u · ∇u +

1

ρ
∇p = g + v∇ · u (4.1)

∇ · u = 0 (4.2)

where u is the velocity of the fluid, ρ is the density, p stands for pressure, g is the acceleration

due to gravity, v is the kinematic viscosity (how viscous is the fluid). The first equation 4.1 is

called the momentum equation. It describes how the fluid accelerates due to the forces acting on

it. The first of the fluid forces is pressure: high-pressure regions push on lower-pressure regions.

The other fluid force is due to viscosity. A viscous fluid tries to resist deforming: a force that

tires to minimize differences in velocity between nearby sections of fluid.

When using SPH to solve the Navier-Stokes equations [112], each point in the fluid is labeled

as a separate particle, with a position x and a velocity u. Each particle could be thought

of as being a molecule of the fluid. Furthermore, fluids are described by a velocity field v, a

density field ρ and a pressure field p. The evolution of these quantities over time is given by

two equations. The first equation assures conservation of mass

∂ρ

∂t
+∇ · (ρv) = 0, (4.3)

while the Navier-Stokes equation formulates conservation of momentum
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ρ(
∂v

∂t
+ v · ∇v) = −∇p+ ρg + µ∇2v (4.4)

where g is an external force density field and µ the viscosity of the fluid.

The use of particles simplifies these two equations substantially. First, because the number of

particles is constant and each particle has a constant mass, mass conservation is guaranteed

and Equation 4.3 can be omitted completely. Second, the expression ∂v/∂t + v · ∇v on the

left hand side of Equation 4.4 can be replaced by the substantial derivative Dv/Dt. Since the

particles move with the fluid, the substantial derivative of the velocity field is simply the time

derivative of the velocity of the particles meaning that the convective term v ·∇v is not needed

for particle systems. Using particles, Equation 4.4 can be expressed as

ρiai = f pressurei + f externali + f viscosityi (4.5)

where ai corresponds to the acceleration of particle i.

Substituting Equations 2.14 and 2.15 into the pressure and viscosity terms of the Navier-Stokes

equation and symettrizing according to Müller et al. [112] yields:

fpressurei = −
∑
j

mj
pi + pj

2ρj
∇W (ri − rj , h) (4.6)

fviscosityi =
∑
j

µi + µj
2

mj
vj − vi
ρj

∇2W (ri − rj , h) (4.7)

where p is the pressure, v the velocity, m is the mass of the particle, r is the position of

the particle, h is the smoothing distance, and µ the viscosity coefficient. Subscripts i and j,

represent the current particle, and the neighbor particles, respectively. External forces, such as

gravity, have to be considered as follows:

fexternali =
f

mi
(4.8)

The pressure pi of particle i is computed via the modified gas state equation suggested by [106]:

pi = k(ρi − ρ0) (4.9)

where ρ0 is the rest density, and k is a stiffness constant that scales the pressure, and, thus, the

pressure gradient and the respective pressure forces [56].
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The equations are integrated in time using a forward Euler method:

yn+1 ≈ yn + ∆tf(yn, tn) (4.10)

where yn is an approximation of the function f at time n, and ∆t is the difference in time.

Applying equation 4.10 the velocity v and position r of the particles can be calculated:

vn+1 = vi + ∆t
an
mi

rn+1 = ri + ∆t vn+1

(4.11)

The time step size ∆t that will be used must be adapted by the Courant-Freidrich-Levy (CFL)

condition [53, 257]:

∆t ≤ 0.4
d

||vmax||
(4.12)

where d is the particle diameter, and vmax is the maximum particle velocity.

4.2.1.1 SPH smoothing kernels for fluid simulations

Stability, accuracy and speed of the SPH method highly depend on the choice of the smoothing

kernels. For fluid simulations Müller et al. [112] designed the following kernel

Wpoly6(r, h) =
315

64πh9

(h2 − r2)3 0 ≤ r ≤ h

0 otherwise
(4.13)

and use it in all but two cases. An important feature of this simple kernel is that r only

appears squared which means that it can be evaluated without computing square roots in

distance computations. However, if this kernel is used for the computation of the pressure

forces, particles tend to build clusters under high pressure. As particles get very close to each

other, the repulsion force vanishes because the gradient of the kernel approaches zero at the

center. Desbrun [106] solves this problem by using a spiky kernel with a non vanishing gradient

near the center. To generate necessary repulsion forces in pressure computations, Debrun’s

spiky kernel is used:



Chapter 4. Proposed method 76

Wspiky(r, h) =
45

πh6

(h− r)2 0 ≤ r ≤ h

0 otherwise
(4.14)

Viscosity is a phenomenon that is caused by friction and, thus, decreases the fluid’s kinetic

energy by converting it into heat. Therefore, viscosity should only have a smoothing effect on

the velocity field. However, if a standard kernel is used for viscosity, the resulting viscosity forces

do not always have this property. For two particles that get close to each other, the Laplacian

of the smoothed velocity field (on which viscosity forces depend) can become negative resulting

in forces that increase their relative velocity. The artifact appears in coarsely sampled velocity

fields. In real-time applications where the number of particles is relatively low, this effect can

cause stability problems. For the computation of viscosity forces, Müller et al. [112] proposed a

third kernel:

Wviscosity(r, h) =
15

2πh3

−
r3

2h3
+ r2

h2
+ h

2r − 1 0 ≤ r ≤ h

0 otherwise
(4.15)

4.2.2 Velocity Correction

The velocity correction step is included before the iterations of SPH. The algorithm used is the

following:

Algorithm 1 Viscous Fluid with Velocity Correction

1: Find neighboring particles
2: Correct particle velocity

2.1 Compute predicted velocity vadv.

2.2 Get corrected velocity v∗.

3: Obtain intermediate velocity ṽ using XSPH, which modifies particle velocities without af-
fecting the convergence of the fluid solver.

4: Calculate pressure and viscosity forces using ṽ
5: Update acceleration, velocity, and position

Particle velocities are corrected to describe viscoelastic effects without changing particle posi-

tions. In order to obtain intermediate velocity ṽi for particle i as an input for SPH, the predicted

velocity vadv is computed first with all forces Fadv
i (external and gravity) excluding viscoelastic

and pressure ones:

vadvi = vi + ∆t
Fadv
i

mi
(4.16)
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where mi is the mass of each particle. Then, the particle’s velocities are corrected with the

velocity correction vector ∆vi (which is obtained via a Shape Matching Scheme):

v∗i = vadvi + ∆vi (4.17)

Finally, XSPH is used to reduce particle oscillations with v∗ij = v∗i − v∗j , and a velocity mixing

parameter ε(0 ≤ ε ≤ 1):

ṽi = v∗i + ε
∑
j

mj

ρj
v∗ijWij (4.18)

4.2.2.1 Shape Matching Scheme

In SM, particle i is pulled toward its goal position gi to restore the original configuration of the

particles, and individual goal positions are computed to match the original configuration of the

particles defined by x0
i with current particle distributions denoted as xi after the particles are

transferred.

In this case, a rotational matrix Ri, and the translation vectors t and t0 have to be calculated.

These should minimize:

∑
i

wi(R(x0
i − t0) + t− xi)

2 (4.19)

where the wi are weights of individual points (the natural choice for the weights is wi = mi.

The optimal translation vectors turn out to be the center of mass of the initial shape and the

center of mass of the actual shape, i.e.

t0 = x0
cm =

∑
imix

0
i∑

imi

t = xcm =

∑
imixi∑
imi

(4.20)

which is physically plausible. To find the relative locations qi = x0
i − x0

cm and pi = xi − xcm of

points with respect to their center of mass are defined, and the problem of finding the optimal

rotation matrix R is relaxed to finding the optimal linear transformation A. Now, the term to

be minimized is
∑

imi(Aqi− pi)
2. Setting the derivatives with respect to all coefficients of A

to zero yields the optimal transformation



Chapter 4. Proposed method 78

A = (
∑
i

mipiq
T
i )(
∑
i

miqiq
T
i )−1 = ApqAqq (4.21)

The second term Aqq is a symmetric matrix and, thus, contains only scaling but no rotation.

Therefore, the optimal rotation R is the rotational part of Apq which can be found via a polar

decomposition Apq = RS, where the symmetric part is S =
√

AT
pqApq and the rotational part

is R = ApqS
−1. Finally, the goal positions can be computed as

gi = R(x0
i − x0

cm) + xcm (4.22)

With the goal positions, the velocity correction vector ∆vi can be constructed:

∆vi = α
gi − xi

∆t
(4.23)

where α = [0...1] is a parameter which simulates stiffness.

4.3 Activating and deforming the muscle

The monodomain model describes the propagation of electrical activity in biological tissue, while

the cell model describes the interaction of ionic concentrations at cellular levels. For the case

of the monodomain model, the term Iion has to be calculated with an specific cell model that

is able to reproduce the tissues’ behavior. In order to control the activation of the muscles, the

use of the Fitzhugh-Nagumo model is proposed; not only due to its mathematical simplicity

and its richness from a point of view of system dynamics, but also because of its correlation to

the Hugh-Huxley model.

4.3.1 Meshfree Cell model

The FitzHugh-Nagumo model uses a cubic polynomial to model excitation, but also a recovery

variable so both depolarization and repolarization can be modelled [258]. The model’s potential

values are normalized to lie between zero and one. The normalized transmembrane potential is

denoted by v and is calculated by:

v =
Vm − Vr
Vp − Vr

(4.24)
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where Vp is the plateau potential, Vr is the resting potential, and Vm is the transmembrane

potential. A cubic polinomial is used to describe the course excitation:

Iion = C1 v

(
v − Vth − Vr

Vp − Vr

)
(v − 1) + C2 w

dw

dt
= b(v − d w)

(4.25)

where Iion is the Ionic current, C1 is an excitation rate constant, C2 is an excitation decay

constant, and Vth is the threshold potential. The variable w is a dimensionless time-dependent

recovery variable that represents the sodium gating variable. Here b is a recovery rate constant,

and d is a recovery decay constant.

When using a meshfree approach to calculate the cell model, each of the particles of the system

has an independent property, and to update them, the forward Euler method and the CFL

condition were used:

vn+1 =
Vmn − Vr
Vp − Vr

(4.26)

Iionn+1 ≈ Iionn +

(
∆t

mi
C1 vn+1

(
vn+1 −

Vth − Vr
Vp − Vr

)
(vn+1 − 1) + C2 w

)
(4.27)

wn+1 ≈ wn +
∆t

mi
b (vn+1 − d wn) (4.28)

4.3.2 Monodomain solved with SPH

The numerical solution of the bidomain equations is usually calculated using FEM. However, var-

ious meshless methods have demonstrated the ability to provide a computational feasible model

for cardiac electrophysiology simulations, without the burden of mesh generation [97, 183, 259].

In this work, SPH is proposed to numerically solve the monodomain model of electrophysiology.

The monodomain equation 2.7 can be written as:

∂Vm
∂t

=
1

Cm

(
1

χ

(
∇ · σ∇Vm

)
− Iion + Iext

)
(4.29)

where Iext represents the stimulus current that is applied to the tissue, and Iion represents the cell

model current specific to the biological tissue being simulated. Since the macroscopic electrical



Chapter 4. Proposed method 80

conductivity of muscle tissue perpendicular to the fiber direction is up to one magnitude lower

than the conductivity along the fiber direction [178, 179], and electrical stimulation from one

fiber to adjacent ones is not observed, the propagation of a potential along a skeletal muscle

fiber is modeled as a 1D system. In this case, the intracellular and extracellular conductivity

tensors are scalars when solving the monodomain equations. Therefore,

∇ · σ∇Vm = σ∇2Vm (4.30)

Applying the SPH formulation of Equation 2.12 to the rewritten monodomain equation 4.29,

using XSPH to reduce particle oscillations with ε = 1, and considering the simplification of

Equation 4.30, yields:

∂Vm
∂t

=
1

Cm

(
σ

χ

(∑
j

mj
Vm,j − Vm,i

ρj
∇2W (ri − rj , h)

)
− Iion + Iext

)
(4.31)

The cubic B-spline kernel 2.20 was used here since it has compact support, and the second

derivative is continous [53]. The compact support means that interactions are exactly zero for

r > 2h, and the continuity of the second derivative means that the kernel is not sensitive to

disorder. The second derivative of the kernel, which is needed for to solve Equation 4.31 is the

following:

W ′′(r− rj , h) =
αd
hn


−3 + 9

2q 0 ≤ q < 1

3
2(2− q) 1 ≤ q < 2

0 otherwise

(4.32)

Regarding the time integration scheme, a forward Euler method and the CFL condition were

used.

To apply time integration to equation 4.31, it is first needed to calculate an intermediate po-

tential, V ∗m as the sum of the contribution of the potentials from the neighboring particles:

V ∗m,i =
∑
j

mj
Vm,j − Vm,i

ρj
∇2W (ri − rj , h) (4.33)

and then multiply time dependent variable, in this case Iext by the ∆t over mass, before using

it to update the final potential:
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V ∗m,in+1
≈ V ∗m,in +

1

Cm

(
σ

χ
V ∗m,in −

(
Iion − Iext

∆t

mi

))
(4.34)

Vmn+1 ≈ Vmn +
∆t

mi
V ∗mn+1

(4.35)

4.3.3 Muscle deformation

Once the muscle is activated, and a transmembrane potential is calculated, a way to deform

the muscle is needed. Muscle cells resemble nerve cells in their ability to conduct action po-

tentials along their membrane surfaces. In addition, muscle cells have the ability to translate

the electrical signal into a mechanical contraction, which enables the muscle cell to perform

work [94].

Since the muscle bellies are going to be simulated using highly viscous fluids, and considering

that transmembrane potentials can be considered as electrical pressure, in order to deform the

muscles, the calculated transmembrane potentials are added to the pressure force term of the

fluid simulation. Since the fluid moves from areas of high pressure to areas of low pressure,

by decreasing the pressure in specific areas, the tissue is forced to move in a given direction,

essentially creating contractions in the muscle. After calculating the transmembrane potential,

it is integrated into the pressure term as follows:

pi = k(ρi − ρ0)− Vmi (4.36)

This effect is caused when a stimulus current Iext is applied to specific sections of the tissue:

when the current is applied, the transmembrane potential increases, and thus the pressure is

decreased, creating a contraction in a given point of the tissue. When the stimulus current is

removed, the transmembrane potential decreases and the pressure begins to increase, relaxing

the muscle and allowing it to return to its original, uncontracted, shape.

To consider muscle fiber orientation for the direction of the tissue deformation, the force of

pressure had to be adjusted. Equation 4.6 was adjusted to consider fiber orientation as follows:

fpressurei = −τi
∑
j

mj
pi + pj

2ρj
∇W (ri − rj , h) (4.37)

where τi is a vector that represents the normalized direction of the contraction or expansion at

particle i. This vector is calculated by considering the unit vector of the relative velocity and

the direction vectors of the fibers, which are added, and then weighted by the magnitude of
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the relative velocity. By considering this vector at the pressure calculation, the areas of higher

pressure will be determined by the fiber orientation.

4.3.4 Muscle tissue properties

Incorporating the skeletal muscle’s properties is fundamental for the correct functioning of the

model. For the case of the proposed cell model used, the values need to correctly simulate the

current propagation throughout the tissue. The values proposed for the monodomain model are

based on the work of Röhrle et al. [34]; for the cell model used, the parameters are based on

Nickerson [89]. These values can be seen in Table 4.1.

Variable Value Description

χ 500 cm−1 Surface-to-volume ratio

Cm 1.0 µF/cm2 Membrane capacitance

σi 0.893 mS/mm−1 Internal fiber conductivity

σe 0.67 mS/mm−1 External fiber conductivity

Iext 8000 µA/mm2 External stimulus current

Vr -85.0 mV Resting Potential

Vp 15.0 mV Plateau Potential

Vth -75.0 mV Threshold Potential

C1 0.175 µA / mm −2 Excitation rate constant

C2 0.03 µA / mm −2 Excitation decay constant

b 0.011 ms −1 Recovery rate constant

d 0.55 ms −1 Recovery decay constant

Table 4.1: Values for the cell model, and the monodomain equations.

For the density of the muscle belly, muscle architecture reports typically do not directly measure

muscle density [260]. Instead, several studies [74, 78, 261, 262] use the value 1.0597 g/cm3, which

was derived from unfixed rabbit and canine muscle tissue [263]. Given the fact that human

muscle architecture is often characterized in formaldehyde-fixed tissue, the previous value was

inaccurate for several reasons. First, a species effect may exist so that rabbit or canine muscle

density may differ from human muscle density. Second, the method and duration of fixation

may cause shrinkage and thus dehydration, which may alter muscle density. In this work, the

value of 1.112 g/cm3 for muscle density is used, following the recommendations of Ward et

al. [260] who determined, through various experiments, that this was the correct value. As for

the viscosity of the fluid, a coefficient of 15 Nm−1s [264] was selected.
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4.4 Integration of SM, SPH, and Monodomain

With the viscous fluid simulation, and with the monodomain solver using SPH, the next step

is to integrate them into a single simulation. With the transmembrane potential calculated

using the monodomain model, the pressure force of the fluid was altered in order to simulate a

contraction of the muscles. Since several steps of the model rely on SPH to calculate different

properties, special care was taken to use the cycles of the SPH algorithm as best as possible. For

this work, three SPH cycles were needed: to calculate the intermediate velocity; to calculate

the pressure and density; and to calculate the pressure and viscosity forces, as well as the

transmembrane potential.

The proposed algorithm to integrate these models into one that simulates tissue, is the following:

Algorithm 2 Simulate Tissue using CPU

1: Load the geometry of interest
2: while Simulate do
3: Find neighboring particles
4: Correct particle velocity

4.1 Compute predicted velocity vadv.

4.2 Get corrected velocity v∗.

5: Obtain intermediate velocity ṽ
6: Calculate the cell model.
7: Compute the density and pressure of the fluid. The transmembrane potential is added to

the pressure in this step.
8: Calculate pressure and viscosity forces; was well as the intermediate transmembrane po-

tential.
9: Update acceleration, velocity, position, and transmembrane potential.

10: end while

4.4.1 GPU considerations

While the CPU implementation of the proposed algorithm was straightforward and had no ad-

ditional requirements, the GPGPU version of the SPH algorithm did have additional constraints

regarding how data was managed and processed. The Shape Matching section of the algorithm

had no special considerations, and was “Embarrassingly Parallel”, ie. the same tasks were

performed for each particle, and no special considerations or algorithms had to be considered

besides thread synchronization.

Since the SPH method is going to be used to solve both the viscous fluid dynamics, as well as

the monodomain model, special attention will be given to its implementation on a GPU. The
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main bottleneck for the parallelization of the method is the neighbor search step. For this work,

the approach taken by several authors [238, 239, 265] will be used.

4.4.1.1 Particle Interactions

It is relatively simple to implement a particle system where particles do not interact with each

other. In this case each particle is independent and they can be simulated trivially in parallel.

However, for local interactions, such as modifying the properties of the particles using SPH,

performance can be improved by using spatial subdivision. The potentially interacting partners

of a particle i only need to be searched in i’s own cell and all the neighboring cells within a

certain radius. This technique reduces the time complexity of the force computation step from

O(n2) to O(nm), m being the average number of particles per grid cell. This technique divide

the simulation space so that it is easier to find the neighbors of a given particle.

For this work, the use of a uniform grid, which is the simplest possible spatial subdivision, is

used. A uniform grid subdivides the simulation space into a grid of uniformly sized cells. For

simplicity, a grid where the cell size is the same as double the size of the particle radius is

defined. This means that each particle can cover only a limited number of grid cells (8 in 3

dimensions).

A so-called “loose” grid is used, where each particle is assigned to only one grid cell based on its

center point. This method allows the particles to be stored into the grid cells simply by sorting

them by their grid index. The grid data structure is generated from scratch each time step. It

is possible to perform incremental updates to the grid structure on the GPU, but this approach

is simple and the performance is constant regardless of the movement of the particles.

To build the grid parallel sorting is used. The algorithm consists of several GPU kernels. The

first kernel “calcHash” calculates a hash value for each particle based on its cell id. For this

implementation, the linear cell id is used as the hash, but it may be beneficial to use other

functions such the Z-order curve [241] to improve the coherence of memory accesses. The kernel

stores the results to the “particleHash” array in global memory as a pair (cell hash, particle id).

Then the particles are sorted based on their hash values. The sorting is performed using the

CUDA Thrust library. This creates a list of particle ids in cell order. In order for this sorted

list to useful, the start of any given cell in the sorted list has to be found. This is achieved by

running another kernel “findCellStart”, which uses a thread per particle and compares the cell

index of the current particle with the cell index of the previous particle in the sorted list. If

the index is different, this indicates the start of a new cell, and the start address is written to

another array using a scattered write. The end of each cell is found in a similar way.
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Once the grid structure is built, it is used to accelerate particle-particle interactions, and inter-

polate the different properties of the model with SPH.

4.4.1.2 Data arrangement

A simple requirement to produce a better performing solution is to arrange data in a SoA

manner to achieve memory coalescing. Each property of the simulation, from the position of

the particles to their transmembrane current, were assigned to a one-dimensional array (the

arrays were device arrays, ie., arrays whose data is only available on the graphics card itself),

and the simulation data was stored sequentially.

In order to implement the sort and reordering algorithm of Section 4.4.1.1, additional device

arrays were required to store the sorted properties, and the arrays that store the indices, hashes,

and the start and end hashes of the neighboring particles. However, the only additional arrays

needed were those whose properties were needed for SPH steps, such as the position or the

corrected velocity.

GPGPU simulations require a launch configuration of a specific number of blocks and threads,

and have to be considered when implementing the proposed algorithm. Since all the steps of the

algorithm have to be applied to each particle of the system, and since the particle’s data were

stored in one dimensional arrays, a configuration of one dimensional blocks of one dimensional

threads was used. Using two, or even three, dimensional blocks or threads does not necessarily

expose more parallelism for this simulation, and the additional management needed hindered the

performance. A fixed number of threads for each block of 512 was proposed, and the number

of blocks needed to process all the particles was calculated at runtime. The 512 number of

threads was selected from a series of power of two values after determining that it yielded the

best occupancy and execution times for this solution.

4.4.1.3 GPGPU algorithm

Finally, some adjustments to algorithm 2 had to be made to consider the GPU changes, specif-

ically to determine the neighbors of the particles. The final algorithm, which was used to

simulate the skeletal muscle, is the following:
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Algorithm 3 Simulate Tissue using GPU

1: Load the geometry of interest to device arrays
2: while Simulate do
3: Correct particle velocity.

3.1 Compute predicted velocity vadv

3.2 Get corrected velocity v∗

4: Calculate the cell model
5: Find neighboring particles

5.1 Calculate the hash of each particle

5.2 Sort the particle’s index based on their hash

5.3 Reorder the system’s data based on the sorting

6: Obtain intermediate velocity ṽ
7: Compute the density and pressure of the fluid; the transmembrane potential is added to

the pressure in this step
8: Calculate pressure and viscosity forces; was well as the intermediate transmembrane po-

tential
9: Update acceleration, velocity, position, and transmembrane potential

10: end while



Chapter 5

Implementation and experimental

results

The methods proposed in Chapter 4 were applied to develop a simulation of the long head of the

triceps brachii and the vastus lateralis. This chapter will describe all the different components

of the simulation in detail, as well as the experiments that were conducted to test the accuracy

and performance of the model. The focus of the simulations were the contraction and expansion

of the muscle activated by the biophysical model, giving special attention to the displacement,

pressure, and processing time. Unless explicitly stated, all the simulations presented here were

developed using C++, and rendered using OpenGL. All the developed code will be open source,

and available at [266] for the GPGPU version, and at [267] for the CPU version.

5.1 Experimental setup

For the SPH method, 2 types of simulations were developed: one using only the CPU for

processing, without any parallel processing; another using GPGPU. For the FEM simulation,

only a CPU version was developed. Each of the simulations consisted on two phases: one

where specific parts of the tissue were innervated with a stimulus current, and one where the

stimulus current was removed. The purpose of the first phase was to test the effects of the

stimulation current on the tissue, and try to simulate a contraction on the tissue. The second

phase would allow the tissue to return to its original shape. Each phase ran for 250 time-steps.

The simulations were tested using the following setup, as shown in Table 5.1:

87
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Component Specification

Processor 12x Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz

Memory 16 GB

Operating System Ubuntu 16.04.3 LTS

GPU GeForce GTX TITANX 3072 CUDA Cores @1.08
GHz, 12GB Memory

GCC version 5.3.1

OpenGL version 4.5

Table 5.1: Specification for the computer where the experiments were conducted.

5.1.1 Model evaluation and validation

Although there are several benchmark tests [268–271] that are widely accepted by the community

for computational fluid dynamics solutions, such as the 3D dam break [272] or 3D flow around

a cylinder [273], most focus only on fluid or gaseous problems. Even for biological or medical

problems, available benchmarks [274, 275] only focus on problems such as blood flow. Even

though there are some benchmarks [276, 277] for soft solid simulations, currently, there are

no widely available or recognized benchmarks for skeletal muscle simulations. Models such as

Röhrle et. al. [34] or Millard et. al. [278] are validated by comparing specific muscles and

movements to other models, or to whatever tissue data is available: in some cases, human data,

but most commonly, it is data obtained from animal tissue, such as from rats.

To evaluate the accuracy of the proposed SPH-based model, another model that uses FEM

was simulated for the same geometry, and results were compared for the displacement of the

geometry, and the pressure generated by the tissue. The root mean squared error (RMSE) was

used to compare the results of both methods. The error is defined by

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (5.1)

where ŷ is the value predicted by the SPH method, and y is the value predicted by the FEM

method. For the displacement, the resulting deformed mesh by both methods is compared. For

the pressure, the total average pressure of the tissue by each method was calculated and then

compared.

5.1.2 Muscle geometry

In order to simulate a muscle, the need for an anatomically correct representation of it is

needed. The muscle geometry for the proposed simulation was obtained from the BodyParts3D
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database [279], a dictionary-type database for anatomy in which anatomical concepts are repre-

sented by 3D structure data that specify corresponding segments of a three-dimensional whole-

body model for an adult human male.

5.2 Geometry preparation

The geometric model that was used only represents the outer shell of the tissue: there are no

internal particles. Those are needed because the viscous fluid simulated with SPH depends on

a set of particles of the whole tissue. To create the additional points needed for the simulation,

the following algorithm was proposed:

Algorithm 4 Create inner particles

1: Load the muscle geometry, and orient it along the X axis.
2: Create empty clusters of a given width along the X axis.
3: for all particles do
4: Assign the particle to a specific cluster based on the particle’s x position.
5: end for
6: for all clusters do
7: Calculate its centroid. (This creates a “central skeleton” for the tissue.)
8: end for
9: for all particles, all centroids do

10: Add new particles between the particle and the centroid. Each new particle is separated
by a specified distance.

11: end for

This algorithm adds additional particles which are aligned to the “central skeleton”. By adding

more particles, more detail and accuracy can be achieved at the cost of more computational

time. Figure 5.1 shows a 3D model with the additional generated particles. The red particles

represent the original data, the green points are the ones that were added, and the yellow points

represent the “central skeleton” that was calculated. The spacing between each of the particles

was 0.024 for the muscle geometry. To facilitate the use of this data, the geometry was scaled

so that the range of its positions are between 0 and 1.

For particle numbers, the values 2231, 4944, 9888, and 18475 were selected based on the number

of particles of the muscle model. For the core radius, the values of 0.02, 0.04, and 0.08 were

selected based on the separation of the particles of the models. For the cell sizes, the values of

0.02, 0.04, 0.08, and 0.16 were selected in order to test the effect of having more or less particles

in each cell, and thus the increase or decrease in their approximation for a given property of a

particle.
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Figure 5.1: The muscle geometry with the added points.

5.2.1 Fiber generation

Fiber directions for the muscle were calculated as follows: each fiber was uniformly aligned and

parallel to direction vectors from the “central skeleton”. To get the direction for each point of

the skeleton, the points were processed from left to right, and a direction vector was calculated

by subtracting one from the other, and normalizing the result. The vectors were oriented as to

follow a line of action from the origin to the insertion of the muscle.

5.3 Viscous fluid with a velocity correction scheme

In order to simulate the tissue, two steps were needed: a viscous fluid had to be simulated, and

the shape of the muscle had to be considered.

For the viscous fluid part of the simulation, a SPH fluid simulation with k = 0.8, ρ0 = 1,112

kg/m3, and µ = 15 Nm−1s was developed. The mass of each particle was computed as the

product of the density times the volume of the cubic cell defined between the particle of interest

and the neighboring particles. To optimize the neighbor search step of the algorithm, a grid

of size 2h was selected. The core radius h value of the smoothing kernel functions was set to

0.04, while the cell size was set 0.08. The choice of a cell size double the size of the core radius

was because of stability concerns: for the complex geometry of the muscle tested, if the cell

size was the same as the radius, the particles would begin to vibrate and eventually collapse

(by breaking the geometry and moving erratically throughout the simulation space). While the
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added size for each cell increases the amount of particles that contribute to the approximation,

and thus a more accurate value, of a property, the computational time is also increased.

The velocity correction step mentioned in Section 4.2 was implemented to integrate these two

simulations. In this case, the goal positions for the object were obtained first, so that a corrected

velocity could be calculated and later used in the SPH viscous fluid simulation.

5.4 Solving the monodomain equation with SPH

The monodomain model is usually solved with the FEM or with FDM, with their respective

advantages and disadvantages. Here, a solution with FD, using central difference approximation,

was implemented in 2D to serve as a benchmark for the solution of the model with SPH. The

simulation space was a square of side 1, divided into cells of size 0.01. The FitzHugh-Nagumo

cell model was used for the simulation. A forward Euler method was used for time integration,

with ∆t set to 0.05, and a total of 100 time-steps were calculated. The conductivity tensor σ

was set to 1 for simplicity. The simulation steps were calculated using C++ and plotted with

Python using Matplotlib.

To solve the monodomain model with SPH, several considerations had to be taken:

• Solutions of the monodomain model with methods such as FEM do not consider the mass

or the density of the material, only the cell model. In this case, a mass of 0.2 was arbitrarily

selected; different mass values produced similar results.

• The size of the core radius h was set experimentally as 0.02, with the cell size set as

0.04. The selection of double the core radius for the cell size was because of stability

concerns, similar to what happened for the viscous tissue simulation, if a cell was the same

size as the radius, the simulation would produce incorrect values and eventually collapse

(by calculating Not a Numbers (NaN)). The size of the radius considerably impacts the

performance and accuracy of the solution: the larger the radius and the cell size, the lower

the accuracy of the solution; but if the radius was lower than 0.02, the performance was

considerably lower: simulations took double the time to compute, in average.

• The selection of a smoothing kernel function was a determinant factor to obtaining cor-

rect results. Several smoothing kernels were tested, including the kernels for fluid simula-

tions 4.2.1.1, and the Wendland kernel, since it was also used for electronic calculations.

However, the kernel that yielded the most similar results to benchmark simulation was

the cubic B-spline kernel 2.4.4.1.
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• When approximating the transmembrane potential using SPH, it was also needed to store

the approximation in a separate variable. This intermediate value was later used to update

the transmembrane potential.

• When using SPH to solve a model, time integration is usually applied after the properties

of the model have been approximated. However, in this case the time integration also

had to be applied when calculating the cell model, and when calculating the intermediate

transmembrane potential. Additionally, the time step had to be normalized by the mass

of each particle to ensure a stable simulation.

Figure 5.2 shows a comparison of the monodomain model solved with both FD and with SPH.

The solution with SPH presented an average difference of 10% when comparing the values

of each particle with the values of the cells for the FD solution. Further tests, with different

configurations are needed before a conclusion regarding the accuracy of the proposed method can

be achieved. However, considering that the FD solution with central differences only considers

the cells at the top, right, left, and bottom, of a given cell for the approximation of the property,

and that with SPH several more particles are considered for the same approximation, it is likely

that the model with SPH yields a better approximation than with the FD method. This

assumption is also based on the fact that other studies have already found that SPH is an

adequate alternative solution method for different problems [55, 117, 280–282]. An added benefit

of using SPH is that it can be easily used to solve 3D models by also considering the Z axis

when looking for neighbor particles, instead of just the X and Y axis.

Figure 5.2: Monodomain model solved with FD (A), and solved with SPH (B).
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5.5 Tissue simulation on muscle geometry

The ends of the muscle geometry were fixed in space to emulate the origin and insertion of the

muscle belly.

For the first phase, the stimulation current was applied to all the particles for 250 time-steps.

The transmembrane potential of each particle gradually increased as the Ionic current was

propagated throughout the tissue. The particles moved towards regions of lower pressure, and

the contraction and bulging of the tissue was visible. For second phase, the particles that had

been innervated had the stimulation current removed and the tissue was allowed to return to

its initial configuration. Figure 5.3 shows the simulation using the 18475 particle resolution.

Figure 5.3 shows the displacement in millimeters of the triceps using the 18475 particle reso-

lution, while Figure 5.4 shows the displacement for the vastus lateralis with the same particle

resolution. A video with the simulation of the triceps with particles can be seen in [283].

(a) (b) (c)

Figure 5.3: Integrated point-based tissue model for the triceps. (A) shows the initial state
of the tissue, (B) shows the muscle after being innervated with a stimulus current, and (C)
shows the muscle returning to its initial shape after the current was removed. The color of the

particles represents its displacement with respect to its original position.

5.6 Meshed tissue simulation

To be able to see a clearer effect of the deformation of the muscle geometry, a meshed rendering

of the tissue particles is presented. The triangle mesh that originally defined the muscle geom-

etry was used for rendering. The simulation follows the same guidelines as the particle-based

simulation. The resulting simulation can be seen in Figure 5.5 for the triceps, and in Figure 5.6

for the vastus lateralis. A video with the simulation of the meshed triceps can be seen in [284].
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(a) (b) (c)

Figure 5.4: Integrated point-based tissue model for the vastus lateralis. (A) shows the initial
state of the tissue, (B) shows the muscle after being innervated with a stimulus current, and
(C) shows the muscle returning to its initial shape after the current was removed. The color of

the particles represents its displacement with respect to its original position.

Figure 5.5: Integrated meshed triceps model. (A) shows the initial state of the triceps, (B)
shows the muscle after being innervated, and (C) shows the muscle returning to its initial shape.

(a) (b) (c)

Figure 5.6: Integrated meshed vastus lateralis model. (A) shows the initial state of the muscle,
(B) shows the muscle after being innervated, and (C) shows the muscle returning to its initial

shape.
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5.7 Simulation of tissue with the FEM

To evaluate the performance of the proposed method, a model solved with FEM was developed,

and results were compared for the deformation and the pressure within the tissue. Particularly,

the model was the one introduced by Blemker and Delp [141]. This model was selected because

it is capable of representing complex muscle geometry and architecture from MR images, it

considers muscle fiber orientation and arrangement, and the predicted muscle shape was com-

pared to MR images of the same movement, obtaining less than 5mm of distance error for large

muscles.

5.7.1 Software framework for FEM solutions

The FEM simulation was solved using the software framework FEBio [285]. The principal goal

of the FEBio project is to provide an advanced finite element tool for the biomechanics and

biophysics communities that allows researchers to model mechanics, transport, and electroki-

netic phenomena for biological systems accurately and efficiently. In addition, since FEBio is

geared towards the research community, the code is designed such that new features can be

added easily, thus making it an ideal tool for testing diverse computational methods.

FEBio, however, is a nonlinear implicit FE solver and does not have mesh generation capabil-

ities. Therefore the input files need to be generated by preprocessing software. The preferred

preprocessor for FEBio is called PreView, which is the software that was used for the preprocess-

ing of the geometry. PreView has been designed specifically to set up FE problems for FEBio.

It allows the user to create or import meshes, specify the boundary conditions and material

properties, and set the analysis options, all in a graphical environment.

To visualize and analyze the results from a FEBio analysis, the software Postview was used. It

can import the FEBio extendible plot file format (XPLT), and it also offers several ways to add

additional data to an already loaded model. PostView shows a graphical rendering of the model

and, in the case the model has time-dependent data, can show an animation of the model. The

rendering of the model can be augmented by adding additional plots, such as surface plots,

isosurface plots, vector plots, plane cuts and several other.

5.7.2 Model pre-processing

As was previously stated, one of the drawbacks of the FEM is the preprocessing steps needed

before any computation can be performed. In this case, a mesh with finite elements had to be

created, and muscle material properties, including fiber distribution, were integrated. Bound-

ary conditions were similar to the meshless simulation: the ends of the tissue were fixed in
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space. A tetrahedral mesh, with 20 nodes per element, was computed. Six resolutions were

selected: 1 thousand, 2 thousand, 5 thousand, 10 thousand, 20 thousand, and 40 thousand

finite elements. Figure 5.7 shows the mesh with around 40 thousand tetrahedral elements for

the FEM simulation.

(a) (b)

Figure 5.7: Tetrahedral elements for the triceps and the vastus lateralis. (A) shows the
tetrahedral elements for the triceps, while (B) shows the tetrahedral elements for the vastus

lateralis.

The material model used was the constitutive model developed by Blemker and Delp [141].

This model was selected because it is capable of representing complex muscle geometry and

architecture from MR images, it considers muscle fiber orientation and arrangement, and the

predicted muscle shape was compared to MR images of the same movement, obtaining less than

5mm of distance error for large muscles. The parameters of the model can be seen in Table 5.2.

Property Value Description

Density 1112 kg/cm3 Density of the tissue

G1 500 Pa Fiber shear modulus

G2 500 Pa Cross shear modulus

K 1e5 Pa Bulk modulus

P1 0.05 Exponential stress coefficients

Lofl 10.7 cm Optimal fiber length

σmax 3e5 Pa Maximum isometric stress

α 8000 Activation level

Table 5.2: Properties used for the material model solved with FEM
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5.7.3 FEM tissue simulation

FEM simulations consist on the geometry being activated for 250 time steps, and then removing

the activation and running for 250 time steps. A step size of 0.001 was selected to avoid

convergence errors. As for boundary conditions, we selected 10% of the nodes around the

origin and insertion of the muscles, respectively, and fixed their displacement in X, Y, and Z.

Fiber direction was created similarly to the meshless solution: instead of each particle having

a direction, each node had a direction vector which represented the fiber direction. Figure 5.8

shows the deformation in millimeters of the triceps using the 40 thousand node resolution, while

Figure 5.9 shows the deformation of the vastus lateralis for the 40 thousand node resolution.

Figure 5.8: FEM based triceps model. (A) shows the initial state of the tissue, (B) shows
the muscle after being innervated, and (C) shows the muscle after the current is removed. The

color of the particles represents its displacement with respect to its original position.

(a) (b) (c)

Figure 5.9: FEM based tissue model for the vastus lateralis. (A) shows the initial state of the
tissue, (B) shows the muscle after being innervated, and (C) shows the muscle after the current
is removed. The color of the particles represents its displacement with respect to its original

position.
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5.8 Experimental results

Results are presented as follows: first, a quantitative comparison against the FEM solution for

the displacement and the pressure is presented; then the stability of the SPH method is discussed;

finally, the computation times for the different simulations are reported. The results are from

the GPGPU simulation, even though the CPU simulation also yielded similar results but with

a larger processing time per step. To get accurate results, each simulation was executed 100

times, without rendering, and the displacement, pressure, and computation time were recorded

for each.

5.8.1 Sensitivity analysis

5.8.1.1 Error analysis

For the SPH method, a simulation for each of the proposed particle numbers, kernel, and cell

sizes was developed. Similarly for the FEM, a simulation for each of the node resolutions was

developed. Each of the simulations were paired against each other to calculate the RMSE.

Figure 5.10 shows the average error for all the FEM resolutions against the different particle

resolutions by kernel and cell size for the triceps, while Figure 5.11 shows the average error

for the vastus lateralis. It can be seen that the kernel and cell size selection is critical when

considering the accuracy of the model. In this case, when those value were set to 0.08 and 0.16,

and to 0.08 and 0.08, the model presented the greatest error. This could be attributed to the

fact that too many particles were present at a given neighborhood, and particles that should not

have contributed to updating a property were updating it. This also explains the results for the

0.02 and 0.04, and the 0.02 and 0.04 configurations, where too few particles were contributing

to updating the properties. Since the 18k particle distribution with 0.04 kernel and 0.04 cell

size produced the least error with respect to the FEM, for the rest of the results these choice

of parameters was used. Additionally, all the meshless simulations were compared to the 40k

node resolution FEM solution.

To get a better understanding of the deformation and the pressure of the tissue, additional

considerations were taken. The muscle belly was divided into three regions: one around the

origin of the muscle, another around the insertion, and the last comprised the rest of the muscle.

From the origin and insertion, respectively, 20% of the tissue was selected to form each of the

respective regions. The region at center of the muscle belly comprised the remaining 60%.

Additionally, for the displacement, different coordinate planes were considered to analyze the

deformation of the tissue along those planes. Figure 5.12 shows the average error for each of the

regions, and their respective planes for the deformation of the triceps, while Figure 5.13 shows

the average error for the vastus lateralis. In this case, when more particles are used for the
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(a) (b)

Figure 5.10: Average error for all the FEM resolutions for the triceps. (A) shows the average
displacement error for all particle resolutions. (B) shows the average pressure error for all

particle resolutions.

(a) (b)

Figure 5.11: Average error for all the FEM resolutions for the vastus lateralis. (A) shows the
average displacement error for all particle resolutions. (B) shows the average pressure error for

all particle resolutions.

simulation, the error is reduced considerably at the expense of additional processing time. For

example, when comparing the error produced by the xy coordinate plane on the center region

for the 2k and 18k particle resolutions, the error difference is more than 80%.

(a) (b)

Figure 5.12: Average error for all the FEM resolutions for different regions for the triceps.
(A) shows the average displacement error for all particle resolutions. (B) shows the average

pressure error for all particle resolutions.
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(a) (b)

Figure 5.13: Average error for all the FEM resolutions for different regions for the vastus
lateralis. (A) shows the average displacement error for all particle resolutions. (B) shows the

average pressure error for all particle resolutions.

5.8.1.2 Displacement and pressure analysis

For the analysis of the displacement and the pressure, only one node configuration for FEM,

and one particle configuration for the meshless method are presented. Several configurations

were tested, but, for reporting, the chosen FEM configuration was with 40k nodes, while the

meshless was 18k particles, with 0.04 cell size and kernel. These were chosen since more FEM

nodes lead to better accuracy, and because with 18k nodes the error was the lower from all the

tested configurations. It is worth noting that the results were similar for all the configurations,

but with a larger error.

The mean displacement of the meshless and FEM simulations of the triceps can be seen in

Figure 5.14, while Figure 5.15 shows the mean displacement for the vastus lateralis. Fig-

ure 5.14A shows the displacement for the contraction part of the simulation for the triceps

(Figure 5.15A shows the same information for the vastus lateralis), while the displacement for

the expansion part can be seen in Figure 5.14B (Figure 5.15B for the vastus lateralis). The

area of the tissue that presented the most change was around the center, not only because it

was the largest section, but also because the pressure exerted by the model made it so that

the particles moved towards that direction. When both models were compared, a difference of

around 10% was present throughout the simulations. Another point that became apparent was

that the meshless simulation was not entirely stable when compared to the FEM simulation:

the displacement of the model was not smooth and the data shows slight noise throughout.

This was also apparent, if ever so slightly, in the rendered simulation: particles would oscillate

while moving, creating visual artifacts. Contrary to the contraction of the tissue, where the

displacement increased constantly, the expansion had a few moments, from time step 0 until

around 50, where it experienced almost no change and then the displacement began to reduce

constantly.
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(a) (b)

Figure 5.14: Mean displacement of the triceps. (A) shows the mean displacement for the
contraction step, (B) shows the mean displacement for the expansion step.

(a) (b)

Figure 5.15: Mean displacement of the vastus lateralis. (A) shows the mean displacement for
the contraction step, (B) shows the mean displacement for the expansion step.
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The mean pressure of the particles for the triceps simulation can be seen in Figure 5.16, while

Figure 5.17 shows the pressure for the vastus lateralis simulation. Figure 5.16a and Figure 5.17a

show the pressure for the contraction part of the simulation, while the pressure for the expansion

part can be seen in Figure 5.16b and Figure 5.17b. Even though the pressure for the center of

the tissue increases, the pressure at the left and right sides is still larger; this allows the particles

to move from areas of high pressure to areas of lower pressure. This behaviour is consistent with

the pressure present in the FEM simulations. Similarly to the displacement, the pressure in the

meshless simulation is around 10% lower than the FEM simulation, and is still not increasing

smoothly: all throughout the simulation there is noise.

(a) (b)

Figure 5.16: Mean pressure of the triceps. (A) shows the mean pressure for the contraction
step, (B) shows the mean pressure for the expansion step.

5.8.2 Stability and deformation of the model

The stability and deformations of the model depended mainly on the cell size, the core radius,

and the number of particles. Deformation ranges were also similar. When the cell size and the

core radius were set to 0.02 and 0.02, and to 0.02 and 0.04, the particles moved an average of 7%

from their original positions. This behavior is due to an insufficient number of neighbor particles

in each cell. Deformations became noticeable when the cell size and the core radius were set

to 0.04 and 0.04, with a deformation of an average of 23%. This value ranged from around

20% to 26% depending on the number of particles; the simulation with 18475 particles yielded

the 26% average deformation. This result is the closest to the 28% of optimal length during
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(a) (b)

Figure 5.17: Mean pressure of the vastus lateralis. (A) shows the mean pressure for the
contraction step, (B) shows the mean pressure for the expansion step.

contraction that was reported by Murray et.al. [286]. When the cell size and core radius were

set to 0.08 and 0.04, there was an average deformation of 37%. When the cell size and the core

radius were set to 0.08, the particles deformed more than 70% from their original configuration,

also presenting visual artifacts. Finally, the simulation became unstable in less than 100 time

steps when the cell size was increased to 0.16 and the core radius was set to 0.08. The geometry

deformed more than 70%, with several artifact forming before losing the shape completely. The

FEM simulation, in contrast, did not present any instabilities, and also got closer to the 28%

average deformation when more nodes were considered.

Deformation of the particles had an additional effect perceivable when the stimulation was

removed from the mesh-based simulation of the muscle. At some sections of the mesh, specially

the origin and insertion of the muscle, the mesh would show holes or triangles that were not

stable. This can be seen in the green sections of the triceps muscle in Figure 5.18 and of the

vastus in Figure 5.19.

5.8.3 Computation time

Using the GPU, the computation time was considerably sped up when compared to the CPU

version. The results for the average computation times for each of the algorithm steps, for

the 18k particle set are presented in Figure 5.20. Both the triceps and the vastus simulation
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(a) (b)

Figure 5.18: Deformed triceps mesh at the points of origin and insertion. (A) shows the
deformation at the origin, while (B) shows the deformation at the insertion.

(a) (b)

Figure 5.19: Deformed vastus lateralis mesh at several points of the mesh. (A) shows the
deformation at several parts of the mesh, while (B) shows the deformation at the origin and

insertion.

yielded similar execution times and speedups, with a difference of less than 1%. The presented

results are the ones obtained for the triceps geometry. The average times and speedups were

reported for each of the main methods of the algorithm in order to showcase the differences

in their performance. For the average times in Figure 5.20b, the functions that calculated the

corrected velocity, the cell model, and updated the properties performed the best since simple

calculations on each element of the data sets were executed; they did not have constructs such

as if-then blocks which lead to thread branching, and did not involve the more complex SPH

method.

These simpler methods, however, did not gain much from being parallelized using GPGPU,
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(a) (b)

Figure 5.20: Average times for 18475 particles simulation. (A) shows the average times for
cpu, while (B) shows the gpu times.

Figure 5.21: Average speedups for the muscle geometry with 18475 particles.

as can bee seen from the obtained speedups in Figure 5.21. The function that gained the

least speedup was the calculation of the corrected velocity, with an average speedup of 8. The

calculation of the cell model had an average speedup of 15.473, while the updating of the

properties achieved an average of 14.887. Even though the search for neighbors for the GPGPU

version was more elaborate when compared to the CPU version, it also was not sped up by

much, having an average speedup of 9.715.

The functions that took the longest to compute, even while using GPGPU, where the ones that

implemented the SPH method. These functions, specially the one that computes the forces,

took, in some cases, more than two orders of magnitude more than the previously discussed

simpler functions. However, since these functions are more elaborate, the contribution of using

GPGPU was more noticeable. The intermediate velocity calculation was sped up by an average

of 102.667, the computation of forces was speed up by an average of 151.551, while the calculation

of the density and pressure by an average of 283.354. These results are dependent on the types

of calculations and blocks that are involved in each function. The calculation of density and
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pressure had the most speedup since the executed operations were limited to additions and

multiplications.

The average speedups for all cell and radius sizes of the kernels that implemented the SPH

method can be seen in Figure 5.22. As more particles were involved in the calculations, the

speedup for each kernel was larger, indicating that the SPH method benefited more with the

use of GPGPU when a larger number of particles was involved in the calculations.

Figure 5.22: Average speedups obtained for each kernel and each particle set.

The decrease in execution time can also be seen in the increase in FPS of the simulations

using GPGPU. Figure 5.23 shows the average FPS obtained for the muscle geometry. When

compared to the CPU version of the muscle geometry simulation, the obtained FPS speedup

was an average of 10.72 for the 2231 particle set, 12.303 for 4944 particles, 15.201 for 9888

particles, and 18.97 for 18475 particles. When more particles were simulated, a larger speedup

was obtained. Real time simulations of one muscle could still be achieved when simulating 18475

particles for a cell size of 0.04, and a core radius of 0.04, because the average FPS obtained was

70.125 FPS.

Finally, it is worth noting that the computation times for the FEM were much higher than

those for the SPH method. In particular for the 40 thousand node resolution, it took around 2

hours to compute 500 time steps. Figure 5.24 shows the average speedup when comparing the

CPU and GPU versions of the SPH method to the FEM simulation. The FEM times could be

improved if another platform that solved the equations in parallel was used, such as OpenCMISS

[287].

5.8.4 Nvidia visual profiler results

The Nvidia visual profiler gave additional details on the performance of the GPU implementa-

tion. Specifically, it gave information regarding what could be limiting performance, and how
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Figure 5.23: Average FPS for the different particle sets for the muscle geometry using CUDA.

(a) (b)

Figure 5.24: Average speedups for SPH kernels when compared to FEM. (A) shows the
average speedups obtained when comparing the SPH solution to the FEM solution using CPU

(B) shows the speedup when comparing the SPH solution to the FEM solution using GPU.

it could be worked around. Tests for different block and thread configurations were performed

for the functions using the SPH method (calculation of density and pressure, calculation of

intermediate velocity, and calculation of force) because those were the ones that could benefit

the most from performance gains. The tests were conducted on the 18475 particle set, where

the cell size was set to 0.04, and the kernel size to 0.04.

5.8.4.1 Calculation of density and pressure

First, results for the kernel that calculates the density and pressure can be seen in Table 5.3.

The first step in analyzing an individual kernel is to determine if the performance of the kernel

is bounded by computation, memory bandwidth, or instruction/memory latency. The results

indicate that the performance of kernel was most likely limited by instruction and memory

latency; specifically by the latency of arithmetic or memory operations. As can be seen in Fig-

ure 5.25, achieved compute throughput and/or memory bandwidth below 60% of peak typically
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Grid Size Block Size Duration Occupancy Utilization

[289, 1, 1] [64, 1, 1] 162.37 µs 25.2% 28%

[145, 1, 1] [128, 1, 1] 163.107 µs 25.8% 28%

[73, 1, 1] [256, 1, 1] 166.947 µs 25.5% 28%

[37, 1, 1] [512, 1, 1] 164.514 µs 26.7% 28%

Table 5.3: Results for the different configurations of the compute density-pressure kernel.

indicates latency issues. The use of divisions within the kernels was the principal reason why

there were instruction latency issues, and the memory latency was caused mainly because of the

many necessary accesses to global memory in order to calculate each of the properties. Similar

results were obtained for different configurations of blocks and threads.

Figure 5.25: Utilization for the kernel that calculates density and pressure with 64 threads
per block.

Instruction and memory latency limit the performance of a kernel when the GPU does not have

enough work to keep busy. The performance of latency-limited kernels can often be improved by

increasing occupancy. Occupancy is a measure of how many warps the kernel has active on the

GPU, relative to the maximum number of warps supported by the GPU. Theoretical occupancy

provides an upper bound while achieved occupancy indicates the kernel’s actual occupancy. The

results in Figure 5.29 indicate that the occupancy of 25.2% can be improved by executing a

number of blocks that is multiple of 96. This allows more blocks and warps to be executed per

SM. Other configurations also had this issue: the average occupancy across all configurations

was 25.8%.

Increasing the number of threads did not do much to increase occupancy and block usage per SM,

and reduce the execution time. Using 128 threads, and 145 blocks, the achieved occupancy was

increased to 25.8%, but the blocks and warps were not used better, as can be seen in Figure 5.27.

Additionally, the computation time was almost the same, increasing by 0.5%. It is also worth

noting that more threads does not necessarily improve performance. For the case of 256 and 512

threads, the average duration of the kernels was increased by 2.8% and 1.3% respectively. The



Chapter 5. Implementation and experimental results 109

Figure 5.26: Occupancy for the kernel that calculates density and pressure with 64 threads
per block.

occupancy was 25.5% for 256 threads, and 26.7% for 512 threads. In these cases, the warps and

registers were not used effectively, and there were blocks that were not active for the duration

of the simulation. This can be seen in Figures 5.28 and 5.29.

Figure 5.27: Occupancy for the kernel that calculates density and pressure with 128 threads
per block.

Compute resource are used most efficiently when all threads in a warp have the same branching

behavior. When this does not happen the branch is said to be divergent. Divergent branches

lower warp execution efficiency which leads to inefficient use of the GPU’s compute resources.

For all tests, a divergence of about 60% was present. In the case of the SPH method, there are

if-then and for blocks of in each of the kernels, and improving performance by decreasing diver-

gence is not a trivial task, since it implies reformulating the algorithms themselves. Divergence

can be seen in the Inactive result from Figure 5.30, which shows the thread executions that did

not execute any instructions because the thread was inactive due to divergence.
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Figure 5.28: Occupancy for the kernel that calculates density and pressure with 256 threads
per block.

Figure 5.29: Occupancy for the kernel that calculates density and pressure with 512 threads
per block.

Figure 5.30: Instruction execution counts for density and pressure calculations.

Finally, this kernel was also restricted by the memory dependency: A load/store cannot be

made because the required resources are not available or are fully utilized, or too many requests



Chapter 5. Implementation and experimental results 111

of a given type are outstanding. Data request stalls can potentially be reduced by optimizing

memory alignment and access patterns. Figure 5.31 shows samples for each source and assembly

line with various stall reasons, with memory management being the one causing more latency.

Figure 5.31: Memory dependency for density and pressure calculations.

5.8.4.2 Calculation of intermediate velocities

Results for the kernel that calculates the intermediate velocity can be seen in Table 5.4.

Grid Size Block Size Duration Occupancy Utilization

[289, 1, 1] [64, 1, 1] 817.42 µs 21.8% 32%

[145, 1, 1] [128, 1, 1] 819.787 µs 21.6% 31%

[73, 1, 1] [256, 1, 1] 808.906 µs 22% 31%

[37, 1, 1] [512, 1, 1] 792.009 µs 16% 26%

Table 5.4: Results for the different configurations of the intermediate velocity calculation
kernel.

The intermediate velocity kernel has the same issue with utilization as previous kernel. However,

a potential bottleneck, which can be seen in Figure 5.32 is the register usage. Registers are the

fastest memory space on a GPU. An automatic variable declared in a kernel without any other

type qualifiers is generally stored in a register. Arrays declared in a kernel may also be stored in

registers, but only if the indices used to reference the array are constant and can be determined

at compile time. Register variables are private to each thread. A kernel typically uses registers

to hold frequently accessed thread-private variables. Register variables share their lifetime with
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the kernel. Once a kernel completes execution, a register variable cannot be accessed again.

Registers are scarce resources that are partitioned among active warps in an SM.

Figure 5.32: Occupancy for the kernel that calculates the intermediate velocity with 128
threads per block.

For the case of 128 threads, the kernel uses 80 registers for each thread; 10240 registers for each

block. This register usage is likely preventing the kernel from fully utilizing the GPU. The GPU

used, GeForce GTX TITAN X, provides up to 65536 registers for each block. Because the kernel

uses 10240 registers for each block, each SM is limited to simultaneously executing 6 blocks in

24 warps. To increase performance, the registers used by each thread have to be decreased. By

using the launch bound qualifier or the maxregcount compiler flag, the compiler is instructed

to minimize register usage while keeping register spilling and instruction count to a minimum.

After testing with these options, register count was limited to 32 registers per thread. However,

this was really not limiting kernel performance because occupancy was still at 21.7%, which

is significantly lower that its theoretical occupancy of 100%. The kernel even took longer to

compute: 1.074 ms instead of 819.787 µs, an increase of 31%. Figure 5.33 shows that there

is an imbalance in how the kernel’s blocks are executing on the SMs so that all SMs are not

equally busy over the execution of the kernel. A possible solution would be to either increase the

number of blocks executed by the kernel, or to make sure that all the blocks are doing roughly

the same amount of work. Divergence is the most likely issue present in this kernel.
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Figure 5.33: Utilization of SMs for the intermediate velocity kernel with 128 threads per
block, with fixed register usage.

Figure 5.34 shows that this kernel was additionally restricted by execution dependency: An

input required by the instruction is not yet available, and can potentially be reduced by increas-

ing instruction-level parallelism. In this case, the kernel depends on the execution of several

functions, in particular the calculation of the hash for the current cell, and to get the data on

each of the neighbors.

Figure 5.34: Execution dependency for the kernel that calculates the intermediate velocity.

This dependency also explains the results from Figure 5.35, where divergence is shown to be

almost 80%: threads are stalled because they are waiting for the execution of those functions.

A possible solution would be to include the calculation of those functions in one call, reducing

both divergence and increasing the work made by a each thread.
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Figure 5.35: Divergence for the kernel that calculates the intermediate velocity with 128
threads per block.

5.8.4.3 Calculation of forces

Finally, the results for the kernel that calculates the forces that are applied to the fluid is

presented in Table 5.5.

Grid Size Block Size Duration Occupancy Utilization

[289, 1, 1] [64, 1, 1] 1.413 ms 19.6% 23%

[145, 1, 1] [128, 1, 1] 1.42 ms 19.4% 22%

[73, 1, 1] [256, 1, 1] 1.41 ms 17.1% 20%

[37, 1, 1] [512, 1, 1] 1.407 ms 16.2% 19%

Table 5.5: Results for the different configurations of the force calculation kernel.

Similarly to the other kernels, this one still presents utilization, occupancy, and register usage is-

sues. A possible fix for the occupancy and the register usage would be to use the launch bound

qualifier. However, this did not lead to increased performance; similarly to the previous kernel,

performance worsened by around 18%, from 1.42 ms to 1.684 ms. Figure 5.36 shows the occu-

pancy results before the qualifier was used, while Figure 5.37 shows the occupancy results after

the fix was used.

Theoretical occupancy increased from 31.2% to 100%, but achieved occupancy was still signifi-

cantly low. The main issue with this kernel was thread divergence, likely caused by execution

dependency, and memory dependency, as can be seen in Figure 5.38. As previously mentioned,

to improve performance a redefinition of the kernel, which is not a trivial task, would have to

be considered. Different memory configurations and strategies to avoid divergence would need

to be included.
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Figure 5.36: Occupancy for the kernel that calculates the forces of the fluid with 128 threads.

Figure 5.37: Occupancy for the kernel that calculates the forces of the fluid with 128 threads,
with fixed register usage.
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Figure 5.38: Execution dependency for the kernel that calculates the forces of the fluid with
128 threads.



Chapter 6

Conclusions and Future Work

In this thesis, a new particle-based meshless method to simulate biological tissue was introduced;

specifically through the simulation of a skeletal muscle belly. The muscle tissue was simulated

using a highly viscous fluid which preserved its shape and volume, and it was controlled and

deformed with a biophysical cell model. In order for the simulation of the muscle to be viable

in interactive applications, the method was accelerated with the use of GPGPU, allowing real

time simulations.

The proposed method simulates a highly viscous fluid using SPH. A velocity correction scheme

using Shape Matching was used to allow the fluid to preserve its shape and volume. And,

finally, using the monodomain model, and the FitzHugh-Nagumo cell model, the fluid was

activated with an electric stimulus, and its shape was contracted or relaxed accordingly. For this

method, a meshless, particle-based approach was selected in order to avoid having to use a more

computationally demanding method such as FEM, while at the same time taking advantage of

the flexibility of the SPH method to solve diverse phenomena such as fluid and solid simulations,

or electromagnetic equations. After comparing the simulation’s results to a FEM simulation of

an established model, it was shown that the proposal, although not perfect, was accurate with

a difference of around 10%.

Even though SPH and Shape Matching had already been used to simulate viscoelastic fluids,

to our knowledge, this was the first time a viscoelastic fluid was used in conjunction with a

biophysical model, specifically, the monodomain model, to simulate biological tissue. Addi-

tionally, the use of SPH to provide an alternative mean to solve the monodomain model was

implemented and used in the presented simulations. To our knowledge, this was also the first

time the monodomain model was solved with SPH.

A comparison of some of the advantages and disadvantages of previous solutions versus the

proposed model can be seen in Table 6.1.
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References Mesh or
Particle

Parallel imple-
mentation

Advantages Disadvantages

Palyanov et
al. [64]

Particles:
SPH

Yes: OpenCL Uses PCISPH and OpenCL to
model biological tissue including liq-
uids, elastic, and contractile matter.

Does not add material properties,
uses mass-spring for elastic matter,
and does not include electrophysiol-
ogy.

Röhrle et al. [34,
84], Heidlauf et
al. [177]

Mesh:
FEM

Yes: CPU with
OpenCMISS

Accurate simulations that consider
electrophysiology and chemoelec-
tromechanical behaviour

Limited by FEM: computationally
expensive with no real time simu-
lations. Produces speedups of 4.
Limited number of FEM nodes. Of-
fline simulation.

Chen et al. [214],
Basava et
al. [213], Val-
izadeh et al. [215]

Particles:
RKPM

No Uses pixel data from medical images
to model skeletal muscles, and diffu-
sion tensor imaging to get the fiber
direction.

Mainly used for solids, not viscoelas-
tic tissues. They do not model elec-
trophysiology. They define a RKPM
formulation, using elasticity tensors,
instead of using the actual form of
the muscle, or its physiological prop-
erties to deform it. No mention of
parallelism or computational time.

Blemker et
al. [141]

Mesh:
FEM

No Creates 3D FE models of mus-
cles from MR images. Proposed a
method that prescribes the geome-
try of the fibers. Low error when
compared to MR images of muscles.

Does not consider electrophysiology.
No mention of a parallel solution or
computational time. Offline simula-
tion.

Ivanović et
al. [288]

Mesh:
FEM

Yes: MPI and
CUDA

Adaptive load algorithm that al-
lows for distributed calculations,
and high utilization of both CPU
and GPU. FEM calculations take
place in CPU, while numerical so-
lutions of the Huxley model are cal-
culated on both CPUs and GPUs.

Although a 200 speedup was ob-
tained, simulations still took 28 min
to compute offline (instead of 96
hrs).

Table 6.1: Comparison of advantages and disadvantages of different models versus the proposed one.
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According to the results obtained, the following contributions of this research work can be

highlighted:

• Biological tissue simulation. Most of the previous work related to the simulation of

biological tissue used methods such as FEM. However, the definition and pre-processing

of the mesh, in addition to the high computational cost, even with the use of GPGPU,

made the method less than ideal for real time simulations. Here, an alternative mean to

simulate biological tissue was presented. In this case, two different skeletal muscles were

simulated by using skeletal muscle geometry and a specific activation model. By changing

the geometry and the constitutive model, different biological tissues could be simulated.

Since SPH was used to simulate tissue, an integration with other particle-based models is

also possible; for example, the inclusion of blood in the tissue.

• Solution of the monodomain model with SPH. The monodomain model was usually

solved with FEM or the FDM. Here, the model was solved with SPH, which is also

paralellizable with GPUs, and the results were similar to the ones of a simulation with the

FEM. The use of GPUs was also explored to speed the simulations up. These results show

that biophysical models can be solved with similar accuracy using the SPH method, and

that the solved properties can be easily included in a more complex model. Additionally,

when compared to FEM, implementing a meshless solution is considerably easier: from

the creation of the particles that are needed, to the inclusion and solution of additional

equations and models.

• Tissue deformation. The focus of this work was on the deformation of the muscle tissue

by using a biophysical model. In order to apply the transmembrane potential to the tissue,

and deform it, the potential was considered as a force of pressure that acted on the fluid.

Since the fluid, and in this case, the tissue, flows from regions of high pressure to regions of

low pressure, the added pressure made it so that the tissue contracted in a given direction

when a stimulus current was applied, or it relaxed to its original shape when the current

was removed. To our knowledge, this was the first time that such a model was used. The

proposed method was able to achieve a contraction of around 26%, which is similar to

the achieved contraction of a muscle. Additionally, the RMSE for the simulation was low

when compared to a FEM simulation that has proven to be reliable to simulate skeletal

muscles.

• Achieved real time simulations. In order for the model to be viable in interactive

simulations, it had to be able to be simulated in real time, at least 30 FPS. The CPU

version, with around 9888 particles, was able to run in real time; at an average of 27.5

FPS for the mesh-based simulation. If 18475 particles were simulated in CPU, an average

of 3.7 FPS were obtained for the mesh-based simulation. In order to get a more detailed
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tissue, and to be able to simulate more than one, the use of GPGPU was proposed. The

GPU version, with 18475 particles, ran at 70.125 FPS for the mesh-based simulation.

Even though the achieved speedups for FPS were not as high, speedups of more than 250

were achieved for specific parts of the method. Additionally, different techniques, such as

reducing the neighbor search space, were used to reduce the computational complexity of

the model.

In spite of the advantages of the method, there were several concerns that had to be worked

around. For the GPU version, the use of expensive arithmetic operations, such as divisions,

hindered the performance of the simulation. Additionally, the algorithm had branching paths

that were mostly idle, which also caused the performance to be lower. Additionally, even

though high speedups were obtained, utilization and occupancy were specially low. This shows

that the GPGPU algorithm needs a rework to avoid divergence. Another issue is that the

particle distributions may have been too low for the Titan X GPU. The issue has to do more

with correctly balancing work throughout the SMs than with processing power or insufficient

memory. The visual profiler tool gave some insights into how to optimize the GPU version of

the solution; however, that could require considerable reformulation of the algorithm and its

implementation.

Next, the model created visual artifacts in the simulation: when the cell size or the core radius

were larger than 0.08, the particles would clump up at different points of the tissue, instead

of returning to their original position. The clumps of particles was also the cause for the

reconstructed mesh to have holes. By analyzing the particles’ properties in those areas, it could

be seen that they were activated more than in other areas. Improving the fiber orientation

may help reduce this issue, since particle were not correctly moving in the expected direction.

Acquiring fiber orientations from MRI data could have a great impact on the model’s behaviour.

Finally, the accuracy and stability of the model could be considerably improved. To improve the

accuracy of the simulation, the bidomain model could be used instead of the monodomain model.

Additionally, the SPH method in its standard representation has also some shortcomings:

• Accuracy of flow variable approximation as an optimized point between the interpolation

accuracy and numerical diffusion

• Modeling of large ratios of density/viscosity discontinuity

• Particle clustering in some region may cause insufficient particle resolution in some other

region

Different versions of SPH have been developed to address these issues [289], and such modifica-

tions could also be considered to improve the model.
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6.1 Future Work

Even though a new muscle model was presented, which was capable of contracting and relaxing

a meshless particle system very similarly to real muscles, there is still work to be performed

before it can really be used to replace a real muscle in a simulation. Some of the areas of

opportunity are the following:

• Model the activation and deformation of the method using the bidomain model instead

of the monodomain model. The monodomain model was selected for its simplicity, and

because it is an approximation of the bidomain model. However, to achieve more accurate

results, using the bidomain model would be the preferred solution.

• Instead of the FitzHugh-Nagumo cell model, a model that considers the fatigue of the

tissue is needed. The ability for muscle to repeatedly generate force is limited by fatigue.

The cellular mechanisms behind muscle fatigue are complex and potentially include break-

down at many points along the excitation–contraction pathway. A model such as the one

presented by Shorten et al [290] could be tested.

• An important factor when using a muscle model is the force production [67]. A more

detailed analysis of the force produced by the contraction and relaxation of the model is

needed before it can be used in a more elaborate simulation; for example, to move the

skeleton of the arm.

• For the GPGPU implementation, the divergence was a serious bottleneck in performance.

However, in order to reduce or remove the issue, a rework of the method has to be

considered. Warp divergence occurs when threads in the warp don’t execute the same

instructions, for example, due to flow-control structures. Since all threads in a warp must

execute the same instruction on each cycle, if threads diverge, the warp serially executes

each branch path, disabling threads that do not take that path [120]. A possibility to solve

this issue would be to rework the if-statements into equivalent mathematical operations,

so that the divergence is eliminated. Another would be making even numbered threads

take the if clause and odd numbered threads take the else clause.

• Since the proposed method is meshless, and particle-based, it could be easily modified to

simulate other tissues. The Shape Matching scheme could be replace by a mass-spring

system, and the cell model could also be replaced for another to try to simulate, for

example, skin. This method could be the basis of a more elaborate biological system.

• Finally, a simulation of multiple muscles and their interactions could be developed. In

order for such a simulation to run in real time, the computation could be split using

multiple GPUs, either in a single node, or in a cluster.
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Additionally, this work serves as the base for further muscle simulations; for example, using a

GPU cluster to simulate, in real time, all the interacting tissues of the arm and forearm, including

bone or ligaments, and even simulate a specific movement of the arm. Force production and

correct movement of the muscles would also have to be considered. The model could be used

for medical or entertainment applications, such as surgical simulators, or as a replacement for

Motion Capture and Key Frame animations.

6.2 Publications

As part of this thesis, the following research articles were published:

• Navarro-Hinojosa, Octavio, Sergio Ruiz-Loza, and Moisés Alencastre-Miranda. ”Physi-

cally based visual simulation of the Lattice Boltzmann method on the GPU: a survey.”

The Journal of Supercomputing 74.7 (2018): 3441-3467.

• Navarro-Hinojosa, Octavio, and Moisés Alencastre-Miranda. ”Simulation of Skeletal Mus-

cles in Real-Time with Parallel Computing in GPU.” Applied Sciences 10.6 (2020): 2099.
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mono-domain cardiac electrophysiology simulations using opencl. Current Directions in

Biomedical Engineering, 1(1):413–417, 2015.

[202] Andres Mena, Jose M Ferrero, and Jose F Rodriguez Matas. Gpu accelerated solver

for nonlinear reaction–diffusion systems. application to the electrophysiology problem.

Computer Physics Communications, 196:280–289, 2015.

[203] Rafael S Oliveira, Bernardo M Rocha, Denise Burgarelli, Wagner Meira Jr, Christakis

Constantinides, and Rodrigo Weber dos Santos. Performance evaluation of gpu paral-

lelization, space-time adaptive algorithms and their combination for simulating cardiac

electrophysiology. International Journal for Numerical Methods in Biomedical Engineer-

ing, 2017.

[204] MH Doweidar, B Calvo, I Alfaro, P Groenenboom, and M Doblaré. A comparison of
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[230] Pierre Maruzewski, David Le Touzé, Guillaume Oger, and François Avellan. Sph high-

performance computing simulations of rigid solids impacting the free-surface of water.

Journal of Hydraulic Research, 48(S1):126–134, 2010.

[231] C Moulinec, R Issa, J Marongiu, and D Violeau. Parallel 3-d sph simulations. Computer

Modeling in Engineering and Sciences, 25(3):133, 2008.

[232] Andreas Kolb and Nicolas Cuntz. Dynamic particle coupling for gpu-based fluid simula-

tion. In Proc. Symposium on Simulation Technique, pages 722–727, 2005.

[233] Kyle Hegeman, Nathan A Carr, and Gavin SP Miller. Particle-based fluid simulation on

the gpu. In International Conference on Computational Science, pages 228–235. Springer,

2006.

[234] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. Smoothed particle hydro-

dynamics on gpus. In Computer Graphics International, pages 63–70. SBC Petropolis,

2007.

[235] Yanci Zhang, Barbara Solenthaler, and Renato Pajarola. Adaptive sampling and rendering

of fluids on the gpu. In Volume Graphics, pages 137–146, 2008.

[236] He Yan, Zhangye Wang, Jian He, Xi Chen, Changbo Wang, and Qunsheng Peng. Real-

time fluid simulation with adaptive sph. Computer Animation and Virtual Worlds, 20

(2-3):417–426, 2009.
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for fluid flows, towards industrial applications: Motivations, current state, and challenges.

Computers & Fluids, 136:11–34, 2016.

[290] Paul R Shorten, Paul O’Callaghan, John B Davidson, and Tanya K Soboleva. A mathe-

matical model of fatigue in skeletal muscle force contraction. Journal of muscle research

and cell motility, 28(6):293–313, 2007.

https://www.youtube.com/watch?v=RuyYpptRJ0E
https://www.youtube.com/watch?v=RuyYpptRJ0E
https://www.youtube.com/watch?v=EY1siYXxtNA
https://www.youtube.com/watch?v=EY1siYXxtNA

	Declaration of Authorship
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Hypothesis
	1.4 Objectives
	1.5 Specific objectives

	2 Background
	2.1 Anatomy
	2.1.1 Muscles
	2.1.1.1 Skeletal muscles
	2.1.1.2 Composition, organization, and structure of muscles
	2.1.1.3 The motor unit
	2.1.1.4 The muscle-tendon unit
	2.1.1.5 Muscle contraction


	2.2 Biomechanics
	2.2.1 Phenomenological models and biophysical models
	2.2.2 Spring-shock absorber-based muscle actuators
	2.2.3 The three-element model of Hill
	2.2.3.1 Element in series
	2.2.3.2 Parallel element
	2.2.3.3 Contractile Element

	2.2.4 Cellular model of skeletal muscles
	2.2.4.1 FitzHugh/Nagumo model

	2.2.5 Bidomain Model
	2.2.5.1 Monodomain Model


	2.3 Deformable objects simulations
	2.3.1 Finite Difference Method (FDM)
	2.3.2 Finite Element Method

	2.4 Meshfree methods
	2.4.1 Meshless deformations based on Shape Matching
	2.4.1.1 Shape Matching Extensions

	2.4.2 Smoothed Particle Hydrodynamics
	2.4.3 SPH approximation techniques
	2.4.4 SPH method description
	2.4.4.1 Smoothing kernels

	2.4.5 SPH neighbor search optimization

	2.5 Parallel and concurrent programming
	2.5.1 Concurrence and parallelism
	2.5.2 Compute using GPUs
	2.5.2.1 CUDA



	3 Simulation and control of skeletal muscles
	3.1 Muscle deformation
	3.1.1 Geometric approaches
	3.1.2 Approaches based on physics
	3.1.2.1 Mass-spring systems
	3.1.2.2 Simulations with the FEM
	3.1.2.3 Simulations with the FVM

	3.1.3 Data-based approaches

	3.2 Control and simulation
	3.2.1 Static optimization
	3.2.2 Dynamic optimization

	3.3 Fiber-based simulation
	3.4 Control with the Bidomain and monodomain models
	3.4.1 Using the Lattice Boltzmann method
	3.4.2 Parallel implementations
	3.4.2.1 Using Graphical Processing Units (GPU) for computation


	3.5 Meshless methods for Biomechanical simulations
	3.5.1 SPH for Biomedical simulations
	3.5.1.1 Virtual surgery
	3.5.1.2 SPH for Biological soft tissue simulations


	3.6 Deformable solid simulations with the SPH method
	3.7 GPU-based SPH simulations
	3.7.1 Using GPU texture memory
	3.7.2 Using specialized compute frameworks
	3.7.3 Multi-GPU solvers


	4 Real-time meshless simulation of skeletal muscle
	4.1 Proposed architecture
	4.2 Viscoelastic fluid simulation
	4.2.1 SPH applied to fluid simulations
	4.2.1.1 SPH smoothing kernels for fluid simulations

	4.2.2 Velocity Correction
	4.2.2.1 Shape Matching Scheme


	4.3 Activating and deforming the muscle
	4.3.1 Meshfree Cell model
	4.3.2 Monodomain solved with SPH
	4.3.3 Muscle deformation
	4.3.4 Muscle tissue properties

	4.4 Integration of SM, SPH, and Monodomain
	4.4.1 GPU considerations
	4.4.1.1 Particle Interactions
	4.4.1.2 Data arrangement
	4.4.1.3 GPGPU algorithm



	5 Implementation and experimental results
	5.1 Experimental setup
	5.1.1 Model evaluation and validation
	5.1.2 Muscle geometry

	5.2 Geometry preparation
	5.2.1 Fiber generation

	5.3 Viscous fluid with a velocity correction scheme
	5.4 Solving the monodomain equation with SPH
	5.5 Tissue simulation on muscle geometry
	5.6 Meshed tissue simulation
	5.7 Simulation of tissue with the FEM
	5.7.1 Software framework for FEM solutions
	5.7.2 Model pre-processing
	5.7.3 FEM tissue simulation

	5.8 Experimental results
	5.8.1 Sensitivity analysis
	5.8.1.1 Error analysis
	5.8.1.2 Displacement and pressure analysis

	5.8.2 Stability and deformation of the model
	5.8.3 Computation time
	5.8.4 Nvidia visual profiler results
	5.8.4.1 Calculation of density and pressure
	5.8.4.2 Calculation of intermediate velocities
	5.8.4.3 Calculation of forces



	6 Conclusions and Future Work
	6.1 Future Work
	6.2 Publications

	Bibliography



