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Causal order assistance for the quantum teleportation
algorithm

by
Carlos Cardoso Isidoro

Abstract

With the introduction of indefinite causal order, quantum communication have presented no-
torious advances regarding the quality of information transmitted. For the specific case of the
quantum teleportation process, indefinite causal order scheme has shown notorious advances
in the last decade by using additionally an appropriate measurement on the control state rul-
ing the causal order, being even successfully deployed in the experimental field since a while.
Recently, regarding the application of indefinite causal order along with measurement on the
teleportation process, it has been demonstrated a valuable enhancement of teleportation to
avoid channel imperfections. In this work, teleportation is tackled when it is assisted by in-
definite causal order to correct the use of an imperfect entangled resource in the traditional
process. First, a model of a generic quantum channel for single qubits in terms of Kraus
operators in the form of Pauli operators is presented in order to understand the behavior of
a general quantum channel, that is also applicable for the teleportation channel, where it is
stated that the output state going through the channel can be obtained analytically and then
and analysis of the quality by means of the quantum fidelity can be developed.

By primarily analysing sequential teleportation under definite causal order (redundant
application of teleportation channels), a comparison basis is performed for the notable out-
comes obtained derived from the application of indefinite causal order. For the strategy being
developed, indefinite causal order introduces the use of a control state in order to address the
order of the channels to be applied, then, by the use of measurement, post-selection com-
plements the teleportation improvement. It can be obtained analytically the fidelity for the
entire process under an arbitrary initialization of such control state and performing an optimal
measurement on it, thus obtaining a perfect teleportation. Also, an analysis for other values
characterizing the imperfect entangled state has been made, where a perfect teleportation pro-
cess with F = 1 can not be reached. It has also been found, notably, that the best fidelity
does not depend on the preparation of the control state ruling the order of the channels ap-
plied but instead on the imperfect initial entangled resource assessing the teleportation. The
analysis is followed with the use of an increasing number of teleportation channels applied
in superposition of causal order, thus suggesting additional alternatives in order to exploit the
more valuable outcomes by using a strategy based on weak measurement as a complementary
resource.

Additionally, the affordability of an experimental implementation with the current tech-
nologies for experimental developments on light and matter is studied. A scheme with the
process needed is presented. Finally, the conclusions and future work to be developed in
order to continue the project are presented.
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Chapter 1

Introduction

In this chapter, the necessary elements for the teleportation process are presented as well as
some experimental approaches and some attempts to enhance the process by different tech-
niques. Thus, section 1.1 presents the basis for teleportation and section 1.3 makes an intro-
ductory for causal order as a technique used for improvement of quantum communication as
well as teleportation. Finally, section 1.5 presents a general view of this document described
by chapters.

1.1 Introduction to teleportation
Transmission of information is the base for the communication protocols and, in this sense,
some enhancements have been sought and new technologies have emerged. Such is the case
of the quantum protocols for communication and transmission of information as well as tele-
portation protocols. For this purpose it is necessary the use of the so called quantum channels.
A quantum channel is a communication channel that makes possible the transmission of quan-
tum information (not necessarily moved) and can be used in quantum communication as well
as in teleportation processes for that specific purposes. For the specific case of teleportation,
the quantum teleportation channel is the main element that allows the teleportation process
to be done and has specific elements to be called teleportation channel, each one of them are
configured thus being able to obtain a perfect teleportation process.

Teleportation has been studied since a while and, despite the fact that instantaneous
information transfer is no possible, it has been shown that by establishing EPR correlations
it is possible to teleport an unknown quantum state [1]. Nevertheless, in order to make the
teleportation possible, it is necessary to make use of classical means along the process by
sending a message about the original state and, this way, make the necessary operations to
make the output state be the same as the originally sent.

The teleportation process has been described as a traditional algorithm represented in
Figure 1.1, where the implementation of a generic teleportation circuit (the quantum teleporta-
tion channel) is shown. The main components of the teleportation circuit are a CNOT gate be-
tween a qubit of the entangled state that asses the teleportation (|χ〉 = |β00〉 = 1√

2
(|00〉+ |11〉)

one of the Bell states) and the unknown state wanted to be teleported (|ψ〉 = α|0〉+ β|1〉) in
addition to a Hadamard gate. These elements allow the quantum entanglement between the

1
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unknown state wanted to be teleported |ψ〉 and the entangled state that asses the teleporta-
tion |χ〉. Later on, some measurements are taken in order to know the necessary operations
required to copy exactly the state at the entrance in the other qubit of the entangled resource
|χ〉, which is going to be the output of the channel. These measurements taken are transmitted
by classical means and the necessary operations are done in relation of the requirements for the
output state to be equal to the entrance according to the measurements, then the superscripts
i and j shown in Figure 1.1 indicate whether the X or Z (according to the Pauli matrcies) or
both operations (−iY ) are applied. It is in this sense that information can not be transmitted
faster than the speed light because it depends on the knowledge of the measurements that are
transmitted by classical communication.

Figure 1.1: Quantum Teleportation Circuit. Where |ψ〉 = α|0〉 + β|1〉 and, for the simplest
case, |χ〉 is the Bell state where |χ〉 = |β00〉 = 1√

2
(|00〉 + |11〉). The CNOT and Hadamard

gates are explicitly represented, the arrows represent the measurements and the X and Z
represent the Paulli matrices [1]

1.2 Experimental approaches to teleportation
In order to test the feasibility of the teleportation algorithm, some strategies have been devel-
oped and it has been found since a while that, somehow, quantum teleportation exists when
the teleportation algorithm is carried out experimentally through photonic entanglement [2, 3].
Some other authors suggest a way to experimentally determine a successful teleportation by
preparing an initial photon which carries a certain polarization that will be transferred (tele-
ported) and then, a pair of entangled photons are subjected to a measurement such that the
second photon of the entangled resource acquires the polarization of the initial photon, there-
fore, if both polarizations coincide, then it means that teleportation is successfully achieved
[2, 4, 5]. Since then, other approaches have come out showing the possibility of teleportation
as it is shown in [6] with a a semiconductor single photon source, using a target and an an-
cilla qubits, each defined by a single photon occupying two optical modes. In that case, they
were able to obtain a measure of the fidelity of the teleportation process observing a fidelity
of 80%, in agreement with the residual distinguishability between consecutive photons from
the source [7].

Some other approaches for long distance quantum teleportation include those with the
use of a fiber-delayed Bell state measurement (BSM) [8] and also some using optical fiber in
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order to avoid using large-aperture optics and other complex techniques [9, 10].
Unfortunately, the process depicted is not always the best situation because of the re-

sources needed to fit the best teleportation process and then, some issues are presented when
trying to develop an experimental realisation. One of the elements that results affected on
an experimental approach is the entangled resource necessary for the teleportation process,
which, in practice, is not exactly the state required in order to reach a perfect teleportation
(remarking that the perfect teleportation is achieved with the Bell state |β00〉 on the entangled
state) due to some interactions like the Ising interactions described in [11] that can produce
distortion in entangled pairs. In a practical model, such entangled resource depicted in Figure
1.1 as |χ〉, usually varies slightly from the desire state (being able to reach a total distortion).
This variation does not allow the process to be done perfectly, therefore, some attempts in
order to enhance the fidelity of the process have been studied considering these variations
[12].

1.3 Introduction to Causal Order
The way quantum communication is developed has been looking for improvements. It is in
this sense where new approaches have come out. It has been shown, for instance, that the
communication in quantum channels can be improved through the superposition principle of
such quantum channels. Communication enhancement has been first shown in depolarizing
channels, where the combination of quantum channels in a superposition of different orders
can result in the transparency of the quantum channel [13] and thenceforth, superpositions
of causal orders have been widely studied and several experimental implementations have
been developed in order to see their advantages [14, 15, 16]. In this sense, the application of
causal structure in superposition has been studied for the specific case of quantum channel
discrimination, showing an advantage over causally ordered quantum circuits [17, 18].

Enhancements in communications have had approaches both theoretically and experi-
mentally [19, 20]. In the case for two quantum channels, it has been shown that even though
no information can be transmitted through depolarizing channels by classical means due to the
noise, it could be possible to transmit information by combining two depolarizing channels
in a superposition of causal order [13, 21]. As an example, in a quantum teleportation model
with very noisy singlets, it has been shown the possibility of transmitting perfectly the state
to be send when apply causal order in superposition of two quantum channels [22].

Recently it has been researched about the possibility of extrapolate superposition of
causal order to more than two channels. To get started, it has been shown the enhancement of
transmission of information for the three channel scenario [23] and it has been settled down
the increasing of classical information transmitted as the number of causal orders increases
[23, 24].

Some important approaches regarding causal order have been taken in account since a
while, such those considering quantum correlations [25], quantum metrology [26] and com-
munication [27]. In communication, it has been shown the capability of transmitting infor-
mation in a more efficient way when a superposition of different causal orders is applied.
That is why the importance of the study of some features found regarding causal order. It can
be highlighted this importance though the study of two different fields: communication and
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teleportation.

1.3.1 Quantum switch
The standard model of information theory established by Shannon [28], usually assumes that
the communication channels along the process are used in a perfectly defined configuration.
However, it is also known that quantum mechanics is able to allow scenarios where the con-
figuration for the quantum communication channels is not longer defined, but it can be in a
quantum superposition [17]. This scenario can be described by the quantum switch, where the
quantum superposition can also involve the order of the channels applied in time [29]. In the
quantum switch, the order of application of two quantum channels becomes indefinite, due
to the superposition of definite orders, thus obtaining a feature called causal non-separability
[25, 30]. Therefore, we can explain the quantum switch as an example of quantum control
where this switch can make a system go through two operators (A and B as example for the
case of two quantum operations) following one definite causal order (first A and then B) or
in the other way around (first B and then A), or even, a superposition of the two trajectories
described, thus obtaining an indefinite causal order for the two operators. Recently, it has
been studied the possibility of describing the quantum switch for the case of more than two
quantum operators [31, 30].

Also, regarding the experimental realizations, the quantum switch have been recently
proposed for a practical model by the use of photons [14, 32, 33]. Another experimental
approaches suggest other means of the realisations, like those suggesting the involvement of
quantum superpositions of spacetimes [31], whereas another approaches have been made with
closed timelike curves [21].

1.3.2 Causal Order in Communication
In communication it is very important to have a certain security on what is being transmitted.
It can be measured by a function called Holevo information that depicts how exact the infor-
mation has been transmitted. When the channel used for such transmission is a very noisy
channel, so called depolarizing quantum channel, it has been noticed that no information can
pass. Figure 1.2 shows the application of such depolarizing channel.

Figure 1.2: Representation of one depolarizing communication gate. |ψ〉 represents the quan-
tum state of the system in which the information is encoded and |ψ′〉 is the information once
the gate is applied.
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It can be followed that if we continue applying depolarizing quantum channels subse-
quently, the information is going to continue being zero (no information transmitted). Nev-
ertheless, it has been shown that when two completely depolarizing channels are applied in
addition with indefinite causal order, we can actually transmit information and, surprisingly,
the quantity of information transmitted becomes higher once indefinite causal order is ap-
plied. Figure 1.3 depicts the way of applying two channels in superposition of definite causal
orders, since this superposition is indefinite, in the literature is more common the term indef-
inite causal order, which will be used from now on. More specifically, for the case of two
quantum channels, some developed researches have been working with depolarizing channels
and have shown that, when such two completely depolarizing channels are combined in an in-
definite causal order, it could be possible to transmit information instead to destroy it [13, 21].
As this example, some other approaches, both theoretical [23] and experimental [20], have
been studied. It is in this same sense that, recently, it has been experimentally verified the
success of the indefinite causal order superposition applied to two channels for transmitting
information [20, 15, 16].

Following such trend in communication, recently it has been researched about the pos-
sibility of extrapolate superposition of causal order to more than two channels by developing
a combinatorics approach to the problem. As a matter of fact, it has been shown that the
amount of information transmitted, in comparison with the two channel scenario, increases
for the three channel scenario [23] and, therefore, it has been settled down that the amount
of classical information transmitted becomes higher as the number of causal orders increases
[23, 24].

All in all, in communication, it has been shown the capability of transmitting information
in a more efficient way when a superposition of causal order is applied. That is why the
importance of the study of some features found regarding causal order. It can be highlighted
this importance through the study of implications of indefinite causal order applied not only
in communication, but also in teleportation.

Figure 1.3: Representation of two quantum communication gates in superposition of causal
order. a) depicts the order where G1 goes first and the G2, b) is the contrary order in b) and c)
is the superposition of the previous orders.
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1.3.3 Causal order in Teleportation
Information can be transmitted from one party to another one as a quantum state by preparing
it as an Einstein-Podolsky-Rosen state [1], such quantum process is called teleportation and
plays an important role for processes related with quantum computation and quantum commu-
nication. Teleportation algorithm for one single qubit has been described using an entangled
Bell state and a channel for classical communication in order to achieve teleporation [34],
nevertheless, such algorithm has been shown to be useful to teleport larger system states as a
composite of two-level systems [35]. Up to date the standard quantum teleportation algorithm
have been widely studied and new approaches have come up as well as variants on the algo-
rithm in order to make it either more efficient in terms of the quantum resources used for the
teleportation process [36] or more adaptive to some specific quantum systems [37, 38, 39].
Following these studies, recently, a new approach has shown the impact of assistance of in-
definite causal order in the teleportation process to improve its performance when using two
completely noisy channels for the teleportation [22]. Additionally, several tests have been
made experimentally in a successful way in order to prove the feasibility of teleportation
when the distance increases [2, 9, 40] and also tests with larger multidimensional states rather
than qubits have been performed successfully [41].

Regarding to indefinite causal order, some recent works have introduced it to the tradi-
tional quantum teleportation algorithm. For instance, a comparison on the effect of employing
a quantum switch for the entanglement distribution process within the quantum teleportation
process has been developed in [12], making an analysis to quantify the performance gain that
can be achieved by employing such quantum switch with respect to the case of the absence of
quantum switch. In a proper manner, teleportation assisted by indefinite causal order has been
introduced in [22] by pointing out that teleportation is a quantum channel itself. In [22], a
quantum teleportation model with very noisy singlets is proposed and it has been shown that,
despite those very noisy singlets make impossible the teleportation, there is still the possibil-
ity of transmitting perfectly the state to be send when applying causal order in superposition
of two quantum channels. Such teleportation process has been conducted considering two
identical teleportation channels with the same imperfect entangled resources but in indefinite
causal order through an evenly quantum control system. Finally, the outcome is measured on
a specific basis in order to improve in the best possible way the fidelity of the teleportation.

Following this study and considering the same two imperfect channels but with an arbi-
trary initialized quantum control system, it has been investigated the possibility to get again
the highest possible fidelity with alternative scenarios [42]: a proper selection of the post
measurement state on the control system, thus generalizing the results obtained in [22]. In ad-
dition, it has be shown that for the no-noisiest cases of teleportation, the effect is still limited
as in [22].

It is also important in teleportation to know how successful the teleportation has been.
It can be established by simply calculating the fidelity as a measure of how equal is the state
obtained at the output in relation with the state to be teleported (input). In order to carry
out such teleportation, it is necessary to make use of an entangled resource |χ〉 as Figure 1.1
shows. Is in this sense when teleportation can turn difficult. It is possible to reach a perfect
teleportation when this entangled state is a singlet equal to |β00〉, but for the worst case (the
most imperfect entangled state with a mixture of all possibilities in the Bell basis) the fidelity
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goes down to zero.
It is in this sense where we can make use of causal order to aid in the improvement of the

teleportation process. It has been shown that it is possible to correct this lack of fidelity when
working with the worst entangled state by applying indefinite causal order and, in some cases
with the correct chose of some specific features, it is possible to reach a perfect teleportation.

1.4 Papers and presentations regarding this thesis
It is important to mention that all the results obtained from this thesis project are not only on
this document, but the results have been published in four articles along all the process for the
development of the project. The mentioned articles are listed in the Table 1.1 below for the
reader to have another references for the work developed here.

Title Journal Year DOI

Featuring Causal Order in Teleportation
With Two Quantum Teleportation Chan-
nels

Journal of
Physics:
Conference
Series

2020 doi:10.1088/1742-
6596/1540/1/012024

Performance of two redundant quantum
channels for single qubits under indefinite
causal order

Journal of
Physics

2020 In press

Characterization of N quantum channels
assisted by indefinite causal order and
measurement

Quantum
Information &
Computation

2020 doi.org/10.26421/
QIC20.15-16

Teleportation assisted by N−channels in
an indefinite causal order and measure-
ment

Symmetry 2020 doi.org/10.3390/
sym12111904

Table 1.1: Table listing the published articles for the work developed.

Additionally, much of these works have been presented in the conferences shown in
Table 1.2.

1.5 General scheme for this document
Before the statement of the proper questions and objectives of research, Chapter 2 and 3
present general theory and results about quantum channels and the teleportation process using
indefinite causal order. Since this work is aimed to describe the quantum teleportation process
assisted by indefinite causal order, with the purpose of describing the quantum teleportation
channel, Chapter 2 starts developing an analysis on the quantum channel. In this chapter, the
quantum channel is modeled in terms of the Pauli operators and the expressions for a very
noisy channel for single qubits are developed.



CHAPTER 1. INTRODUCTION 8

Name of the Conference Title of the work Date Country

International Conference on
Quantum Phenomena, Quan-
tum Control and Quantum
Optics

Featuring causal order in teleporta-
tion of two quantum teleportation
channels

October 28-
November
1, 2019

Mexico

50 Congreso de Investigación
y Desarrollo

Teleportation with two quantum
channels in superposition of causal
order

February
25-28, 2020

Mexico

9th International Conference
on Mathematical Modeling in
Physical Sciences

Performance of two redundant
quantum channels for single qubits
under indefinite causal order

September
7-10, 2020

Greece

NQN Quantum Programming
in Theory, Experiment and In
the Classroom (QPTEC)

Indefinite causal order enhances
quantum teleportation

September
16-18, 2020

United
States of
America

Quantum 2020 Improving imperfect quantum tele-
portation with indefinite causal or-
der assisted by post-measurement
and weak measurement

October 19-
22, 2020

United
States of
America

Table 1.2: Table listing the conferences where the work done was presented.

Later on, Chapter 3 presents a studied case found in literature for the teleportation pro-
cess assisted by indefinite causal order with the specific case with two channels. In this chap-
ter, outcomes for the teleportation process when applied sequentially are reported in section
3.2 in order to have a comparison with the case assisted by indefinite causal order, presented
in 3.4 for two channels. Enhancements are reported here and a comparison between two
channels applied sequentially and under an indefinite causal order scheme is presented.

From now on, it is necessary to define the objectives for this work and, from then,
determine the steps to follow in order to reach them. In this sense, Chapter 4 presents the
research questions for the improvement of the teleportation algorithm and the objectives to
follow in order to achieve those improvements. Section 4.3 presents a diagram for the general
general view for teleportation enhancement.

For the analysis regarding the use of an indefinite causal order scheme, Chapter 5
presents a more detailed analysis for the case with two channels in superposition of causal
order. This chapter begins to consider an arbitrary control state for those two channels in su-
perposition of causal order as presented in section 5.2. When considering a practical model,
slightly variations on the entangled state needed for the teleportation are presented and, there-
fore, in sections 5.3 and 5.4 this variations are presented. Improvements on the fidelity given
and the probability to obtain that fidelity are presented.

Continuing with the analysis of indefinite causal order when increasing the number
of channels applied, Chapter 6 sets the use of more than two channels in superposition of
causal order, The formalism to set quantum teleportation under an indefinite causal order with
N−channels is presented in section 6.1 together with the analysis when increasing the number
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of channels applied in superposition of causal order. Different cases presented when introduc-
ing a model with different effects are presented. Sections 6.2.1 to 6.2.3 focus on this cases and
the outcomes as well as improvements regarding the fidelity and probability of measurement
are presented here.

It is important to consider different techniques that can help with the enhancement of
the teleportation process. It is in this sense that Chapter 7 presents another approach for tele-
portation improvement complemented with weak measurements. The analysis is made at the
beginning for the case widely studied with N = 2 and then, the analysis goes to an increasing
number of N . There, the enhancements regarding fidelity and probability of measurements is
made.

All in all, it is important to confirm theory with practice, that is why Chapter 8 presents
a proposal for an experimental implementation starting with the case with two channels under
an indefinite causal order scheme. For facility, it is intended to be developed with photons as
the unknown quantum state to be teleported. Therefore, this chapter presents the main scheme
to be physically implemented as well as the materials and equipment needed to develop the
experiment.

Figure 1.4: Distribution of the contents by chapters.
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Finally, Chapter 9 presents the final conclusions regarding the work done so far as well
as some recommendations for the data and procedure here. Possible future works to be done
in order to continue with the quantum teleportation process enhancement are presented too.
Figure 1.4 shows the organisation of the content of this document in a general view.



Chapter 2

The Quantum Channel

Before establishing the research questions and objectives, the general concepts will be pre-
sented. As a preliminary to understand the teleportation channel and its behavior under an
indefinite causal order scheme, in this chapter, it is studied a parametric quantum channel in
general terms. They are considered single qubits for the modeling of such quantum channel
through Kraus operators, which are expressed in terms of the Pauli operators. Furthermore,
an analysis to obtain the formulas for the output state of the channel when it goes through a
certain imperfect quantum communication channel is presented. Then, the fidelity of the out-
put is also analysed in order to determine the performance of such quantum channel in terms
of its parameters.

2.1 Introduction
Quantum channels are the main component in quantum communication in order to maintain
or transport quantum states being used in quantum processing. Nevertheless, when such chan-
nels become imperfect or noisy, the information transmission process is not optimal. If the
process continue being applied recursively through similar imperfect channels the quality of
the information transmitted worsens.

It has been remarked in section 1.3.2 that with the introduction of the concept of indefi-
nite causal order, which is a quantum treat to superpose two or more orders in which quantum
information goes through the quantum channels, it can be shown important improvements
for certain channels as the depolarizing [13], the teleportation [22] and the dephasing noise
ones [43]. With this process, whether directly or under additional procedures, It is possible
to actually still transmit information with quality. It can be also compared with the redundant
definite causal order case actually obtaining advantaes [23, 14].

The process under indefinite causal order requires a second quantum system, a control
state managing the superposition of causal orders. Such control state normally becomes entan-
gled with the output state being transmitted. Then, the analysis of the quality of information
being transmitted has been quantified through the tracing control system [13] or stochastically
by measuring the control state in certain basis [22], more information about this process will
be given in Chapter 3. In the first case the Holevo bound for the transmission rate is estimated,
while in the second one the improved transmission is reached only with certain probability and

11
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otherwise dropped.
Following that trend in communication, the aim of this chapter is to analyse an arbitrary

noisy channel modelled through Kraus operators and expressed in terms of Pauli operators for
a single qubit when the indefinite causal order is involved on N channels in superposition of
causal order. It will also be presented some outcomes and notation for such depicted noisy
channel in the previous terms.

2.2 Noisy channels for a single qubit in terms of Pauli oper-
ators

A quantum channel is considered in quantum information, as a medium through a quantum
systems is transmitted until it is used. Such system or its quantum state (then, more precisely,
a quantum channel transmits quantum information) is transferred (which not necessarily im-
plies its movement) or inclusively teleported to meet certain quantum processing in combina-
tion with other systems. Along the process, the transmission could imply the change of the
quantum state due to several factors [44] such as noise, decoherence, environment, etc.

Therefore, each channel is susceptible to modify the quantum information of the original
state planned to be transmitted. Thus, in quantum information theory, a quantum channel [45]
is considered a completely positive trace-preserving map (CPTP) [46] between two spaces of
operators (in spite that quantum information could be moved from one system to another in
the channel). This CPTP map could represent not only a quantum operation obtained from the
quantum dynamics, instead, a circuit moving quantum information from one point or instant to
another. The reason because such map is positive and trace-preserving is due to maintaining
of the properties of the density matrix representing the quantum information involved. In
the last terms, a state, a quantum evolution and a traced state can be considered as quantum
channels [38].

Particularly in this chapter, but in general in all the work developed in this document,
we are solely interested in the analysis of quantum channels for single qubits (dimension 2).
As it is well known, the general form for the density matrix representing such quantum state
ensemble is [45]:

ρ =
1

2
(σ0 + ~n · ~σ) (2.1)

represented in terms of the Pauli operators σ0,where ~σ = (σ1, σ2, σ3). There, ~n = (n1, n2, n3)
is a three-dimensional vector that fulfills the condition |~n| ≤ 1. For the specific case where
|~n| = 1, we have a pure state ρ = |ψ〉〈ψ| but otherwise a mixed state. In such terms, it can be
introduced the form of the output state of a CPTP map through its Kraus operators [47]:

Λ[ρ] =
3∑
i=0

KiρK
†
i =

3∑
i=0

Tr(KiρK
†
i )

KiρK
†
i

Tr(KiρK
†
i )

=
3∑
i=0

Piρi (2.2)

with : Pi = Tr(KiρK
†
i ), ρi =

KiρK
†
i

Tr(KiρK
†
i )
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being ρi and Pi the populations and their associated probabilities. The set of four operators
Ki, i = 0, 1, 2, 3 fulfills

∑3
i=0 K

†
iKi = 1 (σ0 for the case of qubits) in order to preserve

the unitary trace of Λ[ρ]. Note in (2.2), it could be understood as the mixture of possible
outcomes when a measurement is performed on ρ. The form of Kraus operators depends on
the way the system being transmitted relates with the environment and then additionally of
the base being used to express ρ. If channel involves only N -local operations on the system
being transmitted and possibly classical communication (LOCC), it could be expressed easier
in terms of unitary operators Ui fulfilling Ki =

√
αiUi with

∑3
i=0 αi = 1 and 1 ≤M ≤ N2.

Depending on the base used, ρ could be expressed in alternative ways through a uni-
tary base transformation T as ρ = T ρ̃T †. Such transformation could be used to transform
the Kraus operators. Then, for a LOCC on qudits, one possible representation is the su(d)-
representation [48] with the Kraus operators being proportional to the generators {λi|i =
1, 2, ..., N2 − 1} of the su(d) algebra, together with the identity, λ0: Ki =

√
αiλi. It is not

difficult to solve the linear system TUiT
† = λi, i = 0, 1, 2, ..., d2 − 1. Such representation

is very useful to manage because its algebraic properties. In this work, we will restrict the
analysis to single qubit channels (N = 2) thus the generators being used will be the Pauli
operators {σi|i = 1, 2, 3} and the identity, σ0:

Λ[ρ] =
3∑
i=0

αiσiρσ
†
i (2.3)

which corresponds to a particular case of more general maps for qubits, which are called Pauli
maps or Pauli channels and describe more extensive operations in quantum information than
LOCC [49]. They includes noise sources which are present in many computing architectures,
while, at the same time, they establish a single practical model for the analysis of error cor-
rection and fault tolerance [50]. This kind of quantum channels exhibits important features
due to their relative easier treatment. In addition, (2.3) could be understood as a combination
of several syndromes generated on the state ρ [38]. Due to the Pauli operators properties, by
noting that:

∑3
i=0 αiσiσ0σ

†
i = σ0,

∑3
i=1 αiσi~n · ~σσ†i =

∑3
i,j=1 2niαjσi(2δij − 1), and then

applying (2.1) on (2.3):

Λ[ρ] =
1

2
(σ0 +

3∑
i=0

ni(2(α0 + αi)− 1)σi) → n′i = ni(2(α0 + αi)− 1) (2.4)

being ~n′ = (n′1, n
′
2, n

′
3) the corresponding vector for Λ[ρ] in agreement with (2.1). Note

that restriction
∑3

i=0 αi = 1 automatically fulfills the Fujiwara-Algoet conditions in order
to have a completely positive map [51]. Last formulas exhibit the behavior of the channel:
if α0 = 1, αi = 0, i = 1, 2, 3 we get a transparent channel, while if αi = 1

4
, i = 0, 1, 2, 3

the channel is the depolarizing one. Other syndromes as bit-flipping and dephasing noise (or
a combination of both) arise when we set only one of αi 6= 0, i = 1, 2, 3. Figure 2.1 shows
schematically the characterization of the channel (2.3) on the (α1, α2, α3) space, remarking the
three regions mainly dominated by the syndromes: dephasing, bit-flipping and both combined.
Transparent and depolarizing channels are remarked there. If additionally α0 6= 0, we get the
last channels stochastically combined with the transparent channel.
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Figure 2.1: Channel characterization in the space (α1, α2, α3) marking some emblematic
channels.

In the previous sense, sometimes a channel could be modeled as a stochastic one. It
means that channel can works perfectly as a transparent one ΛT [ρ] = ρ or as noisy one, ΛN [ρ]
with certain probabilities q0 and 1− q0 respectively. Then, the resulting channel becomes:

Λ[ρ] = q0ρ+ (1− q0)ΛN [ρ] =
3∑
i=0

βiσiρσ
†
i (2.5)

it is direct that if ΛN [ρ] have the form (2.3), then β0 = q0 + (1 − q0)α0 and βi = (1 −
q0)αi for i = 1, 2, 3. In this chapter we will not put emphasis in this kind of channels but
the generalization of the results including the parameter q0 is immediate due to those last
formulas.

As a measure for the performance of the quantum channel, we will use the fidelity
defined as [52]:

F(ρ,Λ[ρ]) =

[
Tr

(√√
ρΛ[ρ]

√
ρ

)]2

(2.6)

which, when ρ is a pure state, is reduced because ρ = |ψ〉〈ψ| then ρ =
√
ρ, thus for (2.3):

F(ρ,Λ[ρ]) = Tr2(
√
|ψ〉〈ψ|Λ[ρ]|ψ〉〈ψ|)

=
3∑
i=0

αi〈ψ|σiρσ†i |ψ〉Tr2 (|ψ〉〈ψ|) =
3∑
i=0

αiTr(σiρσ
†
i ) (2.7)
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nevertheless, for mixed states ρ, the use of (2.3) is necessary. In such case, for single qubits
due to (2.1), then we can find

√
ρ =

∑3
i=0 siσi by substituting it in ρ =

√
ρ
√
ρ and then

solving for si. It conducts to the system
∑3

i=0 s
2
i = 1

2
and 2s0si = ni

2
, i = 1, 2, 3. Finally, we

get (n = |~n|):

s0 =
1

2

√
1±
√

1− n2 (2.8)

si =
ni
2n

√
1∓
√

1− n2, i = 1, 2, 3 (2.9)

those results, together with the fact that for ρ =
∑3

i=0 siσi arbitrary then 2sk = Tr(ρσk) →
nk = Tr(ρσk), become useful to deal with (2.6) for general cases of mixed states transmission.
In the following, we will express the fidelity in short as FΛ ≡ F(ρ,Λ[ρ]) assuming the use of
the different formulas depending on the nature of the input state ρ.

As a final quotation, note that following a similar development, if M =
∑3

i=0 biσi is a
self-adjoint 2 × 2 matrix (bi = b∗i ), then

√
M ≡ ∑3

i=0 ciσi fulfills (both formulas for each
inner sign become equivalent):

c0 =

√√√√b0 ±
√
b2

0 −
∑3

i=1 b
2
i

2
(2.10)

ci =

√√√√b0 ∓
√
b2

0 −
∑3

i=1 b
2
i

2
∑3

i=1 b
2
i

, i = 1, 2, 3 (2.11)

As it will be shown in the next chapters of this work, teleportation can be seen as a
communication channel and most of the properties found under an indefinite causal order are
shown to be applicable for any communication channel. Particularly, we will show that a
communication channel behaves as Pauli channel [53]. The properties for the communication
channel are represented in Figure 2.1 for the classification of communication channels. Some
additional outcomes in the current terms for quantum channels are developed through the next
chapters and they are complementary included in the Appendices C and D.



Chapter 3

Teleportation Assisted by Indefinite
Causal Order

For the transmission of quantum information, from a place to a different location, it has been
pointed out the importance of using a resource called singlet (the entangled resource aimed
to assess the teleportation). Such singlet is going to be shared between the two locations
(transmitter and receiver), nevertheless, due to the existing imperfections in practice, the tele-
portation process becomes affected. This imperfect entangled resource can be described from
slight variances in relation with a perfect purely Bell state allowing a perfect teleportation to
a completely imperfect state that, in principle, messes the teleportation process up. In this
sense, some researches have been done and the concept of indefinite causal order has been
introduced [22].

In this chapter, an analysis considering a completely imperfect entangled state is studied
and some strategies to enhance the fidelity in the teleportation process are featured. Such
strategies include the use of quantum teleportation channels in indefinite causal order and the
advantages and downsides are presented.

The general aim of this chapter is to make an introduction in order to understand the
objectives that will be given in Chapter 4. Note that the work depicted here is a deeper
analysis from the work done by [22], thus obtaining the objectives as they are established in
Chapter 4.

3.1 Preliminaries for the Teleportation assisted by Indefi-
nite Causal Order

A perfect teleportation process can be reached when the entangled resource assessing the
teleportation is purely the Bell state |β00〉 = 1√

2
(|00〉 + |11〉). However, when performing

this teleportation process in some practical models, such entangled state becomes difficult to
create exactly as purely as the Bell state |β00〉 and, moreover, it is also difficult to sustain it
and, therefore, such singlet could arrive imperfect to the process, thus preventing a perfect
teleportation to be achieved. That is why it is more practical to consider a variation of this
resource that can be written in the form of the state:

16
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|χ〉 =
3∑
i=0

√
pi |βi〉 (3.1)

where |χ〉 is the representation of the imperfect entangled state as the sum of each one of the
possible contributions,

√
pi are the probabilities of the superposition (3.1) to be on the Bell

state βi and |βi〉, is a short notation for the Bell states where |β0〉 = |β00〉, |β1〉 = |β01〉,
|β2〉 = |β11〉 and |β3〉 = |β10〉, with:

|βij〉 =
1√
2

(|0 j〉) + (−1)i |1 j ⊕ 1〉 (3.2)

From the notation in (3.1) it can be noticed that the perfect case in quantum teleportation,
given when the entangled resource is equal to |β0〉, is described with p0 = 1 and, therefore,
p1 = p2 = p3 = 0. Nevertheless, for other cases rather than |β0〉, when the entangled state
is an arbitrary one, and considering the traditional teleportation algorithm running under this
resource instead of the perfect case, then the output is going to be equivalent to a quantum
channel whose outcome expression in therms of its Kraus operators is given by [54]:

Λ[ρ] =
3∑
i=0

piσ̃iρσ̃
†
i =

3∑
i=0

piσiρσi (3.3)

with the Pauli matrices as follows: σ̃i = σi if i = 0, 1, 3 and σ̃2 = iσ2, and where ρ = |ψ〉 〈ψ|
is the density matrix of the state to be teleported. Thus, for a single teleportation channel,
the corresponding Kraus operators are Ki =

√
piσi. For simplicity, it has been assumed an

egalitarian variation with p1 = p2 = p3 = p, and the complement p0 = 1 − 3p. This places
the constraint 0 ≤ p ≤ 1

3
on the value of p. This type of channels have been recently studied

when they are combined under indefinite causal order [55].

3.2 Redundant case for teleportation with N−channels
In order to get a better understanding of causal order in the quantum teleportation algorithm,
the cases where several teleportation channels are applied sequentially will be analysed here.
For this case we consider, in general, a set of redundantN−channels teleportation applied in a
definite causal order as composition (in addition, we consider for simplicity that each channel
is identical to other in the redundant application):

(©NΛ)[ρ] ≡ Λ[Λ[. . .Λ[ρ] . . .]] =
3∑

i1,...,in=0

pi1 · · · pinσiN · · · σi1ρσi1 · · · σiN (3.4)

Now, as it has been described in section 3.1, for simplicity and in order to avoid the
increasing parameters involved, the values for the entangled state will be described by p1 =
p2 = p3 ≡ p, and p0 = 1 − 3p, with 0 ≤ p ≤ 1

3
(notice that when the maximum value for

p is reached with p = 1
3
, the Bell state with which the perfect teleportation is achieved (|β0〉)

has no part in this scheme, thus considering a totally imperfect entangled state, and, on the
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other hand, the best case is given with p = 0 as it has been previously set). From here, we can
get the expressions for the corresponding fidelity obtained when the teleportation channels
are applied in succession (without the dependence on a quantum switch), obtained from the
definition for fidelity given in (2.6) but restricting it to the case for pure states, then it is
denoted as:

F©NΛ ≡ Tr(ρ(©NΛ)[ρ]) (3.5)

Therefore, from equation (3.5), an analysis can be made for the first five cases of re-
dundant sequential applications of teleportation considering the worst case with p = 1

3
and

therefore p0 = 0, in that case the expressions become:

F©1Λ = 1− 2p (3.6)
F©2Λ = 1− 4p+ 8p2 (3.7)
F©3Λ = 1− 6p+ 24p2 − 32p3 (3.8)
F©4Λ = 1− 8p+ 48p2 − 128p3 + 128p4 (3.9)
F©5Λ = 1− 10p+ 80p2 − 320p3 + 640p4 − 512p5 (3.10)

notably, these polynomials have fix points in p = 0 and p = 1
4
. From equations (3.6) to (3.10),

it can be noticed that those outcomes become independent from the state to be teleported
given as a consequence from egalitarian probabilities on the entangled state where p1 = p2 =
p3 = p = 1

3
for this case. In that case, a computational analysis has been developed to get last

outcomes for the first five sequential cases and, furthermore, other computational analysis can
be done for larger cases.

For a better representation of what happens with the fidelity F as the number of chan-
nels increases, Figure 3.1 exhibits the behavior of the applications of one to five identical
teleportation channels sequentially, showing the fidelity obtained as function of p. The gray
zone sets the middle point where F©1Λ = 2

3
of a fidelity F©1Λ ∈ [1

3
, 1] given for the specific

caseN = 1 as a reference as it was remarked in [22], being this zone the middle of the fidelity
obtained when applying just one teleportation channel and, therefore, an advantage is estab-
lished when this zone is surpassed or, on the other hand, when the fidelity is inside this zone
(under the middle point), there is no advantage on the use of the protocol with the number of
given channels.

The single case N = 1 sets the expected outcome about the effect of p on F©1Λ, giving
the worst value for p = 1

3
(see Figure 3.1). For N > 1 the outcome becomes as could be

expected, each application of a new teleportation worsens the output state teleported. Despite,
there is certain recovery for p = 1

3
, useful only for low values of N . It can be observed, as the

number ofN increases, that a convergent valueFN→∞ = 1
2

appears, being this the completely
depolarized state.

3.3 Scheme for teleportation with indefinite causal order
The proposed scheme for teleportation under an indefinite causal order scheme is to have N
teleportation channels applied back to back and controlled by the state on the control system
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Figure 3.1: Fidelity given by the number of teleportation channels when applied sequantially
for the first five sequantially applied channels.

in order to decide which channel is going to be applied first and which one then and so on.
For this purpose, Figure 3.2 represents the teleportation channel encapsulated as a box simply
named as T , that has only the unknown state as the entrance and at the output the same
unknown state.

Now, in order to depict the application of the teleportation channels, Figure 3.3 depicts
such process for two quantum teleportation channels, for a) one way of doing the teleportation
process followed unambiguously considering the control system on the state ρc = |0〉〈0| (for
the specific case depicted in figure, the way followed is T1 and then T2), b) the order is contrary
to a) when considering the state on the control system as ρc = |1〉〈1| and finally in c) the order
followed when the control qubit is a superposition of two states |0〉〈0| and |1〉〈1| with certain
probabilities for both to succeed given by q0 and its complement q1 = 1 − q0, the indefinite
causal order depends on the value of the state on the control system.

Figure 3.2: Teleportation circuit represented as a teleportation channel.
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For the case of two quantum teleportation channels, such scheme considers, for simplic-
ity, two identical teleportation channels applied in superposition and controlled by a control
state, thus having T1, T2 and the control state ρc as the elements ruling the teleportation.

Figure 3.3: Two causal order combinations depending on the control state depicted in: a)
when the control state is in |0〉〈0|, b) when it is in |1〉〈1| and c) when the control state is a
superposition of the previous states.

The Kraus operators Ki =
√
piσi given for one teleportation channel are going to be

the same for the other teleportation channel, assuming two identical channels with similar
characteristics, The outcome is obtained by a final measurement on the control state, where
the perfect teleportation process has been found to be reached when the measurement state is
|+〉 = 1√

2
(|0〉+ |1〉) [22].

A deeper analysis of the specific case with two teleportation channels using this scheme,
which has been taken as an example for the teleportation scheme under indefinite causal order,
will be held in the next section.

3.4 Teleportation with N = 2 teleportation channels in in-
definite causal order

For the analysis of the case with two channels (N = 2), the teleportation process assisted by
indefinite causal order has been studied and the the outcome for such process when applying
two teleportation channels in an indefinite causal order has been discussed in [22, 42], where
the features that come with the process are analyzed.

When applying two channels in an indefinite causal order, we will have two combina-
tions with different orders. Thus, we will need a control state with such number of dimensions
(|0〉 sets for the normal sequential order of gates T1, T2 and |1〉 sets the inverted order of gates
T2, T1) to rule the application of each causal order given by:

ρc =

(
1∑
i=0

√
qi|i〉c

)(
1∑
j=0

√
qj〈j|c

)
=

1∑
i,j=0

√
qiqj|i〉c〈j| (3.11)

By constructing the Kraus operators for two consecutive identical teleportation channels
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applied in indefinite causal order, but instead of applying a measurement on the control state
based on the states |±〉 (as in [22]), a general measurement is applied based on the state:

|ψm〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 (3.12)

and the correspondent orthogonal state
∣∣ψ⊥m〉 = sin θ

2
|0〉 − cos θ

2
e−iφ |1〉. When the measure-

ment on the control is in the state depicted in (3.12) the unnormalized output can be obtained
as:

Λ2
un[ρ] = 〈ψm|

(
3∑

i,j=0

Wij(ρ⊗ ρc)W †
ij

)
|ψm〉 (3.13)

=
3∑

i,j=0

pipj

(
(
1

2
+ (q0 −

1

2
) cos θ)σiσjρσjσi +

√
q0q1 sin θ cosφσiσjρσiσj

)
where Wij = KiKj ⊗ |0〉c〈0| + KjKi ⊗ |1〉c〈1| and the superscript 2 on the Λ refers to two
channels in indefinite causal order.

From equation (3.13), we can now get the fidelity as F = Tr (Λ2[ρ]ρ) assessing the
entire process as a comparative measure between the input and the teleported states as:

Fun =
3∑

i,j=0

pipj

(
(
1

2
+ (q0 −

1

2
) cos θ)S1

ij +
√
q0q1 sin θ cosφT 1

ij

)
(3.14)

and we can also determine the probability of successful measurement as P = Tr (Λ2[ρ]), thus
yielding:

P =
3∑

i,j=0

pipj

(
(
1

2
+ (q0 −

1

2
) cos θ)S0

ij +
√
q0q1 sin θ cosφT 0

ij

)
(3.15)

where Skij = Tr(ρkσiσjρσjσi) and T kij = Tr(ρkσiσjρσiσj) are the forms of the traces needed
in the process which involve the Paulli matrices as well as the density matrix of the state to be
teleported.

Nevertheless, the value for fidelity in (3.14) is not normalized and therefore it is required
to be normalized by dividing it over the probability as follows:

F =

∑3
i,j=0 pipj

(
(1

2
+ (q0 − 1

2
) cos θ)S1

ij +
√
q0q1 sin θ cosφT 1

ij

)∑3
i,j=0 pipj

(
(1

2
+ (q0 − 1

2
) cos θ)S0

ij +
√
q0q1 sin θ cosφT 0

ij

) (3.16)

following the same reasoning for the values of Skij and T kij described above.
Seen graphically, in [22], it has been shown that when the measurement state on the con-

trol is in the basis |ψm〉 = |+〉 the protocol can occur successfully even though the entangled
state is in the worst case, and there is an advantage over just one channel applied. On the other
hand, when the measurement state on the control is in the basis |ψm〉 = |−〉, the protocol fails
and no advantage is found there.
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Such behavior is depicted in Figure 3.4, where it is notorious an advantage when the
entangled state |χ〉 is completely contaminated (considering p = 1/3 where no contribution
of |β0〉 is given) and it is shown that a fidelity F = 1 can be still reached. The red line
represent the behavior when applying just one teleportation channel where no outstanding
results are found. The black line represents the sequential application of two teleportation
channels, obtaining advantages regarding to just one channel when the singlet tends to be
imperfect. The measurements when applying two teleportation channels in superposition of
causal order have been done considering the control state with q0 = 1

2
. The blue dashed lines

represent the case when the measurement is with |ψm〉 = |+〉 and the orange ones have been
done considering |ψm〉 = |−〉. Note in these lines the success of |ψm〉 = |+〉 over |ψm〉 = |−〉.

Figure 3.4: Fidelity given for the case of two channels as function of p. The blue dashed upper
line corresponds to |ψm〉 = |+〉 and q0 = 1

2
reaching F = 1 in p = 1

3
. The orange dashed

line represents the case when the protocol fails with |ψm〉 = |−〉 and q0 = 1
2

and there is no
advantage on the application of two channels in superposition of causal order

3.4.1 Two teleportation channels under indefinite causal order consid-
ering p1, p2, p3 ∈ [0, 1]

However, for the cases described above, the main consideration has been to have all the values
for p equal, except for p0 which is the complement p0 = 1−p, and from the Figure 3.4, the best
fidelity is only achieved with the worst case for the entangled state with p = 1

3
. However, it is

important to analyse the outcomes whenF = 1 is not reached: how to make possible a perfect
teleportation by varying the parameters and how the probability of success is compromised.

An analysis made considering the fidelity as function of differentiated p1, p2 and p3 is in
order. It means in the region with p1 ≥ 0, p2 ≥ 0 and p3 ≥ 0 and p1, p2, p3 ≤ 1 and, therefore,
p0 = 1− p1 + p2 + p3, notoriously, this places the constraint that p0 + p1 + p2 + p3 = 1.

Figure 3.5 shows, on a third part of the region, the dependence of the best fidelity from
the values for p1, p2, p3 (it implies an optimization was made on the initial control state and
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its measurement, it means on the parameters q0, θ, φ), the colour bar represents the fidelity
(3.16). The blue zone refers to the maximum fidelity achievable when varying the values of
pi, in this case, it is notorious that F ≈ 1 can be reached in a large zone when there is no
restriction for the values of pi to be equal.

Figure 3.5: Best fidelity F2 for the two channels case as function of p1, p2, p3. Each point
inside the polyhedron corresponds to their acceptable values and it is coloured in agreement
with its fidelity value (see the color-scale besides); the cut of polyhedron region exhibits the
inner structure.

Actually, from Figure 3.5, it seems that when the values of pi are different, it is better
for a best fidelity and not with p1 = p2 = p3 = p as it had been considered in the previous
analysis. In fact, note that according to the graph, the cases with the worst fidelity are located
in the middle of the line with p1 = p2 = p3 = p. All these aspects, for the two cases
p1 = p2 = p3 = p or pi arbitrary within the region, will be analysed extensively in the next
chapters together also with a more extensive application of teleportation channels, in order
to identify a convenient scheme to improve the quality of teleportation assisted by indefinite
causal order.



Chapter 4

Research Questions and Objectives

This chapter is focused on the main enhancements to be tackled and the approaches to be
followed in order to reach the objectives aimed to solve the questions. The research questions
are regarding the enhancement on the fidelity and probability of measurement. At the end of
the chapter, a diagram showing the techniques used to improve the teleportation process is
presented.

4.1 Research Questions
The research questions are oriented to seek for the best way to improve the teleportation pro-
cess when it is assisted by indefinite causal order. These enhancements include the application
of different basis in the measurement as different forms for the control state; they also include
the use of more than two teleportation channels in a superposition of causal orders. It is con-
sidered as well, the analysis of different strategies using the indefinite causal order to assist
the teleportation process.

Also, an experimental proposal is suggested at the end. For the last purpose, it is impor-
tant to consider an experimental model when performing teleportation (e.g. quantum optics).
Experimentally, the elements will vary slightly from the theoretical ones (such is the case for
the entangled state used as a resource), hence, theoretical as well as experimental models are
considered.

4.1.1 Improvement of the teleportation process with arbitrary control
states and measurement basis

The teleportation process has been developed in [22] considering two identical channels ap-
plied in superposition of causal order with a control state for the superposition of the order.
Nevertheless, there the teleportation process is treated with a specific case for the measure-
ment basis (the measurement state |+〉 which effectively made the protocol succeed) and,
moreover, the control state was supposed to have the same probabilities for the orders to
happen. But it is important to analyse other control states in order to know if the protocol
improves or worsens. Could it be possible to reach F = 1 when either the measurement basis
or the control state change? Within the analysis, more characteristics must be analysed, not

24
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only the fidelity but also other aspects such the probability of successful measurement in the
process.

Therefore, one of the main interests is to analyse the possibility to find a better tele-
portation process by changing the measurement basis in order to find an optimal case where
fidelity F is improved without compromise the probability P . For this process, a general
measurement can be analysed (in the form |ψm〉 = cos θ

2
|0〉 + sin θ

2
eiφ |1〉) and, by changing

the values for θ and φ, different states on the Bloch sphere could be considered as potential
measurements on the control. Together, the probabilities on the control state depicted in (3.11)
can be moved trying other values qi in the control state (controlling the superposition of or-
ders in the teleportation channels), in order to find optimal cases with different probabilities
to those in [22] enhancing the teleportation in terms of fidelity and probability.

4.1.2 Enhancements in teleportation when more than two teleportation
channels in indefinite causal order are introduced

The importance of the application of indefinite causal order has been studied in [22, 42],
finding the capability of indefinite causal order to aid in the teleportation process when using
two channels in indefinite causal order. However, in these cases, although F = 1 can be
reached, the probability of reach this outcome is not always high and, moreover, that fidelity
is only reached under the assumption of having the worst case on the entangled state described
in (3.1) with p1 = p2 = p3 = p = 1

3
.

As comparison, in communication, when a very noisy channel is used in the process
(the so called depolarizing channel), all the information is lost and, it has been demonstrated
that by using two depolarizing channels in indefinite causal order then the information can
be actually transmitted [13, 21], and, even better, when more than two channels in indefinite
causal order are applied, communication protocol improves and the quantity of information
transmitted increases [23, 14]. Could also a larger number of teleportation channels under
indefinite causal orders to improve the teleportation process?

Therefore, an approach based on increasing the number of teleportation channels in an
indefinite causal order used in the process can be studied to analyse how the transmission
of information is enhanced (in the case of teleportation, how the fidelity of teleportation is
improved) as function of such number of channels.

4.2 Research objectives

4.2.1 To explore other control states and measurement control basis to
improve F

The main objective in the research is to improve F by analysing different strategies involv-
ing indefinite causal order as a central support. Alternative intermediate measurement based
strategies are also considered.

A first particular objective is to analyse a general control state together with a general
basis for the control measurement instead of the measurement based on the states |±〉 (as in
[22]) in order to observe the impact on the fidelity and success probability.
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For all the cases analysed, considerations on the entangled resource (3.1) are taken into
account. Both, values equal for p (p0 = p1 = p2 = p) and values different between them
(p1, p2, p3 ∈ [0, 1

3
]) are analysed, so that the behavior of fidelity and success probability can

be studied.

4.2.2 To explore the application of a larger number of teleportation chan-
nels in indefinite causal order to improve F in the teleportation
process

Since an improvement in quantum communication is given when the number of channels
applied in indefinite causal order increases, the second particular objective is to analyse this
larger application of N teleportation channels in superposition of causal order to enhance the
process in terms of the increasing of F .

In the same sense, it will be interesting to explore other combinations of indefinite causal
order application along with the measurement basis in order to find the best way of doing
the teleportation process with the purpose of obtaining better results for fidelity and success
probability.

4.2.3 To establish a procedure in order to use indefinite causal order
with improved outcomes for F and Pm

Strategies presented and followed have shown improvements for the fidelity in the process,
nevertheless, the probability of measurement did not result outstanding. That is why this
was an additional objective that emerges from a necessity found from the other objectives,
where, somehow, the results obtained are optimized, but additionally an improvement on Pm
is sought.

In this sense, some other known elements of quantum theory of communication are
necessary to be introduced in order to establish a strategy along with indefinite causal order
and post-measurement to obtain an enhanced teleportation process in terms of fidelity and
probability of measurement.

4.2.4 To present an insight for an experimental approach for the con-
structed procedure

In communication, some experimental approaches have come out as well regarding the use of
indefinite causal order with partial depolarizing gates, described in theory in [23] and then,
there, an improvement has been also demonstrated experimentally [14].

Nevertheless, regarding teleportation, there is a lack of information about the use of in-
definite causal order assisting the teleportation process for an experimental approach. Some
alternative schemes have been proposed as it is mentioned in [12], but in this case, indefinite
causal order is used by trying to maintain the entangled state unaltered when it initially transit
through a communication channel (entanglement distribution) to then perform the teleporta-
tion process correctly. Despite, some other approaches are necessary to more deeply analyse
the use of indefinite causal order in order to improve the teleportation process.
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For this reason, it is necessary to review the literature for current experimental ap-
proaches in order to analyse whether the theoretical proposal here described can be devel-
oped with the known tools. For that, here is provided an experimental proposal to corroborate
the quantum teleportation assisted by indefinite causal order based on the current theoretical
analysis.

4.3 General diagram for teleportation enhancement
For a more pictorial view of the objectives aimed to do, Figure 4.1 shows a diagram of a sum-
mary of the strategies pretended to be explored in order to achieve the objectives previously
described, remarking that the main target is to improve the teleportation process in terms of
its fidelity F and probability of successful measurement Pm.

Figure 4.1: Diagram summarizing the research lines to follow in order to improve the telepor-
tation process when it is assisted by indefinite causal order. Each branch represents each one
of the main contents in this research report which will be addressed in the next chapters.

In each branch of the diagram, the strategies to follow are presented. This strategies
include the analysis of variations on the control state ruling the order of the channels to be ap-
plied in teleportation as well as in the measurement state. It is also considered the application
of an increasing number of channels in superposition to analyse the feasibility of such proto-
col. Also, variations on the entangled state assisting the teleportation are analysed and a some
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other combinations in strategies including an indefinite causal order along the variation of the
parameters previously described in order to enhance the teleportation algorithm. Finally, an
experimental proposal is needed to test the analytical development found along the research.

With this proposal, Chapter 5 presents the analysis followed for the case with two chan-
nels in superposition of causal order with different scenario on the entangled state. Chapter 6
presents a detailed analysis when the number of channels in indefinite causal order increases.
Chapter 7 proposes an experimental approach to test the data obtained in the previous chap-
ters. Finally, the conclusions are given in the last chapter for the following of the research
along the objectives proposed.



Chapter 5

Two channels in Indefinite Causal Order

In order to study the feasibility of using causal order in teleportation, here we get started by
analysing the use of two channels in an indefinite causal order. In this section we will extend
the analysis developed by [22] and presented in Chapter 3 in terms of the use of a more general
form for the control state, thus together for the measurement basis used on it.

5.1 Formalism to set quantum teleportation under an indef-
inite causal order scheme with two channels

The aim is the teleportation of the unknown state:

|ψ〉 = cos
θ0

2
|0〉+ sin

θ0

2
eiφ0 |1〉 (5.1)

with the density matrix ρ = |ψ〉〈ψ|. The imperfect entangled state assessing the teleportation
|χ〉 =

∑3
i=0

√
pi|βi〉 is the sum of the Bell states with their corresponding probabilities p,

where, for simplicity, let us start considering p1 = p2 = p3 = p with p ∈ [0.1
3
] and p0 as the

complement p0 = 1 − 3p, thus allowing to have different contributions from each one of the
Bell states (|β0〉, |β1〉, |β2〉 and |β3〉).

If the Bell state |β0〉 is used as the successful entanglement resource, the general output
of the channel is given by (3.3) with p0 = 1, p1 = p2 = p3 = 0 getting the perfect teleportation
process. Otherwise, we can use formulas for F and P described in (3.14) and (3.15) [42] in
order to analyse the behavior of the scheme with two channels under indefinite causal order
for general cases.

The formulas given for the fidelity with two channels (F2) and the probability of the
successful measurement (Pm) given in (3.16) and (3.15) respectively, become reduced for
pure states ρ = |ψ〉 〈ψ| , |ψ〉 = α|0〉+ β|1〉 and p0 = 1− 3p, p1 = p2 = p3 = p considering:

29
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3∑
i,j=0

pipjTr(ρσiσjρσjσi) = 1− 4p+ 8p2 (5.2)

3∑
i,j=0

pipjTr(σiσjρσjσi) = 1 (5.3)

3∑
i,j=0

pipjTr(ρσiσjρσiσj) = (1− 2p)2 (5.4)

3∑
i,j=0

pipjTr(σiσjρσiσj) = 1− 12p2 (5.5)

Note the combination of formulas (5.2) and (5.3) gives the sequential case in (3.7). Other
two terms correspond to the interference terms. Formulas (5.2) and (5.4) can be demonstrated
noting that:

ρ =
1

2
(σ0 + n̂ · ~σ) (5.6)

with : n̂ = (|α|2 − |β|2, αβ∗ + α∗β, i(αβ∗ − α∗β)),

~σ = (σ1, σ2, σ3)

5.2 Quantum teleportation ruled by an arbitrary control
state for two channels under indefinite causal order

Let us start considering the values for the probabilities of the control q0 (described in (3.11))
different from 1

2
, that is 0 ≤ q0 ≤ 1 and the correspondent complement q1 = 1− q0, in order

to find the best possible basis for the control to obtain a successful teleportation. Therefore,
some other measurement basis for the control state rather than {|−〉, |+〉} cases proposed in
[22] will be considered.

The fidelity for the quantum teleportation under a two channels scheme in an indefi-
nite causal order has been described in section 3.4 with formula (3.16) for the fidelity. We
can still simplify formula (3.16) using the Pauli matrices and the trace operation properties:
Tr(σiσjρσjσi) = 1 and Tr(σiσjρσiσj) = δij+(1−δij)(1−2sgn(ij)) = 1−2sgn(ij)(1−δij),
with sgn(ij) the sign function resulting on the formula:

F2 =

∑3
i,j=0 pipj

(
(1

2
+ (q0 − 1

2
) cos θ)S1

ij +
√
q0q1 sin θ cosφT 1

ij

)∑3
i,j=0 pipj

(
(1

2
+ (q0 − 1

2
) cos θ) +

√
q0q1 sin θ cosφ(1− 2sgn(ij)(1− δij))

) (5.7)

Now, it can be shown that for the worst case where p1 = p2 = p3 = p = 1
3

and p0 = 0
it is possible to reach a perfect teleportation (F = 1) not only with a measurement state |+〉
but also by choosing adequately the measurement state (3.12). It can also be analysed the
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case where the probabilities on the control are not equal (q0 = 1
2
), but taking values for q0 in

0 ≤ q0 ≤ 1 and q1 = 1− q0. It can be solved numerically the optimization problem by fixing
q0, the last pi values and then finding the best θ and φ in (3.12) maximizing F in (3.16).

Figure 5.1: In the contour plots a) - e) for F2, it is indicated the values for θ and φ such that
F2 = 1 is reached (q0 = 0.1, 0.3, 0.5, 0.7, 0.9 and P = 0.12, 0.28, 0.33, 0.28, 0.12 respec-
tively). Color bar shows the values of fidelity. Plot f) exhibits the relation between θ and q0

under the election of the best control measurement (φ = 0 always).

Figure 5.1 shows some illustrative graphs where F2 = 1 is reached by varying the mea-
surement state. Contour plots a) - e) correspond to different values on the control state ruling
the order in superposition with q0 = 0.1, 0.3, 0.5, 0.7 and 0.9 deploying the fidelity values for
the entire measurement states (3.12) in the Bloch representation in agreement with the color
bar besides. The best state (F2 = 1) is marked with a black dot stating the corresponding
values of θ and φ. The case in [22] has the best P = 0.33. Note 5.1c corresponds to the case
analyzed in [22] where |ψc〉 = |+〉 as optimal measurement. Plot 5.1f shows θ versus q0 (note
φ = 0 in all cases), despite it has been obtained numerically, it can be inferred that the relation
between θ and q0 is:

q0 =
1

2
(1− cos θ) (5.8)

and if (5.8) is substituted in (5.7), the value for fidelity is effectively 1, therefore, F2 = 1
can be still reached even though the values on the control are not necessarily q0 = 1

2
and the

measurement state in the basis |±〉, but also by choosing correctly those values. In this case,
the value of Pm is:
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Pm =
4

3
q0(1− q0) (5.9)

which the maximum value is Pm = 1
3

for q0 = 1
2

(the value reported by [22]). Let us remark
that in all cases in the Figure 5.1, the values p for the entangled state are equal to 1

3
, for that,

the case where p 6= 1
3

will be analysed in the following.

5.3 Two quantum channels in indefinite causal order with
an entangled state with p ∈ [0, 1

3]

It can be asked about the best performance for cases where p 6= 1
3
. Unfortunately, the situation

is not optimal there. Plot 5.2a shows the best fidelity found for a case in this situation with
p = 1

6
and q0 = 1

4
where F = 0.60 is obtained with a respective probability P = 0.28, thus

obtaining that the optimal case does not give F2 = 1. In fact, surprisingly the outcome is
independent from q0: once selected the p-value, the best fidelity becomes fixed. Thus, Figure
5.2b reproduces the curve reported in Figure 2 of [22] for the q0 = 1

2
case. Nevertheless,

for other values for q0 rather than q0 = 1
2
, the scheme does not improve, even though using

the optimal measurement basis, and, therefore, F2 is not better for other values of q0. The
dependence of θ with p and q0 is reported in the Figure 5.2b, the same than in Figure 5.1f
which denotes the independence from p.

Figure 5.2: Outcomes for the fidelity F for other values of p different from 1
3
. a) Shows the

contour plot for F for p = 1
6

and q0 = 1
4
; b)-c) depicts the dependence of F and θ from p and

q0.

However, for the case N = 2, [42] has shown that for different values of q0 = 1
2
, other

measurements |ψm〉 = cos θ
2
|0〉 + sin θ

2
eiφ |1〉 are possible in order to achieve F2 = 1 when

p = 1
3

giving φ = 0 and θ distributed as in the Figure 5.3 as function of q0. Thus, best fidelities
F2 depends entirely from p (see the color-scale besides in Figure 5.3) but the corresponding
values of Pm go down far from q0 = 1

2
(θ = π

2
). The red dotted line is the threshold setting the

minimum fidelity reached in the optimal case for p = 3−
√

3
6

, F2 = 1√
3
. Thus, the conclusion
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Figure 5.3: Condensed outcomes for the case N = 2. The respective probability Pm of
measurements are included as function of q0 and θ in |ψm〉 = cos θ

2
|0〉+sin θ

2
eiφ |1〉 (φ = 0 in

the optimal measurement). Fidelity depends entirely from p and Pm goes down while p→ 1
3
.

is that for p = p1 = p2 = p3, the best state for the control is q0 = 1
2

in order to maximize Pm,
despite only for p = 1

3
and p→ 0 it is possible to approach F2 → 1.

In these schemes, all the cases are considered to have p1 = p2 = p3 = p and their values
are considered both equal to 1

3
and in the interval [0, 1], but all the values remain the same for

the three p, then, it is important to analyse other values where p are different between them.

5.4 Two quantum channels in indefinite causal order with
an entangled state with p1, p2, p3 ∈ [0, 1]

Fidelity (3.16) can be still analysed for independent values of p1, p2, p3. Figure 5.4 shows a
numerical analysis to search the best possible fidelity (achieved for certain teleported state)
max|ψm〉,q0(F2) for all possible |ψm〉 and 0 ≤ q0 ≤ 1. The value of fidelity F2 is represented
in color in agreement with the color-scale bar besides. Figure 5.4a shows a cut from the entire
plot showing the inner core where fidelity goes down (three parts are almost symmetric).
The higher values of fidelity on the faces of polyhedron suggest that better solutions can be
reached for other cases with unequal values of pi, i = 1, 2, 3. The case p1 = p2 = p3 ≡ p falls
in the central red dashed division crossing the clearer core reflecting the outcome in Figure
3.4 where not good values of F2 are inevitably obtained far from p = 0 and p = 1

3
.

In addition, complementary information for such cases is given by Pm in Figure 5.4b,
the probability to reach the corresponding higher fidelity in each process assisted by an in-
termediate optimal measurement on the control qubit. Plot depicts disperse outcomes barely
around of Pm ≈ 0.5. By performing a numerical statistics of our outcomes for each Pm,
we get an approximation to its statistical distribution ρPm included in the upper inset. This
distribution shows a symmetric behavior around of Pm = 0.5 as it could be expected.

All in all, even though a F2 = 1 can be reached with two quantum channels in super-
position of causal order, the probability of measurement Pm is compromised as it has been
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Figure 5.4: a) Best fidelity F2 for the two channels case as function of p1, p2, p3. Each point
inside the polyhedron corresponds to their acceptable values and it is coloured in agreement
with its fidelity value (see the color-scale besides); the cut of polyhedron region exhibits
the inner structure; b) The corresponding values for measurement probabilities Pm denoting
disperse values around 0.5. The upper inset confirms the statistical distribution ρPm exhibiting
symmetry around Pm = 0.5.

shown in Figure 5.4 to be around Pm = 0.5 and, therefore, some other schemes for enhanc-
ing the teleportation process must be considered using more gates in superposition of causal
order, which will be part of the next chapter. It can also be considered the same scheme with
two channels but implementing additional modifications to the simply application of causal
order.

Figure 5.5: Best fidelity F2 for the two channels case as function of p1, p2, p3 in the frontal
face.
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Actually, a numerical analysis for the two teleportation channels scenario in superpo-
sition of causal order can be realized. Figure 5.5 shows 105 states covering the frontal face,
thus, the best fidelity is obtained using two teleportation channels under indefinite causal or-
der by taking the optimal measurement on the control state together with the best state able to
be teleported. It can be then inferred from Figure 5.5 that the most of the values at the frontal
face are F2 ≈ 1, thus representing the best possible scenario. Therefore, an analysis based
only on the frontal face can be considered in particular related to the values of Pm. This same
result found for two channels also occurs for N−channels in superposition of causal order.

From here, note that the perfect teleportation can be reached with the application of two
channels under an indifinite causal order, unfortunately, Pm reduces as the value of p rises,
therefore it is necessary a deeper analysis with other approaches in order to improve Pm but
without compromise the fidelity.



Chapter 6

N-channels in Indefinite Causal Order

Now the aim is to continue applying the idea when two channels are applied under an indef-
inite causal order controlled by a control system. In this case, when more than two channels
are applied is studied in order to look for enhancements to Pm but maintaining the best fidelity
possible, since it has been shown that a perfect teleportation can be reached with only N = 2
channels in superposition of indefinite causal order but Pm can be compromised.

6.1 Preliminaries to the analysis of the teleportation process
with N-channels under indefinite causal order

When applying N channels in an indefinite causal order, there will be N ! combinations with
different orders and, for this case, the control for the process will have such N ! number
of dimensions to rule the application of each one of the orders (where particularly |0〉 will
denote the normal sequential order of gatesT1, T2, ..., TN ). Similarly to (3.11) but now for
N−channels, the control ruling the application of each causal order is given by:

ρc = (
N !−1∑
i=0

√
qi|i〉c)(

N !−1∑
j=0

√
qj〈j|c) =

N !−1∑
i,j=0

√
qiqj|i〉c〈j| (6.1)

By defining a causal order of teleportation channels Ti1 , Ti2 , ...TiN that are given by the
element πk ∈ ΣN in the symmetric group of permutations ΣN , the effect will be:

πk =

(
Ti1 Ti2 · · · TiN
Tij1 Tij2 · · · TijN

)
→ πk(Ki1Ki2 · · ·KiN ) = Kij1

Kij2
· · ·KijN

(6.2)

and symbolically corresponding to the control state |k〉c, the corresponding Kraus operators
Wi1,i2,...,iN are:

Wi1,i2,...,iN =
N !−1∑
k=0

πk(Ki1Ki2 ...KiN )⊗ |k〉c〈k| (6.3)

where π0(Ki1Ki2 ...KiN ) = Ki1Ki2 ...KiN Thus, using (6.3) the output for N−channels in
superposition of causal order is given by:

36
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ΛN [ρ⊗ ρc] =
∑

i1,...,iN

Wi1,i2,...,iNρ⊗ ρc (Wi1,i2,...,iN )† (6.4)

=
∑

i1,...,iN

(∑
k

πk (Ki1Ki2 . . . KiN ) |k〉〈k|
)
ρ⊗ ρc

(∑
k′

πk′ (Ki1Ki2 . . . KiN ) |k′〉〈k′|
)†

=
∑

i1,...,iN

pi1 · · · piN

(∑
k

πk (σi1 · · · σiN ) |k〉〈k|
)
ρ⊗ ρc

(∑
k′

π†k′ (σi1 · · · σiN ) |k′〉〈k′|
)

=
∑

i1,...,iN
k,k′

pi1 · · · piN
√
qkqk′ |k〉〈k′| ⊗ πk (σi1 · · · σiN ) ρπ†k′ (σi1 · · · σiN ) (6.5)

hereafter, the tensor product ⊗ will be suppressed in the notation for simplicity. Still, using
the combinatorics and the properties of Pauli matrices, we can address last formula to reach a
simpler expression, by noting that the ij ,with j = 1, 2, . . . , N , indices can allow to reorder the
sums by putting them together. For instance, for the case N = 2 with K0K0 it will result in
t0 = 2, t1 = 0, t2 = 0 and t3 = 0. This case is explained with N = 2, because when working
with N > 2 it would be very large. Actually, by noting that the sum in (6.5) including all
different values given to i1, i2, . . . , iN can be changed as follows:

3∑
i1=0

3∑
i2=0

...
3∑

iN=0

−→
N∑
t1=0

N−t1∑
t2=0

N−t1−t2∑
t3=0

N ′∑
p=1

(6.6)

where tj is the number of scripts in i1, i2, ..., iN equal to j (t0 = N − t1 − t2 − t3). Sum over
p runs on the distinguishable arrangements obtained with a fix number tj of operators σj and
N ′ = N !

t0!t1!t2!t3!
by means of a certain permutation π

k
t1,t2,t3
p

. In such case, formula (6.5) can be
written as:

ΛN [ρ⊗ ρc] =
∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N∑
t1=0

N−t1∑
t2=0

N−t1−t2∑
t3=0

3∏
j=0

p
tj
j ⊗ (6.7)

N ′∑
p=1

πk

(
π
k
t1,t2,t3
p

(
σt00 σ

t1
1 σ

t2
2 σ

t3
3

))
ρ
(
πk′
(
π
k
t1,t2,t3
p

(
σt00 σ

t1
1 σ

t2
2 σ

t3
3

)))†
which provides a formula for ΛN [ρ⊗ ρc] in terms of a definite number of sums and with the
teleported state almost separated from the control state. Note in this notation, the superscript
N in Λ refers to N channels in indefinite causal order. Using the properties of Pauli matrices
algebra, it is clear that both permutation terms besides ρ in (6.7) becomes equal until a sign
and in addition each one are in the set {σj|j = 0, 1, 2, 3}. Thus, (6.7) becomes a mixed state
obtained as a linear combination of syndromes σjρσj, j = 0, 1, 2, 3 together and normally
entangled with the control state.

Following to [22], then we select an adequate basis to perform a measurement for the
control state, which for the general case will be given for B = {|ψMi

〉|i = 1, 2, ..., N !}. In
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such basis we hope to find a privileged state |ψm〉 ∈ B to maximize the fidelity in a process
with N−channels in superposition of causal order given by:

FN =
Tr(ρ〈ψm|ΛN [ρ⊗ ρc] |ψm〉)

Pm
(6.8)

and with probability of successful measurement Pm, also for N−channels in an indefinite
causal order, given by:

Pm = Tr(〈ψm|ΛN [ρ⊗ ρc] |ψm〉) (6.9)

Such process for N−channels is depicted by Figure 6.1 where N ! causal orders are
considered to arrive to the pictorial representation of a complete superposition of causal orders
on the right. Each teleportation channel is represented by Ti and each causal order corresponds
to a definite order in the application of channels Ti ruled by the control state ρc above it.

Figure 6.1: N ! causal order combinations for N identical teleportation channels Ti, i =
1, 2, ..., N conforming finally a superposition of those causal orders. Each one is ruled by
the control state above.

In (6.9), Pm sets the probability of success of the process. If the measurement of control
does not conduct to |ψm〉 then other undesired teleportation outcome will be obtained. Then,
if the desired outcome is not obtained, we disregard the output state.

6.2 Analysis of quantum teleportation when increasing the
number of channels applied

Formula (6.7) exhibits superposition of terms finally involving the states ρ, σ1ρσ1, σ2ρσ2 and
σ3ρσ3 while they become entangled with the control state ρc. In the next sections we deal with
two cases of interest for the use of the teleportation algorithm under indefinite causal order.

6.2.1 Case p1 = p2 = p3 ≡ p

We will address first the case with p = p1 = p2 = p3 widely used in the literature for its
simplicity. In [22], it has been suggested that for |ψm〉 having one of the following forms:
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|ϕ±m〉 ≡
1√
N !

N !−1∑
i=0

(±1)σ(πi)|i〉 (6.10)

the teleportation fidelity becomes optimal. There, σ is the signature of the parity of each
order |i〉. By considering (6.7) together with (6.10) and the control state with qk = 1

N !
∀k =

0, 1, ..., N !− 1:

〈ϕ±m|ΛN [ρ⊗ ρc] |ϕ±m〉 =
∑
k

∑
k′

1

N !2
(±1)σ(πk)+σ(πk′ )

N∑
t1=0

N−t1∑
t2=0

N−t1−t2∑
t3=0

3∏
j=0

p
tj
j ·

N ′∑
p=1

πk

(
π
k
t1,t2,t3
p

(
σt00 σ

t1
1 σ

t2
2 σ

t3
3

))
ρ
(
πk′
(
π
k
t1,t2,t3
p

(
σt00 σ

t1
1 σ

t2
2 σ

t3
3

)))†
(6.11)

Then, we have developed the formulas (6.5) and (6.8) with |ψm〉 = |ϕ±m〉 in (6.10) to get
both FN and PN for N = 2, 3, 4, those formulas (reported in Appendix A) have been plotted,
the outcomes are shown in Figure 6.2 showing that a perfect fidelity FN = 1 for p = 1

3

is achieved when |ϕ±m〉 meets with the same parity to N (p is indicated in the color-scale
besides). Despite, for p = 1

3
the success probabilities Pm decrease while N increases. For

|ϕ−〉 and N = 4, we get Pm = 0, thus F4 becomes undefined in such case. While p ∈ [0, 1
6
]

the best election is the single teleportation channel, for p ∈ [1
6
, 1

3
], the assistance of the causal

order becomes an alternative to enhance the fidelity of teleportation, particularly with N = 3
channels.

Figure 6.2: Probability Pm to obtain different values of fidelity FN when the measurement
states |ϕ+〉 or |ϕ−〉 are applied for cases a) N = 2, b) N = 3 and c) N = 4. Color-scale bar
depicts the respective value for p for N = 2, 3, 4.

Figure 6.3 compares again the fidelity FN versus p for both measurements compared
with the corresponding sequential case showing the alternated optimization of FN as function
of the parity of N and |ϕ±m〉. Despite, the outcomes in Figure 5.4 suggest to analyse the
behavior of FN for independent values of p1, p2, p3.
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Figure 6.3: Comparison of Fidelity obtained when the channels are applied sequentially and
with causal order depending on the measurement state.

6.2.2 Case pj � 1, j = 1, 2, 3

In some practical models, the expected values for the entangled resource |χ〉 vary slightly
from a perfect entangled state: pj � 1 for j = 1, 2, 3. Thus, the outcome described through
formula (6.7) becomes in this case (developing to first order for pj, j = 1, 2, 3 the factor∏3

j=0 p
tj
j there):

ΛN [ρ⊗ ρc] ≈
[(

1−N
3∑
j=1

pj

)
ρ+N

3∑
j=1

pjσjρσj

]
⊗ ρc ≡ ρout ⊗ ρc (6.12)

note that under this approximation, ρc becomes unaltered and uncoupled from the system
state. Thus, the optimal way to teleport the state implies to measure the control state consid-
ering |ψm〉 =

∑
k

√
qk|k〉. In the following we assume such optimal measurement made on

the control state.
For the particular case where pj = 1

4N
with j = 1, 2, 3, last formula can be written as:

ΛN [ρ⊗ ρc] ≈
1

2
σ0 ⊗ ρc (6.13)

obtaining the totally depolarized state 1
2
σ0. Notice it is only applicable for very large values

of N (due to the assumption pj � 1, j = 1, 2, 3). This aspect is advised in the Figure 6.2
where the fidelity drops more rapidly to 1

2
when N grows.

In general, the probability and fidelity given in (6.12) will become respectively (devel-
oping to first order in pj, j = 1, 2, 3):
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Pm ≈ Tr[ρout] = 1 (6.14)

FN ≈ Tr[ρρout]

Pm
= 1−N

3∑
j=1

pj(1− n2
j)

≡ 1−Npts

3∑
j=1

αj(1− n2
j) ≡ 1−Npts∆

α1,α2,α3

θ,φ (6.15)

where the quantity ∆α1,α2,α3

θ,φ =
∑3

j=1 αj(1 − n2
j) represents a variation depending on the

values α1, α2, α3, θ and φ, and ρ was written as in (5.6). We have introduced the reduced
parameters αj ∈ [0, 1] and the threshold probability pts � 1 to limit the validity of the current
approximation (pj = ptsαj � 1, j = 1, 2, 3). We note in any case that an increasing of N
worsens the fidelity. Note each term in the sum in (6.15) is non-negative, thus the fidelity
becomes commonly reduced. Because only one of n2

j , j = 1, 2, 3 could be one at the time,
then it is necessary two pj become zero to get FN = 1. Otherwise, FN < 1 with a near
decreasing if N is large. The outcome in (6.14) exhibits a combinations of the three error-
syndromes σ1ρσ1, σ2ρσ2, σ3ρσ3 reflected through the terms αj(1−n2

j) as function of αj . Thus,
for each syndrome σjρσj the best states being teleported are those closer to the eigenstates of
σj , otherwise while several αj 6= 0 the teleportation capacity becomes reduced.

Considering ρ = |ψ〉〈ψ| with |ψ〉 = cos θ
2
|0〉 + sin θ

2
eiφ |1〉 on the Bloch sphere: n1 =

sin θ cosφ, n2 = sin θ sinφ, n3 = cos θ. Then, we analyse each syndrome and its impact on
the fidelity through the quantity ∆α1,α2,α3

θ,φ , as lower it becomes, higher becomes FN . Figure
6.4a shows the simple behavior of ∆α1,α2,α3

θ,φ for each state on the Bloch sphere under each
syndrome: p1 = 1, p2 = p3 = 0, p2 = 1, p1 = p3 = 0 and p3 = 0, p1 = p2 = 0 in such
order. We are denoted as |0j〉 and |1j〉 to the eigenstates of σj, j = 1, 2, 3. Note the behavior
commented in the previous paragraph.

Despite, the most interesting issue is centered in the fact that the entanglement resource
|χ〉 is normally unknown but with a tiny variation of |β0〉 through the deformation parameters
p1, p2, p3. By calculating the average and the standard deviation of ∆α1,α2,α3

θ,φ on the parameters
α1, α2, α3 ∈ [0, 1]:

µ∆
α1,α2,α3
θ,φ

=

∫ 1

0

∫ 1

0

∫ 1

0

∆α1,α2,α3

θ,φ dα1dα2dα3 = 1→ µFN = 1−Npts (6.16)

σ∆
α1,α2,α3
θ,φ

=
√
µ

∆
α1,α2,α3
θ,φ

2 − µ2
∆
α1,α2,α3
θ,φ

=
1

8
√

6

√
53 + sin4(θ) cos(4φ) + 4 cos(2θ) + 7 cos(4θ) (6.17)

∈ [
1

3
,

1√
6

]

→ σFN = Nptsσ∆
α1,α2,α3
θ,φ

(6.18)

we note that the average value of fidelity FN = 1−Npts becomes independent from the state
being teleported. While, the dispersion for ∆α1,α2,α3

θ,φ on the values p1, p2, p3 depends from the



CHAPTER 6. N-CHANNELS IN INDEFINITE CAUSAL ORDER 42

Figure 6.4: Bloch sphere showing under the assumption pj � 1, j = 1, 2, 3 for each state:
a) ∆α1,α2,α3

θ,φ in color obtained for each syndrome in (6.12), σ1ρσ1, σ2ρσ2, σ3ρσ3 respectively,
and b) the standard deviation σ∆

α1,α2,α3
θ,φ

in (6.18). Red is the best fidelity in a) and the lower
dispersion in b).

teleported state and it becomes lowest for the eigenstates of σ1, σ2, σ3. In fact, the exact result
for the case of N = 1 is precisely (6.15) with such value in (3.3): F1 = 1−∑3

j=1 pj(1− n2
j),

thus the values in (6.18) are scaled from it by a factor N . The reason is easily noticed, the ρout

in (6.12) obtained by linearization from (6.8) coincides with the sequential case (3.4) under
linearization, so both cases exactly meets under the current limit. It implies that indefinite
causal order in teleportation become unpractical in this limit.

So far, as a first conclusion, it can be noticed that, the teleportation process seems to
be better for the case with only two channels in superposition of causal order since when
applying a larger number of channels, the fidelity worsens. For the case where the values for
p in the entangled state are equal, the optimal case is where p = 1

3
with p0 = 0 so the protocol

can proceed successfully, for other cases rather than p = 1
3
, let p be p ∈ [0, 1

3
], F = 1 can not

be reached. Also, for the case when p � 1, the results remain the same as the case when the
teleportation channels are applied sequentially and, therefore, no advantage is observed. All
in all, the best case seems to be to apply two channels in superposition of causal order and, in
order to enhance the process, differentiated values on the p have to be proved.

6.2.3 Notable behavior on the frontal face of the parametric region: case
p0 = 0

Due to the previous successful outcomes for teleportation when p = 1
3

= p1 = p2 = p3, we
extend our analysis to the entire frontal face of the pj−space where p0 = 0: p1 + p2 + p3 = 1.
There, we have calculated numerically for 105 states covering the frontal face, the best fidelity
obtained using two teleportation channels under indefinite causal order by taking the optimal
measurement on the control state together with the best state able to be teleported. Thus, it
represents naively the best possible scenario.

In the last process, for each |χ〉 on the front face, we had taken a sample of 102 sets
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Figure 6.5: Optimal fidelity using two teleportation channels in indefinite causal order fol-
lowed by an appropriate measurement |ϕm〉. a) The best fidelity obtained for certain tele-
ported state if optimal control measurement is obtained, b) the probability Pm of success for
the last process, and c) the statistical distribution for F2 and Pm.

of values for q0 ∈ [0, 1] (the initialization value for the control state for N = 2), θ ∈
[0, π], φ ∈ [0, 2π] for |ψm and θ0 ∈ [0, π], φ0 ∈ [0, 2π] for the teleported state |ψ〉 =
cos θ0

2
|0〉 + sin θ0

2
eiφ0 |1〉. Each value is used as initial condition to find a local maximum

for the fidelity F2 and then those values are used to predict the global maximum of F2 for
each point on the front face. Figure 6.5a shows the best fidelity on the face together with
the statistical distribution of the fidelities on the front face in the upper image of Figure 6.5c,
which suggest that F2 = 1 could be obtained on the face always (the little dispersion with
lower values of F2 ∈ [0.9, 1] are surely due to the numerical procedure followed). The same
follows for Pm (Figures 6.5b and 6.5c lower) but denoting that such probabilities of success
are centrally distributed around 1

2
(note they are not the best probabilities because the process

is centred on maximize F2).
This outcome suggest that the case withN = 2 could become optimal if we limit the |χ〉

state to p0 = 0. But this is precisely the opposite case to the perfect situation p0 = 1, which
suggest an alternative strategy to reach one or another scenario. We explore such possibility
in the next chapter.

In order to analyse deeply the case p0 = 0 previously presented by means of a numerical
approach, we take a more critical view of formulas (3.16) and (3.15) and referring to [42]
which numerically suggests that q0 = sin2 θ

2
= 1

2
(1− cos θ), φ = 0 is related with the optimal

case for the case p = p1 = p2 = p3 = 1
3
. In fact, in such case, last formulas become reduced

to:

F2 =

∑3
i,j=0 pipj (Tr(ρσiσjρσjσi) + Tr(ρσiσjρσiσj))∑3
i,j=0 pipj (Tr(σiσjρσjσi) + Tr(σiσjρσiσj))

(6.19)

Pm =
sin2 θ

2

3∑
i,j=0

pipj (Tr(σiσjρσjσi) + Tr(σiσjρσiσj)) (6.20)

Last formula explains why the case θ = π
2

is optimal for Pm. Moreover, on the frontal
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face p0 = 0, then they clearly become (by splitting the cases i = j from i 6= j, noting for the
last case σiσj = −σjσi and we are dealing with pure states):

F2 = 1 (6.21)

Pm = sin2 θ

3∑
i=1

p2
i , with :

3∑
i=1

pi = 1 (6.22)

Thus, last conditions make the teleportation optimal not only for p = p1 = p2 = p3 = 1
3

but instead for the entire cases on the front face and it is independent from the teleported
state. Nevertheless, the probability of success depends entirely from the values of pi (despite
considering the best case θ = π

2
). Figure 6.6 shows the distribution of Pm (in some cases

we will denote this probability in the frontal face by Pff,{pi}
m,N=2 to state θ = π

2
, p0 = 0 and pi

arbitrary but fulfilling p1 +p2 +p3 = 1) on the frontal face, which ranges on [1
3
, 1]. In fact, the

case p = p1 = p2 = p3 = 1
3

corresponds to the worst case for Pm in the center of the face. We
have constructed the norm on the frontal face to report such distribution. The mean µPm = 1

2

and the standard deviation σPm ≈ 0.13 were calculated using such distribution.
Last analysis suggests for arbitrary N that the procurement of an analytical formula for

(6.7) is in order at least for the case p0 = 0, which implies t0 = 0:

ΛN [ρ⊗ ρc] =
∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N∑
t1=0

N−t1∑
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p
tj
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∑
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ρ
(
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t2
2 σ

t3
3

)†
and t3 = N − t1 − t2. As it was previously mentioned, factors generated by πk and πk′ are
equal until a sign. In addition, they evolve to σ0, σ1, σ2 or σ3. Thus, those factors and their
signs state the introduction of syndromes on ρ together with interference among them and the
different paths on the indefinite causal order. Such interference could be manipulated through
the parameters qk, pj .

Despite, this formula is not easy to address in order to get a simpler closed result because
the sign Σk

kp
,Σk′

kp
introduced in the permutation with respect σt11 σ

t2
2 σ

t3
3 cannot be advised eas-

ily. Nevertheless, we can still to analyse the cases for the lowest values of N computationally
(analytical cases addressed by computer aided methods due to the factorial increasing number
of terms).

Actually, the suggested results in this chapter for the communication channels have the
same properties for the frontal face, as long as the channel can be represented as it was shown
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Figure 6.6: Distribution of Pm on the frontal face.

in (3.3), which can actually correspond to communication channels outside the context of
teleporation.

These communication channels are know as Pauli channels. Although those Pauli chan-
nels are not the main topic of the present thesis project, parallel to his, it has been developed
an analysis for classification of quantum channels under indefinite causal order, showing par-
ticularly the behavior on the frontal face where p = 0, sinceF has pure states as well as mixed
states, on the frontal face, F = 1 (see discussion in Appendix B).

For the cases in the frontal face, a value for the probability of measurement is defined as
Pff,{pi}
m,N . Formulas for Pff,{p′i}

m,N and F for N larger than two can be obtained using a computa-
tionally treatment. As in our previous discussion for the case p1 = p2 = p3 = p in the section
6.2.1, F = 1 is obtained for all cases on the frontal face if the measurement in the indefinite
causal order becomes |ϕ+

m〉 for N = 2, 4 and |ϕ−m〉 for N = 3 independently of the teleported
state with a probability of successful measurement given by:

Pff,{pi}
m,N=2 = p2

1 + p2
2 + p2

3 (6.25)

Pff,{p′i}
m,N=3 = 6p1p2p3 (6.26)

Pff,{pi}
m,N=4 = p4

1 + p4
2 + p4

3 +
2

3
(p2

1p
2
2 + p2

1p
2
3 + p2

2p
2
3) (6.27)

For complementary cases using other measurement outcome we get F 6≡ 1 depending
from p1, p2, p3 or still undefined, and additionally depending from the teleported state. The
formulas obtained in the analysis are reported in Appendix E. Actually, a direct analysis made
aided by computer until N = 9, shows that F = 1 can be reached for values of N when the
correct measurement state is obtained, namely, when the measurement state is |ψm〉 = |ψ+

m〉
for N even and |ψm〉 = |ψ−m〉 for N odd, nevertheless, the value for Pm decreases when N
increases. Therefore, so far, the best case so we can obtain F = 1 with the best probability
of measurement is for N = 2, since, as it has been mentioned, even though F = 1 can be



CHAPTER 6. N-CHANNELS IN INDEFINITE CAUSAL ORDER 46

reached with larger number N the probability of successful measurement rapidly decreases
when N increases.

In spite the previous outcomes, we guess the indefinite causal order could not work
properly in any point inside of region depicted in the Figure 5.4. Nevertheless, due to the
outcomes in [22] for the case p = p1 = p2 = p3 and those exhibited in the Figure 5.4, the
teleportation process assisted by indefinite causal order (at least for two channels) becomes
optimal on p0 = 0 and p0 = 1 (the origin and the frontal face in Figure 5.4a). Then, we
propose, on the next chapter, an alternative strategy beginning with a weak measurement on
the entangled resource in order to reduce it to each one of the optimal cases found, using this
results but enhancing the probability of success.



Chapter 7

Teleportation assisted by weak
measurement

Given the previous results with F = 1 both in the origin (p0 = 1) as in the frontal face
(p0 = 0), it can be noticed the importance of adopting a strategy to get the entangled resource
|χ〉 projected on any of those states. In this chapter, it is developed a strategy to reach this
projection by using a weak measurement.

7.1 General case forN = 2 assisted by a weak measurement
It is first considered a weak measurement on the entangled resource |χ〉. Then, the post-
measurement states are obtained and their probabilities of occurrence as:

P0 = |β0〉〈β0| → |χ0〉 = (P0|χ〉)norm = |β0〉, p̃0 = p0 (7.1)

P1 = I− P0 → |χ1〉 = (P1|χ〉)norm =
3∑
i=1

√
pi
p̃1

|βi〉 ≡
3∑
i=1

√
p′i|βi〉 (7.2)

with : p̃1 =
3∑
i=1

pi

which projects the entangled state on one of the two states |χ0〉, |χ1〉 with probabilities p̃0, p̃1.
Each state is located on the origin or otherwise on the frontal face of region shown in Figure
5.4. Then, if |χ0〉 is obtained, the teleportation process can go as in the Figure 1.1, otherwise,
if |χ1〉 is obtained, we can try the teleportation assisted by indefinite causal order (at this
point the reader could note that clearly they are needed two entangled resources). In fact, the
feasibility of last strategy for N = 2 can be advised in the Figure 6.5 (renaming p′i as pi again,
with p1 + p2 + p3 = 1).

The entire process is depicted in the Figure 7.1. Given certain state to teleport, we
use certain entangled resource |χa〉. It goes through the weak measurement in (7.1) to get
|χa0〉 = |β0〉 with probability p0 then we perform a single teleportation. Instead, by obtaining
|χa1〉 with probability 1 − p0 = p1 + p2 + p3, then we prepare a second entangled resource
|χb〉 repeating with them the same procedure, if after of the weak measurement |χb0〉 = |β0〉 is

47
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Figure 7.1: Schematic teleportation process assisted by weak measurement.

obtained with probability p0, we disregard |χa1〉 proceeding with a single teleportation using
such state. Otherwise, if |χb1〉 is obtained, we perform a two-channel teleportation assisted
by indefinite causal order. There, the teleportation will become successful with probability
p′21 + p′22 + p′23, otherwise it become unsuccessful. Thus, the global probability of success is:

PTot = p0 + (1− p0)p0 + (1− p0)2

3∑
i=1

p′i = 1− 2(p1p2 + p2p3 + p3p1)

Last function has been represented in the plots of Figure 7.2. For each initial set

Figure 7.2: Distribution of PTot: a) as function of (p1, p2, p3), and b) as statistical distribution
by itself obtained numerically from the data of a).
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(p1, p2, p3) of the entangled resources (assumed identical), PTot is plotted in color in agree-
ment with the bar besides in the Figure 7.2a. One third of the plot has shown due to this
symmetry to exhibit its inner structure. The corresponding statistical distribution is obtained
numerically in the Figure 7.2b by sampling uniformly the space in the figure on the left. The
mean value of PTot becomes 0.70 and their standard deviation 0.16.

7.2 General case forN ≥ 2 assisted by a weak measurement
In order to improve PTot, for N ≥ 2, the procedure follows as in the previous section by
introducing N imperfect entangled resources, |χi〉 (assumed identical for simplicity) but in
each step, we decide if after of the weak measurement, the state |χj0〉 = |β0〉 is used to
perform the teleportation or if we continue the process of weak measurement N times on
identical entangled resources |χj〉 to finally get |χN 1〉 =

∑3
i=1 p

′
i|βi〉 as in the Figure 7.1. The

corresponding situation is now depicted for the general case in the Figure 7.3. In this case,
the global probability of success becomes:

PTotN =
N∑
j=1

p0(1− p0)j−1 + (1− p0)NPff,{p′i}
m,N (7.3)

Figure 7.3: Schematic teleportation process assisted by indefinite causal order using N -
teleportation channels and weak measurement.

Then, we can get the outcomes for global probability PTotN for the last cases with
F = 1:
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PTot2 = 1− 2(p1p2 + p1p3 + p2p3) (7.4)
PTot3 = 1− (p3

1 + p3
2 + p3

3)− 3(p2
1(p2 + p3) + p2

2(p1 + p3) + p2
3(p1 + p2)) (7.5)

PTot4 = 1− 4(p3
1(p2 + p3) + p3

2(p1 + p3) + p3
3(p1 + p2))

−12p1p2p3(p1 + p2 + p3)− 16

3
(p2

1p
2
3 + p2

2p
2
3 + p2

1p
2
2) (7.6)

Now we can visualize last outcomes forPTot in Figure 7.4. Again, all the entangled states used
for the teleportation process are assumed to be identical by simplicity. Figures 7.4a-c depict
the probability PTotN to reach F = 1 in the entire process represented by the coloring. Each

Figure 7.4: a) to c) values of PTot as function of (p1, p2, p3), for N2, N3 and N4 respectively.
d) statistical distribution numerically obtained for PTot2,PTot3 and PTot4.
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color bar shows the entire range of values for such probabilities on the graphs. According to
the color, the blue zone represents the region where PTot → 1, observing for the case N = 4
a larger blue area, suggesting the goodness of increase the number of teleportation channels
under indefinite causal order.

Figure 7.4d depicts a numerical analysis of statistical distribution for the cases N =
2, 3, 4. Note that for N = 3, all greater values for the probability occur almost evenly. For the
case N = 4, it is observed a larger amount of success probabilities than failure probabilities
compared with N = 3. Despite, µPTot2

≈ 0.702, σPTot3
≈ 0.158 and µPTot4

≈ 0.667, σPTot4
≈

0.249 (because for N = 2 there is a large distribution for medium success probabilities). In
any case, the most successful outcomes of teleportation appear for N = 4.



Chapter 8

Experimental Implementation

In this chapter, some of main experimental developments for the deployment of indefinite
causal order in teleportation are commented. The Chapter begins with the procedure to set
the weak measurement used in section 7.1. After that, some elements and experimental de-
velopments are taken in order to propose the experimental implementation of the theoretical
proposal presented before.

8.1 Weak measurement to project |χ〉
In section 7.1, it was stated the implementation of a weak measurement to project |χ〉 conve-
niently onto |χ0〉 = |β0〉 or |χ1〉 =

∑3
i=1 p

′
i|βi〉. Despite, in the experimental approach, there

are certain differences due to the resources been used. In this section, we present how to afford
the weak measurement stated in (7.1). An ancilla qubit |0a〉 is used to do the measurement
minimizing the impact on |χ〉 as is desired. In this implementation, we will use as central
resource the Toffoli gate. In order to prepare the |χ〉 stated properly for such measurement,
we combine it with the ancilla. Then, we send the combined system into the circuit presented
in Figure 8.1a. This circuit employs the Toffoli gate T1,2,a on channels 1, 2 for |χ〉 and a for
|0a〉 together with the C1Not2 gate (developed for ions [56, 57] and photons [58]). In fact, it
is well known that Toffoli gate can be performed using CNot gates and single qubit gates [38]
o by means of the Sleator-Weinfurter construction [59], despite other more efficient develop-
ments are known for ions [60] and photons [61]. Some single qubit gates as Hadamard (H)
and Not (X ) are also used. In the following development we write |χ〉 =

∑3
i=0

√
p∗i |βi〉 as the

imperfect entangled resource (∗ does not mean complex conjugation in this case). Thus, all
necessary quantum gates have been experimentally developed in our days at least in quantum
optics.

A direct calculation shows that this circuit performs the following transformation on
|ψ0〉 = |χ〉 ⊗ |0a〉 into:

|ψ1〉 =
√
p0|β0〉 ⊗ |1a〉+ (

√
p1|β1〉+

√
p2|β2〉+

√
p3|β3〉)⊗ |0a〉 (8.1)

with :
√

2p0 =
√
p∗0 −

√
p∗3,

√
2p1 =

√
p∗1 −

√
p∗2, (8.2)√

2p2 =
√
p∗0 +

√
p∗3,

√
2p3 =

√
p∗1 +

√
p∗2
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a) b)

Figure 8.1: a) Quantum circuit generating the weak measurement on |χ〉, and b) contour plots
for the map on the region (p1, p2, p3) between those probabilites and p∗1 (red), p∗2 (green) and
p∗3 (blue).

just before of the projective measurement on the qubit a shown in the Figure 8.1a. Clearly,
after of measurement, two possible outcomes arise in the qubit a, |1a〉, |0a〉 while on qubits
1, 2 the outcomes are |χ0〉 = |β0〉, |χ1〉 =

∑3
i=1

√
p′i|βi〉 respectively as in the section 7.1

completing the weak measurement. The only difference with respect our previous develop-
ment is that this coefficients are not the original {p∗i }. Despite, in the event such coefficients
are unknown, this fact is not important, the really outstanding outcome is that this procedure
projects the state into the perfect Bell state to perform the teleportation |β0〉 or otherwise on
the frontal face if this resource is planned to be used under indefinite causal order and mea-
surement as it was previously depicted in the procedure of section 7.1. Anyway, Figure 8.1b
shows the contour plots of p∗1 (red), p∗2 (green) and p∗3 (blue) in the region (p1, p2, p3) as a
reference of the involved geometric transformations.

8.2 An insight about teleportation implementing indefinite
causal orders experimentally with light

Formula (3.3) regards the teleportation algorithm as a quantum communication channel. De-
spite this formula is a useful simplification for theoretical analysis, it expresses the telepor-
tation channel with the input and output through the same system, which is not precisely the
real experimental situation. Then, as it was true for the original implementation of the orig-
inal teleportation proposal [1] in [3], the deployment should be modified to have a correct
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approach to the theory. In this section we discuss an insight view about its experimental de-
ployment together with indefinite causal order based on current techniques and experimental
developments.

A possible implementation with light should to consider and initial state with at least
three initial photons exhibiting each one at least a pair of quantum variables as polarization,
frequency or spatial (k-vector state) among other as in the original experimental teleportation
proposal [62]: |ψ0〉 = |v〉1 ⊗ |v〉a ⊗ |v〉b, using polarization in the vertical direction as in-
stance. Those photons, represented at the beginning on Figure 8.2, should be then converted
into five photons by splitting the last two into entangled pairs using Spontaneous Parametric
Down Conversion (SPDC) [63] as instance, while the first is arbitrarily rotated by a quartz
polarization rotator (QPR) [64] (it can be visualized in Figure 8.2 represented by the letter
R) -to generate the state to teleportate-: |ψ1〉 = (α|v〉1 + β|h〉1)⊗ 1√

2
(|v〉2|h〉3 + |h〉2|v〉3)⊗

1√
2
(|v〉4|h〉5 + |h〉4|v〉5). After, five photons should be sent together into two alternative di-

rections (through a dichroic beamsplitter -a splitting wavelength dependent- instead a po-
larization beamsplitting) coincidentally, not independently (it means five photons will travel
through corresponding paths labeled by pA or pB). This beamsplitter (correspondig to the box
with the BS in Figure 8.2) works as our control state superposing the two path states (the two
causal orders further). Last effect should be solved based on the frequency of original pho-
tons which should be quantum generated to let a quantum splitting of all beams, or otherwise
based on the previous generation of a GHZ state [65]). This necessary beamsplitter is still a
cutting-edge technology. Such spatial quantization introduces an additional quantum variable
thus converting the initial state into:

|ψ2〉 =
1√
8

(
(α|v〉1 + β|h〉1)|pA〉1(|v〉2|h〉3 + |h〉2|v〉3)|pA〉2|pA〉3 ⊗

(|v〉4|h〉5 + |h〉4|v〉5)|pA〉4|pA〉5 + (α|v〉1 + β|h〉1)|pB〉1 ⊗

(|v〉2|h〉3 + |h〉2|v〉3)|pB〉2|pB〉3(|v〉4|h〉5 + |h〉4|v〉5)|pB〉4|pB〉5
)

(8.3)

If additionally we introduce certain optical distortion in the SPDC, we get imperfect entangled
states then changing each 1√

2
(|v〉i|h〉j + |h〉i|v〉j) by |χ〉ij . In the following, we will change

v, h by 0, 1 respectively for simplicity.
Note that teleportation is in certain sense automatically generated due to the non-locality

of resource |β0〉 (or imperfectly |χ〉), then collapsed on four adequate outcomes involving an
additional correction as function of those outcomes using classical communication (Figure
1.1). In addition, for two sequential teleportation channels, the process can be achieved by
post-measurement at the end of both processes. Nevertheless, the implementation of indefinite
causal order in teleportation introduces additional challenges due to the connectivity of paths
and measurements. In the process, it will be required the implementation of the SWAP gate,
which has already been experimentally performed in optics [66, 67].

Thus, Figure 8.2 depicts a possible implementation for two teleportation processes as-
sisted by indefinite causal order. The first photon goes to the QPR (the box with a letter R in
Figure 8.2) and then the five photons go through the coordinated BS. The proposed process
can be then followed in the Figure 8.2 with paths labeled by pA in green and pB in red. For
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Figure 8.2: Diagram for an implementation of teleportation with causal ordering as it is dis-
cussed in the text. Photons are splitted on two different set of paths to superpose the two causal
orders of two sequential teleportation process. In this diagram, photon 1 works as the target
qubit while photons a and b works as the target qubits. SWAP gates are used to move infor-
mation from one red path to another one letting to meet the information on the corresponding
green path (on the same system) at the end of the circuit upon the recombination.

simplicity, teleportation processes are assumed to perform measurements on the Bell states
basis as in Figure 8.3, thus avoiding the use of H and CNOT gates in the analysis. Due to
the above (post-measurement and measurement assumed on the Bell basis), almost no gates
are present in the process, just two SWAP gates stating the causal connections. At the end
of each path, a semi-transparent mirror should mix again the paths (but not the polarization)
by pairs into the basis |±〉i = 1

2
(|pA〉i ± |pB〉i) for each photon i, in order to erase the path

followed information. We are labeled each path (or the information being carried on it) by
Mk

ij (in case that photon carries the information of one of the complementary systems not
containing the output of teleportation) remarking the path typr followed k = A,B,+,−, the
final belonging teleportation process i = 1, 2, and the number of sequential qubit to be mea-
sured there: j = 1 for the former input and j = 2 for the correspondent to the first qubit of
the original entangled resource. Instead, the final outputs are labeled by Sk (k = A,B,+,−).
By following the color, the reader should easily identify each path considering additionally
the effect of the intermediate use of SWAP gates which is discussed below.

By ignoring first the SWAP gates in the Figure 8.2, we can realize that the circuit
has not any effect. We are indicated each optical element described before. The dotted line
connecting theBS’s denotes the not independent functioning, all together should send the five
photons on the green paths or on the red ones. States |ψ〉 and |χ〉 are remarked on photons 1
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Figure 8.3: Teleportation processes are assumed to perform measurements on the Bell states
basis.

and 2, 3, 4, 5 respectively. Each path (green or red) is labeled from 1 to 5 in agreement with the
photon carried out. Blue arrows remarks the group of photons involved in each teleportation
process T1 or T2 on each path (the first subscript in Mk

ij): 1, 2, 3 and 3, 4, 5 respectively for
green paths, and 1, 4, 5 and 5, 2, 3 respectively for red ones. On each path, we are reported
the associated label for each system Sk or Mk

ij as was depicted before. Note that brown labels
correspond to the information being carried before of SWAP gates, while black labels are
the final states reported there at the end of the path but before of the recombining in the semi-
transparent mirrors. The reason for the SWAP gate between the paths 3 and 5 should be
clear, we need get the teleportation outputs on the same photon to generate the superposition
of information. The SWAP gate on the red paths 2 and 4 exchanges the information on those
paths in order to generate the superposition at the end among path information M1

ij and M2
i′j

with i 6= i′, j = 1, 2 thus mixing both. Note that the set of states in Mk
ij are those to be

measured in the teleportation process (here in the Bell basis by pairs) in order to correct the
output states. The reader should advise this process does not reproduce exactly that depicted
by (3.3) because such formula assumes the measurements are internal generating a mixed
state coming from the corresponding projections and corrections. In this approach, we have
the possibility to measure only four qubits instead eight. Despite, we will note this procedure
still reproduces some main previous features. At the end of the process each semi-transparent
mirror (diagonal in grey) mixes the information on the states |±〉i for each photon i on the red
and green edges (with information M±

ij or S± respectively -red and green-, not represented
in the Figure 8.2). On the red edges, a detector first decides if the photon exits through them
(they are the projective measurement on |ϕ±m〉 states in our development). In addition, a Bell
measurement is then performed on each pair 1, 3 and 2, 4 in order to inquire the information
codified in the output S+.

A direct but large calculation to expand (8.3) then applying the SWAP gates and pro-
jecting on |+〉i, i = 1, ..., 5 was performed. Finally, this output was written in terms of
|βi〉1,3 ⊗ |βj〉2,4, i, j = 0, ..., 3 to ease the identification of final successful measurements.
If p0 = 1 or p0 = 0, upon the measurement of |βi〉1,3⊗|βj〉2,4 and then the application of σiσj
as correction, the output S+ becomes |ψ〉 faithfully in the following cases:

• If p0 = 1 for all i, j = 0, ..., 3 cases with a global successful probability of 1
16

.

• If p0 = 0 for the cases i = 0, ..., 3 and j = 2 with a global successful probability of
(p1−p2+p3)2

64
.
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which clearly resembles our main outcomes. For the second case, other measurement out-
comes give an imperfect teleportation. Then, additional experimental proposals should be
developed to approach them into the ideal case considered in our theoretical results.



Chapter 9

Conclusions and future work

Quantum teleportation has an important role in quantum processing for the transmission of
quantum information. In this context, many approaches have surged in order to make the tele-
portation process more reliable in terms of fidelity and probability of measurement. Neverthe-
less there are several possible issues preventing the outcome process to occurs successfully,
such as those on the entangled resource assisting the teleportation process, where an impreci-
sion in the teleported state can be introduced due to the difficulties for generate and maintain
such entangled resource.

9.1 Conclusions
In this work, it has first been characterized arbitrary noisy channels for single qubits, which
are modelled through Kraus operators in the form of Pauli channels for a better understanding
of those channels. Then, an analysis on the application of two channels both sequentially and
under an indefinite causal order scheme and supported by a post-measurement was made. The
results obtained for the fidelity for the process showed advantages in the applying of indefinite
causal order regarding the redundant case. It was also shown that a perfect fidelity in a scenario
with a very noisy channel can be reached by applying two of them under indefinite causal
order, nevertheless, due to the fact that the probability of measurement is not outstanding, it
was found that additional treatment could be applied in order to improve it.

From the mentioned work, an analysis was also made in relation with channels used
in the context of teleportation. Such teleportation channels were also implemented for both
sequentially and under indefinite causal order. Firstly, the analysis for the redundant scenario
where quantum teleportation channels are simply applied sequentially (those channels are as-
sumed to be identical for simplicity), shows that as the number N of channels sequentially
applied increases, rapidly decreases the fidelity. thus converging to the maximal depolariza-
tion channel of the teleported state and, therefore, obtaining FN→∞ = 1

2
. In this sense, there

is no advantage when the channels are applied sequentially, it only worsens the process. There
is only a slight advantage when two very noisy channels are applied sequentially in compari-
son when just one noisy channel y used for the teleportation process, but this advantage is not
outstanding, since the fidelity is still low.

58



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 59

Therefore, by modifying the process under indefinite causal order for two or more tele-
portation channels as it was proposed by [22] and later discussed in [42], it was then advised
advantages on the quantum fidelity of the teleported state for a few number N of sequential
teleportation channels. The results obtained from analyzing the features of those two telepor-
tation channels in superposition, showed that for the specific case when the entangled state is
in the form p1 = p2 = p3 = p = 1

3
(and therefore P0 = 0 which denotes the worst case with

a very noisy channel), it has been shown that F = 1 can be obtained aided by measurement
and, this measurement can be not only with the state |+〉 with a probability in the control
q0 = 1

2
, but as far as the measurement state given in (3.12) is choosen correctly in the range

for φ = 0 and θ ∈ [0, π], a perfect teleportation can be reached as function of arbitrary p0.
Also for the case with two teleportation channels, an analysis for other values when p 6= 1/3
was made, and it was found that F = 1 cannot be reached no matter the measurement state
chosen. Nevertheless, the best strategy to follow in such case is to figure out the best choice
for the measurement state, in order to reach the optimal fidelity. Something interesting found
is that F does not depend on the value for q0, so that it is fixed the maximum for F once
p is selected and, by choosing the correct values for θ and φ in the measurement basis, it is
reached.

From the results obtained in Chapter 5 and in order to look for improvements on F ,
in Chapter 6 are obtained similar outcomes for F by managing independently the values for
p0, p1, p2, p3, q0 together with θ and φ in order to search the maximum F for each case. A
categorization was then performed in order to analyze the effects on the entangled state, thus
obtaining an enhancement for the case when the most imperfect entangled resource is used,
where p0 = 0 and with the absence of the ideal entangled resource represented by |β0〉, and
even for near regions of it that ideal state when p0 ≈ 0 as N increases. Notably for the
first case, it is shown the possibility of obtain a perfect teleportation process with FN = 1.
However, issues are presented when N increases, since the principal downside in this case is
the reduction of the probability of successful measurement Pm, which decreases drastically
as the number of channels applied in superposition of causal order N increases.

Now, in order to improve the global probability of success, it has then been proposed a
combined strategy using weak measurement to first projecting the entangled resource to one
of two cases: the case where p0 = 1 with p1, p2, p3 = 0 or the case where p1 + p2 + p3 = 1
with p0 = 0, where the most notable enhancement is generated with indefinite causal order
aided by post-measurement. In such cases, a remarkable aspect is that for such notable cases
the outcome becomes independent from the teleported state and, therefore, it can always be
obtained a fidelity F = 1 and, furthermore, the probability of successful measurement Pm is
improved. Interestingly, those notable process are possible not only for pure states but also
for mixed states.

Also, a more detailed process for the weak measurement first barely discussed for the
projection of the entangled state in Chapter 7 is after detailed and oriented to the description
of a practical experimental implementation in accordance to the current experimental devel-
opments for light and matter in Chapter 8. The central part of the implementation is the
development of Toffoli gate. Additionally, an introductory analysis for a proposal for an ex-
perimental implementation has been made for the application of teleportation process under
indefinite causal order using two teleportation channels. Such approach is not yet optimal
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despite it reproduces the main features found in the development. For the experimental pro-
posal, recent experiments and technological developments in optics become the central part,
particularly the implementation of the SWAP gate and the generation of |GHZ〉 states. An
important aspect to be noticed for this part is the use of post-measurement in the teleporta-
tion process in order not to affect the state in the middle of the process. The scheme for the
implementation has been planned with photons.

The superposition of causal order has been compared with superposition of paths in
order to enhance quantum communications. Superposition of paths cannot give a maximal
activation of the quantum capacity [17] due to the paths are independent. In fact, superposi-
tion of paths has been considered in the experimental implementation proposal presented to
emulate the superposition of causal orders, giving only a limited approach.

The experimental implementation is still in development, because of the complication
that theoretical analysis consider the input and output systems on a different system. All
along the work, the entangled resource needed in the teleportation process has been taken
as a superposition of lineal Bell states, nevertheless, it is important to mention that, instead
of these Bell states, it can be used a mixed state as the entangled resource, nevertheless, the
use of mixed states introduces more parameters. Despite, if |χ〉 is instead introduced as a
mixed state, its parameters should be reflected on a similar form for Λ[ρ] =

∑3
i=0 piσiρσi

because teleportation algorithm is by itself a quantum channel. In addition, in [55] it has been
shown that for that formula, the channels on the frontal face behave as transparent channels
under indefinite causal order, which showed that the outcomes presented in this work are
immediately fulfilled for a mixed states treatment in teleportation.

9.2 Future work
Future works are oriented to the extension of the algorithm to bigger systems, this means,
to improve quantum teleportation under an indefinite causal order scheme with channels for
d−dimensions (and not only qubits as the case for the work developed here) or with a com-
position of various systems. Also, regarding the probability of successful measurement, im-
provements are needed to be sought by exploring alternatives schemes with other strategies in
addition to weak measurement in order to enhance that probability of success. For the case of
N > 2, an analysis considering other control states and, therefore, other measurement states
must be considered, since all along the work the control system has been considered with the
values for the probabilities to be equal, then, it can be explored the possibility for other initial
states on the control to maximize the fidelity. For the future work regarding the experimental
approach, it is recommended to look for a way to improve the proposed scheme, as well as to
launch the enhanced experimental proposal.



Appendix A

Formulas FN and PN for N = 2,3,4

Formulas indicated in Chapter 6 for probability and fidelity as the number of channels in
indefinite causal order increases have been obtained.

For the case N = 2, when |ψm〉 = |ϕ−m〉 the outcomes are:

F2 =
1

3
(A.1)

P2 = 6p2 (A.2)

and for the case when |ψm〉 = |ϕ+
m〉, the outcomes become:

F2 =
1

P2

(6p2 − 4p+ 1) (A.3)

P2 = 1− 6p2 (A.4)

For the case N = 3, when |ψm〉 = |ϕ−m〉 the outcomes are:

F3 = 2p+
1

3
(A.5)

P3 = 2p2 (A.6)

and for the case when |ψm〉 = |ϕ+
m〉, the outcomes become:

F3 =
1

3P3

(−76p3 + 54p2 − 18p+ 3) (A.7)

P3 = 32p3 − 18p2 + 1 (A.8)

For the case N = 4, when |ψm〉 = |ϕ−m〉 we get Pm = 0, thus F4 becomes undefined in
such case, and for the case when |ψm〉 = |ϕ+

m〉, the outcomes become:

F4 =
360p4 − 304p3 + 108p2 − 24p+ 3

−408p4 + 384p3 − 108p2 + 3
(A.9)

P4 = −136p4 + 128p3 − 36p2 + 1 (A.10)
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Appendix B

Channel characterization for mixed states

Formulas obtained in Chapter 6 can be applied for a Pauli channel. The development made
here is exactly the same and the same properties for both teleportation and communication
are accomplished, the only difference is that, in communication, there is no an entangled
state along the process, but in this case, α take the place of p and they are parameter that
characterise the channel as it is shown in the Figure 2.1.

Particularly, it will be shown some results for channels that are located in the face where
α0 = 0 and there are only components from α1, α2, α3 in the context of communication.
Notice that on that face with α0 = 0 it is fulfilled B.1, which is the same for the case of
teleportation as it is shown in 6.11.

It will be interesting to analyse the situation for mixed states at least for the more notable
cases. In such case, formula (6.8) should be replaced by (2.6). The analysis becomes more
complex because the parameter ~n with n ≡ |~n| 6= 1 appears together with the parameters
α1, α2, α3. For that reason, we will restrict our analysis to the frontal face with α0 = 0 which
has become a valuable outcome for pure states. In this case, we could obtain ΛN,±[ρ] ≡

1
Pm 〈ψ

N,±
m |ΛN [ρ ⊗ ρc]|ψN,±m 〉 through (6.2), with Pm still given by (6.9). The outcomes were

analytically addressed yet (Appendix C reports the corresponding expressions) from (6.7):

ΛN,±[ρ] =
1

PmN !2

N∑
t1=0

N−t1∑
t2=0

3∏
j=1

α
tj
j

∑
k

∑
k′

(±1)σ(πk)+σ(π′
k) (B.1)

·
N ′∑
p=1

πk

(
π
k
t1,t2,t3
p

(
σt11 σ

t2
2 σ

t3
3

))
ρ
(
πk′
(
π
k
t1,t2,t3
p

(
σt11 σ

t2
2 σ

t3
3

)))†
where N ′ = N !

t1!t2!t3!
and t3 = N − t1 − t2. In this formula we need to take care about the

meaning, the permutation πkp does not distinguish among identical objects in σt11 σ
t2
2 σ

t3
3 , while

πk, πk′ do because they permute positions, not objects. Finally, with ΛN,±[ρ], we can easily
obtain F±N ,Pm.

In the analysis, we get Pm as it was respectively given in (D.1-D.5) for each point on the
frontal face α0 = 0 colored in agreement with such quantity in the 0(red)-1(blue) scale. Due
to the fidelity of communication depends on ρ in general, we are selected three illustrative
points to compare the outcomes: a) Pa : α1 = α2 = α3 = 1

3
(central ICO channel), b)
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Figure B.1: Pm on the α0 = 0 face together with the fidelity on the Bloch ball for the input ρ
for three specific channels Pa,Pb,Pc with N = 2 using a) |ψN=2,−

m 〉, and b) |ψN=2,+
m 〉 for the

control measurement. Both, Pm and Λ2,±[ρ] are reported in color in the scale 0(red)-1(blue).

Pb : α1 = 0.5, α2 = 0.3, α3 = 0.2 (nearer from the bit-flipping noise channel), and c)
Pc : α1 = 0.1, α2 = 0.1, α3 = 0.8 (extremely near from the dephasing noise channel). Then,
for each example, we take the Bloch sphere n ≤ 1 to get F±N for each point inside, coloring
it in agreement with such fidelity in the same scale 0(red)-1(blue). The color scale will be
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shown together for Pm and F±N on the left and in only one half of the Bloch ball (n2 ≥ 0) in
order to exhibit its inner structure. In each plot the eigenvectors of Pauli matrices σ1, σ2, σ3

are shown on the poles and equator ball as reference: |+〉, |−〉, |Y+〉, |Y−〉, |0〉, |1〉.
Thus, Figure B.1 shows the case N = 2 for a) |ψN=2,−

m 〉 and b) |ψN=2,+
m 〉. For Fig-

ure B.1a, because the central ICO channel maps the Bloch ball into a deformed ball, then
the corresponding plot of F−2 for Pa becomes radially symmetric in Figure B.1a (note the
representation was made on the original ball for ρ, thus such plots do not exhibit the ball
deformation being present in Λ2,−[ρ]). Together, the cases Pb and Pc exhibit an ellipsoidal
distribution of F±N compressed on the x-direction for the bit-flipping noise case (Pb) and in
the z-direction for the dephasing noise case (Pc). Note that it does not fit with the expected
behavior of the single channel in agreement with (2.4) when α0 = 0, which reduces and flips
the ball: n′i = −(1 − 2αi)ni, a consequence of the indefinite causal order and measurement.
They clearly exhibit the deep worsen of fidelity in the same direction to the nearest syndrome
among the states ρ,Λ2,−[ρ]. For Pc and Pb closer than syndromes σ3ρσ3 and σ1ρσ1 respec-
tively, the single channel holds that direction of the ball, n′3 = n3 and n′1 = n1, the opposite
behavior observed under indefinite causal order. There, while more deformed is the Bloch
ball by the the single channel, better the fidelity in the same direction and worse the fidelity in
the transverse directions due to the sequential use of the channel under indefinite causal order
and the post-measurement of the control state. Note in any case that the core is blue (F−2 )
due to the proximity with the totally depolarized state ρ = 1

2
σ0, which is always transmitted

faithfully. Otherwise, Figure B.1b exhibits a surprisingly outcome with F+
2 ≡ 1 (it means

Λ2,+[ρ] = ρ) on the frontal face (α0 = 0), thus the fidelity Pa, Pb and Pc plots completely
in blue. This is an effect generated directly from the indefinite causal order and the measure-
ment, as an extension of our same result for pure states in the same frontal face: the behavior
as transparent channel of such composed arrangement under indefinite causal order.



Appendix C

Formulas of output for mixed states
under indefinite causal order

We report in this section the formulas for the output states for mixed states as input on the
frontal face of the parametric space (α1, α2, α3). In each case, Pm corresponds to the respec-
tive formula given in (D.1-D.4). For N = 2 and |ψN=2,−

m 〉:

Λ2,−[ρ] =
1

2

(
σ0 +

~n · ~∆
Pm

)
(C.1)

with : ∆µ = σµ(αναo − αµ(αν + αo))

being µ, ν, o a cyclic permutation of 1, 2, 3. Similarly for N = 3 and |ψN=3,+
m 〉:

Λ3,+[ρ] =
1

2

(
σ0 +

~n · ~∆
Pm

)
(C.2)

with : ∆µ = σµ(1− 6(αν + αo) + 12(α2
ν + α2

o)) + 6(αµ(αν + αo) + 3αναo)

−8(α3
ν + α3

o)−
10

3
α2
µ(αν + αo)−

26

3
αµ(α2

ν + α2
o)

−46

3
αναo(αν + αo)− 12αµαναo)

with µ, ν, o a cyclic permutation of 1, 2, 3. We should note that in the last formulas α1 + α2 +
α3 = 1. Finally for the cases N = 2 with |ψN=2,+

m 〉, N = 3 with |ψN=3,−
m 〉, and N = 4 with

|ψN=4,+
m 〉:

Λ2,+[ρ] = ρ (C.3)
Λ3,−[ρ] = ρ (C.4)
Λ4,+[ρ] = ρ (C.5)
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Appendix D

Probabilities of successful measurement
Pm

Probabilities of successful measurement on the bases |ψN,±m 〉 for the channels on the entire
region could be analytically obtained. They are polynomials of order N on the coefficients
channel {αi}. In all cases, α0 = 1 −∑3

i=1 αi has been assumed. For N = 2, we get the
complementary cases:

PN=2,+
m = 1−

3∑
i,j=1

αiαj (D.1)

PN=2,−
m =

3∑
i,j=1

αiαj (D.2)

for N = 3, the two cases being considered have the probabilities:

PN=3,+
m = 1− 3

3∑
i 6=j=1

αiαj +
10

3

3∑
i 6=j=1

αiα
2
j + 12α1α2α3 (D.3)

PN=3,−
m =

1

3

3∑
i 6=j=1

αiαj −
2

3

3∑
i 6=j=1

αiα
2
j + 4α1α2α3 (D.4)

and finally for N = 4 both cases are (with one of them identically equal to zero):

PN=4,+
m = 1− 6

3∑
i 6=j=1

αiαj +
40

3

3∑
i 6=j=1

αiα
2
j + 48α1α2α3 (D.5)

−16

3

3∑
i 6=j=1

αiα
3
j − 4

3∑
i 6=j=1

α2
iα

2
j −

40

3

3∑
i 6=j 6=k=1

αiαjα
2
k (D.6)

PN=4,−
m = 0
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Appendix E

Formulas for Pff,{pi}
m,N and F

In this section, formulas for Pff,{pi}
m,N and F when the entangled state has different values for

p1, p2 and p3 (note they are restricted to the frontal face of ) and the measurement state is either
|ϕ+
m〉 or |ϕ−m〉. In those results, the angles θ and φ corresponds to the state being teleported

(|ψ〉 = cos θ
2
|0〉 + sin θ

2
eiφ |1〉), thus meaning a dependence of those values on this state. For

the case N = 2, when the measurement state is |ϕ+
m〉 the outcomes are:

F2 = 1 (E.1)
Pff,{pi}
m,N=2 = p2

1 + p2
2 + p2

3 (E.2)

and with the privileged state as |ϕ−m〉, the corresponding expressions are:

F2 =
1

2Pff,{pi}
m,N=2

(
2p1p2(1 + cos 2θ) + p3(p1 + p2)(1− cos 2θ)

+ 2p3(p2 − p1) sin2 θ cos 2φ
)

(E.3)

Pff,{pi}
m,N=2 = 2(p1p2 + p2p3 + p3p1) (E.4)

For the case N = 3, with the privileged measurement state as |ϕ+
m〉, the outcomes are:

F3 =
1

12Pff,{pi}
m,N=3

(
(3(p3

1 + p3
2 + 2p3

3) + p1(p2
2 + p2

3) + p2(p2
1 + p2

3))(1− cos 2θ)

+ 2p3(p2
1 + p2

2)(1 + cos 2θ) + 2(3(p3
1 − p3

2) + p1(p2
2 + p2

3)

− p2(p2
1 + p2

3)) sin2 θ cos 2φ
)

(E.5)

Pff,{pi}
m,N=3 = p3

1 + p3
2 + p3

3 +
1

3
(p2

1(p2 + p3) + p2
2(p1 + p3) + p2

3(p1 + p2)) (E.6)

while with the privileged state as |ϕ−m〉, they become:
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F3 = 1 (E.7)

Pff,{p′i}
m,N=3 = 6p1p2p3 (E.8)

Finally, for the case N = 4, with the privileged measurement state as |ϕ+
m〉, then:

F4 = 1 (E.9)

Pff,{pi}
m,N=4 = p4

1 + p4
2 + p4

3 +
2

3
(p2

1p
2
2 + p2

1p
2
3 + p2

2p
2
3) (E.10)

and if the privileged state is |ϕ−m〉 then we get Pff,{pi}
m,N=4 = 0, thus F gets undetermined.
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