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Preface

This book started as lecture notes aimed for sophomore undergraduate students who
study at Tecnoldégico de Monterrey, Campus Querétaro, México, who are studying for
first time electromagnetism. This book is highly based on references [1], [2], [3], [4], [5],
[6], [8] and [9] , and many of the exercises presented in this book are from those references.

In this book is covered the basics of electromagnetism and we mention some ap-
plications of electromagnetism. We will introduce as smoothly as possible mathematical
formalism. All the material is self contained, just dynamics and kinematics as integral and
differential calculus is assumed. We will focus in understanding the physics, in presenting
different practice exercises, and the nature of electromagnetism in different situations,
rather than a highly formal and mathematical description.
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Chapter 1

Electric Fields

1.1 Electric Charge

All particles in the universe have certain intrinsic properties that define how they interact
with each other. The first example of these properties that is commonly studied in physics
is the mass. All massive objects in the Universe interact gravitationally with each other
given to the fact that they have mass. The property that defines how electromagnetic
interaction takes place is the intrinsic property of electric charge. The electric charge,
mathematically is represented by a real number and have units of Coulombs (C). However,
so far we have found in the Universe that the electric charge is quantized, i.e. it is a
multiple of a very specific number.

q=n-1.6021765 x 107°C  wheren € Z (1.1)

The number 1.6021765 x 1071°C is the electric charge of the proton and the magni-
tude of the electric charge of the electron. It is also sometimes called as the fundamental
charge e. We have not found any particle in the Universe so far that has a different
electric charge. In the so called Standard Model, that is the theory that unifies three
of the four fundamental interactions in Nature includes particles called quarks, which
have fractional electric charge of e. Even though there is experimental evidence of their
existence(1990 Physics Nobel Prize), we have not seen them isolated in Nature. However,
even the electric charge is quantized, it is very common to take it just as a real number
in our calculations, because the gap between one electron charge, two electron charges,
three electron charges, ..., so on and so forth are so close to each other that mostly they
create a continuum. Actually, strictly speaking, we should not be able to integrate (as
you will see later on) at any time, because the integral is a continuum infinitesimal sum.
However, the gaps are so close, that once again we just assume they create a continuum.

Along this course we will be dealing essentially with neutrons,electrons and protons,
and their properties of mass and electric charge a re shown in the following table. However,
in figure [I.1] all fundamental particles that we have discovered so far are presented. A
proton and neutron are not for instance fundamental particles. The proton is constituted
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by three quarks, two up quarks and one down quark. The neutron is constituted by three
quarks also,two down quarks and one up quark.

Particle Charge (C) Mass(kg)
electron (e) | —1.6021765 x 107 | 9.1094 x 1073

proton(p) | +1.60217655 x 107 | 1.67262 x 10727
neutron(n) 0 1.67493 x 10—27

mass - =2.3 MeV/c? =1.275 GeV/c? =173.07 GeV/c* 0 =126 GeV/c*
charge » 2/3 u 2/3 C 2/3 t 0 0 I I
spin - 1/2 1/2 1/2 1 9 0

up charm top gluon t';g%gﬁ

=4.8 MeV/c? =95 MeV/c? =~4.18 GeV/c? 0

-1/3 d -1/3 S 113 b 0
112 112 172 1

@

down strange bottom photon
0.511 MeV/c? 105.7 MeV/c? 1.777 GeVic? 91.2 GeVic?
-1 -1 = 0
112 e 112 ]‘1 12 T 1 ;

electron muon tau Z boson
<2.2 eVic? <0.17 MeV/c? <15.5 MeV/c? 80.4 GeV/c?

. Do L, n |, Do
112 e 172 112 1 W

electron muon tau

neutrino neutrino neutrino W boson

Figure 1.1: Fundamental particles that constitute everything we know so far. They are

the particles of the Standard Model. The electric charge is represented in fundamental
charge units. Original figure from [10]

1.2 Coulomb’s Law

To determine the electric force that one particle at rest in a certain inertial reference
frame exerts on other is given by

Fiy = k@fm (1.2)

which we call as Coulomb’s Law, where £k = 9 x 10? N(;g , r is the distance between
the two particles, and 75 is a unitary vector that mentions the direction of the force.
This vector points from electric charge ¢; to electric charge go.(See Figures , .
In equation 1.2 we label the first index as the particle that is exerting a force
and the second index to the particle that is feellng a force, i. e. it should be read

" Electric charge q exerts a force F12 on particle ¢;”. However, F21 is the force that

16 CHAPTER 1. ELECTRIC FIELDS
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(a) Attracting charges with opposite sign
charges

(b) Repealing charges with equal sign
charges

Figure 1.2
particle ¢ is exerting on ¢.
The constant £ also is )
k=—— 1.3
4meg (13)

where €y = 8.85 X 10’121\1111—022 called as the vacuum permittivity. Its name will make much
more sense in chapter 4 when we study dielectric materials. For now, let’s take it just as
a constant.

Now, how is the force direction when electric charges have equal signs or opposite
signs?. So, suppose, we have two electric charged particles ¢; < 0 and ¢ > 0, then

F12 = —kr—QT’lQ = 7"_ (—7212) (14)

The minus sign means that the force will have an opposite direction to the unitary vector
712. Therefore, the force vector Fis is pointing towards ¢;. So, qualitatively we see that

the ¢y is attracting go.(See Figure [1.2al)

However, suppose now that ¢; and ¢o have the same charge sign (could be both charges
positive or both charges negative). So
Fry = +kq%f12 _ k%(wu) (1.5)
where the explicit + sign tells us that the force that the charge ¢; exerts on ¢y is such
that the force vector has the same direction as 715. So, qualitatively we see that the ¢; is
repealing ¢o.(See Figure [1.2b)). In general, we have the following rule.

‘ equal sign charges repel opposite sign charges attract ‘ (1.6)

As, a common trick that we will apply during this course (and also as you will notice in
many other introductory electromagnetism texts) is that we place our reference frame on
the particle that we want to analyze. Then, in order to not be handling with the vector
712 , we use the magnitude of the force

|| = p2i (1.7)

CHAPTER 1. ELECTRIC FIELDS 17
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P Repel

+ = Attract

Figure 1.3
YA
Fyg
a4 .
G Fos 0,
>
q2 a3 0,
il P
Figure 1.4

then analyze if the particles are attracting or repealing,and give the corresponding sign
according to our reference frame. For example, suppose you have the following four electric
charges and we place our reference frame in charge g3

So, to analyze the forces that involve charge ¢3 , we notice that electric charge ¢o
attracts g3, while ¢; and g4 repel electric charge gs. So, the direction of the forces must
be so that we are consistent to the repealing or attraction of the particles. Do not pay
attention to what happens to the other particles, now we are analyzing g3. Coulomob’s
Law describes phenomena where the charges that exerts electric forces are static. It is a
common confusion of the students to try to involve all the system, because if you think
that all particles should be moving given that all of them are feeling a force... you are
right! The thing is that we are just analyzing now ¢s. So, writing down the components
of the forces we have

ZFx: _]ﬁ23‘+\ﬁ13|60891+\ﬁ43‘C0892 (1.8)

where we have included in the sign the direction of the force. And for the y component

18 CHAPTER 1. ELECTRIC FIELDS
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we have.

> F, = |Fys|sinf; — |Fys| sin 6, (1.9)

Once again, the sign in the forces tell us what is the direction in the reference frame
that we have chosen.

Now, suppose you would like to analyze, the forces that are exerted on ¢y. Then you
would place your reference frame in ¢ and obtain a diagram of forces as the following one

YA
@
~ ﬁ42 ﬁ32
0 >
oL - @ -
ALY q3

Figure 1.5

Notice that to draw the forces once again you use the general rules in[1.6] The electric
charge ¢» will be attracted by ¢, g3 and ¢4, reason why the forces directions are towards
those charges. So, the sum of the components of the forces will be

ZFQ; = |ﬁ42|SiIl@3 + |ﬁ12| sin 6, + |ﬁ32| (110)

while for the y component we will have
ZFy = ’ﬁ42|€0893— ‘ﬁ12|COSQ4 (]_]_1)

You could continue with the forces of the other two charges and you would follow the
same procedure. Notice that we are assuming that the charges that exert a force on the
particle that we are analyzing are static. However, this is not always true (if you have
somehow fixed an object with electric charge you can take as static), for example in the
cases shown all particles move, because all of them feel a force. That is why is also
called as electrostatic force, because we are assuming no movement of the particles that
exert a force on the one that we are analyzing.

1.2.1 The Greatness of Electric Force

Picture in your mind an hydrogen atom. This atom, is composed by a proton and electron,
where these two particles are electrically charged and have also mass. So, as we have

CHAPTER 1. ELECTRIC FIELDS 19
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discussed, they must exert an electrical and a gravitational force to each other. How
bigger or lower is the electric force compared to the gravitational force?
To answer this question, lets calculate the fraction

Fg
Fg
where Fg is the gravitational force magnitude, and Fg is the electrical force magnitude.
If the fraction is much bigger than 1, then Fr is much bigger than Fy. If they are roughly

1, then they are almost of the same magnitude. If it turned out to be that is lower than
1, then F is bigger. So,

(1.12)

Fp _ K kg
Fe G=32  Gmem,
Plugging the respective magnitudes
Fp (9 x 10°Nm?/C?)(1.6 x 107°C)(1.6 x 1071°C)
Fo  (6.67 x 1071 m’kg~'s72)(9.1 x 10-3kg)(1.6 x 10~27kg)

(1.13)

=237 x10%  (1.14)

where we have used the electron charge ¢. = —1.6 x 107'°C, the proton charge ¢, =
1.6 x 1071%C. Notice that the calculation is independent of the distance between the
proton and the electron. At any distance, the force ratio will remain the same. The last
calculation talks by itself. We have found that Fp = 2.37 x 103 Fi;, a tremendous number
of magnitude greater is the electric force than the gravitational force. To give you a better
grasp, consider the following quantities.

Speed of light ¢ = 3 x 10°m/s
Radius of the Earth  7eg, &~ 6.96 x 10°m (1.15)
Mass of the Sun My = 1.98 x 10*°kg

So, the electric force ratio to the gravitational force is 31 orders of magnitude greater
than the speed of light and radius of the Earth! It is 9 orders of magnitude greater than
the mass of Sun!

Example 1: Electric Spheres in Equilibrium

Three identical charges, each with mass m = 0.1kg hang from rods as shown in the figure
[[.6al The lengths of the left and right rod are identical L and the angle is 30°. The
charges are identical with values ¢ = 9nC. Determine the length of the rods.

Solution:

We place our reference frame in the left electric charge. You could actually place your
reference frame at any of the charges and the solution will be exactly the same. Since the
spheres are in equilibrium, the sum of the forces in x and y component must be zero.

ZFx = —‘ﬁ21| — |ﬁ31| + Fry, =0

(1.16)
> F,=Fry—mg=0

20 CHAPTER 1. ELECTRIC FIELDS
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vy
P
L
F
P
/
/ Fry
. /
R »
0 0 . q1 FTT xr
L L iy

q1 .q g3 Y Fo

Figure 1.6

Therefore, isolating the components of the tension from the previous two equations, we
are left with

Fr|sin@ = |Fy | + |F.
Frlsing = |Ful + | Fas i
|Frr|cos = myg

where we have already included Fr, = |Fp|sinf and Fp, = |Fr|cosf (See Figure
1.6b)). So, we divide the first equation over the second in m, and we cancel out the

tension force, that we did not know from the beginning. Recalling that tanf = z:;z, we
have
ﬁ ﬁ — —
tanf = ol + [Far| = |Fu|+ |F5| =mgtand (1.18)
mg
We plug in the formula of Coulomb’s Law of the electric forces
k|Q2|2|Q1| N k|q3|2|q1| — mgtand (1.19)
21 31

where notice that the distance between the sphere 2 and sphere 1 was labelled as r9; (do
not confuse with unitary vector 79;); and the distance between sphere 3 and sphere 1 was
labelled as r3;. Finally,see figure and notice that we can find the distances r9; and
r31 by using angle € with

sinf = % = rop = Lsin@ , 13 =2Lsin6 (1.20)

So, plugging 7r9; and r3; in equation and factorizing common terms, we obtain

2
q 1 1
L
L2 <sin2 6 + 4 sin? 9)

= mgtand (1.21)

CHAPTER 1. ELECTRIC FIELDS 21
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where since q; = ¢, we just called them as q. Therefore, by isolating L and factorizing
.2
sin® 0

2
L= kq — 2 (1.22)
mgtanfsin©6 4

So, finally plugging in the last formula the values given by the exercise , we have

\/ 9 x 10%) 32 (9 x 10-9C)?
(<

—5— 2 136 % 10m (1.23)
0.1kg)(9.8155) tan45sin“45 4

Example 2: Charge in Equilibrium

Three point charges are in the x axis . The positive
charge ¢; = 80uC is fixed at x = 2m. The positive
charge ¢o = 20uC is fixed at the origin. If we know
that g3 is negative and it is in equilibrium. Where
is g3 located 7

Solution: Since the electric charge g3 is in equi-

librium, the sum of forces must be zero, so we have . e
2m
e — p
— — 22 ﬁ23 a3 ﬁ13 q1 T
ZF’”:_|F23|+|F13| =0 Figure 1.7
(1.24) '
_ _k|Q2|2|QS| i k|Q3|2|(J1| —0
23 13
Eliminating common factors k, |¢3| and rearranging
the last equation we have
ns _ [l (1.25)
723 [

Notice, from figure [I.7] that the distance r13 = 2m — 2 and 753 = x, where x is the position
that we want to find. So the last equation becomes

2m — 2 2
m-z _ ol 2w el 2m (1.26)
T g2 z |¢2] [lal 4

lg2]

Substituing the values, we obtain

2
= = — 0.66m (1.27)
80x10—-°C
20§10*6C + 1
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1.2.2 Discovering Coulomb’s Law

Coulomb’s Law is a remarkable achievement for science. The french physicist Charles
Augustin de Coulomb’s experiment to determine the electric force was a beautiful,
smart and also sensible experiment. The original drawing of the experiment of Coulomb
is shown in figure The experiment consists of charging two metal spheres.When the
spheres get electrically charged they repulse each other, making the balance to twist (See
figure . When this happens, since there is rotational motion, a torque is produced
by the force of the electric charge. Recall that a torque is given by 7 = 7" x F. Therefore,
for this particular case the torque produced by the force Fy

7o =7x Fpy (1.28)

where we labelled this torque with e just to denote that it is the torque produced by the
electric force. Now, the magnitude of the torque is given by

7] = || Fyo| sin ¢ (1.29)

where ¢ is the angle between the force vector and the position vector 7 where the force is
applied . From the sum of the angles in one triangle formed in figure we have that

a/2 4 90° + (180° — ¢) = 180° = ¢ = a/2 + 90° (1.30)

Using that for any angle 6, sin(6 + 90°) = cos 6, and that |7] = d (See figure [1.8b)), we
have that the magnitude of the electric torque is

Zig.d.

(a) Coulomb torsion balance ex-
periment. Original figure taken
from [11]

Figure 1.8

Te = | Fia| cos %d (1.31)
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Now, when Coulomb was doing his experiments, he wanted to figure out how was the
electrical force related to the distance between the charges. By Coulomb’s time, it was
already accepted by physicists that gravitational force followed from Newton’s Law as

mimes
r2

Fo x (1.32)
Hence, many physicists of the time claimed that the electric force followed a similar inverse
square law as

o 1@1]1@e|

— (1.33)
So, Coulomb in few words tested if the electric force was proportional to 1/r? So, let’s

write by now the magnitude of Fy as

|Q1[|Q2]

12

|F | = k—————= (1.34)
and let’s find out what is n by using Coulomb’s experiment and the data he published.
We use the information published in the paper in reference [12]. Plugging equation [1.34]

in equation [I.31]
|Q1||Q2| os %d

1o

7| = k————= (1.35)

so this torque will be the responsible to make a circular motion of ()5. However, there
is certain moment when the sphere stops moving, due to the torque produced by the wire
(resisting torque). It is analogue to the restoration force of a spring. When a spring moves
from its equilibrium position, it tends to return to equilibrium. Similar happens when
you twist a wire, the wire will tend to return to equilibrium. So, there is certain angle «
at which the sphere stays in equilibrium. By several experiments, Coulomb was capable
to obtain the following relationship for the resisting torque produced by the wire

D4
Tr = wl (Qm + @) (1.36)

where w is constant characteristic of the metal of the wire, D the diameter of the wire,
[ the length of the wire, a,, the angle of twist and « is the angle of separation between
the centers of the spheres. Therefore, when the sphere stopped moving we have

Y F=7—Rr=0 (1.37)

Therefore, equating the magnitudes of the torques

D4
’Ql”@ﬂ Osgd: w (am+a) (138)
i 2 l

If we isolate rf, [0l
o= gl s Oy 1.39
T'12 wD*(apm, + @) cos 9 ( )
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And here comes the magic. Suppose you have made the experiment such that you have
found the equilibrium at angle o and «,,. You maintain fixed the system except for one
thing, you twist the micrometer by an angle (,,, and so the movable sphere approaches
to the stationary sphere by a new angle 3. So, you will obtain this time that

Q@] cos éd (1.40)

i =kl
P T wD (B + ) 2

where the label 7}, is just to denote that is the distance between the two charges when
the second measurement takes place.

Finally, let’s take the ratio

N 1Q1]|Qe| B NE
Mo\ _ klaptigars ©08 3¢ rp\ _ (am+ ) cos §
re) 2l ) = a (1.41)
12 klm cos 5d 12 (Bm 4 3) cos §
Now, by using sin §, (See figure |1.8b|) we have that
rig = 2d sin% and also 7y, = 2d sing (1.42)
Therefore, the fraction in equation becomes
(sing)"_ (am + @) cos 2 (1.43)
sing)  (Bn+ ) cos g '

Recalling that in general the natural logarithm has the property In(f™) = nln(f) where
f is a function, we apply natural logarithm in both sides of the last equation and isolate

n B
(am+a)cos 5
In ((ﬁer/o’) cos §>

. B

sin 5
In (— 2)

SIHE

Beautiful! There are no other words to describe it. We have found n, which tell us how
the electric force will be dependant to the distance. When Coulomb, published his results
, he reported the following three data pairs (information from paper in reference [12])

n= (1.44)

1. First Trial. Having charged the two balls with the head of a pin with the micrometer
index set at O, the ball a of the needle is separated from the ball t by 36 degrees.

2. Second Trial. Turning the suspension thread through 126 degrees by means of the
knob O of the micrometer, the two balls are found separated and at rest at 18 degrees from
one another.

3. Third Trial. After turning the suspension thread through 567 degrees, the two balls
are separated by 8 degrees and a half

So , we have the two pairs of o and [ angles.
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l. ay =0, =236, f,, =126, 8 = 18. Therefore, using equation [1.44] n = 1.981
2. apy, =126, a =18, B, = 567, § = 8 Therefore, using equation n = 1.842
Therefore the average exponent n that Coulomb found experimentally was
n = 1911 (1.45)

This result error is 4.45% to the inverse squared law , a remarkable result obtained in
an era with no high technology, without the possibility of isolating the experiment of air
resistance and isolating the electric charge in the spheres. Coulomb concluded that the
electric force is proportional to 1/r?, the result 1.911 is so close to the inverse squared law
that it can be concluded that the deviation was just experimental error. Notice, how with
an experiment that could be considered simple (compared to today experiments as the
Large Hadron Collider or detector for Gravitational waves ) leads to a such fundamental
law of Nature.

1.3 A grasp about fields

Let’s start our discussion by asking ourselves why is it possible that electric charges can
feel a force even though they are not in contact? Think about this, when you push a
table, obviously you are interacting with the table and exerting a force. However, why
is it possible that a charged body two meters away from another particle feels a force?
The answer is that, whenever there is an electrically charged body, it creates an entity
that we call as electric field. But, what do we mean with a field? The concept of field
is complex and goes beyond the scope of this book. Actually, the quantum behaviour of
fields is a complete research area and has lead us to know how even matter has mass or
not. However, lets give a general picture about what a field means.

A field mathematically is defined as a function that designates to every single point
in space and time a quantity. If you think about it, in previous courses we have already
learned physical variables that can be modelled as fields. As a first example for instance
is temperature. Every single point in space has a particular temperature, and also, it can
change with respect time. As second example, pressure. These two examples designate
a quantity to every single point in space and time that is just a scalar . Therefore these
fields that associate to every single point in space and time a scalar are called scalar fields.
However, there are also another kind of fields that designates to every single point in space
and time a vector. And you already know an example, the gravitational field. If you
place yourself in any point in space, there is a certain vector pointing towards to the source
of that gravitational field (See Figure [1.94). And, of course that field also designates a
vector for each possible time. The fields that designate a vector to every single point in
space and time are called vector fields.

It is of huge importance to mention that there is a certain difference between the
temperature field and gravitational field. And not just the fact that one is scalar and the
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(a) Gravitational Field created by a (b) Temperature Field. Every point in

mass source. Every point in space has space has certain temperature, which

a vector, which also depends on time also has a value depending on time.
Figure 1.9

other is vector. The gravitational field is an entity. And what we mean about that, is
that it is not a variable associated to something. For example , the pressure field of a
gas is associated to the force that exerts in every single point a gas in infinitesimal areas.
However, the gravitational field is that something (as the gas for example or an object)
that has energy, and it is the one that interacts with any massive body. The gravitational
field is not just a mathematical model of a physical variable, it is a real physical entity.

Therefore, as those fields that are familiar to us now, we have a new field that also is an
entity, the electric field. This field is a vector field as the gravitational field and it is created
whenever there is a charged particle. So, when there is an electric charge, it interacts with
the electric field of other electric charged particles and that is why there can exist a distant
force between electric charges. The electric field is not just a mathematical description of
distance forces, it transports energy and it is so real that light is an electromagnetic wave
(it has a electric field component and magnetic field component).

1.4 Electric Field of point charges

We have mentioned before that the property of particles that tells us how two bodies
interact electrically is defined by the electric charge. Also, we have mentioned that the
responsible for the distance force is the electric field, so how are these two ideas related?
To answer this, let’s start defining the electric field .

The electric field of a point electric charged particle is given by

_ F,
E = lim =2 (1.46)
q0—0 ¢o
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ﬁo is the force exerted on a particle ¢o. This charge ¢ we call it as test charge. This
electric charge qo we define it as positive, and it is a charge that will only help us to define
the electric field in a first instance. So, if we substitute the force in equation we have

- k 2
= lim PR/ (1.47)
00 qo
So, notice that the electric field is therefore independent of the test charge qq
- Q .

The last equation is crucial, and it is the electric field created by a point electric charge
. So, now multiply both sides of last equations for another electric charge ¢ and we
obtain

gF = kﬁr (1.49)
So notice that the right hand side looks exactly as equation [I.2] Therefore, we have
another important equation

F=qE (1.50)

so going back to our initial question , we know therefore that the electric force that a
electric charge q feels given by an electric field created by another electric charge @) is
given by ; and there can exist a distance force because there is an electric field.

Now, the electric field is a vector field. So, the electric field vectors at each point
in space and time has a direction. The direction of the field vectors are completely
determined by the electric charge sign. To see this, let’s start by picking a negative
electric charge —(@). Therefore

(=) (1.51)

Therefore, the direction is opposite to the unitary vector 7. Since the vector 7 points
outwards to the electric charge —(@), then the vector F will go towards to the electric
charge —(). For the case that the electric charge is +(@), then

Fopt9, k9(+f) (1.52)

r2 r2

where we explicitly wrote the 4 sign of the electric charge so that we see that the direction
of the electric field is the same as the vector 7. Now, let’s take this similar idea but for
any point around the electric charge. When drawing this, since we don’t take carefulness
of drawing each vector with its corresponding magnitude, we just draw lines as arrows.
Even though of course this lines are not carefully drawn to the magnitude of the electric
field at each point, we call them as electric field lines. These lines gives us the behaviour
of the electric field in every single point in space. Now, so picking all points around the
electric charge 4@ and —(@) we see that the behaviour of the electric field is as shown in .
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Therefore, we have once again a general rule

negative charges electric field lines point to the charge

(1.53)

positive charges electric field lines point outwards to the charge

The last rule is crucial to qualitatively obtain results from our calculations later on.
And we can actually make our first qualitative deduction. Suppose you have electric field
lines as shown in figure and figure [[.10D], and there is a random positive electric
charge +q and —q respectively. Where will the electric charge +¢ and charge —q move?
To the right or to the left? The answer is quite easy if you think what kind of electric
charge would produce that electric field . A positive charge placed at the left would not
produce such electric field because the electric field lines of the positive charge would go
to the right ( electric field lines of positive charges are outwards the electric charge). So,
think as a negative charge —( placed at the left is producing such electric field lines.
Also, we already know that opposite sign charges attract and same sign charges repel.
Therefore, the force must be as shown in figures , figure [I.10D]

Also you could use the electric force
F=qE (1.54)
, if the electric charge is negative then
F=—qE =q(—E) (1.55)

where —E indicate us that the direction is opposite to the electric field direction. Similarly
if you use the formula of the electric force, you will see that if it is positive the charge,
the force vector must have the same direction of the electric field.

So , from just using electric field lines qualitatively we have found the general following
rule

negative charges move against the direction of an external electric field lines (1.56)

positive charges move to the same direction of an external electric field lines

. - F
® £ E & —

AAA

Figure 1.10
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(a) Electric Field lines of two particles, vector represents the total electric field
one negative and one positive. of both particles

Figure 1.11

Example 3 : Electric Field at the origin given two electric charges

Two point charges g1 = —7nC, and ¢2 = 10nC are located at (0.3,0)m , and (0, —0.2)m
respectively, at the xy plane. (a) Find the electric field vector at the origin due to both
charges. (b) If, then a third charge g3 = 20nC is located at the origin. What magnitude
of the force would be exerted on it?

Solution: First of all, lets recall how electric field lines behave depending on the electric
charge of the particle. The electric field lines produced by the particles are shown in|l.11a}
However, we are just interested what happens at the origin. Therefore, by just keeping
the direction of the electric field vectors produced by the particles at P, we obtain what
we see in figure [[.LTIB] Now, the electric field vector of the positive charge points to —z
while the electric field of the negative charge points to —y. Therefore, we simply have

10 x 1079 N
S B, = |q2 _ 9 x 10°Nm2/c2 X0 R
(0. 3)2 C (L57)
E, = —9x10°Nm?/C?——~ = 1
> 9 x 10°Nm*/C*—r=s 575

Now, if we place a third particle at the origin, it will feel a force due to the electric
field produced by the particles ¢; and ¢o. By using equation [1.50| we find the force ¢3 feels
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N
F, = 3B, = (20 x 107°C) (_10006> =20 x 10°°N
(1.58)

N
F, = gE, = (20 x 107°C) (_15756) = —3.15 x 107°N

The magnitude of the force

|F|=\/F2+ F2 = \/(20 x 10-6N)* + (3.15 x 1075N)* = 3.73 x 107°N (1.59)

Now, we could ask ourselves, what would it be the direction of the force? Since the electric
charge is positive, then the force will be have the same direction. If the electric charge
were negative, then it would move to the opposite direction.

1.5 Electric Field of continuum charge distributions

So far we have calculated the electric field for a point electric charge and for the contri-
bution of several of them. Now we will see how to calculate the electric field of any object
that can have length, are or volume.

So to start, suppose in general, that you have certain object as shown in the figure
[1.12] We will divide the object in very small little chunks. So the total electric field at
point P would be

E=Yk%s (1.60)

Figure 1.12

However, if we make now the little chunks to be extremely small such that they become
infinitesimal, then we can say that the electric charge that each of them enclose is also
infinitesimal . Therefore, last equation becomes

E=1im Y kL = /k;—qf (1.61)
T
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where we have made that every single ¢; is now an infinitesimal electric charge dg. The
vector 7 is the unitary vector at which the total electric field will point to and from the
integration by itself is not easy to know which direction it will be . So , what we will do
is to calculate the electric field magnitude given by

= dq
B = /kr—2 (1.62)

and the direction will be given depending of each case. We will do several exercises so
this becomes clear. Now, in order to integrate equation [1.62| we will define the following
quantities.

d C
A= Cl] : Linear charge density. Units [—
m

dl

d

21 Area charge density. Units {Q (1.63)
m

dA

o — D)

dq
S v
The previous quantities tell us how much electric charge is inside in a length, area or
volume respectively. So, depending the problem we want to solve, we will use the different
definitions of charge density. Now, be careful that neither A, ¢ nor p should be constant.
It could happen that an object its charge density varies from point to point. However,
for the particular case when the charge densities are constant we have that

Qtot Liot
/ dq = )\/ dl = Qtot = ALtot
0 0

Qtot Atot
/ dq = 0/ dA = Qiot = 0 Ay (1.64)
0 0

p

C
: Volume charge density. Units [—3
m

Qtot Viot
/ dq = P/ AV = Qiot = pViot
0 0

where we labelled as Ly , Aswr and Vi, as the total length, area and volume respec-
tively. Actually, if you think about it the previous results are logical. If you mulptiply
the density times the total length , area or volume , it should give you the total electric
charge of an object. As mentioned before, this is not always true, since the charge density
could not be constant.

Example 4 : Electric field of a rod

A very thin rod of length L has a positive charge ) distributed uniformly. Calculate the
electric field at point P (see figure , which is located a distance a from one end of
the rod.

Solution: We start by making dividing our rod in little chunks of infinitesimal electric
charge. Since, the electric charge is uniformly distributed, the linear electric charge density
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A is constant, i.e. any little piece of the rod that we pick will have exactly the same electric
charge. From [1.63| we then obtain that

dg = Adl (1.65)

Now, we integrate (sum infinitesimally) the
contribution of electric fields of every sin- YA
gle little chunk (see [L.13). All the little
pieces with electric charge contributes at
the origin to the left. Notice that for this
particular case, there is only x component
contribution of the electric field. However,
remember that the electric field is a vec-

tor at point P. So, we need to calculate the ~ ———— >
. —— x
integral. a
_, dq Adl
|E] = / 2=k (1.66) Figure 1.13

Now, recall that r is the distance from the

charges to the point of interest (where you are calculating the electric field). So, we can
call » = x, since the rod lies in the x axis and every single little chunk of charge will have
a distance z from the origin. Furthermore, we can call dl = dzx, since a little length of the
rod is a little length in the z axis. Also, we have to delimit where we are integrating the
contributions to the total electric field. Since the rod starts a distance a from the origin
and its length is L, we therefore have that

a+L
- L dy 1 1 1 (a+L)—a L
E| =Ek\ — = —kA\— =kA - — =kN—F—— | = kAN —
] /a x2 x (a a+L> ( a(a+ L) ) (a(a+L)>
(1.67)
Finally, recall from equation that Qo = ALyt , therefore
El = —— _ 1.68
] a(a+ L) ( )

since L is the total length of the rod and @) is the total charge of the object. Finally,
to determine the direction, since the electric charge of the rod is positive, we know that
electric field lines must be outwards to the rod. Therefore,

Q.

Fo__*Q_
a(a—kL)Z

(1.69)
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Example 5 : Electric field of a rod in a symmetrical point

The positive charge Q is distributed uni-

Yy formly along a line of length 2a . It is lo-

cated along the y axis between y = —a

and y = a. Find the electric field at point

a P along the x axis a distance z from the

origin.

Solution: Let’s see in figure how

Plz,0) the electric field vectors would contribute

—> at point P(z,0). The little chunks in the

figure are infinitesimal (of course for draw-

ing purposes they are quite big) and all of

them create a differential vector dE at P

—a . In principle , we would need to sum the

contributions in the x and y component of

Figure 1.14 each vector. However, notice what hap-

pens at figure [1.15] The contribution for

the little chunk from the top is exactly the

same as the one at the very bottom with

opposite direction. So, notice how the elec-

tric field contributions in the y component

cancel out. While the top little chunk will

create an electric field vector going to —y

with magnitude dE, , the bottom one will

create an electric field vector going +y with

exactly the same magnitude. Therefore, all

the contributions in the y component will

be cancelled out at the end, because every

single chunk at the top will have another

Figure 1.15 chunk at the bottom that will cancel its y

component. So, the component that is left

is just the x component. As shown in the

figure [I.I5] every dEx goes to the +a direction. So, we have to sum infinitesimally
(integrate) all the contributions to the x component. So, we calculate

|E| = E, = /dEx = /dEcose (1.70)

where 6 is the angle between the x axis and each of the electric field contributions. The
electric field magnitude is given by

E| = k) _dy cos 6 1.71
|E] 5
r

where we used dq = A\dl = Ady because a little length dl in the rod can be thought also as
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a small length dy since the rod lies in the y axis. Now, we can easily see from the figure
[L.15] that cos @ can be calculated as

cosf = ; (1.72)

Therefore, plugging in back to equation [1.71], we obtain

xdy

Now,using once again figure the distance from the charges to P(z,0) is r =
(y* + x2)1/ ?. Also, notice that x is constant because the point P(z,0) is already fixed.
Therefore,

Finally, to integrate we make the following change of variables
_ Y _ dy 2 _ 2
tanu——:y—xtanu,d——xsec u = dy = xsec” udu (1.75)
x u
Therefore, focusing in our integral, it becomes
/ dy / x sec udu / sec? udu 1 / du 1 p sin u
= = | ———=— | — =— [ cosudu =
(y? + 22)3/2 ((xtanu)? + x2)3/2 22(secu)® 22 ) secu a2 x?
(1.76)

where from the second step to the third we used the trigonometric property tan?u + 1 =
sec? u. Finally, we use the trigonometric property

(1.77)

. < Yy Yy
sin | arctan —

)=
Yonfre VS

Therefore, including the integration limits , going from —a up to a since it is the range
in y where the rod lies, we have the following

= Y ‘ B 2a

Finally, notice that the total length of the rod is L;,; = 2a, and recalling that\L;,; = Q;or,
we obtain that the electric field magnitude is

Q

x(x? + a?)l/?

where () is the total charge of the object. The direction is to the x direction, therefore
the electric field vector is 0

E= k.:z:(x2 + a2)1/22

|E| =k (1.79)

(1.80)

Example 6 : Electric field of a rod, the general case

CHAPTER 1. ELECTRIC FIELDS 35



Electromagnetism Rafael Espinosa Castaneda

As you can notice, in the previous two cases of the elec- Yy
tric field of a rod, only one component was calculated.
However, in general this should not hold. Recall that
the electric field. So, we show how should be calculated
the electric field for a random point where there is no L
symmetry that cancels out one component. For the two W ____________ o Pl@ny1)
dimensional case we have

(1.81)
E :k/d—gsiHG ):13
r
Figure 1.16

So, using cosf) = &, sinf = £ and r = /2% + (y — y1)?
, we have the integrals
L
dy
E . =k\x /
Yo (@ (=)

L ( o
y — y1)dy
E = k)\/
Y o (x4 (y—11)?)3?

(1.82)

Example 7: Electric Field of infinite rod.

Calculate the electric field of an infinite rod at a point
P(z,0)

Solution: We could think of solving the following
integral

]E|:k)\/ L'lygzm/ v 4
—oo (22 +y?)2 oo (@2 4 92)2 (22 + y?)
(1.83)
where we would be solving the exact same case, but
making the integral limits going to infinity (we separate
the integral in such a way to make easier to visualize the
substitution that we will make). However, instead of in-
tegrating from —oo up to oo let s try another approach.
See figure [1.17, and notice that every single little chunk
of the rod contributes with a differential electric field at
point P. As the angle between the x axis and the electric
field line becomes bigger and bigger, we approximate to
those chunks at infinity. So, the idea is to integrate the
contribution of all the little chunks with electric charge
from =* up to 5 because the chunks that lie at infinity,
their electric field lines make an angle almost of —7 re-
spect to the x axis and those at minus infinity make an

—00

Figure 1.17: Electric Field
Contribution of an infinite rod.
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angle almost of 7 respect to the x axis. So, we need to

leave the parameters in terms of the angle between the

x axis and the electric field lines. So, defining 6 as the angle between any electric field
line and the x axis , we have that

tan0:g:>y:xtan9:>dy:xse(320d0 (1.84)
x
Therefore,
x

dy = ——db 1.85
Y= cos?d (1.85)

Now, notice that

cosh = ——— s cos2f = i
(22 + y2)1/2 22 + o2

Therefore substituting cos? § in equation |1.85 we obtain

2 2
dy =~ ;y d6 (1.86)

So, using cosf and dy in equation and changing the integral limits to —7/2 and
/2, we obtain

w/2
T N e kA kA 2k A
|E| :—/ cosdf = — sin 0 =—[l—(-1)]=—= (1.87)
o x a2 x x 2megx
where we used the definition of k = ﬁ. Therefore, the electric field magnitude of an
infinite wire is
- A
E|l = 1.
] 2megx (1.88)

Since, the electric charge is positive, all the vector contributions go to +x. Therefore,

[

2mepT

(1.89)

Example 8: Electric Field Four Rods

Electric charge is distributed uniformly along each side of a square. Two adjacent sides
have positive electric charge 20C (each one). The other two sides have negative electric
charge —20uC (each one).

e What are the components £, and £, of the resultant electric field at the middle
point of the square? Each side of the square length is 20cm.
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Solution: Now that we have the formula for the electric field magnitude produced by a
charge line at a middle point (equation [1.80)).

Bl=— "9 (1.90)
z(x? + a?)2

we can use it for each of the sides of the square. But, careful! you have to consider
the directions of the electric fields. Never forget the fact that the electric field at any
point is a vector. Remembering that positive charges have outwards electric fields lines,
and negative charges have inwards electric field lines; we have that the directions of the
electric field vectors of each rod are as shown in figure [I.18, The electric field vector
created by the left bar is shown with the orange vector, while the electric field vector
created by the right bar is shown with the red vector. Opposite to what we could think
in a first instance, the vectors do not cancel out, they sum with +x direction. Similar
happens to the y component sum of the electric fields. The electric field direction of the
top bar and the bottom bar point to the same —y direction.

Figure 1.18

Just before we continue with the sum of the electric field components, recall that a in
our derivation (Example 6 Electric field of a rod in a symmetrical point) is the distance
from the bar central point and one of the ends of the rod. Furthermore, x represents
the distance from the bar central point to the middle point P(z,0). In this case, all the
distances from the bars central point to the middle point of the square are exactly the
same. So, in figure you can notice that actually in formula [1.90, x = a. Therefore,
writing the electric field sum in x, as the contribution of the left and right bar

Q]

a(a® + a?)2

P L/ B ] (1.91)

a(a® + a?)2 a(2a?)z

Z E, = |Eleftbar| + ’Erightbarl =k
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Therefore, plugging in the values:

2.20 x 1075C
10 x 10-2m[2 - (10 x 10-2)?]z

> E,=9-10°Nm?/C* = 25,455,844.1N/C  (1.92)

For the y component , we have

ZEy - _lEtopbarl - |Ebottombar| =—k ’Q‘ T k ‘Q’ T (193)
a(a? + a?)z a(a? 4 a?)2

where we included “—” signs because the electric fields point to the —y direction. So, we
have that the sum of the electric fields in the y components is

2k| Q)|
B, =— : 1.94
Z a(2a?)z ( )

“_»

So, notice that the y component is the same magnitude of the z component with a
sign. Therefore, we have that the electric field is

E = 25,455,844.1N/C i — 25,455, 844.1N/C j (1.95)

Example 9: Electric Field of a Ring

A ring with total charge @ = 1.5puC is uni-
formly distributed. The ring has radius ¢ = 1.5m.
Find the electric field at point P that is in the
axis of the ring a distance x = 1m of its cen-
ter

Solution:

The way to tackle this problem is to split once Figure 1.19: Electric Field Contri-
again the object in little chunks with charge, and bption of all the little chunks of a
integrate all the contributions. Also, it will be use- 'N&-
ful to notice symmetry. Notice, as shown in figure
[1.20 that all ”y” contributions from the all the small
chunks will be cancelled out. The only component
that survives is the x component. Therefore, we are
interested in calculating

|E| = /dEm = /dE cosf = |E,| = ]g/d_gcosg Figure 1.20: Electric Field Contri-
r bution of all the little chunks of a
1.96
(1.96) ring.
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where from figure|1.20, we can notice that we can use cos = £, where r is the distance
from each of the little small chunks. So, we obtain

B} di
| = B, = k) | Sa (1.97)

Notice that r = (2% + a?)/? is a constant, since x is a distance already fixed and a is
the radius of the ring. Also, notice that the integration limits must be from 0 up to 2mwa
since we want that the differential of length grow from a single point (length zero) up to
the total length of the ring, which is the perimeter. So,

- k\x 2ma k\x
Now, recalling that Q;,; = A\L;, we have that () = A\2mwa . Therefore,
- kQx
|E| = T (1.99)
Finally, plugging in values

L (9210°872)(1.521075C) (1m N
|E| = ( )l 2( ) _o300.13Y (1.100)

[(1m)2 + (1.5m)2]> C

Example 10: Electric Field of a Disc

Find the electric field of a disc of radius R with uniform positive charge density o, at a
point along its center a distance x . Solution:

The idea to solve this problem is to assume that we can make the disc in infinite
number of rings of differential electric charge and sum (integrate) the contribution of all
of them. We assume that we can make rings with differential width da and integrate the
contribution of all of them at point P. So, we need the result obtained in equation [1.99]
with the only difference that this time each ring has a differential charge dq instead of a
finite charge ). Summarizing, we can think of it as:

’E’disc: /dERings (1101)

i.e. the electric field of the disc will be the sum of all the contributions of every single
ring that composes the disc. So, by using equation [1.99 we have

R

~ kdqx

|E|disc:/ A (1.102)
0 (22+a?)?

where R is the radius of the disc and a is the radius of the rings (see figure [1.21]). Notice
that we used dq instead of (). The reason is that every ring has a differential charge.
Also, notice that we defined the integral from 0 to R. The reason is that we will make
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that the rings grow, starting from a point @ = 0 up to the last ring of radius R. Now, in
this case, since the disc has a surface, so we use dq = odA.

Now, each ring area, we can think about it as the area between two circles (see figure
, the shaded area). To obtain the differential area of each ring with differential width,
we calculate

dA =7 ((a + da)® — a*) (1.103)
i.e. the area of the outer circle that conforms the ring with differential width minus the
area of the inner circle that conforms the ring. So,

dA =7 (a® + 2ada + da® — a®) (1.104)

The term da? — 0 because da is infinitesimal. Therefore, we can rid of that term.
Therefore,

dA = 2rmada (1.105)
Hence, we have that equation [1.102[ becomes
R
- kx(o2mad
Bla = [ RE2T000) (1.106)
o (22+a?)z

Figure 1.21

Using the following change of variable:
u =2+ a®> = du = 2ada (1.107)

So, the integral becomes

O S TS Y H s [
= koxm — = koxm— = 2koarm | —m—mre— — —| =2kom |] — ——
22 u% —% 42 2 —+ R? X 2 + R2
(1.108)
Therefore the electric field of a positive charged disc is
— €T A~
E=2kom |l — ———| 1 1.109
{ Va?+ RQ] ( )
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Example 11: Electric Field of an infinite plane

Find the electric field of an infinite uniformly charged plane.

Solution: If you let the radius of a disc becomes infinitely large, then you can not notice
any more the edge of the disc, and it becomes the same as infinite plane. So, we have
that the electric field of the disc when we let R — oo

= . x 1 o
’El = P}LI};O <27Tk0' [1 — —m}) =2rko = 2m <47T€0> g = 2_60 (1110)

where the second term vanished, since ﬁ — 0. Also,we used the definition of k
constant. Therefore, the magnitude of the electric field of an infinite plane is

= g
El=— 1.111
Bl = o (1111)

Example 12: Parabolic Path of Charged Particle in a uniform
electric field

An electron moves with a speed v, = 3 x 10°m/s. It then enters to an uniform electric
field |E | =1x 102% which is perpendicular to v, as shown in the figure. Find the position
x when the electron hits the plate if its initial position is at the middle point between the
plates. The separation of plates is d = 5em (ignore gravity) Solution: We start by using
the only information that we have, the electron feels a force. Therefore,

|F| = q|E] (1.112)

Now, this force direction is to —y because the electron is negative and it will be attracted to
the positive plate (See Figure . Also, notice that there are no forces in the = direction
so from second Newton’s Law we can say that the acceleration in the x component is
zeroa, = 0. Therefore, the speed of the electron in the x component remains exactly the
same. However, the y component velocity changes as

m—2 = q|E]| (1.113)

where we just used second Newtons law in [1.112| and that also the fact that a, = %’ :
So, by separating variables and integrating we obtain.

Vy . t
/ mdvy:q|E|/ dt (1.114)
Voy 0

where the limits of integration follow because the particle starts from certain initial veloc-
ity vo, up to an arbitrary velocity v,, when time was 0 up to certain time ¢ respectively.
After integration, we obtain

Vy — Voy = Wt (1115)
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Figure 1.22

However, notice that the velocity in the y component at the very beginning is zero. The
exercise says that the incoming electron path is horizontal, so no initial velocity in y
exists. So, we are simply left with

g E|
Now recall that v, = % , SO
d E y E| [t
—yzmt:/ dyzm/ tdt (1.117)
dt m 0 m J,

where the limits of integration follow since the electron starts at time 0 with zero y
component, and after an arbitrary time ¢, the particle has certain position y. After
integration, we obtain

— MtQ
2m
Now, since there are no forces in x, there is no acceleration a,, therefore there is not
change in the velocity in the x component, so we have that:

(1.118)

vp= ~ ==L (1.119)
t Vg

Therefore by plugging ¢ in equation [1.119) into equation [1.118] we obtain

y= ] (£>2 (1.120)

2m \ vy

Finally, isolating x,
2my
qlE]|

Since the electron moves to +x, we are left with the positive solution. Plugging in
values

r = £y, (1.121)

_ 2-(9.1-107%kg)(-0.5-1072)
x = (1000m/8)\/ (—1.6 - 10-9C)(1 - 10°N/C) (1.122)
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where notice we included the minus sign of the electron charge, and the negative sign in
the position because the particle goes downwards. So, the final answer is

x = 0.0159m or written in centimeters z = 1.59cm (1.123)

1.6 Applications

There are several applications of electrostatics. However, we will get deeper understanding
in one of them and make some calculations using what we have learned so far.

Example 13: Electrostatic Precipitator

The electrostatic precipitator is a beautiful and smart application using electric fields
and charges. The purpose of this machine is to clean air from pollution particulates. The
general idea of how this works is simple. As it can bee seen in figure[1.23|a flow of air with
pollution particulates passes trough rods with electric charge. These rods since they are
electrically charged they generate an electric field. If the electric field magnitude in every
single point between them is high enough (|E | > 6000%) a physical phenomena called as
corona discharge takes place. The corona discharge is when the air is submitted under a
high electric field such that it behaves as a conductor and the electrons from its molecules
get free to move. The electric field in such situations are so high that the electrons from
the air molecules are pulled off. So, before the air with pollution particulates arrive to
the rods, there is a cloud of electrons already there. Therefore, when the particulates
crosses the cloud of electrons, the electrons get stocked to the particulates of pollution.
So, they are now electrically charged! Finally, when the air with the pollution particulates
now crosses between the plates which are also electrically charged, the particulates feel
an electric force due to the electric field generated by the plates! However, the air that is
flowing has neutral charge, so the molecules of the air won’t feel a force! Therefore, the
outgoing air after the plates is clean of pollution particulates or at least with much less
particulates, because the plates have trapped them with their electric fields!
Now, let’s design an electrostatic precipitator.

1. If the rods of the filter are 50cm long (height of plates also), and we need to create an
electric field at least of £ = 3.0x 10°N/C to make an electrical breakdown. We use a
power supply such that makes the air to travel with speed |t] = 60m/s. What charge
magnitude the rods need to have to create an electric field of £ = 3.0 x 105N /C at
the middle point between them? Distance between rods d = 0.5cm. Take into two
rods.

2. The plates have the same magnitude of electric charge as the rods. Also, we know
that they have the same height as the length of the rods. What minimum width
they need to have to trap the particles (so that they do not escape from the plates).
We can assume that the pollute particulates get an electric charge ¢ = —1 x 1072C
and have mass 0.8 x 10~%kg. Consider that the distance between plates d = 0.5cm is
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Outing gas

particulates free Negatively charged particulates

attracted to the positively

-0 charged metal plates

rods

e
Solid

Particulates

CoronaDischarge

Incoming gas

with particulates

Figure 1.23

much less than the with and height of the plates. Also consider the plates extremely
thin so they can be modelled as planes.

Solution:

In order to know the electric field generated by two rods between them, we use the formula
we have found of the electric field for an electrically charged rod in equation So, the
electric field magnitude between the rods due to both rods is

. 2kQ
b= — 1.124
El= e (1.124)
So, we isolate the electric charge of each rod
E 2 2
g= Blzver+a (1.125)

2k

Therefore, in order to create an electric field of magnitude |E | =3x 106% at a symmetrical
point between both rods , the electric charge of a single rod must be

(3 x 10°%) <0.25 X 10_2m\/ (0.25%10~2m)” + (25 x 10_2m)2>

= ~ 1.041 x 10°7C
“ 2.9 x 109N

(1.126)
where we used half of the distance between the rods z = 0.25 x 1072m, and recalling that
a is the half of the length of the rod, so a = 25 x 10~2m.

Now that we know the electric charge of the rods, let’s proceed to calculate the min-
imum width of the plates so that no pollution particulate escapes. When the pollution
particulates travel between the plates, we can visualize them independently as in figure
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[1.22] However, in order that no particulate escapes, we need to place our particulate in
figure at the very top. Because any particulate at the top (in the negatively charged
plate) will reach a maximum distance in x. Any other particulate, will travel less dis-
tance because they hit towards the positively charged plate. So, if we calculate what is
the distance travelled by an electric charge from the very top , we will get the minimum
width required of the plates so that no pollution particulate escapes. A particulate when
hits the plate is at y = —d (the particulate travels downwards a distance —d in the y axis
when hits the plate, where d is the distance between the plates), placing our reference
frame at the initial position of the electric charge when gets between the plates. So, using
equation [1.120] we have that .

_ q|E]
© 2mu?

—d z? (1.127)

Now, we do not know exactly the value of the electric field between the plates (the electric
field in last equation is the electric field between the plates do not confuse it with the
electric field generated by the rods). However, we can use the electric field formula for an

infinite plate
- o o
El=2(—)=— 1.128
Bl=2 () =2 (1.125)

where the factor of 2 comes from the fact that we have two plates generating an electric
field between them. Also, probably you say ”Those plates by no means are infinite, Why
would I use the formula of an infinite plate?” Well, indeed they are not infinite. However,
the distance between the plates is so small compared to the size of the plates, and the
particulates so tiny in comparison to the plates, that the approximation is not bad at all.
Now, we do not know what is the value of charge density o. However we can use the
definition of sigma, and express the electric field between the plates as

= (@Y1 Q@
|E| = (Z) o = he (1.129)

where A = xh is the area of the plates, x the width and h the height of the plates. Hence,
equation [1.127] becomes
d= -1 ( @ ):ﬁ (1.130)

2
2mu? \ xhe

Therefore isolating x from the last equation, we obtain
2muvdegh
qQ

where is important to remark that ¢ is the electric charge that the pollution particulates
have due to the electrons stocked on them, and @) is the electric charge of the plates. In
this particular case, the exercise mentions explicitly that the electric charge of the rods
and the plates is exactly the same. So, plugging in the values we have

(1.131)

Tr =

2(0.8 x 10~Ckg) (60m/s)* (0.5 x 10~2m) (8.85 x 10712.C2 ) (50 x 10~2m)

Nm?
_ _ ~ 1.22
v (—1 x 10°C) (1041 x 10-7C) "
(1.132)
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Gauss Law

We begin this chapter by defining electric flux, and this quantity will lead us to Gauss
Law when we calculate electric flux trough closed surfaces (any surface that encloses a
volume). As it turns out, Gauss Law is a powerful tool for electroestatics, but also for
magnetostatics and graviatation. For electroestatics, Gauss Law permits us to know the
magnitude of an electric field given that we know the electric charge that originates it
or to know the magnitude of the charge that is creating an electric field. As we will
study along this chapter, the Gauss Law is analytically powerful when we choose certain
geometries as our enclosing surface.

2.1 Electric Flux

We define a quantity that is proportional to the number of electric field lines that crosses
a surface. So, we have the following definition

Definition 2.1.1 The electric flux through a rectangular surface is given by

dP=FE-A (2.1)

where A is a perpendicular vector to the surface, and its magnitude is the area of the
surface.

Figure 2.1

47



Electromagnetism Rafael Espinosa Castaneda

Notice that the electric flux is zero when the Electric field lines are perpendicular to the
area vector, because no electric field lines are crossing it. Now, probably you think How
could there be a quantity that is related to the number of electric field lines, if those electric
field lines are drawn by someone? i.e. How can there be something quantitative from some-
thing that depends totally to the person who draws the electric field lines?. Well, during the
diagrams shown in the previous chapter, we have exploited a property about electric field
lines. The number of electric field lines per unit area perpendicular to each electric field line
(density of electric field lines) is proportional to the magnitude of the electric field.
This rule will always hold if you make a diagram such that it is consistent with the electric
field that a charge produces.

And, well indeed you can draw the number of electric
field lines that you wish (you could be so motivated to
even draw 10000000 field lines or more up to infinity).
However, the number of electric field lines are always
proportional to the magnitude of the electric field in the
region were they are drawn. For example, notice how
this is true for a single electric charge +¢. If the electric
charge +¢ is surrounded by a sphere of radius r as shown
in ﬁgure (a surface that will be tangent to every single
electric field line) then the density of number of electric
field lines is

N

D —
O 4nr?

(2.2) Figure 2.2: Electric charge en-
closed by two spheres that are

where N is the number of electric field lines (8 for the perpendicular to each electric

diagram in ﬁgure while , the electric field magnitude field line.

at any point of the surface of the sphere is

@
Byl = k5 23)
0

For another sphere of radius r; > ry. The density is

N
D, = 2.4
P A2 (2.4)
and , the electric field magnitude at each point in the second surface is
|E)| = k% (2.5)
51

so Dy > Dy and also of course |Ey| > |Ey|. So, as we can notice the density varies as =3
as the electric field magnitude and the density is smaller at greater r as also of course as
the electric field. So, indeed we notice that

|E| < D (2.6)
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Or the same to say the following,

- N
|E| o i (2.7)
where N is the number of electric field lines and A is the magnitude of the area. Notice,
the key word is proportionality. We do not know exactly what constant of proportion-
ality we should be using to obtain an equality in the last equation. That actually depends
on each drawing. Now, if we want the perpendicular unit area, we need A = A, cos@ .
Therefore,

Nx® (2.8)

In general, the electric field lines in any diagram are qualitative, and they are deceptive.
However, the electric flux definition is not, and it is a quantity that will be extremely
useful to obtain quantitative results. We must always have present that the electric field
lines that we draw is just a representation of the electric field, and it is the electric field
lines that start from the physics and not the way around, i.e. from the picture we cannot
deduce all the physics, however from the physics we deduce how the electric field lines
should be represented.

Finally, there is an ambiguity in the direction of the vector ff, because we could have
chosen it with opposite direction. The electric flux through a rectangular surface is ll-
defined because there is no way to uniquely determine the direction of vector A. However,
when we choose a closed surface, the ambiguity vanishes as we will see in the next section.

Example 1: Simplest Case of Electric Flux

A side square 0.2m is oriented with its unit normal vector 7 as shown in the figure 2.3} If
the electric field E of magnitude 4.3 x 103N /C has angle of 70° with respect to the plane
as shown in the figure [2.3

Figure 2.3

e What is the electric flux through the square?

e What would be the electric flux if the square is rotated in such a way that A is
perpendicular to E
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Solution:
Writting down the electric flux equation for a rectangular surface ( equation , we
have
® = |E||A| cosOpa (2.9)

where the label FA in the 0 angle is written down so that you remember which angle you
are actually looking for. This should be obvious from the definition of the dot product.
However, we write it down because many students forget what angle they should be using.
Now, the area vector magnitude is just the area of the surface, therefore

A =(0.2m)* = 0.04 m? (2.10)
while
cos 20° ~ 0.94 (2.11)
Therefore,
N
® = (4.3-10° N/C) - (0.94) - (0.04 m?) = 163.586m2 (2.12)

Finally, if we rotate the square such that the electric field in is perpendicular to the electric
field , it must be zero. .
® = |E||A] c0os90° =0 (2.13)

because cos90° = 0. Always that a surface is perpendicular to the electric field lines, then
the electric flux is zero.

2.2 Gauss Law

We have defined so far a quite simple case for the electric flux through a rectangular
surface. However, what if the surface is not perfectly rectangular? We will split all the
surface in small rectangles (or at least try by approximating).

Then, if we want to find what is the flux through a general surface, we need to sum
all the contributions of the electric fluxes through each little rectangle

Do~ Y B = ) Ei- AA; (2.14)
If we now let the rectangles be so small, that their area become infinitesimal, we have
D,y = AZ%Z E;-AA; = /E -dA (2.15)

where we have lost the approximation and have obtained an equality, because the rect-
angles now are infinitesimally small. Finally, if the surface is closed, i.e. it encloses a
volume, then we use the closed integral symbol § to denote that the total flux is over a
closed surface.

D = ]{E dA (2.16)
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Figure 2.4

And, what is the direction of the perpendicular differential vectors dA? By convention
the differential vectors dA will always point out to the volume that the surface
encloses. So, any electric field line that points towards the volume or ”go in” to the vol-
ume, then its contribution to the electric flux is negative (because E-dA = |E|dA cos 6 < 0,
since § > 90°). Furthermore, any electric field line that points outwards the volume or
”go out” from the volume, then its contribution to the electric flux is positive (because
E - dA = |E|dAcos > 0, since § < 90°) Therefore, from that we have the following
remarks

e If the total electric flux in a closed surface is positive , then the number of electric
field lines that go out is greater than the number of electric field lines
that go in

e If the total electric flux in a closed surface is negative, then the number of electric
field lines that go in is greater than the number of electric field lines that
go out

e If the total electric flux in a closed surface is zero, then the number of electric
field lines that go in is equal to the number of electric field lines that go
out

Now, let’s see what happens if we enclose a charged particle with a sphere as shown in
figure We place the particle at the center of the sphere and we calculate the electric
flux through the sphere.

So, by using the equation [2.16| we have

q R —
o = fk—f L dA (2.17)

r
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Figure 2.5

where we substituted the electric field of a point charge. Now, every single vector 7 will
be parallel to the vectors dA. The reason is that every single vector 7 is radial to the
particle, and dA is perpendicular to the surface of the sphere. Therefore, the direction of
both vectors si exactly the same (as shown in the figure . So, the dot product in the
latter equation becomes 7 - dA = |#||dA| cos 0 = dA , since the vector 7 is unitary and the
cos0 = 1. Therefore we have

q
o = j{kﬁdA (2.18)

Notice now, that for every single differential of area dff, the electric field is constant
because at each differential of area the radius has not changed. In other words, the
electric field of a point electric charge is dependant of the radius as T%, therefore at each
differential of area the electric field does not change. Therefore, for each differential of
area dA the electric field is constant! Therefore, k-% is constant and we are left with

q q q L q,
b=k= pdA=k—= QdA=k=Aghere = — 4 2.19
r? r? p2l dmeg r? o (2.19)
where we substituted the definition of the constant k& and the area of a sphere
Therefore,
o= %E L dA = Tere (2.20)
€0

The last equation is very special, and it holds not just for a sphere, it holds for any
closed surface. We call it as Gauss Law. It is a very powerful tool to get electric fields
from any geometry. In this course we will study how to obtain the electric field from very
symmetric geometries, or from geometries that lead to easy solutions using Gauss Law. In
general, the equation [2.20| can be used for any geometry, however the analytical solution
could get nasty, and we would perform the integration by numerical approximation.

Example 2: Electric Flux Through 5 random surfaces

The following figure shows three point charges ¢; > 0, ¢ < 0 and ¢3 > 0. Find the electric
flux through each of the closed surfaces Sy, Ss and Ss.
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Figure 2.6

Solution: We use the Gauss Law in equation to know the electric flux. In order
to obtain the electric flux, we just need to know what charges are enclosed by the different
surfaces. For the surface S; the only charges inside are ¢; and ¢3. So the electric flux
through S is

113

o, = 2.21
. ” (2.21)

While for the surface S;, the only charge inside the volume that S encloses is go. There-

fore, the electric flux is
[ (2.22)
€0

where explicitly the sign has been written. In the electric flux calculation is important to
include the signs of the charges.

For the surface S3, there are two charges enclosed, ¢; and go. Therefore, the electric

flux is

o, = L L (2.23)

s3
€0

once again, including the negative sign of the electric ¢o. Finally, for the surfaces Sy and
Ss, we have that

113 1=t
S4 T ) ®35 -

€0 €o

)

(2.24)

Example 3: Electric Flux trough a cube

The cube of the figure has sides of length L = 10cm. The electric field that passes
thorugh it is uniform. The electric field mangitude is £ = 4.5103N/C and is parallel to
the yz plane with an angle of 40° measured from the +z axis to the 4y axis.

e What is the electric flux through surface S; and S;7

e What is the total electric flux through the cube?
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Solution:

To solve this problem is important to recall that the area vector is perpendicular to
the surface and by convention if the surface encloses a volume, the area vectors or the
differential area vectors will always point outwards to the surface as shown in figure
Before starting, let’s calculate the area of each face of the cube.

A=L*=(0.1m)* = 0.0lm? (2.25)

Now, let’s use Gauss Law to calculate the total electric flux through the cube

Cose = § B-dd= [ Badr [ E-ads [ Boadv [ Boads [ Bads [ Boad
Sl Sz S3 S4 5’5 SG

(2.26)

where we splitted the closed integral into the integration over each of the areas of the

cube. In other words, the total electric flux is equal to the electric flux over each of the
faces of the cube.

N
Deupe = »_ P; (2.27)
i=1
Therefore, to find the electric flux through S; and S; we need to calculate
@1:/E-M ,¢3:/E-d/¥ (2.28)
Sl SS

Showing explicitly the integration over Sy
o, = / E-dA = / |E|dAcos 6 = |E| COS@/ dA = |E|Ag, cosf (2.29)
Sl Sl

where the the electric field and the cos 6 go out from the integral because they are constant
and the area of the surface S; was written as Ag,. Therefore,in this particular exercise,
the integration will simply be

(I)l = |E|ASI COS 9]_:;,451 s (I)g = |E_»|AS3 COS 9EA53 (230)

because the electric field and the angle are constant, so they get out from the integral
and from the integration we just obtain the area of the faces of the cube. This will hold
for any the faces of the cube, so we just have to concern about the angles between the
electric field and the area vector of each face of the cube, i.e.

®; = |E|AS; cos Op 4, (2.31)

where we call all the areas as A because the faces of the cube are all equal; and the
label AS;in the angle 6 is just to remember you that the angle in the electric flux is the
angle between the electric field and the area vector. As mentioned before this must be
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obvious from the definition of dot product! So, an apologize in advance for any of you
that notice this immediately, however many students make mistakes in this particular
step and better to repeat several times what angle must be in there. Now, in figure
are shown the directions of the area vectors of each face of the cube. So, showing the
calculation of all the electric fluxes through each face of the cube, we obtain (using figure

27)

®; = EAcos 130° = —28.92544244 (LEFT SIDE) (2.32)
Oy = EAcos40° = 34.47199994 (TOP) (2.33)

O3 = EAcos50° = 28.92544244 (RIGHT) (2.34)

&4 = EAcos 140° = —34.47199994 (BOTTOM) (2.35)

Notice that for the back and front sides of the cube, the area vectors will be perpendicular
to the electric field because the electric field vector lies in the zy plane. Even though there
is an angle between the electric field and the z axis, the electric field does not have a z
component. Therefore it is completely perpendicular to the front and back area vectors
that lie on the +z and —z axis respectively as shown in figures and 2.7dl Also, if
you are not familiar with the notation ® and ®, their meaning is that the vector points
outwards to the page and that the vector points inwards to the page respectively. This
notation will be widely used in the figures along the book.

&5 =0 (FRONT SIDE) (2.36)

&g =0 (BACK SIDE) (2.37)

Hence, notice that the total electric flux is

6
Dpoy = Y 0 =0 (2.38)
=1

as it must be! Using Gauss Law in equation we see that since there is no electric
charge enclosed in the cube, the electric flux must be zero!

Also, the electric flux tells us about the number of electric field lines that goes in
and out of the volume enclosed by the surface. Given that the number of the field lines
that go in are equal to the field lines that go out, the total electric flux must be zero.
Actually it was exactly the electric flux going into the cube in the left side of the cube
and the electric flux in the right side of the cube that cancelled out, and the top with the
bottom respectively. The electric field lines that go in contributed with opposite sign to
the electric flux to the sides where the electric field lines go out.
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Example 4: Electric Flux trough one face of cube given a point
charge at middle point

A point charge ¢ = 5nC is in the center of a side cube L = 10cm. Find the electric flux
through one of its faces. Solution:

Figure 2.8

By Gauss Law, we know that the electric flux through all the faces of the cube is given
by
ene  H-107°C
(I)cube = 4 =
€0 €0

(2.39)

And, since the particle is at the center of the cube, the electric flux will be exactly the
same through any of the faces. Therefore, the electric flux through just one of the six
faces of the cube is given by

Depe  5-107°C
6  6e

(I)oneface —

(2.40)

Example 5: Gauss Law applied, electric field of an infinite rod

A positive electric charge is uniformly distributed along a very thin and infinite wire. The
electric charge per unit length in the wire is A. Find the electric field at a point at a radial
distance r from the wire.

Solution:

One of the most important aspects of solving problems with Gauss Law is to choose
a geometry of the Gaussian Surface that makes simple our calculation. How to know if
the geometry is such that it makes easy our calculation? Find a geometry such that the
electric field is constant at every point and the angle between every single dA and E is
constant . Why we want the electric field and the angle to be constant at every point?
The answer is easy, we want from Gauss Law to get out from the integral the electric field
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Superficie
gaussiana

Figure 2.9

as follows
fﬁ A= ]{ |E|dAcos€EdA = ]E| cos&EdAj{dA = |E|Asurface cos Opqa (2.41)

In general, this can only happen if the electric field E is constant at every single differential
of area dA. If it is not the case, we have to integrate the dot product. In general, this will
not always happen, and sometimes we will have to bravely integrate the dot product in
the surface integral. Also, it is desirable that the angle between the electric field and each
differential of area is just Agga = 0, so that our Gauss Law turns out to be the simple
result

o = |E|Asurface - qzzc (242)

For example , for the infinite rod, we already know from our discussion in the previous
chapter that the electric field lines will be radially outwards as shown in figure So
for example, choosing an sphere as our Gaussian surface, it would not be the best option
because the electric field magnitude will not be constant over the surface of the sphere.
Also, the angle is not constant between the electric field vectors and the area vector
would not be constant. However, if we choose a cylinder as shown in figure [2.9| every
single electric field vector is the same at every single differential of area at the wall surface
as shown in the figure 2.9 so it is constant. Also, the angle between the electric field
vectors and the differential of areas are the same, just zero! So, the cylinder is the right
choice for our Gaussian surface to solve the problem.
So, we start then with our so loved Gauss Law

7{]5 L dA = Tene (2.43)
€0
The closed integral in the left hand side of the last equation can be splitted as follows.
/ E’-d/f+/ E.dm/ B = e (2.44)
top bottom wall €0
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i.e. we integrate over all the surfaces that constitute the cylinder. However, notice that
the bottom and top integrals vanish since the electric field and the differential of area are
perpendicular, so E - dA = 0. Therefore, we are left with

/ E-dA=|E| | dA=|E|Agw = L (2.45)
wall wall €o

where from the first step to the second we used E-A= | E|Awan cos 0 = | E|Ayqu because
the electric field lines and dA are parallel. Finally, the area of the wall of the cylinder
is the same as a rectangle with width 27 and height [, so A, = 27rl. Therefore, last
equation becomes

QEnC QEnC
E27rl = = |F| = 2.46
| B|2mr €0 ] 27rleg ( )

Finally, notice that charge density A = %<, so the electric field is given by

A
E| = 2.47
Bl = e (2.47)

Notice how easy it was to solve this problem by just choosing the right Gaussian surface
in comparison to the way we solved this problem in chapter one.

Example 6: Gauss Law applied, enclosing charge in rods and
particles

An infinitely long line charge having a uniform charge per unit length \ = 1.5% lies a
distance d from point O as shown in the figure. Determine the total electric flux through
the surface of a sphere of radius R = 2cm, centered at O resulting from this line charge
and the electric charges +q which charge is 1.2uC

Figure 2.10

Solution:
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We have to consider all the electric charge enclosed by the sphere. So, we can write
the electric flux through the sphere

enc 4 enc—ro
§ = denc _ 24 +q d (2.48)
€0 €0

where @ene_roq 18 the rod enclosed charge by the sphere. So, we can use the fact that
Genc—rod = AL to obtain the rod enclosed charge. Therefore, the question now is what is
"L”. We just use trigonometry.

L\? L\?
(§> +d% = R? — (§> = R* — & (2.49)

L=2WRP—d& — (2.50)

Therefore, the rod enclosed charge is
Genc—rod = AL = 2)\v R? — d? (251)

Therefore, the electric flux is

o _ Qene _ 4-1.2% 1075C' 4+ 2+ (1.5-107°C/m)+/(2 - 10-2m)2 — (1.5 - 10-2m)?

_ 2.52
o 8.85- 10712, (252)

N
® = 546857.20 m (2.53)

Example 7: GGauss Law applied, electric field of an infinite plane

Find the electric field due to an infinite plane of uniformly distributed positive charge
with surface charge density o.

Figure 2.11

Solution:
Once again we need a smart choice of our Gaussian surface. If we recall, from the previous
chapter all the electric field lines of an infinite plane are as shown in the figure. In the
previous chapter we analyzed a disc and then found the electric field of an infinite plane by
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sending the radius of the disc up to infinity. And when we analyzed the disc we concluded
that there were no electric field contributions other than radially since they cancel out
by symmetry. So, using a cylinder once again will do the job. We place the cylinder as
shown in figure 2.11] The cylinder will have to enclose electric charge of the plane, if it is
not the case the right hand side from equation will be zero and no electric field we
will be able to obtain . So the cylinder top and bottom must be on opposite sides of the
plane as shown in the figure [2.11} Therefore, writing down Gauss Law for the cylinder

@zjfﬁ.dg:/ E-dff+/ ﬁ.dm/ B.ai (2.54)
top wall bottom

where we wrote the closed integral over all the surfaces of the cylinder.The integral
over surface wall is zero, because there is no electric field vector crossing through that
surface. Now,

/ E-dfx:/ |E|dAcos0 = |E|/ dA = |E|Aw, (2.55)
top top top
And,
/ E-dA:/ |E|dAcos0 = |E| dA = |E) Aportom (2.56)
bottom bottom bottom

Also, we have that

Aop = Abvottom so calling them just as A — (2.57)
Therefore
= enc = enc o
® =2|E|A="" = |E| = = 2.58
2 ” Bl =54 o (2.58)

where we used the fact that o = 4=

2.3 Conductors and Insulators

In reality, there are many kinds of materials with different properties, however for purposes
of this course we will divide all materials in two general sets, conductors and insulators.

Definition 2.3.1 A conductor is any material where the electric charges can move easily
from one region to another in the material.

Definition 2.3.2 An insulator is any material that does not allow the electric charge to
move easily through it. When these materials are submitted to a threshold magnitude of
electric field, they behave as conductors.
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2.3.1 Properties of Conductors

Experimentally, the time it takes a good conductor to reach equilibrium is on the order of
1x10~%s | which for most purposes can be considered instantaneous. Therefore, when they
are isolated (no external electric field) we will consider them as electrostatic systems.
By taking into account this assumption, we have that conductors have the following
properties

1. Inside an isolated conductor E = 0 .
If £ # 0, there would exist a force that would cause the charges to move (recall
that F = qﬁ) But as we mentioned, we are taking into account everything as
electrostatic,hence nothing moves.

2. The net (total) charge within an isolated conductor is zero
This property holds since ' = 0 inside any isolated conductor, so using the contour
of the conductor as a Gaussian Surface f EdA = 0, therefore by Gauss Law g, = 0

3. If an isolated conductor has electric charge, it must necessarily reside on
the surface.
Inside any isolated conductor E= 0, so the total electric charge must be 0, otherwise
there would be an electric field. However, it could happen that certain conductors
have extra positive charge or extra negative charge, however since these extra charges
are unable to be within the conductor (otherwise E # 0), the only place where they
can reside is on the surface.

4. If an isolated conductor has charge on the surface, then the electric field
just outside (infinitesimally near to the surface) the conductor is
- 0
E=—n (2.59)
€o
where 7 is a perpendicular vector to the surface of the conductor. This
property is demonstrated in the following exercise

Example 8: Electric Field just outside of a conductor

Suppose a conductor is in electrostatic equilibrium. What is the electric field just outside
the conductor?

Solution:

Once again, we pick a cylinder as our Gaussian surface. However, this time we place it
so that one circular surface its infinitesimally separated from the surface of the conductor,
and the other circular surface is infinitesimally inside the conductor. Before continuing,
analyze figure 2.12] the electric field produced by the conductor must be necessarily
pointing outwards because remember that there is no electric field inside the conductor.
Also, there is no electric field pointing to the sides perpendicular to the vector n since all
charges are static, otherwise they could move (recall that F = qE ,s0 if there is an electric
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Figure 2.12

field to the sides, all those charged particles would move). So, writing down Gauss Law
for this case

o= ¢ B-ai- [ Boads [ Boadv | E.id (2.60)
top Y wall LY bottom ,

NV Vv
=0 =0

where the last two integrals will vanish since there is no electric field passing through

—

those surfaces( £ = 0). Therefore, we are left with

/ E-dA = e (2.61)
top

€0

Notice that every single differential vector dA in our Gaussian surface have the vector
direction of n, so the dA are parallel to the electric field (see figure . This is true
because we are calculating the electric field so near to the surface of the conductor, that
the electric field lines are very good approximated to be perfectly perpendicular to the
surface. So, we have

/ E| - dAcos0 = Lene (2.62)
top €o

Now, the electric field that passes through the top surface can also be approximated
as constant, since the electric field lines are approximated as perfectly perpendicular
to the surface of the conductor and since every single electric field line is separated at
approximately the same distance from the surface, all electric field have approximately
the same magnitude. Therefore,

- - Qenc nl Qenc o
E dA = |E|A,, = = |E| = = — 2.63
£ [ da= B, =% R (269

where we used o = 42¢. The direction of the electric field is perpendicular to the surface,

s1
since every single electric field line is pointing outwards to the surface of the conductor.
So

E=24 (2.64)

€0
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Example 9: Electric Field of a Spherical Insulator

Positive charge @) is uniformly distributed over the entire volume of a spherical insulator
of radius R. Find the magnitude of the electric field at any point a distance r from the
center of the sphere.

Figure 2.13

Solution:

We split the exercise in two cases: whenr < R and r > R.
Let “s start with r > R.

We use a spherical Gaussian Surface with radius r (the green sphere out the sphere
shown in figure [2.13). Writing down Gauss Law we have

b — Ja{E A =T — o — || /dA — |E|Agphere = 220 — |B| = e
€0 €o Aspheree(]
(2.65)
where we have used the fact that the electric field is the same at every point at a distance
r from the center of the spherical insulator. So, just plugging in the area of a sphere we
obtain

|E’|_ Genc :kJQ

= — >R 2.66
47rie 72 " ( )

where we used the fact that the enclosed charge is the total charge of the sphere (gen. = Q).

Now for r < R, we will use once again a sphere that is inside the real spherical
insulator. So, we have

o= 7{ E-dA = EAgpere = 2o (2.67)

€0
where we used the fact that the electric field is exactly the same (so constant) at every
single point a distance r from the center of the spherical insulator. However, this time
the enclosed charge is not all the electric charge of the sphere (gen. # @). This time the

64 CHAPTER 2. GAUSS LAW



Rafael Espinosa Castaneda Electromagnetism

Gaussian Surface is enclosing just some fraction of the total charge. In order to calculate
the electric charge that is enclosed by the sphere of radius r we calculate

" " 47
Genc = /0 pd‘/sphere = P/O 47T7“2d7’ = p?T3 (268)
where p can get out of the integral because the electric charge is uniformly distributed,
so the electric charge density is constant (every single little piece of differential volume
contains exactly the same electric charge). Notice actually that in this very specific case
the enclosed charge is just gene = p * Viphere. However, as we will see in next section this
is not always the case. Also, we used the differential of volume of a sphere. Therefore,

equation becomes

- pr
Ednr® = = |E| = — 2.69
™= |E| 3 (2.69)
If we do not know p we can use:
4 3Q
-V lcon uctor — P35 R3 = — p= 2.70
p - Voleonduct P3T Q P = 1 Rm3 (2.70)

because the electric charge is uniformly distributed.Just careful that this time the volume
used is the volume of the insulator sphere, not the Gaussian Surface. Therefore, plugging
in the charge density p in equation we obtain

= 3 \ 7 Q
Bl = Iy 2.71
] (47TR3) 3¢, R3 (2.71)

So, we have found that the electric field for a spherical insulator behaves as

, kS f
|E :{ g forr> X (2.72)

k%r forr <R

Notice that the electric field outside an spherical insulator behaves exactly as a point
particle.

2.3.2 Charge Induction in Conductors

Four properties have been mentioned for conductors in electrostatic equilibrium. Let’s
mention one more property in this section. Suppose that a conductor has cavities. If the
conductor has electric charge @), could some of the electric charge () reside in the wall
of the cavity? Gauss Law, will give us the answer. Let’s create a Gaussian surface that
is extremely near to the surface of the wall of the cavity as shown in figure 2.14al The
Gaussian Surface is infinitesimally near to the surface of the cavity as shown in the figure
So, writing down the possible electric flux through the Gaussian surface

iy :74 E {dA=0 (2.73)
~—

=0
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must be zero, because the electric field must be zero since the Gaussian Surface is inside
the conductor. The Gaussian surface is infinitesimally near to the surface of the cavity,
but it is inside the conductor, so the electric field is zero. Therefore, by using Gauss law,
the enclosed charge by the Gaussian surface is zero! So the answer is no! If a conductor
with electric charge () has empty cavities, there is no way that some of that electric charge
can reside on the surface of the inner walls of the cavities. So the only place where there
can be electric charge as we already know, is on the outer surface. However, what happens
if there is an electric charge inside the cavity as shown in figure Now, we cannot
say that the enclosed charge by the Gaussian surface is zero because we have explicitly
placed the electric charge inside the cavity and the Gaussian surface.

Induced electric
charge -q

Figure 2.14

However, the electric field inside the conductor must be zero! So what happens? We
say that a charge is induced in the wall of the cavity so that the enclosed charge is zero
and there is no contradiction in Gauss Law. If the electric charge that is enclosed is zero,
then

Qenc = q + Quall = 0= Quall = —4 (274)

So, the induced charge is the same as the electric charge inside the cavity with opposite
sign. However, that is not all what takes place. Think about this. The electric charge with
opposite sign that now is on the surface of the inner cavity had to come from somewhere!
Indeed, it came from the material of the conductor. Either positive or negative charges
from the conductor had to move to the inner surface so that it became electrically charged.
However, if the electric charge came from the material of the conductor, then its electric
charge is not neutral anymore. Either it became positively charged or negatively charged
depending on what kind of charges moved from the material to the inner surface. However,
everything must remain on equilibrium! And having a net electric charge in the conductor
does not guarantee us that. Therefore, what happens is that certain electric charge moves
from inside the conductor to the outer surface. However, this electric charge will now
be of the same sign of the electric charge as the one inside the cavity. So, at the end
the material inside the conductor gets once again neutral, since the same amount of —¢q
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electric charge that moved to the inner surface will move to the outer surface but with
opposite sign +¢. So, for any conductor we have the following property

If an isolated conductor has cavities, then it cannot have electric charge
in the inner surface of the cavities. However, if a conductor has electric
charges inside a cavity, then the wall or surface of the inner cavities
obtain electric charge of the same magnitude but opposite sign of the
charges inside the cavity; while the outside surface obtain extra charge
of the same sign of the charges inside the cavity

Example 10: Sphere inside an spherical shell (charge Induction)

A solid insulator sphere of radius r, has a total (net) positive charge @ uniformly dis-
tributed throughout its volume. A spherical conductive shell, with inner radius r, and
outer radius r,, is concentric with the solid sphere and has a net charge of —5@). Another
conductor sphere is concentric to the two mentioned objects, with total charge 9¢). With
the application of Gauss law, find the electric field in the regions LII, II1,IV,V and VI
in the figure and the electric charge in the walls of the spherical conductive shells. The
whole system is in electrostatic equilibrium.

Figure 2.15

Solution:

We first analyze the behavior of the electric field.

In the region I we are inside an spherical insulator, therefore we use the result of the
exercise 9, equation [2.71] So,

— QTA

E = kﬁr for r <, (2.75)
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For the region II, we can use once again the result of the previous exercise for a
spherical insulator but when we calculate the electric field outside of it (equation [2.66))

= Q

E=k—7 for r, <r <y (2.76)
r

For the region III, since we are inside a conductor, we know that the electric field must
be zero.

= N
|E| = Oam for ry <r <. (2.77)

For region IV, we shall use Gauss law. We make a Gaussian surface surrounding the shell
of region III . So,

L 4
%E P (2.78)

€o €o

where we have that the enclosed charge is

Genc = Q - 5Q = _4Q (279)

Since everything is spherical symmetric we have that the electric field will be constant
for all dA. Given that the enclosed electric charge is negative, then the electric flux will
be negative, so every electric field line will have exactly the opposite direction of each
differential of area. Therefore E - dA = |EdAcosOpga = |EdA cos(—180°) = —|E|dA.
Hence, equation becomes

S —4Q . 4Q) 4Q 4Q
_EAS ere:—:} E — = :k— 280
|| Aspi €0 ] Asphere€o  4Amegr? r? ( )
So,
- 4
E = —k—?f forr. <r <wry (2.81)
r

For the region V, since we are inside a conductor, we know that the electric field must be
Zero.
~ N
|E| = 06m forrg <r <, (2.82)

For the region VI, we shall use once again Gauss law. We make a Gaussian surface
surrounding all objects. For this final case the enclosed charge is

Qenc = Q - 5@ + 9@ = 5@ (283)

The electric flux will be positive, because the total electric charge enclosed is positive,
therefore the field lines will be outwards. Due to the spherical symmetry, we will have
$ £ - dA = E|Agpere. Therefore, we have

5Q = 5Q 5Q__ 50

‘ ‘ sphere €0 | ‘ AsphereEO 477'607”2 7”2

(2.84)
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Therefore,

E= ki—?ﬁ for r > r, (2.85)

Now, for the electric charges at the walls we must use what we have learned about charge
induction.

For r = r, we actually do not know the electric charge. We know that in the whole

volume of the sphere the charge is ), but exactly at the surface we do not know. The
red sphere is an insulator, so the electric charge shouldn’t be exactly at the surface when
r=r,.
For r = r, by charge induction, the electric charge has to be the same magnitude but
opposite sign of the charge inside the cavity, so the electric charge is —(). For r = r., the
new electric charge is the total electric charge of the conductor plus an induced electric
charge. This induced electric charge has the same magnitude and sign as the electric
charge inside the cavity. So the electric charge is —5Q + Q) = —4Q)

For r = r4 by charge induction, the electric charge has to be the same magnitude but
opposite sign of the charge of everything that is inside the cavity of the shell with inner
radius r4, so the electric charge is 4(). For r = r,, in analogy to what happened with the
first conductor, the electric charge is 9Q — 40Q) = 5Q)

2.4 Symmetrical Non-Uniform Charge Distributions

So far we have assumed that electric charge is uniformly distributed in the objects that
we have analyzed. However, this could be highly idealized. In many situations, we could
probably wait enough to let the charges to distribute uniformly all along the object.
However, in many real cases charges will tend to be more likely in certain regions of the
object. In cases where the distribution of charge is not uniform nor symmetrical, the
integral § E -dA in Gauss Law could get highly difficult to solve and unpractical analyti-
cally to use this approach. However, even though the distribution is not uniform, if there
is symmetry we can use easily Gauss Law. We mention two particular cases, spherical
symmetry and cylindrical symmetry.

If we place the object to analyze at the origin, whenever its charge density depends
only on the distance from the origin, we say is spherically symmetric, i.e. any function of
charge density only dependant of r as p(r) is spherically symmetric. We say so, because
suppose you take a vector with certain length » = ry. If such vector direction changes
with any angle in the direction of the unitary vectors 0 or (;3, the charge with such distance
r = 71( is exactly the same. So, visually we can think of these kind of charge distributions
as spherical shells, where every spherical shell has certain different electric charge (this is
shown in figure [2.16a)). In any spherical symmetric charge distribution, the electric field
will be radially directed because the electric charge and field are invariant under rotation.
So, is not surprise that for these cases we use as our Gaussian surface an sphere.
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@@rv

(b) Cylindri-
cal  symmetric
charge distri-
bution. Every
(a) Spherical symmetric charge distribution. cylindrical layer
Every spherical shell layer has different electric has different
charge. electric charge.

Figure 2.16

Now, if the object to analyze has certain axis to which the charge density only depends
on the radial distance from the axis to any point, then we say it has cylindrical symmetry.
For such charge distributions we can think as the object made of cylindrical layers with
different charge each of them (this is shown in figure . As expected, for such
distributions, we will use a Gaussian surface in the shape of a cylinder.

Example 11: Electric Field of a charge distribution with cylin-
drical symmetry

An insulator cylinder of infinite length and radius R has volume charge density as

po(a—ﬁ) forr < R
pr) {O forr > R ( )
where pg = 110775 a = 2 and radius R.
e Find the electric field as function of r inside the cylinder

e Find the electric field as function of r outside the cylinder.

Solution:
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Figure 2.17

We proceed to calculate Gauss Law, by using a cylinder as our Gaussian surface.
The cylinder will have certain length [ and radius r. So, given that we have cylindrical
symmetry, E and dA are always parallel. Therefore, we have that

f{ B dA = |E| Acgtinger = | E|2mrl = dene (2.87)

€o

where we just used the side area of the cylinder, given that there are no electric field lines
crossing the top and bottom surfaces of the cylinder. So, the equality

|E|2mrl = dene (2.88)
€0
holds no matter if we take points inside or outside the cylinder (r < R or r > R). We
have just used the fact that the electric field lines have cylindrical symmetry. We are
concerned now about how much electric charge we are enclosing. If we are inside the
cylinder (r < R), then we have that

Qenc = /T pdV = /T 00 (a — L) (2mrldr) = po2wl /7‘ ar — T—2 dr (2.89)
0 0 R 0 R

where we used the differential of volume of a cylinder dV = 2nridr. So, evaluating the
integral we have that
ar? 31" r?
enc — 2l | — — == = po2ml 2 2.90
q POW{Q 33}0 POW{T 3R} (2.90)
Hence, substituting the enclosed charge by our Gaussian cylinder of radius » < R in
equation [2.88, we obtain

3

= po2ml | o T £0 r
Bl = | =2y = 2.91
] 27rley [r SR} €0 [T ] (2.91)

Now, if our Gaussian cylinder radius is » > R, we have enclosed all the electric charge in
the cylinder. Hence,

1 4
Qtot = p027TlR2 |:1 — §:| = gpﬂ'le (292)
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where we used the radius of the cylinder in equation [2.90L So, for either outside the
cylinder or at the radius of the cylinder, we have enclosed all possible electric charge of
the cylinder. Hence, using the total charge of the cylinder, we have that equation [2.8§|

becomes
2 2P0 R?

E| = 2.93
LR (2.99)
So, summarizing we have obtained
L felr-g] ferr<r
[E| =45 [C se| ONT (2.94)
252{5 forr > R

Example 12: Electric Field of a charge distribution with spherical
symmetry

A non-uniform distribution charge, is spherically symetric. Its charge distribution is given

by
o(r) = {po(l —4r/3R) forr <R (2.95)

0 forr > R

where pg is a positive constant. Find the electric field produced by the spherical sym-
metric charge distribution when r < R (inside the charge distribution) and when r > R
(outside the charge distribution) . Solution:

We will use Gauss Law, and take advantage of the spherical symmetry. So, we use as
Gaussian surface an sphere of radius r

/E A = |E|Aghere = |E| (47r2) = Leme (2.96)

€0

where the last equality will hold not matter if the Gaussian surface is inside or outside

of the charge distribution. Now, if » < R, when the Gaussian sphere is inside of the
spherical charge distribution we have that the enclosed charge is

T T 47,, T 4T3 TB 7’4
enc — dV = 1 — — ) [4xr?dr] = pod 2 Vdr = pyd -
o ey G e N G KR ()

(2.97)
where we used a differential volume of a sphere dV = 4mr?dr. Therefore, inside the

spherical charge distribution, the electric field is

2
s Po (T T
El=—(-—-—=—= 2.98
B1=2 (5 57) (2.98)
where we substituted the enclosed charge (equation [2.97)) in equation Now, notice
that when we enclose all the possible electric charge by letting our Gaussian sphere be of

radius » = R, we have that
Gene =0 C (2.99)
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by substituting » = R in equation So, in total the sphere is neutrally charged! And
this shouldn’t surprise, this can happen in any real situation. For example, if you enclose
certain volume of your body with a Gaussian surface, for sure there is probably certain
electric charge in there. We are made of electrons and protons of our atoms, so probably
in certain times some electric charges are in certain regions of our body. However, if now
you use a Gaussian sphere that encloses your whole body, now you are neutrally charged!
This happens with the sphere we are analyzing, if we enclose certain volume inside the
sphere, there is electric charge and therefore electric field, however once we are at the
surface of the sphere and outside of it no electric field is produced because all electric
charge is neutralized due to the layers of different electric charge of the sphere.

|E|=0C (2.100)

Therefore, we have that the electric field generated by the spherical charge distribution is

L [z ﬁ) for r < R
[E| =4 <3 ) O (2.101)
0 forr > R

Example 13: Hydrogen Atom

From high school (probably before) we were taught that the hydrogen atom is composed
by a proton and an electron. And many times it is taught that hydrogen atom looks like
in figure 2.18al an electron that is cycling around the proton. However, this picture is not
right at all. Something much more interesting takes place. Quantum mechanics tells us
that at very tiny scales, we can not tell with certainty what is the position and velocity
of an electron . We can only know with certain probability where the electron is. The
ground state of the hydrogen atom is the lowest energy state of the hydrogen atom. In
such case, quantum mechanics states that the probability density (the probability to find
the electron in an spherical shell between a distance r and r + dr) is given by

1

|W(r) 2 = —e /a0 (2.102)
Tad

So, the electron probability density rises a charge density. We can think as a cloud around
the proton of certain probability of finding the electron there as shown in figure [2.18b]
So, this cloud gives a spherical symmetric non uniform charge density distribution

Q —2r/ag
= % 7 2r/a 2.103
p(r) mz%@ ( )

where —() is the charge of the electron.
e Find the enclosed charge by an sphere of radius r centered at the origin

e Find the electric field generated by the hydrogen atom in its ground state
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(b) Modern picture of the ground state
of the hydrogen atom. There is a cloud
of probability around the proton of

(a) Classical picture of an hydro- finding the electron. Such cloud rises
gen atom. This picture is far from an spherical non uniform charge distri-
being right bution.
Figure 2.18
Genc = / p(r)dV + Q (2104)
0
where () is the charge of the proton. So, focusing first in the integral in the last equation
T T Q
/ p(r)dvV = — —36_2’"/‘10 (4mr2dr) (2.105)
0 0o Ty

where we have included the minus sign of the electron, and used the fact that the differ-
ential of volume for a sphere is 47r2dr. Therefore we want to solve the following integral

/ p(r)dV = —/ %e‘zr/“°4r2dr (2.106)
0 0o
By making the use of the following variable
2 2d 2d 4r2d
u=""" and du="" , we would have that v 3 L (2.107)
ag ag 2 agy

so, we can express the integral as
Q 2r/ao
2 Jo

We proceed to integrate by parts, so we obtain

u*e "du (2.108)

Q 2r /ag 2r/ao

ule tdu = —Q { —ule
2 Jo 2

2r/ag
+2 / e‘“udu} (2.109)
0

0
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The integral in the last term, is solved by integrating by parts once again

2 Jao 2r/ag 2 Jao 2r/ao 2r /ag
/ e "udu = —ue ™ — / e du = —ue™" —e " (2.110)
0 0 0 0 0
Therefore, equation [2.108| becomes
2r/ag
2r/ao
9 ule du = @ [ —ule "+ 2( —ue " — e_“)] (2.111)
2 Jo 2
0
Evaluating the limits of integration, we are left with
Q 2r/ag 2 —u _ Q —2r/ag 2
5 u'e du = 2¢ (2r/ap)” +2(2r/ap) +2 ) — Q (2.112)
0

So, finally plugging the last equation in [2.104] we have that the total enclosed charge
is

e = G020 4 2020 o)+ 2) 11
Therefore, we have an enclosed charge different
to zero as expected from the classical point of view. Hydrogen Atom Electric Field

Notice also, that as we should expect, if r — 0, we ool |
are left with just the proton electric charge. Finally . \
to obtain the electric field produced by the hydrogen
atom we use Gauss Law.

As mentioned before, we use an sphere to en-

S

10° \x'“‘-h

Electric Field N/C

close both charges. As, previously, when we have a mi \

spherical symmetrical distribution of electric charge, — - — — —

by using an sphere as our Gaussian surface, we Radial distance the atom center (r)
will obtain from the left hand side of Gauss Law
|E|Agphere = |El4mr? . Therefore,

1e-19 Hydrogen Atom Electric Charge

10
le-2

|E|4mr? = %e‘wao ((27“/(10)2 +2(2r/ag) + 2> 512
0

So, the magnitude of the electric field generated
by an hydrogen atom is given by

Electric Charge {C)
=
®

Q

272 ¢

\E| =k

Radial distance {r) from the atom center {m}

—2r/ao <(2r/a0)2 +2(2r/ag) + 2) 1 10 0 10

(2.114) Figure 2.19
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Chapter 3

Electric Potential

So far we have discussed about electric fields and how they are the responsible for electric
force. However, we have not mentioned a crucial quantity in physics, energy. How is
the energy related to the electric fields? Is there a potential energy associated to an
electric field? Indeed, there is. In this chapter we will discuss about the potential energy
associated to an electric field, and the electric potential which is highly related to energy.
Also, we will mention a new variable, called voltage which is much more common to hear
about it in industry and daily applications as house electrical devices. As it will turn out,
dealing with electric potential is much easier than electric fields. The reason is simple,
the electric potential is a scalar, so we do not have to worry about the components of the
electric field.

3.1 Electric Potential Difference(Voltage)

First of all, we should ask ourselves, when a charged particle moves from a point A in
space to a point B. What is making the work so that the charge moves? We could see
the analogous to the gravitational case, when we let an apple fall, what makes it move is
the gravitational field and it is the one exerting a force on the apple and doing a work to
move it. So similarly, the electric field does the work when a charged particle moves from
a point A to a point B. Now, suppose an electric field moves a particle and we calculate
the work done by the electric field, so we will have the following integral

B—» —
W:/ Fdi (3.1)
A

where dl is a differential vector that is tangent to every single point in the path that the
charges follows when moves. As it turns out,it can be shown that the electric force is a
conservative force. And, given that the electric force is conservative, it can be written as

F=—qVV (3.2)

and .
E=-VV (3.3)
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Therefore, we can write the work done by the electric field as

B B B
W:/‘ﬁdhw/‘Edh?ﬂ/'mﬁﬁﬁ—ﬂ%—uozﬂﬁv (3.4)
A A A

The function V is called electric potential and it is scalar with units é.However, the
electric potential by itself is not a physical quantity, it is the difference of electric potential
that is physical. Therefore,

AV:—% (3.5)

This last quantity AV is called wvoltage and its units are V = é called volts. Why is
it that the electric potential is not physical? Because it depends on the reference frame
we have chosen to make our measurements. However, the potential difference is physical
eliminating the redundancy of the reference frame we have chosen. We will discuss this
progressively, and at the end of the chapter hopefully it will be much clearer why. Now,
recalling that the work done by a member of the system (our system now is the electric

field and the particle which is moving) we are analyzing.

where AU is the change in the potential energy; so we can combine the last equation

with B.5] to obtain
AU = gAV (3.7)

The last equation tells us something important about the potential energy. Whenever
there is drastic change of potential, or there is a huge voltage(AV > 0), there will be
a drastic change in potential energy. Recall from mechanics, that whenever we have
conservative forces the conservation of energy is written as

AE =AU+ AK =0 (3.8)

Therefore,
AK =-AU (3.9)

so if there is a drastic change in the potential energy given a big voltage (AV > 0),
charges will obtain kinetic energy. Therefore, they will start flow rapidly . That is the
reason why high voltages are dangerous.

Now, we could ask ourselves, does the potential difference or the voltage depends on
the particle that moves? Well, the answer is no! From equation if we equal the third
term with the last one we have

A
q/.ﬁdﬁ?ﬂAV:$AV:—/E%ﬁ (3.10)
B

Look how actually the last equation is independent of the electric charge that is mov-
ing. The electric field in equation is the one produced by the charge that influences
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the one that is moving. Probably you think, but I see in equation a direct relation of
the potential difference (voltage) with the electric charge that moves, what is going on?
As we will see, AU is dependent of the electric charge that moves, so at the end they
cancel out. Finally, if the electric field is constant we are left with

[5a-p (/dl) (311)

where we asssumed that the length of the end points of our interest to measure the voltage
starts from zero up top to a certain distance d. Therefore, for constant electric fields we
have

AV =—E-d (3.12)

Example 1: Electric Potential Difference of Point Charges

Determine the electric potential difference in arbitrary points in space r; and r generated
by a point electric charge Q).

Figure 3.1

Solution:
Let’s take an arbitrary electric charge () and place it as shown in the figure. So by using

equation [3.10, we have
AV:—/E-df:—/@r dl = /dezcose (3.13)

r2

where we substituted the electric field produced by a point electric charge and used |7| = 1
because it is a unitary vector. Now, see (see figure) and notice that cosf = % = dr =
dl cosf. Therefore, incluiding the limits of integration in the last equation and solving

the integral we have
"k s 1 1

AV = / Q k;Q = kQ(— — —) (3.14)
Ti T T rf T

So this result holds for any punctual electric charge (). As it will be used quite often , we
explicitly show the result.

AV = kQ (i _ l) (3.15)

Tf r;
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Example 2: Meaning of the sign of the voltage

A proton is released from rest in uniform electric field, as result the proton starts to move.
a) Does the electric potential increase or decrease towards the points where the proton
moves? b) Does the potential energy of the proton increase or decrease? ¢) What would
be the answers in a) and b) if it is an electron instead?

E _ E >
> = >
® 7 @
S >
> >
(a) (b)

Figure 3.2
Solution:

We will use equation3.12] to determine whether the potential difference increases or
decreases when a proton moves in a electric field. Therefore, we need to determine first
of all the direction of the vector cf, which in principle is always arbitrary, you can select
two different points and determine such as your d vector. However, we will use this vector
d as the vector of the displacement of the proton. So, to dertmine the direction of the
vector d let’s start with the electric force equation

F=qE (3.16)
From this equation we can obtain first what would it be the direction of the proton
moving. Since the electric charge of the proton is positive, then the force and electric
field have the same direction. Therefore, the proton moves to the same direction of the
electric field. Therefore, the distance vector d will be pointing to the same direction as
the electric field.

Using equation for a constant electric field,

AV = —FE -d = —|E||d| cos0 = —|E||d] (3.17)

where the angle 8 = 0 since the electric field and the displacement vector d have exactly
the same direction . Therefore,

AV <0 (3.18)

Hence, the electric potential decreases towards the direction of the proton movement.
Now, by using equation (3.7, we have that

AU = qAV <0 (3.19)
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the potential energy decreases as expected because the kinetic energy increases.

For the case when we have an electron, we have that
F=—|¢|E (3.20)

where we make explicit that the electric charge of the electron is negative. So, the electron
moves opposite to the direction of the electric field. Therefore,

AV = E-d = —|E||d] cos 180 = | E||d] (3.21)

Hence,

AV >0 (3.22)

Therefore, the electric potential increases towards to the direction of the movement of the
electron. Now, for the potential energy we must obtain that it decreases also, since the
electron is moving and it should lose potential energy and gain kinetic energy. So, lets
see if this holds. Starting once again with equation |3.12|, we have

AU = —|g.]AV <0 (3.23)

Since,AV > 0 So the potential energy decreases as it should!

As you can notice, we actually never needed to use the exact values of the electric
charge of the proton neither of the electron. It was more a quantitave analysis. So, in
general, we can say the following

Negative electric charges will move to the direction where the voltage is positive
(electric potential increases), and the positive charges will move towards the direc-
tion where the voltage is negative (electric potential decreases). Also, the sign of
AV, tells us in which direction the electric field points.

Example 3: Proton moving in a constant electric field

Two metal plates are placed front one to each other 0.1cm distance. The plates generate
an electric field of magnitude |E| = 15 as shown in the figure. If a proton is released
from rest from the positive plate. (proton mass 1.6 x 1072"kg). What would be the speed
of the when it hits the negative plate?
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Solution:

Since we want to know the speed, somehow we need to relate it with voltage. From
equation we know that there is a relation between voltage and potential energy.So
, we start with the equation of conservation of energy when there are only conservative
forces,

AU +AK =0= AU = -AK (3.24)

Using equation |3.7]
qgAV = —AK (3.25)

Substituting the potential difference for a constant electric field (equation [3.12)) and the
definition of kinetic energy difference

Fod=—(Emoz = Lowp) (3.26)

—qF -d = —(zmv; — —mu; )
q 2 f 2 (2

where v; stands for initial speed and v; for final speed (do not confuse with electric
potential). Now, since the exercise explicitly mentions that the proton is released from
rest then v; = 0. Therefore, by isolating v; in the last equation we have

2q|E|d
vp = 24| Eld (3.27)

m

where we used the fact that the dot product will be positive, since we know that the
proton moves to the same direction as the electric field so the angle between E and d is
0. Substituing values we have

_[2(1.6-10"19C)(1IN/C)(0.1-10-2m) m
vy = \/ 67 107 kg = 437.74— (3.28)
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Example 4: Calculating speed of 3 charges in a triangular con-
figuration

Three equal point charges of 1.2uC and 3 x 10~ %kg

of mass are placed in the vertices of an equilateral q3
triangle of length 0.50m. If the charges are released (P
from rest, What is the speed of the charges after the N I
triangle has duplicated each side length? S \

Solution: J P
From the figure, the electric charges in the middle )/ / a3 \ \
triangle are in the initial configuration, while in the J/ Q—) () N
triangle of sides r¢ are at the final configuration after g " Q2 I
they have moved. Once again, as in the previous L Ti b
exercise we will use conservation of energy to solve N2 ()
this problem. In this case, we have to consider the 1 = s — Q2
total energy of the system. So we have to compute f

Figure 3.4

AUT = AUlg + AUL; + AU23 (329)

where we are calculating the difference of potential energy between the pairs. However,
since they are in a equilateral triangle, they will be separeted the same distance between
them. Also, ¢ = q2 = q3. Therefore,

AUr = 3AU5 = 3AU3 = 3AUss (3.30)
So, calling ¢ = q1 = g2 = q3. We have

1 1 1 1

AUr = 3qAV = 3q (kq [— —D = 3kq? {— — —} (3.31)

Tf T Tf T;

where we just substituted equation |3.15] the electric potential difference generated by a
punctual electric charge. So, now using conservation of energy

5 1 1 3

AUT + AKT =0= 3](3(] — — — |+ Smvy = 0 (332)

ry Ty 2

where we did not include 2v? because the charges start from rest. Notice, how the 3
included in the potential energy difference and the 3 in the kinetic energy will be cancelled
out. This is due to the symmetry of the exercise, but this is not necessarily true always.
For instance, particles could have started in any random configuration and with aleatory
initial velocities. Finally, isolating vy, we obain

—2kq? [L - i}
Tf T4
vf = p (3.33)
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Now, since the triangle duplicated its sides length, we have that

5 1 1 1 1 1 (3.34)
f TFooTy 2r;  r; 2r;
Therefore,
kq?
= 3.35
v mr; ( )

Finally, plugging in the corresponding values we obtain

(9 - 109422)(1.20 - 10-5C)?
or \/ 3 10-"%g)(05m) 929.51 m/s (3.36)

3.2 Electric Potential

We have defined the difference of potential, and we have called it as voltage. Now, it is
convenient to define a reference frame to calculate only the potential. In electrostatics,
we will define a reference potential such that at infinity it is zero

Voo =0 (3.37)
Therefore, we can calculate the potential of one electric charge, by using equation [3.15]
AV =V —V, = kg (3.38)
where r% was depreciated since 1/r — 0 when r — oo. So,
V= lcg (3.39)

where r is the distance from the electric charge to the point where we are calculating
the potential. Now, I want to emphasize that the potential by itself is not something
physical. It is the potential difference that is measurable. However, even though
that it is measurable the difference of the potential, it is useful to have a definition of
potential by itself. Let me make the analogy with potential energy in mechanics. When
you calculate the potential energy of a ball that is about to fall, you use certain reference
frame. For example, you probably say that at the floor the potential energy is zero.
However, probably a guy at the second floor in a building says that the potential energy
is zero at the second floor. So who is correct or incorrect? Well, no one is incorrect. The
thing is that to start to define the potential energy the guy in the building and you used
certain reference frame. However, when you calculate the change or difference of
potential energy you could now use energy conservation law and deduce some physics
as the velocity at which the ball hits the first floor. So, something similar is with the
potential, we can use a reference frame to establish the electric potential, and then do
some physics when we calculate the potential difference. Now, is important to remember
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to include the electric charge sign in equation [3.39] Finally, if we have N particles and
we are interested to obtain the potential at certain point in space, we just need to sum

the contribution of all particles
N

v=> k% (3.40)

r
i=1 v

Example 5: Electric potential simplest case calculation

Two point electric charges ¢ = buC and ¢ = —3uC are placed in the xy plane
at (0,0) and (0,4) respectively. Find the electric potential at the point P(—1,3)m .
Solution:

We need to calculate YA
q
41 q2 2
V=k—+k—= 3.41
7’1 T ( ) r2,/94 m
Pel- |
From the figure we can easily construct train- \ 3m
gles to find distances r; and o . which are the Vo 2m
distances from the electric charge ¢; and ¢ to ‘\rl
point P respectively. So, ‘Tim
\
2 2 | 12 —© > X
r2=124+1> =ry,=+2m (3.42) S Y,
while Figure 3.5

r =12+ 32 = /10m (3.43)

Therefore, plugging values in equation [3.41]

V=9-10°

Nm? [5-107%C _ 3-107%C
C? V10m V2m

) — —4861.6V (3.44)

3.3 Electric Potential Energy

Suppose, we have an electric charge ¢; at certain random point in space. Now, electric
charge ¢; will create an electric field, and therefore if an external agent were to move an
electric charge ¢, from infinity up to a random point P in space, the work done by the
external agent would be

W = AU = (UP — UOO) = (2 (Vp — Voo> = qu (345)

where Vp means the potential at point P. The second potential term vanished because as
we have mentioned our reference potential is such that V., = 0. However, if the potential
is zero at infinity, also must be the potential energy in the last equation. Therefore we
are left with

UP = q2VP (346)
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But potential Vp = kf—;, where 7p just means the distance from electric charge ¢, to point
P. Therefore, we have that the potential energy of the configuration of two electric charges
is given by

U= 12 (3.47)

r

where the labels P were removed since we have chosen a random point and the last
equation is a general relationship. Now. what if we bring a third electric charge from
infinite? Well, this electric charge has to be moved against the electric field produced by
q1 and ¢o. So, we have

U — kQ1Q2 4 leQS X kQ2Q3 (3.48)
T12 13 723

where the distances between the charges have been labelled as 75 (distance between
charges ¢; and ¢q), r13 (distance between ¢; and ¢3),ro3 (distance between ¢, and ¢3) .
What about bringing now a fourth electric charge from infinity 7 Now that electric charge
moves against the electric field created by ¢, g2 and ¢3. Therefore, we have

U — kQ1Q2 4 kQ1Q3 i kQ1Q4 1 kQ2C]3 i kCI2Q4 4 kQ3Q4

12 ri3 T14 T'23 T'24 T34

(3.49)

And we could continue up to the number of electric charges that we are interested to
bring from infinity. It is matter to write down the pairs without repeating. So, we can
write a general formula for the electric potential energy for N particles as

NL N
U:k; Z ;ijJ

j=i+1

(3.50)

Example 6: Potential Energy of 3 charges in triangular configu-
ration

Three point charges are located in a equilateral triangle as shown in the figure. Its length
are 35cm and Q) = 5uC
(a) What is the potential energy of the system?

¢ =Q

¢ =0 =2

Figure 3.6
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Solution:
To calculate the electric potential energy remember to take pairs without repeating. So,

4192 4193 4243

U=k +k + k (3.51)
T12 13 723
Since,
T2 = T13 = 723 (3.52)
and
Q=g ==~ g = 2Q (3.53)
We have that:
Q? Q?

where all distances were named as r and the electric charges in [3.51] were substituted.
Plugging in values, we obtain

= 3.215J (3.55)

Nm?\ (5-107%C)?
U=5-19-10°
< C? ) 0.35m

3.4 Electric Potential and Potential Energy of con-
tinuous distributions of electric charge

In order to find the electric potential generated by continuous distributions of charge at
a point P, we have two options:

Figure 3.7

e We can split the object in little chunks and consider them as infinitesimal charges
as shown in figure 3.7 Every single infinitesimal charge contributes a differential

potential

d
dv = k:7q (3.56)
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Then we sum infinitesimally all the contributions of the infinitesimal potentials at
P, so
d
V= / K (3.57)
r

e If we know the electric field generated by an object, then we use the definition of
the electric potential difference

Pf_’ .
szvf—m:—/ E-di (3.58)

P;

Taking our reference potential V' =0 at P, = oo, we have that

P — —|
vz/ E-di (3.59)

oo

Now, suppose you want to calculate the potential energy of a continuous distribution.
Let’s start with the potential energy we have found for a set of N particles (equation

3.50)
N

U=ky Y 4 (3.60)

r
i=1 j=i+1 Y

The last equation can also be written as

vk Yy (3.61)

where the factor of % arises because now you are double counting the pairs. The only pair
forbidden is the electric charge ¢; with itself. Now, ¢; can get out of the second sum and
express the last equation as

1 N N 4
U=3 > (Z kr_j> (3.62)
i=1 gAY

where notice that in the last equation the expression inside the parenthesis is the potential
of all particles different of ¢; at the position of electric charge ¢;! (See equation|3.40)) Hence,
last equation can be written as

U= % ; WV (1) (3.63)

So far we have just written the equation that we already used for the potential energy of
N electric charges in another format. However, starting from last equation we can make
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the following, we split the object with continuous charge distribution in extremely small
infinitesimal chunks with electric charge dg and integrate the complete contribution

1
U= §/qu = /deVol (3.64)

where we used dq = pdV ol. Now, all along this book, we have been using V' as potential.
In many texts is common to also use ¢. For this small derivation I will write ¢ for potential
so that volume V' is not confused with potential, and in order to avoid being writing dV ol.

So

U= % / ppdV (3.65)

where the integration limits must be such that encloses all the electric charge. However,
we can make the integral over all space! Because any region in space that does no contain
electric charge, p = 0 and will not contribute to the integral. Now , using Gauss Law in
differential form , we can rewrite the last equation as

U:%O <V-E)¢dsz=€2—“/[v-(E?p)—ﬁ-w} (3.66)

where the first term is zero because is a total derivative and we're taking the integral
over all of space and ¢(r) = 0 as r — oo , so it vanishes. Now, recalling that E = —Vo
(equation just remember, for this deduction we are calling the potential as ¢ instead
of V, so that it is not confused with differential of volume), then the last equation becomes

Uv="2 E-Edv (3.67)
2 allspace
where
€= =
u=JE-E (3.68)

is the energy density (units ).

Example 7: Electric potential of a finite rod

Find the electric potential at point P = (3,1)m due to a charge line placed in the y axis
from y = Om to y = 5m. The line charge has a charge density given by A = 4%. Along
your calculations you can use the result of the following integral ,

/\/ug—uiw —In (u + m) (3.69)

Solution:

We can calculate the potential either with equation or equation However,
we do not know the electric field of a finite rod in a point which is not symmetrical.
Therefore, we are going to use equation [3.57], splitting the rod in infinitesimal chunks and
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integrate the contribution of all of them.

Now, the difficulty arises in defining the distance r from the electric charges on the rod
to the point P. However, by using the triangle shown in the figure, we can define the
hypotenuse distance as ,

324 (y — 1)2 (3.70)

which will be the distance from the electric charges to
the point P. How do we know it will work? Well, first Yy
notice that r in the last equation is not fixed. So, when I

we integrate, the value of y will change from the lower Y
limit of integration up to the upper limit of integration. 4_\\\
Secondly, even though we used a particular triangle to AR
define the distance r, the distance y — 1 in the vertical 3+ N
direction is something general that applies to all charges 92— \\\
above the base of the triangle, and also the distance 3 14— __ \_f(3,1)
in the horizontal direction applies to all charges in the |
rod above of the triangle base. Probably you think that —1 ! )LU
equation does not apply to the charges below the base I 2 3
of the triangle, however that is not the case. We can prove
for instance that it applies for the electric charge at the )
Figure 3.8

origin. By Pythagoras, the distance d from the electric
charge at the origin to the point P, should be

d= V3412 (3.71)

Using our formula of r (equation [3.70)) at the origin (x=0,y=0)

r=/324(0—1)2 =32+ 12 (3.72)

which is exactly to d. So, the formula in equation [3.70] applies to any electric charge in
the rod. So,

(3.73)

5
v—k/@—k/ Ady
r 0 32+ (y—1)3

where the limits of integration go from 0 up to 5, because is the range in the y axis that
covers all the rod with electric charges. Now, just making a change of variables

u=y—1=du=dy (3.74)

We can write the integral in equation as

v [ 375
M VETe (3.75)

where the new limits of integration follows because when y = 0 (lower limit in the integra-
tion) by equation u = —1 and when y = 5 by once again equation u = 4. Now,
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by using the integral result in equation |3.69, we have that the last equation becomes

V =kMNIn(4++v16 +9) —In(—1+ \/1+—9)} = (9 -10° N;%Z) (4. 10—6%) In [@l

Therefore,
V =51,338.24V (3.77)

Example 8: Electric potential of a ring

An electric charge @) is distributed uniformly in a ring of radius a. Find the electric
potential at P in the ring axis a distance z from its center. (b) Assume that Q = —1nC
and (its radio) a = 20cm. If an electron is released from rest at z; = 10cm, What will it
be the speed when x; = 30cm. Solution:

Figure 3.9

In order to obtain the speed of the electron, we can use conservation of energy

1
AU = -AK = ¢.AV = —Emevfc
where the initial velocity cancelled out because the electron starts from rest, and we used
m. as the mass of the electron, g, as the electric charge of the electron and used equation
for the potential energy difference. Therefore,

—24.AV
vp =y L2t (3.78)

Me

All variables from in last equation are known, except AV, however we can calculate the
potential at the initial point x = 10cm and the potential at * = 30cm and take the
difference. Firstly we need to know what is the potential of a ring, so

d 2ma \dl
V:k/—q:k/ A2 (3.79)
T 0 T
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where the limits of integration follow because we want to cover the whole ring. The length
[ will start from a point up to the perimeter of the ring. Now, notice that r is constant,

r=Va?+ a? (3.80)

because x is a fixed distance from the ring to the point of interest, and a is the radius of
the ring which does not change. Therefore we can take r out from the integral ,

5 kQ

= —27ma =

k)\ 2mwa
= dl S —
\/x2+a2/0 Va2 + a? Va2 +a?

where we used that the total length of the ring is the perimeter L = 27a , and AL = Q).
Hence, equation becomes

1% (3.81)

_QkQQe

1 1

where we used the potential difference at points z; and ;. By just plugging in the values

Uf—

(3.82)

~2-(9-109422)(~1.6 - 10-19C)(—1 - 10-9C)

1 1
2.77— — 4.47—] = 2,319,530.07m /s
m m

b= 0.1-10-3lkg

(3.83)
where the electron mass m, = 9.1 x 1073'kg and electric charge ¢, = 1.6 x 10°C was

used and that | )
~ 277~ (3.84)

/(30 - 1072m)2 + (20 - 10-2m)? m

1 1
~ 447~ (3.85)

/(10 - 1072m)2 + (20 - 10-2m)? m

Example 9: Electric potential of a disc

Find the electric potential at a point P along the axis perpendicular to the disc of radius
R.

Figure 3.10
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Solution:
The way to proceed will be very similar when we found the electric field of a disc. Once
we know the potential of a ring, we can assume that the disc is made of many rings,
each of them with infinitesimal electric charge. So, we sum infinitesimally (integrate) the
contribution of all the rings at point P. In other words,

Vidise = /d‘/rings (386)

we sum the contribution of all the differential potential created by each ring in the disc.
So, the last equation becomes

dq
V=k / _— 3.87
Va2 +a? (3.87)
where we used equation for an infinitesimal electric charge in each ring. Now,
dq = 0dA = o2mada (3.88)

where we used equation |[1.105, (If these calculations do not make much more sense to
you, review in chapter 1 the exercise where we find the electric field of a disc). Hence,

B sorada

B ad
—— = 2nko / _adae
o Va?+a? o Va?+a?
where the limits of integration are from a = 0 up to a = R because we want to make the

radius of the rings grow from a point (a = 0) up to the radius of the disc(a = R). Finally,
to do the integration, lets just do the following change of variable

V=k (3.89)

u= 12"+ a* = du = 2ada (3.90)

Therefore, the integral in equation now reads as

2+ R?

724+ R? du 2+ R?
V = 7T]€U/ 7 = 7T]€O'/ u V2du = 2rkoul’?
22 u 22

= o1ko [\/ 2+ R? — x]

(3.91)
where the new limits follow because when a = 0 (lower limit in the old variable) by
equation u = z?, and when a = R(lower limit in the old variable) by once again
equation [3.90( u = 22 + R?

x2

Example 10: Electric potential of a conductor sphere

A solid conductor sphere of radius R has total electric charge (). Find the potential at a
distance r from the center of the sphere with :

a)r > R,

b)r = R,

c)r <R
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Figure 3.11

Solution:
This time instead of splitting the object in many little pieces with differential electric
charge, we will use equation [3.59

vz—/ E-dl (3.92)

because we already know what is the electric field of a sphere. Recall that a sphere with
electric charge () behaves as a point electric charge, so its electric field is

- Q .
E= kﬁr (3.93)
Therefore,
V= —k/ %dl cos 6 (3.94)
o T

Now, recall dl'is a tangent vector to the path that joins the end points in the integral for
the calculation of the potential. See figure |3.11| and notice that

cosf) = % = dr = dl cosf (3.95)

Therefore equation becomes,

V:—k/rgdr:—k@[—%

k
V=" >R (3.97)

r
So, we have found the potential for any outside point of the sphere.Now, if we make:

== = (3.96)

o0

limr — R (3.98)
We have that,
k
V:% at r=R (3.99)
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Just one more region to go. Taking any arbitrary point inside the sphere and a point at
r = R, the potential difference between both points

AV = Vi — Vipside = —/E cdl (3.100)
However, the electric field inside any conductor is zero, hence

VR - ‘/insz'de =0 = ‘/insz'de = VR (3101)

So, we have found an important result!

The electric potential at any point (inside or the surface) of any conductor is exactly
the same! We used specifically an sphere, however this holds for any conductor.

Example 11: Electric potential of sharped conductors

Two conductor spheres with radius r; and r, where 9 > r; , are connected
by a extremely long and thin conductor wire. If the spheres are separated .
several meters, such that it can be considered that the electric charge of 7
one does not affect the electric charge distribution of the other.

a)What sphere generates more electric field 7
Solution:
The breaking point of this exercise is to notice that

Vi =V, (3'102) &

i.e. the electric potential of both spheres is exactly the same! Why? Be- Figure 3.12
cause both spheres are conductors and they are connected by a conductor.

From the last exercise we learned that a conductor is at the same potential

at any point of the conductor. Therefore, since all spheres and cable are conductors, we
can consider the whole system like just one conductor with the same potential. So,

R = 2 (3.103)

1 T

where we just used the potential of a spherical conductor (equation [3.99)). So, by moving
around the factors in the last equation we obtain.

2_t (3.104)
Q1
Now the magnitude of the electric fields of the spheres are
By=kZ B =pL (3.105)
T3 1
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where FEj is the electric field magnitude of the sphere of radius ry and E; the electric field
magnitude of the sphere with radius r;. So taking the ratio of the two electric fields we

have,
E, k% q2 Y\’
o2 (2 — 3.106
Ey kL (Ch T2 ( )
1

No using equation [3.104] in the ratio of electric charges,

2
E.
_2:2(7”_1> =~ L p =g (3.107)
El 1 \ T2 ) T9
Since,
T <Ty = Fy < F; (3108)

A quite incredible conclusion. Not intuitive at alll Conductors with sharped shapes
produce bigger electric fields. We used two spheres, however there is a general property
of conductors.

Conductors in electrostatic equilibrium, their regions with lower surface curvature
radius generate greater electric fields than regions with greater surface radius.

The last property is exploited in the design of lightning rods. A very sharped object
will have lower surface curvature, and even making the electric field grow abruptly tending
to infinity (if » — 0). So, when the electric charges flowing in a lighting are landing to the
Earth, they will be attracted by the high electric fields of the lighting rod, and making
safe surrounding regions.

Example 12: Simple exercise, recovering electric field from elec-
tric potential

If the electric potential in certain region of space is given by V = 223y? — 3xz + 5y?z — 2.

Find the electric field at the point (0,1, 1)m.

Solution:

This exercise is to show the power to be dealing with potential instead of electric fields.
If we have the potential function, we can just calculate

E=-VV (3.109)

to obtain the electric field. Once we have the electric field, we can calculate forces, and
motion of particles under the force exerted by the electric field. There is a huge richness
by having the electric potential.

Now,
E = (_a_vﬁa_v _a_v) (3.110)
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So,
ov ov ov
E,=—-—— E,=—— E,=—— 3.111
ox v dy 0z ( )
So:
E, = —(62%y* — 32) = 3N/C (3.112)
0,1,1
E, = —(42°y + 10yz) =-10 N/C (3.113)
0,1,1
E,=—(-3r+5/*-22)] =-3 N/C (3.114)
0,1,1
Hence, B
E=(3,-10,-3) N/C (3.115)
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Chapter 4

Capacitance and Capacitors

We will study in this chapter a widely used component in electric circuits, the capacitor.
We will start with a rather theoretical definition of a capacitor and we will study from
theoretical perspective the properties of a capacitor. Afterwards, we study the calculation
of the capacitance of several capacitors connected in different configurations in an electrical
circuit. We finish the chapter with the study of dielectrics and how the capacitors are
affected when these materials are introduced.

4.1 Capacitors

Definition 4.1.1 A capacitor is any pair of conductors with electric charges +Q and —@Q)

@ductor

Figure 4.1

Just that!? A complete chapter of a book to something defined so simple? Indeed, my
dear reader. However, it turns out that when we land this abstraction to real conductors
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we can construct electrical circuits with many functions with the use of capacitors. So,
by now please be patient and follow me.

A capacitor since is constituted by two conductors, with opposite charges, an electric
field is created between them. As we have learned in the last chapter, when there is an
electric field, there is potential energy stored in the electric field. Therefore, we can say
that capacitors store electric energy in form of electric potential energy given that certain
electric field is created between the conductors.

Probably you ask yourself, Why necessarily conductors? Why not also two insulators
with charges +(@) and —(@) can be considered as a capacitor? The theoretical answer is that
we want to define two objects such that there is no ambiguity in the calculation of AV.
Recall from last chapter that a conductor has exactly the same electric potential at the
surface and inside the conductor. Therefore, when we calculate the potential difference
between the conductors, we can take any point at each conductor and no problem will
arise. However, if we use insulators instead, the potential is not exactly the same at any
point in the insulator. Therefore, to define the potential difference, it would depend on the
locations on each insulator that we choose to measure the voltage. The practical answer
is that we want to store electric charge in the capacitors, therefore we need a material
in which charges easily move from one point to other. Actually, in circuits what we do
is to connect conductor wires (generally copper) to a battery which supplies a potential
difference. Those cables also are connected to the capacitor and since the capacitor and
the cables are conductors, the electric charges start to move easily through the cables to
the capacitors where the charges are stored.

Now, we know from the potential difference created by one electric charge

1 1
AV = kQ (— — —) (4.1)
Tf r;
that the voltage is proportional to the electric charge, no matter the shape of the con-
ductors, the potential difference by superposition principle will always be proportional to
the electric charge. Therefore, we can write the potential difference as

AV =CQ (4.2)

where C' is a constant of proportionality. Therefore, if we isolate C' and we impose the
condition that we calculate the absolute value of the electric charge and the potential
difference we obtain

Q]
C = 4.3
NG (4.3)
so, the constant C' is called as Capacitance of the capacitor and its units are F = %

(Farad).
By definition the capacitance is always positive. Why is it so? Well, we have
two electric charges in our capacitor +@ and —(). So, we eliminate the redundancy when
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we calculate the capacitance if we measure the positive or the negative charge. Also,
the absolute value in the voltage eliminates the redundancy if we measure the potential
difference starting from the positive to the negative charge or the way around. It is quite
important to remark that many of the electromagnetism texts or circuits books does not
make explicitly the absolute value in the charge ) and the voltage AV. It is assumed
and taken as obvious that you already know so. It will become obvious and tedious to be
writing repeatedly the absolute value bars. However, for pedagogical reasons we’ll keep
the absolute value symbol in the first exercises.

To have a better grasp about what capacitance means, let’s start with some analogies.
The calorific capacity is the amount of energy an object can store or release per unit of
mass given that there exist certain change of temperature. The capacitance in analogy
is the amount of electric charge that a capacitor can store or release given certain voltage
(potential difference). The capacity of a milk carton is the amount of milk it can store.
The capacitance is the capacity of a capacitor to store (also release) electric charge given
a electric potential difference (voltage).

Let’s start with the calculation of capacitance of some different geometries. As it
turns out, the capacitance only depends on the geometry of the conductors that store the
electric charge.

Example 1: Capacitance of parallel plates capacitor

A capacitor of parallel plates consists of two large conductive plates placed very close to
each other in such a way that the electric field between them can be considered to be
uniform. If the area of the plates is A and the separation between them is d, calculate its
capacitance.

SEaEEr Vacuum
Figure 4.2
Solution:
We need to calculate Q
="' 4.4
NG (4.4)
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So , lets start by calculating AV. In general,
AV:—/E-df (4.5)

However, the electric field between the plates is almost uniform (constant), therefore

—

AV =—E-d (4.6)
However, we are interested in the absolute value of the dot product, therefore
AV| = |E||d] (4.7)
Now, the electric charge in the positive plate can be written as
Q=0A (4.8)

while the electric field magnitude between the two plates is the sum of the electric field
produced by each plate. Therefore,

O
Bl = — (4.9)

€0
where we used the magnitude of the electric field of an infinite plane (equation [1.111]) and

summed them twice. Therefore, let’s use what we have found for AV, |E| and Q in the
calculation of the capacitance, and we obtain

oA
C == 4.10
= (410)
€0
Therefore, the capacitance for any capacitor with parallel plates is given by
A
C = % (4.11)

Notice that the capacitance is only dependant of geometrical factors of the plates. As
mentioned before, the capacitance will only depend on the geometry of the capacitor.

Example 2: Capacitance of concentric cylinders capacitor

A long cylindrical conductor of radius r4 and linear density of charge +\ is surrounded
by a cylindrical conductive shell of internal radius ry and linear density of charge —A.
Calculate the capacitance per unit length for this capacitor, assume that there is vacuum
in the space between the cylinders.
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Figure 4.3

Solution:

First of all, if the capacitor is long enough in comparison to rg — r4, we can ignore the
edge effects. Secondly we have to consider just the electric field created inside the capac-
itor. Since the two objects that constitute the capacitor are conductors, then the only
electric field that exists inside is the one created by the inner cylinder. Thirdly, strictly
speaking we should consider o for the charge density in the inner cylinder. However, for
simplification we take as A\ for the charge density. So, starting by the calculation of the
potential difference

— bad "B
AV:—/E-dl:—/ A dr = — A 1n(T—B> (4.12)
vy 2TEQT 27meq TA

where we used the electric field of a thin infinite rod [I.17], and used as limits of integration
the radius of the inner cylinder and the outer cylinder. Hey! Wait a minute! It is not a
thin rod, neither it is infinite! Indeed, however we use this electric field for simplification
of the calculation. Now, we are interested in the absolute value of the voltage, so

A (]
AV| = In{ — 4.1
AV 2meg n(rA) (4.13)
Therefore, the capacitance,
AL
C= @ _ (4.14)

= |AV’ B %IH<T—B>
TEQ A

where we used that the positive charge is |Q| = +@Q = AL . Therefore, just cancelling
out common factors in numerator and denonminator and rearranging terms in the last
equation, we obtain

27T€0L
In (T—B)
TA
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Notice, the capacitance for the cylindrical capacitor depends only on length, and radius
of the inner and outer cylinder. Geometrical properties of the capacitor once again define
the capacitance.

Example 3: Capacitance of concentric spherical shells capacitor

Two concentric spherical conductive shells are separated by vacuum. The inner shell has
total charge + Q and outer radius r,, while the outer shell has net charge - Q and inner
radius 7. Find the capacitance of this spherical capacitor.

Solution: Once again, we must consider just the electric field created by the inner
sphere, because the electric field created by the outer sphere points outside of the con-
ductor, therefore we are not interested in that electric field. Just the one between the
conductors. Therefore, the potential difference

AV:—/E-df:—/k%dr (4.16)

where the electric field of a spherical object was substituted (equation [2.66)). Now, giving
limits of integration the radius of the inner sphere and the outer sphere

—kQ [L N L] — k0 {“ - TB} (4.17)

B rA rATB

B

AV = —kQ/ T et
TA r

TA

However, rg > r4. And we need absolute value of the potential difference. Therefore,

AV] = kQ [TB — TA] (4.18)
BT A
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where we just interchanged rp <+ r4 and now the last equation is positive. So, finally

Q| Q
C = -
|AV| kQ [M‘|

TBTA

(4.19)

By just arranging the last equation, we have that for any spherical capacitor, its capaci-
tance is given by
BT A

C—_ 8B4
k(rg —ra)

(4.20)
where once again, notice that the capacitance only depends on the geometrical properties
of the sphere, nothing else matters to the capacitance.

4.2 Combination of Capacitors

The capacitors are manufactured with determined standard values of capacitance. If for
certain application we require a different value of capacitance. How can we obtain it? The
answer is that we make combinations of the way we connect the capacitors in a circuit.
So we define the following ways to connect the capacitors

Definition 4.2.1 When two or more capacitors are connected in such a way that their
electric charge @ is exactly the same, we say that they are connected in series (See

figure [1-53)

Definition 4.2.2 When two or more capacitors are connected in such a way that their
voltage AV is exactly the same, we say that they are connected in parallel (See figure
4.50

From such definitions, we can deduce how to calculate the equivalent capacitance.
Suppose a circuit in parallel as shown in[4.5b] So the electric charge stored in an equivalent
capacitor is given by

Qeq - Ql + QQ (421)

Now, from equation [£.3] the electric charge in one capacitor is given by @ = CAV.
Therefore, the last equation can be written as

Qeq = CLAV + CoAV = (Cy + Cy)AV (4.22)

where C) is the capacitance of the capacitor with electric charge (); and C5 the capaci-
tance for the capacitor with electric charge (05. Also, we used the same voltage for both
capacitors because they are in parallel. However, ., = C.,AV. Therefore,

Ceq = Cl + 02 (423)
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=
Q1

Figure 4.5

where the last result applies for any pair of capacitors connected in parallel. If we have in
general N capacitors, connected in parallel the equivalent capacitance is found
by

Ceg =) Ci (4.24)

However, What if they are connected in series? Suppose now, two capacitors connected
in series as shown in figure [4.5a] The potential difference is now given by

AV, = AVi + AVq (4.25)

Now, from equation , isolating voltage in one capacitor, we have that AV = % There-
fore, the last equation can be written as

Qeg _ Q@ @
= — 4 — 4.26
C G G (4.26)
However,we know that
Qeqg = Q1 = Q2 (4.27)
because they are connected in series. Therefore, equation becomes
1 1 1
= — 4+ — 4.28
C G Gy (4.28)
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the last result applies for any pair of capacitors connected in series. If we have in general
N capacitors, connected in series the equivalent capacitance is found by

N

1 1
-y 42
=2 (4:29)

i=1 ¢

Example 4: Equivalent capacitance of several capacitors in a
circuit

Find the equivalent capacitance of the combination of capacitors shown in figure [4.6a

|-

03 = 11uF Cy= 9,uF 034 = 4.95uF
| |
C5 = 3/1,F C5 = 3/1,F
(a) (b)
Cl2s4 = 22.95uF Ceq = 2.65uF
. | |
2 i ae | b
——|
Cs = 3uF
(c) (d)
Figure 4.6
Solution:

Anytime you have a complicated circuit, start by reducing it in equivalent capacitors until
you have obtained just one equivalent capacitor. In this example, we can start firstly
noticing that capacitors C3 and Cj4 are connected in series. Therefore, the equivalent
capacitance of C'3 and Cy capacitors is given by

11 1 C+Gy C5C,4

G T T o "= Oy (4.30)
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where we just labelled with ”34” to the equivalent capacitance of the capacitors C3 and
Cjy. Therefore, plugging values we have
(11 x 1079F)(9 x 107°F) 6
Csy = =03 =495x107"F 4.31
1T 9X10F +11 x 10°6F M (4:31)
Now, the new circuit with the equivalent capacitor Cs4 looks as the one shown in figure
4.7 Evidently, capacitors C, Cy and Cs4 are connected in parallel. Therefore, obtaining
the equvialent capacitance of the three capacitors,

01234 = Cl + 02 + 034 (432)

where the capacitance is just the sum because they are in parallel. By just plugging
values, we obtain that the equivalent capacitance of the three capacitors is

Cia3a =12 x 107 °F +6 x 107 °F +4.95 x 107°F = 22.95 x 107 °F (4.33)

So, we obtain the circuit shown in figure [4.7d, where we have now the new equivalent
capacitor Cla34. Finally, the capacitors (934 and C5 are in series, therefore their equivalent
capacitance is

1 1 1 1 Cs+C Ciasza - C
= + = = = 2 = Chazas = e (4.34)
Ciazas  Crasa Cs Cizzes Chasa - Cs Cs5 + Chazs

By plugging in the values

(22.95 x 107F)(3 x 1076F)

=265 x107°F 4.35
3% 10-0F) + (2.295 x 10-°F) 8 (4:35)

C(12345 = (

Since we have covered all the capacitors in the circuit, we have found the equivalent

capacitance of all the circuit (See figure [4.7d]), therefore

Coy =2.65-107°F (4.36)

Example 5: Voltage and charge of several capacitors in a circuit

Find the voltage and electric charge of each capacitor in the circuit shown in figure [4.74]
when a potential difference AV, = 15V is applied in a and b.

Solution:
Let’s start to find the equivalent capacitance of the complete circuit. Firstly, we can
notice easily from figure that ¢ and Cy are in series. Therefore,
CiCy (15 x 1075F)(3 x 1075F) B
Cip = = =25x 107°F 4.37
2T0+ G (18 x 10-6F) (4:37)
where we have already plugged in the values . Now, the circuit looks like the one shown
in the figure We can make a new equivalent capacitor of (5 and C5 in parallel,
therefore

Clas3 =Cla+C3=25x10F+6x10°F =85 x 107°F (4.38)

110 CHAPTER 4. CAPACITANCE AND CAPACITORS



Rafael Espinosa Castaneda Electromagnetism

C1 =15.0uF  Co =3.004F
[l ‘\ C12 =2.5uF
1l \ I [

Cy =20.0uF C4 =20.0/J,F

* | K S —

C3 =6.00 4F C3=6.0UF
(a) (b)
Cyq = 20.04F ||
— IR
aC123= 85,U/F b Ceq = 5.96/J/F
(c) (d)
Figure 4.7

Finally, the circuit looks like in figure [£.7d We have that Cjo3 and C, are in series,
therefore the equivalent capacitance of both capacitors is given by
012304 (85 X 10_6F)(20 X 10_6F>

Clogy = = =5.96 x 10°°F 4.39
T s + O (28.5 x 10-6F) . (4:39)

Since we have covered all capacitors, we can say that the equivalent capacitance of the
circuit is

Coy =596 x 107°F (4.40)
Now, if we want to know the voltage in each capacitor and the electric charge stored
in each capacitor, we need to go backwards, i.e. we need to start from the equivalent
capacitor of the whole system shown in figure [£.7d], and start to go steps backwards until
we have the complete circuit once again (figure . Let’s do the exercise and it will
become much clearer what we mean with this. Firstly the electric potential difference of
the equivalent capacitor is given by

v, - %
eq

therefore, Quy = CeyAV,y = (5.96 x 107°F)(15V) = 8.94 x 10°°C (4.41)

where notice that we used AV, = 15V because the equivalent voltage is equal to the
voltage to which the whole system is submitted to. This is much clearer if we see figure
[4.7d] The equivalent capacitor of the whole system is directly connected to the voltage
supply AV,,. Now, when go once step back to the final circuit (figure , the capacitors
(123 and Cy are in series, therefore they have the same electric charge. Hence,

Qeq = Q23 = (s (4.42)

So, we have obtained actually the first electric charge. The capacitor C; has the same
electric charge as the equivalent capacitor of the complete circuit. So

Q4 =8.94 x 107°C (4.43)
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Now, the potential difference of capacitor Cjy, can also be found

94 % 1075
Qi _8IXI0C ) oy (4.44)

AV, —
Va C,  20x10°6F

If we go back now one step back ( figure |4.7b), we have that capacitors C15 and Cy are in
parallel, therefore their voltages are equal to the voltage of the equivalent capacitor, i.e.

So, if we know the voltage AVjs3 we can obtain the other two. So,

Q123 . 8.94 x 1050

AVig3 = Cis 85 10-6F = 10.53V (4.46)
Hence, we can obtain now
Q3 = C3AV3 = O3AV)93 = (6 x 107°F)(10.53V) = 6.318 x 10°°C (4.47)
while the electric charge in the equivalent capacitor C
Q12 = C1aAViy = C13AVigs = (2.5 x 107°F)(10.53V) = 2.63 x 107°C (4.48)

Probably you feel terribly tedious all the calculations. When you practice many circuits,
many of middle steps will become obvious to you and the calculation will become ex-
tremely fast. Now, from figure we can see that the capacitors C and Cy are in
series, therefore their electric charge is exactly the same to the equivalent capacitor

Q12 =01 = Qs (4.49)
While the voltages

Q. Qn 26325-107°C
AV, = 2L — — — 1.755V 4.50
Yo o 15 x 10-6F (4.50)

Qs Q2 2.6325-107°C
AVy = 22 = = = 8.775V 4.51
2 CQ 02 3x 1076F ( )

And we are done! Let’s summarize in the following table what we obtained

Capacitor | Electric Charge (Q) | Voltage (AV)
4 2.63 x 10°C 1.755V
Cy 2.63 x 107°C 8.775V
Cs 6.318 x 107°C 10.53V
Cy 8.94 x 107°C 4.47V
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4.3 Energy stored in Capacitors

We already have an equation for the potential energy for any electric field

U= %0 E-Edv (4.52)
however, in order to use the last equation we need to know the electric field of the
conductors of the capacitor. Let s do another approach for capacitors. Recall that AU =
gAV. And, when an external agent applies a work we have W = AU = ¢AV. So, if we

let the potential energy difference be infinitesimal

all space

d
AW = dgAV = ¢ Cq (4.53)
where AV = Z was used. Therefore, integrating both sides of the last equation
d 2
W= / 99 _ Q (4.54)

Therefore, the energy as work to bring that charge to the capacitor, is stored as potential
energy. So,
QQ

2C
Also, you can say that the potential energy U is equal to the work W when we bring the
electric charges from infinity. Hey! wait a minute! What if I did not bring the charge from
infinity? Remember that potential energy needs a reference frame, our reference frame
is such that at infinity the potential energy is zero. So, if you did not bring the charge
from infinity, do not worry! What you need to do is calculate the difference of potential
energy. Now that will make sense, because you calculate the potential energy when the
charge is at the capacitor minus the potential energy when the charge was at some other
point, i.e.

U= (4.55)

Uat the capacitor — Uatsomef’imtepoint = (Uat the capacitor — Uoo) - (Uatsomefinitepoint - Uoo) (456)

where the potential U,, was explicitly written to show you that even if it were not zero,
you get rid of it! The reference frame is removed once you take the difference. So, do not
worry if in equation we take it supposing we bring the charges from infinity .

Finally, we can express the potential energy in different forms, with use of some algebra

Q* _ Q*AV _QAV

V=3¢ 20 20Q 2

(4.57)

where C' = -& was used. Also,

Q*  (CAV)?  C(AV)?
2 20 2

So, we have the following three formulas to calculate the potential energy for any capacitor
with vacuum between its conductors (no matter the shape)

Q@ _QAV _ C(AV)
20~ 2 2

U:

(4.58)

U=

(4.59)
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Example 6: Calculating several properties of a cylindrical capac-
itor

A cylindrical capacitor (vacuum between its conductors) of 15 m length store 3.20 x 107%]
of energy when the potential difference between the two conductors is 4.0 Volts.

(a) Calculate the magnitude of the electric charge.

(b) Calculate the fraction of the radius of the capacitor :—i

(c) What happens if its length is of 1 m?.

(d) What happens if its length is of 1 cm?

Figure 4.8

Solution:
Easy peasy, let’s use the formula we have derived for the electric potential energy of a
capacitor,

1
Then, let’s just isolate @), substitute values and obtain the electric charge
Q- 2U0  2-320x107%)
AV 4.0V B

Now, for question in b) , we fortunately have in the voltage formula of a cylindrical
capacitor the ratio :—i (equation } . S0, it is just matter to do some algebra

2men A 2meg A e
AV:2)\ ln(r—B) :>—7T€0)\ V:ln<r—3) :>—7T60 VLzln(r—B) :>T—B:e%L
TEQ

1.6 x 107°C (4.61)

A A Q A A
(4.62)
So, plugging in the values in the last expression we obtain
"5 _ 983 (4.63)
rA

Gosh! It means that the outer radius must be more than two and half times the radius
of the inner cylinder to store a miserable amount of electric charge 1.6 x 107°C

rp = 2.83r4 (4.64)
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This is not a good design of a capacitor at alll Now, to answer the question in ¢) , if
L = 1m the factors in the exponential to calculate the ratio (equation [4.62)) become

2o AV
s L =0.139 (4.65)
Q@
Therefore,
"B _ 0139 — 1149 (4.66)
TA
So,
rg = 1.149r4 (4.67)

well, much better than the last case. Even though, having a capacitor of one meter?! Not
good at all, unless you want a capacitor with huge capacitance, storing lots of electric
charge. However, this capacitor is not the case.

Finally, if now instead L = 1lem the exponent factors become

2megA
2mAV ;59103 (4.68)
Q
hence r
B — 1391077 — 1 001 (4.69)
ra
So, now
rp = 1001TA (470)

Now the inner and outer cylinders must be equal to retain the electric charge 1.6 x 107°C,
however a cylinder of 1cm makes much more sense to be practical.

Example 7: Potential energy stored in a spherical capacitor

Part I) A conductor sphere of radius R has electric charge ). Calculate the energy in the
electric field in function of the distance r from the center of the sphere for

o r>R
e r <R

e Calculate the total energy stored in the electric field of a sphere, if R = lcm,
@ = 1.5nC a distance r = 3.5cm

Part IT) Show that by using

1 - =
U= /éeoE - BEdV (4.71)
a spherical capacitor leads to the potential energy of a capacitor
QQ
U=— 4.72
50 (4.72)
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-Q

Figure 4.9

Solution:

For part I, we just have to solve [4.71] inside and outside the conductor. Inside the
conductor, when r < R, we know that the electric field is zero, therefore equation |4.71
becomes zero. However, outside there is an electric field

L "1 [(kQ\? 1 " dr
U :/R §€oE-EdV :/R 560 (7“_?> drridr = 560k2Q247T n /r_g (4-73)

where we used the differential volume of a sphere dV = 4rr?dr. Using that % = 4mey and
solving the integral we have

pel(deli] e

Therefore, we obtained that

0 forr<R
U = 4.75
%kQQ[}%—%}forr>R ( )
For the second question , where the total energy with specific values is asked,
1 1 1
U=0+-kQ*| = — = 4.7
0+ 5 Q { I T] (4.76)

where the zero was written just to make notice that we have also considered the energy
inside the sphere. So, plugging in values, we have that

1 1
1-1072m 3.5-1072m

1 _gNm? —9,1\2
U:§(9x10 (15 107°C)

} =7.23-107"J (4.77)
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Finally, for part II what we want to do is corroborate that indeed formula in equation
4.71 will lead us to the same result that we obtained in equation [£.54/It must! We have
mentioned before that is a general result, so applied to a very specific case should
give the same for any capacitor. So, first of all by plugging the electric field of a spherical
conductor in equation [£.71], we obtain

10\,
UIEEO/TA <kﬁ) drredr (4.78)

So, solving the integration, we have

B 2mk2()? /’”B dr _27Tk;2Q2 1

€0 72 € T

U

L% <i _ i) (4.79)

A A €0 s Ta

Finally let’s do some algebra

U = 2mek?Q? <M> = 2meokQ? (M) (4.80)

TATB TATB

However, notice that the second term in last equality is exactly the inverse (%) of the
capacitance of a spherical capacitor (see equation |4.20)). Therefore,

1 1 1 Q2
U =2meokQ*= =2 — Q= = = 4.81
Tk = 2meo (4mo> ©E =30 (4.81)
Nice!l We have shown that indeed the potential energy of a spherical capacitor is given
by equation 4.72, If you follow a similar procedure for any capacitor, does not matter the
shape of the capacitor, always you will obtain equation [4.72]

4.4 Dielectrics

So far we have studied capacitors, assuming there is nothing between the two conductors.
However, in reality there is certain material in between (at least there is air, unless some-
how you remove it from the medium). If we want the capacitor to work, the material that
we introduce must be an insulator, other way there would not be a potential difference
AV. Recall that conductors have exactly the same electric potential everywhere, so if you
introduce a conductor, everything would be a conductor and no potential difference would
exist. The insulator that we introduce is called dielectric. The question now that arises
is "How will the capacitance be affected? Will it be greater or smaller?”. Michael Faraday
found experimentally that when a dielectric is introduced in a capacitor, the
capacitance increased proportionally to the capacitance without dielectric as

where () is the capacitance without dielectric or vacuum and k is called as dielectric
. 2 . .
constant (Do not confuse with k = 9 x 109%). The dielectric constant depends on each
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material and it is always greater than one.

Now, the capacitance always increases in the presence of a dielectric, however there

are two possible scenarios

e If the voltage is maintained fixed the electric charge increases as

(4.83)

where )y is the electric charge in the capacitor before introducing the dielectric.
The reason () = kQ)g is that C' = kCj and Cy = AQ—‘SO. Therefore, the only way that
C = kCy is that QQ = k()y because the voltage does not change V' = V[). Now, if the

voltage is fixed, then the electric field cannot change!

E = E, (4.84)

where E is the electric field with dielectric and EO is the electric field without
dielectric. Think once again about the formula AV = —F - d. Since, the the
distance between the capacitors do not change, and AV is fixed, E must be also
constant. Finally, the energy

U = kU, (4.85)

where Uj is the potential energy with not dielectric. Why is this? By doing some
algebra

Q _ KQp Qs

2C ~ 2mC, 20, P (4.86)
where once again all the labels 0 means when there was no dielectric (vacuum).
Now, probably you would think, with analogy with what we have done so far that
the energy density is

However, this is not true! There is a quite deeper reason why the last equation is
not true and it is beyond the scope of this course. However, if you are curious and
want to know why, I mention it in next section. Meanwhile, just trust me that

u= %Eﬁ (4.88)

where E is the electric field vector with dielectric!

If the electric charge in the capacitor is maintained fixed the voltage in the
capacitor decreases as

A%

AV (4.89)

K
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because C' = /iAiV, and Q = Qy, therefore the only way this holds is that AV = &%
From last equation we can easily see that when the electric charge is fixed, the
magnitude of the electric field must also reduce as

[Eo]
K

E| = (4.90)

because the electric potential difference AV is always proportional to the electric

field. (Recall for a constant electric field AV = —E - d).

The potential energy in the case of constant electric charge, is given by
Uo

=22
K

(4.91)

where Uy is the potential energy with vacuum (no dielectric). The reason of the last
equation can be shown with some algebra,
Q _ Q4 103 U

V=56 Tty r2cy ~ n (4.92)

so the potential energy decreases! Finally, the energy density when the electric charge is
constant is also given by equation [4.88|

So , let’s summarize what we have discussed so far in the following table.

AV fixed constant | () fixed constant
E=E, E=£E
Q@ = Qo Q= Qo
AV =V, AV = &l
U = rUj U="t
C= KJC() C= /{CO
Table 4.1

Now, what is the physics behind all these results? We have mentioned how to cal-
culate different variables in presence of a dielectric , and all based in an experimental
fact C = kCy. However, why does this happen? To start our discussion think about a
dipole as shown in figure One of the charges will feel a force to right and one to left.
Therefore a torque is produced, and around the point O the two charges will start to move
in circular motion until they have reached an equilibrium and stop moving. Well, this
phenomena happens as well to molecules. Of course some molecules will tend to rotate
more than others, it depends completely in the charge distribution in the molecule or the
geometry of the molecule. For example, the water molecule has a charge distribution so
that negative electric charge is mostly at opposite region to the positive charge (See figure
4.10b)) . Therefore, the water molecule can be modelled as a dipole and when there is an

CHAPTER 4. CAPACITANCE AND CAPACITORS 119



Electromagnetism Rafael Espinosa Castaneda

)
+§|— —>F H 1050
8 .- ‘I-
- ’ e The middle point of the possitve
S

electric charge distribution .
(b)
Figure 4.10

external electric field, the complete molecule will tend to rotate until it reaches an equi-
librium. When there exist a separation between the positive charge and negative charge
in a molecule, we say that the molecule is polarized. When the polarization is present
in a molecule even when there is no external electric field, we say that the molecule is a
polar molecule, oppositely if the polarization in a molecule is not present all the time,

even when there is no external electric field we just say is that the molecule is not polar
molecule.

) ++++++++ + +
Tt +t++++HE++ + 0 00000000000
Y - o) (0 (o) (0) /o) (0\o\ (o ALAIAIATA|[AAIAAIA[A]A
r e © e © o © o0 o
H. : o 0 0 (00 00 (0
| © © ©6 6 0 66 o0
_______ D ffff‘ck\\ ‘e’ ‘e’ 3 3 3 33 3 o'e'o'e'o'e'e'e'c'e'e'o
(a) (b)
Figure 4.11

Now, suppose a capacitor with conductor plates with charge density +o, maintains
its electric charge fixed (electric charge is trapped). If you introduce now a dielectric,
the molecules of the dielectric will tend to polarize. If the insulator material is made of
not polar molecules, the polarization will be partial. However, even if the polarization is
partial there will be an interesting effect on the electric charge of the dielectric material.
A surface of electric charge will be induced at the surface of the plate with opposite sign
(see figure . Since there is a new induced electric charge density o; at the surface of

the plate conductor,there will be a new electric field with opposite direction (see figures

120 CHAPTER 4. CAPACITANCE AND CAPACITORS



Rafael Espinosa Castaneda Electromagnetism

and figure [4.11b)). Therefore, the magnitude of the electric field between the plates
|E| = |Eo| — |Ei] (4.93)

so, as we see the electric field must go down! In this special case (electric charge constant),
we know that E = %, therefore

—

. = = _ 1 1
_’ 0| = ’Eo‘ — B, = ‘Ez‘ = ’Eol (1 - —> = 70 <1 - —) (4'94)
K

K €0 K

where in the last step we used the magnitude of the electric field of two plates (strictly
speaking infinite, however since we assume that the separation between the plates is much
smaller than the area of the plates it is a good approximation). However, the electric field
created by the induced charge is E; = Z—g because the charges induced in the surface of the
plates creates two surfaces of electric charge with the same shape of the plates. Therefore,

; 1 1
€o €o K R

and since k > 1, then we see that the induced electric charge density is lower than the
electric charge density in the conductors of the capacitor. The electric charge in the di-
electric is called bound electric charge (because is trapped in the dielectric) and the
electric charge in the conductors of the capacitor is called free electric charge.

E=0 _ E
‘ N

S

Conductor | Dielectric

+
+
+ | \
A Gaussian
Surface
Lateral View
Figure 4.12

The result in equation will lead to a beautiful new result! Let s apply Gauss Law
to one of the surfaces of the capacitor as shown in the figure So, calculating the flux
through the Gaussian surface we have picked, we have

?{ E-dA =T (4.96)
S

€0
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However, the enclosed charge is

qenczo-A_O-iA:(0-_0-(1_l))14:% (497)

K K

where we used equation Notice that ¢ is just the free electric charge density! So
the electric flux only depends on the free electric charge! We used a very specific case,
however Gauss law in presence of dielectrics reads as

fﬁE’ L dA = enc=free (4.98)
S

€0

If we want Gauss Law in differential form, lets apply divergence Theorem in the left hand
side and write the right hand side the charge in terms of the charge density

/V V. (m) av="1 | prrecdV (4.99)

€0

and since we are integrating over the same volume, what is inside the integrals must be
equal, therefore

V- <eE) = Dfree (4.100)

where € = keg. We have been using € all this time, and now we can discuss about it . € is
called as permittivity of the material. For vacuum x = 1 and that is why ¢q is the vacuum
permittivity or free space permittivity. The permittivity tell us information about
the susceptibility of polarization of the material. It depends on the microscopic structure
of the material and external factors as temperature.( I would like just to point out that
equation is not the final equation to consider any electric field in matter. It only
applies for very specific materials, which are called linear dielectrics (which are the ones
we are studying)).

Finally, if the voltage is fixed and the electric charge is not, what happens? Does
the equation [£.93] still holds?... Wait! But we said that the voltage is fixed, then the
electric field is fixed! Whats is going on?! Exactly! The voltage is fixed, so more electric
charge must be in the conductor to maintain a constant electric field. Undoubtedly, a
new electric field in the dielectric is created due to polarization of the molecules, and an
induced electric charge exists at the surface of the conductor plates. So, in order to cancel
out the contribution of the induced electric charge from the dielectric, you need now a
free charge kQ)g.

Example 8: Calculating properties of a capacitor with dielectric

The plates in the capacitor of figure [£.13a] each of them has an area 0.2m2and they are
separated lcm. The capacitor has potential difference AVy = 3kV. Then an insulator is
inserted as shown in figure and the potential difference reduces to AV = 1000V,
and the electric charge in the plates remains equal. Calculate
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1. Original Capacitance

2. The magnitude of the charge @) in each plate

Rl

The new Capacitance after the dielectric is introduced

-

The dielectric constant
5. The original electric field

6. The new electric field after the dielectric is introduced

Dielectric between

the plates
Vacuum

ol

O T T S T e A
I
+++

‘

—~
54
~—
—~
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Figure 4.13

Solution:
To calculate the capacitance without dielectric , we can use equation 4.11

A (8.85-1071%)(2-107'm?)
d 1-10—2m

So, we have answered questionl. Now question 2, the electric charge can be obtained by
the definition of capacitance.

Co = AQ—S = Q= CoAVy = (1.77-107"F)(3-10*V) =531 - 107 F (4.102)
0

Co = =1.77-107F (4.101)

where notice that it is indifferent to write (g or (), because the electric charge before
and after inserting is exactly the same. In this exercise what changes is the potential
difference. Now question 3, in order to find the new capacitance we could use

C = kCy (4.103)

However, we do not know the dielectric constant. However, the new voltage is given to
us. Therefore , we can just calculate

_Q 531-1077C
AV 1000V

C =5.31-10""F (4.104)
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Continuing with question 4, we can easily obtain the dielectric constant once we know
the capacitance before and after we inserted the dielectric,

C HOO
KL Co Co K ( )
Therefore, substituting values
5.31-1071°F
- = 4.1
"7 100F (4.106)

Question 5, given that we already know the initial potential difference, we assume constant
electric field between the parallel plates (as we have done along all this course when dealing
with plates). So,

AV, \%
Ey=—=3-10"— 4.107
0 d m ( )
Finally, for the last question
AV 1000V V
E = — =1-10°— 4.1
d 1-1072m 0 m (4.108)
where we could have also found it by
3-10°%
pto_ mo—= 1. 105K (4.109)
K 3 m

4.4.1 Energy in Presence of Dielectrics (Optional)

Unfortunately, at this point you have not studied enough vector calculus to be comfortable
with all the derivation shown in this subsection. However, I included it for those curious,
brave and bold students who ask me continuously about the energy when there is a
dielectric, and why do the energy density now is

E-E (4.110)

u =

[NRINe

where E is the electric field with the dielectric, not in the vacuum.

So, if you want to know why, follow me , if you do not feel conformable at any step and
feel too confused about the calculations. Do not worry, you will be able to understand it
with enough comfort at the end of this semester,when you have finished coursing Math
IV or Vector Calculus.

So, we begin with

AW = / ApprocdV (4111)

Given that V - (eﬁ) = Pfree; We have that

Apfree =V - (eAE‘) (4.112)
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Therefore, equation [4.111| becomes

/ V. (EAE) odV (4.113)
Now, notice that

V. [EAEqs} —Vv. (EAE) 6+ eAE - (Vo) = V- (EAE) b=V- [EAEqs} AR (Vo)

) (4.114)
However, remember that £ = —VV. Therefore,
AW =V - (AE) 6=V [eABg| +eAE - E (4.115)
Hence, equation reads as
AW = / : eAEng + eAE - E) v (4.116)

The first integral due to divergence theorem becomes a surface integral, and since we are
integrating over all space, it vanishes. So, we are left with

AW = / eAE - EdV (4.117)
Now, we also have that,
1 S 1 o 1 - o [ g
5A <eE - E) = SA(EP) = 5 <e|AE||E| + e|E||AE|> — ¢|AE||E| = ¢eAE - E (4.118)
Hence, equation 4.117| can be written as
1 - -
AW = / eE E av =A (/ §eE . E) av (4.119)
Therefore, getting rid of the change , and taking just the total work we obtain

1 - 4
U:/aeE-EdV (4.120)
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Chapter 5

Electric current and Resistance

We have studied so far static electric charges. Let’s start our study of electric charges
when they flow. Along this chapter we assume that electric charges move with constant
mean velocity (no acceleration).

5.1 Electric current

Definition 5.1.1 The electric current through a cross sectional area A is defined as the
total charge that flows through that area per unit of time

_da

I =
dt

(5.1)
The electric charge change can be due to the movement of positive or megative charges,
however, by convention the direction of the current is the direction of the movement of
the positive charges.

As it is known, the electric current in a conductor is given due to the movement of
negative electric charges So, what is the relationship between the electric current and the
mean speed of the moving electric charges in the conductor (drift velocity)? Let’s define
the density of electric charges per volume

N N

Therefore, we can say that the number of electric charges that were in the volume Ad
crosses the sectional area A in an infinitesimal time dt, so

dgq = qnAd = nA|vg|dt (5.3)

were v, is the mean speed of the electric charges or the so called drift velocity. Therefore,

stating from equation [5.1],
[ nqugAdt

T nqugA (5.4)
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Just to remark, actually the electric current is a vector and in equation [5.I] and equation
[b.4]is just its magnitude. In many of introductory to undergraduate physics, they man-
age it as a scalar. This is just wrong! The current can flow either to the right, the left
, upwards, diagonally, etc and it depends on the velocity of the charges that constitute
it, so for sure we need to characterize this in a vector. However, in practice many times
(probably in most cases in this course) is not necessary to point out its vector nature and
we handle it most of the time just as a scalar.

Now,we define the vector electric current density as
.ol
J=—
dA

which is the electric current per unit of cross sectional area. If the electric current is

constant in a cross sectional are, we simply have that the magnitude of the current density
is

(5.5)

= (5.6
Therefore, the magnitude of the current density is
7] = nqua (5.7)
and, the electric current density vector is
J = nqty (5.8)
Also, we have that B
7 dI d\v dq 7 (5.9)

dA ~ dA ~ drdA
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but drdA is an infnitesimal volume |,
J = pv (5.10)

where v is the instantaneous velocity of the differential amount of charge in the volume
dv = drdA

Example 1: Drift velocity

A copper wire has a perimeter of 1.02mm. The wire conducts a constant current of 1.67A
to a lamp of 200W. The density of the free electrons is 8.5 x 1028 electrons per cubic
meter. Find the magnitude of

a) The magnitude of the current density

b) The drift velocity.

Solution:
We have from equation that the current density magnitude is given by

J = T (5.11)

where we already know the electric current. So  let’s firstly calculate the cross sectional

area. The copper wire can be modelled as very large cylinder, so the cross sectional area
is

1.02-1073m

A=nr?=r(P/27)* = n(
2m

)2 =8.27-10"%m? (5.12)
where P stands for perimeter. Therefore, plugging the area in equation [5.1]]

I 1.67A
J==

A
1= 55 o = 20.170,933.22 (5.13)

Now, b) the drift velocity can be obtained easily with the electric current density formula

J = nqug (5.14)
So, isolating vy
J 20,170, 933.22-4; m
= — = m =1.48-1073= 5.15
YT g T (85 105 1)(1.6- 1019C) s (5.15)
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5.2 Ohm’s Law

We have started this chapter to study electric charges to move, however they cannot move
freely. There is always certain friction against their movement. The friction arises from
the collision of the electric charges with the walls of the conductor were they are flowing,
the collision with other electric charges or molecules.

The property of materials that tell us how difficult is for the charges to move through
it is called resistivity. Or in other words the measure of the material opposing to the
flow of the electric charge. The units of resistivity are Qm(Ohms meter). We give the
letter p to resistivity. Unfortunately, we are ran out of letters so do not confuse it with
electric charge density!

We call as conductivity to the capacity of a material to let electric charges flow, and
it is the inverse of the resistivity

(5.16)

’
’

/ Lower

/E_’y/:"/potential

\
~
~

3 =

Higher 7}
potential /

Figure 5.2

Now, for many materials (however not all) , which we call as ohmic materials , follow
the relationship

J=0oFE (5.17)

which is called as Ohm’s Law. Mostly most all metals follow Ohm’s Law . However,
I would like to emphasize that it does not apply to all materials, and therefore it is not
a fundamental law of nature. Now, suppose we have wire of ohmic material (copper for
instance would work). We model it as a cylinder with cross sectional area A and length
L. If that wire is connected to a potential difference AV supply as battery, an electric
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field inside the conductor is created. If we assume the electric field as constant, we have
that the magnitude of the potential difference is

AV = EL (5.18)

where we used equation Therefore, taking the magnitudes in equation we

obtain AV I AV L
_o2r L2 e
J=o T =0 = AV (A)] (5.19)

where p = % was used in the last step. Now, we call as resistance

pL
R=— 5.20
. (5.20)
where its units are 2 = VA. The resistance also is a measure of opposition of the

material to let the charges flow. Greater resistances, more unlikely that electric charge
moves through a material. However, notice that resistance depends also on the geometry
of the material that we are studying, while the resistivity is an intrinsecal property of the
material. So, equation becomes

(5.21)

which is a widely used relationship in circuits and probably you have already seen it before.
The last equation is not the Ohm’sLaw as many times is referenced as. It is a specific
case, using a constant electric field of Ohm’s Law. However, since the last relationship is
many times used, that commonly it is just referenced as Ohm’s Law.

Example 2: Electric current, electric field and resistance

A copper wire has a radius of 0.5cm. The wire length is 4 m and a current of 3.6 A is
travelling through it . Find the magnitude of

e Current density
e The electric field in the wire
e The resistance of the wire

Solution:
In order to find the electric current density, we use equation |5.11] so

I 3.6A A
- — 45,836.62— 5.22
A 7(05-102m)2 m? (5.22)

J:

where we already plugged in the values. Notice the huge number! It means lots of electrons
are trying to cross an area at the same time. Now,

-

[E] = plJ] (5.23)
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Therefore,using the resistivity value for copper, we have

A
E =45,836.62—; - 1.72-107°Q - m = 7.8 - 10742 (5.24)
m m
Finally, if we want to know the resistance of the wire, we can use equation [5.20]
4m
7(0.5-1072m)?

L
R=p3= (1721070 m)( > = 8.75-107*Q (5.25)

Notice the small value obtained, which makes sense! A wire of copper is a good conductor,

therefore the electrons flow easily and henceforth the opposition against their movement
is negligible.

5.3 Temperature and Resistance relation

For ohmic materials, within certain ranges of temperature they follow a general rule,

p=po(l+a(lT —Tp)) (5.26)

where py is the resistivity of the ohmic material at temperature Ty, and p is the resistivity
at temperature T and « is a constant that depends on each material. Now, the last
equation tells us something interesting , if &« > 0 and T" > T}, or in other words if we
increase the temperature of the material, the resistivity increases, while if the temperature
decreases the resistivity decreases. If you think about it, makes sense! The resistivity
is the measure of opposition to electric charges to flow, and at greater temperatures
the molecules and charges within the material are mumbling around and causing more
collisions than with lower temperatures. However, Is a always greater than zero? Well,
it turns out that nature always surprise us. There are certain materials which o < 1
and their conductivity increases as temperature increases. These materials are called as
semiconductors.

Now, given that the resistance is proportional to the resistivity, the resistance follows

R=Ry(1+a(T —Tp)) (5.27)

Example 3: Calculated temperature using platinum thermome-
ter

Suppose that at 20° the resistance of a thermometer of platinum is 164.2€2 (for platinum
a = 3.92 x 1073C°'). When the thermometer is placed in a particular solution, the
resistance is 187.4€2. What is the temperature of the solution?

Solution: One common application of the change of resistivity of materials, is to calculate
the temperature of solutions. A widely used material for thermometers is the platinum,
due to its high melting point and high resistance to corrosion. So, how can we calculate
the temperature of a solution? Let’s use equation, [5.27]

R = Ry[l+a(T —Tp)] (5.28)
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And let’s just isolate temperature T' (7} is the reference temperature, or the initial tem-

perature)
R

T=T)+%
«

(5.29)

The last equation of course is in general true for certain ranges of temperature. So, for
this exercise let’s just plug in values.

187.4Q

T = 20°C 164.29 = 56.04°C 5.30
T392.10-3000) 1 (530)

Probably you ask yourself "How do I measure the resistance change of the platinum?”
Excellent question! There are many ways to achieve this goal, and not necesarilly in
a platinum thermometer the circuit mentioned in next chapter is used to determine the
resistance. Nevertheless, we will study one electric circuit called Wheatstone bridge which
is widely used to measure an unknown resistance.

5.4 Electric Power

Suppose certain voltage applied to a certain material ( either insulator or conductor).
Then, electric charges will start to move due to an electric field. The electric field is doing
a work to move those electric charges, and so it is transferring electric energy to the
material. We know that power is the measurement of energy transfer in certain amount
of time, therefore we have that

p_ dw dU  d(AVQ)
Codt dt dt
where equation for the potential energy was used. Also, recall that work is W = U

when taking as reference frame potential energy U = 0 at infinity, and taking infinitesimal
changes we have dW = dU. Now , for the particular case when there is a resistor

= AVI (5.31)

P=AVI=(RII=IR (5.32)

where I would like to emphasise that last equation only applies to resistors. The last
equation is called as Joule effect. Energy is transferred to the resistor as internal energy
, which is the collection of collisions of the electric charges and molecules inside the
resistor. When takes place, the resistor then releases energy as heat. So summarizing

P=AVI Power delivered to any component submitted under a voltage (5.33)
and
P=1IR Power delivered to any resistor submitted under a voltage (5.34)

Now, suppose you want to transfer energy kilometers away with conductor wires. What
would you increase? The electric current or the voltage? Well, in reality all materials

CHAPTER 5. ELECTRIC CURRENT AND RESISTANCE 133



Electromagnetism Rafael Espinosa Castaneda

have certain resistance, no matter if they are conductors, there exist certain collisions of
the electric charges with the molecules in the material or impurities. Therefore, the power
delivered given certain voltage is given by equation [5.33] however you can think equation
[5.34] as the power delivered to the internal energy of the wire as heat. Therefore, we want
to increase the delivered power in equation [5.33] and reduce the power delivered to the
resistance of the wire in equation [5.34 Therefore, the way to achieve this is by increasing
the voltage and decreasing the electric current.

Example 4: Cost of electric energy

An electrical heater uses 15.0A when is connected to a line of 120V. What is the required
power and how much does it cost a month (take 30 days) if the heater works during 3.0hrs
per day and the company charges 0.092¢ (cents) per kWh?

Solution: The power can be easily calculated

P =AVI = (120V)(15A) = 1800W (5.35)

Now, what an electric company charges you is the energy you have used. The energy can
be obtained by multiplying the power by the time of usage. The units kWh are energy,
and commonly used in electric companies. Hence, calculating the kwh

3h
E=1
800W<1d

ay) <30day> (162, 000W hr’) (M) (0.092) = 14.904¢  (5.36)

1000W hr

where we made a change of units from seconds to hours.

Example 5: Electric Heater

A heater has to increase the temperature of 1.5 kg of water from 10°C' to 50°C in 10.0
min, while it works at 110V. What is the required resistance of the heater? (Specific heat
of water ¢ = 4186@)
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Figure 5.3

Solution:

The energy delivered to the resistor is stored as internal energy. Recall that internal
energy is related to the kinetic energy of the molecules that constitute a material. Since
the kinetic energy of the molecules of the resistor increases, then the molecules start to
collide to each other. From first law of thermodynamics we know that

AFEj;=Q+ W (5.37)
taking in consideration that all the internal energy is transferred as heat, we have

AE;,; = meAT (5.38)
where the formula for heat calculation was used. Finally, recall that power is in general

p_ Energy Transfer

5.39
Time ( )
Therefore, if we divide both sides of equation by time
AT
pP= % - mct (5.40)

where P will be the power in equation [5.34] because remember that the energy delivered
to the resistor will be stored as internal energy. So , substituing equation in P, we
have
AV? _ mcAT B AV?
R e mcAT
Before we plug in values in the last equation, we convert the minutes to seconds.

60
time = 10min( i ) = 600sec (5.41)
man
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So,

2
R (110V)*(600sec) _ 23.00 (5.42)

(1.5kg)(4186 255 (40°C)

Example 6: Burning a fuse

Each device shown in figure [5.4] are connected

to the same voltage supply . Calculate the elec-

trical current taken from all the devices . If a ]
fuse is designed for maximum 20 A | Should

the fuse burn and would there be current inter- ﬂ
ruption ? (Light bulb 100W, Heater 1800W, ¢ Switch :
Stereo 350W, Hair dryer1200W) | T

Solution: Given that all devices are con- meud

nected in parallel, the voltage is exactly the — ﬁ .1/_'-_
same. Now, we can use equation to obtain

the electric current that supplies each device = R
Electric heater
P — AVT s P 1800 W
= pu— j = —-— [
AV Yt 7 i
Therefore, we can calculate easily the electric ———
current supplied to each device “_kﬁ *
Pright pan 100V
ILight Bub = — = = 0.833A
Light Bulb AV 120V
PHeater 1800 I‘:USL' .I'Pf Hair drver
Thewser = =37~ = gy = 194 ?;m&r 1200 W
PStereo 350W L
Istereo = = = 2.916A —
: AV 1201 '1¢T(::: lectric company )
P air 1200W LREL CICCLT LTI
Ty = =2 — = 10A
AV 120V

Figure 5.4: Figure taken from reference

8]

The total current is just the sum of all the
currents.

Itotal = 0.833A+15A+2.916A+10A = 28.749A

Hence, the fuse will burn ! And the electric current supply will stop immediately,
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Chapter 6

Direct Current Circuits

In this chapter , we will make our first circuits with resistors, capacitors and batteries.

6.1 Electromotive Force (EMF)

Definition 6.1.1 The electromotive force (abbreviated as emf and represented with the
greek letter €) is the mazimum voltage that a battery can supply between its terminals.

Given that any battery is made of matter, there exists a resistance to the flow of electric
charges inside it. This resistance is called as internal resistance (r). When there is a
resistance, we know by Ohm’s Law that AV = IR, so the potential difference due to the
resistance of the battery will be AV = Ir. Given that the resistance reduces the potential
difference between the terminals, we have that the voltage between the terminals of the
battery is given by

AV =c —Ir| (6.1)

Please do not confuse the emf with a force! The units of the emf are volts! Recall
the definition, it is the maximum voltage that any battery can supply. Unfortunately for
historical reasons it remains in its name force but it does nothing to do with Newton
units.

6.1.1 Resistor connections

There are many ways we could connect resistors, but as with capacitors we will study two
manners to connect them,

Definition 6.1.2 When two or more resistors are connected in such a way that the elec-
tric current that each resistor carries is exactly the same, we say that they are connected

in series (See figure[0.1d| )

Definition 6.1.3 When two or more resistors are connected in such a way that their
voltage AV is exactly the same, we say that they are connected in parallel (See figure
6.1b
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Figure 6.1

From the last definitions, we can calculate equivalent resistances depending how they
are connected.

Suppose 2 resistors connected in series as shown in figure [6.1al The voltage supplied by
the battery is the same as the sum of the voltages in each resistor

AV = AVy + AV, (6.2)
Now, using Ohm’s Law AV = RI, therefore
Reql = BRIy + Ryl (6.3)
However, the electric currents are exactly the same. Hence,
Re, = Ry + Ry (6.4)

The last equation applies for any two pairs of resistors connected in series. In general for
any set of N resistors connected in series, the equivalent resistance is given by

Req = Z RZ (65)

Now, suppose two resistors connected in parallel as shown in figure [6.1b] The voltage
is the same across any resistor. However, the electric current is not exactly the same.
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Notice that at any of the two points marked with a black circle (called nodes) in figure
[6.1D], the electric charges that are flowing can move in two different directions. Therefore,
we can say that the electric current in the right hand conductor that starts in the positive
terminal of the battery is splitted in two currents I; and I, which cross R; and Rs
respectively. So, we can say that the electric current that arrives to the right node is the
sum of the electric currents that went in both directions

I=1I+1, (6.6)

Applying once again Ohm’s Law

AV AV: AV,
=—+

6.7
Req Rl RQ ( )
However, the resistors are in parallel, so the voltages are the same. Hence,
1 1 1
=— 4+ — 6.8
Ry R R (68)

The last equation applies for any two pairs of resistors connected in series. In general for
any set of N resistors connected in parallel, the equivalent resistance is given by

N

1 1
_&q:§:§7 (6.9)

i=1 "

Example 1: Analyzing a circuit with resistors

Three resistors with resistances 1.60€2, 2.40€2, and 4.80€2 are connected in parallel to a
battery of 28.0 V with despreciable internal resistance. Find,

1. The equivalent resistance of the combination
2. The current through each resistor

3. The total current through the battery

4. The voltage through each resistor

5. The delivered power in each resistor

6. The delivered power to all the circuit resistors
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I I
|
|
e=28.0V
Figure 6.2
Solution:
Given that the three resistors are in parallel, we can use equation [6.9] therefore
1 1 1 1 RyR3 + RiRs + R1R Ri1RyR
_r .t 213 + fuy g + 2 Req = 1lvpfi3 (6.10)
Req Rl RQ Rg R1R2R3 R2R3 + R1R3 + RlRQ

Substituting values in the last equation

1.6 -2.4Q - 4.80
Feq 2.4 - 4.80 + 1.6 - 4.8Q0 + 1.6 - 2.40 0.8 (6.11)

Now, using Ohm’s Law

V=RI = (6.12)

We can obtain easily the electric current carried by each resistor (recall that the voltage
in this case will be the same for the three resistors because they are connected in parallel)

AV, 28.0V
TR, 1.6Q 75 (6.13)

AV,  28.0V

AVs  28.0V
L=""3 227" _ 58334 6.15
5T Ry 4.80 (6.15)

The electric current through the battery is the sum of the three electric currents Iy, I
and I3
I'=5LH+ 1L+ 1I3=1=175A411.66A + 5.833A = 34.993A (6.16)

Finally, the power delivered to each resistor can be easily found by using equation [5.33

Py = AViI; = (28.0V)(17.54) = 490W | or , P, = I? Ry = (17.5A)%*(1.62) = 490W
(6.17)
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Py = AValy = (28.0V)(11.66A) = 326.48W , or , Py = I2R, = (11.66A4)%(2.4Q) = 326.48W
(6.18)

Py = AVsl3 = (28.0V)(5.833A) = 163.329W | or , P3 = I3 R3 = (5.833A)%(4.8Q) = 163.329W
(6.19)

Of course in the last calculation you could have also used P . Now,the power

delivered to the equivalent resistor can be found by summing the power delivered to each

resistor

_ (avy?
~ R

Proy = P + P» + Py = Proy = 979.8W (6.20)

Or by using the equivalent resistance, with equation [5.34
P = I’R., = (34.993A)% (0.8Q) = 979.8W (6.21)
Equivalently, with equation [5.33

P = AVI = (34.993A) (28.0V) = 979.8W (6.22)

Example 2: Another equivalent resistance example

Calculate the equivalent resistance of the circuit and find the current passing through
each resistor. The battery has negligible internal resistance.

1 5% I
| |
AN
L 4 L
AN Ryo =20 R34= 30
R b R hch 12 ; R4
(a) (b)
1o e I
| ll
Req = 59 I
(c)
Figure 6.3
Solution:

First we calculate the equivalent resistance. We have that resistorsR?;, Ry are in parallel
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, SO
1 1 1 Ry+R

_——- == = 6.23
ng R1 RQ RlRQ ( )
R R (3Q2)(62)
Ry = = =20 6.24
2T Ry + Ry 90 (6.24)
And, resistors R3 and Ry also are also in parallel, therefore
R3R, (1292)(492) 480
7 Ry + Ry 169 169 (6.25)
Finally , R;2 and R34 are in series. Hence, the equivalent resistance is

Since we have covered all the resistors in the circuit, we can happily say that the equivalent
resistance of all the circuit is

R, = 5Q (6.27)
Now, by using equation (Ohm’s Law),
AV 60V
= = —— =12A 6.28
R, 50 (6.28)

So, if we want to know the electric current carried by each resistor, we need to calculate
the voltages across each resistor AV, AV,, AVs and AV,. However, since R; is in parallel
with Ry and Rj3 is in parallel with Ry, we have that

AVip = AV = AV, and AVsy = AV = AV (6.29)

so we first calculate the voltages AVi, and AVs,. Now,noticing that resistors Ris and
R34 are in series, the electric currents through resistors Rjs and R34 are the same as the
current I of the equivalent resistor R,

I =1,=13 (6.30)
Therefore the voltages across resistors Rqio and Rsy
AVis = Ryl = (2Q)(12A) = 24V | AVy = Rayl = (3Q2) (12A) = 36V (6.31)
Once you know AVj,, you could have also calculated AVs, as
AVyy = AV — AVyy = 60 — 24 = 36V (6.32)

There is not only one way to calculate the voltages and currents, do whatever strategy
that comes to your mind (of course while it makes sense and trying to save time!). So,

finally

AV, 24V
j _ 22 gy 6.33
'R, 3Q (6.33)
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AV, 24V
27 R, 69 (6.34)
AV, 36V
I, = =2 _34 .
= % = T30 3 (6.35)
AV, 36V
I, = =2 _94 .
1= o =9 (6.36)

6.2 Kirchhoff’s Laws

See the circuit shown in figure Notice that as far as we know by now, with the
knowledge we have discussed of electric circuits, we cannot find currents and voltage
across each resistor. So far, we have reduced the resistors to a one single equivalent
resistor, then find the electric current I and see how it was splitted in the different
branches of the circuit. However, since we have several batteries, we cannot make several
series nor parallel combinations to obtain just one equivalent resistor. We do not know
how to deal with several batteries and resistors in the same circuit. Let’s add to our

toolkit a powerful set of laws which will help us to solve other kind of electric circuits,
the Kirchhoff Laws.

10Q 120

a I

15V

40

.
20V
Figure 6.4

Before we establish the Kirchhoff Laws, let’s state two important definitions

Definition 6.2.1 A node is a point where two or more circuit elements meet.

Definition 6.2.2 A loop is any closed path in a circuit through selected basic circuit
elements, where the traced path is without passing through any intermediate node more
than once.

From the definition of a node, actually we can obtain another definition for a series
connection, for any component.

Definition 6.2.3 When just two elements connect at a single node, the elements are said
to be in series.
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Now, we define the Kirchhoff Laws

1. The algebraic sum of the currents in any node is zero. (Electric current that
goes in a node is the same as the one that goes out from the node.)

» I1=0 (6.37)

node

2. The algebraic sum of the potential differences in any loop must be equal to

Z€ero.
> AV =0 (6.38)

loop

The first rule holds by charge conservation. The charge that enters a node is the
same to the one that goes out from the node. The second Kirchhoff rule is due to energy
conservation. When having the same potential energy in a beginning, it must be the same
if we return to the same point.

Now, when applying Kirchhoff Laws, the following convention must be used

1. Electric current direction is such that it starts from the high-potential end of
a resistor toward the low-potential end. Therefore, if a resistor is traversed
in the direction of the current, the potential difference across the resistor is
AV = —IR.

2. If a resistor is traversed in the direction opposite the current, the potential
difference is AV = +IR.

3. If a source of voltage (assumed to have zero internal resistance, so considering
the emf) is traversed from negative terminal to positive terminal, the potential
difference AV = +-¢

4. If a source of voltage (assumed to have zero internal resistance, so considering
the emf) is traversed from positive terminal to negative terminal, the potential
difference AV = —¢

Comments on the convention rules mentioned

e Recall firstly that by convention, the electric current is the flow of positive electric
charges. Secondly, remember from our discussion of electric potential in chapter 3,
positive charges move towards the direction where the voltage is negative (electric
potential decreases). So, if a resistor is traversed in the same direction of the current,
the voltage must be negative (convention rule 1). Otherwise, if a resistor is traversed

in opposite direction the electric current, the voltage must increase (convention rule
2).

e The positive terminal of battery is at higher potential than the negative terminal.
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Therefore, if a battery is traversed from negative to positive, you are increasing the
potential. Otherwise, if a battery is traversed from positive to negative, you are
decreasing potential. The arguments mentioned are the convention rules 3 and 4.

The direction of the electric currents, and the direction you start moving in your loop
is arbitrary. Nevertheless, you must respect all the convention rules and the Kirchhoff
Laws. In case you obtain an electric current with negative sign, it means that
the electric current is actually flowing in opposite direction.

Finally, you need N independent equations to solve the circuit with NV different electric
currents. Once you know the currents, you can use Ohm’s Law and obtain the voltage
across each resistor.

Let’s solve some exercises to exemplify how to use Kirchhoff Laws

Example 3: Applying Kirchhoff Laws example

(a) Calculate the currents that exists in the all branches of the circuit shown in figure

6.5al
(b) Find the magnitude of the potential difference between the points “a” and “b”.

I, 153
—_—
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— | b
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15V
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Figure 6.5
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Solution:
From loop 1 (see figure [6.5b]), we obtain

—10, —15—4I3+6 =0 (6.39)
From loop 2 (see figure [6.5b]) , we obtain
15 —121, — 31, — 20+ 413 =0 (6.40)

From the currents in the nodes,
I =1+ I3 (6.41)

So, we have three equations, three unknown variables. We must be able to solve the
problem. Now, just for this exercise I show explicitly the algebra to isolate I1, Iy and I;.
For next exercises, since this is just high school algebra, I leave it up to you.

Now, simplifying just quite equation we have
101, —9 — 413, =0 (6.42)

Using [; in equation and substituting in the last equation

—10(Ly+ I3) — 9 —4l3 =0 = —101, — 1413 — 9 =0 (6.43)
Hence,
I, = —%[3 — 1% (6.44)
Substituting what we have found in the last equation for Iy in equation [6.40] we have
—15(—%[3—%)—5+413:O:>(%—1—4)[3:5—151—69 (6.45)
Therefore,

15-9 15-14
I3 = - — 4) = —0.34A 4
= (5-5) /(g 1) =03 (6.46)

Once we know I3, we can obtain I, with equation [6.44]
14
10

Finally, once we know currents I3 and I, current I; can be found by using equation

I = (—0.34A) — 1% = —0.424A (6.47)

I, =1, + I; = —0.424A — 0.34A = —0.764A (6.48)

Summarizing, the currents found were

I, = —0.764A
I, = —0.424A (6.49)
I; = —0.34A
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All minus signs means that the electric currents actually travel in the opposite direction.
So, from the circuit in figure where we gave an arbitrary direction to the electric
currents to solve the problem, must be corrected to correct direction of the currents
shown in the circuit of figure [6.5d

Finally calculating the potential difference. We can start from node a, go through the
battery of 6V and then through the battery of 20V. So, using now the correct direction
of the currents (figure [6.5d), we obtain

AV = —6V + 20V = 14V (6.50)

Also, you could have calculated the potential difference between node a and b by going
through the circuit elements that currents I; and I crosses (see figure[6.5¢)). In such case,

AV, = 101, 4 151, = 10 (0.764) + 15 (0.424A) = 14V (6.51)

where notice that we do not use the negative signs any more because now we are taking
the correct direction of the currents ! And as expected we obtain the same result by
taking either two paths.

Example 4: Another example applying Kirchhoff Laws

Calculate the electric currents I;, Is and I3 of the following circuit. Find the potential
difference AV,, and AV,,.

, I
18.0V 1 5000

+|i- W

8.000 % Loop 1

11.00 1_”4’_ 7.000
o —v— | E—a—e

I

5000 1B 360V
Figure 6.6
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Solution:
From loop one we obtain the following equation

18+ 51 + T, — 12+ 111, + 81; = 0 (6.52)

By taking the direction by the blue arrows, as how we will proceed to move in the loop
one, we have that when we transverse the battery of 18V we go from positive terminal
to negative terminal, so we we pick a minus sign (first term in the last equation). After
crossing the battery we cross the resistor of 5{2, given that we go in opposite direction
of the electric charge I;, we pick a positive sign (second term in the last equation +514).
We continue up to node b and we move to the left to the 72 resistor. Now we are moving
against the current Iy, so we pick a positive sign (third term of the last equation +715).
Moving on , we now face the battery of 12V, we move from positive terminal to negative
terminal, hence we pick a negative sign (fourth term of the last equation —12). When we
transverse the resistor of 112 we move against the current I, so the sign must be positive
(fifth term of the last equation +1115). Finally, we arrive to node a, and we go up to the
8() resistor. Since, we move against the current 7, we pick a positive sign (last term of
the latter equation +81;). Since we have closed the loop, we have that the sum of all the
voltages is zero.

From loop two we obtain the following equation
—11L,+12 -7, — 36+ 513 =0 (6.53)

analogue to the loop 1 , we followed the convention rules to obtain the last equation, and
used that the sum of all the voltages is zero.
Now, placing in node a or node b, we obtain the following equation

I =1+ 14 (6.54)

For instance in node a, the current that goes into the node is electric current I, and that
current then is separated into two currents I, and /3. In node b, the currents that go into
the node are currents I, and I3, which joins into one new electric current I; which goes
out of the node.

So, we have three independent equations, and three unknown variables (currents I,1,
and I3). So, we have the enough number of equations to solve the problem. By just
basic algebra (isolate one equation and substitute in other), we obtain the following set
of electric currents

I, = 2.884319A,
I, = —0.416452A (6.55)
I3 = 3.3007771A

where of course it is unnecessary and even redundant to keep all decimals, however just
for sake that you can compare results, we show the exact result. Now, notice that current
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I, is negative, which means that its correct direction is opposite to the one that we chose
from a first place.

Finally, we are asked to calculate the potential difference between points a and b. If
we start from node a, then cross the battery of 12V and finally transverse the resistor of
7€), we have the following equation

AV, = 111, + 12V + 7T, = 19.49V (6.56)

We could also follow the path going though resistor of 8(2, the battery of 18V, and finally
cross the resistor of 5{) to arrive to the node b. If we follow such path,

AV, =8I — 18 + 5I; = 19.49V (6.57)

where as expected we have obtained the same result! Finally, potential difference AV,
must be equal to AV, because notice that left side and right side are connected to the
same potential. Let’s figure out if this is actually true.

AV.y = —5I5 + 36V = 19.49V (6.58)

So, we obtained what we expected!

Example 5: A nice trick to find equivalent resistance using Kirch-
hoff Laws

Calculate the equivalent resistance of the resistors shown in the following circuit.

Loop 2 > Il+I2

Req% Iy +1,

I +1,

(b)

Figure 6.7

Solution:
We cannot directly calculate the equivalent resistance of the circuit by making arrange-
ments of series and parallel equivalent resistors. Notice that in node ¢ (see figure [6.7a)),
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the current splits into I; and I, hence the resistors of 1€2 at the top of the circuit are
not in series. They are neither in parallel because another resistor of 1€2 is between their
connections. Something similar happens with all resistors, so there is no way to connect
them in series or parallel and finish up with just one equivalent resistor.

Even though we cannot reduce directly the set of resistors, we can make a smart move by
applying Kirchhoff! Remember that an equivalent resistor is the same as saying that a
complete circuit of resistors is substituted by another resistor with a given resistance R.,.
So, the trick we are applying is using this idea, we substitute the whole set of resistors
with one equivalent resistor. The current that crosses the equivalent resistor is the same
as the one that enters in node ¢ (see figure [6.7D]). Once we know that current we can
know the equivalent resistance by using Ohm’s Law AV = R, 1.

So , summarizing the procedure, we apply the Kirchhoff rules, and calculate the electric
current in the battery I, and then by ohm’s law the voltage of the battery is the same as
13V = R.,I, so we isolate R.,.

So, let’s apply Kirchhoff laws and we obtain the following set of equations

13-L—-1-(;-13)=0 from Loop 1
—1-I,—2-(la+13)+13=0  from Loop 2 (6.59)
-1 —I3+1,=0 from Loop 3

Solving the system of equations we obtain

[1 - 6A
I, =5A (6.60)
[3 - —1A

Now, the electric current that goes through the equivalent resistor and the battery is
I = I, + I,. Therefore, by using Ohm’s Law , 13V = R.,(I; + I2), and by isolating the
equivalent resistance we have

13V
=———— =1.18Q .61
Beo = GA 1 5A i (6.61)

Isn’t this trick nice?! And this gets even better! What if I told you that I just invented
the battery of 13V to obtain the equivalent resistance R.,? Notice that the equivalent
resistance only depends on the resistors that constitute it. No matter what currents
crosses it, the resistance is the same! So, this is even better! Whenever you want to know
the equivalent resistance of a set of resistors, and you have a complicated circuit, which
you cannot split it in series and parallel subsets, or it gets too nasty. Connect the whole
circuit to an invented battery of arbitrary emf. Solve the currents with Kirchhoff, and
almost by magic you will obtain the equivalent resistance by using at the end Ohm’s Law.

150 CHAPTER 6. DIRECT CURRENT CIRCUITS



Rafael Espinosa Castaneda

Electromagnetism

6.3 RC Circuits

In this section we will study the so called RC' circuits, where there are resistors and a
capacitors in the circuit . We will study two possible scenarios, when there is a battery
connected to a resistor and the capacitor in series; and when the circuit only has the

resistor and the capacitor in series.

b % "

+| -
9

(a) No current in the whole circuit, because
all the system is open, no closed path exists
in the connections of the elements of the
circuit.

.

/.

o
a’% > C
b

No Current I

2 : |[C
. |
No Current I %R
I N
+]|1-
g

(b) No current through conductor b, because
that part of the circuit is open. We have a circuit
with a resistor and capacitor in series, connected

to a emf

VA

_

+]1-
g

(¢) No current through the battery, because that
part of the circuit is open. We have a circuit
with a resistor and capacitor in series, without

emf

Figure 6.8: Whenever there is an open circuit (the connections of the circuit do not make

a closed path), there is no electric curre

nt.

1. When there is a battery in a RC circuit as shown in figure at time ¢t = 0
when you have just connected the battery to the capacitor and the resistor (closed
the switch in point a in figure [6.8a) and obtain a configuration as shown in figure
, the capacitor is neutrally charged and an electric current starts to flow in the
circuit. After certain time ¢ the capacitor has electric charge stored now. So, the
electric current that is flowing around the circuit now is less! There will come a time
that the electric current is zero, when the capacitor is fully charged! Probably the
easiest way to visualize this is thinking about the capacitor as a place where you
can store electric charges. By no means it is possible to continue storing electric
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charge infinitely, there is a maximum electric charge that can be stored. Once the
capacitor has reached the maximum amount of electric charge that can store, no
more electric charge can continue flowing! Or in other words, an electric current to
cross all elements of the circuit. From the perspective of voltage, once the capacitor
gets electric charge, between the conductors of the capacitor and the terminals of
the battery exists a less potential difference. A decrease of the potential difference
means less electric field inside the conductors. A less electric field means less force
that moves the charges, less movement of electric charges means less current. Now, is
there an equation that describes us what we have mentioned quantitatively? Indeed,
there is! Let’s use Kirchhoff’s Laws to the circuit shown in figure[6.8b] So, we obtain
the following equation

q
—=—RI=0 6.62
NG, (6.62)

where we used the convention rules, and the voltage across a capacitor , by using
the formula of capacitance C' = A%/. Now, recall that the electric current is I = %.
So , the lat’s equation reads as

q dq
8___ JE—

o Ry =0 (6.63)

so we have obtained a linear, first order, ordinary differential equation, that will be
separable. By just some algebra, last equation becomes

@_5 q @_EO—q

. = .64
it "R RC _dt  RC (6.64)
Hence, by separation of variables ;we have
¢ d bt
4q
=— [ — 6.65
/0 q—eC o RC (6.65)

where the limits of integration follow because at time ¢t = 0 the electric charge in
the capacitor is zero, and after certain time ¢ the capacitor will have certain electric
charge (). Integrating both sides of last equation and doing some algebra

Q —Ce t
mt - :
e RO (6.66)
Q(t)=Ce (1— e’t/Rc) for charging capacitor (6.67)

where we have written explicitly that the electric charge is a function of time. Notice
that as ¢ — oo the capacitor will acquire its maximum amount of electric charge.
Wait! So I need to wait my entire life to charge the capacitor 7 Well theoretically we
need an infinite time to obtain the maximum electric charge, however, as it will turn
out the time to obtain a very good approximate to the maximum electric charge is
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small enough, so that at finite times we can consider that the capacitor has fully
charged. So, we can also write equation [6.67] as

Q(t) = Quax (1 — e’t/Rc) for charging capacitor (6.68)
where
‘Qmax =(Ce for charging capacitor (6.69)
Now, recalling that the electric current is I = %, we have that the electric current
is now
I(t) = %e’t/ e for charging capacitor (6.70)

where once again we have written explicitly that the function depends of time. The
maximum electric current will be at ¢ = 0. when the capacitor is neutrally charged!
So the electric charge flows with no opposition in the circuit, and as the electric
charge gets stored in the capacitor, less and less electric charge will flow in the
circuit. So, we can also write equation [6.70] as

I(t) = I,ane 1€ for charging capacitor (6.71)

where the the maximum electric current is

Lpar = 1(0) = for charging capacitor (6.72)

£
R

Now, the voltage across the capacitor, recalling that C' = %, we have

AV(t)=e(1- e_t/RC) for charging capacitor (6.73)

The potential difference that is maximum across the capacitor is
Vmax =£ (674)

i.e. the maximum voltage across the capacitor will be emf of the battery !
Finally, we could ask ourselves how does the energy stored in the capacitor changes
with respect time? With a substitution using equation

Q? 22 (1 _ eft/RC’)Q

U_2c_ 20

(6.75)

Therefore,

for charging capacitor (6.76)
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where the maximum amount of energy stored in the capacitor, once again will be
when the time ¢ — oo. Hence,

U = U, (1 — e’t/Rc)2 for charging capacitor (6.77)

where

Ce? . .
Unaz = 5 for charging capacitor (6.78)

Now, suppose another scenario. Suppose that you charge a capacitor up to a certain
electric charge @)y, so you have connected a battery, a resistor and the capacitor as
in figure [6.8b] Then, you remove the battery (or equivalently you close the switch
from point a to point b in figure and obtain configuration shown in figure [6.8]
) and maintain the capacitor connected to the resistor. The electric circuit with no
battery is equivalent to the one shown in figure because the battery does not
participate in the circuit, the battery part of the circuit is an open circuit, so no
current flows through the battery. Now, since there is no battery, there is no electric
field pushing the electrons against the negative conductor of the capacitor, and they
will start to flow in the circuit. Inevitably, when you have removed the battery, the
electric charge will start to flow from the capacitor across the resistor. There will
come certain time ¢t when all the electric charge () is not any more in the capacitor
and it becomes neutrally charged. So, using equation [6.63] but considering the case
there is no efm we have,

q dq q @ dq /t dt
2 _RI=0— = —— — —=—| — 6.79
c dt RC /Oq o RC (6.79)

where the integration limits follow since at time ¢t = 0 the capacitor has its initial
electric charge @)y, and at after certain time ¢ the capacitor is left with some electric
charge (). So, integrating last equation we obtain

In <%) _ —% (6.80)

Hence,

Q(t) = Qe /¢ for discharging capacitor (6.81)

where we have explicitly written the electric charge dependent of time. Now, the

: _d
electric current (recall [ = d—‘g)

I(t) = —g—ge_t/RC for discharging capacitor (6.82)

where the minus sign just means that the electric current must be flowing in the
opposite direction that when a capacitor is charging! (see figures and [6.8¢)) We
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have once again written explicitly that the electric current depends on time. We
could write the electric current also as

I(t) = Iye ¥/EC for discharging capacitor (6.83)

where the initial electric current is

_ @

Iy =100) = 5

(6.84)

the minus sign will be in general ignored, given that if we shift the direction of the
current , it becomes positive.

Now, the voltage across the capacitor, by using C' = Aiv
AV (t) = %e‘t/RC for discharging capacitor (6.85)

where the voltage dependence of time was written explicitly. We could also say that
the initial voltage (when t = 0) across the capacitor is

AVy = % (6.86)
and therefore equation becomes
AV (t) = AVpe ¥R (6.87)
Finally, the energy stored in the capacitor, (using equation [4.59))
2 2 ,—2t/RC
U= 2% _ Qoez—c (6.88)
Therefore,
U = Upe 2/RC for discharging capacitor (6.89)
where
Q2
Uy = % for discharging capacitor (6.90)

is the initial energy stored in the capacitor.

Now, notice that either for charging or discharging capacitor, there is a constant repeated

several times.
(6.91)

which we call simply as time constant of the RC circuit. Notice, that the units of RC'
are seconds! You can notice this simply by observing that a factor ¢/RC' exists in the
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exponent of the exponential in many of the last equations, so the units must be cancelled
out to be able to calculate the exponential. (You cannot have e "i* = The exponent of
the exponential must be dimensionless!). Of course also by plugging in the units,

VC GCs
RC|=Q-F=—==—= 6.92
[RC] v e = (6.9
The importance of the time constant is that it determines how quickly will a capacitor
discharge and how fast it will charge. To notice this let’s do a quick calculation, suppose

that you connect a capacitor to a battery, after a time ¢t = 7 (using equation [6.68])

Qt=7) = Quar (1 =¢77) = Quaa (1 — ") = 0.63Qunac (6.93)

the capacitor has 63% of the maximum amount of charge it can store!

Now, suppose a capacitor is discharging, no battery is connected in the circuit and
after a time ¢t = 7, we have (using equation |6.81])

Q=Que "= % ~ 0.36Q
the capacitor has lost more than the 60% of the electric charge that it had stored!

We show in the following table some approximate percentages of the electric charge
when discharging or charging a capacitor after certain time in terms of 7. Notice that after
57 practically we have stored all the electric charge that can be stored in the capacitor!
In practice, we say that it takes a finite time to charge the capacitor, even though in
principle it would take a infinite time to fully charge it. Also, notice that after a time
t = 57, the capacitor has practically lost all the initial electric charge that it stored! So,
also in practice we say that after certain finite time the capacitor is discharged, when in
principle by equation the stored charge Q9 — 0 as t — oo

Time | % of Qe Wwhen charging | % of Qo when discharging
17 63.2% 36.8%
27 86.5% 13.5%
37 95.0% 5.0%
4t 98.2% 1.8%
5T 99.3% 0.7%
67 99.8% 0.3%

Example 6: Solving our first charging RC circuit

The capacitance of the capacitor in the shown circuit is 0.5uF, the resistance of the
shown resistor is 30k{2 and the emf of the battery is ¢ = 15V. When the switch is closed,
determine

1. The time constant 7
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2. The maximum charge that can be stored in the capacitor

3. The time that lasts to reach the 95% of its maximum electric charge

4. The electric current I when the charge () is one quarter of its maximum value
5. The maximum electric current

6. The electric charge @ when I is 40% of its maximum value
o o
S
- =

i

Figure 6.9

Solution:

In order to obtain the time constant of the circuit, we just use equation and plug
in the values given in the exercise,

T=RC = (30 : 1O3Q> (0.5 : 10—6F) = 7 = 0.015sec (6.94)

Now, the maximum charge that can be stored in the capacitor, is the electric charge Q4.
in equation [6.69] Therefore,

Qmaz = Ce = <O.5MF) (151/) = 7.5uC (6.95)

Now, for the next question (3) , we want that the electric charge at certain time t be
0.95- Qumaz- In other words, Q(t) = 0.95Q),nq,- Therefore using equation and equating
t0 0.95Q maz ,

0.95Cs = Ce (1 - ef) (6.96)
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where we used the maximum electric charge that can be stored in the capacitor (see
equation . By just some algebra,

_t —t
e+ = (—0.95 + 1) — — = (0.05) — t=—7ln (0.05) (6.97)

Hence, it takes about
t =~ 0.044s (6.98)

to approach almost the maximum electric charge (95% of the maximum)! A tiny amount
of time! In principle, the time to obtain the maximum electric charge we need to wait for
a time t — oco. However, to approach to almost the maximum electric charge is a finite
time which is so small, that we do not have to worry to obtain the maximum electric
charge!

Now, for question 4, nothing stops us to apply voltage Kirchhoff Law, and we have the
equation, which is the equation that we used to deduce all time dependent functions
of electric charge, current , voltage and energy. So,

2
s—%—mzozm—o oce

where we have substituted 1/4 = 0.25 of the maximum electric charge (Qae = Ce,

equation [6.69 ) . So, finally doing some algebra

e (1 - 0.25>
g<1 - 0.25) =Rl =[]=— _ 7/ (6.100)

—RI=0 (6.99)

R

Therefore, substituting values
15V - 0.75

——— =375-107%4 101
30 x 103Q2 37510 (6.101)
Now, for question 5) , the maximum electric current
15

= —"" —5.107%4 102
30 - 10392 o 10 (6.102)

Finally, question 6). Nothing stops us to using once again Kirchhoff Voltage Law, so

Q £ Q

——=—R|04= | =0=¢|1-04]| —==0 6.103
o R : C (6.103)

where we have substituted the 40% of the maximum electric current, i.e. 0.4% ( see
equation [6.72). Doing some algebra

0.6c = % — Q = C(0.6) = Quas(0.6) = (7.5uC)(0.6) = 4.5uC (6.104)

where we substituted the maximum electric charge that we have already found in equation
[6.951
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Example 7: Solving our first discharging RC circuit

A capacitor of 5uFand a resistor of resitance 3.5¢) are connected in series without emf.
After how much time the stored energy is a third of the initial value?

Solution:

We can apply equation [6.89]

U = Uye /B¢ (6.105)

However, we want the energy stored in the capacitor U is a third of the of the initial
energy. So we want that

1
U=3Us (6.106)

therefore, by using the energy function in equation [6.105 we have that
—ot/rC _ L =2 1 1
Upe = §U0:>€RC = § =t = —TIH § - (6107)

Therefore, by substituting values

N 2

(5,uF> (3.59)
1
t=— In <§> =t=2961-10"%sec (6.108)

Example 8: Several resistors and capacitors in a RC circuit

In the circuit that is shown in the figure, each capacitor has initially a charge of 3.50nC
in its plates. What will be the current in the circuit in the moment that the capacitor
have reached the 75% of its stored energy initially? The values of the resistances of the
resistors are : Ry = 3€) , Ry = 1.5Q0 and R3 = 4€). The value of the capacitance of the
capacitors are : C7; = 2.5uF , Cy = TuF and C5 = 2uF
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Figure 6.10

Solution:
First we need to reduce the circuit in just one equivalent resistor and one equivalent
capacitor. So, calculating firstly the equivalent capacitance , noticing that the capacitors
are connected in series, by using equation [£.29, we have that

1 1 1 1 1 CyCs+ C1C5+ C1Cy C1CyC5

. ot te e, C10oC = Ca = GG T 00+ oG
(6.109)

By plugging in values, we obtain that the equivalent capacitance is

25%x107%.-7%x107%.2x 1076

~ 9058107 "F
(2.5 x 1076 -7 x 1076) 4 (2.5 x 1076 - 2 x 10-6) + (7 x 1076 - 2 x 10-)

(6.110)
Now, we obtain the equivalent resistance of the resistors. Now, notice that resistors R
and Ry are in series and we can make a new equivalent resistor R;s which will be in
parallel with resistor R3. Hence, the complete circuit equivalent resistance

Rz - Ry

Coy =

Req = —— 6.111
=R TR ( )
where
R = Ry + Ry = 4.50Q (6.112)
Hence,
4.5 - 4Q)
g = ——— ~ 2.110 A1
Feq 8.5¢) (6.113)

Now, finally we are left with one resistor and one capacitor in series. So, we can apply
the equations we have derived for discharging capacitor. By equation [6.89, we have that
the energy

—2t

U =Uerc (6.114)
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However, we want the explicit time when the capacitor stores the 75% of its initial energy,
U = 0.75Uy, hence

—2t —2t RC'1In (0.75
0.75U, = Uo@RiQC — % =In (()75) —t = —L (6115)

So, substituing values we have

2.11Q) (9.58 - 10~7F) In (0.
¢ (21192) (9.58 20 M O) 9. 10-7sec (6.116)

Finally, what we are asked is to calculate the electric current when the energy is 75% of
the initial energy, We already know the time when that happens (equation [6.116))! So, by

using equation [6.83]

=22 RC (6.117)

we just plug in values now. We split in steps the calculation so the expression is clear and
it does not have all the values at the same time. Calculating firstly the time constant,

T = RegClq = (2.112)(9.58 - 1077F) ~ 2.02 x 10~ (6.118)

So, the exponent in the exponential

t 2.9-107"s
— = _ ~ —0.14 6.119
RC 2.02 x 10~6s ( )
Hence,
3.5-107°C 014
= — = M y15.107%4 6.120
202 x 1065 © (6.120)
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Chapter 7

Magnetic Field Force

The sources of electric fields are charges, one source of magnetic fields are electric currents,
the other is varying electric fields. In this chapter we study how electric charges or currents
behave under the influence of a magnetic field. In the next chapter we study how to
calculate the magnetic field created by steady currents. This chapter and the following
one we consider steady currents which do not vary with time, therefore the magnetic fields
are static. Along this chapter, we study several applications of the magnetic force exerted
on charges and electric currents.

7.1 Lorentz Force

The Lorentz Force reads as

—

F:q(ﬁ+ﬁx§> (7.1)

where the first term is the already known and discussed previously, the electrostatic force.
The second term is new, and we can think about it as the magnetic force exerted on a
particle that moves with velocity v.

Fg=qix B (7.2)
I would like to point out that the last equation holds only for electric charges that moves
with speeds much smaller than the speed of light (|7] << ¢ ~ 3 x 10°2). In many

examples , you will notice that we find the direction of the magnetic force by using the
right hand rule. In general, suppose you operate two vectors @ and b as

F=axb (7.3)
80, in order to know the direction of ¢, you can place your index finger in the direction of
vector @, curl your fingers (except the thumb finger) to the direction of the vector b and

the thumb finger points to the direction of vector ¢.

165



Electromagnetism Rafael Espinosa Castaneda

Figure 7.1

I mention the general case, because you will find from now on tons of cross products,
and is important to recall how to obtain the direction of the resultant vector of the cross
product. In the particular case of the magnetic force,

the index finger must point towards the direction of the velocity of the charged particle,
curl your fingers to the direction of the magnetic field, and the thumb finger points towards
the direction of the magnetic force as shown in figure [7.1Tal You must be careful of the
sign of the charge! If the electric charge ¢ is negative, it flips the direction of the force to
the opposite direction. So, if you find for example the direction of the force towards +y
using the right hand rule, if the electric charge is negative so actually the force is pointing
to —y. So, in general using the right hand rule gives the result taking ¢ as positive. If
you have negative charges, use the right hand rule, and finally just flip the direction of
the force vector to the opposite direction. The right hand rule is very useful, once you
know the direction, you just need to calculate the magnitude of the force, by using the
general rule

|F| = |# x B| = |0||B|sin 0,5 (7.5)

where the angle 6,5 is the angle between vectors v and B. As you will notice as we do
exercises, sometimes the right hand rule is not enough to solve the cross product. The
right hand rule helps to obtain the direction of the force direction, but if the direction is
not exactly at one direction of an axis , it is just a qualitative direction, because you do
not know exactly the components of the vector. However, this information is useful many
times to tackle problems when there is symmetry in the system. When, not the symmetry;,
nor the qualitative information that the right hand rule can provide you is enough to tackle
the problem, you must calculate directly the cross product. So, suppose the velocity vector
in general as U = (vy, vy, V), and the magnetic field as B = (B, By, B,), so the cross
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product for the magnetic force is

Ty z
Fp=quxB=| v, v, v, |=¢q[(vy-B,—v; By)T—(vy-B,—v,B;)y+ vy By—v,B;)Z|

I3

B, B, B
(7.6)
where in the second equality we have the determinant of the shown matrix. The first row
of the matrix has the unitary Cartesian vectors. The second row of the matrix has the
components of the first vector in our cross product which is the velocity vector, while the
third row has the components of the second vector in the cross product, in this case the
magnetic field. This is the general form of the cross product of two vectors, many times is
not necessary to calculate the cross product from this definition, however in many other
occasions as it will turn it out, the last equation is highly useful. For example, when we
want to know the dynamics of a charged particle with different magnetic field configu-
rations, as you will learn in example 2, we need to calculate the cross product from the
general definition.

Finally, something highly remarkable about the magnetic force is that it does no work!
From the definition of the magnetic force, it is perpendicular to the velocity vector of the
charged particle to which the force is exerted. In the cross product o x B the resultant
vector is perpendicular to ¥ and B. So, if we calculate the work done by the magnetic
force, we have that

W:/ﬁB-df:o (7.7)

where the vector dl is parallel to the velocity vector. The vector dl is a vector tangent
to the path of the particle. So, Fy and dl are always perpendicular to each other, so
their dot product is zero! But this becomes even more interesting, if the work done by a
magnetic force is zero, then we have that

W=AU=0 (7.8)
so the change of potential energy is zero! And by conservation of energy we have
AU = -AK — Vp = V; (79)

i.e. the change of kinetic energy is zero! If there is no change of kinetic energy, then
the initial speed and final speed of the particle are exactly the same! The magnetic force
exerted on a charged particle can not increase its speed! Just deviate it from its original
path.

Example 1: Simplest Case Magnetic Field Force Exercise

m

An electron moves foward (as shown in the figure with a speed 5.8 x 107; in the z
axis. There are certain coils that create a magnetic field of 0.08T magnitude , with an
angle of 75° with the x axis as shown in the figure
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e (Calculate the magnetic force exerted on the electron

e If the angle of the magnetic field could be changed. What would be the maximum
and minimum magnitude of force exerted on the electron feels?

e What is different if instead of an electron is a proton?

Z

i

T/ Y
B

F
T v B

Figure 7.2

Solution:

In this exercise, we consider that there is no electric field, only magnetic field produced
by an electric current, which we simplify as constant. So, the Lorentz Force simplifies to
the magnetic force exerted by the magnetic field.

Fg=qix B (7.10)

Now, the direction of the force can be determined by the right hand rule. If you place your
index finger to the direction of velocity, the middle finger to the magnetic field direction,
the thumb finger points to the force direction. The force direction points to +2. However,
that direction is if the charge is positive, if the charge is negative, the direction is flipped
to the opposite direction. So, the force direction is to —2. Once we know the direction of
the force, we want to know the magnitude. So,

|| = |q||7]| B] sin b, = (1.6 x 107°C)(5.8 x 107m/s)(0.085) sin(75°) (7.11)

Where the label “vB” is just to let you know that it is the angle between vector V and
B. This should be obvious from the definition of the magnitude of cross product. We
conserve it just to remember you. Finally, from equation [7.5 we know that minimum force
is when the angle is zero,when ¢ and B are parallel or anti parallel. So,

|Foin] =0 when 6,5 = 0°,180° (7.12)
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So, as obviously expected the minimum is when no force exerted. The maximum magni-
tude of the force is when the magnetic field and the velocity are perpendicular (sin 90° = 1
or sin270° = —1, we are concerned only by magnitude). So,

| Frnax| = (1.6 x 10719C)(5.8 x 107m/s)(0.085T) = 7.424 x 10~'*N

Example 2: Helix Path

A positive charge ¢ travels with a constant velocity ¥. Suddenly, there is a magnetic field
perpendicular to .

e Determine the path of the particle if moves in two dimensions.

e Determine how would the trajectory be in 3 dimensions if a constant and uniform
magnetic field is created to 4z direction , suppose the initial velocity in z component
is zero.

Solution:

Let’s suppose the positively charged particle is at point A at time ¢ = 0, as shown in the
figure |7.3] with certain velocity . The electric charge is immersed in a constant magnetic
field towards the page. At time ¢ = 0, the exerted magnetic force on the electric charge is
perpendicular to the velocity vector, pointing upwards, as you can easily determine with
the right hand rule. After certain time t', the particle has deviated its path as shown in
figure due to the magnetic force and reaches point B. At this new point, the force
direction is not any more perfectly directed upwards. If we placed a reference frame at
the electric charge in point B, the force would have now x and y components, and its
direction would be determined by the right hand rule. The force direction at point B is
as it is shown in figure [7.3] So, after another time ¢”, the particle has deviated again its
path and now the force direction is as in point C' shown in figure [7.3] If we repeat this
process, after a time 7', the path has completed a circular path. The magnetic field force
acts as a centripetal force! So, we obtain a circular path. We could ask ourselves “What
is the radius of the circular path?” The centripetal force is the magnetic force, so

2
|Fy| = m|d,| = m— (7.13)
T

where we used the formula of centripetal force and centripetal acceleration. Substituting
the magnetic force magnitude

U2

quBsinf,p = m— (7.14)
r

However, v and B are perpendicular, so sinfy g = 1. Now, isolating the radius, we obtain

mu P
=—=— 7.15
"=.B 4B (7.15)
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where p stands for momentum. Now, the angular velocity

w="="yp=1 (7.16)
T muv m

Something interesting! The angular velocity is independent of the velocity of the particle,
it depends completely on the strength of the magnetic field, the electric charge and mass.

Finally, we could ask ourselves about the time it takes the electric charge to complete
one circular path (the period T'). So, we can calculate it easily by

2rr 2rr 27
T = — = — = —M
v wr qB

(7.17)

where you can think of it as the distance travelled by the charge (the perimeter of the
circle) divided by its velocity, and we used equation for w.

X X X X X X X X

X X %X XXX
= +\1~;B NG
X B,_I_Cx
\ “B 4/:
% +/’ . Il x
(P A
—> \\ B/_, +B
)(v)( \+ FBTA X X
SNy e
v U

Figure 7.3

Now, let’s pump things up! and study an interesting case. We let the particle to move
in three dimensions. How does it behave? So, take a constant and uniform magnetic field
pointing to +x. So, the magnetic force reads as,

T oy z
Fp=qixB=q| v, v, v, (7.18)
B, 0 0

Therefore, we have that

ﬁB = q[(vy-0—v,-0)2— (vy-0— v, B,)y+ (vy-0—v, B,) 2] = 024 qu, B,y —q(vy-0—v,B,v,)2
(7.19)
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Or, writing it directly as components
(mag, may,, ma,) = (0,qV.B;, —qV,B;) (7.20)

where we just used F= md, and wrote the acceleration vector three components a,, a,, a..
Comparing the correspondent components we have the following three equations:

ma, = 0, ma, = qu, By, ma, = —qu, By (7.21)
and, recalling that
dUI de dvz
o= My = 7.22
7 W T (7.22)

we have the following three differential equations,

dv,
dt
dv,
dt
dv,

dt

=0

= wv, (7.23)

- —u}Uy

where we called w = % (the name w is not a coincidence, see that we obtained exactly
the same term for the angular velocity in two dimensions). Now, the first equation tells
us that the velocity does not change, it remains constant for all time. So,

d x t
& Vog = / der = Uom/ dt (7.24)
dt 20 0

where v, is the initial velocity in the z component, and the limits of integration follow,
because at certain time t, the electric charge has certain position z, and at time ¢ = 0,
the charge would have certain initial position. Therefore,

‘x =1z + vowt‘ (7.25)

Now, lets analyze what happens with the y and z components. Notice that the term
(ddity), in the second differential equation of , depends on v, and the term (%)
in the third differential equation of depends on v,. When it happens that in a
system of differential equations, one differential equation has explicitly a derivative that
depends on a second variable, and that second variable derivative in other differential
equation depends explicitly on the first variable, we call the system as “a coupled system
of differential equations”. As it turns out, we can apply a very simple trick to solve the
system. Notice that if you derive one equation with respect time, on the right hand side

you will obtain a term that is exactly the second equation, i.e.

d (dv, d d*v, dv,
da L 7.26
ﬁ(ﬁ) i) = e Ty (7.26)
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where we derived with respect time both sides of the second differential equation of [7.23]
So now you can substitute the third differential equation of into the term % in last
equation, i.e.
d*v,
dt?
You have seen last equation before, this must be familiar from Waves and Oscillations
courses. The equation represents an oscillation which solution is:

v, = Acos(wt + ¢) (7.28)

= w(—wy,) = —wy, (7.27)

where A is just an amplitude which can be obtained by the initial conditions, and ¢ is a
phase constant. So, now we can know the behavior of the path of the particle in the y
component

dy

pri Acos(wt + ¢) = /yo dy = /o A cos(wt + ¢)dt (7.29)

where the integration limits follow because at time ¢t = 0, the particle has certain initial
Yo position and at time ¢ it is at certain position y. Therefore after integration,

Y=Y+ é (sin(wt 4+ ¢) — sin @) (7.30)

Finally, once we know v, we can solve the differential equation for v,, by using the third
differential equation of and using the result in equation [7.28] we have that

dv,
dt

= —wv, = —w(Acos(wt + ¢)) = /vz dv, = —wA /t cos(wt + ¢)dt (7.31)
0 0

where we used the assumption mentioned by the exercise, the initial velocity in the z
component is zero. Therefore, after integration

v, = —A (sin(wt + ¢) — sin @) (7.32)
Hence,
d z t
%~ Afsin(wt + ¢) —sing) > / dz= A /O (sin(wt+ 6) —sing)dt  (7.33)

Therefore, after integration

2=z + é (cos(wt + ¢) — cos ) — Asin (o) ¢ (7.34)

So, we have found finally how each component of the path of the particle behaves with
respect time. Writing together the set of equations,

T = Tg + Vot
A .
y=yo+ — (sin(wt + ¢) —sing) (7.35)

z=2zy+ é (cos(wt 4+ ¢) — cos @) — Asin (o)t
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So, the last equations are a general set. Let’s assume that the particle initial position
is xg = yo = 2o = 0 and that ¢ = 0. So , when t = 0 from equation [7.28, we have that

Uy(0) = vpy = Acos(0) = A = v,, (7.36)

Therefore A is just the initial velocity of the charge in the y component. Hence, finally
the equations that determine the motion of the charge are

T = Uyt
y = Yoy sin(wt)
- (7.37)
Doy
= Yy £ —1
2= (cos(wt) — 1)

The set of equations we obtained describe an helix motion as shown in figure [7.4]
Beautiful! Don’t you think?

Figure 7.4

Example 3: Cyclotron

The cyclotron is an apparatus that uses electric fields to accelerate charges, and magnetic
fields to deviate the path of such particles, so that the cyclotron is able to accelerate
those particles in a relatively small space. Nowadays, the accelerators of particles are
huge! However, as we will see a cyclotron of radius of 15cm can accelerate a proton to
speeds of order 107%! A cyclotron is shown in figure . The cyclotron is composed
of two conductors with letter D shape as shown in the figure, sometimes called as Dees.
When these two conductors are connected to an alternating voltage supply, an electric
field is generated between these two Dees. Given that at certain time ¢ one dee conductor
will be positively charged while the other dee will be negatively charged, the electric field
lines will start from the positively charged dee and end with the negatively charged dee.
The conductor dees are hollow, so inside them there is free space so that particles can
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travel in there. Finally, extremely important, there must be a perpendicular magnetic
field to the electric field generated by the charged dees. Such magnetic field is generated
by the magnetic coils indicated in figure

M MENT 1
BOMBARDMENT CHAMBER I G MAGNET SECTION OF DEES
e’ OF ION, STARTING coiL
(== DFDINARY paty D‘.".""-“»“” AT K
______ |
——’ b ~
E= T : H AEsT + — L = === ]
7 T ecamve TIGHT
\ CHARGE |
THIN ALUMINUM = .
FOIL WINDOW DEFLECTION i i s
F A T LA =
“PASBSE IDTTIDSAI?!, (ATTRACTS BEAM } " z MAGNETIC EATIIOF
WITP‘:?LUI SH “TARGET® TO BE FIELD 10N ORBIT
BOMBAROED
PLACED HERE

WINDOW \.,

BOMBARDM EN'E

. /
¢ % M
= = J E |
ki L
1 S ; 0 METAL i -
pul HALVES (DEES) | ‘&
Y] INSULATED FROM |, .
PATH OF 10N 1 EACH OTHER .
WINDOW

TOP VIEW OF DEES MAGNET COIL

Figure 7.5: Cyclotron diagram. Two conductors in shapes of the letter D are connected
to an alternating voltage supply. The dees get the same voltage as the voltage supply, so
there is a potential difference between the conductors, and an electric field. The voltage
polarity and the direction of the electric field changes with the same frequency as the
voltage supply. The dashed arrows represent the path of the charged particles. The
magnet coils shown generate a perpendicular magnetic field to the path of the particles
and to the electric field generated by the dees. Original picture taken from [13].

Now, how does this work? Suppose a positively charged particle is placed between the
two dees; and there is a uniform magnetic field pointing out the page as shown in figure
[7.6] Suddenly, the voltage supply is turned on and an electric field is created and the
charged particle moves as shown in figure[7.6al The force that accelerated the charge is the
electric force, the magnetic force just deviates the charge. Remember that magnetic forces
do no work, therefore can not change the magnitude of the speed of the charge. After the
charge acquires certain velocity, by using the right hand rule, we notice that the magnetic
force exerted on the particle will act as a centripetal force, so that the charge moves in
circular motion as we have discussed previously. In figure the charge travelled from A
to B. Now, when the particle reaches point B when it has traveled half circle, we do not
want it to go backwards and loop. We want to accelerate it even more. So, in that precise
moment, when the charge is at point B, we need to switch the polarity of the voltage,
so an electric field to the opposite direction is created. If we change the polarity at that
precise moment, then the particle will travel from point B to point C' as shown in figure
[7.6b] Notice that when the charge travelled from B to C' the radius of the path of the
charge has increased. The reason is simple, the charge velocity has increased. Now, when
the charge reaches point C, we want to accelerate once again the charge, so we change the
polarity of the electric field by switching the voltage. So, now the charge travels from C'
to D. Once again, the radius of the path of the charge has increased and when the charge
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reaches point D we will switch once again the direction of the electric field so that we
continue accelerating it, and afterwards we continue accelerating the charge by switching
the voltage polarity again and again, so on and so forth until the charge has reached the
radius of the cyclotron as shown in figure [7.6dl At this stage, we let the charge escape
with a tremendous speed as we will see in a simple calculation. However, before that we
have a big problem. We want to switch the direction of the electric field every time the
charge has reached half of the path of a circle. So, when should we change the polarity
of the voltage?

- . N
E . '/ . \B .
N

Ay oeYieieieTy
C

Figure 7.6

We know that the period of a traveling charged particle in circular motion due to a
constant perpendicular magnetic field is

T=—m (7.38)

so, notice something beautifull Not intuitive at alll The time it takes to the particle to
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complete one cycle (the period) is independent of the velocity! So, we do not have to
worry if the particle that got into the cyclotron has certain initial speed vy or not! Also,
if the particle has already cycled n loops, the period is exactly the same as for the first
time that the particle will complete a loop! This experimentally is a big relief. If it were
dependent of the velocity, it would be extremely difficult to make the voltage to have the
correct polarity to make particles accelerate. Nicely, the period that takes a particle to
complete a circular path depends only on the charge, the magnetic field and mass! Now,
the time it will take the particle to complete half the way of the circle is just half of the

period. So, every
T

=—m

qB
seconds we have to switch the voltage polarity, so that the electron continues accelerating!
So, our voltage supply has to change polarity with a frequency:

1 qB
r_ - 47
f_T’ ™nm

T (7.39)

(7.40)

The last equation represents the frecuency that the polarity has to change. However is
more common to keep the frequency which the voltage changes polarity two times, i.e.
when it goes to one direction, changes direction, and once again has reverted direction.
Think about oscillations for instance, the frequency actually takes into account both when
goes and come back to the same configuration. So, we say that the frequency of the voltage

supply is:

1 qB
= == A1
/ 27" 2mm (741)
and the angular frequency is:
qB qB
ccoron:2 = — 7.42
Weyclot " <27Tm> m (7.42)

Notice that it is just the angular velocity of the electric charge! Marvelous! We can
adjust our voltage supply of alternate current, by just measuring the magnetic field! (the
mass and charge of the particle are already fixed). We can know for sure, what is the
needed angular frequency of our voltage supply, by knowing the magnetic field and the
kind of particles we want to accelerate. And even better, we can modify such angular
frequency, by just changing the magnetic field! Weaker the magnetic field, lower the
angular frequency, greater the magnetic field, bigger the angular frequency of our voltage
supply to be switching the voltage polarity. Even though it is a difficult task to build
the machine, it is not impossible as one would think because the frequency which you
must alternate polarities is independent of the velocity and also the radius of the path
of the charge! If it were dependent of the radius it will be extremely difficult to know
were exactly is placed the particle and change the polarity depending of the radius that
its path is making in that exact moment. Now, what will it be the velocity of the particle
once it goes out of the cyclotron? From equation [7.15] we have that

__qBR
om

v (7.43)
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where R is the radius of the cyclotron.

So, to get a grasp of how fast the particles could get; suppose that the positively
charged particle is a proton, that the radius of the cyclotron is just 15cm and the magnetic
field magnitude is 1.0T. So, the speed with which the proton goes out from the cyclotron
is

(1.6 x 1071°C)(1.0T)(0.15m) :
v 167 % 10 7hg 1.43 x 10°'m/s (7.44)

My god! Huge speed has acquired the proton in a relatively small cyclotron. What about
its energy?

1 1
K = §m02 = 5(1.67 x 107*"kg)(1.43 x 10"m/s)* ~ 1.7 x 1071%J (7.45)

For particle physics, a common unit of energy that is widely used is the so called eV
(electronvolt). An electronvolt is defined as

leV =16 x107"J (7.46)

which notice the factor 1.6 x 1071? is exactly the magnitude of the charge of an electron.
So, the energy of the accelerated proton is:

leV

17x1078) (— =
8 (1.6 X 10197

) ~ 1.06 MeV (7.47)

where the “M” stands for mega (1 x 10%). Today’s biggest accelerator in the world,
the LHC (Large Hadron Collider) accelerates particles almost to the speed of light!
(99.99....%) And the energy for instance that the Large Hadron Collider (LHC) achieves
are approximately 13 T'eV (T = 1 x 10'?). Making a fraction to achieve an idea, with our
15 em cyclotron compared to LHC :

1.06 x 106V

SR 815 x 1078 4
13 x 102ey oo (7:48)

So,the energy achieved at LHC is huge compared to our accelerated proton with the 15 ecm
radius cyclotron! The LHC has a circumference of 27 km! Now, you probably think,

1.6 x 1079 J
leV

2K [2(2.08 x 10-6 J) o
v - \/ 167 < 107 kg 5x 10" m/s (7.50)

But, wait a minute! that is greater than the speed of light! And Einstein’s theory of spe-
cial relativity establishes that nothing travels faster than the speed of light ¢ ~ 3x10® m/s
(speed of light in vacuum) ! What is going on?! Indeed, nothing travels faster than light,

13TeV = 13 x 10'%eV ( ) =2.08x107%J (7.49)

Therefore,
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but when an object approaches the speed of light, certain non intuitive things happen.
The time is not constant anymore! The time depends on the inertial time of reference.
So, things get complicated, and the energy achieved is not only due to increasing the
speed of the particle (kinetic energy), as the particles get closer and closer to the speed
of light the particles get more massive! As turns out, the mass actually is not constant!
All this is beyond the scope of this course and all these effects are included in the special
relativity theory of Einstein (we call them as “relativistic effects”). These effects take
place at LHC, so it is a complex machinery! Beautiful!

Now returning to our cyclotron of 15 em of radius. How much speed does the proton
acquires in each loop? So, in each loop, you increase the kinetic energy two times, each
time you change the direction of the electric field.

So, using conservation of energy

1 1
AU+ AK =0= AK = -AU = 5va% =—AU + §mvi2 (7.51)

[ —2AU
m

Leaving the potential energy difference in terms of potential difference

Vp =1/ ~2AV + v? (7.53)
m

where notice that the first term inside of the square root will be positive! Recall that the
electric potential decreases (voltage is negative) towards the direction of positive charges
move. Also, we could express last equation in terms of electric field. So, if the electric
field is constant

Hence,

2|E\d
Vp = alE] + v? (7.54)
m
where we used
AV = —/E -dl = —|E|d (7.55)

and considered the electric field as constant. If we have a voltage supply which switches
its polarization, with constant voltage each time, we can use equation Suppose that
the alternating voltage supply magnitude is 1000V. So, the first time we accelerate the
proton, starting from rest, the new velocity is

2(1.6 x 10-19C)(1000V) 5
= ~ 4. 1 .
’ \/ 1.67 x 10727 kg A 2

when the proton goes around, it is once again accelerated. This time when the proton
has completed a travel of 360°, the speed of the proton is

o 2(1.6 x 10-19C)(1000V)
N 1.67 x 10-27 kg

+ (4.37 x 105 m/s)? ~ 6.18 x 10° m/s (7.57)
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The radius of the circular path of the proton is now

~mw (167 x 107 kg)(6.18 x 10° m/s)
"B~ (1.6 x 10-19C)(1.07) ~ 0.5mm (7.58)

In such a tiny radius the proton has acquired a huge speed! And so on, and so forth we
could calculate what is the described radius of the path of the proton when it has certain
velocity.

Example 4: Cathode Rays and Discovering the Electron

In 1897 | Professor Joseph John Thomson discovered the electron with the apparatus
shown in figure [7.8al Before his postulate of the consistency of what he observed; great
scientific discussion took place about what was observed in the so called cathode rays.
Years before other scientists noticed that if in certain glass tube air was pumped out,
leaving just a small fraction of it, i.e. securing that the pressure was low inside the tube,
if a high voltage was applied a beautiful glow was noticed inside the tube. The physicist
Eugen Goldstein came with the name of cathode rays back in 1876. The name was because
the rays (the light seen in such experiments) were emitted from the cathode of the vacuum
tube. Now, we now that such rays are beams of electrons.

When the high voltage is applied, the remaining
air becomes a conductor, so a discharge takes place.
When the air becomes conductive, the electrons of
some of the atoms are ripped off them and free to
move. So, these molecules of air becomes positively
ionized, due to loss of electrons. When this hap-
pens, the negative electrode (the cathode) acceler-
ates such ions towards them and collides abruptly
against the cathode. So, electrons from the cathode
are knocked off and accelerated towards the posi-
tive electrode (anode). In their way towards the
anode, there are more still neutral air molecules,
so many electrons collide against them, knocking
off electrons of such molecules, and exciting them.
When an atom is excited (not in the ground state),
the atoms tend to be once again in the ground state
by releasing the excessive energy. When an atom
returns to its ground state after being excited, pho-
tons (light) with certain frequency are released. So
that is what we see as the beautiful glowing inside
the tube. This beautiful dancing between ions, still
neutral atoms, those going to ground state is what
is observed. However, this is not intuitive at all.
So, at that time, it was thought that cathode rays was light. Heinrich Hertz, a brilliant
physicist known for his work demonstrating the existence of electromagnetic waves, tried

Figure 7.7: Professor J.J. Thomson.
Original picture taken from refer-
ence [14].

CHAPTER 7. MAGNETIC FIELD FORCE 179



Electromagnetism Rafael Espinosa Castaneda

to observe if the cathode rays was light or something which had electric charge. However,
he wrongly concluded that it had to be light, because he used electric fields and such
rays didn’t seem to be influenced by them. But why did Hertz experiments fail? Because
the tube was not enough empty of air molecules. Lower pressures were needed, achieve
mostly a vacuum inside the tube. When there is air inside, and it becomes ionized, the
molecules generate an electric field, so this electric field attraction to the molecules does
not allow the electrons to be deviated easily. So, when Hertz did his experiment, he did
not see the rays to deviate because the effects due to electric fields were mostly neutral-
ized. Thomson, himself stated this point years later in 1936.

“The absence of deflection on this view is due to the presence of gas—to the pressure
being too high—thus the thing to do was to get a much higher vacuum. This was more
easily said than done. The technique of producing high vacua in those days was in an
elementary stage. The necessity of getting rid of gas condensed on the walls of the dis-
charge tube, and on the metal of the electrodes by prolonged baking, was not realized. As
this gas was liberated when the discharge passed through the tube, the vacuum deteriorated
rapidly during the discharge, and the pumps then available were not fast enough to keep
pace with this liberation. However, after running the discharge through the tube day after
day without introducing fresh gas, the gas on the walls and electrodes got driven off and
it was possible to get a much better vacuum. The deflection of the cathode rays by elec-
tric forces became quite marked, and its direction indicated that the particles forming the
cathode rays were negatively electrified.”

— J. J. Thomson

Electrons travel from the cathode to the screen.
Electron beam

Screen

Cathode Anodes\ ) >

d W\ YOF 4
Between plates P and P’ there oo 4/

are mutually perpendicular,
uniform E and B fields.
(a) Original figure taken from ref- :
erence [15]. (b) Original figure taken from reference [7].
Figure 7.8

So, when Thomson did his experiment. he used a high vacuum, in such vacuum then
you do not see any glowing inside the tube! Because the glowing is due to the ionized
molecules of air. However, at the opposite side of the cathode in the glass itself there could
be seen a glowing point. The electrons now free to move all along the tube, when colliding
against the glass, light was emitted. However, this effect can be even more noticed if a
fluorescent screen is at the glass when the electron collides. A green dot will be seen in
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there. Now, if we apply a magnetic field, this glowing dot moves to other position! And
if we apply an electric field it also deviates. And even more surprisingly, it deviates as
a negative electric charge! Thomson, carefully once he has noticed this, considering as
what he was observing as a charged particle, he was able to determine the fraction of its
charge and mass

C
4~ 1758820174 (71) x 0" (7.59)
m

g
which is the most accurate fraction nowadays of the charge and mass of the electron.
Thomson changed the material of the conductors of the cathode and anode and every
time he obtained the exact same results! So, whatever the cathode rays were made of,
Thomson could observe the following

e They were independent of the material of the cathode and anode.

e They were particles with electric charge and mass, and their fraction no matter
what material we used, always the same fraction of ¢/m is obtained.

e We said that we tried to make vacuum, but even though Thomson vacuum was
high much better than other experiments before, the vacuum was not perfect. If we
started with different gases inside the tube and then pumped it out, the cathode
rays were independent of the remaining gas. In other words, does not matter what
gas was used, always the same results were obtained.

From the last observations, then Thomson concluded, whatever these cathode rays are,
they are eclectically charged particles, no doubt about that. Using electric and magnetic
fields they deviate and behave as negative electrically charged particles. Secondly, given
that these particles are there in the cathode rays giving always the same ratio ¢/m, no
matter what conductors we use as electrodes, no matter what is the gas used, then this
particle must be present in all atoms that constitute matter! And we can go even beyond.
If matter is neutral when there is no high voltage applied, and if these negative particles
are present in them, then the atoms must be constituted of something else with exactly
the opposite electric charge so that they balance out. In other words, there must be what
we know now of course as protons! Mind-blowing! In 1906 Thomson won the Physics
Nobel Prize.

Fifteen years later, the physicist Robert Millikan with his graduate student Harvey
Fletcher were able to measure the charge of the electron. They used an experiment ioniz-
ing drops of oil. Such drops of oil always had an integer multiple of a very specific charge.
The charge of the electron! In 1923 , Robert Millikan won the Nobel Prize for such work,
Harvey Fletcher did not. While Fletcher was a graduate student, to gave all credit to
Millikan even though he did not like the idea, and the paper of the charge of the electron
mentioned only Millikan, not Fletcher. The secret was kept until their death.

Now, suppose you have designed an apparatus as the one used by Thomson in the
figure. If what is found is an electrically charged particle, then we must coincide experi-
mentally with what is predicted by the Lorentz force. When the coils generate a magnetic
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field of 5 x 1073T and an electric field of 2 x 105% the trajectory of the cathode rays is a
straight line. When you maintain the electric field source turned off, the curvature radius
of the cathode rays is 4.55cm.

e Find the fraction %

e Use the results of Robert Millikan and his graduate student. In their experiment,
they found using oil ionized droplets that their charge was always multiples of the
electric charge 1.6 x 1071C. Does the mass of the cathode rays you find is the same
as the mass of the electron 7

Solution:

We do a smart move. In the apparatus shown in the figure if the magnetic field is
turned off, there is an electric field between the plates. This electric field will exert a force
on the electric charges Fyp = qE. So if the charges are negative, the force is in opposite
direction to the electric field! So, the electrons will follow a curved path as shown in figure

[7.9al The electric force will act as a centripetal force, therefore taking the magnitude of

such force )

v —
™ = |ql| B (7.60)
Hence, the charge-mass ratio of the moving particles is

qg v

m B (7.61)
Bin
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(b) Side view between the electrically
(a) Side view of the electrically charged plates P charged plates P and P’ in figure[7.8b|when
and P’ in figure when there is no magnetic there is magnetic field. Electric force and
field. Electric force drawn and the path of the magnetic force drawn and the path of the
electron electron.

Figure 7.9
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However, what is the velocity of such particles? The particles are so tiny that we do
not see them. And even worse, they go so fast, that even if we could see them, probably
we would not be able to measure their velocity! However, here comes the smart move.
Remember that magnetic fields do no work! So, if we turn on the magnetic field shown
in the figure the velocity of the outgoing electrons will be the same! The magnetic field
will not accelerate them, just deviate them! Hence, if the magnitude of the magnetic and
electric force exerted on the electrons are equal, then the electrons follow a straight line
because the forces cancel out! (we can see this in figure [7.9b). In such scenario, then

|Fy| = |Fg| = q|E| = q|B||7] sin 0y (7.62)

where sin 6g,, = 1 because the velocity vector and the magnetic field are perpendicular .
So, we have that

=

17 = ; (7.63)

Marvelous | Now, we know the speed of the electrons! So think about it experimentally,
you create the electric field between the plates, then you make a current go in the solenoids.
You calibrate both of them until you see a point in straight line from where the electrons
are going out. Measure the magnitude of the electric field, the magnitude of the magnetic

field and use equation [7.6]]
( YA
|E|/|B|) 7
E
_ _IEl (7.64)

Elr  |BPr

e/t

g _
m

The radius of the path that the electron describes can also be measured! So you have
everything to determine the ratio of charge-mass of one of the fundamental particles of
the Universe! If we plug in the values given by the exercise

2 x 10°Y C
a4 _ —m ~1.75 x 10711 = (7.65)
m (5 x 10-3T)% (4.55 x 10-2m) kg

where we obtained the famous result of the fraction of the charge of the electron and
its mass. Now, the exercise gives us what Robert Millikan (and his student) found in the
oil droplets experiment. The oil droplets always got a charge multiple of a very specific
number.

q=-nl.6x10"C (7.66)

so n of such elementary particles must have stocked to the droplets of oil. So, taking this
experimental result, and arguing that what smashes against the florescent screen in the
cathode rays are n of these elementary particles (we can not know if one particle collides
against the screen or two, we can say that n of them have smashed when we see the light
in the fluorescent screen); then, what smashes against the screen has a mass m = nm,

CHAPTER 7. MAGNETIC FIELD FORCE 183



Electromagnetism Rafael Espinosa Castaneda

and a magnitude of charge ¢ = n1.6 x 10719C
So, plugging in the values given:

175 x 1071 L
Me = 577 10-9Tkg ~ 9.1 x 1077'kg (7.67)

where the label of the electron has been written. The mass of the electron! Congratula-
tions, you have just calculated the mass of a fundamental particle in Nature!

Example 5: Mass Spectrometer

1 |

N I
Velocity selector \
Figure 7.10

A mass spectrometer is a powerful apparatus to determine the chemical composition of any
material. It works with magnetic and electric fields to separate the molecules depending
their charge-mass ratio ¢/m. So ,if we are capable of ionizing the gas we want to analyze,
and all the molecules obtain the same electric charge, we can separate them then by their
mass. There are many different designs for a mass spectrometer, but the physical basis
is the same. One simple configuration is shown in figure [7.10, The molecules go into a
section of the spectrometer with certain velocity v where there are a magnetic and an
electric field perpendicular one to each other (in the figure case the magnetic field goes
into the page while the electric field to the right). This section of the mass spectrometer
is called as speed selector. Actually, notice that the configuration of the fields in this part
of the spectrometer of masses is exactly the same as the section between the plates P and
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P’ in figures and studied in the last exercise. So, the name follows because only
the molecules with certain speeds will go in a straight line. If the speed is lower or greater
than the speed where the magnetic and electric force balances out, the molecules will
simply deviate and collide with the plates. Now, after the speed selector, the molecules
with the appropriate speed go through a section where there is a magnetic field (see figure
7.10| ). Here, depending of their mass and electric charge the molecules will be deviated.
However, assuming all the molecules have the same electric charge, then they deviate
more or less depending on their mass. How exactly does this work? Notice that at this
stage, is exactly the same what happened when when we analyzed the helix path in two
dimensions, i.e. the molecules are under the influence of the magnetic force, which acts

as a centripetal force so
2

- —_— v
|Fs| = lal|Bl[v] = m~—— (7.68)
So, the radius that each molecule describes is
L] Gl 1 (7.69)
lqllBl gl B

which is dependent only of the electric of the mass (or momentum) if all the molecules
have the same velocity and electric charge. If it is the case, the heavier the particle greater
the radius and we can separate the elements in a gas for instance. This is extremely pow-
erful! It has so many applications the mass spectrometer, ranging from anthropological
applications and medical to warlike applications.

One particular application of the mass
spectrometer is for separating isotopes
from a material, as scientists did during
the Second World War II. Professor Ernest
Lawrence, from University of California in
Berkeley, built a huge mass spectrometer
to separate isotopes of Uranium, specifi-
cally 23°U and #*8U. Isotopes are variants
of a particular chemical element which dif-
fer in neutron number, and consequently in
nucleus number. All isotopes of a given ele-
ment have the same number of protons but
different number of neutrons on each atom.
For example, neutrally charged Uranium
has 92 electrons, therefore also 92 protons.
However, 23U has 143 neutrons, while 238U
has 146 neutrons. As it turns out, the ura-
nium obtained from mines is mostly com-
posed of 28U (approximately 99.28%) and
only about the 0.7% of 23°U. Both are ra-
dioactive, however ?*>U needs much lower

Figure 7.11: Professor Ernest Lawrence with
a cyclotron. He was the inventor of the cy-
clotron and the so called calutron. He used
calutrons to separate Uranium isotopes to
build the first atomic bombs. Original pic-
ture taken from reference [16].
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energy to establish a nuclear chain reaction, i.e. if we fire a neutron to the nucleus of the
atom 2¥°U it becomes ?*U which is highly unstable and it breaks into atoms with lower
number of protons. Specifically, it could break into 53 Kr and i4*Ba (this is not the only
possibility, but one of the most common in these nuclear reactlons). However, notice that
we are missing neutrons. The 5 Kr has 53 neutrons while :3*Ba has 88 neutrons, and
260 has 144 neutrons. The remaining three neutrons are now free, and all with enough
energy to collide with another 25U nucleus and cause more atoms to break. That’s why
we say it is a chain reaction. The break of one 23°U atom, due to the free neutrons breaks
another three, these three break another nine! those nine break 27! those 27 another 81
and so on! This is shown schematically in figure

235
142
nl—3p 30! +kr +'2Ba +ENERGY 925,{

23

91Kr ..i«.:
Neutron
eee.
eee i
G e e
235
142
235
92
Figure 7.12

Professor Lawrence mass spectrometer, used a cyclotron to accelerate the isotopes to
great speeds. Then, he used a speed selector and separated the isotopes due to their
mass difference. The obtained isotopes of 23U were used to build the first atomic bombs
that were detonated in Hiroshima and Nagasaki in 1945. The combination of the mass
spectrometer and the cyclotron was named as Calutron. The name is due to California
University Cyclotron , honoring the University of California Berkeley.

So, lets make some simple calculations to get a better grasp of how to separate 233U
and 25U by using a mass spectrometer. First, let’s calculate the mass of one single 23°U
atom and also one single atom mass of 2*U. So, we have have

massy = (235.04)(1.66 x 107*"kg) ~ 3.9 x 10" *kg (7.70)

massy = (238.051)(1.66 x 107*"kg) = 3.95 x 10~ *kg (7.71)

where we used the respective atomic masses of 233U 23U and the conversion factor 1.66 x
10~%"kg to obtain their masses in kilograms. So, taking a magnetic field of B = 1.07" and
suppose we ionize the uranium isotope with the electric charge of the proton, i.e. we pull
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out one electron of the isotope uranium atoms. So that their electric charge is the electric
charge of the proton ¢ = 1.6 x 107'°C'. Therefore, using equation [7.69| the radius that
the path of the 23°U makes is

(3.9 x 107%°kg)(2 x 10°m/s)
(1.6 x 10-19C)(1.07)

T35y = ~4.8Tm (772)

while for 238U
(3.95 x 107 %kg)(2 x 10%m/s)

(1.6 x 10-19C)(1.07)

Notice that the distance from the slit where the atoms go out to the place where they
collide is 2r. So,

238y = ~ 4.93m (773)

2rassy — 21235y & 9.86m — 9.74m ~ 0.12m (7.74)

So about just 12cm of separation! of course this is a big mass spectrometer! But it is
feasible to separate the uranium isotopes. To have smaller radius we can increase the
magnetic field.

7.2 Exerted forces on electric currents

Imagine a steady current in certain wire where there is a magnetic field with arbitrary
direction as shown in figure [7.13] So, this current is made of bunch of electric charges
moving with certain velocity ¢ and all and each of them are influenced under a magnetic
field force. So, if we define as the charge density of the electric charges that move as A,
we can write the electric current as

[ =\ (7.75)

where 7 = di, /dt. In other words, what we say is that the charges that move in an
infinitesimal part of the wire in certain infinitesimal time, constitute the electric current.
Notice something we have not payed much attention before. As we mentioned in chapter
5, the electric current is a vector. We have mostly worked with the magnitude of it and
in cases on defining a direction, we just picked a 4+ or — sign. Now , the force exerted on
a segment of the wire

ﬁ:/dqﬁxéz/AdlUxéz/fdel (7.76)

where we took that each infinitesimal length carries electric charge dg; also we used that
A= %. However, the direction of the vector dl is the same as the electric current, so we
can write the last equation as

F= /Idfx B (7.77)

where [ is the magnitude of the electric current vector. If the electric current is constant in
magnitude along the wire in the last equation we can take the current out of the integral.
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For the particular case when the current, the magnetic field are constant and the wire is
completely straight, we have that the force exerted on the straight wire is

F=ILxB (7.78)

where the magnitude of L is the length of the wire and its direction is the direction of the
electric current.

Figure 7.13

Example 6: Force on a straight wire exercise

A thin wire of 3m transports an electric current of 20A, it lies in in the y axis and the
current direction is to —y. The wire is perpendicular to a magnetic field. A magnetic force
of 0.50N is exerted over the rod in +zdirection .

e Determine the magnitude of the magnetic field
e Determine the direction of the magnetic field

Solution:
This one is quite easy. The magnitude of force is just:

|F| = IL|B|sin6 (7.79)
So, isolating the magnetic field magnitude and substituing the values

B = F| 0.5N
~ Ilsinf  (20A)(3msin 90)

=8.33-107°T (7.80)

where the angle is 90° because the exercise mentions that magnetic field and the wire are
perpendicular to each other.

Finally, using the right hand rule, we see that the magnetic field direction is to 4.

Therefore:
|B| =8.33-107°T1 (7.81)
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Example 7: Force exerted on a semicircle shaped wire

In the figure the magnetic field is uniform with magnitude |B| = 2.5T. The conductor
wire transports an electric current I = 4.5A. Find the magnetic force exerted on the wire
L =25mand R=1.2m.

Solution:

AAAAAAAAAAAAA AAAAAAAAAAAAAAE

IIJJIII || JJ[} ’ ’-
-i---i---i- | ‘

Figure 7.14

We solve the exercise in two parts. Let’s see first what is the exerted force on the
semicircle curve. By using the right hand rule, we notice that the force all along the
semicircular wire points to the —Z direction. So, we already know the direction, let’s see
the magnitude of the force. To obtain it we integrate over all the semicircular wire:

IF,| = /I\dfx B| = /Iy§|sme,Bdl (7.82)

where 0;p stands for the angle between the electric current and the magnetic field. How-
ever notice that the angle between the x - axis and the radius R, where there is an electric
current and an element dl is exactly the same angle as the angle between the electric
current and the magnetic field ! So, we can use the arc length of the differential angle as:

dl = Rdf (7.83)

And the integral becomes:

£ = / IR| B| sin 6d (7.84)
0
where the limits of integration follow because we start from zero up to half of a circle.
So,
— —IRB(-1—1) = 2IR|B| (7.85)
0

Fy = —IR|B|cosf

Substituting values and writing the direction of the force obtained with the right hand
rule,

F, = 2(4.5A)(1.2m)(2.5T)((—k) = —27Nk (7.86)
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Now,the force exerted on the horizontal wire can be found easily. By right hand rule, the
force also points to —k and the magnitude is

|Fy| = /1|df>< B| = [|§\/dl — I|B|L (7.87)

So, substituting values and writing the direction of the force
Fy = (4.5A)(2.5T)(2.5m)(—k) = —28.125k (7.88)
Hence, the total force exerted on the wire

Fr=Fy+F,=—28125N k — 27N k = —55.125N k (7.89)

Example 8: Force exerted on a wire with two components

A rigid wire carrying a current I = 5A, consists of a semicircle of radius R = 0.7m and a
straight portion of 1m as shown in ﬁgure The wire lies in a plane perpendicular to
a uniform magnetic field of magnitude |B| = 3.5T. Determine the net force exerted on
the wire due to the magnetic field.

Solution:

Once again, we split solve problem in two parts. We

first see what’s going on with the curved wire. We y

can think of it as a quarter of a complete circle. This

time, notice that if we use the right hand rule, the

force vector does not point to just one direction. If

we move all along the curved part of the wire, the X
force vector has x and y components. So, we need
to calculate:

Fx:/de:/chos¢ Fy:/dFy:/dFsin¢

(7.90)
where, the angle ¢ is the angle between the per-
pendicular axis and the direction of the differential
force as shown in figure [7.15] It is important that
you keep in mind that this is not the angle that rises F = IIB0
from the cross product in dF. Also, we have a cos ¢ —
and a sin ¢ respectively, where they are there in the
corresponding component of the force. Now,

dF = I|dl x B| = Idl|B|sin6;5 (7.91) I+

where explicitly the angle is labelled so that you
keep in mind which angle we are talking about. This Figure 7.15
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angle is the one between the current and the mag-

netic field which rises from the cross product mag-

nitude. However, notice that the current and magnetic field are perpendicular all the
time. Therefore,

dF = I|B|dl (7.92)
Now, using the arc length:
dl = Rd¢ (7.93)
we have that:
dF = I|B|Rd¢ (7.94)
Hence,
/2 . 2 ~
P, = / 11B| R cos pdes I|B|Rsingz5’ — 11BIR (7.95)
0 0
and

/2 2
F, = / IBRsin¢d¢ = —IBRcos¢| = —IBR[0—1]=IBR (7.96)
0

0

where the limits of integration follow because we are integrating over a quarter of a circle.
Hence, the force vector (written in components) exerted on the semicircular part of the
wire is

F, = (—I|B|R,I|B|R) (7.97)

where notice that we include a minus sign in the x component. The reason is that all
contributions go to —x direction. The integration result is the magnitude, you need to
include also the direction! Now the force exerted on the vertical straight wire is just

—

E, = —I|B|Lz = —(5A)(3,5T)(1m) = —17.5N & (7.98)

So, the total force
Fr=F,+ F,=(-I|B|(L+ R),I|B|R) (7.99)

So, by plugging just the values, we obtain that the total force is

Fr = —((5A)(3.5T)(1m + 0.7m) , (54)(3.57)(0.7m)) = (—29.75N , 12.25N)  (7.100)

7.3 Torque on conducting wires

Consider the scenario shown in figure [7.16al An electric current flows in a wire with the
direction shown. Given that there is a magnetic field, a force is exerted on the wire,
except to the wire at the top where the current direction is parallel to the magnetic
field and the bottom wire where the current direction is anti-parallel to the magnetic
field. These two parts of the circuit are not affected by a magnetic field force, because
for either case the exerted force magnitude is zero, i.e.|F| = I|L||B|sin(180°) = 0 and
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F = I|L||B| sin(0) = 0. The forces, F; applied to the left arm of the wire and F, applied
to the right arm of the wire, are

—

Fy=—Ia|B|2 , F,=IaBJ2 (7.101)

where we used the right hand rule and the magnitude of the cross product I LxB ,noticing
that |L| = a. Now, recall that torque is defined as

F=ixF (7.102)
So, the generated torques by each force are

. b~ b 3 . b - bz
T = —§F1] = —IaﬁfBU ’ T2 = —§F2] = —Ia§|B]] (7.103)

where we used the right hand rule, and magnitude of 7 x F, noticing that |7 = b/2. So
the total torque is: o
Trot = T1 + 7o = —lab|B|j (7.104)

So, given that there is a total torque different of zero, a rotational motion will take place.
Notice that the product ab is the area enclosed by the wire loop. In general, there could
be N loop wires, carrying each a current I. Therefore, in general the total torque is

| .. !
LR o

— = la R )
B F10! Fy

Fro = —NIA|B|j (7.105)

~

~

~

Figure 7.16

We define a vector which we call as dipole magnetic moment

ji=NIA (7.106)

where the vector A is perpendicular to the area that the loops encloses and its magnitude
is the area of the loop. So,
T=[XDB (7.107)
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where the magnetic moment direction is found by using the right hand. You curl your
fingers in the direction of the current, so your thumb finger is the [i direction as shown in
figure Also, we have removed the label total in 7, but of course is the total torque
that the wire experiences.

Now, probably you think, what happens if the wire has already rotated and is not
exactly as in figure[7.16a] and now looks the configuration of the circuit as in figure [7.16b]
Is the torque still given by equation As it turns out, it still holds. To demonstrate
this fact, place yourself to the x — z plane, so, you see the figure as the one shown in
. By using the right hand rule, notice that the torque of the forces F, and Fy point
outwards the page (to -y according to our reference frame). So, the torques are:

— —

b, = . N b_ . = . N b, =, . b = . N
7'1:—§|F1|SIH9bF1]:—§IG|B|SIH97~1F1] . T —§’F2|Sln9bp2:—§IG|B|SIHQT2F2j

(7.108)
where the label 6, r means the angle between the 7} vector and the force vector Fj, and
0.,r, the angle between the 75 vector and the force vector F;. However, these angles are
exactly the same

07"1F1 = 0r2F2 (7109)

and we will remove the label and keep the angle just as 6,.r. Now probably you think
what happens to the top and bottom parts of the wire. Do they contribute to the total
torque? The force exerted on the top part of the wire and the bottom is not zero any more.
Well indeed, however notice that their 7 vectors are parallel and anti-parallel respectively
to the force they experience, so sinf = 0 in the cross product of the magnitude of the
torque 7 = 7 X F. Therefore, they do not contribute to the total torque. So, the total
torque is:

b = ~ b — ~ — A~
Trot =T1 + Ty = —§[A|B] sinf,pj — §IA\B] sinf,pj = —IA|B|sin0,rj (7.110)

Once again, in general there could be N wires transporting a current I. So, the total
torque becomes

FTOt—NIA’B‘SiHGTFj (7111)
The last equation becomes equation [7.107|if sin 0, = sin6@,p. Let’s show that indeed is

the case. See figure [7.16b| (i is a perpendicular vector to the area of the loop with the
direction shown in the figure. From the figure notice that:

O, + =180 | O+ a+90° = 180° (7.112)

where in the second equality we used that the sum of angles in a triangle is 180°. Therefore
equating both relations,

O, = 0+ 90° = sin(6,p,) = cosf (7.113)

where we just used the trigonometric identity that for any angle 3, sin(8 + 90°) = cos 3.
However,
0.3 =90° — 0 = sinf,p = cos = sin(0,x,) (7.114)
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where we just used the trigonometric identity that for any angle 3, sin(90° — ) = cos 3.
Therefore, finally we have shown that in general

Frot = —NIA|B|sinf,z,j = —NIA|B|sin6,z] (7.115)

So, in general for any loop with current, the torque experienced by the loop is given by

F=jixB (7.116)

where i = N1 A where the area vector can be found with the right hand curling all your
fingers except the thumb in the direction of the current, and the thumb finger points to
the direction of /i as shown in figure

A

i

0

Figure 7.17

Example 9: Torque on a circular wire

A circular coil has a diameter of 40.0cm. The number of loops is 7. The electric current
in each loop is 3.00A ;| and the coil is located in an external magnetic field of 2.0T .
Determine the magnitude of the

e magnetic dipole moment
e the maximum and minimum torque exerted on the coil by the field.

Solution:
The torque magnitude can be easily found by:

7] = |/i]| B| sin 6 (7.117)

where:
il = NI|A| = 7- (3A) (7 - (10 - 0.20m)?) = 2.638Am> (7.118)
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Now, the torque will be a maximum or a minimum when the sin # is maximum or minimum
in magnitude. The maximum value of the sin # function is 1 and minimum is 0. Therefore:

|Flmaz = (2.6384m?)(2.0T) = 5.27TNm (7.119)

and of course
|Flmin = ONm (7.120)

Now, this is quite important for direct current motors, where there is a magnetic field
to produce the rotation, every nm, the motor will stop running smoothly. When the angle
is nm, there is no torque forcing the wire to rotate. So, at that moment it rotates due
to its inertia. To solve this problem, in a motor you need several loops with different z
directions, so that when one loop torque is zero, another one is different of zero and the
movement is smooth as possible.

Example 10: Torque on a pivoted rectangular loop

A rectangular loop is pivoted about the y — awxis and carries a current of 15A in the
direction shown in figure If the loop is immersed in a uniform magnetic field with
magnitude 0.487" in the +x direction, find the torque of an external agent required to
hold the loop in the position shown.

y

o = 16A

8.00 cm

ANy S5

Figure 7.18

Solution:
By using the right hand to determine the direction of fi, we see that it’s direction is as
shown on the figure [7.I8b] In such figure we moved to the x - z plane and we see the wire
from the top. Now, the angle between the magnetic field and the ji vector is a not 30°!
Be careful! So, the magnitude of the torque that the magnetic field exerts is

75| = pBsin(60°) = (15A)(6 - 10~*m)(8 - 10~*m)(0.48T) sin(60°) (7.121)
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So, A
75| = —0.027TNm j (7.122)

where we used the right hand rule to determine the direction of the torque. However the
exercise asks for the torque that certain external agent needs to exert so that the wire
does not rotate! So, the torque that needs to be applied to cancel out 75, must be of the
same magnitude but opposite direction. Hence,

7 = 0.027TNm j (7.123)

where the label “E” stands just for external agent.
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Chapter 8

Sources of Magnetic Field

In this chapter, we study how the magnetic fields are generated by steady electric currents,
so we study static magnetic fields. We study different configurations of conducting wires
and their corresponding generated magnetic fields.

8.1 Bio-Savart Law

Figure 8.1
The Bio-Savart Law is given by
— Ho ds x r
= 8.1
A7 r2 (8.1)

where [ is the electric current that generates the magnetic field, r is the distance from the
infinitesimal element of length ds to the point where we want to calculate the magnetic
field, 7 is a unitary vector pointing from the infinitesimal element to the point of interest,
and

T-
fo = 4 x 10—7Tm (8.2)

The units T (Tesla) are the units for magnetic fields (the international system of units).
The name for the units of magnetic field is in honour of one of the greatest inventors of
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all times, Nikola Tesla. Another highly used unit for magnetic fields are the so called
Gauss(G). The conversion from Tesla to Gauss units is

1G=1x107*T (8.3)

The equation [8.1] was forged experimentally. In April 1820, the Danish physicist
and chemist Hans Christian Orsted discovered that a needle in compass would deviate
if an electric current was placed nearby. Few months later, he discovered the circular
configuration of a magnetic field around a conducting wire. Not much time passed, for
two great French scientists to get highly interested in the experimental results of Orsted.
Jean-Baptiste Biot and Félix Savart discovered the following

e The magnetic field generated by an infinitesimal element in the wire that carries
electric current in a conductor is perpendicular to the electric current direction.

e The magnetic field mentioned previously is perpendicular to the vector that joins an
infinitesimal element that carries current in the wire to the point where the magnetic
field is analyzed.

e The magnetic field is proportional to T%, where r is the distance from an infinitesimal
element that carries electric current in the wire to the point where the magnetic field
is analyzed.

e The magnetic field is proportional to the angle between the electric current in an
infinitesimal element of the wire and the vector that points from the infinitesimal
element to the point we are analyzing the magnetic field.

The previous observations, led to equation when all the contributions of the infinites-
imal elements that carries an electric current in a conducting wire are taken into account.
The Orsted experiment, and the Bio-Savart Law were the first experimental and theoret-
ical discoveries that connected electric phenomena with magnetism, and from then our
world would never be the same.

Example 1: Magnetic Field of Finite and Infinite Thin Conductor
carrying steady current

Find the magnetic field at a point P with coordinates (0,a) due to a perpendicular thin
and straight conductor which carries an electric current / as shown in figures and

B.2hl
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A A
Y Yy
4P P
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///9 /// 01 92 X
Pra 1 I
A > > i e >

T X
(a) (b)
Figure 8.2
Solution:
We have to calculate g5 > 7
. 8.4
47 72 (8.4)

at point P. So, first let’s see what happens with the cross product ds’x 7. Recall that ds
direction is the direction of the electric current and 7 is a unitary vector starting from ds
and pointing towards where we want to calculate the magnetic field. By using the right
hand rule ( (index finger) the first vector in the cross product, middle finger the second
vector in the cross product, and thumb finger the vector as result of the cross product)
we have that the result vector of the cross product points to +z (out of the page). While,
its magnitude

|d$ x 7| = ds|r|sina = dssin « (8.5)

where « is the angle between the vector ds and 7. From the triangle formed by the
extension of the unitary vector 7, the y axis and the electric current shown in the figure

[8.2D] we have that
at+0+n/2=1—>a=0—71/2 (8.6)

where we just used that the sum of the angles in a triangle is 180° (7 radians). Therefore,
the magnitude of ds x 7 becomes

|d§ x 7| = dssin(f — w/2) = ds cosf (8.7)
where we just used the trigonometric identity cosf = sin(6 — 7 /2). So, substituting d3x 7

in the Bio-Savant Law y o
~ g scosf -~
B =— k 8.8
= (8.5)

r2
Now, we have in our integral the non constant elements, ds, cosf and r. We need to
leave all of them in terms of just one variable to integrate. So, before proceeding to the
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integral, from figure [8.2a] we have that

a a
€08 r "7 cosd (8.9)
Once again from figure we have that
s
tanf = — 8.10
an " (8.10)

where s will be a distance element in the —x axis. Given that s < 0 and tanf > 0
according to our reference frame; then ,
s
tanf = —— = s = —atanf = ds = —asec’dl (8.11)
a
Hence, substituting what we obtained for r in equation and what we obtained for ds
in equation into equation [8.8] we have that

2
B = —Z—O]/(asec2 0do) (COSO) cosf k = —f—ol/cosedﬁ k (8.12)
T

a wa

where we used that secf = 1/cos6. Finally, we can say that the angle from the y axis
to the end points of the conductor, starts from certain angle ¢; up to certain angle 6, as

shown in figure [8.2b] So,
— /"L 02 ~ M ~
B = ——0[/ cos 0df k = = I[sin 6, — sin by] k (8.13)
dra  Jo, dma

The last result applies for any wire, however what if the wire is infinitely long? So,
¢y — +n/2 and 03 — —7/2 , hence, for an infinite wire

s Ho 2 Mo + 7

B=—I+1+1)k=—1Ik 8.14
4ma (+1+1) 21a ( )

Example 2: Magnetic Field due to a conductor with two straight

sections and a curved section

Calculate the magnetic field at point O, generated by the electric current that is carried

by the conductor wire shown in the figure [8.3] The wire consists of two straight portions
and a semicircle with radius a, which extends an angle 6.

J A
B “~

C ™=
D
Figure 8.3
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Solution:
Let’s see what is the contribution of the magnetic field at point O by segments A — B |
B — C and C' — D independently.
For segment A — B,

|d§ x 7| = ds|7|sin0 =0 (8.15)

For segment C' — D

|dS x 7| = ds|7|sin 180 = 0 (8.16)

For both segments A — B and C'— D, the currents are parallel o anti parallel to the point
of interest, so the magnetic field due to the current transported in these segments is zero.

Now for the segment B — C, the vectors 7 and ds are perpendicular because ds’ is
tangent to the semicircle curve and 7 is along the radii of the semicircle. Also, using the
right hand rule, we know that the direction of ds x 7 is —k. So,

|d§ x 7| = ds (8.17)
Hence, the magnetic field generated by the current transported along the segment A — C'
is
= o dsxr o ds , - Lo .
B="—1I =—I1 [ = (-k)=1|- I [ds)k 1
4 / 2 4 r? (=5) ( 4m R? / S) (8.18)

where we used that the distance r from any infinitesimal segment in the segment B — C' is
r = R (and obviously constant because is the radii of the semicircle). Also, we included
the direction already. Now, using arc length ds = Rdf

0
— ILLO ~ l‘l’o ~
B= (-1 do)i=(—210)k 1
( AT R /0 ) ( ATR ) (8.19)

Example 3: Magnetic field generated by a ring carrying steady
current

Consider a circular wire of radius a placed in the y — z plane. The wire carries a stable
electric current I as shown in the figure. Calculate the magnetic field at point P shown
in the figure.
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ds.

N
r
T

N ~
> r =

ds

o1

Figure 8.4

Solution:
We apply once again the Bio-Savart law

- Mo ds x r
A 2

= 2
47 r (8 0)

and we need to know how to tackle the cross product in the integral. By using the right
hand rule, if we move along all along the ring, we would notice that a cone of magnetic
field vectors is formed at point P due to the contribution of all the infinitesimal segments
in the ring as shown in figure So, do we need to calculate three integrals in the z, y
and z direction? Fortunately, all contributions in  and y component are cancelled out.
For each vector, exists an opposite vector with opposite sign contribution in the z and y
component and all z components sum, since they go to the same direction. So, we have
to calculate just one integral, the z component magnetic field

B, MOI/MCOSG (8.21)

A7 72

where we multiplied by cos 6, since we want to sum the contributions in the z component
(see figure . Now, the magnitude of the cross product in general is

|d§ x 7| = dssin b, (8.22)
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where the label sr stands just to be clear that is the angle between the ds and 7 vectors.
However, notice that vector ds and 7 lie in two different perpendicular planes as shown in
the figure [8.4bl So, all vectors along the ring ds are perpendicular to 7. So, we just have
that

|d§ x 7| = ds (8.23)
So, the integral in equation becomes

la [d
B, =10 [ 59 (8.24)

47 72

Now, what is cos 7 Can it be written in other terms? Is it dependant of ds? Or can
we just take it out from the integral? So, first lets show that actually angles 8, ¢ in figure
are exactly the same 6 = ¢. If we move to the z — x plane we see the ring from one
side as shown in figure [8.4d] So, we have from figure that

é+a-+90°=180° and, 6+ a+90° = 180° (8.25)

where the first equation follows because we summed the angles in a triangle which must
be equal to 180°, and the second equation from the fact that we have 180° starting from
the z axis up to the same z axis but in opposite direction. Therefore, equating both last
equations, we have that

6 =0 (8.26)

Probably you think “Why did we do that? What was the purpose?” Well, now we can
express the cos @ = cos ¢ in terms of the radius of the ring. So, using figure we have
that

cos ¢ = = cosf=12 (8.27)
r r

because ¢ = . So, we have that cos@ is just a constant and we have that the integral in

equation [8.24] is
pola pola pola?
B, = ds = 2 = 8.28
43 / °T s (2ma) 2(22+ &2)3/2 (8.28)

where we substituted

r=v22+a? (8.29)

This result holds for any ring carrying stable current, at a symmetrical point P that is
perfectly perpendicular to the ring. Notice, that the generated magnetic field is always
perpendicular to the ring. So, we can simply say now that the total magnetic field is

fiola® >

5= T
2(22+ a2)3/2

(8.30)

because we already now that the other components at the end cancel out.
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Now suppose we go extremely far from the ring, a distance much bigger than the ring
radius (z >> a). What will be the magnitude of the magnetic field? So, if z > a, we can
approximate.

= Hola?
z

where we ignored a in the denominator, because it is negligible in comparison to z in this
approximation. If we use the magnetic moment y = IA = Ima?, we have that far away

(8.31)

5 Hoft
|B| ~ 3 (8.32)
2z

The last result looks very similar to the dipole electric field from far sources.

Bl =23

=3 (8.33)

8.2 Magnetic Force between parallel conducting wires

Yy

—

By
@
8
‘Tl VA
Figure 8.5

From the previous chapter, we already know how to calculate the force exerted on a
conducting wire that carries an electric current given that there is an external magnetic
field present. So, if the source of the magnetic field is a conducting wire with current Is.
What is the force exerted on another conducting wire that carries a current I;? In other
words we are interested to know what is

ﬁgl = /Ild§’>< EQ (834)

where 52 is the magnetic field generated by the current I; and exerts a force Fy; on the
wire with conducting current /. This can be seen in figure the source of the magnetic
field is the current I,. Given that such magnetic field is present where [; is, we want to
know the exerted force on the conducting wire carrying I;. So, to simplify our analysis,
we consider both wires that have stable currents I; and I as infinite. So, the magnetic
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field generated by the current I, is given by equation [8.14] So, the magnitude of the
magnetic field generated by I5 is

|Bo| = ;T—Z[Q (8.35)
Therefore, the magnitude of the force is
| Foy| = Ilz’l;—oalg/ds (8.36)

where the integral should extend from 0 up to oo , because we said that the wires where
infinite! Indeed! The force exerted from an infinite source of magnetic field should exert
an infinite force on a infinite body! That makes total sense. However, recall this was just
an approximation, and it works very well in wires which are extremely long. So, in the
integral we keep just a finite length. So,

| Foy| = 112’7‘T—(’CLJQL (8.37)

where L is the length of the wire conducting I or also, it could be just certain length of
the total length of the wire, in which case you would be calculating the force exerted in
just that section of the wire. By right hand rule we have that the force is exerted to +y

direction. So, using the reference frame shown in the figure [8.5] we have that
- LI, .
Fy = ,uol—; “(+9) (8.38)
Ta

Finally, by third Newton’s law, we have that the force that the wire with current I; exerts
on the wire with current I has the same magnitude but opposite direction. Therefore

Fy = MOZT (_3)) (8-39)

Now, notice the following, if the currents have the same direction as we assume from the
beginning, the force is such that the wires will attract each other. while if the currents
have opposite directions the force will be such that they repeal.

12 I2 Aﬁm

<
e I -
1 va
(b)

Figure 8.6
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e Parallel conducting wires carrying electric currents with the same direction
attract each other.

e Parallel conducting wires carrying electric currents with opposite direction
repeal each other.

For both cases the magnitude of the force per unit length is

|F| L1

L . 8.40
T &)

where a is the distance between the conducting wires.

Example 4: Levitating Wire

Two infinitely long conducting wires are separated a distance a = 1em, as shown in figure
B.7al A third conducting wire with length L = 10m and 400g of mass, carries a current
I; = 100A and levitates. It is horizontally at a middle point between the two other
conducting wires. The two infinitely long wires carry the same electric current with the
same direction, opposite to the finite wire that levitates. So, in figure I, = I3. What
is the electric current of the infinitely long wires?

Figure 8.7
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Solution:

From what we have learned, when electric currents have opposite directions they re-
peal each other. Therefore, the acting forces on the third wire which carries an opposite
direction to the wires with currents I and I3 are as the one shown in figure [8.7b] Now,
since I, = I3 and they are placed at the same distance from the third wire at the equi-
librium point, the forces exerted on the third wire are of the same magnitude. So, as it
can be seen in the figure the x (horizontal) contributions cancel out without giving
us extra information. However, in the y (vertical) component there is also a gravitational
contribution, so we can extract information from the forces sum in this component (we do
not have an exact cancellation). So, concerning then about the forces in the y component

Y Fy=—F,+ Fpay+ Fps, =0 (8.41)

where the sum is equated to zero because the system is in equilibrium. Doing some algebra

Fpoy + Fpsiy = Fy (8.42)
I 131
pioL =" cos 0 + 1o L= cos ) = F,= (8.43)
2ma 2ma
I, I, Tamg
toL——=cosf = mg = I = 2——>— 8.44
Hobora o8 g 2 oL I cos 6 ( )

where we used I, = I3 and the cosf because is the y component we are interested (see
figure . Finally, seen from the front view the three conducting wires form an equi-
lateral triangle. If it were not the case, one of the forces that exerts the wires with equal
currents would be greater and the system would not be in equilibrium. So, using the fact
that the triangle shown in figure is equilateral, then we can easily see that § = 30°.
Hence, substituting values

7(0.01m)(0.4kg)(9.81m/s?)
I = = 113.27A 8.45
> 7 (47 x 10-7T'm/A)(10m)(100A) cos 30° (8.45)

8.3 Ampere’s Law

The Ampere’s Law is a powerful tool to calculate the magnetic field in highly symmetrical
systems. And its relevance is such that when we study the Maxwell equations, we will see
that this equation with a slight (but theoretically profound) modification becomes one of
the pillars of the electromagnetism.

Choosing certain closed path, Ampere’s Law states that

f B-dl = polone (8.46)
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where [,,. is the electric current that crosses or penetrates the area of the closed path
and dl is a tangent vector to the closed path. The current I.,. is called as the enclosed
current, but this name could be quite misleading. Unfortunately, the name has been used
for so long time that you just have to get used to it. You should picture in your mind
that is just the current that crosses the area that encloses the closed loop. So, to get a
better grasp about how to use the Ampere’s Law, let’s see the examples shown in figure

B3

Sy
| <dl /ﬂ

dl’ ¢ .
; . Adl

Figure 8.8

e If we calculate the closed loop integral ¢ B - dl in the case of figure we have
that the enclosed current is I.,. = Iy — I; +I; = I;. Therefore, the integration result

e For the figure , the enclosed current is le,. = Iy + I> — I3. So, the integration
result will be ¢ B -dl = po (I + I, — I3).

e For the figure 8.8, the enclosed current is Io,. = I + Iy + I3 — I, = 0 because
I, = I + I, + I5. So, the integration result will be f B-dl=0

The closed path that we use to calculate § B - dlis called as Amperian Loop. Such
Amperian Loop encloses the area that we use to calculate the enclosed current. Now,
some warnings about Ampere’s Law.
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e The integration fé -dl = 0 does not mean that the magnetic field is

zero. It just means that if you sum infinitesimally the dot product B-dl all
along the closed loop, the contributions cancel out. In some exercises, you
will see that by using Ampere’s Law we conclude that the magnetic field is
zero given that § B -dl = 0. However in such cases, there must necessarily
be something else in the system that we analyze that can lead us to such
conclusion. In general, by just knowing that ¢ B-dl=0 you cannot conclude
that the magnetic field is zero.

e In the last three examples where we calculated the enclosed current, we used
a convention. And you must stick to it, so that you do not have misleading
results when applying Ampere’s Law. You can choose a direction for dl as you
wish, either clockwise or anti-clockwise. However,when giving the direction,
curl your fingers of the right hand in the direction of dl_; and the direction of
the thumb finger we say is the direction of the area vector as we did in figures
[8.8al [8.8bf and [8.8al If the electric current when penetrating the area of the
loop has an angle lower than 90° with the area vector, then the current is
taken as positive, otherwise as negative. So, for example in figures [8.84] [8.8b]
and , if you curl your fingers of the right hand in the direction of dl you
notice that the thumb finger points upwards. That’s why in the last three
calculations of the enclosed currents we took some currents as positive and
others as negative. If you obtain a negative enclosed current, it only means
that the direction of the current is opposite to what the convention establishes
(the direction of your thumb finger).

Ampere’s Law is powerful as we have mentioned. It will be as useful to Gauss Law
when we wanted to find the electric field of symmetrical objects. It is of course not the
same nor analogous, because in Ampere’s Law we calculate a path integral in a closed
loop, while Gauss Law is an integral of area in certain closed surface. In the exercises, it
will become clearer how we use Ampere’s Law .

Figure 8.9
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Finally, we will show that Ampere’s Law is true. To get a grasp about its truthness,
lets start with the simplest case. Taking a circle as our closed loop, as shown in figure
it is centered where there is an infinite conductor wire which carries a stable current I.
The magnetic field generated by this electric current is given by equation. [8.14] At every
point along the closed loop the magnetic field is parallel to dl. Therefore,

— — — — ]
%B -dl = |B| fdl = |B|2rr = ("L) 211 = piol (8.47)
2rr

where we took the magnetic field out of the integral because it is constant at certain
radius r. So, this agrees with Ampere’s Law because the enclosed current is I.

Figure 8.10

Let’s complicate things now a little more. We used a circle as closed loop, however
let’s show that for any shaped closed loop Ampere’s Law still holds. We keep our infinite
wire as the conductor that carries a stable electric current I. From figure we have
that

B-dl = |Bldlcos 3 (8.48)
However, from the triangle formed with the angle 5 as shown in figure |8.10a), we have

that
dlcosf = rdf (8.49)

We have that such side of the triangle is rdf), because sin§ ~ 6 for extremely small angles
(in this case df is an infinitesimal angle so this holds). If you use sin (df) = df, you obtain

using the triangle formed with df in figure that the projection of the vector dl onto
the magnetic field vector must be rdf. So, we have that

— — — [ [
j[B Cdl = f{ | B|rdo = ]{ (“L) rdd =20 ¢ o = B 00 — o1 (8.50)

2rr 27 21
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Good! Even if the shape isn’t a circle, Ampere’s Law holds. What about if the electric
current is now outside the loop. According to Ampere’s Law , the integral 39 B - dl must
be zero because no current is penetrating the area, so the enclosed current is zero. So,
let’s see if this is true. From figure [8.10D], we have that

=S TR G Y _ Mo
jfB dl-f]B\rdG-%(ZW)rdG—% do (8.51)

where we used equation [8.49, However, this time the closed integral will not be 27. When
the electric current is outside the closed loop, when we run all over the path of the closed
loop, we start with certain initial angle §; = 0; and finish with 0 = 6;!(see figure
to understand why). So, the closed integral is zero! This is not the case when the current
is inside the closed loop, because when you run all along the closed loop, you started from
certain arbitrary initial angle #; = #; and finished with a final angle 8 = 6; + 27 that
coincides in the same point. You ran the path in such way that you arrived to the exact
same point cycling over 360° degrees(27 radians), arriving where you started(see figure
to understand why). So, when the electric current is inside the loop, even though
the point you started with angle #, coincides with the same final point with angle 6, + 27,
the initial and final angles differ in 27.

(a) Showing schematically what hap- (b) Showing schematically what hap-
pens when you integrate over the pens when you integrate over the
closed path when the current is inside closed path when the current is outside
the Amperian Loop. Starting from the Amperian Loop. Starting from
point A, moving all along the path, point A, moving all along the path,
passing though point B, then C, af- passing though point B, then C, af-
terwards D,consequently point E and terwards D,consequently point E and
finishing at point F. Points F' and A finishing at point F. Points F' and A
are exactly the same point. However, are exactly the same point. However,
notice that in this case the final angle notice that in this case the final angle
turned a complete cycle of 27 radians. is exactly the same as the initial angle.
Figure 8.11
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Therefore, when the current is outside the loop,

fé dl =0 (8.52)

as Ampere’s Law stablishes. Nice! So far, Ampere’s Law looks to work even with random
shapes of Amperian loops.

Figure 8.12

Finally, what if we have N electric currents. Is all what we have discussed still true?
Inded, if Ampere’s Law holds for one electric current, then it holds for NV electric currents;
and the demonstration is quite trivial. Nevertheless, let’s do it! Suppose that N; electric
currents do not pentrate the area enclosed by the randomly shaped closed loop, and N,
electric currents do penetrate the area enclosed by the Amperian loop. If there are N
currents in total, well obviously N = N; + N,. Now, the total magnetic field at any point
due to all the N electric currents is just the vector sum of each magnetic field of the

electric currents
ZB ZB’ +Y B (8.53)
where the last equality is the sum of magnetlc ﬁelds due to electric currents that does not

cross the loop area (labelled with B”) and the ones does (labelled with B'). Therefore,
we have that

N N1 N
fﬁ-df:j{ZEi-df:%Zég-df+]§zj§;’-df (8.54)
=1 =1 =1

so let’s analyze each integral. For the magnetic fields that does cross (penetrate) the loop
area, we have that

Ny
fzgfi-df:fég-df+f§g.df+...+j§3§vl-df (8.55)
i=1
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however, for each of the integrals in the last equation, we have the closed loop integral of
a single electric current magnetic field. And we already know that for one electric current
that does not penetrate the loop area, its magnetic field follows equation [8.52] Therefore,
each of the terms are exactly equal to zero. Now, for

N2
%ZB_’//Z.,CH_': j{gg . df+7§§g ~dl + ...%B?’VQ -l (8.56)
i=1

each of the integrals correspond to one single magnetic field generated by one electric
current that penetrates the area of the loop. So, from equation we know that each
integral will be equal to the corresponding electric current that generates the magnetic
field times po, i.e.

N2
%ZB, . dl = [1,011 —|— ,u()]g —|— —|— M0]N2 = [1,0 (Il —|— ]2 + —|— ]Ng) (857)
i=1

Therefore, we have obtained that for N electric currents
fﬁ-d?:()ﬂm (L4 L4 oo+ Iny) = polene (8.58)

where the currents [; up to Iy, correspond to the enclosed current, because those currents
do penetrate the amperian loop area. Nice! So, indeed Ampere’s Law holds for NV electric
currents. So, we are starting to get confident that Ampere’s Law is true. We have shown
that for infinite conducting wires with stable currents I, it is true. However, probably you
could get obsessed to see actually a demonstration for any shape of the conducting wire
that carries an stable electric current I. Since this demonstration requires more vector
calculus than what is expected for the reader for this book, we won’t do the demonstration.
However, with what we have shown in this section must be enough to give you the grasp
that Ampere’s Law for steady currents is actually correct.

Example 5: Magnetic Field inside and outside a wire with uni-
form electric current density

An extremely long and straight wire of radius R carries an stable current [ that is dis-
tributed uniformly across the cross sectional area of the wire (see figure |8.13)). Calculate
the magnetic field a distance r from the center of the wire in the regions

e r>R
o r < R

Solution:

We center a circumference at the middle point of the wire as shown in the figure[8.13]).
We take advantage of the symmetry of the magnetic field. We solve the exercise in two
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parts, when r > R and r < R.

For r > R:
At every point of the circumference of radius r, the magnetic field is parallel to dl. There-
fore,

%é dl = |B| }I{dl — |Bl2rr (8.59)

where we took out the magnetic field out of the integral because it is constant at certain
radius 7. Also, we used that integration result is the perimeter of the loop. The enclosed
electric current is the total electric current I carried by the conductor. Therefore, using
Ampere’s Law

ol

nothing new. The formula obtained is the one we already knew from equation [8.14

Figure 8.13

Now, what happens inside (r < R)? Depending of r, we will be enclosing more or less
electric current. When r = R, we enclose all the electric current that goes through the
wire. However, as r — 0 the electric current enclosed I — 0. So, we need an equation
that tell us how much current is enclosed depending on r. Recalling that J is the current
density, we can obtain the enclosed electric current with different r’s with

Ienc:/]ﬂdA:/ |\ J|2mrdr (8.61)
0
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where we used the differential area of a circle. If we assume that the charge density is
uniform as mentioned in the exercise (this is not necessarily true in real life), we can take
|.J] out from the integral, so

. I 2
Lone = | J]mr? = (?> =1 (%) (8.62)
N

where we used that for uniform charge density

- I
= (8.63)

where A is the cross sectional area of the wire. Now, we have that
. . . 27r .
j{B ~dl = |B|/ dl = |B|2nr (8.64)
0

where once again by symmetry dl’is always parallel to B. So, substituting equation m
and equation in Ampere’s Law, we have that

= 7\ 2 = 1
[Bi2rr = polne = pol () = Bl = oo (8.65)

Example 6: Magnetic Field inside and outside a Toroid

The device shown in the figure is called toroidal solenoid or simply toroid. The
beauty about this device is that it creates a constant magnetic field inside, and the
magnetic field outside of it is completely zero if there are no gaps between one coil ring
and then next! The device consists of a conducting wire that is winded in loops without
gaps between the loops in a donut shape (in mathematics, more formally we say is a
toroid shape). In real toroids, there are gaps between the winded loops, small probably
but present. In such cases, what we calculate now is an approximation. Even though,
the approximation is highly accurate, inside the magnetic field is practically and outside
negligible. For a toroid with N loops of wire , calculate the magnetic field inside and
show that it is zero outside. Use figure for such calculations. In that figure, there
are no gaps, and the winded loops are so close to each other that we can consider it as a
continuum surface.
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Figure 8.14

Solution:

We will use Ampere’s Law to determine the magnitude of the magnetic field. However,
in order to use it we need to know what is the behavior of the magnetic field. It will turn
out that it has circular shape as shown in figure [8.14al So, we will use smartly the
information given in figure to obtain the behaviour of the magnetic field. At point
r, by Biot - Savat Law, the magnetic field contribution by the electric current element at

s given by:
 dsx ()
dB = —]—————*~ (8.66)
47 |r — r’|3
Now, we will do a quite smart move. (I am being modest. A beautifully smart move!).

We place r, with no ”y” component as shown in the picture. And even though it is at the
x — z plane, the result will be general. Just be patient. So, we say that:

7= (z,0,2) (8.67)
Hence ~
F—r'=(z— Rcosgp,—Rsing, z — 2') (8.68)
Now, in general we can say that:
ds = (dx,dy,dz) = (|d5] cos ¢, |ds] sin ¢, dz) (8.69)
Therefore,
ds x <f’— r’) =| |d§]cos¢ |dS]sing  dz (8.70)

x— Rcos¢p —Rsing z— 2
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asx (7=1) =
[sin ¢(|ds](z — 2') + Rdz)] & + [dz(z — Rcos @) — |d5] cos ¢p(z — 2)] g + [|dS]x sin @] 2
(8.71)
Now, from figure |8.14b| notice that there exists a symmetrically situated point r” which

is at the same distance from r as r/, same electric current passes through that point, but
the angle is with opposite sign —¢. So, we have that for such point

ds" x (F— r”) =

sin(—6) (1d51(z — ) + Rd2)] & + [d2(z — Reos(—@)) — |d] cos(—)(= — 2')] § + [|d5larsin(—g)] 2
(8.72)
where we used that infinitesimal segments are equal ds” = ds. So, notice that what we

obtained is exactly the same as ds x (7‘” — f’) but with angle —¢ . Now, here comes the

magic. Given that sin(—¢) = —sin ¢ and cos(—¢) = cos ¢, we have that
ds x (77— ﬁ) + ds" x (F— 7"7’) = (0,2[dz(z — Rcos ¢) — |ds] cos p(z — 2')],0)  (8.73)

i.e. the components & and Z cancel out (check that indeed this is true). So, the contri-
bution to the calculation of the magnetic field at point r due to the electric currents at
r” and 1’ leaves just one component. Why? Because when you sum their contributions
to the calculation of the magnetic field at point r due to both currents at »’ and r”, what
you are summing is

5 x (F—ﬁ)

—

d5 % (F— w)

1 - S
po XN w0 BT il (g (2 ) s« (7))
4m |7 — /|3 4T |7 — "3 A | — 1|3
(8.74)
where we used that the magnitudes
|7 — 7| = |7 — | (8.75)

are exactly the same because points " and r” are equally distanced from point r. Hence,
after taking the contribution of all currents in the toroid to the magnetic field at point r,
the only contribution will be in the y component! For each current at each point in the
toroid, there is a symmetrically opposite point which current generates a magnetic field
that cancels out the z and z component! Now, you probably say “Well, not big deal! That
is true at point r with components (x,0,z). What about the other points?”. Well, indeed
we calculated for point r. However our reference frame is arbitrary and this applies for
any point! If this is still not clear why, rotate the reference frame, so that a new point
r”" has no y component. The contributions of the magnetic field, due to all currents in
the toroid will have only y again! Just exactly as it happened with point r before you
rotated the reference frame. Shift once again the reference frame for another point " to
be where our points r and 7" exactly were. It will hold once again that all contributions
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of the magnetic field due to all currents will cancel out in z and z component, leaving
only the y component. And if you keep repeating the rotation of the reference frame, it
will hold again and again and again, due to symmetry! Beautiful! In general, we said
that the field has only ngS component, so drawing all these magnetic field lines will look as
shown in figure [8.14al Concentric circumferences, of magnetic field. Beautiful! Now, that
we have shown that the magnetic field has circular shape, we can proceed to obtain the
magnitude of the magnetic field with Ampere’s Law.

Figure 8.15: Cross sectional view from the top of the toroid. The toroid has inner radius
R and outer radius R’. The three blue arrowed paths are the three Amperian loops we
create to study the magnitude of the magnetic field generated by the toroid.

We create first a circular Amperian loop such that » < R’ (the inner blue arrowed
path in figure [8.15]). For such case

2rr
]{E cdl = |§|/ dl = |B|127r = pigLone (8.76)
0

Since there is no enclosed current
B=0 forr<ZR (8.77)

Wait a minute! Didn’t we say that if the path integral is zero, not necessarily means that
the magnetic field is zero? Indeed! However, notice that the magnetic field is constant
at certain radius r. So, that assures us that it must be zero. Probably this is trivial
(but have helped to get the idea to many students) with a very simple example you can
visualize this. Suppose that you have the following

N

D iA(i) = 1A(1) + 2A(2) + BA(3) + ... + NA(N) =0 (8.78)
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Now, if A(i) = A is constant for all 4, well this trivially becomes

N N
Zz’A:1A+2A+3A+...+NA:A(1+2+3+...+N):A(Zi) =0 (8.79)

i=1 i=1

so in the multiplication of whatever number gives the sum times the constant A to be zero,
then A is zero necessarily. No discussion. This is just what happened in the moment that
in equation the magnetic field was constant (recall that an integral is an infinitesimal
continuous sum). Now if A in equation changes its value when ¢ iterates, then of
course there is no way to say that A(7) is zero. In less words, in the moment you could get
the magnetic field in equation out of the integral, it assured you that if the enclosed
current was zero, there is no way that the magnetic field is not zero.

Now, taking any point such that R’ < r < R (using as Amperian loop the blue arrowed
path where there is magnetic field in figure [8.15))

2rr
fé-dz = |§|/ dl = |B127r = piglene = (8.80)
0
1B| = poe (8.81)
N ’u027r7" '

Now, what is the enclosed current? There are N wraps of coil. So N times the current
in each loop of wire is passing at the same time. Therefore:

" NI
|B| = po=— for R <r<R (8.82)

2rr

Finally, let’s see outside the toroid when r > R (using as Amperian loop the outter blue
arrowed path in figure |8.15)). Using once again Ampere’s Law:

IETZC

Bl =
‘ | 'u027r7“

(8.83)

However this time what is the enclosed current? Probably you are tempted to say again
that I.,. = NI. However, this time notice that for each current going outwards the page,
there is a current going inwards the page (see figure tal). Recall that depending how we
picked the direction of dl in the contour in the loop, N currents will contribute positively
and N negatively, cancelling completely. So the enclosed current actually is I.,. = 0. So,
we have found that

. poNI n . . .
B { 5——¢ for points inside the toroid } (8.84)

0 for points outside the toroid

One extremely interesting application of the toroid is the construction of the so called
Tokamaks (The term tokamak comes from a Russian acronym that stands for ” Toroidal
Chamber with Magnetic Coils.”). These devices are huge toroids that create strong mag-
netic fields to confine hot plasma for fusion energy production. Nowadays, the use of
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Figure 8.16

fusion energy to produce electricity still is under research, and hopefully one day we will
be using this kind of clean energy. The International Thermonuclear Experimental Reac-
tor (ITER) is an experiment that is under construction in Saint-Paul Lez-Durance, France
and it will be the biggest Tokamak in the world. The first plasma at ITER is scheduled
for December 2025, and has been designed to prove the feasibility of fusion as a large-scale
and carbon-free source of energy based on the same principle that powers our Sun and
stars.[27]. The fusion reactions take place when atomic nuclei are close enough for the
enough time so that the nuclear force pulling them exceeds the electrostatic force trying
to separate them. The result is new heavier nuclei, where the two nuclei fused into one.
When this process takes place energy is released. However, in order to achieve this, the
atoms must gain extremely high kinetic energy. So, the temperatures must be extremely
high, and when reaching such point, a plasma is created. A plasma is a state of matter
when electrons are separated from nuclei and fusion reactions can take place. The design
of ITER toroidal coils to create the magnetic fields to confine the plasma are shown in
figures [8.16al)8.16b| and |8.16¢| (figures taken from reference [27]). The general function of
any Tokamak is shown in figure (figure taken from reference[23]).
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The most efficient fusion reaction in the laboratory setting is the reaction between two
hydrogen isotopes deuterium (D) and tritium (T). The fusion of these light hydrogen atoms
produces a heavier element, helium, and one neutron (...) Approximately 80 percent of the
energy produced is carried away from the plasma by the neutron which has no electrical
charge and is therefore unaffected by magnetic fields. The neutrons will be absorbed by
the surrounding walls of the tokamak, where their kinetic energy will be transferred to
the walls as heat. In ITER, this heat will be captured by cooling water circulating in the
vessel walls and eventually dispersed through cooling towers. In the type of fusion power
plant envisaged for the second half of this century, the heat will be used to produce steam
and—by way of turbines and alternators—electricity.(...) A fusion reaction is about four
million times more energetic than a chemical reaction such as the burning of coal, oil or
gas and four times as much as nuclear fission reactions (at equal mass). While a 1000
MW coal-fired power plant requires 2.7 million tonnes of coal per year, a fusion plant of
the kind envisioned for the second half of this century will only require 250 kilos of fuel per
year, half of it deuterium, half of it tritium. Only a few grams of fuel are present in the
plasma at any given moment. This makes a fusion reactor incredibly economical in its fuel
consumption and also confers important safety benefits to the installation. (...) Fusion
fuels are widely available and nearly inexhaustible. Deuterium can be distilled from all
forms of water, while tritium will be produced during the fusion reaction as fusion neutrons
interact with lithium. (Terrestrial reserves of lithium would permit the operation of fusion
power plants for more than 1,000 years, while sea-based reserves of lithium would fulfil
needs for millions of years.) (...)Fusion doesn’t emit harmful toxins like carbon dioxide
or other greenhouse gases into the atmosphere. Its major by-product is helium: an inert,
non-toxic gas.(...)A Fukushima-type nuclear accident is not possible in a tokamak fusion
device. It is difficult enough to reach and maintain the precise conditions necessary for
fusion—if any disturbance occurs, the plasma cools within seconds and the reaction stops.
The quantity of fuel present in the vessel at any one time is enough for a few seconds only
and there is no risk of a chain reaction.

— ITER Official webpage [27]

Example 7: Magnetic field of an infinite solenoid

A solenoid is a wrapped conducting wire in the configuration shown in figure [8.17al
Each loop of wire is extremely closed to each other, trying to make no gaps between the
conducting wire loops. In this problem actually we assume that there is no gap between
the conducting wires. In real solenoids, there is certain gap between the conducting
wire loops, however our derivation still is a good approximation. Now, suppose that the
solenoid is infinite (once again this is an approximation, however for very long solenoids
this coincides quite accurately with reality). Calculate the magnetic field inside and
outside the solenoid.
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Figure 8.17

Solution:

First of all, we need to know the behaviour of the magnetic field before we apply
Ampere’s Law. In figure the magnetic field lines are already drawn. However, how
do you know actually that they behave in such way? So, we make a simple qualitative
analysis that will lead to a powerful conclusion. Using the direction of the electric current
carried by the solenoid in figure [8.17a] the magnetic field lines inside the solenoid point
upwards, while outside downwards. So, in figure is shown the transverse section
of just two loops of the solenoid (imagine you cut in half the solenoid and you visualise
two loops). Points P; and Ps lie outside the solenoid, while P is inside the solenoid.
Given that the solenoid is infinite, whatever direction of the magnetic field we obtain
from this picture applies to any point inside and outside the solenoid. Why? Because
every point, can be considered to be in a symmetrical point in the vertical axis of the
infinite solenoid. At any point P, you have an infinite number of contributions from the
loops above point P, and equally an infinite number of contributions from the loops below
point P.

Let’s start analyzing the magnetic field contributions at point P,. Using the right
hand rule we obtain the direction of the contributions shown in figure [8.17b] Every color
arrow represents the direction of the magnetic field of each current colored with the same
color. Also, the arrows are drawn in scale of their magnitude (larger greater the mag-
netic field contribution). Notice that all the contributions will lie upwards in the vertical
direction, because the components of the magnetic fields of each current in the horizon-
tal contribution cancel out! Notice that the electric currents going into the page, are
equally separated from point P, so the magnetic field magnitude is exactly the same,
with opposite horizontal direction, so their horizontal contributions cancel out! The same
happens with the magnetic field contribution of the currents colored in brown and green.
Therefore, counting all contributions, the resultant magnetic field points upwards!

Now, for points outside the solenoid, what is the direction of the magnetic field? Let’s
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analyze point P; (something similar happens to point P; and you can check it out in
analogy to point P; by yourself). The magnetic field vectors colored in pink and blue are
shorter than the other two vectors because the in-going towards the page currents colored
in blue and pink are further to point P; than the other two currents. So, necessarily the
magnetic field magnitudes generated by these two currents are smaller. Once again notice
that the horizontal contribution of the magnetic field are cancelled by pairs; the magnetic
field represented in pink color, its horizontal component its cancelled by the blue vector
magnetic field, and also happens the same with the other two vectors. Now, at point
Py, the in the vertical direction, there will be contribution of the magnetic field upwards
and downwards. However, the magnetic field contributions upwards are smaller than the
contributions downwards. So, the resultant magnetic field is downwards!
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Figure 8.18

We have found then, that outside at any point, the magnetic field direction is down-
wards as shown in figure and at any point inside the solenoid the magnetic field
direction is upwards as also shown in figure [8.17a] If the current direction were opposite
to what we have assumed, then the magnetic lines inside would be pointing downwards,
and outside the magnetic field lines would be pointing upwards!

So, now let’s apply Ampere’s Law to know what is the magnitude of the magnetic field
inside and outside the infinite solenoid. Let’s start with the magnitude of the magnetic
field outside the solenoid. Before we apply Ampere’s Law, let’s point out that at infinity,
the magnetic field magnitude generated by the solenoid must be |§ | = 0. Recalling that

CHAPTER 8. SOURCES OF MAGNETIC FIELD 223



Electromagnetism Rafael Espinosa Castaneda

the contribution of the magnetic field of any current, by Bio-Savart Law decreases as 1/,
then as r — oo the contribution must vanish. So, here comes the magic! Let’s now apply
Ampere’s Law to the Amperian loop shown at figure |8.18b| Following the direction of
path drawn with dl (clockwise), we have that

L B c D _ A
jl{B~dl:/ B-dl~|—/ B-dl—i—/ B-dl+/ B -dl (8.85)
A B c D

However, given that the magnetic ﬁel(l direction is downwards, it is perpendicular to dl'in
paths A— B and C'— D; furthermore B and dl are parallel in path B —C', and anti-parallel
in path D — A. Hence,

. . C’_) . A_’ . . C . A
]{B-dl:/ B-dl+/ B-dl:\B(b)\/ dl—\B(a)|/ dl (3.86)
B D B D

where we are left with just two integrals because as mentioned, dl are perpendicular to
Bin paths A — B and C' — D so their dot product is zero. In the other two integrals we
took out the magnetic field out of the integral because they are constant all along a path
if the radial distance from the central axis of the solenoid is fixed. The vectors B (b) and
E(a) mean that they are the magnetic fields evaluated at certain distance b and a from
the central axis of the solenoid respectively. Now, applying Ampere’s Law, we have that

§ Bl = |BO)IL - B@IL = oL (8.87)

where we already evaluated the path integrals, that their result is just the length (L) of
the paths B—C and D — A. However, given that the Amperian loop is completely outside
the solenoid, the enclosed current is zero. Therefore,

1B(b)| = |B(a)] (8.83)

The last result tells us that the magnetic field does not depend on the distance from the
solenoid! We could have arbitrary chosen a and b. So, nothing stops us to make b — oc.
But, recall that at infinity the magnetic field magnitude is zero! So,

B(co)| = |B(a)| = 0= |B(a)| (8.89)

and given that a is also any arbitrary distance outside the solenoid, then everywhere out-
side the solenoid the magnetic field is zero! Beautiful!

Now, let’s see what happens inside the solenoid. We take the Amperian Loop shown
in figure [8.18al Therefore, following the path shown in the figure (clockwise), we have

that
L B o o A
]{B-dl:/ B'dl—l—/ B-dl—l—/ B-dl—l—/ B-dl (8.90)
! B/ ! D/
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Now, for trajectory D' — A’, the vector dl is parallel to B, while for all other trajectories
the integration is zero, either because the magnetic field is perpendicular to dl or because
we are outside the solenoid and the magnetic field is zero. Therefore,

O R Y
fB.dz:/ B-d=|B|L = jlee = |B| = =7 (8.91)
D/

where the magnetic field is constant all along the path D’ — A’. The enclosed current
is NI, because there are N wrapped wire loops, each carrying current /. Notice that
N currents are penetrating the area enclosed by our Amperian loop. So, we can define
n = N/L as the number of loops density per unit length. Hence,

|B| = ponl (8.92)

Therefore, we have found that the magnetic field of the infinite solenoid is given by

(8.93)

B— ponly  inside the solenoid
B 0 outside the solenoid

where we gave as ¢ the direction of the field because the magnetic field points upwards.
Once again, if the electric current goes in opposite direction, the magnetic field switches
its direction. This was for an infinite solenoid, in real solenoids, there is a magnetic field
outside. As, we build larger solenoids the magnetic field outside tends to zero and the
magnetic field magnitude inside tends to a constant and uniform magnetic field, with
magnitude ponl. So, this is a good approximation for long solenoids.
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Chapter 9

Electromagnetic Induction

I hope that you enjoy this chapter as much as I did writing it. It is a remarkable and
beautiful topic the one that we are just about to start discussing. The physics behind the
use of electricity at big scales of almost all modern technology lies in the electromagnetic
induction. To mention the greatness of electromagnetic induction, let me give you some
historical context to obtain a grasp. Before approximately 1880's we used to light the
darkness during nights with candles. However, brilliant engineers as Nikola Tesla, with
the use of electromagnetic induction were capable to light entire cities! The kind of
electric current that Tesla used to light up us from darkness is called as alternate current,
and the way to produce such electric current is with electromagnetic induction. Electric
batteries are not necessary to create a voltage across a wire! Remarkable! And even more
surprising, generating just some volts from a battery, now we can elevate electric systems
to huge amounts of volts, elevating to the order of thousands!
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9.1 Magnetic Flux

(a) (b)
Figure 9.1

We define the magnetic flux through a flat surface as
Py=5-A (9.1)

The analogy to the electric flux, if the surface is not flat, in general we can split the
surface in many rectangles, and approximate the magnetic flux through such surface as

N
i=1

If we let the rectangles be extremely small (infinitesimal) the last sum becomes an integral
over the surface:

—

g :/B-M (9.3)
S

And if the surface encloses a volume, we write fs just to denote that we integrate over a
closed surface

Dy = ]{ B-dA (9.4)
S

We haven’t said done anything new in terms of calculations, since this is analog to the
electric case. However there is something conceptually new in here! Recall that the closed
integral of the electric flux gave us Gauss law as:

Op = 7{/}? L dA = ene (9.5)

€0
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Where @, is the enclosed electric charge. Also, remember that when the electric field
lines go out the flux was positive, making sense because that means that you are enclosing
positive electric charge. When the flux was negative, it means that the electric field lines
go into the surface and that you enclosed a negative charge. However, in the magnetic
case each field line that goes out, also goes into any surface that we use to calculate
magnetic flux! To visualize this, think about the case of a current in an infinite wire, the
field lines are circular. So, no matter the shape of the surface you make, all field lines
that go out the surface, inevitably also go in as shown for the case of a sphere in figure
[0.1B] So, for each line that contributes positively in the closed integral in equation [9.4]
there is a negative contribution that cancels out the positive contribution. Hence,

%é-dﬁ:(} (9.6)
S

More specifically we say that in Nature, there are not magnetic mono-poles! We can think
as a mono-pole in the electric case as a positive charge 4+¢q where electric field lines have
an starting point. This is no the case for the magnetic field, there is not such thing as an
isolated magnet with just North pole or South pole. Actually, if you take any magnet, and
you cut it in half, the halves once again have a North and South pole. Cut it again, and
now you have four smaller magnets with south and north pole. And so on and so forth.
We haven’t found in Nature magnetic mono-poles, in case of finding one, what is stated
in last equation would not hold! Last equation will be one of the four Maxwell equations,
with which along with Lorentz force, you can describe all electromagnetic phenomena.
So, if you find some day a magnetic mono-pole, it would be a big deal! A huge discovery.

9.2 Faraday’s Law
“Faraday was once interviewed by reporters when he came up with this law, and they said

to him “ .. So, What?!... So, you get a little bit of electricity... So, What?! 7 His
answer was “Someday you will tax it”... And he was right. .. he had vision ”

— Walter Lewin

Picture the following three experiments

r——-=-=-=- - ——— - - r—-=-=-=
|x‘\xxx’| |x‘xxx=l |xAxxx|
| XTx x x| lXXXXIl | XTx x x|
Ix|x x x ! Ix|x x x ! Ix|[X X x |
IX X X X | I X X X X T I X X X x|

Figure 9.2
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e In figure 0.2a we have a source of magnetic field which is constant. Then you move
the closed wire with certain speed v to the right as shown in figure [9.2a] If you
connect such wire to a voltmeter you register a potential difference. Wait! What?!
A voltage?! But there is no battery! How possibly is there an electromotive force
(emf)? Also, of course given that there is a voltage, a current is produced as shown
in figure [9.2al If you move the closed wire to the opposite direction with certain
speed —v to the left, an opposite direction electric current is produced and a voltage
with opposite sign is registered in the voltmeter. This is beautiful! Think beyond
the results of the experiment. Imagine the possibilities! The experiment tells you
that you don’t need a battery to create an emf! Not wires connected to a battery,
just move the circuit inside the magnetic field.

e In figure [9.2b)the magnetic field source is moved and the closed wire is maintained
static. A current and certain emf are registered in the wire if you connect it to a
voltmeter. Once again, no batteries connected to the wire,and even so, there is a
current and an emf.

e In figure(9.2d| the field field source and the closed wire do not move. However, there
is a change of the strength of the magnetic field (its magnitude). A current and efm
are generated once again!

These experimental results can be summarized in one equation

ddp

-— (9.7)

E =

known as Faraday’s Law, where ®g is the magnetic flux through the surface area en-
closed by the loop wire. What Faraday’s Law establishes is that whenever there is a
change in the magnetic flux through the enclosed area of a closed loop, there will be an
induced emf and current.

If we substitute in the last equation the magnetic flux in equation [0.3] we have that

d = v d (3
c = _E </B.dA) = _/ﬁ (‘B’dACOS@AB) (9-8>

so, notice that an emf can be produced whenever you change either the magnitude of the
magnetic field, the area where the magnetic field lines crosses the area, the angle between
the magnetic field and the area vector (04p) or any combination of them. In general, if
the conductor wire which an emf is induced has several loops, equation becomes

ddp
=-N—" 9.9
2 o (9.9)

where N is the number of wrapped loops of the wire.
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Now, probably you ask yourself “What is actually the direction of the area vector in the
magnetic flux?” In the previous section, we said that it is perpendicular to loop surface.
However, there are two directions which can achieve this. To be consistent with possible
results of Faraday’s Law, we use a right hand rule again. Stick your thumb finger of your
right hand in the direction of the area vector and your fingers curl in the direction of the
loop (see diagrams in figure . If ¢ < 0, it means that the direction of the induced
electric current is opposite to the direction of you curled fingers. If € > 0, it means that
the electric current direction is the direction of your curled fingers. So, see (diagrams in
figure to practice what would be the direction of the induced current and emf.

Figure 9.3

The minus sign in equation is extremely important. So important that the fact
that the minus sign is placed in there we call it as Lenz Law. The minus sign in Faraday’s
Law says that Nature opposes to the change of magnetic flur. Whatever is the source
of the electric current induced in the conducting wire, this electric current will create a
magnetic field in such a way that will try to oppose to the change of magnetic flux. So,
in general we state that
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Lenz Law: The induced electric current in a loop conducting wire is in such
direction that it creates a magnetic field that opposes the change of the magnetic
flux.

X ® X % X X
-

2 ® ® % «B

xxxF’XxX

L Rgx % «—

Figure 9.4

In order to get a better grasp, suppose the following scenario. Suppose two parallel
conducting bars are connected to a resistance as shown in figure[9.4] A constant magnetic
field is applied all along between the two parallel conducting wires as shown in the figure.
Now, you place a third conducting bar perpendicular to the other two bars. We establish
the direction of the area vector the same as the magnetic field. Now, we give a little push
to the bar and suppose that there is no friction between the conducting bars. When the
bar starts to move to +z the magnetic flux increases, because the area gets bigger and

bigger. Therefore,
ddp

dt
but, Lenz law stablishes that the induced current must be so that the magnetic field
that it produces opposes to the change of the external magnetic flux.

>0 (9.10)

ddp
dt
so, given that the magnetic field is going towards the page, the induced magnetic field
must be outwards the page. So, the induced electric current must travel anti-clockwise
(check this with right hand rule).
Now, if the bar moves from left to right, the magnetic flux decreases, because the area
gets smaller and smaller. Therefore,

<0 (9.11)

E =

ddp

dt
however, by Lenz law the induced current must go clockwise so that the generated mag-
netic field opposes the change.

<0 (9.12)

ddp

T Ta

>0 (9.13)
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so, the magnetic field direction is towards the page. In either case, the induced electric
current will tend to maintain the original magnetic flux through the enclosed area by the
loop of the current.

Example 1: Practicing Lenz Law

For each case shown in figure determine the direction of the electric current

r- T3
| X X X XBI
| X X | U
P —
| X X I
I X X X X |
I X X X X |
T35
(a)
q
> =
—
< AN
3
< \
= /
< //H
(d)
Figure 9.5
Solution:
For each of the cases, we need to calculate the change with respect time of the magnetic
flux

ddp d S d =
o T (/B . dA) == </ |B|dAcos€BA) (9.14)

where 0p4 is the angle between the magnetic field and the area vector. For each case a
direction of the area vector must be given to determine the change in the flux. So, we
consider the area vector such that we do not have to worry about the sign of cosfgx
(except for the case in figure [9.5d)). So, we choose the direction the area vector so that
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the angle between the area vector and the magnetic field is 0 < g4 < 90 (except for

9.5d)), so cosfpa > 0.

a)

For figure notice that while the circle is inside the magnetic field there is no
electric current, because even if the coil is moving, there is no change in the magnetic
flux and we assume that the magnetic field is uniform all along the square of length
7.0r. If we use as the origin of our reference frame in the dotted axis and the area
vector towards the page as shown in the figure [9.5a, and call as x the position of
point P shown in the figure, when 3.5r < x < 4.5r there will be an electric current
in the wire. Whenever there is a portion of the enclosed area by the loop (the red
circle) outside the region of the magnetic field and a portion of the enclosed area
by the loop inside the magnetic field region, there will be a change in the magnetic
flux, and therefore a current. Using the convention of the figure[9.5a] the vector area
points in the same direction of the magnetic field . So the vector dl runs clockwise.
When the circle starts to get out of the magnetic field region, the magnetic flux
decreases because less magnetic field lines crosses the area A. So

dd
d_tB <0  when35r<z<4br=¢>0  when3.5r<z<45 (9.15)

So, given that e is positive, then the current flows in the direction of dl. So, the
electric current flows clockwise when 3.5 < x < 4.5r. Once the complete circle is
outside of the region of the magnetic field, the electric current stops flowing , there
is no more change in the magnetic flux.

In figure the arrows show that the squared circuit decreases its enclosed area.
We make that the area vector goes into the page, so that the vector dl'is clockwise.
In such case, then the magnetic flux through the area decreases ( less magnetic field
lines crosses the area enclosed by the squared circuit). Therefore,

dd
d—tB<0:>s>0 (9.16)

therefore, given that € > 0 the induced electric current flows clockwise in the same
direction of dl

In figure 9.5c, we have that the magnet is going away from the loop. We place the

area vector towards the page, such that dl is clockwise. Given that the magnetic
1

field strength is proportional to -z, we know that further the magnet, lower the
magnitude of the magnetic field. So, as the magnet moves away from the loop with
velocity v

dd
Ef<0:$€>0 (9.17)

Hence, given that ¢ > 0 the induced electric current flows clockwise in the same
direction of dl
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d)

For figure , let’s place the area vector pointing outwards the page. In radians, the
angle between the magnetic field and the area vector at any time t is Op4 = wt+7/2,
where we have the 7/2 because at time ¢ = 0 the magnetic field and the area vector
are perpendicular. So, the magnetic flux is

By = /é < dA = | B| cos (wt +7/2) A (9.18)

and we have that the induced emf is

4P .
5—~7ﬁ§::LBhuﬂn(wt4—ﬂ/2)A (9.19)

Therefore, the induced emf ¢ is positive and negative every some certain time. Also,
there will be some moments when the electric current and the induced emf is zero!

More specifically the current is zero very time the argument of the sine function is
nm (where n is any integer number),

T 1
wt' + /2 =nt =1t = — (n——) (9.20)

w 2
So, given that e changes its sign (after being zero any time ¢’ given in |9.20) then
the current will be flowing clockwise and anticlockwise. This kind of electric current
which changes its direction every certain period of time is known as alternate current.

For figure we choose the area vector pointing to the right. Now, since the
magnet is getting closer to the ring, then the magnetic field magnitude increases,
because closer to the source of the magnetic field greater its magnitude. So,

dd
Ef>0:$5<0 (9.21)

the electric current flows in contrary direction of dl. In figure is shown the
direction of the induced electric current.

For figure we choose the area vector pointing to the right. Now, since the
magnet is getting further from the ring, then the magnetic field magnitude decreases,
because further to the source of the magnetic field smaller its magnitude. So,

dd
E§<0::e>o (9.22)

the electric current flows in the direction of di. In figure is shown the direction
of the induced electric current.
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Example 2: Inducing current using a variable current in a toroid

coil with

Figure 9.6

A toroid of rectangular cross sectional area A = axb, where a = 2.0cm and b = 3.0cm with
internal radius R = 4.0cm is made up of N = 500 loops of conducting wire. The electric
current carried by each loop is given by the function I = I,,,,, sinwt, where I,,,,. = 50.0A.
The frequency f = 60Htz. So, another conducting wire is wrapped around certain section
of the toroid as shown in figure [0.6] The wrapped conducting wire has N’ = 20 loops.

e Determine the induced emf in the wrapped conducting wire with N’ loops, as
function of time.

e If the resistance of the conducting wrapped wire with N’ loops is R = 20€2. What
is the electric current as function of time?

Solution:
So, first of all let’s calculate the magnetic flux through one loop of the wrapped conducting
wire with N’ loops. So,

p, = /é.dg:/“gmcm (9.23)

wr

where we used the magnitude of the magnetic field generated by a toroid with N loops
(equation and r is a radial distance from the axis of the toroid to any point. Also,
we have that the differential of area dA had exactly the same direction of the magnetic
field. Now, using the function of the electric current given by the exercise, we have that

the magnetic flux is
N1z sin (wt
O, = / Ko sin (@) ;.4 (9.24)

2rr
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From figure [9.6] we can see that a differential of area in the rectangular loop is
dA = adr (9.25)
So, the magnetic flux is

o N e Sin (wt) /R+b dr  poNI e sin (wt) (R + b)
a — = aln

bp, —
Bt 2w R r 2m R

(9.26)

where we took out from the integral all terms that are independent of r. Also, the integra-
tion limits follow because we are interested to calculate the magnetic flux in the squared
coil which has internal radius R and outer radius R + b (see figure [9.6)).

Once we know the magnetic flux through one loop, we just multiply by the number of
loops to obtain the total flux. So,

NI b
dp =N’ (,uo 2;“”& In <R;— ) sin (wt)) (9.27)

Now that we know the total magnetic flux, we are in position to calculate the change
of magnetic flux, which will just be the time derivative of last equation. Therefore,

) NI
d®p = Nlghomaa (R;— b) cos (wt) (9.28)

dt 2

Therefore, the induced emf

d®p , Mo Lnaza R+b
= N'w 5 In ( I ) cos (wt) (9.29)

E =

So, let’s just plug in now the values

NI b
_ NN fmaza ) <R;) _
2 R

(47 x 1077E2) (500) (50A) (2 x 10~%m) | (4 x 107?m + 3 x 10—2m>
n

— (20) (27 - 60H¢
(20) (27 - 60Htz) 2 4% 102m

~ —0.42V
(9.30)
Therefore, the induced emf is

d
e = —0.42V cos (376.99%t) (9.31)

where we used that w = 27 f. Finally, using ohm’s law, the function of the induced electric
current is

€ 0.42V rad rad
[=—=— 376.99—¢ | = —0.021A 376.99—¢ 9.32
Rq 2002 o ( S ) o ( S ) ( )

CHAPTER 9. ELECTROMAGNETIC INDUCTION 239



Electromagnetism Rafael Espinosa Castaneda

9.3 Motional emf

Faraday’s Law mentions that any time there is a change in the magnetic flux in the closed
loop an emf will be induced. However, why is that such emf is induced? There are two
reasons to such induction. The first one has to do with Lorentz Force, which we discuss in
this section. The second one has huge implications in physics as we will see, and we will
discuss broadly about these implications. However, we wait until we cover both reasons
of the induction of the emf, so that our discussion is much richer.

X
X a % B X X x X% X X
T 2
X X %X X <—7 o
F=qvB X ®X ® & X X
X X -% X B
L Y X % ® % X X
x x d ® — > |L
X % % % x X
X X X X 3
X X X X% X x X
S XJLF ® G X %% & -
H
b
(a) (b)
Figure 9.7

Suppose there is a constant and uniform magnetic field, and an external agent moves
a straight bar with constant velocity through the magnetic field as shown in figure [9.7a]
Since, the bar is moving with certain velocity ¢ then a force is exerted on the electric
charges of the bar. Depending on their sign, the exerted force is either upwards for
positive charges or downwards for negative charges due to the magnetic force (given by
equation . Therefore, positive charges will move upwards to the end of the bar, and
negative charges to the opposite end of the bar as shown in figure[9.7al So, as the electric
charges start to accumulate at the ends of the bar, a potential difference is established.
A moment comes when the potential difference is big enough to create an electric field
such that the force exerted on the charges is balanced out with the electric force exerted
on them, i.e. . . . .
|Psl = |l = ol BI|5] = ql B (9.33)

Taking into account that for the bar of lenght L, the potential difference is AV = |E|L
(assuming that the electric field is constant). Then, we have that

AV = |B||7||L (9.34)
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Now, suppose this same bar, now sliding above two rails with a U shaped wire with total
resistance R as shown in figure [0.7b] For simplicity let’s assume that there is no friction
between the rails and the sliding bar. As the bar moves, the area gets bigger and bigger
so the magnetic flux through the enclosed area grows. Explicitly

&y = |B|Lx (9.35)

where x is the position of the bar at certain time ¢ and the area is Lz. Also, we used the
direction of the area vector in the same direction of the magnetic field. Therefore,

dlp d /- ;
_ s _ 4 BL):-BL* .
o= -0 L (1B = 1Bl (9.36)

Notice that the magnitude of the induced emf is the same of the voltage we obtained
analyzing the bar just with Lorentz force. The minus sign of the last equation just means
that the current has to travel other way around to what we established. And make sense!
We used the area vector to the same direction of the magnetic field so your curled fingers
direction is clock-wise. So the electric current instead of travelling clockwise , it trav-
els anti-clock wise. So, our discussion of the emf induced with Faraday’s Law coincides
exactly with our physical analysis with the magnetic force exerted on the charges. In
general, for the particular case when the closed loop wire moves, the induced emf is called
as motional emf.

If we want to calculate the electric current, we can easily obtain it just using Ohm’s
Law

|BIL|7]
R

c=RI=1=—= (9.37)

where we ignored the minus sign, because you can switch the direction of the current to
the correct direction and leave it as positive.
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Ut <, -
P dA I LS,

Figure 9.8: C represents the closed path of the circuit at time ¢. Such circuit carries
certain current /. Then, the circuit moves, and finishes with an arbitrary shape. When
the closed circuit has moved, it arrives in the configuration of path C5. The path Cj
represents the exact same circuit after it has moved in certain infinitesimal time dt. The
surfaces S; and S, are the enclosed areas by the circuit in its initial configuration and
final configuration respectively. Surfaces Si, Sy and the side gridded surface S; enclose
certain volume.

Now, what is the relation between Faraday’s Law and the motional emf for any general
case? We will study when the circuit starts with any arbitrary shape, moves to any arbi-
trary direction and finishes with any arbitrary shape. All these happening in a differential
of time dt. So, we build an arbitrary shape of a closed loop at time ¢ and a final arbitrary
shape of the same closed loop which has moved in an infinitesimal time dt to an arbitrary
direction (see figure . So, we have that the change of magnetic flux, the difference of
magnetic flux between the initial configuration of the wire and the final configuration of
the wire is

d® = O(t + dt) — (1) :/

é-d,af—/ B-dA (9.38)
SQ Sl

i.e. we are calculating the difference of magnetic flux through surface S and S;. Now,
we will do a smart move. We create a surface S3 that joins surfaces S; and Ss, in such
way that surfaces S, S and S5 make a closed surface (a surface that encloses a volume).
So, we know from equation that

7{153 CdA=0 (9.39)
so, if we use as the closed surface the union of Sy, Sy and S3, we have that

]{é.dg:/ p:.dm/ E-d/ﬂ/ B.dA—0 (9.40)
So S1 S3

Now, we do not know what is the direction of the magnetic field, because we are dealing
with a very general case, the magnetic field lines could be pointing any direction. However,
we know this “If the magnetic field lines goes into surface Sy, then the magnetic field lines
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must go outwards at least one (could be both) of the surfaces Sy and Ss. Because magnetic
field lines make closed loops. And this holds for any other arbitrary surface S1,S5 or Ss. If
the magnetic field lines go into surface Sy, then the magnetic field lines must go outwards
at least one (could be both) of the surfaces Sy and Ss. If the magnetic field lines go into
surface Sz,then the magnetic field lines must go outwards at least one (could be both) of
the surfaces S, and S,.” What is important about this observation, is that two surfaces
magnetic flux have the opposite sign of the third surface. Therefore, we have that

/é.dg_/ é.m_/ Bedi=o0 (9.41)
S2 Sl SS

Hence, isolating the difference of the magnetic flux through surface Sy and Sy, we have
that

dd = by, = / B-dA (9.42)
S3

i.e. the change of the magnetic flux is the magnetic flux through surface S3. Now, let’s
call 7, the velocity of the wire and v, the velocity of the electric charges down the wire.
Therefore, the total velocity of the electric charges is

7=, + 0, (9.43)

Now, notice that we can write dA (the differentials of areas of the surface Ss, see figure

9.8) as

dA = (v; x df) dt (9.44)

% - ]fé- (v;, X df) (9.45)

where notice that the integral is now a closed integral. The reason is simple, now you are

Therefore ,

integrating with respect dl. We need that the differential area dA = (vﬁ, X df) dt sweeps

out all the surface S3. We achieve this by making the vector dl travel all the closed path
(1 that encloses the area S;. Now, since v, and dl have the same direction, we have that

Txdl = (G4 0.) x dl = Ty x dl (9.46)
So, equation becomes
@:}[é- (def) (9.47)
dt
Now, we have that
é-(ﬁxdlj:—(ﬁxé)-df (9.48)

(you can check this by yourself). Hence, equation becomes

4o B I T B & I
E_—%QJXB)@ZZ_—%&(qv><B>~dl_—7{5FB~dl:>a—7{qFB~dl(9.49)
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where notice once again we obtain that the responsible of the induced emf is the magnetic
force! Of course the repeated ¢'s are unnecessary. They were written to show that the
magnetic force is indirectly present in last equation. We could actually say that the force
per unit charge Fy /q is present in the last equation.

So, we have that in general for motional emf in closed loop

5:—%:]{@“ é)-df (9.50)

Important to remark, is that a motional emf is induced not necessarily in closed loops.
If an open wire with any shape moves with velocity ¢ in any non-uniform magnetic field
(so the magnetic field can vary from point to point), the induced emf is given by

€= / <17>< E) -dl] (9.51)

The first example that we have already discussed of this induced emf is the straight wire
moving with velocity .

Example 3: Force acting on a conductor sliding bar

X % R R % %
r—

® ® %R X % xB

% % RNEFX

L Rgx % <5

Figure 9.9

The conductor bar shown in figure slides without friction over two parallel conductor
rails. There is a magnetic field towards the page as shown in the figure. The sliding bar
has certain mass m and length L. The bar is pushed and has certain initial velocity v; to
the right.

e Find the velocity of the bar by using Newton’s Laws

e Show that the same result is found by using conservation of energy
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Solution:

If there is no friction, then the only force applied to the bar is the magnetic force.
Therefore, by second Newton’s Law

ma, = —Fg = —IL|B] (9.52)

where the minus sign follows because the force is applied to —z, and we substituted the
force exerted on a straight wire where the magnetic field is perpendicular to the electric

current (equation [7.78). Now , recall that a, = %‘”, therefore

(9.53)

dt mdt

dv,  ILB _ dv, <BLUI> LB
R

m

where we used equation for the electric current. So, separating variables and inte-
grating we have

vz ] B2[2 t B2[2
/ Gl _ _ = dt:»ln(“_f)__ ¢ (9.54)

0w Uz m 0 Vox mR

Hence the velocity is
2712
Uy = voge B L7t/mE (9.55)

Now, if we apply conservation of energy, we have the following
—AK = Eg (9.56)

where Ef is the energy stored in the resistance of the circuit. Probably there is no friction
between the rails and the bar, however there is an electric current which the collision of
the electrons with the material release heat. So, what last equation is saying is that as the
bar looses kinetic energy, the resistor gains energy as heat. If we divide the last equation
by time At, we obtain units of power (J/s). Therefore, last equation becomes

AK
= _p .
IR (9.57)

where the label R is just to let know that is the power due to Joule effect (heat transferred
to the resistance). Now, if we let the time At — 0, the value will be exact not just an
approximation. So,

dK

— =I’R 9.58

o (9.58)
where used equation for the Joule heat, which was substituted in the right-hand side
of the equation and the left-hand side became a differentiation because we took the limit

of At — 0. So, substituting the kinetic energy

d (1 ,\ ., dv, (BLv,\"
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where we used equation for the electric current and derived the velocity with respect
time using the chain rule. Finally, separating variables

Vg d v BQLQ t
/ U” = -— / dt (9.60)
v T 0

ox

which is exactly the same integration we obtained when we used Newton’s Laws, so the
final result will be exactly the same

Uy = vgge B LHME (9.61)

as it should! It could not be that energy conservation result were different to the result
applying Newton’s laws.

Example 4: Emf induced in a rotating bar

A conducting bar of length L rotates with constant angular speed w as shown in figure
9.10l A constant and uniform magnetic field is perpendicular to the plane of rotation of
the bar. Find the induced emf between the ends of the bar.

X - X X X X

B

X

Figure 9.10

Solution:
First of all, can we use Faraday’s Law? No! Because Faraday’s Law applies for closed
loops, in this case there is no closed circuit, just the bar. However, even though there is an
emf induced. Why? Because the bar is moving with angular velocity and a magnetic force
will be exerted to all the electric charges of the bar, making positive charges go to one of
the ends of the bar, while the negative while move to the other end of the bar, making
a potential difference between the ends. It is similar to what we saw in the moving bar
horizontally. Now, if we cut the bar in infinitesimal chunks, you can visualize that each
infinitesimal chunk has a certain tangent speed v = wr where r is the radial distance from
the axis of rotation to the infinitesimal chunk. Now every single small chunk generates
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an infinitesimal emf de = Buvdr and we can think as the complete bar as made of tons
of small batteries in parallel with magnitude emf de. Given that when batteries are in
parallel the efm sum, we have that the magnitude of the emf is

€= /ds —/ | Blwrdr = |B|w— (9.62)

where the limits of integration follow because we cover the whole bar. Now, before we are
done, notice that when the bar moves, the exerted magnetic force on the electric charges
will make that the positive charges move to the axis of rotation, while the negative charges
will move to the top end of the bar (use the right hand rule to see the direction of the
exerted force on the electric charges). Since we started measuring the emf from the axis
of rotation to the end of the bar, then the emf is

:43@— (9.63)

where the negative sign means that the electric current will flow from the end of the bar
towards the axis of rotation. In this exercise we used lots of physical intuition to solve
the problem. However, what if we use equation [9.517 We have that

V=& %7 (9.64)

where ¥ is the tangent velocity of each electric charge , and 7 is the vector starting from
the axis of rotation to the position of the electric charges. So, we have that

€:/<(Q><F)><§>~df (9.65)

where we used that for this case dl = dF. Now, the direction of the vector v = & x 7 is
already known due to the direction of movement of the bar. And the direction of @' x B,
using the right hand rule is towards the axis of rotation as shown in the figure. So,
(W X T) x B and d7 are anti-parallel (see the direction of dr in figure . So, equation
[9.65] becomes

L2
- / | Blurdr = ~| Blw-- (9.66)

where the limits of integration have been already included. Notice we have obtained the
same magnitude, and the advantage is that we already know the sign of ¢, so we already
know the direction of the current, and much less intuition needed to solve the complete
problem. Just straightforward use of cross products.

Example 5: Induced emf in a Moving Loop

A squared conducting wire, with dimensions L, w and resistance R, moves with constant
speed v to the right as shown in the figure[9.11al There is a uniform and constant magnetic
field towards the page as shown in figure [9.1Tal If x is the position of the right-hand side
of the squared loop along the x — axis
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e Make a plot of the magnetic flux through the enclosed area of the squared loop as

function of position x

e Make a plot of the induced emf in the squared loop as function of position =

e Make a plot of the force an external agent needs to apply to the squared loop to
counter the magnetic force exerted on the loop so that its speed is constant

L X X X X X
w X X X X X
X X X X X
0
(a)
EA
BlLjg |- -~ - - - — — _
w
g 3w 4w x
~|BILI# |-

(c) Plot of the induced emf in the squared
loop with respect to the position of the
right-hand side wire of the squared loop in
figure The plot is based on equations

9.68L 9.72|7 9.75|and 9.79}

(I)BA

|B|Lw |

/ I
I
| >

9] w 3w 4w €T

(b) Plot of the electric flux through the enclosed
area of squared loop with respect to the position
of the right-hand side wire of the squared loop
in figure The plot is based on equations

9.6 7L 9.71|, lm and 9.78}

Fy

|BI2L2[o]
R

O w 3w 4w§

(d) Plot of the external force exerted on the
squared loop with respect to the position
of the right-hand side wire of the squared
loop in figure The plot is based on

equations 9.70L 9.73|7 9.77|and 9.80}

Figure 9.11

Solution:
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First of all, we establish the direction of the vector dl in the closed loop of the square
circuit clockwise, so that the area vector points towards the page (exactly the same
direction of the magnetic field in figure [9.11al Notice in figure that when the right
hand side of the squared loop is to the right of position O, i.e. when x > 0 , there is
necessarily a flux through the loop. Given that the magnetic field is constant, we have
that

®p = |B|A=|B|Lz for0<z<w (9.67)

where A is the area where there is magnetic flux in the loop. So ,the change of the
magnetic flux in the range 0 < z < w is

dd — _
d—tB — |B|L|5|  for 0 <z <w = ¢ = —|B|L|7] (9.68)
where we used that the speed is %. Given that the induced emf is negative, then the

electric current travels in the opposite direction of the established vector dl. So, the
current flows anti-clockwise. If it is the case, then, by the right hand rule the magnetic
field force exerted on the right-hand side wire of the squared circuit is

BT |7 327 2|7
Fy=1ILxB=—IL|Bli = - <|B‘L‘“’> LB| = —[BEE (9.69)
R R

where notice that the only magnetic force exerted is on the right-hand side wire of the
squared loop, because the left-hand side wire of the squared loop still is outside of the
range of the magnetic field, and the top and bottom parts of the squared loop, their
forces cancel out (same magnitude opposite directions). Also, we applied ohm’s law ( as
we did to obtain equation . However, given that the velocity is constant, the force
exerted by an external agent must be of the same magnitude as the magnetic force but
with opposite direction. Hence

_|BPLY

Fy
R

for 0 < x <w (9.70)
where F), is the external force exerted on the squared loop by an external agent to keep
a constant speed.

Once the squared loop is completely immersed in the magnetic field, the magnetic flux
reaches a maximum value (the area where there is flux does not increase any more, it
is now the total area of the squared loop) and remains constant until the squared loop
right-hand side wire reaches z = 3w (see figure [9.114)). So,

$p = |B|Lw for w < x < 3w (9.71)

where Lw is the area of the squared loop. So, given that the magnetic flux is constant,
then the emf is zero
e=0 forw<az<3w (9.72)

CHAPTER 9. ELECTROMAGNETIC INDUCTION 249



Electromagnetism Rafael Espinosa Castaneda

hence, there is no induced current in the squared loop. In such case there is no magnetic
force exerted on the squared loop. Therefore, there is no need to apply an external force
to maintain a constant speed ( if we apply a force actually we accelerate the squared
loop). Thus,

F,=0 for w < x < 3w (9.73)

Once the right-hand side wire of the squared loop is in the range 3w < x < 4w, some
area of the loop is not any more immersed in the magnetic field. So the magnetic flux
changes, and once again an induced current flows in the loop.

&5 = |B|A = |B|L (4w — ) for 3w <z < 4w (9.74)
where A = L (z — 3w) is the area where there is magnetic flux in the squared loop. So
,the induced emf

ddp
dt
given that ¢ > 0 then the current flows in the direction of vector dlﬁ, so current flows

clockwise and the magnetic force exerted on the left-hand side wire of the loop, by using
the right-hand rule, is

ﬁ Lo _ B|L|7 _ B|2L%|7
Fy=1ILxB=—IL|Bli=— (' ‘;”’) L|B| = 1B (9.76)

— —|B|L|7]  for 3w < z < 4w => ¢ = | B|L|7] (9.75)

R

where notice that only a magnetic force exerted is on the left-hand side wire of the squared
loop, because the right-hand side wire of the squared loop now is outside of the range of
the magnetic field, and the top and bottom parts of the loop, the exerted forces cancel out
(same magnitude opposite directions). Once again, given that the velocity is constant,
the force exerted by an external agent must be of the same magnitude as the magnetic
force but with opposite direction. Hence

_|BPPLY]
N R

Finally, once the squared loop is completely outside the magnetic field range (for x > 4w),
there is no more magnetic flux

F, for 3w < x < 4w (9.77)

b5 =0 for x > 4w (9.78)

therefore no induced emf
e=0 for z > 4w (9.79)

consequently no induced electric current, so no magnetic force exerted on the squared
loop, so no necessity of applying an external force to maintain the squared loop moving
with constant speed

F,=0  forz>4w (9.80)

So, the plots of the magnetic flux, the induced emf and the needed external force to
maintain the squared loop to move with constant speed are in figures [9.11h| and
Q.11d
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9.4 The war of the currents

=)

(a) George Westinghouse (b) Nikola Tesla (c) Thomas Alva Edison

Figure 9.12: Original pictures taken from references [19],[20] and [21] respectively.

The war of the currents was a period of time that took place as an intellectual (and
monetary interests) revelry between those engineers and scientists that supported the di-
rect current and the alternate current. More specifically this took place in the United
States during the late 1880's and early 1890's. After the war of the currents took place,
the world would never be the same. The war ended in 1893 when the alternate current
showed its power in the Chicago’s World Fair. In this war, we have two giants as leaders,
George Westinghouse who wanted to supply electric energy to all U.S.A with alternate
current, and Thomas Alva Edison who was the counterpart trying to supply direct cur-
rent. By the time the War started, Thomas Alva Edison was already like a rock star of
science and engineering in those days. He had tremendous influence and the support of
one of the most powerful bankers J.P. Morgan. So, whatever he mentioned about the
alternate current to general public, they would believe him. So, when Westinghouse was
trying to expand in the USA using alternate current, Thomas Alva Edison made public
demonstrations electrifying and killing animals, saying that he used alternate current in
such demonstrations and spreading the idea that alternate current was dangerous. When
Westinghouse was almost overthrown, a genius appeared into the action, the giant Nikola
Tesla (years before was hired by Thomas Alva Edison, however Edison did not support
Nikola’s ideas). He invented a poly-phase motor that could make a completely integrated
alternate current (AC) system. In May 1892, George Westinghouse won the contract to
light the famous Chicago’s Fair. One year later, on May 1rst 1983, when the night came,
the world witnessed the most incredible display of lights that had ever been seen before!
This was the ultimate proof that alternate current was more powerful and cheaper than
direct current. Then, Westinghouse won the contract to make a electric power plant at
the Niagara Falls, an idea that came from the brilliant Nikola Tesla.
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Figure 9.13: The Chicago World’s Fair in 1893. Before that night, the human beings
had never seen before such an amazing spectacle. Complete blocks were illuminated by
thousands of lights. It was that night that the Alternate Current showed its power.
Original picture taken from reference [22].

In this section, we discuss three electric devices. Two of them (the alternator and the
transformer) are cornerstones for alternate current, while Faraday’s Dynamo is a device
that can produce direct current. For all of these devices their physical functioning basis
lies in Faraday’s Law. Finally, we make a quantitative comparison between alternate and
direct current, showing the greatness of the alternate current.

Example 6: Faraday’s Dynamo

A conductor disk of radius R rotates with a constant angular speed w about its central
axis as shown in figure . If the the disk is immersed in a constant magnetic field B as
shown in figure determine the emf induced between the center of the disk and the
border of the disk. Solution:

We cannot apply the flux rule for this case. The calculation of an induced emf must be
along a closed loop, and in this case the electric current will low radially in all directions
in the disk. There is a motional emf because the electric charges in the disk are moving
respect to the magnetic field. The tangent velocity of each charge is

V=& x7 (9.81)

So, using equation [9.51], we have that the induced emf is

g:/((wxf‘)x§>~df (9.82)
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X

Figure 9.14

where we used dl = dF. Now, the direction of the vector v = & x 7’ is already known due
to the direction of movement of the disk. And the direction of ¢ x g, using the right
hand rule is radially away the axis of rotation. For example as shown in figure , the
current would be flowing through the sliding conductor contact in b. So, (J x 7) X B and
dr are parallel. Therefore, the emf is

2

- = R
€= / |Blwrdr = |Blw (9.83)
0

2
Notice, that the induced emf is exactly the same magnitude as the bar in example 4! In
this case we obtained an opposite sign, because the magnetic field has opposite direction
to the magnetic field in the example 4. We can think that the disk is composed of several
bars of infinitesimal width, each generating an emf of magnitude |B |wR72. Using a bar to
generate an emf is not very practical as using the disk. If you place an sliding conductor
contact at the edge of the disc, and another at the center, then you have continuously a
constant flowing of electric current and emf as shown in figure 9.14 However, for the bar
this is not possible. Since the sign of the emf does not change with time (unless suddenly
the disc rotates to the opposite direction or the magnetic field changes its direction), you
create a direct current out of this device. Thomas Alva Edison used Dynamos to generate
direct current and supply electricity to neighborhoods in New York.

Example 7: The Alternator

The figure 9.15| shows a simple version of an alternator which loop moves with constant
angular speed. The figure [9.15 shows different stages of the loop which moves. Given
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that the induced emf in the alternator is not constant and changes its sign, the electric
current induced in the wire changes its direction. The kind of electric current induced
is called alternate current. The loop rotates with a constant angular speed w as shown
in the figure. The magnetic field B is constant and uniform. At time ¢ = 0, the angle
between the magnetic field and the area vector is ¢ = 0 as shown in figure

e Find the induced efm in the squared loop as function of time

e Find the induced electric current in the squared loop as function of time

- “~

Figure 9.15

Solution:
The angle between the area vector and the magnetic field can be written as

Opa = 6y + wt (984)
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where the label BA just means that is the angle between the magnetic field and the area
vector, w is the angular speed of rotation of the loop and 6y is the initial angle. However,
at t = 0 the angle is zero , so we can just say that

Opa = wt (9.85)
So, the induced emf in the loop is
——i(é E) __ 4 (\EM t) — w|B| A sinwt (9.86)
e=—a = coswt ) = w sin w .

So, notice that this simple device has given us an alternating current! After every t = 2”7"

for n = 1,2,3, ..., the sign of the emf changes, so the direction of the induced electric
current changes. The electric current is given simply by Ohm’s law ¢ = RI, so

sin wt (9.87)

where R is the resistance of the conducting wires. Now think beyond the simple
generator of electricity you see in figure . Suppose you could make something huge!
To give some numbers, for example A = 3m?, and |§ | = 1.0T, and you can make the
loop rotate fast as w = 3600r.p.m ~ 377%. Then using equation we have that the
induced emf is

d
e = 1131Vsin (377%t) (9.88)

No, you make the winding such that it has 350 loops. So, the induced emf is
, rad
395850V sin (377—15) (9.89)
s

Oh my God! You have a device that can generate an exorbitant voltage! With this
amount of voltage, you are capable to transport electricity to places kilometers away from
the alternator! Is this huge amount of voltage used by domestic electrical devices? No!
Before delivering the voltage to houses, the so called transformer is used to decrease the
voltage to approximately 120V (in México, this depends on the country). We talk in the
next example about the transformer.

Now, there are sometimes that the emf is zero, and sometimes the current goes to
one direction and after a while the current will switch its direction. So, if a light bulb
is connected to the the alternator there will be times that the light bulb turns off (you
can think that the resistance in figure is the light bulb ). You will see a blinking
light! This would be terribly annoying. Or even worst! Imagine you close the circuit by
connecting a T.V. to the alternator. It would be turning on and turning off! However,
notice the following, the frequency is

1
f=w/2m = 17999.99~ (9.90)
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So the period is,

1 1
T = 7= T7009.00L — 5.55 x 107°s (9.91)

And in one period, the emf is zero twice. So,

t, = % =2.77 x 107 s (9.92)
where the label z is just to denote that is the time it takes to be zero the emf. So, every
2.77 x 107 %s the emf is zero, so there is no current, and therefore no lights! However, the
time is so tiny that you would not even notice! Unless you have super powers and you can
blink so fast to notice that lights turned off! In the case of the T.V. they have a so called
power supply that changes the alternate current to direct current and also transforms the
voltage to the accurate one for the circuit inside the T.V.

(b) How turbines are used to
make the rotor to spin. The ro-
tor produces a magnetic field with
electromagnets.  The stator is
made of coils of conducting wires
(generally copper) . So, an emf is
induced in the coils of the stator.
Electric current is generated and

(a) The potential energy of water is transformed to ki- transported by the transmission
netic energy. The water makes the blades of the turbine lines to a transformer. The wicket
spin. Once the turbine spins, the generator (the alterna- gates control how water flows into
tor) generates electricity by electromagnetic induction. the turbine.

Figure 9.16: Original pictures taken from references [I7] and [1§].

Now, how is the alternator principle used in the real world? There are several designs
for a power plant. However, we mention how a hydroelectric power plant operates. These
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power plants use water to spin the blades of a turbine. So, the turbine can rotate with a
huge angular speed. Such turbine, moves loops of coil in circular motion where there is a
magnetic field. So, an emf is induced in the coil and an alternating current! That current
is transported with transmission lines to a substation. In that substation the voltage is
increased with transformers and then that is transported kilometers away to costumers.
How beautiful is to think that all our commodity of electricity is due to Faraday’s Law.
In one way or another, we can say that Faraday’s Law moves our economy nowadays. If
it were not by Faraday’s Law, we would not have all the electrical network we have today.
Our economies run due to Faraday’s Law!

Now, you know why Nikola Tesla proposed to use the Niagara Falls to generate alter-
nate current.

Example 8: The Transformer

The device shown in figure [9.17] is called transformer. The transformer consists of two
independent windings, one connected to a source of alternate current, and the other con-
nected to devices with certain resistance R. Both windings wound around a core of iron
as shown in the figure. We can think also, as the first winding is the input and the second
as the output. It is common to call the winding connected to the source of alternate
current as the primary and the winding connected to the resistance R as the secondary.

Suppose a transformer which the primary winding has 20 loops and the secondary has
3500 loops. What would be the voltage in the secondary winding if the voltage in the

primary is AV = 1500V?
: Primary

= ¥
Secondary

\_f/

Figure 9.17

Solution:
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Probably when you the figure in [0.17, you think Ok, a core made of iron, and two
windings wound to it... So, what?! Not big deal... Actually kind of disappointing and bor-
ing. But my dear reader, if you thought that, you couldn’t be more wrong! It is the
simplicity of certain powerful systems that give them much more beauty! So, to get a
grasp what the transformer does and how it works, we will make a simplification of the
transformer, making certain assumptions. However, even though we are making certain
assumptions, this encloses the idea of what a transformer does and how it works.

Let’s start analyzing the primary winding. This coil is connected to an alternate
current source as could be an alternator. So, the electric current is changing its magnitude
and direction every time . So, in the area enclosed by the loops in the primary there is a
changing magnetic flux! Therefore, there is an induced emf

dd

= —N;— 9.93
€1 ldt ( )

where Vi is the number of loops wound in the primary, and % is the change of magnetic
flux in the enclosed area of just one loop in the primary. Notice that €; is a counter emf in
the primary winding. The electric current induced in that winding will be such that will
try to stop the magnetic flux change. Now, since the core is made of iron, the magnetic
dipoles of the core will align to the magnetic field generated by the primary. So, when the
magnitude and direction of the magnetic field of the primary changes, also the direction
of the magnetic dipoles and the magnetic field they generate! So, the dipoles in the core,
generate a changing magnetic flux also in the secondary! For an ideal transformer, the
magnetic flux for one loop of the secondary is the same for one loop of the primary (this is
not true in a real life transformer, there are effects in the material of the core as hysteresis
that makes that the changing magnetic flux is not exactly the same. However, we are
making a simplification). Therefore,

dd
=—Ny— 9.94
€2 2 dt ( )
Therefore,dividing equation [9.93] over equation [9.94] we have that
&1 N1
— = — 9.95
S A (9.95)

and if we assume that the resistance of the windings is negligible (once again making a
simplification), then

AV, N,
AR (9.96)

where the voltage AV; is the voltage supplied to the primary winding and the voltage
AV, is the one induced in the secondary winding. So, we have two cases

e if N7 > N, the output voltage or the voltage in the secondary decreases respect to
the primary voltage.
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e if N, > N the output voltage or the voltage in the secondary increases respect to
the primary voltage.

This principle is used in the transformers in real life. At the power plant, the alterna-
tor supplies certain maximum voltage AV}, and this is then highly increased up with
transformers to the order of approximately around 250,000V — 400,000V (sometimes
even higher). Then, the voltage is too high to be the voltage source to domestic cir-
cuits, so another transformer now reduces the voltage to order of approximately around
2000V — 4000V in a substation. However, the voltage still is too high! Probably you
have seen near your house or near the University a pole mounted device as the one shown
in the figure (figure taken from [24]). That is a transformer! And typically that
reduces the voltage to around 120V (in México). After all those steps, the connections
of our houses will be supplying 120V. We connect then all our electrical devices to that
voltage supply. However, when you are sitting comfortably at your home watching T.V.
or using your computer, many transformers are working to supply you with the correct
voltage, and also working to elevate the voltage to huge amounts of voltage to transport
the electric energy up to your house kilometers away from the power plant. This is beau-
tiful, and Nikola Tesla and George Westinghouse were capable to visualize such power in
the alternate current. In figure there is a simplified cartoon of the steps needed to
trasnport electricity all up to our homes.

Now, could you create a transformer with direct current? NO! Absolutely no! If in
the primary you had direct current, then there would be a magnetic field in the core of
iron, but this would not be changing! And what matters is a changing magnetic flux to
induce an emf, so the beautiful transformers can only exist due to alternate current.

Finally, answering the question of this exercise, isolating AV, in equation [9.96] and
plugging in values, we have that

N, 3500
AVy = Z2AV; = 2221500V = 262500V (9.97)
Ny 20

Wow! An amazing increment of voltage! Now that voltage is enough to transport elec-
tricity to many kilometers from the power plant!

Now, after this discussion. What do you think about that iron core? If you thought it
was boring and not interesting, what about now? It is beautiful the power of the physics
isn’t it?
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(a) A simplified cartoon of how electricity is transported (b) An example of a real
to our homes. transformer

Figure 9.18

Example 9: Alternate Current vs Direct Current

An average of 120kW of power is supplied to a small city by a power plant 80km away
from it. The transmission lines use copper (resistivity p = 1.71 x 1078Q - m) and the
radius of the cables are 3.5cm. Calculate

e the lost of power due to Joule effect if the energy is transmitted with direct current
with 240V.

e the lost of power due to Joule effect if the energy is transmitted with alternate
current with 24, 000V

Solution:

We have glorified alternate current. We have mentioned that it has revolutionized the
way we can transfer electricity to far away from the power plant cities. But, now comes
the time to test how good really is the alternate current. So, let’s do a simple calculation

to show that indeed the alternate current is the winner.

First of all, let’s calculate the resistance of the transmission wires. Using equation
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5.20, we have that

80000
R=171x10"%Q m- S ~0.350 (9.98)
(7 (3.5 x 1072m)”)

where we kept just the first two digits after the decimal point. Now, we firstly analyze
when we use direct current. So, the electric current is given by

P 120 x 10°W

NG 240V

= 500A (9.99)
where P is the power with which is supplied the electric current and we used the voltage
when we use direct current. Now, the power lost by heat in the wires (Joule effect) is
given by

P;=1°R= (500A)2 0.35€2 = 87500W (9.100)

Huge amount of power is lost! Most of the energy is lost due to heat when we use direct
current! If we calculate the percent, we can get a better grasp

Py 87500W
— .10 — =~ 101
P 00 120 x 103W 8% (9.101)

What?! 73% of the energy is lost by heat in the transmission cables! Direct current is
not a good option. But, let’s see first what is the story if we use alternate current. The
electric current is

P 120 x 10°W

= =b5A 102
AV 24000V . (9.102)
So, the lost power due to joule effect is

I =

Py = (5A)?0.35Q = 8.75W (9.103)

Incredible! When we use alternate current practically the lost of energy is negligible. If
we calculate the percent of the power lost when we use alternate current, we can notice
that it is practically negligible

Py 8.75W
—~ . 100 = ——— ~ 104
P 00 120 x 103W 0% (9:104)

So, practically all the energy is delivered to costumers. Now, we have a better grasp why
Nikola Tesla and George Westinghouse firmly said that alternate current was much better.
Thinking as businessman, if we lose much less energy with alternate current, we can use
much less thicker wires, which implies less money to build transmission lines to transfer
electricity. Less lost in heat, means also less money for maintenance. Cheaper to transmit
thousands of power, so much more profit because more costumers have access to use
electricity as energy supply. Thinking as engineer, we can build much more impressive and
powerful machines. Thinking as scientist, is incredibly beautiful how science revolutionizes
our world.
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9.5 Induced emf and non-conservative electric fields

X o X X * X

E % X x %
Y B(t)
X X X

X X X % b4
X
E
X

X X X X X

Figure 9.19

We have mentioned that there are two different ways that the induced emf takes place
when there is a changing magnetic flux in a closed loop. We have mentioned the first way
that this induced emf takes place is due to magnetic force exerted on the electric charges
in the wire. However, suppose the following scenario, a fixed (not moving) closed loop
immersed in a changing magnetic field as shown in figure Due to Faraday’s Law
there will be an induced emf in the closed loop, and a current will start to flow in the
wire. However, what force is moving the charges? There is no magnetic force because
the wire is not moving! What is the source of such force that moves the electric charges?
So, we come to the conclusion that the changing magnetic field must induce an electric
field in the conductor. This electric field would be the responsible of moving the electric
charges in the wire, exerting a force on them. We have that the work that the electric
field does to move an electric charge in the closed loop is

W:j{ﬁE-dT:%qE-df (9.105)

where we just substituted the electric force from the second to third equality. However,
we also say that the work is

W = qe (9.106)

Therefore, equating last two equations we obtain that the induced emf is

— =

o ]
oo —]{E-dz (9.107)

where we have already included Faraday’s Law in the equality, and notice that this in-
duced electric field is non-conservative. If it were conservative as in the case when a static
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electric charges generates an electric field, the closed integral is zero.

Now, what is the direction of the electric field? To solve last equation first of all we
need to know the direction of the electric field to know what is the dot product inside the
closed integral. We can obtain the electric field direction noticing something qualitatively.
The following equations correspond to Ampere’s Law for magnetic fields and no magnetic
mono-poles existence; and the equations when there is an electric field solely due to
induced emf by changing in time magnetic field.

j{§~df:/f-dff , fg.dg:o
J(I{E-df:/(—a—B)dﬁ o fEaioo
ot

where in the last equation we used Gauss Law applied to a non-conservative induced
electric field (there is no electric charge enclosed). Notice the similarity of both set of
equations. Any solution that solves the first set of equations for the magnetic field, the
solution for the second set of equations for the electric field must be of the same form.
The solution that satisfies both first equations is the Bio-Savart Law (equation . So,
qualitatively we can use the same set of tricks and tools we have applied to obtain the
magnetic field direction with Bio-Savart Law to non-conservative electric fields. The trick
is to interchange when applying the right hand rule the direction of the electric current
with the direction of the magnetic field and the result of applying the right hand rule
interchange it with the direction of the electric field.

(9.108)

[ < B
B B (9.109)
B+ F

Example 10: Non conservative electric field in a solenoid due to
alternate current

A very long solenoid (you can model it as infinite) of radius R has n loops for each unit
of length. It carries an electric current I that varies as

I =1,,,coswt (9.110)

where I, is the maximum electric current and w is the angular frequency of the source
of the alternate current. Determine

e The magnitude of the induced electric field outside the solenoid a distance r > R
along its central axis.

e What is the magnitude of the induced electric field inside the solenoid a distance r
from its central axis.
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Figure 9.20

Solution:

First of all we need to know what is the direction of the induced electric field. Remem-
ber that we can find the non-conservative electric field direction by applying the tricks we
use when applying Bio-Savart Law. The trick is as follows

e The changing magnetic field lines assume them as electric currents

e Apply the right hand rule or solve as you were using Bio-Savart. Then whatever
direction you obtain with the right hand rule or by using Bio-Savart, instead of
being the direction of a magnetic field, that will be direction of the induced electric

field!

So, in other words we must use what we mentioned in equation [0.109 If the magnetic
field lines were instead electric currents, the magnetic field would be circles around the
electric current lines as we have seen when we studied an infinite wire carrying electric
current. Therefore, we have that the induced electric field lines will be circles around the
magnetic field lines, with constant magnitude at different distances from the central axis

(see figure |9.20)).

Therefore, using a closed loop as circle of arbitrary radius r, we have that

j[ﬁ -dl = |E] fdl = |E|27r (9.111)

where the electric field could get out of the integral because is constant at the circle of
radius r, also we have that dl and E are parallel (see figure . The last result holds
no matter if the circular closed loop we choose is inside (r < R) the solenoid or at the
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solenoid or outside the solenoid (r > R).

So, first let’s see what is the induced electric field inside the solenoid. The negative
of the change of magnetic flux through the area that encloses the closed loop of radius
r<Ris

i d([5 2\ d n | ,
BTl (/B . dA> =-7 (ponImr?) = ponlmg,w sin (wt) wr (9.112)

where we used the area of a circle of area r, the magnetic field generated by an infinite
solenoid [8.92] and used the function of the electric current given by the exercise (equation

9.110)). Finally, by equation [9.107, we equate equation [9.111| and equation [9.112] so

3 - Imax
‘E|27TT = /vbon[maxw sin (Wt> 7TT2 = |E| = M

sin (wt) (9.113)
At the radius of the solenoid, the induced electric field can be obtained by just substituting
r = R in last equation

- MOnImaJ}WR
|B| = Kol Z

sin (wt) forr=R (9.114)
Now, outside the solenoid, the negative of the change of magnetic flux through the area
that encloses the closed loop of radius r > R is

dd d . d (%5 - [T5
0 ([gad) - S (["peaqe [5o0d) @

where the second integral in the third equality will be zero, because there is no magnetic
field outside the solenoid (r > R). Hence, we have that

dd d
BPTRirT (,uonhrRQ) = ponlmgew sin (wt) TR (9.116)

where we used the area of a circle of radius R, and the function of the electric current

given by the exercise (equation [9.110]). So, by equation 9.107, we equate equation [9.111
and equation [9.116], therefore

,U/On]maac("jfi2

|E|27r = pigndpagw sin (wt) mR? = |E| = 5
,

sin (wt) (9.117)

Therefore , we have that the electric field is given by

E(r,t) =

» {%uonfmwwr sin(wt)  forr <R (9.118)

3 HoN I maew R? sin (wt)  for r > R
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9.6 Self-Inductance and Energy in Magnetic Fields

Figure 9.21

Let’s analyze the circuit shown in the figure [0.21] When the switch is closed, a current
starts to flow. The electric current creates a magnetic field, and since it takes a while until
the current becomes constant, there is a varying magnetic flux through the area enclosed
by the circuit. Hence, by Faraday’s Law, we know that there will be an induced emf
trying to oppose the change of magnetic flux, consequently trying to oppose the electric
current to vary. The induced emf by the current in the circuit, that is trying to stop itself
the change is also called as back emf. Now, the magnetic field generated by the electric
current is proportional to the electric current in the wire. We can notice this from steady
currents by the Bio-Savart Law (equation |8.20))

— d_» r
B:@I/ ekl (9.119)

4 72

and given that the magnetic flux through the enclosed area by the loop wire is

Dy = /E-M (9.120)

we can say that the magnetic flux is also proportional to the electric current
by = LI (9.121)

where the constant of proportionality is L, which we call as self-inductance or simply
inductance. Now, the back emf is generated when the electric current is changing. In
such case, we have that the changing magnetic flux is

ddp dl
— =L— 9.122
dt dt ( )
Therefore, the back emf in the closed loop is given by
dl
=—-L— 9.123
€L di ( )
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where we keep the label L in the back emf to recall for any future calculations that this
is the induced emf due to the self inductance.

Now, by Faraday’s Law in equation [9.107], we also have that

S - dl
j{E = 1% (9.124)
where the closed path will be the circuit itself! So, in figure we show the path we will
use to integrate E. Probably you think “What electric field must be taken into account?”.
Well, in figure [9.22] are shown the two electric fields that must be taken into account. One
is the electric field that is generated inside the conducting wires where the electric current
is flowing. Such current is flowing because there is an electric field inside exerting a force
on the electrons. The second electric field is the electric field in the battery. There is an
electric field between the positive and negative terminal. For convenience we establish
the direction of the dl vector as the direction of the current (but the direction of dl is
irrelevant for the final result, if you take the vector dl the other way around we obtain
the same result). So, we have that the closed integral is

j{ﬁ-df:/ER-df+/ﬁB-df (9.125)

where we labelled the electric field in the resistance as ER and the electric field in the
battery as Ep. N ow, the diagram in figure shows an electric field in the resistance,
however the electric field is all along the wire. The resistance R in the circuit is the total
resistance of all the circuit. Only due to drawing, we see an electric field in that section,
but actually the resistance R is all along the wire , and the electric field also is all along
the wire. Now, using equation [3.10, we have that

/ER : df+/E} dl = —AVg + AV = —IR+ AV (9.126)

where AVy is the potential difference across the resistance, and AV is the potential
difference of the battery. Therefore, equation becomes
—IR—i—AV:—Lﬁ:AV:IR—i—Lﬂ (9.127)
dt dt
A quite nice differential equation, that when it is solved it gives the behaviour of the elec-
tric current with respect time. In many circuit applications, a device called as inductor
is widely used. The inductor is just a solenoid, which creates a changing magnetic field
inside it, and therefore a back emf. In such applications, the self inductance of the loop
is considered negligible and just the back emf generated by the inductor is considered.
However, we must be aware that always, does not matter if there is an inductor or not
in the circuit, there is always a back emf and a self inductance L. In analogy with resis-
tance, when analyzing circuits generally we do not consider the resistance of the whole
conducting wires (as we did now) because they are made of conductors (generally copper)
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which resistance is practically negligible. However, even though for the calculations is
considered as negligible the resistance is there! All materials in the circuits have at least
some resistance. Now, the mentioned circuits with inductors and resistors are called L-R
circuits and the differential equation that models their behaviour is exactly equation[9.127]

N ltiji

Figure 9.22

Now, the infinitesimal work done by the battery to move an infinitesimal amount of
electric charge is

I I
dW = IAVdt =1 (IR + L%) dt = (IQR + LI%) dt (9.128)

where we used that [ = % and W = qAV. So, we have that

d dl
W pp + LI— (9.129)

P
dt dt

where notice that the first term is the power by joule effect. What is the second term?
Something interesting I can assure you. Since we want to analyze the term with the
inductance, we do not pay attention to the joule heat term and neglect it. You can think
that the total work is the energy dissipated by joule effect plus the other term that we
are analyzing, so we are just analyzing the term that contains other information rather
than the energy lost due to the resistance in the conductor. So, we have that

dw = (LI%) dt = g (%I:)) dt = gd (1?) (9.130)
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Therefore, integrating both sides of last equation, starting from certain current 0 up to a
final current I, we have that the work required to obtain such current

L 1
W= 5[2 = §I<I>B (9.131)

where we used equation [9.121] Notice that the work is related to the magnetic flux. So,
this energy must be the one stored in the magnetic field! Associating the energy it was
needed to obtain the current I that generates certain magnetic field, then we have that
the potential energy associated to the magnetic field is given by

L 1
U= 5[2 = 51®5 (9.132)

There is a better way to see directly the magnetic fields in the last equations as it was in
the case of the electrostatic potential energy in equation [3.67 However, we will have to
wait until next chapter to derive the general case. Nevertheless, using a particular case,
with an infinite solenoid which magnetic field inside points to ¢ let’s obtain the same
expression meanwhile. Suppose an infinite solenoid with alternating current carried by
the loops. We obtained in equation that the magnetic field inside an infinite solenoid
is given by

—

B = ponlj (9.133)

Now, the magnetic flux through one loop of wire is
Dy = /é - dA = jonl A (9.134)

where A is the area enclosed by the solenoid. Now, given that N = nl where N is the
number of loops in certain length, and that the flux magnetic flux is trough N loops, we
have that the total magnetic flux is

Op = nl (uonl A) = puen*IV (9.135)
where V' is volume (V = [A). So using equation [9.121] the inductance is
o
L= TB = ponV (9.136)
And by using [9.131], we have that
N _

L 2 B BJ?
U==I>= Hon”V U = uv (9.137)

2 2 [on 2410

So, we can say that the magnetic field potential energy density (potential energy per unit
volume) is given by

B-B
2410

and even we found this with an infinite solenoid, the last equation is general. A more
formal deduction of the energy stored in fields is given in next chapter.

(9.138)
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Chapter 10

Maxwell Equations and introduction
to electromagnetic waves

In this chapter we obtain the famous Maxwell Equations, which along with Lorentz force
en-globe all the electric and magnetic phenomena. We begin talking about the continuity
equation. After we establish Maxwell Equations, and finally we talk about electromagnetic
waves, a beautiful implication of Maxwell equations. All along this chapter is assumed
that you already manage vector calculus. In previous chapters we have been as careful as
possible to not introduce much vector calculus, now is inevitable.

10.1 Continuity Equation

The continuity equation states local conservation of charge and is written as

V- J=-= (10.1)

i.e. if certain region of space has certain electric charge @, and it varies in time, the
electric charge that region lost or gain had to go or come from somewhere respectively.
To notice why last equation states that, let’s rewrite it in integral form . So, integrating
both sides of equation [10.1] over the volume that contains the electric charge @

/(v J v = — /8pdV (/VpdV) (10.2)

where the label V' just means that we are integrating over the volume V' that contains the
electric charge in all our integrals. And we have that the electric charge in volume V is

Q- /V pdV (10.3)

therefore equation becomes

/V (V- T)av = —%—? (10.4)
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If we use the divergence theorem, we can express the left hand side of the last equation

in a surface integral, so
JodA =2 10.5
A . (10,5

where surface S encloses the volume V. Something to remark is that equation and
equation [10.5| are equivalent.

dA

Figure 10.1: Electric charges are in the volume V' shown. A surface S, encloses such
volume and electric charges. Some electric charges go out the volume through the sur-
face. The differential of area in each point of the surface points outwards the volume by
convention.

Probably is easier to notice in the form of equation [10.5 why it establishes the con-
servation of electric charge. Suppose that in the volume V' shown in figure [10.1] electric
charges leave the volume. Then, electric currents are generated going outwards the vol-
ume. So, we can say that the change of the electric charge in the volume V' is due to the
currents that go out of the volume. And that is exactly what is established in the left
hand side of equation m Recall that [ = .J - A. So, in the left hand side of equation
10.5, we are summing all the currents in each differential area of surface S. Now, notice
the extreme importance of the minus sign in the right hand side of equation [10.5 If
charge leaves the volume V', then

§<O:>_§>O (10.6)

where the change of electric charge is negative because the electric charge in the volume
V' decreases. And notice that if the electric charges go out the volume, then for every
current

dl =J-dA>0 (10.7)

because the differential area vector by convention always points out of the surface that
encloses the volume V', so the dot product must be positive because the vector J also
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points out the volume (of course not necessarily exactly the same direction of each dA
but both going out the volume V). Hence, the left hand side of equation is also pos-
itive. So, the negative sign in equation gives consistency to the continuity equation.

Now, suppose that electric charges go into the volume V. So, the change of the electric
charge in the volume V is

oQ
o >0 (10.8)

because the electric charge in the volume V' increases. Now, if the electric charges go into
the volume then

dI = J-dA <0 (10.9)

which means that the electric charges are flowing opposite to the differential vectors dA.
Which makes sense because all the charges are going into the volume! So once again, we
have that the change of the electric charge in volume V' is due to the currents, this time
they are going into the volume. And the minus sign in the right hand side of equation
gives mathematical consistency.

Finally, of course, there could exist the case when electric charges go out the volume
V', and some others go into the volume V. In such case, if globally (i.e. taking into
account all electric charges) the electric charge decreases then

jf J-dA>0 (10.10)
S

i.e. some electric currents will be going out the volume contributing positively to the last
integral, some electric charges going into the volume contributing negatively, but at the
end taking into account all the contributions in the surface S, the infinitesimal sum (the
integral) ends up being positive because there has to be more electric current going out
than the electric current going into the volume.

So, in conclusion the continuity equation in and equation tells us that if
electric charge in certain region in space changes, is because it went somewhere, travelling
either in or out of the volume in form of electric currents.
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10.2 Rewriting the laws

The following four equations

=,

j{ A = dene Gauss Law
S €0

f B-dA=0 No Magnetic Monopoles
S

o (10.11)
?{ E-dl = dtB Faraday’s Law
fﬁ dl = tolene Ampere’s Law
along with the Lorentz force
ﬁ:q(ﬁ+ﬁx é) (10.12)

can model all what we have learned so far in the first nine chapters! Amazing isn’t it?
However, even we have made a tremendous advance, the four last equations have a hidden
snake. A profound theoretical inconsistency exists. The brilliant Professor of Cambridge
University James Clerk Maxwell fixed this inconsistency in a beautiful way and lead him
to discover the existence of electromagnetic waves. And even more amazingly that light
itself is an electromagnetic wave!

So, before we handle the theoretical problem solved by Maxwell; let’s rewrite in dif-
ferential form the four last equations. Beginning with the Gauss Law, if we apply the
divergence theorem to the left-hand side of the equation and write the enclosed charge
in the right-hand side of the equation in terms of its charge density, Gauss Law can be

written as
/<V~E)dv—— pdv:>/(v E——)dV—O (10.13)
1%

where in the second equality we just moved everything to the left-hand side of the equation.
Now, since V' is any arbitrary volume, then for any volume V' the integration always has
to be zero, therefore we can state with confidence that

v E=L (10.14)
€0

this is Gauss Law written in differential form and is equivalent to the integral form. It’s
just two different mathematical forms of expressing the same physics. Depending of the
problem to tackle, it is convenient to use one or the other form.

Now, the no magnetic mono-poles existence in differential form is written as

V-B=0 (10.15)
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where the procedure to obtain it is practically the same we applied to obtain Gauss Law
in differential form (apply the divergence theorem to the left-hand side of the equation
of no mono-poles in integral form and since is equal to zero the integral for an arbitrary
volume, what is integrated must be zero). From the last equation, we can express in
another way the magnetic field. We can say that

B=VxA (10.16)

where A is called as the vector potential. The reason why we can express the magnetic
field in this form is that the divergence of a curl of any vector C' is always zero,

v (v X (3) ~0 (10.17)

So, given that equation always holds for any magnetic field, nothing stops us to
express the magnetic field in terms of certain vector potential. It is analogous to the case
of the potential function when we defined it. Recall that in equation we said that
given that the electrostatic force is conservative (not dependant of the path), the closed
integral in any closed path of the electric field is zero, so we could express the electric
field in terms of a potential function as

E=-VV (10.18)

Something similar happens in the case of the magnetic field. However, instead of express-
ing it in terms of a potential function, it is a potential vector. The potential vector A is
not as useful in practical applications in real life as the potential function V. In practical
applications differences of potential function AV are widely used to calculate as many
things as possible as we have widely seen all along the 10 chapters, due to the scalar
nature of the potential function. Nevertheless, the vector potential theoretically by using
vector calculus can be highly useful.

Now , for writing Faraday’s Law in differential form, we apply Stokes’s Theorem to
the left-hand side of the equation, and write explicitly the flux &g

N - d L . 0B
L(VxE)-dA_—%(/SB-dA):>/S<V><E+E>—O (10.19)

where we introduced the derivative into the integration because only the magnetic field
is time dependant. Probably, you will be uncomfortable with this because, we discussed
that Faraday’s Law also included a change in area. Indeed, but recall that in that case
the emf is induced due a magnetic force exerted on the charges in a certain wire. So, we
keep that in equation and the Faraday’s Law that we are writing down keeps just
the induced emf due to non conservative electric fields. Finally, since the surface S is
arbitrary, then the integration must be zero for any surface, therefore the Faraday’s Law
written in differential form is

. 9B
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Finally, but not least, for writing Ampere’s Law in differential form, we apply Stokes’s
Theorem to the left hand side of the equation , and writing the enclosed current in terms
of the current density, we have that

/S<V><§>-dffzuo/sf-d/_fi/s<Vx§—,uof>-dfT:O (10.21)

and since the integration is over any arbitrary surface S, then it must hold that for any
surface S, the Ampere’s Law written in differential form becomes

V x B = pgJ (10.22)

So, summarizing what we have obtained

V-E g Gauss Law
€o

V-B=0 No Magnetic Monopoles
(10.23)

—

B
VXFE=-— %—t Faraday’s Law

V x B :[L()j Ampere’s Law

Example 1: Energy in Magnetic Fields Revisited

Find the potential energy stored in magnetic fields.
Solution:

In last chapter we found the energy density stored in magnetic fields by using a partic-
ular case, the infinite solenoid. However, we aim to derive the potential energy in general
in this case. Now we have the enough machinery to achieve the task. We start from

equation 9.132], so we have that
1 1 L
U= §]<PB = EI/B -dS (10.24)

where dS is differential of area. I know! We have used all along the 10 chapters dA for
differential of area. However, unfortunately we have as A the vector potential, and I do
not want you to get confused. So, just for this case dS is used for differential of area. So,
expressing the magnetic field in terms of the vector potential (equation , we have

1 Nooa 1 [
U=§1/<VXA)-dS:§1j{A-dz (10.25)

where in the last equality we used Stokes Theorem. Now, since dl has exactly the
same direction as the electric current, we can express last equation as

U= %]{ <14T~ f) di (10.26)
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and we can think of the last equation as the particular case for currents, but if there are
current densities, in general we can say that

U= %/V (ff- f) dv (10.27)

where volume V' must contain the electric current densities. However, if V' is greater than
that is fine, because in such case for any region in space where there is no electric current
then J = 0 and there is no contribution in the last integral. Now, using Ampere’s Law in
differential form V x B = /~Loj7 we have that last equation becomes

U:Q%O VA’- <Vx§) dv (10.28)
Now, using the relation (not proved)
V-(/fxé):§-<ng>—ﬁ-<Vx§>zé-é—E(VxE) (10.29)

where we in the second equality we used equation [10.16| Therefore, we can say that
A’~(Vx§):§-§—v-(ﬁx§) (10.30)
so substituting last equation into equation [10.28 we have that

1 Lo L

U= (B-B)dV—/v-(AxB)dv (10.31)
200 Jv v

and if we apply the divergence theorem in the second term of the right-hand side of the

last equation, we obtain

v- L (é-é)d&/—f@xé)-dﬁ (10.32)
200 Jyv s

where the surface S bounds the volume V. If we let S go up to infinity covering all space,
we have that the second term vanishes because at infinity B — 0 and also must be the
case for A — 0, the contributions in the surface integral are negligible as the surface grows
more and more up to infinity. It is not the case for the volume integral, as more volume
is covered, the contribution is greater. Of course there comes to certain point when the
volume is so large that there is no more contribution in the integral, but as we get bigger
the volume greater the contribution of the first integral. Notice that, taking the volume
to cover all space is completely fine! Because last equation is just equation (we
used just some properties and made some algebra to rewrite equation to get last
equation). So, we have that the energy stored in magnetic fields is

1

2,[L() allspace

(E : E) dv (10.33)
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10.3 A problem with Ampere’s Law

In last section we rewrote four equations in a differential format. However, we did nothing
than just writing in an equivalent way the four equations in[I0.11} In this differential form
is easy to identify a problem with the set of equations we have, specifically one of them.
If we, apply a divergence operation to both sides of Ampere’s Law, we have that

v (v x é) — oV T (10.34)
but, the divergence of any rotational is always zero. Therefore, we have that
V-J=0 (10.35)

however this is not always true! The general conservation of charge equation is the
continuity equation (equation ! So, we have a big problem! Ampere’s Law drives to
an inconsistency with electric charge conservation! And this shouldn’t surprise us. Every
time we used Ampere’s Law we said that the electric current was constant and stable.
For example, suppose a conducting wire transports a stable and constant current. The
wire lies in the x axis. So, for such current, it’s current density is like

J = J,& (10.36)
where J, is a constant. Therefore, if we calculate
- 0J,
V-J= =0 10.37
pe (10.37)

of course is zero. So, Ampere’s Law was consistent to the cases we used it because the
currents were constant. Also, you can think of it as charges where not accumulating in
any place of space. So, pick any volume where the current passes as shown in figure [10.2),
so given that the current is constant everywhere, the charges that go into the volume, the
same amount of charges also go out of the volume! Therefore,

0Q
ot
i.e. the charge in the volume does not change. And if the charge does not change, of

course also the charge density does not change. So, is not surprise that for stable and
constant currents we obtain [10.35

0 (10.38)

Figure 10.2: An steady electric current. No charges are accumulated in the spherical
volume. The same amount of electric charge that goes into the volume, goes out of the
volume
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The problem with Ampere’s Law can also be shown with a simple but beautiful thought
experiment (A thought experiment by Maxwell to adresss the problem with Ampere’s
Law). Suppose a capacitor is charging as shown in figure So, if we create an
Amperian loop C' as shown in figure the surface S; and Sy are bounded by the same
loop C. And there should not be a problem with using either S; and S5 to determine the
enclosed current I,,. because we are using the same Amperian loop. For both surfaces
Sp and Sy we should obtain the same result! However, if we apply Ampere’s Law with
surface S

74 B-dl = polune = pol (10.39)

but with surface S, we have that
fﬁ cdl = piolepe = 0 (10.40)

because there is no enclosed current with such surface!(no current penetrates surface Ss).
So, we have an inconsistency! Two different results we obtain using the same Amperian
loop. And think about it, of course Ampere’s Law shouldn’t be able to model this kind
of cases, the current is not constant! In the wire conductor is constant, and when the
current arrives to one plate of the capacitor, the charge starts to pile up, and in the gap
between the plates there is no current! These kind of cases is not possible to model with
just Ampere’s Law So, Ampere’s Law must be modified.

Figure 10.3

10.4 Maxwell Equations

The problem just mentioned in the previous section was solved by Maxwell by adding a
term to Ampere’s Law; and the new equation became

—

0E

%B dl = IU/O[enc + /LOGOd_tE = ,uojenc + Ho€o / E -dA (1041)
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where the second term is called as displacement current and the equation as Ampere-
Maxwell Law. The name of displacement current could be quite misleading. It is
not a current. The units match as the same of a current (Amperes(A)). But it is a
changing electric field flux through the same Amperian loop we use to calculate the
enclosed current. The second term relates a varying electric field with a magnetic field!
A way to interpret the last equation is the source of magnetic fields are electric
currents and varying electric fields! If we want to write the Ampere’s-Maxwell
equation in differential form, we apply stokes and the divergence theorem, so we have

/(VXB)-dﬁ:uo/f-dfﬂuoeo/a—E-dfT (10.42)
s s g Ot

and since all the integrals apply for any arbitrary surface S, then, it must be true that

- . OE
V x B= ,U()J + Moﬁoa (1043)

which is equivalent to equation [10.41]

So, finally the Maxwell Equations are

j{E‘-d/_f:qenc Gauss Law V-Ezﬁ

S €0 €0

fgé CdA =0 No Magnetic Monopoles V-B=0

j{ﬁ dl = —% Faraday’s Law VxE= —%—f

j[g dl = tolene + Lo€o djf Ampere-Maxwell Law VxB= M0j+ ,uoeoaa—lf
(10.44)

where the integral and differential form are shown. These four equations along with
Lorentz force can model all the electromagnetic phenomena in vacuum(absence of dielec-
tric and magnetic materials)! Amazing, how powerful a set of four equations can be.

Now, let’s show that the theoretical issues mentioned in last section are now completely
solved. If we apply the divergence operator to both sides of the Ampéere-Maxwell Law,
we have

. - OE - 0 =
A (v X B) —V. (uoj + “0€°E> — 0= oV - T+ pocos; (v - E) (10.45)

where we used that the divergence of any curl of a vector is always zero. Also, we used
that the divergence operator and the partial derivative with respect time commute. Now,
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if we use Gauss Law in differential form, we obtain
V- J=—2 (10.46)

which is exactly the continuity equation! So, we have recovered the charge conservation
law! Nice! What about the thought experiment with the capacitor in figure ? Is it
also solved?

So, we will use the Ampere-Maxwell Law in integral form. We use the Amperian Loop
C shown in figure [10.3] and we will prove that either surface S; or S lead to the same
result.

For the surface S; in figure [10.3] we have that
Ipe=1 (10.47)
and the electric flux in such surface is
Op =0 (10.48)

because there is no electric field lines crossing surface S; (no electric flux through that
surface). Hence, using surface Si, the Ampere-Maxwell Law reads

jfé cdl = pol (10.49)
Now, with the surface Ss in figure we have that
Ine =0 (10.50)

because no electric current penetrates such surface. However, there is an electric flux
through surface S;. There is an electric field between the plates of the capacitor. So,
recalling the magnitude of the electric field generated between the plates of a capacitor

o _ Q)

Bl ==

(10.51)

where we wrote the electric charge as function of time, because as time passes more and
more electric charge is pilled up in the plates of the capacitor. Therefore, we have that
the electric flux through the surface S in figure is

L t
Oy = /E aiOl (10.52)

€
where we used that the area where there is electric flux is the area of the capacitor. We
can do this if the surface Sy is as close as possible to the plate of the capacitor (this is
just to simplify the calculations, you could take any other surface S, that is between the
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plates and you would obtain exactly the same result). Therefore, the change with respect

time of the electric flux is D s
E
- = 10.53
dt €0 ( )

where we used that [ = %. So, using surface S, the Ampere-Maxwell Law reads as

jfé cdl = pol (10.54)

exactly the same as when we used surface S7! So, the experimental thought paradox is
also solved!

10.5 Electromagnetic Waves

Figure 10.4: James Clerk Maxwell. Original picture from reference [25]

“The wvelocity of transverse undulations in our hypothetical medium, calculated from the
electro-magnetic experiments of MM. Kohlrausch and Weber, agrees so exactly with the
velocity of light calculated from the optical experiments of M. Fizeau, that we can scarcely
avoid the inference that light consists in the transverse undulations of the same medium
which is the cause of electric and magnetic phenomena”

— James Clerk Maxwell
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Now that we have Maxwell Equations, a beautiful result rises from them. Suppose
we are in complete vacuum, so there are no electric charges, therefore J =0 and p=0.
Using the differential form, let’s apply a curl to both sides of Ampére-Mazwell equation,
so we have that

- OF
V x (v x B) —V x (uoe()E) (10.55)
for the left-hand side of equation [10.55 we have that
V x (v x é) —V(V-B)- V2B = -V2B (10.56)

where we used the no mono-poles existence from Maxwell Equations. Now, we have that

OE 9 o o (0B
V — | = —(V E) = — — | — 10.
8 <”°€° at) Hoo5y ( % Hoco (at> (10.57)
where in the second equality we used the fact that the curl operator V and the partial

derivative % can commute. The reason is that crossed derivatives with respect time and

the coordinates x, y and z for any component of the electric field commute

0’E, O*E,  O*E, O°E,  O°E, 0°E,
otox — 0xot’ otoy — Oyot’ otdz  0z0t

(10.58)

where explicitly was written the x component of the electric field, but this also applies to
the y and z component. So, it follows that if we derive firstly with respect time and then
apply the curl operator(which has the position derivatives), we obtain exactly the same
if we firstly calculate the curl and then apply the partial derivative with respect time. In
the last step in equation we used Faraday’s Law. Therefore, equation becomes

—

(10.59)

a wave equation for B! Recall from your waves course, the three dimensional wave equa-
tion is given by

. 104
2y 294 10.
v o (10.60)

for any vector field A where v is the speed of propagation of such wave. And, something
similar happens with the electric field when we apply a curl to Faraday’s Law,

4 OB - ) .
Vx(VxE)-—Vx<W>:>VE——§<V><B> (10.61)
where we used for the left-hand side
V x <V X E‘) —V(V-E)— V2E = —-V2E (10.62)
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where also we used V - E = % according to Gauss Law in differential form. However, we
are in completely empty space (no charges) so p = 0. Finally, if we substitute Ampére-
Mazwell equation in [10.61] (taking into account that we are in completely empty space so

-

J = 0), we have that

V2E = Hoto— - (10.63)

so we have another wave equation for the electric field with the same speed! We call to
these as electromagnetic waves! And they propagate with a very specific speed. Com-
paring the general wave equation with what we have found in equation [10.59| and
equation [10.63 we have that the speed of propagation of electromagnetic waves is

/1
Ho€o

and if we plug in the values,

1
C =
\/(47r x 10-N/A?)(8.85 x 10-12.5;)

m gm
= 299863380.5— ~ 3 x 10°— (10.65)
s s

which is the speed of light! We generally round
the number to 3 x 108?. It was the speed of elec-
tromagnetic waves so identical to the experimental
evidence of the speed of light so far in the times of
Maxwell that he mentioned the quote stated at the
beginning of this section. So, is light an electromag-
netic wave? Years later, Heinrich Rudolf Hertz
produced with a smart experiment electromagnetic
waves! And, it was in 1887, when Hertz found ex-
perimentally that the speed of propagation of elec-
tromagnetic waves was exactly the speed of light!
Also, he was able to show that the electromagnetic
waves can be reflected, refracted and diffracted! He
showed experimentally that Maxwell Equations pre-
diction that light is an electromagnetic wave was
indeed correct! This is amazing! Light is an elec-
tromagnetic wave! However, many theoretical ques-
tions rise. The speed of light is respect to what? i.e.
when you move respective to certain reference frame
is that we say that you have certain speed. For example, when you are inside your car,
and the car is moving, respective to the car you are at rest so your speed is 0%F. However,
if an observer standing at the ground sees you inside the car will say that your speed is
the speed of the car! So, the speed we have obtained is respect to what? Many physicists
supported the idea that something covered all the universe, called as the ether. Also,
notice that when we study waves as waves in a rod, or sound waves there is a medium

Figure 10.5: Heinrich Rudolf Hertz.
Original picture taken from refer-
ence [26].
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where the wave propagates. So, also many physicists said that the electromagnetic waves
medium of propagation was the ether. However, many experiments were done to try to
prove the existence of ether, but all of them failed. Years later, another giant of physics
came to the rescue, Albert Einstein. He postulated his famous theory of special relativity
where there was no necessity of the ether to explain the speed of light. The speed of light
is the maximum speed that any object in the Universe can be travelling, and is the same in
all inertial reference frames! The implications of special relativity are tremendous! Space
and time are not absolute! The time an observer experiences is not the same as another
observer if the move one relative to the other with speeds near the speed of light!(Actually
with any speed, but higher the speed approaching the speed of light the relativistic effects
are more and more notable).

Example 2: A monochromatic plane wave

Show that .
E = Eop cos (kz — wt) & (10.66)

solves the electric field wave equation. Then find the direction of propagation of the
magnetic field and the direction of oscillation.

Solution:

We need to show that the given function in equation satisfies equation So,

we have that

= 2 Emax kz —wt
V2E = <(‘9 ( c;;( FT ))) & = —Epnak®cos (kz — wt) & (10.67)

where the partial derivatives respect to x and y were not written because the electric field
does not depend on those component variables. On the other hand, we have that

1PE 1 2
0 0 Erpas cos (kz — wt)) & = — 2 B cos (kz —wt) & (10.68)

c2

‘Z_j - (T/TT)Z — (?)2 = k2 (10.69)

where we just used the definition of the angular frequency w, the speed of propagation
(in this case the speed of light) and the wave number k. Therefore, we have that indeed

o7 —aon
And we have that,

~  10°E
2
E=——— 10.70
2 Ot? ( )
so the wave equation for the electric field is satisfied. Now, if we are interested to know the
direction and function of the magnetic field, we can apply Faraday’s Law in differential

form. The curl of the electric field in general is

- 0E, O0FE OE, OF OE, O0FE
E=(22_2); T ) gy () 10.71
VX (8y az)w_‘_(@z 8x)y+(8x ay)z (10.71)
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where E,, E, and I, are the x,y and 2z components of the electric field. In this particular

case, the electric field just has x component. It propagates in the z direction, but the

electric field oscillates in the x component. The only component of the electric field is

just dependant of z, so all other derivatives are zero. Therefore, we have that the curl is
= OFE,  0(Enpacos(kz —wt))

VxE= 5, 0= 5, = —FEnaksin (kz — wt) g (10.72)

Now, using Faraday’s Law

0B
—Eagksin (kz — wt) g = 5 (10.73)
and integrating then with respect time we have that
= k ~ Emax ~
B = Ejap—cos (kz —wt) g = cos (kz —wt) g (10.74)
w c

where we used k/w = 1/¢, which can be deduced from equation So, notice that the
electric field and magnetic field are in phase (when the electric field is maximum also is
the magnetic field, when the electric field is zero also is the magnetic field) but oscillate in
perpendicular directions. If we plot the electromagnetic wave at certain instant (because
the wave is moving!), we obtain what is shown in figure [10.6]

Figure 10.6: Electromagnetic wave. Be careful about this representation. This represents
the electromagnetic wave at certain time because electromagnetic waves move at the
speed of light! Also, this representation along the z is just a subset representation of all
the electromagnetic wave. There are electric and magnetic fields in all space oscillating
equally at different planes as shown in figure [10.§]

Now, why the name of monochromatic and also plane wave? The name monochromatic
is due to the fact that the electromagnetic wave that we analyzed has only one frequency.
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Electromagnetic waves with different frequencies correspond to different colors in the
visible spectrum. So, we call them as monochromatic due to their only one value frequency
dependence. In table [10.1] are shown the different approximate ranges of wavelength and
frequencies of different colors. In figure [10.7] are shown the different ranges of wavelength
and frequencies of electromagnetic waves.

Visible Light Spectrum

Wave Length (m) Color Frequency (Hz)

400nm to 440nm Violet 6.8 x 10™ to 7.5 x 10™
440nm to 480nm Blue 6.25 x 10 to 6.8 x 104
480nm to 560nm Green 5.36 x 10 to 6.25 x 10
560nm to 590nm Yellow 5.08 x 1014 to 5.36 x 10*
590nm to 630nm Orange 4.76 x 10 to 5.08 x 10
630nm to 700nm Red 4.29 x 10 to 4.76 x 10

Table 10.1: Approximate ranges of frequencies and wavelengths of visible light.

Wavelengths in m

o1 10t 10?2 1w 1wt 107 1w w? ow® 1w w0 0t o2 gt
Radio,> I ‘ I I ]nfrareld ‘ ‘ : X l‘ays ‘ ‘ I
L <— Microwave ——> [<— Ultraviolet = <— Gamma rays
1|08 169 16‘0 16“ 10"2 10'13 10|14 1615 1(_1"6 10|17 10'18 10|19 1050 10'21 10|22
Visible light Frequencies in Hz

700 nm 650
| |

600 550 500
I \ |

450
|

400 nm
|

RED ORANGE YELLOW

GREEN

BLUE VIOLET

Figure 10.7: Original figure taken from [7]

Now, why plane wave? Notice that the electric and magnetic field only depend on
the z component and time t. So, for any z fixed value, all points in such plane have
exactly the same magnitude and direction of the electric field. Probably you think, I see
explicitly just the dependence on time ¢, z and Z in the electric field. The magic word is
field. Recall a field is a function that designates to every single point in space and time a
vector. In this case which vector? The one given at equation [10.66] So, if you pick the
points with coordinates (1,1, z9) and (0,0, zo) for any fixed value z, at certain time ¢, at
both points there is a vector, which direction is towards & with magnitude

Eraz cos (kzg — wt') (10.75)
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and for any random point with coordinates (z,y, z9) will have the same vector direction
with magnitude So, for each value of z, there is a perpendicular plane with a set
of vectors all oscillating with the same pattern. Each of those planes are called as wave-
fronts. Finally, we say that the wave is linearly polarized because the electric field and
magnetic field vary strictly in one direction. It is a convention to mention the direction
of the electric field polarization. So, in this case the electromagnetic wave is in the x
direction polarized.

A R —
A ﬁV* +++
' HUAHJ’ FE
A A
A
i
A -
i —C _
+‘(
\ b
R
KU
Z

Figure 10.8: Wave-fronts of a plane electromagnetic wave. In every plane, all points
have exactly the same direction and magnitude of electric field. Also this happens to the
magnetic field, but is not shown in this picture (only the electric field is plotted). This is
a more realistic representation of a plane wave than figure because there are electric
and magnetic fields in each point in space. The figure [10.6| represents the plane wave only
along the z axis. The wave fronts move with the speed of light. So, as in figure this
representation shows certain instant of time, and we show explicitly the direction of the
velocity of the electromagnetic wave.

10.6 Poynting Theorem

The total potential energy in electric and magnetic fields is

I B
U= / <€—OE E+-—8- B) % (10.76)
allspace 2 2,&0

where we summed the potential energy stored in electric fields (equation and mag-
netic fields (equation respectively. Now, we are interested to know how the energy
due to magnetic and electric fields in certain volume in space changes and if it is the case,
what is the energy that escapes from the volume. Therefore, instead of integrating over
all space, we take the integration over a volume V and calculate how it changes with
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respect time,

dU  d 6= = 1 = = . 9E 1 - OB
- - VF. F+ —B.-Bldv) = E- 2+ —B.2Z=)av (10.77
e dt </v<2 i Mo ) ) /V<€0 ot +,u0 81%) ( )

Now, from Ampere-Maxwell equation we have that

. . OE 9E 1 = 1=
B = puoJ —_— = ——=— B——J 10.78
V X o + €ofto 5 5 Eouov X ” ( )
and from Faraday’s Law,
0B -
— == E 10.79

Therefore, equation [10.77| becomes

aUu - 1 =1 = 1 = ~
= - / (60E~ (—v x B — —J) -~ —B. (v x E)) dv (10.80)
dt % €oto €0 Ho
Now, we have the following relation of the divergence of a cross product of two vectors
(this holds for any two vectors, but we already use the electric and magnetic field),

—V-(Exé):ﬁ-(Vxé)—é-(VxE) (10.81)
Therefore, using the last relation into [10.80, we have that

aUu 1 S S Lo

—_ = -\ Ex B)dV — E-J)dv 10.82

and if we apply the divergence theorem on the first term of the right-hand side of last
equation, we have that

%:_ig S(Exé)-dﬁ—/vﬁ-f)dv (10.83)

where the last equation is called as the Poynting Theorem. The first term in the right-
hand side of last equation is telling us how energy is flowing out across the boundary
(surface S) of volume V| while the second term is telling us the energy lost by the fields
due to the work done on electric charges in volume V. The vector that is integrated in
the first term in the right-hand side of last equation is called as Poynting vector, defined
as

S = uio (E x é) (10.84)

which has units —2; = X (amount of energy per unit time per unit area). The direction
of the poynting vector S is the direction of propagation of an electromagnetic wave. We
have that

S-dA (10.85)

CHAPTER 10. MAXWELL EQUATIONS AND INTRODUCTION TO 289
ELECTROMAGNETIC WAVES



Electromagnetism Rafael Espinosa Castaneda

is the energy per unit time crossmg the infinitesimal surface d A (the power passing through
the infinitesimal surface of area dA) So, the poynting vector S is the energy flux density.

Therefore , the equation makes sense, any change of potential energy associated
to the electric and magnetic fields in volume V is either because the fields have done
work on the charges in volume V' or because energy flowed out of the volume though the
surface S. How can this energy have flowed out? Well, one way is electromagnetic waves.
The electromagnetic waves carry energy, and if they cross out the boundary S then that
energy is not any more in the fields in volume V. Also, probably, you think how do we
know that the first term in the equation actually means energy that flowed out of
volume V' through the boundary surface S? By just arranging the equation [10.83] we can
easily see the interpretation,

W /(E J)dvz_i ) (£ B)-aA (10.86)

so the left-hand side of last equation is the total change in energy in volume V', due to
both fields and electric charges. Given that energy must be conserved, the right-hand
side of last equation must describe the energy that escapes through the the boundary of
volume V' (through surface 5).

Finally, how do we know that the term

_ /V (E j) aV (10.87)

is the energy lost by the fields due to the work done on the electric charges? Let’s prove it.
In general, inside volume V' can be any distribution of electric charges. The infinitesimal
force exerted on an infinitesimal amount of electric charge is given by

dF = dg (E i B) (10.88)

where we used Lorentz force but using the fact that the force is applied in an infinitesimal
amount of electric charge. If we divide by an infinitesimal amount of volume

F=p(E+7xB) (10.89)

where f is the force density, the exerted force on electric charges per unit of volume and
the charge density p = S£. Now, if we multiply by the velocity of the each electric charge
in every infinitesimal amount of volume

f~6:p(E+UxB>-5:pE~6:E-j (10.90)

where the term (¢ x B) -4 = 0 because the cross product of the velocity and the magnetic
field is perpendicular to both B and #/, so the dot product (' x B) - ¢’ vanishes. Also, we
used that pt' = J (equation . So, if we integrate over volume V', we have that

/v<f-17> dV:/V(E-f> v (10.91)
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Given that fdV = dF, then ( 7 5) dV = dF -7 = dP where dP is a differential of power.

Recall from your mechanics courses that power is P = F. 7. So, the integral in the
left-hand side of the last equation is the total power. And, also recall that power is the
amount of energy transferred per time P = %. Therefore we have obtained,

% = [ (E-7)av (10.92)
s

but the last equation is the amount of energy that is transferred to the electric charges
given that a force is exerted on them. So, the amount of energy lost by the fields is just
the same magnitude, but opposite sign. So we have shown that indeed the term is
the amount of energy lost by the fields due to the work done on the electric charges in
volume V.

Example 3: Energy carried by a monochromatic electromagnetic
wave

The magnetic and electric fields of an electromagnetic wave are given by

- >3 Emaa: ~
E = Epazcos (kz — wt) B = cos (kz — wt) g (10.93)
c

e (Calculate the poynting vector
e The average of the poynting vector (the intensity of the electromagnetic wave)

Solution:

The poynting vector is

. ExB E?
§= 22T Pmew o2, 1) 5 (10.94)
14 clio

Now, since the frequency of oscillation could be considerably high for an electromag-
netic wave, instead of being interested in the amount of energy per unit of area per unit
of time, we want its average over a complete cycle or period. Therefore, the magnitude
of the average of the poynting vector over one period is

2

A 1 [TE E2. (1 1 ["
<S> - _/ AT cos? (kz — wt) dts = e (— + —/ cos (2kz — 2wt) dt> Z
T Jo cpio co \2 T Jy
(10.95)

where we used a trigonometric identity cos®(z) = . Now, let’s do the simple change
of variables u = 2 (kz —wt) = du = —2wdt. Therefore, the integral in equation [10.95
becomes

1+cos(22)
2

1 2kz—2wT 1

% o cos (u) du = ~5 (sin (2kz — 2wT') — sin (2kz)) =0 (10.96)

CHAPTER 10. MAXWELL EQUATIONS AND INTRODUCTION TO 291
ELECTROMAGNETIC WAVES



Electromagnetism Rafael Espinosa Castaneda

and it vanished given that the sine function is cyclic; due to 2wT = 2 (2%) T = 4m, and
sin (2kz) = sin (2kz — 47). Therefore, the average of the poynting vector is

<§> - %z (10.97)

and it must be thought as the average of energy carried by the electromagnetic waves
per unit time per unit of area. The magnitude of the average is also called as intensity.
Unfortunately, mostly represented with the letter . A disadvantage given that we already

had [ for electric currents. Be aware of the context, units and you will know if a parameter
with [ is either intensity or electric current.

Example 4: Analyzing an electromagnetic wave

A sinusoidal electromagnetic wave with frequency of 40MHz travels in empty space to-
wards +z direction as shown in the figure.

Figure 10.9

e Determine the wavelength A\ and the period of the wave T

e Determine the magnitude and direction of the magnetic field when the maximum
value of the electric field is 750N/C

e What is the average energy for unit of time that crosses (power) an area of 1m x m
perpendicular to the propagation direction of the electromagnetic wave.

e What would be the direction of the magnetic field if the electric field were towards
—y in certain instant of time instead and the direction of propagation of the elec-
tromagnetic wave is exactly the same.

Solution:
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We can easily calculate the period

1 1

T=-=——  =25x10° 10.98
7~ 40 x 10°Htz s (10.98)

In order to calculate the wavelength
A= (3 x10°m/s) (2.5 x 107%s) = 7.5m (10.99)

Now, from equation [10.74] we can obtain the magnitude of the magnetic field. Given
that the electric field and the magnetic field are in phase, then when the electric field
is maximum also is the magnetic field. So, we can just take the maximum value of the

function in equation [10.74] therefore

Bmar  T50N/C

éma:c = = =
= c 3 x 10®3m/s

2.5 x 107°T (10.100)

Now, we calculate the average energy for unit of time that crosses (power) an area of
1m x m perpendicular to the propagation direction of the electromagnetic wave

_ J 1 E72nax _ (750N/C)2 2\ _
) = / <S> A= Cho A= (3 x 10%m/s) (47 x 10-"N/A?) (1) = 1492.07W
(10.101)

Finally, notice that the propagation direction is the same as the pointing vector, because
the electric and magnetic fields are transverse waves (both fields are perpendicular to the
propagation of the electromagnetic wave). So, using the right hand rule the only way that
the poynting vector direction is towards +z given that the electric field points to —y is
that the magnetic field direction is towards +x.

Example 5: Dipole Antenna Radiation

+ s ==== = === - e e Eac xR
Yl A
\ Y[ |
\ |/

Y Y

(a) (b)

Figure 10.10: An alternating current supply is connected to two rods. Given that the
polarity of the voltage changes, charges are accelerated towards one of the rods in different
instants, creating electromagnetic waves as shown in figure [10.11

> > >

Every time an electric charge accelerates, it emits energy by electromagnetic radiation.
So, if we have electric charges in a wire changing constantly their direction, they are are
constantly accelerated, therefore they generate electromagnetic waves! This beautiful
fact is used for antennas! An antenna can either generate or receive electromagnetic
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waves to transport information! A simple antenna is as the one shown in figures [10.10a
and Two conductor wires are connected to an alternating current source. As
shown in the figures, at certain instants of time one wire is positively charged and one
is negatively charged. The electrons pile up in one of the rods, while the other is left
positively charged. So, notice that given that we have two opposed electrically charged
wires, we can model them as a dipole. For that reason we call these antennas as dipole
antennas. The electromagnetic radiation pattern due to the dipole antenna is as the one
shown in figure [10.11] The electric and magnetic field are always perpendicular one to
each other. For long distances from the dipole antenna (also called as the radiation zone)
the electric field generated by a dipole antenna (modeled as an electric dipole) is given

by

47
where pg is the dipole moment and the angle 6 is measured from the axis of the dipole.

e Find the magnetic field

2 .
B = Hob (SH;G) cos(w(t—r/c))b (10.102)

e Calculate the Poynting vector

Calculate the intensity of the electromagnetic wave

e Calculate the mean power emitted by the antenna

Solution:
In order to find the magnetic field, we can use Faraday’s Law. However, we have been
using Cartesian coordinates, and in this particular case we are given the electric field in
spherical coordinates. So, the curl of any electric field in general written in spherical
coordinates is

.1 [0 OE,] . 1[ 1 0B, 0 S 1[0 OE,
V<E = g Lo 05D~ o | 7 (s g 0] 04y 3 00— g
(10.103)

where E,., Ey, E4 are the components of the electric field in spherical coordinates. However,
the electric field generated in the radiation zone by the antenna has only # component
and has no dependence on ¢ as can easily be seen in equation [10.102} Therefore, we have

that
0FE,

7a_¢:

Hence, the only term in the curl of the electric field that survives is

E,=0 ,E;=0 0 (10.104)

L 10 .
VxE =2 (rEs)d (10.105)

So, by plugging the # component of the electric field in equation [10.102] into the last
equation we have that

VB = S 00.0 (cos [ (1= 1)) 6 =~ i gsin [ (1= )] &

47r or c drre c

(10.106)
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Figure 10.11: Dipole Antenna radiation pattern at different instants. In these figures you
see the dipole antenna in figure from the top. One wire gets positively electrically
charged while the other negatively charged. The accumulation of positive and negative
charges tend to be in certain regions of the wires in different times, giving the beautiful
patterns shown. Once the electromagnetic waves are emitted, they travel at the speed of
light! These patterns plotted in 3D would look like figure [10.12]

Now, we use Faraday’s Law,

- i o - 7)] -8 e

So, integrating with respect time, we obtain the magnetic field

2

B = HPY n6cos (w (t - f)) o) (10.108)
dmre c

Now, we are going to calculate the poynting vector. We have that the cross product

in spherical coordinates, in general for any electric field and any magnetic field is the

following determinant

I L
ExB= E,. Ey E¢
B, By B,
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However, for the particular case of the electric and magnetic fields generated by the dipole
antenna, we have that

2. B PO ¢ . 2
- ExB 1/ 1 2 0
§=222 o Ey 0|=—EyByr = Fo {pflw (Sm ) cos (w (t - i))] r
Mo 2 0 0 B¢ 2 & 7T r C

Now, we proceed to calculate the intensity. So, the mean poynting vector is

= to [ pow? (sin@ 21 T 9 r
<§>=1H0 —/ cos (u) (t - —>) dt7 (10.109)

c | 4m r T J c
However, the integral times % in last equation ends up to be % as in our calculation of

example 4 (Energy carried by a monochromatic electromagnetic wave). Therefore, the
intensity which is the average of the poynting vector (average of energy per unit area per

unit time) is
2 AN 2
- Hopgw™ \ sin” 6
< S >= 10.110
( 32m2c ) rz ( )

There is no radiation along the axis of the dipole, given that there sin(f =0) =
0. Taking in consideration the propagation of the emitted electromagnetic waves in 3
dimensions, we obtain the pattern of the radiation by the dipole antenna as shown in
figure . So , if we want to know the total power (energy per unit time), we integrate
over a sphere of radius r. Even though the shape of the radiation pattern is toroidal (a
donut shape), in the regions where there is no radiation the contribution to the integral
will be zero, so we can use the sphere without worrying about those regions where there
is no radiation. So, we have that

. . 2, 4 . 2‘9
<P o / <G> .gA= Kb /Sm (r* sin Bdfdo) (10.111)

3272c 72

where we wrote the differential of area in spherical coordinates. So, if we want to integrate
over a complete sphere, we have that

2, .4 T 2w 2,4 T
HoPow .3 HoPowW .3
< P>= 0de d¢ = 2 0do 10.112
32m2c /0 S /0 ¢ 32m2c ( 7T>/0 S ( )
and we have that the remaining integral is
T T ™ -1 1 1 4
/ sin® 6d6 :/ sin 6 (1 —cos29) df = —cos —i—/ widu = 2 + (—— — —> ==
0 0 0 1 3 3 3
(10.113)
where we used in the first step the trigonometric identity sin®6 + cos?6 = 1, then we
used the change of variables u = cosf, du = —sinfdf and the fact that the limits of
integration now become § =0 — u = cos0 =1 and § = 7 — u = cosm™ = —1. Therefore,
we have that equation [10.112 becomes
2 4
HoPowW
< P>=—— 10.114
127c ( )
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ADipoIe Axis

Figure 10.12: Radiation pattern of a dipole antenna. The dipole axis is the oscillation
axis of the electric charges. In that axis there is no radiation. This picture shows only
one emitted electromagnetic wave. All emitted electromagnetic waves would look like
concentric toroids traveling at the speed of light

Example 6: Why is the sky blue?

Solar Energy Distribution

solar energy curve at top of the atmosphere

Solar Readiation Curve
5% ultraviolet (300-400 nm)

43% visible light (400-700 nm)

52% near infrared (700-2500 nm)

)
o

N
=}

Incoming solar
radiation at sea level

=y
]

Yellow color shows energy absorbed
by gases in air including water vapor,
carbon dioxide,ozone and other

greenhouse gases.

1.0

Spectral Irradiance (Wlmzlnam)
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UV visible near infrared
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Figure 10.13: The plot shows amount of incident energy to our atmosphere due to different
wavelengths of electromagnetic waves coming from the Sun. Original figure taken from
28]

Probably you have heard little kids ask ”Why is the sky blue?”. Sometimes, kids can
surprise us how curious they are, and as adults many times we just take things as they
are, stop questioning. Now, we are in position to answer one question that probably you
have had since you were a kid, “Why is the sky blue?”
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Solution:

The sun generates electromagnetic waves of all the visible spectrum. When such radiation
arrives to our atmosphere, the varying electric field stimulate the atoms of the atmosphere
to oscillate as dipoles! The oscillation of such dipoles is of exactly the same frequency as
the incident sun radiation. So, the incident radiation makes the molecules of the atmo-
sphere oscillate as dipoles, and such dipoles re-radiate electromagnetic waves with exactly
the same frequency as the incident radiation from the sun! However, this radiation now
goes practically to all directions (not along the axis of oscillation of the dipole as shown
in figure [10.12)), so we say that the electromagnetic radiation is scattered.

The process when the incident light scatters due to the re-radiated light of the dipoles
with the exact same wavelength is called as Rayleigh scattering. This kind of scatter-
ing takes place only when the molecules or particles, which light influence, are smaller
than the wavelength of the incoming electromagnetic wave. In the case of air, the main
molecules are oxygen and nytrogen (mostly the 99% of all air). And their sizes are ap-
proximately 0.29nm and 0.31nm respectively, which are smaller than the wavelengths of
visible light (see table [10.1). So, Rayleigh scattering takes place!

Now, the probability of scattering certain wavelength is given by the so called cross
section 0. We do not deduce neither get into more details of the following formula, but
think about what the quantity is telling us (probability of certain wavelength of light to
be scattered). So, the cross section of Rayleigh scattering is

< P>

< >

where < P > is the power of the re-radiated electromagnetic waves due to the oscillation
of the molecules of air and | < S > | is the intensity of the incident electromagnetic waves
coming from the sun. The term | < S > | is calculated by equation and < P >
from equation (because the molecules of the atmosphere oscillate as dipoles when
the radiation of the Sun reaches them). Plugging in both formulas, we notice that the
cross section of scattering is proportional to w*. So, the probability of scattering certain
wavelength of light is highly dependant of the frequency of the electromagnetic waves
coming from the sun.

Therefore, the electromagnetic waves with higher frequencies (lower wavelength) will
scatter much more and we see such light frequencies coming from all directions! Hence, we
see all the sky full of such wavelength electromagnetic waves! But wait a minute! If that
is true, then from table we have that the the power of the re-radiated waves of the
excited dipoles with violet light coming from the sun should be much higher! Hence, much
more scattering of violet light should be seen. Why is it that the sky is not violet then?
Two main reasons. Even though the sun radiates all the visible spectrum, the amount
of violet light radiated from the sun is much less than the blue light as shown in figure
Secondly, our eyes are more sensitive to the blue light than the violet light! So,
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combining all these facts at the end what we see is a blueish beautiful sky! The amount
of blue light is much more than the violet light, and blue light scatters much more than
the other longer wavelengths (A simplified cartoon of what we have discussed is shown
in figure . So, from all directions of the Earth atmosphere we receive blueish light.
Amazing isn’t it?

Figure 10.14: Radiation from the sun is scattered when it is incident to the molecules
of the atmosphere. Depending of the wavelength of the incoming light, more or less is
the light scattered. Given that we receive more blue light than violet light from the Sun,
blueish color predominates over violet. Given that blue light scatters much more than
other light colors with higher wavelength, we receive blue light color from all directions
of the atmosphere.

Now, why are sunsets reddish? Well, when the sunsets take place, the light coming
from the Sun has to travel a much bigger layer of atmosphere, scattering much more. So,
all the high frequencies of light has been scattered, leaving only the lowest frequencies
(greatest wavelength, see table . So, we see the beautiful reddish sunsets. But then,
why are clouds white? The droplets of water that constitute clouds are much bigger than
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the wavelength of the incident radiation. The scattering of light is not Rayleigh scattering
anymore in this case. In this case another kind of scattering takes places called as Mie
scattering. In such process, all wavelengths scatter equally. So, we see a combination
of all colours of the spectrum, which produce the colour white! Actually, in outer space
the sun looks white. In the earth, if you look directly to the sun (please, do not do it!)
the wavelengths red and yellow of light gets scattered muchless. But, look once again at
figure [10.13], the amount of yellow light is greater than the red light that arrives to our
atmosphere. Therefore, the Sun appears to be yellowish if you look at it directly, because
yellow and red light scatters much less than the other light colors. However, more yellow
light arrives to our eyes.

10.7 Momentum carried by Electromagnetic Waves

Electric and Magnetic fields store energy as we have studied. Also, they carry momentum!
And these fields can exert a force in any given area!

Fg

Figure 10.15

So, to start our discussion let’s analyze the following system. Suppose two electric
charges, ¢; moving in the z axis towards —z with certain velocity ¢, and ¢ electric charge
moving with another certain velocity v, in the z axis towards —x as shown in figure
Now that the charges move, we cannot say any more that the electric field is
given by Coulomb’s Law (that was for static cases). However, lets analyze what happens
instantaneously when the electric charges have certain position as shown in figure [10.15]
At that certain instant, the electric field still points radially, and the magnetic field circles
around the corresponding axis (even though we can not use Bio Savart anymore because
is not an stable current, nevertheless the form of the field still is circular around the axis
where the charges move). Hence, the direction of the magnetic field generated by charge
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¢1 at the position of charge ¢, is towards —y and the magnetic field generated by charge
¢2 at the position of charge ¢; is towards +y as shown in figure [10.15] So, notice the
following, if we use the right hand rule, the magnetic field force exerted on charge ¢,
points to the right (towards +z) as shown in figure . However, the magnetic field
force exerted on the electric charge ¢; is upwards (towards +x) as shown in figure .
So, the forces are of same magnitude but not opposite directions. Therefore, we have that

Fip # —Fy (10.116)

i.e. the exerted force on the charge 2 due to charge 1 is not of the same magnitude but
opposite direction as the exerted force on the charge 1 due to charge 2. We are violating
third Newton’s Law! What is going on?! Newton’s Third Law is actually momentum
conservation, taking into account that F' = %, last equation is telling us that

d (p2 + p1)

A0 (10.117)

so that momentum is not conserved, it changes with time! Where did the missing mo-
mentum go? To the fields! The fields can carry momentum! And the last system alarms
us that it must be the case, if not we would be in great trouble, all our electromagnetic
theory violates one of the cornerstones of physics. When we add the momentum carried by
fields in the total change of momentum of the system, we recover momentum conservation.

Now, there is a quite large derivation of the momentum carried by fields, but we need
to introduce the so called electromagnetic tensor and that is beyond the scope of this
textbook. However, we will take an approach as the famous nobel Prize Richard Feyn-
man does in his famous lectures on Physics (reference [32]).

From mechanics, we have the following Theorem (and stated as Feynman to study the
momentum carried by fields)

Theorem 10.7.1 Whenever there is a flow of energy in any circumstance at all (field
energy or any other kind of energy), the energy flowing through a unit area per unit time,
when multiplied by 1/c2, is equal to the momentum per unit volume in the space.

We already know that the energy of electric and magnetic fields flowing through a unit
area per unit time is measured by the pointing vector. Therefore, by using the theorem
just mentioned, we have that the momentum density carried by electric and magnetic
fields (momentum per unit volume in the space) is given by

g= (10.118)

le CQl

where we label as ¢ as the momentum density carried by electromagnetic fields.
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Figure 10.16

Suppose now the following scenario, a monochromatic electromagnetic wave normal
(perpendicular) incident to a surface A as shown in figure [10.16] where there are electric
charges. Now, as the electromagnetic wave passes through, the momentum of the elec-
tric and magnetic fields in the volume V' shown in figure change! Where did the
momentum go? You could probably think, well momentum flew out of the volume as the
electromagnetic wave moves. However, if that were the case, notice that the amount of
momentum getting into the volume would be the same as the momentum that flew out
of the volume because the electromagnetic wave moves with constant speed c. So, that is
not causing the change of momentum! Therefore, the momentum must have been trans-
ferred to the electric charges. If that is the case, then the momentum lost by the fields
is the same amount of momentum gained by the electric charges. Now, how do we know
that the momentum in fields changed and there was a momentum change of the electric
charges in the surface. As the electromagnetic wave passes trough the surface A where
there are electrons, the electric field exerts a force on them! And while the electrons move
due to the electric force, a magnetic force also is exerted on them. A force is nothing else
than a change of momentum of the charges 2. And why did it changed? Because the

dt
electromagnetic wave transferred it to the charge.

Now, something beautifully remarkable, is that electromagnetic waves exert pressure
on any surface A where they are incident! How can this be? Probably from thermody-
namics, you recall that the pressure in a gas is due to the collisions of the molecules of the
gas with the molecules of the container of such gas. But, in this case there is a pressure
exerted on the surface due to light?! How could that be if light is massless? Not intuitive
nor trivial at all. But indeed this happens. We can get a better grasp how this works with
the picture shown in figure [10.17a] Suppose light goes to +z direction as shown in the
picture (the direction of propagation is given by the poynting vector S) and an electric
charge is at the origin. The electromagnetic wave has an electric and magnetic field which
are perpendicular one to each other as discussed before. So, the electric field of the wave
will move the charge up and down in the x axis. But, when the electric charge moves
with certain velocity ' a magnetic force is exerted. Here comes the beauty, the direction
of the magnetic field force will be towards the direction of the propagation of light! So,
now suppose not just one charge, but a surface of charges and all of them constrained

302 CHAPTER 10. MAXWELL EQUATIONS AND INTRODUCTION TO
ELECTROMAGNETIC WAVES



Rafael Espinosa Castaneda Electromagnetism

to certain layer of a metal for example. Since, the plane wave has electric and magnetic
fields oscillating at each point of the surface, then all the charges of the metal layer will
feel a push towards the direction of the light! You can visualize this in figure [I0.17b]
The magnitude of the force exerted per unit area l—i' is the pressure that will be exerted

on the surface! This kind of pressure due to electromagnetic waves is called as radiation
pressure.

Figure 10.17

Now, what is the magnitude of that pressure? Let’s analyze an idealized case. Sup-
pose that all the energy and momentum of an normal incident electromagnetic wave is
transferred to the electric charges to a surface A, as shown in figure [I0.18 So, all the
momentum of the electric and magnetic fields in the volume V' is transferred to the electric
charges in the surface. Given that the electromagnetic waves travel at the speed of light,
and oscillate many times in a brief period of time, we are interested more in the average
of the momentum transferred. So, all the average momentum transferred to the charges
in the surface A is

A
Ap =< §> AcAt = K]Z —< > Ac (10.119)

where p is the momentum of the electric charges, < ¢ > is the average momentum density
in the volume V' shown in figure [10.18, The momentum in the volume V is all transferred
to the surface as the electromagnetic wave moves towards A. We calculated the volume as
V = AcAt, where cAt is the length travelled by the electromagnetic wave in the interval
of time At.
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Figure 10.18

Now, we know that the change with respect time of momentum of the electric charges

is the force exerted on them, so the mean force exerted on all of them is < F >= % :
Therefore, the pressure on surface A is
< § >
P= g (10.120)
c

where we used the average of ¢ in equation [10.118, And we took the pressure as the
magnitude of the average force per unit area

P=|<F>|/A (10.121)

Nice! The pressure is just the magnitude of the averaged poynting vector divided by
the speed of light. However, this is the pressure for a very specific case, when all the energy
and momentum of the electromagnetic waves was transferred to the electric charges of a
perfect absorber. Such material does not exist! This idealized absorber is called as black
body. Now, suppose a surface that reflects all light! In such case the pressure doubles!

<S>
_ ol <S>

P= (10.122)

C

because the momentum change is due now to the incident light and the reflected light
with exactly the same speed as the incident light. So, any surface material between a
perfect reflector and a perfect absorber, the pressure exerted on the surface lies between
those two values

(10.123)
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Example 7: Cosmic dust in our Solar system

Figure 10.19: Picture taken from [29)

In our Solar system, there are cosmic dust particles. These particles could range from any
size, from extremely tiny ones of size of molecules up to little dust grains like tiny rocks.
However, a tiny amount of cosmic dust in our Solar system is of a size lower than 0.2um.
Show why it is that this fact takes place.

Solution:

We have learned that light exerts a force given that it carries momentum. So, the
dust particles in the Solar system are under the influence of two forces. The gravitational
force and the radiation force. The radiation pressure pushes the dust particles away from
the Solar system, while the gravitational force attracts the dust particles towards the
Sun. So, only those particles where the gravitational force prevails against the radiation
pressure will stay in the Solar system. Those which the radiation force is bigger than
the gravitational force will be accelerated away from our Solar system. So, for any dust
particle to stay at the solar system then

Fs> Fg (10.124)

where Fg is the magnitude of the gravitational force and Fpg is the radiation force due
to the momentum carried by the electromagnetic waves from the sun. Now, giving some
numbers. We have that the luminosity of the Sun is approximately L = 3.8 x 10?°W.
That is the amount of energy per unit time generated by the nuclear reactions of the sun.
So, this energy flies away from the sun in electromagnetic radiation. Now, the average
of cosmic dust density is approximately p = 2 x 103%. So, the mass of the cosmic dust
particles in the Solar system is

A7 R3

3

where R is the radius of the dust particles and we are modelling them as spherical dust
particles for simplicity. Now, if the dust particles are at a distance r from the sun, we

m=p (10.125)
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can say then that the magnitude of the average pointing vector is

<S> |= (10.126)

We obtained last equation analyzing the following, the poynting vector is the energy flow
per unit area per unit of time. Given that the luminosity is the energy per unit of time
transported by the electromagnetic waves of the sun, then by diving by the area that
these electromagnetic waves are crossing, we obtain the units of the poynting vector. If
we take that the electromagnetic waves emitted by the sun propagate in all directions,
we can take as the area that crosses the electromagnetic waves as the area of a sphere.
Recalling that the area of the sphere is 47r? we obtain the last equation. Now, from
equation and equation [10.121I] we have that the magnitude of the radiation force
exerted on the cosmic dust particles is

| <S> | L 5

Fro— A=|—" ) 4xR 10.127

R c Arr2 ) T ( )

where A is the cross sectional area of the dust particles. Therefore, we have that equation
10.124 becomes

Mg, (pimR3 L
G—2 (o57I) > A7 R? (10.128)
r2 4rer?

where M, stands for the mass of the Sun, R is the radius of the dust particles, the term
47 R? is the cross sectional area of the dust particles, and we took into consideration as the
dust particles as idealized perfect blackbodies. So, if we isolate the radius of the cosmic

dust particles we have
3L
R> ——— 10.129
167G Mg pc ( )
so any cosmic dust particle with a radius lower than whatever value we obtain from last
equation, will be pushed away from our solar system due to electromagnetic radiation!

Beautiful! Plugging in the values we have

3-3.8 x 102°W
R> - < ~ 0.28um
167 (6.67 x 10-152°) (1.98 x 10ke) (2 x 1092%) (3 x 1052)
(10.130)
So, all cosmic dust particles whose radius approximately is
R > 0.28um (10.131)

will remain in the Solar system, those with radius lower than that will be pushed away
from our solar system due to radiation pressure! Beautiful! Radiation pressure for those
tiny cosmic particles is big enough to throw them away! Light is like a cleaner of tiny
cosmic particles for our Solar system.
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Example 8: IKAROS (Interplanetary Kite-craft Accelerated by
Radiation Of the Sun)

Figure 10.20: TKAROS picture. The original picture is from reference [30]

IKAROS is a spin-stabilized spacecraft. Its unique feature is a huge solar sail of an
ultra-flexible structure, 14m x 14m in size and 7.5pm in thickness (...)On June 9, 2010,
IKAROS successfully deployed its sail fully. (...) The data clearly indicated that IKAROS
started accelerating just after sail deployment with an acceleration amount of 3.6x1075m /s2.
This value is just that we predicted as solar-light pressure acceleration. It was this very
moment that we confirmed start of cruising by solar-sail in deep space for the first time
in the world. (...) IKAROS acquired acceleration of 100m/s from the solar-light pressure
over six months until it passed Venus. This value is equal to propellant amount consumed
for orbital adjustment of deep-space exploration missions of usual ballistic flight. More-
over, the advantage is simply proportional to flight duration. Our next technical target is a
sail area 10 times that of IKAROS and mission duration over five years. This translates to
an acceleration capability of several km/s, which is virtually the same as obtaining rocket
acceleration capability without fuel. Furthermore, by using the large sail as a generator,
we plan to drive an electric propulsion system with high-specific impulse and high power,
eventually add more freedom to mission planning. I hope that you see how solar-power
sail technology can drastically change deep-space exploration in the future.

— Professor Yuichi Tsuda [31]

The extract just shown is from the official website of the JAXA (Japan Aerospace
Exploration Agency). It is incredible how radiation pressure was used to make IKAROS
move without the use of fuel!l Just think about the possibilities! I want to finish this
chapter with this exercise. Making a simple calculation to get a grasp how useful can
be exploiting radiation pressure. Let’s use the dimensions of the IKAROS. So, the area
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where the electromagnetic radiation is incident is roughly

A =14m x 14m = 196m? (10.132)

Now, calculating the poynting vector at a distance away from the sun of 1UA (average
distance from the Sun to the Earth) and with the luminosity of the Sun

L 3.8 x 10*0W W
= 5 = 5 = 1351.21— (10.133)
drr 47 (149597870700m) m
where we consider that electromagnetic waves from the sun go in all directions, so we took
as the area crossed by the electromagnetic waves as an sphere. So, the radiation pressure
is

| <S> |

< 9>
_2_| | _

N
P= 9 x 1075 — (10.134)

c m?
where we now consider as a perfect reflector the surface of IKAROS (the IKAROS surface
was designed with a extremely good reflector to double the radiation pressure). Therefore,
the magnitude of the exerted force on the IKAROS is

- N
|F| = PA= (9 X 10—6—2) (196m?) = 1.765 x 107°N (10.135)
m
Now, the mass of the IKAROS is about 310kg. Therefore, the magnitude of the acceler-

ation of IKAROS due to radiation pressure is

1765 x 107°N
N 310kg

|_)|

_en
=5.69 x 10 6? (10.136)

which is a little above the acceleration registered from the IKAROS experiment. How-
ever, we are making various assumptions, firstly that IKAROS is a perfect reflector, the
pointing vector is calculated by a surface by a perfect sphere, and we have not taken into
account also the gravitational forces exerted on IKAROS. So, the approximation of our
calculation to the experimental data is beautifully close enough to know that the accel-
eration registered by IKAROS was due to radiation pressure. Now, probably you would
say “What is the big deal? The acceleration is ridiculously small”. Well, indeed, however
the IKAROS being accelerated constantly by one year, then its speed would be

k
7] = (5.69 x 10—6@2) - (31536000s) ~ 1802 ~ 648h—m (10.137)
s s r
A little bit more than half of the speed of sound at sea level (approximately latm), and
20°C! And even better, all that speed gained from free, no fuel used to obtain such speed.
Beautiful indeed!
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