
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Estado de México

School of Engineering and Sciences

Quantum walk-based algorithm on Scale Free Networks

A thesis presented by

German Alamilla Peralta

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

Atizapán, Estado de México, November, 2019



Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Estado de México

School of Engineering and Sciences

The committee members, hereby, certify that have read the thesis presented by German
Alamilla Peralta and that it is fully adequate in scope and quality as a partial requirement
for the degree of Master of Science in Computer Science.

Dr. Salvador Elías Venegas Andraca
Tecnológico de Monterrey

Principal Advisor

Dr. Marco Lanzagorta
Naval Research Laboratory, US Navy

Committee Member

Dr. Miguel González Mendoza
Tecnológico de Monterrey

Committee Member

Dr. Raúl Monroy Borja
Associate Dean of Graduate Studies
School of Engineering and Sciences

i

 

fame





Declaration of Authorship

I, German Alamilla Peralta, declare that this thesis titled, "Quantum walk-based algo-
rithm on Scale Free Networks" and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this dissertation is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

German Alamilla Peralta
Atizapán, Estado de México, November, 2019

©2019 by German Alamilla Peralta
All Rights Reserved

ii



Dedication

This work is dedicated to
My family:

Wilehado Alamilla, Teresa Mendoza†, Manuel Peralta†, Dora Alcocer†, Wil-
iado Alamilla Mendoza, Gloria Peralta Alcocer, Brothers and Sister.

iii



Acknowledgements

I am forever grateful to Monterrey Institute of Technology and Higher Education
(ITESM), for believing in me, for opening the doors to a new area of knowledge, and
providing a complete tuition. I am also grateful with the people of México that gave me a
scholarship through our National Council for Science and Technology (CONACYT).
Life has been very kind to me, I am more than grateful. Along the path I have met great
people. Thanks for inspiring me and believing in me. Specially, my advisor Dr. Salvador
Elias Venegas Andraca, your knowledge, patience, guidance and support has been key to
achieve this goal. Your kindness and friendliness is admirable. I leave benefited form your
scientific knowledge.
To my supervisors, Dr. Marco Lanzagorta and Dr. Miguel González Mendoza: Thank you
very much for trusting me. My admiration and respect as scientists.
To those who believed in me. My family.

iv



Quantum walk-based algorithm on Scale Free Networks
by

German Alamilla Peralta

Abstract

The classification of information contained in complex networks such as the WWW
is a central problem in network science for its technological impact. A highly successful
methodology for this purpose is Google’s PageRank algorithm. It allows to measure the
importance or relevance of a web page depending on the relationship between pages and
its connections, i.e, the hyperlink structure.

Finding ways to apply the advantages of quantum computers to real world computa-
tional tasks is an active research area. In this thesis, we implement a quantum gate-based
algorithm that replicates the behaviour of the Quantum PageRank algorithm presented in
[43], [44], [35]. We present a comprehensive analysis with the Szegedy quantum walk
formalism. The implementation procedure is based in the quantum circuit model of quan-
tum computing. Here, we review a Quantum PageRank algorithm and illustrate the main
findings. We show the behaviour of the quantum PageRank algorithm using the IBM’s Q
experience framework for quantum computing. We investigate the behavior of the Quan-
tum PageRank algorithm using quantum walks by giving explicit connections with corre-
sponding classical algorithm. We make a comparative analysis of our findings and discuss
the capabilities of a quantum computing platform applied to the Quantum PageRank algo-
rithm. Within the restrictions imposed by hardware, we implement a multiple-controlled
gate using ancilla qubits and all other elements required for implementing our quantum
algorithm.
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5.10 Yorktown quantum processor. . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Representation of a web with four pages. . . . . . . . . . . . . . . . . . . 56
6.2 A directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Complete circuit for Uwalk . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Kb1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Kb2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 Kb3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



6.7 Controlled gate corresponding to T1,y . . . . . . . . . . . . . . . . . . . 64
6.8 Qiskit implementation of controlled gate corresponding to T1,y . . . . . . 65
6.9 Circuit for Kb2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 A 4-node graph. The starting vertex is labeled as 00. . . . . . . . . . . . 67
7.2 Quantum walk circuit implementation on a graph with four nodes . . . . 67
7.3 One-step quantum walk on 4 nodes. . . . . . . . . . . . . . . . . . . . . 69
7.4 Two-step quantum walk on 4 nodes. . . . . . . . . . . . . . . . . . . . . 69
7.5 Three-step quantum walk on 4 nodes. . . . . . . . . . . . . . . . . . . . 70
7.6 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.7 Initial superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.8 Measurement results of an equal superposition of 3 qubits. . . . . . . . . 73
7.9 One-place cyclic permutation to the right. . . . . . . . . . . . . . . . . . 75
7.10 Two-place cyclic permutation to the right. . . . . . . . . . . . . . . . . . 75
7.11 One-place cyclic permutation to the left results. . . . . . . . . . . . . . . 76
7.12 Two-place cyclic permutation to the left. . . . . . . . . . . . . . . . . . . 76
7.13 3-controlled gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.14 3-controlled gate implemented in qiskit. . . . . . . . . . . . . . . . . . . 78
7.15 Controlled cyclic permutation to the left. . . . . . . . . . . . . . . . . . . 80
7.16 RyR†

y
= I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.17 Circuit for Pauli-z controlled operation, D. . . . . . . . . . . . . . . . . . 83
7.18 Histogram results of the Szegedy quantum walk. . . . . . . . . . . . . . . 86
7.19 Szegedy walk results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.20 Average Quantum PageRank with Szegedy walk. . . . . . . . . . . . . . 87
7.21 A general Szegedy quantum walk circuit. . . . . . . . . . . . . . . . . . 87
7.22 Szegedy circuit using ancilla qubits. . . . . . . . . . . . . . . . . . . . . 88

8.1 Linking every dangling node to every node in the web ensures ensures
stochasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 IBM Q 5 Tenerife. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Reflection about state |0i. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4 Reflection about state |1i. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Circuit corresponding to the T1,y transformation. . . . . . . . . . . . . . . 104
A.2 Circuit corresponding to T2,y. . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 K†

b1
circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.4 Circuit implementing K†
b2

. . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.5 Circuit implementing Kb3 . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.6 Circuit implementation for Pauli-z operator. . . . . . . . . . . . . . . . . 108

vii



A.7 Kb3 circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.8 Kb2 circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.9 Kb1 circuit- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.10 T †

2y circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.11 T †

1y circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.12 Swap implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.13 https://bit.ly/2FFKqpX . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

viii



List of Tables

6.1 First iterations using Eq. 6.1 on Fig. 6.1 . . . . . . . . . . . . . . . . . . 58

ix



Contents

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Graph Theory for Quantum Walks 6
2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Scale-free networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A concise introduction to Quantum Mechanics 14
3.1 Postulates of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 19

4 Quantum walks 24
4.1 Discrete-time Quantum walks . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Coined based quantum walk . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Szegedy Quantum Walk . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Equivalence of discrete time quantum walk and Szegedy’s quantum walk 33

5 A concise introduction to QISKIT 36
5.1 Programming quantum circuits using Qiskit . . . . . . . . . . . . . . . . 37
5.2 Quantum Gates for Quantum circuit design . . . . . . . . . . . . . . . . 42

5.2.1 Three-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Higher order control gates . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



5.4 Circuit implementation of Quantum Walks . . . . . . . . . . . . . . . . . 50
5.4.1 Szegedy Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Qiskit experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Classical and Quantum PageRank 56
6.1 Google Pagerank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Quantum PageRank Algorithm with Szegedy Walks . . . . . . . . . . . . 60

6.2.1 Szegedy circuit for the quantum PageRank algorithm . . . . . . . 62

7 Simulations 66
7.1 Quantum PageRank algorithm . . . . . . . . . . . . . . . . . . . . . . . 85

8 Discussion 89

9 Conclusions 95

A Appendix 98

Bibliography 118

xi



Chapter 1

Introduction

Quantum computation is an interdisciplinary scientific field emerged from a cross-fertilisation
between Quantum Mechanics and the Theory of Computation, and it is devoted to build-
ing computers and information processing systems that exploit the quantum mechanical
properties of nature. Research in quantum computing is centered in building algorithms
that make use of the quantum mechanical properties of those systems used to implement
them.

Quantum algorithms will be useful in practice if we are able to simulate and effi-
ciently implement them on a quantum computer. It is necessary to exploit the ’quantum
advantage’ which refers to the goal that a quantum computing will be able to outperform a
classical computer, for certain processes at least. Hence, the reason why we study quantum
algorithms.

Our goal is to explore several aspects of the realisation of quantum algorithms that
take place in graphs, specifically on directed graphs such as scale free networks. We
explore the implementation of a quantum mechanical version of PageRank, being its clas-
sical version an algorithm developed for ranking nodes according to their relevance. We
also present the general framework and relevant details of our implementation of Quantum
Page Rank on IBM’s Q platform.

To describe the processes that take place in quantum algorithms, we situate ourselves
in a frame of reference that integrates the following characteristics. First, to express any
given computational process in terms of a set of basic elements, i.e. a universal model.
Second, ease-of-implementation on available platforms. The best known models of quan-
tum computation that solve specific problems and for ease-of-implementation on certain
physical platforms, include models based on quantum circuits, the quantum adiabatic the-
orem and quantum walks.

1



CHAPTER 1. INTRODUCTION 2

Quantum walks have already been proved useful to provide quadratic [54] and expo-
nential speedup [17]. Furthermore, quantum walks constitute a universal model of quan-
tum computation so any quantum algorithm can be formulated as a quantum walk-based
algorithm [16] and vice versa, i.e. it is also possible to reformulate a quantum walk-based
algorithm in terms of another universal model of quantum computation, for instance the
quantum circuit model [20], [35]. In this thesis, we consider the implementation of quan-
tum walks using the quantum circuit model available in the IBM Q experience open source
platform [28].

In the quantum walk model we encounter two types, the discrete time quantum walk
and continuous time quantum walk, both taking place on a discrete position space defined
by graphs. However, their evolution timing is different. The continuous case is based
on evolving a quantum state according to the solution of the Schrödinger equation using
Hamiltonian dynamics based on the Laplacian matrix or adjacency matrix of the graph.
For the discrete case, the evolution is determined by the definition of shift and coin oper-
ators. The coined quantum walk was introduced by Y. Aharanov et al. [2]. The discrete
case includes an alternative to the coined model, the Szegedy quantum walk introduced
by M. Szegedy [54], which present some advantages over the first two previous models
on directed graphs. In this research, we primarily study the discrete time Szegedy walk
model which represent an advantage in the study of directed graphs, as proposed in [35].
A substantial amount of work has been done to implement quantum walk algorithms using
efficient quantum circuits [35], [50], [20].

Network and graph theory is present in nearly all aspects of quantum information
and computation [8]. Network science provides the framework to analyse and understand
networks like the web or networks associated with transportation even biological and so-
cial networks [6]. As we will see, the quantum walk takes place in a space defined by a
graph, thus fitting naturally in the study of network problems.

Recently, quantum computers have become available as a cloud-based service [32].
While currently available quantum computers have less than 100 qubits, quantum com-
puter hardware is expected to grow in terms of total number of available qubits, quality,
and connectivity. A collection of the principal quantum algorithms implemented on quan-
tum software is presented in [18], [29].

In this thesis,

1. We translate the Quantum Page Rank algorithm presented in [35], originally stated
in terms of Szegedy’s quantum walks, into the quantum circuit model. This job is
crucial for the advancement of quantum algorithms because expeditious recasting
of quantum walk-based algorithms as quantum circuits is a new area of scientific
research.
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2. We shall implement and simulate the quantum circuits produced in the previous
step on IBM Q Experience platform (both WWW-based service and QISKIT local
services). In this step, we shall present some techniques for running quantum al-
gorithms, originally stated in terms of quantum walks, on IBM’s Q platform. Our
results will contribute towards identifying the capacities and limitations of current
IBM’s Q platform.

1.1 Problem definition
The exploration and classification of massive amounts of data stored in complex networks
such as the World Wide Web (WWW) is a key activity in contemporary science. A cen-
tral problem of information retrieval is to classify such information by its relevance, i.e.
data ranking. A successful procedure for this purpose is the famous PageRank algorithm
proposed by L. Page and S. Brin [42].

Building quantum networks, potentially resembling the WWW in terms of size and
complexity, is a crucial goal of quantum information science and technology [56, 58, 27].
In the hypothetical situation where large-scale quantum networks became a reality, classi-
fying the quantum information stored in those systems would be a priority. In this thesis,
we analyse the quantum equivalent of PageRank algorithm [43, 44] using the model of
quantum walks and translated into the quantum circuit model.

As previosly stated in this chapter, quantum walks constitute a universal model of
quantum computation, meaning that any problem that can be solved by an algorithm run-
ning on a general-purpose quantum computer can also be solved by a quantum walk-based
algorithm [16, 57]. Due to the computational universality of quantum walks and the quan-
tum circuit model, it is always possible to reformulate a quantum walk-based algorithm in
terms of quantum gates [33].

The study of quantum walks on directed graphs is a real challenge that has not been
extensively explored. Among the works on quantum walks on directed graphs, we en-
counter [37], in which Montanaro uses discrete time quantum walk, and gives a necessary
and sufficient condition for running a quantum walk on a graph, named reversibility.

In this thesis, we implement a quantum gate-based algorithm that replicates the be-
haviour of the Quantum PageRank algorithm presented in [43], [44], [35]. Additionally,
we argue in section 4.1.2 that the Szegedy model of quantum walk presented in [54] is
particularly suited for working on problems that are defined on directed graphs because it,
the Szegedy model, represents a robust abstraction of the coined model (Sec. 4.2).
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The complexity of a quantum gate-based algorithm is measured in terms of the num-
ber of gates used as a function of number of bits of input. The quantum circuit implemen-
tation of quantum walks has been investigated on highly symmetric graphs [20] and the
continuous-time quantum walk on the circulant class of graphs and other types [50].

1.2 Objectives
The main objective of this thesis is:

• To recast Szegedy’s quantum walk model in terms of the quantum circuit model.

• To introduce a general mathematical framework to efficiently rewrite a Szegedy’s
quantum walk as a quantum circuit.

• To simulate the quantum PageRank algorithm as a quantum circuit, on IBM’s quan-
tum platform [28], [35].

• To discuss design principles for the development of efficient quantum circuit-based
implementations of quantum walks.

Additionally, our particular objectives are:

• To calculate the average Quantum PageRank.

• To discuss implementation drawbacks on IBM’s platform for Szegedy’s quantum
circuit.

1.3 Overview
In general, we explore how currently available tools and techniques within the realm of
quantum computation could actually help computer practitioners to develop quantum al-
gorithms. The discussion provided in this thesis can be used to obtain a succinct guide to
some of the concepts of quantum mechanics needed to be initiated in the fields of quantum
computation and quantum walks.

Now we provide an outline of our thesis.
Chapter 2 Graph theory. Graph theory is crucial to understand the dynamics of

quantum walks. Hence, in this chapter we present several key concepts from graph theory,
such as the different types of graphs in which quantum walks take place.
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Chapter 3 Quantum mechanics. This chapter is a concise introduction to the pos-
tulates of quantum mechanics needed to set the mathematical basis employed in the study
of quantum computation and algorithm development. This chapter has been written with
two purposes in mind 1) to provide the necessary background for our work related to quan-
tum walks 2) to serve as a concise guide for scientists from different areas whose desire is
to initiate in the field of quantum computation.

Chapter 4 Discrete time quantum walks. In this chapter, we offer a concrete intro-
duction to the main ideas behind quantum walks. We include a mathematical description
of the parts that integrate a quantum walk and we define the operators involved in the defi-
nition of a quantum walk. Also, we provide our reader with resources that could be a good
starting point for learning and doing research in the extensive area of quantum walks.

Chapter 5 A concise introduction to Qiskit. In this chapter we introduce Qiskit,
IBM’s accessible platform for quantum computing, which is also the platform in which
we implemented and simulated our algorithm. The purpose of this chapter is to serve
as a guide not just for computer scientists but anyone who wants to employ a quantum
computer to implement solutions in their corresponding area.

Chapter 6 Classical and Quantum Pagerank. In this chapter, we explain the clas-
sical and quantum PageRank algorithms. We provide explicit relationships between these
two algorithms and explain how the classical PageRank is connected with the Quantum
PageRank through Markov chains.

Chapter 7 Simulations. We present the main results of our simulations on IBM
platform providing step-by-step simulations for the correct implementation of our circuit.

Chapter 8 Discussion. In this chapter, we discuss the key ideas presented in the
thesis. We include an analysis of the IBM’s platform and the main issues faced. Also, we
present in more detail the key concepts in the Markov chain,

Chapter 9 Conclusions. We present and summarise the main ideas developed in
this thesis.



Chapter 2

Graph Theory for Quantum Walks

In this section, we introduce some notions of Graph Theory required to understand the
main concepts in the study of quantum walks. For an extensive study in graph theory the
readers may find references [7, 5, 24, 40, 9] relevant to deepening into the mathematical,
physical and algorithmic properties of graphs and networks.

2.1 Basic definitions
Quantum walks (section 4) take place on graphs, which are mathematical structures de-
fined by edges and vertices. In a classical random walk, we consider the vertices as the
sites upon which the walker can move and the edges tell the possible directions the walker
can move across vertices. In the context of quantum walks, vertices represent the states a
quantum walker is allowed to take and edges represent quantum state transitions.

A graph consists of two sets, V and E. Each element of V is called a vertex. The
elements of E, called edges, are unordered pairs of vertices. An undirected graph, or
simply a graph, consists of two finite sets, V and E. Is denoted as G(V,E) where V =
{v1, . . . , vN} is a set of vertices and E = {(vi, vj), . . . , (vk, vl)} is the set of edges (links
or lines). An undirected graph has the property (vi, vj) 2 E () (vj, vi) 2 E. When
(vi, vj) 2 E, we say that vi is connected to vj , and express it by vi ! vj . A graph is said
to be strongly connected if every vertex is reachable from any other vertex. The degree
(or valency) of vertex v is the number of edges incident to the vertex and is denoted by
deg(v).

For instance, the set V might be {a, b, c, d} and E might be {{a, b}, {b, c}, {b, d}, {c, d}}.
Together V and E are a graph and a visual representation of G is presented in Fig. 2.1. Us-
ing the same graph G we illustrate the node degrees as follows. Graph G has deg(a) = 1,
deg(b) = 3, deg(c) = 2, deg(d) = 2.

6
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Figure 2.1: Visual representation of graph G.

A generalization of the concept of a simple graph that allows repeated elements in
the set of edges between two vertices, is the notion of a multigraph �, shown in Fig. 2.2.
Graphs with loops can be added to this class.

Figure 2.2: A multigraph

In directed graphs (see Fig. 2.3), we distinguish between incoming degree, indeg(v),
representing the number of links that point to node v and outgoing degree, outdeg(v),
representing the number of links that point from node v to adjacent nodes. A directed
graph or digraph, G = (V,A), is defined by a vertex set V (G), an arc set A(G) and a
function assigning each arc an ordered pair of vertices, (i, j), where i is the tail and j is
the head, and (i, j) is called directed edge or simply arc.

Let us use the digraph G in Fig 2.3 to illustrate indegree and outdegree. G has
indeg(a) = 0, indeg(b) = 2, indeg(c) = 1, indeg(d) = 2; outdeg(a) = 1, outdeg(b) =
1, outdeg(c) = 2, outdeg(d) = 1.

Now, let ~G(V,A) be a directed graph such that (i, j) and (j, i) are in A( ~G) if and
only if {i, j} 2 G. ~G is a symmetric digraph, whose underlying graph is G, as in Fig. 2.4.

In addition to visual representations, we can write down graphs via matrix repre-
sentations. One such representation is the adjacency matrix. For any graph G(V,E), the
adjacency matrix A is an N ⇥N matrix defined according to Eq. (2.1)
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Figure 2.3: A directed graph or digraph.

Figure 2.4: Symmetric digraph
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Ai,j =

⇢
1 (vi, vj) 2 E
0 otherwise (2.1)

Note that the adjacency matrix A of an undirected graph G must be symmetric, i.e.
A = AT , equal to its transpose. This is because (vi, vj) 2 E ) (vj, vi) 2 E. For the
undirected graph in Fig. 2.1 with four vertices, we see that the entries of its adjacency
matrix A are symmetric with respect to the main diagonal.

2

664

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

3

775

Directed graphs do not have a symmetric adjacency matrix (A 6= AT ). We can
observe this fact from its adjacency matrix below

2

664

0 1 0 0
0 0 0 1
0 1 0 1
0 0 1 0

3

775

From the adjacency matrix we define the corresponding transition matrix P

Pi,j =
Ai,jP
n

i=1 Ai,j

(2.2)

where
P

n

i=1 Ai,j is the in-degree of vertex j and Pi,j is the transitions probability of
vj ! vi with row or column normalization

P
N

i=1 Pi,j = 1 and pi,j � 0. For Fig. 2.1 the
transition matrix is 2

664

1 0 0 0
1
3 0 1

3
1
3

0 1
2 0 1

2
0 1

2
1
2 0

3

775

The transition matrix P is used to describe the transitions of a Markov chain. A
Markov chain is a stochastic process whose immediate future state depends only on its
present state. A classical discrete-time stochastic process is a sequence of random vari-
ables X0,, X1, X2, ... denoted by {Xt : t 2 N}. Xt is the state of the stochastic process at
time t and X0 is the initial state. A random walk can be described by a Markov chain. In
Sec. 6.1, we provide a precise relationship between the PageRank algorithm and Markov
chains.
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A graph G is d-regular if all its vertices have degree d, that is, each and every vertex
in G has exactly d neighbors. A non regular graph (or irregular graph) is a graph in which,
for every vertex, neighbors of that vertex have distinct degrees. We can obtain a degree
matrix D whose diagonal elements contain information about the degree of each vertex. It
is used together with the adjacency matrix to construct the Laplacian matrix of a graph.

The Laplacian matrix L of a simple graph is defined as L = D � A, where D is the
degree matrix and A is the adjacency matrix of the graph.

Li,j =

8
<

:

deg(v), if vi = vj
�1, if {vi, vj} 2 E
0, otherwise

(2.3)

Considering the graph in Fig. 2.1 its degree matrix is
2

664

1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2

3

775

Together with the adjacency matrix defined before, we obtain the Laplacian matrix
of graph in Fig. 2.1 2

664

1 �1 0 0
�1 3 �1 �1
0 �1 2 �1
0 �1 �1 2

3

775

Bipartite graph. A graph G is bipartite if its vertex set can be partitioned into two sets
X and Y in such a way that every edge of G has one end vertex in X and the other in Y .
In this case, X and Y are called the partite sets. A vertex in X is connected to a vertex in
Y if and only if they are connected in the original graph, as shown in Fig. 2.5.

Note that the number of edges in its bipartite double cover is 2|E|.
Consider a connected bipartite graph �(X, Y,E), where X , Y are disjoint sets of

vertices, and E is the set of non-directed edges. The adjacency matrix of �(X, Y,E)
(considered as biadjacency matrix) is


0 A
AT 0

�
(2.4)

Szegedy’s quantum walk (as we will see in section 4.1.2) occurs on the edges of the
bipartite double cover of the original graph.
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Figure 2.5: Generation of the double cover bipartite graph from an irregular graph of
N = 4 vertices.

Complete Graph. A graph is said to be complete if every vertex is adjacent to every
other vertex. A complete graph of order n is denoted as Kn. Figure 2.6 shows show some
examples for different Kn

Figure 2.6: Examples of complete graphs

Cycles. A cycle is a circuit with a vertex sequence in which the first and the last vertex
are repeated, i.e, (v1, v2, . . . , vn, v1). We denote the graph Cn as a cycle on n vertices. For
example, a C7 cycle is shown in Fig. 2.7

2.2 Scale-free networks
A scale-free network is a network whose degree distribution follows a power law (see Fig.
2.8). That is, the probability that a randomly selected node has degree k is:
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Figure 2.7: Graph for C7

P (k) ⇠ k��

where � is its degree exponent that ranges between 2 and 3. It implies that few nodes
have great connectivity and most nodes have only a few links. These numerous small
nodes are held together by a few highly connected hubs [7].

Number of links

N
um

be
ro

fn
od

es

Figure 2.8: Power law distribution

Many biological, social, and technological systems are described by complex net-
works whose nodes represent individuals or elements, and links simulate the interactions
among them [12]. Many of these networks follow the scale-free property, which in turn
results in a power law distribution for the probability that a node of the network has a
determined number of connections to other nodes [6].
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A particular example of a scale free network is the internet and the WWW which
have been extensively studied because of the technological and economic relevance. While
the terms WWW and the Internet are regularly used interchangeably, we point out that they
refer to different systems. The WWW is an information network whose nodes are docu-
ments and links are URLs. In contrast, the internet is an infrastructural network, whose
nodes are computers called routers and whose links correspond to physical connections,
like optical cables or wireless links [7]. The World Wide Web is a directed network whose
nodes are documents and the links are the uniform resource locators (URLs) that allow us
to surf with a click from one web document to the other.

The WWW is a directed network, hence each document is characterized by an out-
degree kout, representing the number of links that point from the documents, and an in-
degree kin, representing the number of documents that point at the selected document. So,
we distinguish two degree distributions: the probability pkout ⇠ k��out that a randomly
selected document points to kout, web documents, and the probability pkin ⇠ k��in that a
randomly chosen node has kin web documents pointing to it. In this case, both probabilities
can be approximated by a power law. The scale-free property applies to both in and out
degrees [3].

In order to study systems that follow a power law using quantum walks, we require
a formalism that supports directed graphs. In this thesis, we investigate the properties of
the quantum PageRank algorithm that works on real world networks such as the WWW.
In order to study these systems a suitable formalism is required, the Szegedy (Ch. 4.1.2)
formalism is utilized.



Chapter 3

A concise introduction to Quantum
Mechanics

In this section we summarize the core background of quantum mechanics [21, 36] for
quantum computing that includes important definitions employed in the study of quantum
algorithms. A major purpose of this section is clarify the mathematical notations and
terminology. Then, we proceed to define the postulates of quantum mechanics.

Quantum mechanics represent the most complete and reliable description of the
world at a microscopic level and beyond known so far. It is also the foundation of quantum
computation and quantum information [41]. We start by introducing a general mathemat-
ical formalism based on linear algebra.

The basic elements in linear algebra are vector spaces. The elements of a vector space
are vectors. The vector space of interest is Cn, a space defined by n-tuples, (z1, . . . , zn), of
complex numbers. There is an addition operation which takes pairs of vectors to generate
other vectors. Also, in a vector space, there is a scalar multiplication operation. We define
the notions of vector addition and scalar multiplication as follows.

• Vector addition. This is a binary operation that takes a pair of vectors x,y 2 V to
produce a another vector x+ y 2 V.

• Scalar multiplication. This operation takes a vector x 2 V and a scalar c 2 F to
produce another vector cx.

Definition 1 Let V be a set associated to a field F. The elements of V are called vectors.
The elements of F are known as scalars. Set V, together with a field F and the opera-
tions known as vector addition and scalar multiplication, is known as a vector space iff it
satisfies the following axioms.

14
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1. Closure under addition.
8x,y 2 V =) x+ y 2 V.

2. Commutativity of addition.
8x,y 2 V =) x+ y = y + x.

3. Associativity of addition.
8x,y, z 2 V =) x+ (y + z) = (x+ y) + z.

4. Additive identity.
9!0 2 V such that 8x 2 V =) x+ 0 = 0+ x = x.

5. Additive inverse.
For each x 2 V, 9!� x 2 V such that x+ (�x) = �x+ x = 0.

6. Closure under multiplication.
8x 2 V,↵ 2 F =) ↵x 2 V.

7. Commutativity of multiplication
8x, y 2 F =) xy = yx.

8. Associativity of multiplication
8x 2 V,↵, � 2 F =) ↵(�x) = (↵�)x.

9. Multiplicative identity.
9 2 F, such that, 8x 2 V =) x1 = 1x = x.

10. Multiplicative inverse.
For each x 2 F� {0} 9x�1

2 F such that xx�1 = x�1x = 1.

11. Distributivity of multiplication over addition
8x 2 V,↵, � 2 F =) (↵ + �)x = ↵x+ �x.

8x,y 2 V,↵ 2 F =) ↵(x+ y) = ↵x+ ↵y.

Now, we define important mathematical preliminaries that will allow us to introduce
the central concepts in quantum computing.

Definition 2 Functional. Let V be a vector space over a field F. A linear functional is a
linear function f : V ! F

Definition 3 Inner-product vector space. An inner product vector space V, is a complex
vector space, equipped with an inner product h·|·i : V⇥ V ! C



CHAPTER 3. A CONCISE INTRODUCTION TO QUANTUM MECHANICS 16

Definition 4 Complete inner-product vector space. An inner-product vector space V is
denoted as complete if for any sequence {ai}

1
i=1, ai 2 V with the property limi,j!1 ||ai �

aj|| = 0, there is a unique element b 2 V such that limi,j!1 ||b� aj|| = 0

Now, we define an important vector space, the Hilbert space.

Definition 5 Hilbert Space. A Hilbert space H is a complete complex inner-product vec-
tor space.

An example of a Hilbert space is C2(C), the complex bidimensional vector space
defined over the field of complex numbers.

C2(C) =
��

a

b

�
|a, b 2 C and scalars ↵ 2 C

 

Any vector in the vector space can be written as a linear combination |vi =
P

i
ai |vii

of vectors in that set. A spanning set for a vector space is a set of vectors |v1i , . . . , |vni.
The standard notation of quantum mechanics for a vector in a vector space is known

as Dirac notation, also known as Bra-Ket notation. This notation is a convenient way to
represent vectors and operations in linear algebra. The formal definition of Ket and Bra is
as follows.

Definition 6 Dirac notation. Let H be a Hilbert space. A vector | i 2 H is denoted | i
and is referred as ket. The corresponding linear functional is denoted h | and is referred
as bra. Thus, h·| can be seen as an operator that maps each state � into a functional h�|
such that h�| (| i) = h�| i. We define | i† ⌘ h |

Ket. Let H be a Hilbert space. A vector  2 H is denoted by | i and it is referred
to as a ket. When written using matrix notation, it is customary to write kets as column
vectors.

For instance, let H = C2 and let us choose the vector basis {|0i , |1i}, where

|0i =


1
0

�
|1i =


1
0

�

Then, every element | i 2 H can be written as

| i = ↵


1
0

�
+ �


1
0

�
,↵, � 2 C

Bra. Formally speaking, Bras are functionals (i.e. functions of vector spaces into
corresponding fields) and in practice, they can be thought of as row vectors:

| i = ↵ |0i+ � |1i if and only if h | = ↵⇤
h0|+ �⇤

h1|
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where ↵, �,↵⇤, �⇤
2 C. ↵⇤ and �⇤ are the complex conjugate of ↵ and �, respectively and

h0| = (1, 0) and h1| = (0, 1)
In general, if H is an n-dimensional Hilbert space then a ket | i 2 H can be repre-

sented as an n-dimensional column vector. Its corresponding bra h | 2 H
⇤ can be seen as

an n-dimensional row vector. We represent this idea in the following example. In Dirac
notation:

v =

2

6664

v0
v1
...
vn

3

7775
= |vi

as well as for the dual vector of |vi, the bra:

vT =
⇥
v⇤0 v⇤1 . . . v⇤

n

⇤
= hv|

where v and v⇤
i

are two ways to denote the complex conjugate of v.
An inner product is a function which takes as input two vectors |ai and |bi from a

vector space and produces a complex number as output.

Definition 7 Inner Product. Let V(C) denote a vector space V defined over the set of
complex numbers C. Also, let |ai . |bi 2 V(C). We define the inner product function as
follows.

h·|·i : V⇥ V ! C

with the following properties

1. 8 |ai 2 V =) (|ai , |ai) � 0 and (|ai , |ai) = 0 () |ai = 0

2. 8 |ai , |bi 2 V =) (|ai , |bi) = (|bi , |ai)⇤

3. 8 |ai |bi
i
2 V,↵i 2 C, i 2 N =) (|ai ,

P
i
↵i |bii) =

P
i
↵i(|ai , |bii)

For instance, the inner product in Cn is

ha|bi = aTb =
⇥
a⇤1 a⇤2 . . . a⇤

n

⇤

2

6664

b1
b2
...
bn

3

7775
= a⇤0b0 + a⇤1b1 + . . .+ a⇤

n
bn =

nX

i=1

a⇤
i
bi

which is the usual row-column matrix multiplication, where a⇤
i

is the complex con-
jugate of ai, 8i n{1, . . . , n}
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Using the Dirac notation, and considering |�i , | i 2 C2 the inner product is denoted
as

(|�i , | i) = h�| | i = h�| i

The inner product on the vector basis introduced before we obtain

h0|0i = h1|1i = 1,

h0|1i = h1|0i = 0.

We need to define one more operation, the outer product. To do so, first we define
the concept of Linear Operators.

Definition 8 Linear operator. A linear operator between vectors spaces V and W is
defined as any function Â : V ! W which is linear in its inputs,

Â

 
X

i

↵i | ii

!
=
X

i

↵iÂ | ii

To illustrate the previous definition let’s consider the Adjoint/Hermitian conjugate
operator

Definition 9 Adjoint/Hermitian Conjugate Operator. Let Â : H ! H be a linear oper-
ator that induces the map | i ! | 0

i. The operator Â†, known as Â dagger, the adjoint
of Â or the Hermitian Conjugate of Â, induces the map h | ! h 0

| on the corresponding
bras.

In other words,
Â | i = | 0

i

h | Â† = h 0
|

In matrix notation, this operation, Â†, is (At)⇤ where t denotes transposition and ⇤ denotes
complex conjugation.

The outer product, denoted |vi hu| or |vi ⌦ hu|, is known as the tensor or Kronecker
product of |vi with the conjugate transpose of |ui. The result in contrast with the inner
product is not a scalar but a matrix:

|vi hu| =

2

6664

v0
v1
...
vn

3

7775
⇥
u0 u1 . . . un

⇤
=

2

6664

v0u⇤
0 v0u⇤

1 . . . v0un

v1u⇤
0 v1u⇤

1 . . . v1un

...
... . . . ...

vnu⇤
0 vnu⇤

1 . . . vnu⇤
n

3

7775
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The outer product is crucial in describing linear transformation between vectors
spaces [53]. Dirac notation proves to be elegant and simple to describe transformation
matrices like the one depicted above. Let | i , |ai 2 H1 and |�i 2 H2 then the outer
product is the linear operator from H1 to H2 defined by

(|�i , h |) |ai ⌘ (h |ai) |�i

As a result, the summation of outer products is also a linear operator.
We encounter the tensor product in most operations in quantum computation. The

tensor product between two vectors |ui ⌦ |vi is used so frequently that is simplified to
|ui |vi or |uvi. A tensor product of a vector with itself n times is denoted as |vi⌦n. We
show the convenience of using this notation in the following example:

|ui |vi = |uvi =

2

6664

u0

u1
...
um

3

7775
⌦

2

6664

v0
v1
...
vn

3

7775
=

2

66666666666666664

u0 · v0
u0 · v1

...
u0 · vn
u1 · v0

...
um�1 · vn
um · vn

...
um · vn

3

77777777777777775

Tensor products are helpful since they are a mathematical abstractions that describes
interactions between two quantum systems.

3.1 Postulates of Quantum Mechanics
In this subsection we give a concise description of the basic postulates of quantum me-
chanics. These postulates provide a connection between the physical world and the math-
ematical formalism of quantum mechanics.

The first postulate of quantum mechanics lays the foundation in which quantum me-
chanics takes place.

State Space

Postulate 1 Any isolated physical system has an associated Hilbert space H, known as
the state space of the system. The physical system is completely described by its state
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vector, which is a unit vector, | i 2 H, in the system’s state space.

The simplest quantum mechanical system is the qubit. In quantum computing, infor-
mation is stored, manipulated and measured in the form of qubits. A qubit is an element of
a two-dimensional state space | i 2 H

2, thus a qubit | i may be written in general form
as

| i = ↵ |pi+ � |qi

where ↵, � 2 C, |↵|2 + |�|2 = 1 and {|pi , |qi} is an arbitrary basis spanning H
2. The

special states |0i and |1i are known as computational basis states, and form an orthonormal
basis for this vector space.

Postulate 1 implies that any vector |vi in the vector space can be written as a linear
combination |vi =

P
i
↵i |vii of vectors in that set. This is known as the superposition

principle. For example, the state
|0i � |1i

p
2

is a superposition of the states |0i and |1i with amplitude 1/
p
2 for the state |0i, and

amplitude �1/
p
2 for the state |1i

To perform operations in quantum computing, we take qubits as registers. The state
space of a quantum register of size n is represented as a linear combination of n basis
vectors, each of length 2n as follows:

| ni =
2n�1X

i=0

ai |ii (3.1)

As an example, a three-qubit register would have the following expansion:

| 3i = a0 |000i+a1 |001i+a2 |010i+a3 |011i+a4 |100i+a5 |101i+a6 |110i+a7 |111i

or in the vector form, using the computational basis [53]

| 2i = a0

2

66666666664

1
0
0
0
0
0
0
0

3

77777777775

+ a1

2

66666666664

0
1
0
0
0
0
0
0

3

77777777775

+ a2

2

66666666664

0
0
1
0
0
0
0
0

3

77777777775

+ a3

2

66666666664

0
0
0
1
0
0
0
0

3

77777777775

+ a4

2

66666666664

0
0
0
0
1
0
0
0

3

77777777775

+ a5

2

66666666664

0
0
0
0
0
1
0
0

3

77777777775

+ a6

2

66666666664

0
0
0
0
0
0
1
0

3

77777777775

+ a7

2

66666666664

0
0
0
0
0
0
0
1

3

77777777775
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Quantum Evolution

Postulate 2 The evolution of a closed quantum system with state vector | i is described
by a unitary operator. That is, the state of the system at time t1 is related to the state of the
system at time t2 by the unitary operator Û which depends only on times t1 and t2. Some
examples of Unitary operators acting on a single qubit that are important in quantum
computation and quantum information includes the Pauli matrices, the Hadamard gate
(as described in section 5.2).

| (t2)i = Û | (t1)i

Postulate 2 describes the change of a quantum mechanical system with time. It
describes the mathematical properties that an evolution operator must have. An alternative
way to write a quantum evolution is in terms of the Schrödinger equation, it describes
quantum evolution in continuous time:

i~@ | (t)i
@t

= Ĥ | (t)i

where ~ = h/2⇡, h is the Planck’s constant (6.62607004 ⇥ 10�34J · s) and Ĥ is a Her-
mitian operator known as the Hamiltonian of the system. If the Hamiltonian is known
then we fully understand the dynamics of the system whose evolution is described by the
Schrödinger equation.

Quantum Measurement

Postulate 3 Let | i 2 H
n be the state of a quantum system immediatly before measure-

ment. Also, let {ai} be the set of measurement outcomes and M̂ai = hi|ii be the set of
measurement operators built using basis B = {|ii}, where i 2 {0, 1, . . . , n � 1}. If the
state of the quantum system is | i immediately before the measurement then the probabil-
ity that result ai occurs is given by

p(ai) = h |M̂ †
ai
M̂ai | i

and the post-measurement quantum state that corresponds to measurement outcome ai is
given by

M̂ai | i

p(ai)

where M̂ †
ai

is the result of applying the dagger operator † to the projection operator
M̂ai .
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Measurement operators satisfy the completeness equation,
P

a
M †

ai
Mai = I . The

completeness equation expresses the fact that probabilities sum to one: 1 =
P

m
p(ai) =P

a
h |M †

ai
Mai | i.

As an example, let us consider a measurement on a single qubit in the computational
basis. This a measurement with two outcomes defined by the two measurements operators
M0 = |0i h0|, M1 = |1i h1|. Observe that each measurement operator is Hermitian, thus
the completeness relation is obeyed, I = M †

0M0 +M †
1M1 = M0 +M1. Suppose the state

being measured is

| i =
1
p
2
|0i+

1
p
2
|1i

.
Then the probability of obtaining measurement outcome 0 is

p(a0) = h |M †
a0
Ma0 | i = (

1
p
2
h0|+

1
p
2
h1|)[(|0i h0|)(

1
p
2
|0i+

1
p
2
|1i)]

= (
1
p
2
)2 h0|0i+ (

1
p
2
)2 h1|0i

=
1

2

Now, we compute the post-measurement quantum state | ia0
pm

| ia0
pm

=
M̂a0p
p(a0)

=
1p
2
|0i
1p
2

= |0i

So, the post measurement state is | ia0
pm

= |0i. Applying the same procedure for the
state 1 we obtain a probability p(a1) =

1
2 , and computing the post-measurement quantum

state | ia1
pm

= |1i.

Composite Quantum Systems

Consider a qubit | i 2 H
2. We know from postulate 3 that measuring | i will produce

one of two mutually exclusive outcomes, either 0 or 1. For composite systems, consider
| i1 2 H1 where | i1 = a |0i + b |1i and | i2 2 H2 where | i2 = c |0i + d |1i. If we
measure both qubits at once, the possible results are: 0 and 0, 0 and 1, 1 and 0, 1 and 1.
The proposed mathematical representation of s system composed by two qubits is

|�i = ↵0 |00i+ ↵1 |01i+ ↵2 |10i+ ↵3 |11i

where |�i is the result of mixing | i1 and | i2, ↵0,↵1,↵2,↵3 2 C and
P

i
||↵i||

2 = 1. |�i
is an example of a method that describes multipartite quantum system: the tensor product.
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The following postulate describes how the state space of a composite system is built
up from the state space of the component systems.

Postulate 4 The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. If we have n quantum systems, | i1 , | i2 , . . . , | in
then the joint state of the total system is | i

T
= | i1 ⌦ | i2 ⌦ . . .⌦ | i

n
.

As metioned before, we may write |ai ⌦ |bi as |abi or |a, bi. In general, the tensor
product of |ai with itself n times may be written as |ai⌦ |ai⌦ . . .⌦ |ai = |ai⌦n. Consider
|101i, it represents an integer value of 5:

|101i = |1i ⌦ |0i ⌦ |1i

=


0
1

�
⌦


1
0

�
⌦


0
1

�

=
⇥
0 0 0 0 0 1 0 0

⇤T

Quantum registers are an extension of quantum bits. Understanding how quantum
registers work and its mathematical description allow us to think about how the state of a
quantum register can evolve over time.



Chapter 4

Quantum walks

Quantum walks, the quantum mechanical counterpart of random walks [45, 51], were
originally designed to model quantum phenomena [2] as well as a mathematical tool for
building quantum algorithms that has been shown to constitute an universal model of quan-
tum computation [16, 57]. There are two kinds of quantum walks: discrete and continuous
quantum walks. The main difference between these two sets is the timing used to apply
corresponding evolution operators. In the case of discrete quantum walks, the correspond-
ing evolution operator of the system is applied only in discrete time steps, while in the
continuous quantum walk case, the evolution operator can be applied at any time.

Two popular models of discrete-time quantum walk are coined quantum walks and
Szegedy’s quantum walks. In both models, time runs in discrete steps, hence t 2 N.
The discrete time quantum walk on the line was one of the first quantization models of
classical random walks. The generalization of regular random walks on finite graphs was
introduced in Ref. [1]. Using a different quantization procedure, Szegedy [54], proposed
a new coinless discrete time quantum walk model on bipartite graphs (Fig. 2.5). In [62]
and [48], it is shown the equivalence of the the coined quantum walk and the Szegedy’s
quantum walk. As for the continuous-time quantum walk, it evolves according to the
Schrödinger equation. In this thesis, we focus on discrete-time quantum walks.

In the next subsections, we center our attention to describe the discrete model as it
represents a good approach for the problem stated. Finally, we make an analysis of the
equivalence of the Szegedy’s quantum walk and the coined quantum walk [62, 48] by
giving explicit relationship between corresponding evolution operators.

24
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4.1 Discrete-time Quantum walks

4.1.1 Coined based quantum walk
A coined discrete quantum walk is composed of two quantum systems known as the walker
and the coin, evolution operators for both quantum systems and a set of measuring opera-
tors.

The walker is a quantum system living in a Hilbert space of infinite but countable
dimension HP while the coin lives in a 2-dimensional Hilbert space HC . We denote the
walker as |positioni 2 HP , and the valid states for position includes the computational
basis states |ii

P
, as well as any superposition in the form

P
i
↵i |iiP . The walker is usually

initialized at the origin, i.e., |positioni
initial

= |0i
P

.
The coin is a quantum system living in a Hilbert space, |coini 2 HC . The coin may

take the canonical basis states |0i and |1i as well any superposition of these basis states.
A general normalized state of the coin may be written as |coini = a |0i

C
+ b |1i

C
, where

|a|2 + |b|2 = 1.
A single step in the dynamics of a coined quantum walk consists of the following

two operations:

a) A coin toss, which in the context of quantum mechanics is equivalent to applying a
Unitary operator Ĉ to the quantum coin.

b) A shift operator Ŝ which is a bipartite Unitary operator to be applied to both coin
and walker in order to quantum mechanically diffuse the walker over the graph upon
which the quantum walk is being run.

The total state of the system | i 2 H is described by the tensor product of the walker
Hilbert space HP and the coin Hilbert space HC , i.e. Ht = HP ⌦HC .

We write the step operator Û for the coined quantum walk as shown in Eq. (4.1):

Û = Ŝ ⌦ Ĉ (4.1)

As described above, the coin operator Ĉ is applied first, followed by the shift operator
Ŝ. Considering a initial state | 0i we obtain the state of the system at time t by applying
the step operator t times, according to Eq.(4.2)

| ti = Û t
| i

initial
(4.2)
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At some point, we must perform a measurement operation (see Section 3.1) in order
to know the outcome of the walk. To do so, we define a set of observables related to the ba-
sis states defined in the coin and walker operator. For instance, we perform a measurement
on the coin using the observable

M̂c = ↵0 |0ic h0|+ ↵1 |1ic h1|

.
Then, a measurement is performed on the position states of the walker by using the

operator
M̂p =

X

i

|ii
p
hi|

Coined quantum walk on an unrestricted line. In this case, we run a quantum walk
on line, i.e. a one dimensional graph with all nodes connected only to two other adjacent
nodes (Fig. 4.1).

Figure 4.1: An unrestricted walk on a line.

The walker’s position on the line is described by a vector |ni in a Hilbert space
HP of infinite but countable dimension. We take as basis of HP the computational basis
{|ni : n 2 Z}.

The Hilbert space of the system is H = HC ⌦HP , where HC is the two-dimensional
Hilbert space associated with the coin whose computational basis is {|0i , |1i}.

As stated above, we apply an evolution operator to the coin state followed by a
conditional shift operator to the total quantum system. The effect of applying the coin
operator is a superposition of the coin state.

The coin operator most frequently used is the Hadamard operator, presented in Eq.
4.3 and with matrix representation given by Eq. (4.4)

Ĥ =
1
p
2
(|0i

c
h0|+ |0i

c
h1|+ |1i

c
h0|� |1i

c
h1|) (4.3)

Ĥ =
1
p
2


1 1
1 �1

�
(4.4)
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For the conditional shift operator, we use a suitable Unitary operator for allowing the
walker to go one step forward if the accompanying coin state is one of the two basis states
(e.g. |0i) or one step backwards if the accompanying coin state is the other basis state (e.g.
|1i). The complete description of this linear operator is

Ŝ = |0i
c
h0|⌦

1X

n=�1
|n+ 1i

p
hn|+ |1i

c
h1|⌦

1X

n=�1
|n� 1i

p
hn| (4.5)

Altogether, the operator on the total Hilbert space is Û = Ŝ · (Ĉ ⌦ Îp) and the
mathematical representation of the discrete quantum walk after t steps is as in Eq. 4.2,
where

| i
initial

= |positioni
initial

⌦ |coini
initial

.

Let us suppose we have an initial state | i0 = |0i
c
⌦|0i

p
with Eq. (4.3) and Eq. (4.5).

The first step of the quantum walk, consisting of applying Ĥ to the coin state followed by
the shift operator Ŝ, is computed as follows

| i0 = |0i
c
⌦ |0i

p

| i1 = Ŝ(Ĥ ⌦ Î)(|0i
c
⌦ |0i

p
)

Ĥ⌦Î
��!

|0i
c
+ |1i

c
p
2

⌦ |0i
p

Ŝ
�!

1
p
2
(|0i

c
⌦ |1i

p
+ |1i

c
⌦ |�1i

p
)

Applying the same procedure, | i2 would be

| i2 = (
1

2
|0i

c
+ 0 |1i

c
) |2i

p
+ (

1

2
|0i

c
+

1

2
|1i

c
) |0i

p
+ (0 |0i

c
�

1

2
|1i

c
) |�2i

p

=
1

2
(|0i

c
|2i

p
+ (|0i

c
+ |1i

c
) |0i

p
� |1i

c
|�2i

p
)

As we can see, after the first step, the position of the particle is a superposition of n =
1 and n = �1, generated by the coin operator. We say that the coin Ĥ is unbiased since the
probability to go to the right is equal to the probability to go to the left. If we apply the step
operator over and over again without intermediate measurement, the quantum correlations
between different positions generate constructive or destructive interference, creating the
behavior characteristic of quantum walks. In this case, the probability distribution is not
the normal distribution and the standard deviation is O(t) in contrast with the standard
deviation of the unrestricted classical random walk on a line, which is O(

p
t) [47, 57].
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Coined Quantum Walks on non-regular Graphs. Based on Ref. [47] and [48] we
give a mathematical description that includes directed edges using non-regular graphs (or
irregular graphs). The notation used until now is referred as the coin-position notation
where the walker steps on vertices. Now, we introduce a useful notation for describing
arbitrary graphs, the arc notation. If v and v0 are adjacent, we make a distinction between
labels, where (v, v0) means from v to v0 and label (v0, v) means from v0 to v. In this case,
the physical interpretation of the walker dynamics is not a walking on vertices, instead the
walker steps on arcs.

Let ~G(V,A) be a directed graph such that (v, v0) and (v0, v) are in A( ~G). The Hilbert
space associated with the coined walk on ~G is spanned by the arc set as follows

H
2|E| = span{|v, v0i : (v, v0) 2 A( ~G)} (4.6)

where 2|E| is associated with two arcs of ~G. The notation |v, v0i is called arc notation.
The evolution operator of the coined quantum walk on ~G is

Û = Ŝ ⌦ Ĉ

where Ŝ is the flip-flop shift operator defined by

Ŝ |v, v0i = |v0, vi

and Ĉ is the coin operator defined by

Ĉ =
M

v2V

Ĉv

where Ĉv is a d(v)-dimensional unitary matrix and d(v) is the degree of v. To write
Ĉ as a direct sum, we are decomposing H

2|E| as

H
2|E| =

M

v2V

span{|v, v0i : (v, v0) 2 A( ~G)

For example, the coin operator for Fig. 2.1 (which is a non-regular graph) would be

Ĉ 0 =

2

664

1 0 0 0
0 Ĉ 0 0
0 0 Ĥ 0
0 0 0 Ĥ

3

775

where Ĥ is the Hadamard gate and
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Ĉ =
1

3

2

4
�1 2 2
2 �1 2
2 2 �1

3

5

The shift operator is

Ŝ =

2

66666666664

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

3

77777777775

Is straightforward to check that

Ĉ 0 = 2
3X

j=0

|↵i
j
h↵|

j
� I

Ŝ = 2
3X

j=0

|�i
j
h�|

j
� I

A free scale network can be considered as a non-regular graph since we have different
degree nodes. In addition to this discussion, in [37], Montanaro defines a condition in
which a discrete time quantum walk can be defined on directed graphs. The procedure for
such goal is the partition of graph G into subgraphs that meet the following condition, G1

and G2 are reversible subgraphs.

Definition 10 An arc a ! b is called reversible if there is a path from b to a. A graph
whose arcs are all reversible is also reversible; otherwise it is called irreversible.

Corollary 1 A discrete-time quantum walk can be defined on a finite graph G if and only
if G is reversible.

According to [37], it is possible to define a partially quantum walk that maintains
some quantum coherence in the reversible portions of the graph.

Lemma 1 Let Grev be the subgraph of G whose arcs consist of all the reversible arcs of
G. Then Grev is reversible.
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The following process is a possible way of defining a walk on irreversible graphs.
First, we consider G integrated by the connected components of Grev and patched together
with irreversible arcs. A set of quantum walks is produced, each corresponding to one
component of Grev. Then, the irreversible arcs are simulated by replacing them with
undirected edges. If such an edge is traversed by the walker, a different walk operator is
used to ensure that it cannot be traversed in the opposite direction.

For example, consider a pair of vertices v1 and v2 that are in different reversible
subgraphs of G (called G1 and G2), and consider an irreversible arc v1 ! v2. This arc
can be simulated by the following two-steps process. First, perform a measurement to
determine if the walker is in C1 or C2. Then, if it is in C1, we perform one step of a
quantum walk defined on the graph consisting of C1 augmented with an undirected edge
v1 $ v2. Alternatively, if the walker is in C2, we perform one step of a walk only defined
on the graph C2. This ensures that the irreversible arc cannot be traversed in the wrong
direction.

4.1.2 Szegedy Quantum Walk
Szegedy’s quantum walk takes place on a symmetric bipartite digraph. A symmetric bipar-
tite digraph is obtained by a duplication process of the underlying digraph (just as in Fig.
2.5). The underlying digraph defines a classical Markov chain and the Szegedy’s model is
considered as the quantized version of this Markov chain [47].

To describe the duplication process, consider a bipartite graph with identical sets X
and Y of equal cardinalities. Let x and y be vertices of X and Y , respectively. The edges
{xi, xj} of the underlying graph, connects the adjacent vertices xi and xj , corresponds to
two edges {xi, yj} and {yi, xj} in the bipartite graph.
Consider a connected bipartite graph �(X, Y,E), as in Fig. 2.5. The biadjacency matrix
of � (see equation 2.4) is ✓

0 A
AT 0

◆

where A allow us to define transition matrix P as a probabilistic mapping from X to
Y with entries pxy. Matrix AT , similarly, defines Q as a probabilistic mapping from Y to
X with entries qyx.

Consider the transition matrix P (or stochastic matrix) of the Markov chain with
entries pij for i, j 2 S and define, for the bipartite graph, the transitions pxy and qyx as the
inverse of the degree of vertex x and y respectively if edges x and y are adjacent, otherwise
pxy = qyx = 0. The entries pxy and qyx satisfy:
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X

y2Y

pxy = 1 8x 2 X,

X

x2X

qyx = 1 8y 2 Y.

Note that pxy = qyx and are symmetric since the bipartite graph is undirected and
there is an correspondence between X and Y .

The quantum walk on the bipartite graph has an associated Hilbert space H
mn =

H
m
⌦H

n where m = |X| and n = |Y |. The computational basis of which is {|x, yi : x 2

X, y 2 Y }. Instead of using probability matrices P and Q of the classical random walk,
which entries are pxy and qyx, we define operators A : Hn

! H
n
2 and B : Hn

! H
n
2 ,

known as half projectors, as follows

A =
X

x2X

|�xi hx| , (4.7)

B =
X

y2Y

| yi hy| , (4.8)

The quantization method (P,Q) proposed by Szegedy starts by creating two operators
on the Hilbert space with basis states |xi, |yi, where x 2 X and y 2 Y , are defined as
transition vectors as follows

|�xi =
X

y2Y

p
pxy |xi |yi (4.9)

| yi =
X

x2X

p
qyx |xi |yi (4.10)

These transition vectors are defined on a vector space HA⌦HB with basis states {|xi} and
{|yi} correspond to HA and HB respectively [59]. Another way to express Eq. (4.7) and
Eq. (4.8) is multiplying the xth column of matrix A by the xth vector of the computational
basis. Hence, the columns of matrix A correspond to vectors |�xi and the columns of
matrix B are the vectors | yi.

Then we have

ATA = In

BTB = In
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So, if |�i is a unit vector in H
n, then A |�i is a unit vector in H

n
2 . The equations

imply that the actions of A and B preserve the norm of vectors.
The product in reverse order is:

AAT =
X

x2X

|�xi h�x| (4.11)

BBT =
X

y2Y

| yi h y| (4.12)

So, we define the projectors

⇧A = AAT (4.13)
⇧B = BBT (4.14)

Eqs. (4.11, 4.12) shows that⇧A projects a vector in H
n
2 on subspace A = span{| xi :

x 2 X} and ⇧B projects on subspace B = span{| yi : y 2 Y }.

Definition 11 An involution, or a reflection is an operation that is its own inverse. An
operator is an involution if A2 = 1. Involutions are operators of the form

R = 2P� 1 (4.15)

where P is some projector (P 2 = 1).

After obtaining the projectors, we can define the associated reflection operators,
which are

RA = 2⇧A � In2

RB = 2⇧B � In2

This means that RA leaves invariant any vector in A, that is, if | i 2 A, then
RA | i = | i. On the other hand, RA inverts the sign of any vector orthogonal to Athat
is, if | i 2 A

?, then RA | i = � | i. Geometrically, this is a reflection through A, as if
A is the mirror and RA | i is the image of | i. The same is true for RB with respect to
subspace B.

Performing a product of reflection provides the evolution operator

W = (2AA†
� 1)(2BB†

� 1)

= (2⇧A � 1)(2⇧B � 1)

= RARB
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A major advantage in using Szegedy’s formalism over discrete and continuous time
quantum walks lies in its ability to define a unitary quantum walk on directed and weighted
graphs [35]. This fact will allow us to define a quantum walk on a directed network in
which the quantum PageRank takes place.

For example, for the bipartite double cover in Fig. 2.5, let’s consider the example
provided by [62]. Let’s suppose that the amplitude of edge |2, 1i is c2,1, the amplitude of
edge |2, 3i is c2,3 and the amplitude of edge |2, 4i is c2,4. They are all incident to vertex
2 2 X , and their average is

c̄2 =
c2,1 + c2,3 + c2,4

3
When operator RA is applied, each of the three amplitudes are inverted about this

mean, therefore

c2,1 ! 2c̄2 � c2,1
c2,3 ! 2c̄2 � c2,3
c2,4 ! 2c̄2 � c2,4

the RA operator does the same at each vertex in X , and RB applies the same opera-
tion to vertices in Y .

4.2 Equivalence of discrete time quantum walk and Szegedy’s
quantum walk

Given the relevance in our study of discrete time quantum walks, in [62] and [48] Wong
and Portugal, provide details on the equivalence of the coined quantum walks and Szegedy
quantum walk.

In [62], Wong provides a proof for the fact that one step of Szegedy’s quantum walk
is equivalent to two steps of the coined quantum walk. A precise relationship between
the equivalence of individual operators is provided. It shows that Szegedy’s first reflection
operator, is equal to the Grover diffusion coin flip of the coined quantum walk, while
Szegedy’s second reflection operator is equal to the "flip-flop" shift, which causes the
particle to hop and turn around as Ŝ |a, bi = |b, ai.

In the coined quantum walk, the walk is performed on the vertices of the original
graph, using an additional coin degree of freedom. Thus, the number of directions in
which a walker at the vertex v can point is deg(v), so the Hilbert space is C

P
v deg(v). A

particle that is at vertex a and points towards vertex b the state is written as |a, bi. Hence,
the computational basis is

{|a, bi : a, b 2 {1, . . . , N}, a ⇠ b}
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where x ⇠ y denotes that vertices x and y are adjacent.

The evolution operator of the coined quantum walk is defined by repeated appli-
cations of Û = Ŝ ⌦ Ĉ, just as Eq. 4.1. Using the Grover’s diffusion coin which is a
permutation-symmetric operator defined as

Definition 12 Let H be an n-dimensional Hilbert space and |ii be the canonical basis for
H and |sai =

1p
2

P
n�1
i=0 |ii. Then the Grover operator is

Ĝ = 2
NX

a=1

|sai hsa|� I, (4.16)

where
|sai =

1p
deg(a)

X

b⇠a

|a, bi (4.17)

is the state of a particle at vertex a uniformly pointing towards each of its neighbors.
Then, for each vertex a, Ĝ reflects the internal coin state across the equal superposition
|sai. In relation with the inversion about the mean of Grover’s algorithm, for each vertex
a, Ĝ inverts the amplitude of each coin state at a about the average amplitude of coin states
at a.
For the shift Ŝ, consider the flip-flop shift, which causes the particle to hop and then turn
around. For example, a particle at vertex a pointing to vertex b jumps to vertex b and points
at vertex a, so Ŝ |a, bi = |b, ai.
The proof given by Wong states that Szegedy’s quantum walk is equivalent to the coined
quantum walk, with two applications of the coined operator equal to one application of
Szegedy’s, i.e. W = U2, includes precise relationships between the individual operators
of the walks. To begin with, the Hilbert spaces of the two quantum walks are identical:

• The Szegedy’s quantum walk evolves in C2|E| and the coined quantum walk evolves
in C

P
v deg(v), since

P
v
= deg(v) = 2|E|, we have C2|E| = C

P
v deg(v).

Szegedy’s walker on the edge connecting vertices i 2 X with j 2 Y is equivalent to
a coined particle at vertex i pointing towards vertex j. In both walks, there is a bijection
between basis states, we observe the same basis vector |i, ji, denoting the same quantum
state. This bijection allows us to reinterpret Szegedy’s walk W = R2R1 from its original
form on the edges of the bipartite graph. Let’s consider first R1. In the bipartite graph, R1

goes through each vertex in X and inverts its edges about their average at the vertex. In
the coined quantum walk, R1 goes through each vertex in the directed graph, inverting its
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outgoing amplitudes about their average at the vertex [62]. These outgoing amplitudes are
the coin states at each vertex, that are precisely the Grover diffusion coin Ĝ, so

R1 = Ĝ (4.18)

Now, let’s consider R2. In the bipartite graph, R2 goes through each vertex in Y
and inverts its edges about their average at the vertex. In the coined quantum walk, the
interpretation of R2 is going through each vertex of the directed graph and inverts its
incoming amplitudes about their average at the vertex. This is equivalent to the flip-flop
shift followed by the Grover coin and another flip-flop shift, i.e.,

R2 = ŜĜŜ (4.19)

Combining the results of R1 and R2 we have

W = R2R1 = ŜĜŜĜ = Û2 (4.20)

thus proving that two applications of the coined quantum walk are exactly equivalent
to one application of Szegedy’s quantum walk.

In [48], Portugal goes further, establishing that the coined quantum walk model share
a large class of quantum walks instances. Also, the shift operator must be Hermitian and
the coin operator must be an orthogonal reflection. The class of orthogonal reflections
includes the Grover and the Hadamard coins. It concludes that there are Szegedy’s quan-
tum walks which cannot be converted into the coined formalism using the standard and
non-regular flip-flop coined quantum walks.



Chapter 5

A concise introduction to QISKIT

The IBM Q Experience is an online platform that gives users access to a set of IBM’s
prototype quantum processors via the cloud. Users are allowed to interact with a quantum
processor through the quantum circuit model of computation, which requires applying a
set of quantum gates on qubits using a GUI called the quantum composer, writing quantum
assembly language code [19] or through Qiskit [4].

The IBM QX architecture is integrated by IBM QX2 composed of 5 qubits, IBM
QX3 composed of 16 physical qubits, and a revised versions of this 5-qubit and 16- qubit
backends named IBM QX4 and IBM QX5 respectively. When executing quantum circuits
or algorithms on these architectures, coupling restrictions have to be satisfied. The user
first has to decompose all non-elementary quantum operations (Toffoli gate, SWAP gate,
or Fredkin gate) to the elementary operations U(✓,�, �) and CNOT. Moreover, two qubit
gates cannot be arbitrarily placed in the architecture but are restricted to prescribed pairs
of qubits only according to the architecture [60].

For these reasons, in this work we focus on Qiskit for classical simulation. Qiskit is a
Python-based open-source software development kit (SDK) used to create algorithms for a
quantum computer. It allows us to work with noisy intermediate-scale quantum computers
(NISQ) [49] at the level of pulses, circuits, and algorithms [4].

The use of IBM’s platform has proved useful to scientists and researchers for the de-
velopment of quantum algorithms in different areas. In [13], Cervera explores the use of
IBM’s platform, in quantum physics, for the exact simulation of a one dimensional trans-
verse Ising spin chain. Also, in [26] Xizuan et al make use of IBM’s Qiskit quantum sim-
ulator and a quantum processor of five qubits to demonstrate a general quantum algorithm
that evolves in open quantum dynamics. Recently, researchers have used quantum com-
puting to advance the area of neural networks [55]. In [64], Zoufal et al employ a qGAN
(quantum Generative Adversarial Network) distribution learning and loading method with

36
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Qiskit and test it using a quantum simulation as well as actual quantum processors pro-
vided by the IBM Q Experience platform. Furthermore, the authors employ quantum
simulation to demonstrate the use of the trained quantum channel in a quantum finance
application. In addition to finance applications, Ref. [52], uses a 20-qubit quantum pro-
cessor (IBM Q Tokio) to price options and portfolios of options on a gate-based quantum
computer using amplitude estimation, an algorithm which provides a quadratic speedup
compared to classical Monte Carlo methods. Similarly, a quantum algorithm that analyzes
financial risk is presented in [61]. It employs quantum amplitude estimation to price secu-
rities and evaluate risk measures such as ’Value at Risk’ and ’Conditional Value at Risk’
on a gate-based quantum computer. Another example is the use of quantum simulation in
chemistry, as in references [30, 23].

Beyond the extensive documentation available, some useful resources are for intro-
duction to quantum algorithms using Qiskit [18, 29, 60] and for an introduction to quantum
computing [41, 39].

5.1 Programming quantum circuits using Qiskit
Qiskit is made up of elements that work together to enable quantum computing. The tool
is packed in four libraries named after the four classical elements, terra, aqua, aer, and
ignis.

• Terra. Terra provides a bedrock for composing quantum programs at the level of
circuits and pulses, to optimize them for the constraints of a particular device, and
to manage the execution of batches of experiments on remote-access devices. Terra
defines the interfaces for a desirable end-user experience, as well as the efficient
handling of layers of optimization, pulse scheduling and backend communication.

• Aer. To really speed up development of quantum computers we need better sim-
ulators, emulators and debuggers. Aer helps us understand the limits of classical
processors by demonstrating to what extent they can mimic quantum computation.
Furthermore, we can use Aer to verify that current and near-future quantum com-
puters function correctly. This can be done by stretching the limits of simulation,
and by simulating the effects of realistic noise on the computation.

• Ignis. Ignis is dedicated to fighting noise and errors and to forging a new path.
This includes better characterization of errors, improving gates, and computing in
the presence of noise. Ignis is meant for those who want to design quantum error
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correction codes, or who wish to study ways to characterize errors through meth-
ods such as tomography, or even to find a better way for using gates by exploring
dynamical decoupling and optimal control.

• Aqua. To make quantum computing live up to its expectations, we need to find
real-world applications. Aqua is where algorithms for NISQ computers are built.
These algorithms can be used to build applications for quantum computing. Aqua
is accessible to domain experts in chemistry, optimization, finance and AI, who
want to explore the benefits of using quantum computers as accelerators for specific
computational tasks, without needing to worry about how to translate the problem
into the language of quantum machines.

The workflow of constructing a quantum algorithm in Qiskit consists in three high-
level steps: build, execute and analyze. We build the circuit using quantum gates, then we
must specify on what backend we want to run them and finally a measurement gives the
results.

Our available options for simulation are the backends handled by Aer. Qiskit Aer
is a high-performance simulator for Qiskit Terra that provides a highly configurable noise
model for studying quantum computing in the NISQ regime. Aer includes the following
simulator backends:

• The QASM Simulator is the main Qiskit Aer backend. This backend emulates ideal
and noisy multi-shot execution of a quantum circuit on a real device an returns mea-
surement counts. It executes a Qiskit QuantumCircuit and returns a count dic-
tionary containing the final values of any classical registers in the circuit. The cir-
cuit may contain gates measure, reset, conditionals, and other advanced simulator
options.

• The State Vector Simulator. The StatevectorSimulator simulates the ideal
single-shot execution of a quantum circuit and returns the final quantum state vector
of the device at the end of simulation.

• The Unitary simulator allows ideal single-shot simulation of the final unitary matrix
implemented by an ideal quantum circuit.

These backends are found in the Aer provider with the names qasm_simulator,
statevector_simulator and unitary_simulator respectively.

As an example, let us consider the following code that generates a simple quantum
system | i = |011i
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from qiskit import QuantumRegister, QuantumCircuit, Aer, execute

qr = QuantumRegister(1)

qc = QuantumCircuit(q)

qc.iden(qr[0])

qc.x(qr[1])

qc.x(qr[2])

job = execute(qc, 'statevector_simulator)

result = job.result()

result.get_statevector

qc.draw(output='mpl')

qc1.measure(qr1, c1)

oq.Wavefunction(qc, systems=[3], column= True, show_systems=[True])

plot_histogram(result)

This is a quantum system of three qubits, in state |011i. We begin by importing the
main classes needed for the construction of our circuit, described in the following lines.

• QuantumCircuit: is a class considered as the set of instructions of the quantum
system. When designing larger and more complex algorithms, we store operations
into QuantumCircuits, which can be called upon by simulators to run them
later.

• QuantumRegister: this class supports our qubits. We can have a certain number
of qubits and perform gate operations specifying the qubit with a Quantum Register
index location.

• execute- this is a function that runs our quantum algorithm. The number of times
the circuit is run can be specified via the shots argument of the execute method,
the default number of shots is 1024.

• Aer this is a class that handles classical simulator backends. Qiskit Aer is a high per-
formance simulator framework for quantum circuits. It provides several backends to
achieve different simulation goals.



CHAPTER 5. A CONCISE INTRODUCTION TO QISKIT 40

Let us segment our code and explain its main components. To start with, consider
the registers created.

qr = QuantumRegister(3)

c1 = ClassicalRegister(3)

qc = QuantumCircuit(qr, c1)

qc.iden(qr[0])

qc.x(qr[1])

qc.x(qr[2])

The first line is creating a QuantumRegister of three qubits, and is called ’qr’.
In the following line, we create a ClassicalRegister that will allow us to store
the bits of the measurement results. Then, we create a QuantumCircuit called ’qc’
(quantum circuit) that takes as argument the registers created. Lastly, we apply three gates
to the quantum registers. First, the identity operator is applied to the first qubit register
using the function iden and we specify the application of this operator on index position
q[0] (the first index entry is 0). Then, we apply an x gate on the second and third quantum
registers respectively.

The instructions of our QuantumCircuit go through two more classes before
finally coming out as a printable wavefunction.

job = execute(qc, 'statevector_simulator')

result = job.result()

result.get_statevector()

The created QuantumCircuit is just a set of instructions. We have to define
the backend on which we will run our quantum circuit. In this example we use the
statevector_simulator. Using the quantum circuit, we create a job via execute,
then a result is created from that job and finally the results are displayed via the func-
tion get_statevector defined in the Result class, which prints our wavefunction
as an array. We obtain the following result

{'110': 1024}

We can visualize the operations we are performing in the registers as a circuit, using
qc.draw() which results in Fig. 5.1. In this circuit, the qubits are put in order, with
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Figure 5.1: Quantum circuit for the |011i state.

qubit zero at the top and qubit two at the bottom. The circuit is read left to right (meaning
that gates that are applied earlier in the circuit show up further to the left).

Now, we make use of a special function that will allow us to see our wavefunction
in a ket notation and avoid dictionary-like printed results. For this reason, we import
the function Wavefunction from Our_Qiskit_Functions provided by [29]. This
function takes several parameters useful for better visual representation of the states in ket
notation.

Finally, we are able to visualize the measurement results as a histogram as in Fig.
5.2.

plot_histogram(result)

The plot_histogram has some options to adjust the output graph [4]. We sum-
marize the arguments it takes below.

• legend. It provides a label for the execution. It takes a list of strings use to label
each execution’s results. This is mostly useful when plotting multiple execution
results in the same histogram.

• sort. This argument orders the bars in the histogram. It can be set to either as-
cending order with asc or descending order with desc.

• color. To adjust the color of the bars, color either takes a string or a list of
strings for the colors to use for the bars for each execution.

• figsize. It takes a tuple of the size in inches to modify the size of the output
figure.
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Figure 5.2: Histogram

The following lines summarise a basic template for creating a quantum algorithm on
Qiskit:

1. Define how many qubits are needed

2. store them in a QuantumRegister

3. create a QuantumCircuit using all of the qubits in the quantum register

4. apply gate operations, measurements, barriers.

5.2 Quantum Gates for Quantum circuit design
Most quantum algorithms are best studied in the language of quantum circuits. The main
quantum algorithms are presented in terms of quantum gates that evolve the quantum
system. This model provides a discrete set of components which describe computational
procedures and enable us to quantify the cost of an algorithm in terms of the total number
of gates and the circuit depth. Nielsen and Chuang [41] provide an introduction to the
quantum circuit model in which we implement our Szegedy quantum walk.

This section provides a review of the main quantum gates available in Qiskit, some
of which represent the main operations applied to our circuit model. It starts with the
description of single-qubit gates, Paulli gates, rotation gates, and controlled operations.
Finally, we discuss the implementation of higher order control gates that are crucial to the
quantum PageRank algorithm.
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Single-Qubit Gates
Qiskit provides a set of single-qubit gates: u gates, identity gate, Pauli gates, Clifford
gates, C3 gates, and standard rotation gates. We present these operators as matrix repre-
sentations.

Quantum gates/operations are normally represented as matrices. A gate which acts
on a single qubit is represented by a 2⇥ 2 unitary matrix U . In these terms, the action of a
quantum gate is that of a matrix multiplying a vector representing the quantum state, that
is:

| 0
i = U | i

where | i =


↵
�

�
, is the column vector equal to | i = ↵ |0i + � |1i. Since global

phase is undetectable, that is | i = ei' | i, we only require two real numbers to describe
a single qubit quantum state.

Phase. If rei' is a complex number, ei', is called phase.

Global Phase. Consider the following states:

| i = ↵ |0i+ � |1i ei' | i = ei' |0i+ ei' |1i

both states are indistinguishable since |↵|2 = |ei'↵|2, and |�|2 = |ei'↵|2, so it makes no
difference during measurement.

A convenient representation of a qubit state | i is:

| i = cos(
✓

2
) |0i+ ei'sin(

✓

2
) |1i

for some angles ✓ 2 [0, ⇡] and ' 2 [0, 2⇡]. From this, there is a clear one-to-one corre-
spondence between qubit states and points on a unit sphere. From, this fact we define the
general unitaries to perform any calculation in Qiskit.

u gates
A general unitary is implemented in Qiskit using the u3 gate is defined as

U(✓,�,�) = u3(✓,�,�)

where U(✓,�,�) is

U(✓,�,�) =


cos(✓/2) �ei�sin(✓/2)

ei�sin(✓/2) ei�+i�cos(✓/2)

�
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This is the most general form of a single qubit unitary.

The u2(�,�) = u3(⇡/2,�,�) has the matrix form

u2(�,�) =
1
p
2


1 �ei�

ei� ei(�+�)

�

The u1(�) = u3(0, 0,�) gate has the matrix form

u1(�) =


1 0
0 ei�

�
,

which is useful to apply a quantum phase.
The u0(1) = u3(0, 0, 0) gate is the identity matrix. It has the matrix form

u0(1) =


1 0
0 1

�

Identity gate The identity gate is id = u0(1)

Pauli Gates
X: bit-flip gate The bit-flip gate X is defined as:

X =


0 1
1 0

�
= u3(⇡, 0, ⇡)

Y, bit- and phase-flip gate The Y gate is defined as

Y =


0 �i
i 0

�
= u3(⇡, ⇡/2, ⇡/2)

Z: phase-flip gate The phase flip gate Z is defined as:

Z =


1 0
0 �1

�
= u1(⇡)

Clifford gates
Hadamard gate

H =
1
p
2


1 1
1 �1

�
= u2(0, ⇡)
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Standard Rotations

The standard rotation gates are those that define rotations around the Pauli set P =
{X, Y, Z}. They are defined as

RP (✓) = exp(�i✓P/2) = cos(✓/2)I � i sin(✓/2)P

Rotation around X-axis, Rx(✓). A rotation gate where the initial and final states can be
represented as ✓ rotation around the x-axis on a Bloch sphere.

Rx(✓) =


cos( ✓2) �i sin

�
✓

2

�

�i sin
�
✓

2

�
cos
�
✓

2

�
�
= u3(✓,�⇡/2, ⇡/2)

Rotation around Y -axis, Ry(✓). A rotation gate where the initial and final states can be
represented as ✓ rotation around the y-axis on a Bloch sphere.

Ry(✓) =


cos( ✓2) � sin

�
✓

2

�

sin
�
✓

2

�
cos
�
✓

2

�
�
= u3(✓, 0, 0)

Rotation around Z-axis Rz(✓). A rotation gate where the initial and final states can be
represented as ✓ rotation around the z-axis on a Bloch sphere.

Rz(✓) =

"
e

�i✓
2 0

0 e
i✓
2

#
= u1(�)

Controlled operations on qubits
The standard multi-qubit gates consist of two qubit gates and three qubits gates. The
two qubit gates are: controlled Pauli gates, controlled Hadamard gate, controlled rotation
gates, controlled phase gate, controlled u3 gate and the swap gate. The three qubit gates
are: Toffoli gate and Fredkin gate. In particular each gate uses a ’target qubit’ and a
’control qubit’. The role of the control qubit is to determine whether or not a particular
operation is applied to the target qubit.

Two-qubit gates

In general, a controlled two-qubit gate, CU acts to apply the single-qubit unitary U to the
second qubit when the state of the first qubit is in |1i. Suppose U has a matrix representa-
tion

U =


u00 u01

u10 u11

�
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Controlled Pauli Gates
Controlled-X (or, CNOT) gate . The controlled-not gate flips the target qubit when the
control qubit is in state |1i.

Controlled Y gate This gate applies the Y gate to the target qubit if the control qubit is
the most significant bit (MSB).

Controlled Z (or, controlled Phase) gate The controlled Z gate flips the phase of the
target qubit if the control qubit is 1.

Controlled Hadamard gate

Apply H to the target qubit if the control qubit is |1i.

CH =

2

664

1 0 0 0
0 1p

2
0 0

0 0 1 0
0 0 0 1p

2

3

775

Controlled rotation around Z-axis

A rotation around Z-axis on the target qubit is performed if the control qubit is |1i.

CRz(�) =

2

664

1 0 0 0
0 e�i�/2 0 0
0 0 1 0
0 0 0 ei�/2

3

775

Controlled phase rotation Perform a phase rotation if both qubits are in the |11i state.

Cu1(�) =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei�

3

775
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Controlled u3 rotation The controlled u3 rotation is performed by

Cu3(✓,�,�) ⌘

2

664

1 0 0 0
0 e�i(�+�)/2 cos(✓/2) 0 �e�i(���)/2 sin(✓/2)
0 0 1 0
0 ei(���)/2 sin(✓/2) 0 ei(�+�)/2 cos(✓/2)

3

775

SWAP gate. The SWAP gate causes two qubits to exchange states.

SWAP |00i ! |00i

SWAP |01i ! |10i

SWAP |10i ! |01i

SWAP |11i ! |11i

The matrix notation of this operator is

SWAP =

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775

Controlled-X (or, controlled-NOT) gate. The controlled-not gate flips the target qubit
when the control qubit is in the state |1i.

CNOT =

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

5.2.1 Three-qubit gates
CCNOT (Toffoli Gate.) The Toffoli gate flips the third qubit if the first two qubits (LSB)
are both |1i:

|abci ! |bc� ai ⌦ |bi ⌦ |ci



CHAPTER 5. A CONCISE INTRODUCTION TO QISKIT 48

CCNOT |010i ! |010i

CCNOT |101i ! |101i

CCNOT |110i ! |111i

CCNOT |111i ! |110i

In matrix notation 2

666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

3

777777775

The effect of this gate is equivalent to an X gate on the states |110i and |111i.

5.3 Higher order control gates
As we have seen so far, Qiskit comes with a handful set of control gates. While the gates
provided by Qiskit are sufficient as a universal set [29] it is helpful to define multiple-
controlled gates. Qiskit does not provide an explicit implementation of higher order con-
trol gates. An example of a multiple qubit conditioning, is the Toffoli gate, where two
qubits condition the application of the X gate. However, we require to implement higher
order control gates. The strategy that we employ to construct higher order control gates is
based in the use of ancilla qubits. In general, we define the controlled operation Cn(U)
by the equation

Cn(U) |x1x2 . . . xni | i = |x1x2 . . . xniU
x1x2...xn | i

where U is a k qubit unitary operator and x1x2 . . . xn in the exponent of U means the
product of the bits x1, x2, . . . , xn. That is, the operator U is applied to the last k qubit if the
first n qubits are all equal to one, otherwise nothing is done. Such conditional operations
are useful for our circuit, as illustrated in figure 5.3. Here, we present a special circuit
notation for this task.

The implementation of Cn(U) gates using our available gates in Qiskit involves the
use of Toffoli gates. The circuit is divided into three stages, and make use of (n � 1)
working qubits (ancilla qubits) as in Fig. 5.4.
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•

•

•

•

U

8
<

:
n = 4

8
><

>:
k = 3

Figure 5.3: Circuit representation for the Cn(U) operation, where U is a unitary operator
on k qubits for n = 4 and k = 3

In essence, the ancilla qubits will allow us to temporarily store information about the
control qubits, and ultimately determine whether or not to apply the operation. First, we
need all of the ancilla qubits to be initialized in the state |0i. In order for our CCNOT gate
to change the target ancilla in the state |1i, (only when control qubits are in the |1i state),
the target qubit must be initially in the |0i state. Then, U is applied if and only if all of
c1 through cn are set to the corresponding controls. Finally, the last part of the circuit just
reverses the steps of the first stage, returning all the work qubits to their initial state, |0i.
The combined result therefore, is to apply the unitary operator U to the target qubit, if and
only if all the controls bits c1 through cn are set as desired. This procedure is illustrated in
Fig. 5.4.

|c1i • •

|c2i • •

|c3i • •

|c4i • •

|c5i • •

|0i • •

|0i • •

|0i • •

|0i •

target qubit U

Figure 5.4: Network implementing the Cn(U) operation for n = 5

As we will see in section 6.2.1 we require gates controlled by three qubits, hence we
will need two ancilla or auxiliary qubits to implement our circuit.
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5.4 Circuit implementation of Quantum Walks
We want to express a given quantum walk in terms of a quantum circuit in order to avoid
the lack of scalability of the quantum walk model, i.e., as the size of the Hilbert space
scales exponentially, the number of physical vertices required for the quantum walk also
scales exponentially [33]. Douglas and Wang [20] show that quantum walks can be cla-
sically implemented in a time that scales polynomially with the size of the state space.
Therefore, an efficient quantum implementation of quantum walks is considered to be one
in which the required resources scales logarithmically with the size of the state space [20].

In designing quantum circuits for quantum walks, it is possible to have many valid
quantum circuits that would implement the required quantum walk on a given graph [35].
A general principle for efficient quantum circuit implementation of quantum walks, stated
by Douglas and Wang [20], affirm that for the possibility of exponential speedups, the
number of elementary gates required to perform the walk need to grow logarithmically
with the size of the state space [20]. In addition, an efficient quantum circuit is possible
for those graphs with a high degree of symmetry [20]. Hence, the only way to obtain a
symmetric graph from a directed graph is to consider the double bipartite graph as in Eq.
2.1, used in the Szegedy formalism.

We provide an example of a quantum circuit implementing a quantum walk along
an undirected 16-cycle presented in Fig. 5.5. The evolution operator in the coined model
Û = Ŝ ⌦ Ĉ is implemented as follows. For the coin operator, we implement Ĉ using a
Hadamard gate acting on a qubit as a subnode that controls the shifting operators. For the
shift operator Ŝ, we perform a cyclic permutation of the node states as S = Incr. |1i +
Decr. |0i. This permutation is achieved via ’increment’ and ’decrement’ gates made up
of generalized CNOT gates shown in Fig. 5.6 and 5.7. Later in Sec. 7, we will use these
gates as left and right permutations respectively.

incr decr

subnode H •

8
>>>><
>>>>:

node

Figure 5.5: Quantum circuit implementing a quantum walk along a 16-length cycle.
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...
•

• •

• • • ⇥

Figure 5.6: Increment on n qubits

...

⇥

Figure 5.7: Decrement

5.4.1 Szegedy Circuit
The Szegedy quantum walk runs repeating t times the circuit with the operator Û(t). We
can establish a partial equivalence between the step operator for the Szegedy quantum
walk and the coined quantum walk as explained by Wong [62] and Portugal [48]. For the
Szegedy walk, we base our implementation in the theoretical framework for the develop-
ment of efficient quantum circuits provided by Loke and Wang in [35]. The corresponding
quantum circuit that reproduces the unitary evolution operator of the quantum walk is
presented in Eq. (5.1) .

Uwalk = S(I � 2⇧) = SR (5.1)

We reproduce the main ideas in the Szegedy implementation in the following lines.

• First, implementing the swap operator S in a quantum circuit is straightforward. It
consists of swap gates applied between the two registers as in Fig. 5.8.

• In order to implement the reflection operator R, a diagonalization procedure using
a unitary operator Û is carried out.

URU † = U(2⇧� I)U † = 2U⇧U †
� I

The Szegedy walk operator results in
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⇥

⇥

Register 1 ...
...

⇥

⇥
. . .

⇥

⇥

Register 2 ...
...

⇥

⇥

8
>><

>>:
8
>><

>>:

Figure 5.8: Quantum circuit implementation of the swap operator S .

Uwalk = SU †DU.

Fig. 5.9 shows the general quantum circuit for implementing Uwalk

/ • • •

/ Ti K†
b

D0 Kb T †
i

Figure 5.9: General Quantum circuit implementation of Ûwalk

A complete circuit using this formalism is presented in Fig. 6.3.

5.5 Qiskit experience
In this section, we discuss the advantages and main drawbacks of the Qiskit platform.
Qiskit is aimed for researchers, teachers, developers and enthusiasts [60]. The platform
helps users to easily design and execute their own applications on real quantum computers
and state-of -the-art digital simulators of quantum algorithms and protocols. The work pre-
sented in this thesis is developed using the Qiskit version 0.11.2. We provide an overview
of different aspects involving advantages and disadvantages from two perspectives:

• the user’s perspective

• the developer perspective
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To start with, we know that quantum gates perform operations on qubits. These
qubits can be represented by two basis states |0i or |1i, but also in a superposition of both
states. We employ circuit diagrams where qubits are represented by horizontal lines and
gates pass through these lines. The diagram defines the order in which quantum gates
are applied to qubits, from left to right. The IBM Q Experience allows to edit and write
quantum algorithms through a graphical interface, and run them on actual IBM Q hard-
ware. Using the IBM QX architectures it is possible to define elementary single operation
U(✓, ,�) = Rz(�)Ry(✓)Rz(�). The IBM QX architectures available publicly are: York-
town(5 qubits), Vigo (5 qubits), Ourense (5 qubits), Essex (5 qubits), Burlington (5 qubits),
London (5 qubits), Melbourne (14 qubits). In addition, the classical simulator, the qasm
simulator, allows to simulate up to 32 qubits with no coupling restrictions.

In order to execute a quantum algorithm on these architectures, we must satisfy cou-
pling restrictions. First, all non-elementary quantum operations (Toffoli, Swap, Fredkin
gate) are decomposed into the elementary operations U(✓,�,�) and CNOT. In addition,
gates operating on two qubits, like CNOT, are connected in a restricted manner given by
the architecture. The restrictions are given by the so called coupling-map illustrated in
Fig. 5.10 which lays out the architecture of the IBM QX2 Yorktown. Each node in the
architecture represents a qubit and the arrows reflect the direction in which an operation
can be performed. As an example, the CNOT, is defined from physical qubit Qi to qubit
Qj , with control qubit Qi and target qubit Qj . This limitation is a major challenge in the
design of any quantum algorithm on real quantum hardware.

To use the hardware backends, users are required to register on the web platform.
This way, users obtain a token that will allow them to run quantum algorithms on real de-
vices. Furthermore, users obtain credits which limit the number of times that the quantum
processor can be used. In the following example we load the QX4 architecture.

from qiskit import IBMQ

IBMQ.load_accounts()

ibmqx4 = IBMQ.get_backend('ibmqx4')

Qiskit covers the full interaction with the IBM Q hardware. In Sec. 5.1 we provide
a review of the Qiskit toolset. Using qiskit, anyone can implement quantum operations
depending of the level of complexity of the circuit. In general, the workflow in Qiskit is
smooth as described at the beginning of this section. The graphics to visualize the circuits
are functional as well as the graphics to visualize the results. As a result, users will find a
very intuitive platform.

One of the major hurdles to overcome is the use of multiple control qubits described
in Sec. 5.3. The strategy to implement multiple controls used in this thesis was the use



CHAPTER 5. A CONCISE INTRODUCTION TO QISKIT 54

Figure 5.10: Yorktown quantum processor.
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of ancilla qubits. In this work, we reduce the use of CNOT and Toffoli gates by reusing
the control sequence common to the controlled gates. This is a manual design, there is no
automatic procedure in Qiskit to implement multiple controlled gates.

From the developer perspective, the efforts are in optimization techniques since the
corresponding quantum states grow exponentially with respect to the number of qubits
employed. In mathematical terms, a quantum circuit is a sequence of matrix-vector mul-
tiplication, using the initial state vectors, and the operations defined in the circuit. For
example, applying a a CNOT operation to a two qubit system in state |10i, results in:

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775 ·

2

664

0
0
1
0

3

775 =

2

664

0
0
0
1

3

775 ⌘ |11i

In order to optimize simulation of quantum circuits new approaches are being devel-
oped. Besides simulation, mapping a quantum circuit to a specific architecture constitute
a problem. We can use Hadamard and SWAP gates to change the mapping of the logical
qubits, however, using these gates to satisfy coupling restrictions increase the probability
of errors.

We can take advantage of classical simulators to design circuits, and analyze the
results. If the simulation results are promising, an execution on a real quantum device
can be performed using the backends used for that purpose. There is a lot of room for
improvement of the Qiskit platform. It is noticeable the fast pace of improvement and the
rapid development of the platform. This advancement is thanks to contributions of the
community. As an open source project, Qiskit uses the Github platform, hence making
contributions easy. Once a contribution is done the Qiskit community review, test and
analyze the contribution. A review of the main gate-based quantum software platforms is
presented in [32].



Chapter 6

Classical and Quantum PageRank

Google’s ranking system has had a tremendous influence on the development of the In-
ternet. In short, PageRank’s thesis states that a webpage is important if it is pointed to
by other important pages. As we will see the PageRank importance scores are actually
the stationary values of a Markov chain, and consequently Markov theory explains many
interesting properties of the model used by Google [31]. Our goal of this section is to ex-
plain the core concepts of the PageRank algorithm. We base our discussion on references
[11, 10, 42, 31].

6.1 Google Pagerank
As seen in section 2.2, the World Wide Web is an interconnected web of pages that follows
the scale free network property. The basic idea behind the ranking of pages is a notion of
page authority which is independent from page content.

Let us suppose the web of interest contains n pages, each page indexed by an integer
k, 1  k  n. An example of a web composed of four pages is illustrated in Fig 6.1.

Figure 6.1: Representation of a web with four pages.

An arrow from A to B indicates a link from page A to B, producing a directed graph
(defined in Section 2).

56
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Definition 13 Let rk(Pi) be the PageRank of page Pi at iteration k. Then the PageRank
of page Pi, is the sum of the PageRank of all pages pointing into Pi

rk+1(Pi) =
X

Pj2Bi

rk(Pj)

outdeg(Pj)
(6.1)

where outdeg(Pj) is the outdegree of page Pj and Bi is the set of pages backlinking
or pointing into page Pi. A link from a page to itself is not counted.

Consider rk as nonnegative and rk(Pj) > rk(Pi) indicates that page j is more im-
portant than page k. According to Eq. 6.1 we have for Fig. 6.1:

• P1 = P3/1+P4/2 since pages 3 and 4 are backlinks for page 1, and page 3 contains
only one link, while page 4 contains 2 links.

• P2 = P1/3 since page 1 points to page 2, and page 1 contains 3 outlinks to different
pages.

• P3 = P1/3 + P2/2 + P4/2 since pages 1, 2 and 4 are backlinking for page 3, and
page 1, 2 and 4 contain 3, 2 and 2 links respectively.

• P4 = P1/3 + P2/2 since pages 1 and 2 are backlinking for page 4 and page 1 and 2
contain 3 and 2 links respectively.

These linear equations can be written as Ax = x, where x = [P1P2P3P4]T . Hence-
forth, we treat the Pagerank problem as a linear algebra problem.

For a web of n pages, Eq. 6.1 produces a matrix A with Ai,j = 1/nj if page j links
to page i, and Ai,j = 0 otherwise. The jth column of A then contains nj nonzero entries,
each equal to 1/nj , and the column thus sums to 1. We denote A as a transition matrix
(see Eq. 2.2) for the web in Fig. 6.1

A =

2

664

0 0 1 1/2
1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0

3

775

The process for calculating the PageRank is initiated with the ranking at the first
iteration as r0(Pi) = 1/n for all pages Pi and repeated until convergence. Applying Eq.
6.1 to the tiny web of Fig. 6.1 gives the following values for the PageRank after few
iterations shown in Table 6.1.
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Iteration 0 Iteration 1 Iteration 2 Rank at iteration 3
r0(P1) = 1/4 r1(P1) = 3/8 r2(P1) = 9/16 1
r0(P2) = 1/4 r1(P2) = 1/12 r2(P2) = 1/36 4
r0(P3) = 1/4 r1(P3) = 1/3 r2(P3) = 4/9 2
r0(P4) = 1/4 r1(P4) = 5/24 r2(P4) = 25/144 3

Table 6.1: First iterations using Eq. 6.1 on Fig. 6.1

The web ranking problem is considered as the standard problem of finding an eigen-
vector for a square matrix. The eigenvalues � and eigenvectors x of a matrix A satisfy the
equation Ax = �x, with x 6= 0.

To explain the modifications to the transition matrix, Brin and Page use the notion of
a random surfer. In this depiction, a web surfer navigates randomly the hyperlink structure
of the web. In the long run, the amount of time spent by the web surfer on a given page
is the measure of relative importance of that page. Unfortunately, the random surfer is
caught in dangling nodes, i.e., nodes without outgoing links. A web with dangling nodes
produces a matrix A which contains one or more columns of all zeros. To fix this problem
Brin and Page make an adjustment called stochastic adjustment because the 0T rows of the
transition matrix are replaced with 1/n, where n is the number of nodes. Thereby making
A stochastic. Consequently, the random surfer can hyperlink to any page at random.

S = A+ a(1/n)

where a = 1 if page i is a dangling node and 0 otherwise. A is the adjacency matrix.
This adjustment guarantees that S is stochastic. However, by itself it does not guar-

antee the convergence results desired. Brin and Page used another adjustment named prim-
itivity adjustment. With this adjustment, the resulting matrix is stochastic and primitive. A
primitive matrix is both irreducible and aperiodic (aperiodicity plus irreducibility implies
primitivity). These conclusions motivate the following definitions, used in the study of
Markov chains.

Definition 14 Stochastic matrix. A square matrix An⇥n is called a column stochastic
matrix, if all of its entries are nonnegative and the entries in each column sum to 1. We
make a distinction between row and column- stochastic.

Definition 15 Primitivity matrix. A matrix A is defined to be a primitive matrix when A

is nonnegative irreducible matrix that has only one eigenvalue, r = ⇢(A) on its spectral
circle.
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Definition 16 Irreducible matrix. A square matrix A is irreducible if and only if its di-
rected graph is strongly connected. In other words, A is irreducible if and only if for each
pair of indices (i, j) there is a sequence of entries in A such that aik1ak1k2 . . . aktj 6= 0.

Definition 17 An aperiodic Markov chain is an irreducible chain whose transition prob-
ability matrix P is a primitive matrix.

Therefore, the stationary vector of the chain (which is the PageRank vector in this
case) exists, is unique, and can be found by a simple power iteration.

The theory of Markov chains is suitable for the PageRank problem. With Markov
theory we make adjustments to the PageRank equation that allow convergence, i.e. desir-
able results.

In particular, we know that for any starting vector, the method (known as Power
method) applied to a Markov matrix A converges to a unique positive vector called the
stationary vector, as long as A is stochastic, irreducible and aperiodic [31]. Therefore, the
PageRank convergence problems that arise from sinks and cycles, can be eliminated if A
is modified so that the Markov matrix share the desired properties.

The argument for the primitivity adjustment is based on the fact that a random surfer
can restart the browsing by entering a new destination in the browser’s URL line. To model
this activity mathematically, Brin and Page proposed a new matrix

G = ↵S+ (1� ↵)E (6.2)

where S is the stochastic matrix, ↵ is a scalar between 0 and 1. G is called the
Google matrix. In this model, ↵ is a parameter that controls the proportion of time the
random surfer follows the hyperlink. Suppose ↵ = 0.6, then the random surfer follows the
hyperlink structure of the web 60% of the time and the other 40% of the time the random
surfer teleports to a new random page. This situation is represented as the teleporting
matrix E = 1/neeT .

Now, we make a special emphasis in the Markov chain analysis of the PageRank
algorithm. Is important to note that the mathematical component of Google’s Pagerank
vector is the stationary distribution of a discrete-time, finite state Markov chain. We sum-
marize the concepts involved in Markov chains and random walks:

• A stochastic process is a set of random variables {Xt}
1
t=0 having a set of state space

{S1, S2, . . . , Sn}. Xt represents the state of the process at time t. The process of
surfing the web is represented by a state space corresponding to the set of all web
pages and the random variable Xt is the web page being viewed at time t. We
consider the Markov chain process as discrete-time.
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• A Markov chain is a stochastic process that satisfies the Markov property
P (Xt+1 = Sj)|Xt = Sit , Xt�1, . . . , X0 = Si0) = P (Xt+1 = Sj|Xt = Sit)
for each t = 0, 1, 2, . . .. The notation P (E|F ) denotes the conditional probability
that event E occurs given event F occurs.

– We can view the Markov property as memoryless in the sense that the state of
the chain depends only on the current state and not on the past history of the
chain. For instance, the web surfing is a Markov chain where the next page
visited does not depend on the pages previously visited in the past- the choice
depends only on the current page.

– This kind of chain is referred to as a random walk on the link structure of the
web.

• The transition probability pij = P (Xt = Sj|Xt�1 = Si) is the probability of being
in state Sj at time t given that the chain is in state Si at time t� 1. In few words, it
is the probability of moving from Si to Sj at time t.

• A stationary Markov chain is a chain in which transition probabilities do not change
with time, i.e., pij(t) = pij for all t.

6.2 Quantum PageRank Algorithm with Szegedy Walks
The quantum PageRank algorithm proposed in [43] and [44] is a quantization process of
the Google PageRank algorithm. Using Szegedy’s formalism (described in Sec. 4.1.2)
of the discrete-time quantum walk, we are able to quantize (apply quantum theory) the
Markov chain corresponding to a classical random walk described in the previous section.
This section is based on [35, 43, 44, 34].

Classically, for an N-node graph, such a process is described by an order N ⇥ N
matrix P of transition probabilities, where each entry Pjk denotes the transition probability
from node k to node j.

The average probability of the wave function at certain node is considered as the
measure of relative importance of that node.
Consider a directed graph (representing a network) described by a connectivity matrix C,
where Ci,j = 1 if there is a link j ! i. Then the patched connectivity matrix S is defined
as:

Si,j =

⇢
1/N outdeg(j) = 0

Ci,j/outdeg(j) otherwise,
(6.3)
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where outdeg(j) =
P

N

i=1 Ci,j is the out-degree of vertex j. The Google matrix is:

G = ↵S +
1� ↵

N
J (6.4)

where ↵ 2 [0, 1] is the damping parameter ( typically chosen to be 0.85 and J is the all-1s
matrix. Taking the transition matrix as P = G, we can define the Szegedy walk operator
Uwalk given by Eq. (5.1). Then the instantaneous quantum PageRank of the jth vertex is
given by Eq. (6.5)

Q(j, t) = | hj|2 U
2t
walk

| 0i
2
| (6.5)

where hj|2 = (|ji2)
† and |ji2 is the jth standard basis vector of the second Hilbert

space H2.
The quantum walk is initialised as

| 0i =
1

p
N

NX

j=1

| ji (6.6)

that is, the initial state | i0 is taken to be an equal superposition over the | ji. The average
quantum PageRank for a vertex j, over some number of steps T , is defined as:

hQ(j)i =
1

T

T�1X

t=0

Q(j, t) (6.7)

It can be shown to converge for sufficiently large T . This quantity is called the
quantum PageRank of a graph. The goal is to simulate the walk operator Uwalk using the
Google matrix G as the transition matrix.

While quantum walks on undirected graphs have been well studied, extending the
framework presented in the quantum PageRank algorithm to include directed quantum
walks is non-trivial due to the requirements of unitary and reversibility of the walk [34].
We point out some of the key ideas when extending the classical framework into the quan-
tum formalism.

Is important to mention that unitarity of the quantum walk is maintained since G
(Eq. 6.2) is stochastic [34], moreover information on the directionality of the network is
preserved in G.
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6.2.1 Szegedy circuit for the quantum PageRank algorithm
Examples of quantum circuits for Szegedy’s quantum walks are presented in [15], [35],
[33]. References [43], [44] use Szegedy’s quantum walk as a quantization procedure of the
classical Google PageRank algorithm, here we reproduce the quantum circuit by Thomas
Loke for the quantum PageRank in Fig. 6.3.

An example of computing the PageRank on directed graphs is given by 6.2, the
vertices of the graph can be partitioned into subsets of equivalent vertices as Z = Z1 [

Z2 [ Z3 where Z1 = {1, 2, 3, 4}, Z2 = {4, 5}, Z3 = {6, 7}

Figure 6.2: A directed graph

The connectivity matrix given by:
0

BBBBBBBBBB@

0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

1

CCCCCCCCCCA

(6.8)

The process starts setting the basis states as |b1i = |b2i = |b3i = |0i.
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• For the set Z1, we take a reference state as |�0i written as |�0i = {
p
�,

p
�1,

p
�,-

p
�,

p
�,

p
�,

p
�,

p
�} where � = 1�↵

8 and � = ↵ + �.
The required transformations T1,y for y 2 Z1 that does T1,y : |�yi ! |�0i can be
identified as T1,y = Ly

• For the set Z2, the reference state is selected as |�4i, which can be written as
|�4i = {

p
�2,

p
�2,

p
�,

p
�,

p
�,

p
�,

p
�,

p
�,

p
�} where �2 = ↵

2 + �. The re-
quired transformation T2,y for y 2 Z2 that does the analogous transformation is
simply T2,4 = I and T2,5 = L2.

• For the set Z3, the reference state is |�6i, which can be written as |�6i = {
p
�,-

p
�,

p
�,

p
�,

p
�3,

p
�3,

p
�3,

p
�3,

p
�3}, where �3 = ↵

4 + �. Since |�6i = |�7i no
transformation are required.

For circuit details see ref. [35]. The implemented circuit is show in fig. 6.3.

Figure 6.3: Complete circuit for Uwalk

where L and R operators are defined as in figure 5.6 and 5.7; Kb1 , Kb2 and Kb3 are
represented as in Fig. 6.4, 6.5 and 6.6, respectively.

Ry •

Ry H •

H Ry H

✓1,1 ✓1,2 ✓1,3
Figure 6.4: Kb1

We implement the controlled gates, based on the discussion of multiple controlled
gates in section 5.3. Our proposal consist in controlling individually each gate. We assume
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Ry •

Ry H •

H H
✓2,1 ✓2,2 ✓1,3

Figure 6.5: Kb2

Ry

H

H
✓3

Figure 6.6: Kb3

that controlling a composed-quantum gate is equivalent to controlling individually all the
gates composing it. So, for the T1,y segment in Fig. 6.3, we propose an implementation as
in Fig. 6.7, where the labels q0 and q1 correspond to register 1 and register 2 respectively
and the label anc correspond to the ancilla qubits. In this case, we have an operation with
3 controls, so we require two ancilla qubits (see discussion in Sec. 5.3). In Qiskit we
implement this operation as in Fig. 6.8.

q00
q01 •

q02 • •

anc0
anc1
q10
q11

q12

Figure 6.7: Controlled gate corresponding to T1,y

The same procedure is applied to the rest of the controlled gates. In Appendix A, we
provide the diagram circuit for each of the implemented gates.

In the next section we implement and simulate each of the operations required for
the Szegedy quantum walk.
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q00 x • • • x
q01
q02 • • •

anc0 • • •

anc1 •

q10
q11 x • • x

q12

Figure 6.8: Qiskit implementation of controlled gate corresponding to T1,y

• • • • •

Ry • •

Ry H

H H

8<
:reg.1

8
>>><

>>>:

reg.2

Figure 6.9: Circuit for Kb2



Chapter 7

Simulations

In this section, we present our main results for the simulations of the quantum circuit
presented in Fig. 6.3. We start by setting the layout where we program our quantum
circuit. We then proceed to prove the correct implementation of the operations in the
quantum PageRank algorithm. For this task, we utilize the statevector_simulator
to show the corresponding vector states and qasm_simulator to obtain measurement
results.

Let us consider the following code

from qiskit import QuantumRegister, QuantumCircuit, Aer, execute

#Simulator for viewing the wave function of our quantum system

S_simulator = Aer.backends(name='statevector_simulator')[0]

q0 = QuantumRegister(3, 'q0')

q1 = QuantumRegister(3, 'q1')

anc = QuantumRegister(2, 'a')

qwc = QuantumCircuit(q0, q1, anc)

which is a quantum circuit composed by 3 registers, q0, q1 and anc, according to
the Szegedy formalism and using an additional register for the ancilla qubit. We use the
backend statevector_simulator and store in the variable S_simulator to see
the wave function of our system. We denote the QuantumCircuit as ’qwc’ (quantum
walk circuit). These definitions are the basic template for creating our quantum algorithm

66
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in Qiskit. First, we define the number of qubits for both registers and the additional an-
cilla register. Second, we store them in a QuantumRegister and finally, we create a
QuantumCircuit using the quantum registers.

A quantum walk on 4 nodes
To understand the dynamics of a quantum walk, we provide an implementation of a
discrete-time quantum walk on a graph with 4 nodes as presented in Ref. [18].

Figure 7.1: A 4-node graph. The starting vertex is labeled as 00.

Figure 7.2: Quantum walk circuit implementation on a graph with four nodes

The quantum walk consists of a walk around a 4-node graph (Fig. 7.1). It starts at
vertex 00. In the first step, the walker moves to vertex 01 and 10 with equal probability.
Then it moves to state 11. The circuit representation of this walk in Qiskit is presented in
Fig. 7.2. We provide the corresponding implementation in Qiskit below.

#definitions of registers and ancilla qubits

q0 = QuantumRegister(2, 'q0')
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q1 = QuantumRegister(1, 'q1')

c0 = ClassicalRegister(2, 'c0')

qwc = QuantumCircuit(q0, q1, c0)

#coin operator

qwc.h(q1[0])

#quantum walk

def runQWC(qwc, times):

for i in range(times):

qwc.cx(q1[0], q0[0])

qwc.x(q1[0])

qwc.cx(q1[0], q0[1])

#qwc.barrier()

return qwc

step = 3

qwc = runQWC(qwc, step)

qwc.barrier()

qwc.measure(q0, c0)

For this example, we define two registers. The first register is the place where the
shift operator acts. In this case, a CNOT gate acts as the shift operator on qubit q[0] and
qubit q[1]. The coin operator on qubit q[2], is a Hadamard gate. Now we show the
results on each step.

1. Step 1:

• One step of the walk. Circuit Fig. 7.3a
• Results Fig. 7.3b

2. Step 2:

• Two steps of the walk. Circuit Fig. 7.4a
• Results Fig. 7.4b

3. Step 3:



CHAPTER 7. SIMULATIONS 69

(a) One step of the walk. (b) Step 1 chooses 01 or 10 with equal
probability.

Figure 7.3: One-step quantum walk on 4 nodes.

(a) Two steps on the 4 node graph.
(b) Step 2 chooses 11.

Figure 7.4: Two-step quantum walk on 4 nodes.

• Three steps of the quantum walk. Circuit Fig. 7.5a

• Results Fig. 7.5b

Initial template
To start constructing our circuit we start by providing the Qiskit layout. Eight qubits are
being set up and numbered as q0, q1, anc, consisting of 3, 3 and 2 qubits respectively. The
measure operation is applied to the qubits which extracts an output of 0 or 1.

Qubits are always initialized to give 0 as an output. To see this fact, we obtain a
histogram showing that the result is in fact 000000. The reason for showing the results
as a histogram is because the randomness nature of quantum computers. In this case, since
we are not performing operations we obtain 000000 in both registers with certainty.
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(a) Three steps in the quantum walk.
(b) Step 3 goes from node 11 and
chooses 01 and 10.

Figure 7.5: Three-step quantum walk on 4 nodes.

Figure 7.6: Circuit

As mentioned in Sec. 5, the results are going to be obtained from a quantum sim-
ulator, which is classical computer doing what a quantum computer would do. Now we
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simulate the initial condition on which the circuit starts to operate.

State Superpositions
A qubit can exist in a continuum of states between |0i and |1i, until it is observed [41].
Applying a Hadamard gate to either a |0i or |1i qubit, will produce a quantum state that,
if observed, will be a 0 or 1 with equal probability. From Ch. 3 and Postulate 4, we know
that the state space of the composite system is a tensor product of each of the systems
composing it. Hence, the initial superposition is given by Ĥ ⌦ Ĥ ⌦ Ĥ acting on initial
qubits in states |0i. We obtain a superposition state resulting from 3 qubits, as presented
in Fig. 7.7. We present a mathematical analysis of this state in superposition.

Figure 7.7: Initial superposition

The mathematical representation of the superpositions of the three qubits in register
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q0 is as follows:

| ti = Ĥ |0i ⌦ Ĥ |0i ⌦ Ĥ |0i

=

✓
|0i+ |1i

p
2

◆✓
|0i+ |1i

p
2

◆✓
|0i+ |1i

p
2

◆

=

✓
|0i+ |1i

p
2

◆✓
|0i |0i+ |0i |1i+ |1i |0i+ |1i |1i

2

◆

=
1

2
p
2
(|0i |00i+ |0i |01i+ |0i |10i+ |0i |11i+ |1i |00i+ |1i |01i |1i |10i+ |1i |11i)

Therefore, for each state we have the following probabilities:
����

1

2
p
2

����
2

=
1

(23/2)2
=

1

23
=

1

8
= 0.125

Applying a measurement process, as explained in Sec. 3 and Postulate 3, results in
probabilities given by |↵x|

2, with qubits states after the measurement being |xi. The condi-
tion that probabilities sum to one is stated by the normalization condition

P
x2{0,1}3 |↵|

2 =

1, where the notation {0, 1}3 means ’the set of strings of lenght 3 with each letter being
zero or one’.

In general, a system of n qubits is composed of a computational basis of the form
|x1x2 . . . xni, so a quantum state of such system is specified by 2n amplitudes. In this
case we have n = 3, therefore, we have 8 amplitudes. In fact, we observe a measurement
performed in Qiskit in Fig. 7.8. The results given by the simulator produces values around
0.125 as calculated before.

For visualizing and printing the wave function of the system we use the function
called Wavefunction from an additional python file: Our_Qiskit_Functions,
available at [29]. This additional python file will allow us to to see the states of our system
in a standard ket notation.

The wave function printed below shows an equal superposition of eight states with
amplitudes 1

2
p
2

or 0.35355. Here, the numbers attached to the states are the system’s
amplitudes, not probabilities. The probabilities in Fig. 7.8, are the observables of the
system, but amplitudes are the inner workings. Hence, each state has amplitude of 1

2
p
2
,

which when squared results in all states having probability of 1
8 or 0.125.

0.35355 |000>

0.35355 |100>
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Figure 7.8: Measurement results of an equal superposition of 3 qubits.

0.35355 |010>

0.35355 |110>

0.35355 |001>

0.35355 |101>

0.35355 |011>

0.35355 |111>

These eight states comes from the mathematical calculations made previously. They
were obtained using the backend designed for that purpose, the statevector_simulator.

Cyclic permutations
It is important to notice that the theoretical framework for the construction of quantum
circuits of Szegedy quantum walks in Ref. [33, 35] is applied to the class of Markov
chains where the transition matrix (see Eq. 2.2) is described by a cyclic permutation.
Now, we define this concept.

Definition 18 Cyclic permutation. A permutation which shifts all elements of a set by a
fixed offset, where the elements shifted off to the end are added back to the beginning. A
cyclic permutation of one place to the left would produce {a2, a3, . . . , an, a1} for a given
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set of elements {a1, a2, . . . , an}. Similarly a one place cyclic permutation to the right will
produce {an, a1, a2, . . . an�1}.

From Def. (18), we extend the idea to permutation matrices.

Definition 19 Permutation matrix. A permutation matrix is a matrix obtained by permut-
ing the rows of an n⇥ n identity matrix according to some permutation offset. Every row
and column therefore contains precisely a single 1 with 0’s everywhere else, and every per-
mutation corresponds to a unique permutation matrix. There are therefore n! permutation
matrices of size n, where n! is a factorial.

Let R be the one-element right rotation operator such that R[c1, c2, cN�1, cN ]T =
[cN , c1, c2..., cN�1] and L = R† is the one-element left-rotation operator [33]. In corre-
spondence with notation, we know that state |00i can be represented as a vector

|00i =

2

664

1
0
0
0

3

775

We show the R operator in Fig 5.6 and the L operator in Fig. 5.7. In fact, we are able
to simulate correctly both operations using Qiskit. We show the procedure in 2 qubits, as in
Fig. 7.9. A one-step cyclic permutation is composed by a Hadamard gate in an additional
qubit and two gates, the first one a Toffoli gate and the second one a CNOT gate (see Sec.
5.2).

Applying the right permutation on the starting state |00i, i.e, R
⇥
1 0 0 0

⇤T , will
produce a |01i state or

⇥
0 1 0 0

⇤T .
The process of applying a right permutation repeatedly is as follows

R

2

664

1
0
0
0

3

775! R

2

664

0
1
0
0

3

775! R

2

664

0
0
1
0

3

775! R

2

664

0
0
0
1

3

775! R

2

664

1
0
0
0

3

775

Fig. 7.9a shows the circuit for one-place cyclic permutation to the right operator R
and its result on Fig. 7.9b. Similarly, a sequence of two operators for one-place permuta-
tion to the right will move the element two places to the right, reflected in the state |10i as
in Fig. 7.10. Applying this operation consecutively starting from state |00i will result in
|00i ! |01i ! |10i ! |11i ! |00i and so on. The results show a superposition state due
to the nature of the Hadamard gate.
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(a) Circuit for one-place cyclic permutation to the
right.

(b) Measure results on one-place cyclic
permutation to the right.

Figure 7.9: One-place cyclic permutation to the right.

Note that the states in the results are printed in reverse order such that the qubit 0 (the
top register) is stored in the classical register index 0. In classical computing, the rightmost
index is defined as the least significant bit (LSB). Hence, in Qiskit we consider the states
such that qubit 0 (the top register) is the leftmost index. We use the Wavefunction
function to print correctly the states.

(a) Application of the R operator cyclic permuta-
tion circuit. (b) Results of two-place cyclic permu-

tation.

Figure 7.10: Two-place cyclic permutation to the right.

For the one-element left-rotation operator L (Fig. 5.7), we simulated the operation
to perform the correct procedure. To provide a solution to the problem of controlling the
operations with 0’s entries instead of 1’s we take advantage to the fact that L = R†. Hence
we propose the following circuit, switching the order of the Toffoli gate and CNOT gate
as in Fig. 7.11a.

We proceed to show this operation. Starting from state |00i we obtain L |00i =
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(a) L operator cyclic permutation circuit. (b) Results of one-place cyclic permu-
tation.

Figure 7.11: One-place cyclic permutation to the left results.

|11i, or equivalently L
⇥
1 0 0 0

⇤T
=
⇥
0 0 0 1

⇤T , shifting the 1 element to the left.
Similarly, applying the same operator we obtain, |00i ! |11i ! |10i ! |01i ! |00i,
and so on.

(a) Circuit of two-place cyclic permutation to the
left, L operator. (b) Results of two-place cyclic permu-

tation to the left.

Figure 7.12: Two-place cyclic permutation to the left.

The process of applying the left permutation repeatedly is as follows:

L

2

664

1
0
0
0

3

775! L

2

664

0
0
0
1

3

775! L

2

664

0
0
1
0

3

775! L

2

664

0
1
0
0

3

775! L

2

664

1
0
0
0

3

775

which is represented by the following states:

L |00i ! |11i : L |11i ! |10i ;L |10i ! |01i ;L |01i ! |00i .
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Multiple controlled gates
To implement our circuit we are required to apply gates controlled by multiple qubits, as
described in Sec. 5.3. While Qiskit provides an universal set of gates, it does not provide a
tool to perform operations on multiple qubits. However, we can define our own procedure
to allow multiple controlled operations. This is direct procedure using Toffoli and CNOT
gates, and making use of ancilla qubits.

To begin with, let us consider a 3-qubit controlled U gate operation as in Fig. 7.13.
In this example, the U gate is controlled by the state |100i. For simplicity we consider U
to be an X gate.

r10 •

r11
r12
r20

r21 U

r22
Figure 7.13: 3-controlled gate.

To implement Fig. 7.13, we make use of (N � 1) ancilla qubits as explained before.
The conditional on the control qubits being set to zero, are implemented applying an X
operation before the qubits conditioning the Toffoli gate (see Fig. 7.14). Now, we show
the code representing the circuit in the following lines.

r1 = QuantumRegister(3, 'q0') #register1

r2 = QuantumRegister(3, 'q1') #register2

anc = QuantumRegister(2, 'a') #ancilla qubits

c0 = ClassicalRegister(3, 'c0')

c1 = ClassicalRegister(3, 'c1')

qctest = QuantumCircuit(r1, anc, r2, c0)

qctest.h(r1[0])

qctest.h(r1[1])

qctest.h(r1[2])

qctest.barrier()

print('---initial state---')

oq.Wavefunction(qctest, systems=[3,2,3], column= True, show_systems=[True, False, True])
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qctest.x(r1[1])

qctest.ccx(r1[0], r1[1], anc[0])

qctest.x(r2[0])

qctest.ccx(anc[0], r2[0], anc[1])

qctest.cx(anc[1], r2[1])

qctest.ccx(anc[0], r2[0], anc[1])

qctest.x(r2[0])

qctest.ccx(r1[0], r1[1], anc[0])

qctest.x(r1[1])

print('---final state---')

oq.Wavefunction(qctest, systems=[3,2,3], column= True, show_systems=[True, False, True])

qctest.draw(output='mpl')

Figure 7.14: 3-controlled gate implemented in qiskit.

The results that produces the circuit are shown below:

---initial state---

0.35355 |000>|000>

0.35355 |100>|000>

0.35355 |010>|000>
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0.35355 |110>|000>

0.35355 |001>|000>

0.35355 |101>|000>

0.35355 |011>|000>

0.35355 |111>|000>

---final state---

0.35355 |000>|000>

0.35355 |010>|000>

0.35355 |110>|000>

0.35355 |001>|000>

0.35355 |011>|000>

0.35355 |111>|000>

0.35355 |100>|010>

0.35355 |101>|010>

The results of the proposed circuit have successfully picked out the control-state
|1i |0i |0i and applied the NOT operation to the second qubit on the second register. We
were able to effectively use the desired state |100i as the control state. The same pro-
cedure is applied to all multiple controlled qubit gates in our circuit. The --initial
state-- result shows a superposition for the first register, and the --final state--

shows the NOT operation when controls are in state |100i respectively. The resulting cir-
cuit in Qiskit for this test circuit is shown in Fig. 7.14.

Controlled cyclic permutation
In the section about ’Cyclic permutations’ we have shown the functioning of the cyclic
permutation operation realized by R and L operators. Now, we want to control both oper-
ators with |0i and |1i controls. These operations are localized in the T1,y and T †

1,y sections
of the circuit (see Fig. 6.3).

Fig. 7.15a, shows the circuit proposed for controlling the cyclic permutation L-
operator. First, we use Hadamard gates in the q0 register to induce a superposition that
will generate the 0 and 1 states to control our gates. The measurement operation is applied
to the register of interest, q1. The implementation approach for this controlled-L operator
is to control individually the gates composing the L operator as shown in Fig. 7.15a. We
are able to obtain the desired results showed in Fig. 7.15b. However, it is important to
notice that the probability results are diminished when using additional control states. We
can conclude that adding an extra control to the circuit reduces the probability of observing
the state by half. The reason behind this result is that the first control has a 50% chance to
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(a) Controlled cyclic permutation circuit to the left.

(b) Results of the controlled oper-
ation of the cyclic permutation to
the left.

Figure 7.15: Controlled cyclic permutation to the left.

pick up the correct state from the Hadamard gates, and the second control has the chance
to select the correct state from that 50% of the first control.

Transformations
The Kb transformations are preparation routines for preparing the initial state |�0i from
some computational basis state |ni. These preparations form the central part of our circuit.
As mentioned in Sec. 4.1.2, Sec. 6.2.1, and Eq. 5.1, we want to implement the Szegedy
walk operator for a given Markov chain, which we rewrite here

Uwalk = S(I � 2⇧) = SR

In order to implement the reflection operator as explained in Ref. [33], we diagonal-
ize it using a unitary operator U :

URU † = U(I � 2⇧)U † = I � 2U⇧U †

where U =
P

N�1
i=0 |ii hi| ⌦ Ui. Then expanding the expression above using the

projector states in Eq. 4.9 and projector operator in Eq. 4.11 and 4.13 gives:

URU † = I � 2
N�1X

i=0

|ii hi|⌦
⇣
Ui |�ii h�i|U

†
i

⌘

Ui acts to transform |�ii into a fixed computational basis state |bi, i.e. Ui |�ii = |bi
or conversely the inverse operator U † generates |�ii form |bi [33]. Then
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URU † = I � 2IN ⌦ |bi hb| = IN ⌦ (I � 2 |bi hb|) ⌘ D.

which is a diagonal matrix implemented using a controlled-⇡ gate (implemented as
pauliz). Hence, [35] arrives to the Szegedy walk operator

Uwalk = SU †DU (7.1)

Now, due to symmetries in the transition matrix P , it is possible to implement U
efficiently. Consider Ui = K†

b
Ti, such that K†

b
|�ri = |bi and Ti |�ii = |�ri; Kb and Ti

are both unitary operators and |�ri is a chosen reference state. That is, K†
b

transform the
state |�ri into |bi or its inverse operation kb prepares the state |�ri from a computational
basis state |bi. In the same direction, Ti transforms |�ii into |�ri. The above operations
transform the ith column of P into the rth column of P (with square roots on both). The
quantum circuit implementation is represented in Fig. 5.9.

If E is a matrix with columns related by cyclic permutations as defined before, the
matrix G also has the same property. To avoid obtaining an equal PageRank in each
vertex it is necessary to partition the vertex into subsets using the Google matrix G as the
transition matrix.

As before, it is possible to construct the preparation routine Kb explicitly. The trans-
formations T1,y : |�0i ! |�0i can be defined as a restricted cyclic permutation of the
reference state |�0i.

In our case, the vertices are partitioned into subsets of equivalent vertices Z = Z1 [

Z2 [ Z3, where Z1 = {0, 1, 2, 3}, Z2 = {4, 5} and Z3 = {6, 7}.
Now, we provide simulations to prove that we have the correct implementation

UU † = I operation in Qiskit. We are required to implement this operation for Kb1 , Kb2 ,
Kb3 and its dagger operators (†). The Kb operators are mainly composed of Ry rotations
and Hadamard gates as seen in Fig. 6.4, 6.5, 6.6.

Let us start with Ry rotations. It is not evident how to obtain the dagger operations
for the rotations used in Kb1 , Kb2 and Kb3 . We start by proving that using a negative
angle in this rotation we obtain its dagger equivalent. We know from Definition 9, that
the dagger operator U † is equivalent to applying the transpose and complex conjugate of
U . The transpose operation does not change the gate, however, the complex conjugate
operation changes the sign of the complex number. That is, ei✓ = cos ✓ + i sin ✓, and
e�i✓ = cos ✓ � i sin ✓, where sin(�✓) = � sin(✓) and cos(�✓) = cos(✓).

Thus, applying UU † = I would be equivalent to performing an identity operation. If
UU † acts on a qubit initialized in |0i, we obtain the |0i state. If U = Ry, we apply RyR†

y

to the |0i state as shown in Fig. 7.16. If RyR†
y

acts on a |1i state we obtain the state |1i.
The same operations are applicable to the Hadamard and controlled-Hadamard in

Kb1 , Kb2 and Kb3 . Applying a dagger operator to H , does not change the gate. Hence,
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(a) Controlled-Ry circuit using cu3 gate. (b) Results of the controlled-RyR
†
y

operation.

Figure 7.16: RyR†
y
= I

HH† = I . The same analysis is applied for the controlled-Hadamard gates. We are able
to show the correct implementation of inverse operations Kb1K

†
b1

, Kb2K
†
b2

and Kb3K
†
b3

are
equal to the identity.

The central part of our circuit is a diagonal matrix D, implemented using a Pauli-z
gate (described in Sec. 5), according to Eq. 7.1, with D0 = IN � 2 |bi hb|. It is con-
trolled by |0i |0i states. The result of applying this gate is a change in the phase of the
state it is acting on. When applied to state |0i, it does not change the phase. When ap-
plied to state |1i, it changes the phase of the state. It is possible to observe it using the
statevector_simulator and our function Wavefunction. We show the acting
of the z gate below:

z |0i = |0i

1 0
0 �1

� 
1
0

�
=


1
0

�

z |1i = � |1i

1 0
0 �1

� 
0
1

�
=


0
�1

�

Our proposal to implement this circuit is in Fig. 7.17 for the Pauli-z controlled gate
D. The expected results are obtained with this circuit. We use the function Wavefunction
since making a measurement on this state results in a positive number.

-----final state------

-1.0 |001>
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Figure 7.17: Circuit for Pauli-z controlled operation, D.
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Szegedy quantum walk for the Quantum PageRank
Now, we are able to show the complete implementation of our circuit. The analysis pro-
vided before allows us to implement the circuit presented in Fig. 6.3 for the graph in Fig.
6.2. We present each of the gates discussed above in the following code. We provide
circuit diagrams and functions definitions, in Appendix A.

1 #definitions of registers and ancilla qubits

2 q0 = QuantumRegister(3, 'q0')

3 q1 = QuantumRegister(3, 'q1')

4 anc = QuantumRegister(2, 'a')

5 c0 = ClassicalRegister(3, 'c0')

6

7 qwc = QuantumCircuit(q0, anc, q1, c0)

8

9 #Quantum walk definition

10

11 #superposition

12 qwc.h(q0[0])

13 qwc.h(q0[1])

14 qwc.h(q0[2])

15 qwc.barrier()

16

17 def runQWC(qwc, times):

18 for i in range(times):

19 t1y(qwc, q0, q1, anc)

20 t2y(qwc, q0, q1, anc)

21 kb1dag(qwc, q0, q1, anc)

22 kb2dag(qwc, q0, q1, anc)

23 kb3dag(qwc, q0, q1, anc)

24 pauliz(qwc, q0, q1, anc)

25 kb3(qwc, q0, q1, anc)

26 kb2(qwc, q0, q1, anc)

27 kb1(qwc, q0, q1, anc)

28 t2ydag(qwc, q0, q1, anc)

29 t1ydag(qwc, q0, q1, anc)

30 swap(qwc, q0, q1)

31 return qwc
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32

33 step = 1

34

35 qwc = runQWC(qwc, step)

36

37 qwc.barrier()

38 qwc.measure(q1, c1)

39 #qwc.draw(output='mpl', scale=0.9)

40

41 #qasm simulator

42 backend = Aer.get_backend('qasm_simulator')

43

44 outputstate = execute(qwc, backend).result().get_counts(qwc)

45

46 plot_histogram(outputstate)

We start the walk in a superposition state in order to obtain |0i and |1i states that
will control our gates as explained before. A quantum barrier will allow to execute first
the superposition. We define each controlled gate as functions defined in Appendix A.

Due to the randomness nature of the measurement we provide an expected result for
a multiple step walk; the results obtained using the qasm_simulator are shown in Fig.
7.18 for the Szegedy quantum walk.

Using visualization options of the plot_histogram we are able to compare the
differences in the probability results making a second measurement and plotting against
the first one.

We obtain this result at step 7 of the quantum walk. This result makes sense since
we are permuting the states which takes 7 steps to cover all states. In other words, the
cyclic permutation takes 7 steps to include all states |000i ! |001i ! |010i ! |011i !
|100i ! |101i ! |110i ! |111i. We see that it converges at the desired results at step
7 and 14, more than that the results are not clear since more errors are introduced. Since
we grouped similar nodes in set Z1, Z2 and Z3 we consider the nodes within each set to be
equivalent. Hence, we are able to provide the average quantum PageRank for the Szegedy
walk in Fig. 7.20.

7.1 Quantum PageRank algorithm
As mentioned before, the quantum PageRank algorithm is a quantization procedure of the
Markov chain encoded in the Google matrix. The quantization procedure is a transition
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Figure 7.18: Histogram results of the Szegedy quantum walk.

Figure 7.19: Szegedy walk results.

from a classical understanding of certain phenomena into an understanding in terms of
quantum mechanics. As we have stated in this work, we utilised the framework provided
by the Szegedy quantum walk to develop a quantum understanding of the classical PageR-
ank algorithm. In general, a Szegedy quantum walk is performed on a duplicated Hilbert
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Figure 7.20: Average Quantum PageRank with Szegedy walk.

space H1 ⌦H2, represented in Fig. 7.21.

|Xi / H⌦n • ⇥

|Y i / R ⇥

c | it

Figure 7.21: A general Szegedy quantum walk circuit.

From Sec. 4.1.2, we know that the Szegedy’s model considers a connected bipartite
graph �(X, Y,E), where X, Y are disjoint sets of vertices and E is the set of non-directed
edges. In the circuit model, we represent both sets of n qubits as |Xi and |Y i as repre-
sented in Fig. 7.21. The controlled operations represent the mapping from the set X to the
set Y and the swap operator the opposite direction, from Y to X . We indicate n number
of qubits using the symbol / in registers |Xi and |Y i.

In Sec. 6.2 and 6.2.1, we define the general procedure to make possible the quantum
PageRank. Now we summarize the algorithm.

1. Create a uniform superposition applying Hadamard gates to the first register,

|si =
1

p

2N

N�1X

i=0

| ii
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|Xi /n H⌦n • • ⇥

|ancillai /n�1 •

|Y i /n UDU
† ⇥

c | it

Figure 7.22: Szegedy circuit using ancilla qubits.

2. Implement the Szegedy walk operator Uwalk, see Sec. 6.2.1

• Diagonalize the R operator (in our case some symmetries allow to implement
it efficiently). See Fig. 5.9.

• Implement the swap operator S . See Fig. 5.8.

3. Evolve the system repeating the circuit at least n times.

4. Measurement in the second Hilbert space. The instantaneous PageRank of the jth
vertex is given by:

Q(j, t) = | hj|2 Uwalk | 0i |
2

hj|2 is the jth standard basis vector of the second Hilbert space H2

To implement the circuit we make use of an additional register. We use ancilla qubits
for gates controlled by 3 or more control-qubits. We express this additional register in Fig.
7.22.

In comparison with the evolution operator from the coined model, U(t), we imple-
mented the step operator Uwalk by repeating the circuit t times. Here, a single application
of Uwalk propagates the corresponding amplitude to adjacent vertices [35]. Recall that the
Szegedy operator is given by

Uwalk = S(2⇧� I) = SR

S and R correspond to the shifting and coin operator of a coined quantum walk. The
operator S is easily implemented, whereas R represents a difficulty to implement. In this
section we have shown, step-by-step how it is possible to implement a Szegedy walk for
computing the Quantum PageRank.



Chapter 8

Discussion

We know from Sec. 6.1 that the problem of finding the PageRank of a website is equiva-
lent to the problem of finding the eigenvector with eigenvalue one of a matrix. Also, we
know that the hyperlink matrix H is given by the number of webpages indexed, and forms
a square matrix. Using the hyperlink connectivity structure alone, it is a necessary but not
sufficient condition to ensure convergence of the stationary vector rk. To ensure a mean-
ingful stationary state we go through a series of modifications of the original hyperlink
structure. In the case of web pages having dangling nodes, the columns corresponding
to dangling nodes are replaced with entries 1/N , where N is the number of nodes. This
strategy is equivalent to linking every dangling node to every node in the web including
itself as shown in Fig 8.1.

Figure 8.1: Linking every dangling node to every node in the web ensures ensures stochas-
ticity.

By this modification, the possibly disconnected graph is ’patched’ and becomes ef-
fectively connected. To ensure convergence we also require that the matrix E is primitive

89
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or regular, i.e. that there is an integer m such that Em has only positive entries. The inter-
pretation of the modified hyperlink matrix is the random walker diffusing on the network
as a time step evolution operator. The assumption is that the walker will eventually arrive
to any page using a path of at least m links.

The notion behind irreducibility is that subgraphs within the web do not link back
and forth with each other, i.e there are no paths from a subgraph to another, leading to
an irrelevant importance vector. Hence, we arrive to a key idea: in order to obtain the
Pagerank vector the graph must be strongly connected. This fact is expressed in the Google
matrix, Eq. 6.2.

The connection between the Google matrix and random walk is direct. We define
a set of random variables X0, X1, . . . , XT , where T is the number of time steps. These
variables take values on the set of nodes {Pi} in the web. Translating the Google PageRank
into the language of Markov chains we have:

Gij = Pr(X(n+1) = Pi|X
(n) = Pj) (8.1)

The PageRank result is a stationary distribution of the Markov chain. This interpretation
of the Google PageRank in terms of Markov chains, i.e random walks, is necessary to
make a connection with the quantum equivalent.

In the quantum counterpart, the walker starts its dynamics with an initial position
| 0i, and a defined evolution operator. Then a projection measurement is performed into
the basis states encoding the node positions. We interpret the resulting probability distri-
butions as the instantaneous Quantum PageRank of the node.

The quantum version of finding an unknown vector ~x as in the following linear equa-
tion: A~x = ~b is written as A |xi = |bi, where A is Hermitian. The matrix A and the states
|xi and |bi can be expanded in terms of the eigenstates of A as
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A =
NX

j=1

�j |uji huj|

A�1 =
NX

j=1

��1
j

|uji huj|

|bi =
NX

j=1

�j |uji

where �j = huj|bi

and |xi / A�1
|bi =

 
NX

k=1

��1
k

|uki huk|

! 
NX

j=1

�j |uji

!
=

NX

j=1

�j
�j

|uji

where �j and |uji are the eigenvalues and eigenstates of A. The algorithm to solve
this equation is described in [18]. If the matrix A is not Hermitian, we require


0 A
A† 0

� 
0
~x

�
=


~b
0

�

Hence, it implies a bipartite graph just as the Szegedy walk. This shows that Szegedy
walk represents an advantage in this type of problems.

The task of efficiently implementing a given quantum walk is in general a difficult
problem. We have provided a methodology for implementing a large scale quantum cir-
cuit, using a Szegedy’s walk for the quantum PageRank. To make it possible, we employed
a quantum computing platform that allowed us to use the most basic building blocks for
constructing bigger operations on qubits. Overall, Qiskit is a very intuitive platform to
perform quantum computing. As it is developed we will see new capabilities in the near
future. For our purposes, we used the classical simulator since we are restricted by the
topology of the quantum processor. As an example of connectivity restriction, consider
a 5 qubit quantum processor where the connection in two-qubit gates is only possible
between neighboring qubits (see Fig. 8.2).

From the implementation procedure, we can observe that a good circuit design does
not imply an efficient implementation (with the available technology). Requiring up to
N � 1 ancilla qubits just to perform on N control qubits may represent a higher cost to
pay. Truthfully it is. Qubits are a scarse resource, hence making this general strategy a
resource intensive to be practical in most cases. This is a problem to keep in mind.

In discrete time quantum walks, such as the coined model and Szegedy model, the
shift operator must be Hermitian and the coin must be an orthogonal reflection, which
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Figure 8.2: IBM Q 5 Tenerife.

is a unitary and Hermitian operator. The class of orthogonal reflections includes the
Grover and Hadamard coins [48]. As a matter of fact, the Szegedy’s scheme is con-
sidered a generalization of the Grover algorithm. Let us consider the Grover diffusion
operator, Us = 2 |si hs| � I . Now, consider the Szegedy quantum walk operator, W =
(2AA⇤

� I)(2BB⇤
� I). In the Grover algorithm, we perform multiple ’Grover iterations’

followed by a single measurement at the end [29]. Here, one Grover iteration is equivalent
to a reflection about the average amplitude. In Szegedy, the operator D0 = I � 2 |bi hb|
is the same reflection operation as in Grover. The key idea here, is the reflection opera-
tion. Geometrically a reflection involves the reflected object and the point or line where
is reflected about. For example, consider Fig. 8.3, which illustrates a reflection of state
| i about the point of reflection which is the state |0i. Mathematically, this reflection is
equivalent to a sign flip of the |1i state. We perform this reflection using the Z gate illus-
trated in the circuit Fig. 6.3 as the D operator and correctly implemented in Sec. 7 about
simulations. Reflecting the | i

i
about the state |1i will flip the sign of state |0i as in Fig.

8.4.
The interpretation of Grover’s algorithm is that of a quantum walk on the edges of

a complete graph [54] (see definition of complete graph in Sec. 2 and Fig. 2.6). Math-
ematically, S and R correspond to the shifting and coin operator of the coined model,
respectively. Grover’s work was an important factor in preparing the way for the quantum
computing revolution that is still ongoing today since it was able to prove faster than its
classical counterpart. As for the Grover and Szegedy quantum walk implementation pro-
cedure has taken time due to the technical challenges involved. As far as we know, there is
not an implementation procedure for the Szegedy quantum walk with the existing technol-
ogy. The first scalable version of a quantum computer did not appear until 2017. Recent
research [22] has shown that Grover search algorithm is a natural occurring phenomenon,
where electrons behave like a Grover search. The implications are profound. In the same
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Figure 8.3: Reflection about state |0i.

Figure 8.4: Reflection about state |1i.

research, Grover algorithm is formulated as a quantum walk across a surface, in a two
dimensional space [22].

Szegedy’s quantum walk represent a good formalism to the problem of making a
quantum walk on nonregular directed graphs. A discrete time quantum walk for the graph



CHAPTER 8. DISCUSSION 94

in Fig. 2.5, would require to define a coin operator as

Ĉ 0 =

2

664

1 0 0 0
0 C 0 0
0 0 H 0
0 0 0 H

3

775 (8.2)

where Ĥ is the Hadamard gate and Ĉ (3-degree) is

Ĉ =
1

3

2

4
�1 2 2
2 �1 2
2 2 �1

3

5 (8.3)

and for bigger node degrees we would require to replace each vertex with a coin
of dimension d where d is the degree of that vertex. This strategy would require a large
amount of extra qubits making it inefficient. In Szegedy quantum walk, we use a Hilbert
space HA ⌦HB which doubles the state space. In addition to double the state space of the
Szegedy walk, our circuit requires N � 1 ancillary qubits. There are several algorithms
that implement a generic N-controlled gate. We distinguish between 3 distinct classes.
The algorithms requiring N � 1 ancilla qubits as used in this work. These algorithms have
the best gate-count and circuit depth complexity. The algorithms requiring only 1 ancilla
qubit, at the expense of a bigger gate-count and circuit-depth. Hybrid algorithms between
the 2 previous classes: they need more than one ancilla qubit but less than N � 1 and
also have a gate complexity between the 2 previous classes. Our implementation of ancilla
qubits shows a good strategy to follow.

The implementation of U(t) is generated by repeating t times the circuit Uwalk. In
fact, this walk is carried out using a for loop which repeats the circuit t times and allows
to propagate the amplitudes. We observed the desired results at step 7, which in fact is a
cyclic permutation that includes all states.

The main drawback of Szegedy walk lies in the implementation of the reflection
operator R. This operator contains the adjacency information of the graph. The swap
operator S is easily implemented. More research on diagonalizing and decomposing the
operators must be carried on. The best known available techniques include QR decompo-
sition and the sine-cosine decomposition [14] [38].
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Conclusions

Quantum computing is advancing at a rapid pace. In quantum computing, we start with a
qubit, the basic unit of information. Thanks to its vectorial nature, a qubit can represent
the vales 0 and 1 in the same equation. Fifty qubits can represent over one quadrillion
values simultaneously and advanced simulation capabilities will be used to advance the
development of quantum hardware [46]. Furthermore, quantum supremacy is in debate
and considered as a real possibility. Whether quantum or classical, networks are a central
discussion in the analysis of information. In this thesis, we have focused on an implemen-
tation procedure of a quantum PageRank algorithm using a quantum circuit formulation
of the original quantum walk-based PageRank algorithm. Furthermore, we have imple-
mented this quantum circuit-based PageRank algorithm on the IBM Q platform, a process
in which we have focused on efficient implementation given the constraints of this plat-
form. We aim to understand what this type of algorithm entails in a quantum computing
platform. In order to provide a solid background to our studies we introduced several
chapters in the field of graph theory, quantum mechanics, discrete quantum walks and a
platform for quantum computation, Qiskit.

In our chapter on Graph Theory we set the basis to understand the dynamics of
quantum walks. From this chapter we know that a quantum walk takes place on different
types of graph. The network topology, such as a scale free network simulates the structure
of the web. The web network is represented as a directed graph where nodes are pages and
hyperlinks are represented by directed edges. We relate the position of the walker in the
network as a basis state in the quantum formalism, such as |00i , |01i , |10i , |11i for a web
of four nodes.

In chapter 3, A concise introduction to Quantum Mechanics, we discuss the postu-
lates of quantum mechanics which form the basis of quantum computation. As previously
stated, this chapter is written keeping in mind practitioners of other areas interested in
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quantum computing. Is important to mention that a solid background in linear algebra
facilitates the understanding of the concepts described. From postulate one we know that
Hilbert space is the state space of the system described by unit vectors. We may con-
sider a system of n qubits with the computational basis states of the form |x1x2 . . . xni.
A quantum state of such state is specified by 2n amplitudes. For n = 500, this number
is greater than the estimated number of atoms in the universe [41]. This is an enormous
computational capability that computer scientists want to take advantage of.

To solve our problem of ranking, we have focused in the study of discrete time quan-
tum walks which comprises the coined quantum walk and the Szegedy quantum walk.
In chapter 4 about Quantum Walks, we describe the use of quantum walks as a mathe-
matical tool for building quantum algorithms. The quantum walk constitutes a universal
model of quantum computing. The quantum walk dynamics are driven by the unitary op-
erator with no intermediary measurement. In the case of the coined quantum walk this
operator is Û = Ŝ ⌦ Ĉ. For the Szegedy quantum walk we have an operator defined
by W = (2AA⇤

� I)(2BB⇤
� I). As explained in Sec. 4.2, recent research shows that

the Szegedy and the coined model have similarities that lead to the conclusion that the
discrete time quantum walk and Szegedy’s quantum walk are equivalent. Until now, this
equivalence holds for quantum walks using the Grover and Hadamard coins.

A concise introduction to QISKIT is an introductory chapter to the computational
platform in which we simulate the quantum PageRank circuit. We describe the workflow
of constructing a quantum algorithms on this platform. We also provide a description of
higher order control gates, i.e, gates controlled by n numbers of controls. For this task,
we make use of ancilla qubits which allow to temporarily store information of the control
qubit, and ultimately determine whether or not to apply the operation. The platform does
not allow to implement a higher order controlled gate directly so we have to construct
it using ancilla qubits. Our proposal consist in controlling individually each gate. The
assumption is that controlling a composed-quantum gate is equivalent to controlling indi-
vidually all the gates composing it. In Sec. 5.4, we discuss the circuit implementation of
quantum walks, relevant to our simulation study.

From section 6, we know that a key idea of Google’s Pagerank algorithm is the
importance score (Eq. 6.1) and is obtained from the hyperlink matrix. The modified or
’patched’ Google matrix is a direct representation of a Markov chain. The connection
between Markov chain and random walks is notorious as explained. We define the termi-
nology used in Markov chains. Also, we introduce the Szegedy circuit for the PageRank
algorithm and describe the assumptions behind the quantum PageRank algorithm.

We have presented a comprehensive analysis and implementation of a quantum al-
gorithm with the Szegedy quantum walk formalism. The biggest advantage of Szegedy’s
quantum walk lies in its ability to define a quantum walk on directed graphs at expense
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of another state space. The implementation procedure for quantum walks is developed
using the quantum circuit model of computation taking advantage of a quantum platform
provided by IBM. The results are given in Sec. 7 providing the simulations and operations
performed. In particular, we were able to use a classical simulator, to obtain measurements
of a Szegedy quantum walk. We were able to implement correctly controlled operations.
Also, we implemented controlled cyclic permutations along with controlled gates com-
posed of Hadamard and Ry rotations. We provided for those gates its dagger counterpart.
We proposed an implementation of a reflection operator D. We were able to take full ad-
vantage of the capabilities of the Qiskit platform. As a result, we obtained the expected
values reported in the literature.

Once the quantum circuit has been created we ran it in the available backends. As
we can see, the qasm_simulator is a classical simulator. Hence the question of why we use
a classical simulator to simulate quantum computers. The best notion to this issue is that
quantum computing time is a scarce resource and we want to test as many times as possible
to confirm that things work out. Also, we have a limitation in the current number of qubits
and the connections between qubits in the available quantum processors are restricted.

Chapter 8, entitled Discussion, is our last chapter of our contribution. We present
the main issues faced in the development of this thesis. We demonstrate the limitations of
the research and the implications of the findings. Our work in this field has been inspired
not only in how quantum mechanics can help in developing better algorithms but also to
facilitate research on the most important open issues facing quantum computing today. Our
future research in this direction would be to identify other classes of graphs in which the
same formalism could apply. Also, to exploit the scheme provided here to apply a discrete
quantum walk in Markov chains applications in Finance, Chemistry and Optimization
problems. We also consider that a dynamic entity such as the WWW can be analyzed
with dynamics quantum walks [25, 63]. Finally, this research is meant to be situated at
an intersection of fields. Certainly, a central goal in the quantum computing community
is to make easy for everyone to use quantum computers. This research will accomplish
its mission if it encourages scientists in the intersection of fields to further advance their
careers in this discipline.
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Appendix

In this Appendix we include the code and circuit diagrams employed in the implementation
of our quantum circuit. We start by writing the functions that define the operations. Then,
we provide the circuits for each operation drawed by Qiskit.

#definitions

#t1,y

def t1y(qc, q0, q1, anc):

qc.x(q0[0])

qc.x(q1[1])

qc.ccx(q0[0], q0[2], anc[0])

qc.ccx(anc[0], q1[1], anc[1])

qc.cx(anc[1], q1[2])

qc.cx(anc[0], q1[1])

qc.ccx(anc[0], q1[1], anc[1])

qc.ccx(q0[0], q0[2], anc[0])

qc.x(q1[1])

qc.ccx(q0[0], q0[1], q1[1])

qc.x(q0[0])

return t1y

#t2y

def t2y(qc, q0, q1, anc):

qc.x(q0[1])

qc.ccx(q0[0], q0[1], anc[0])
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qc.ccx(q0[2], anc[0], anc[1])

qc.cx(anc[1], q1[1])

qc.ccx(q0[2], anc[0], anc[1])

qc.ccx(q0[0], q0[1], anc[0])

qc.x(q0[1])

return t2y

#Angles

alpha = 0.85

beta = (1 - alpha)/8

gamma1 = alpha + beta

gamma2 = alpha/2 + beta

gamma3 = alpha/4 + beta

angle11 = np.arccos(np.sqrt((3*beta+gamma1)/(7*beta+gamma1)))

angle12 = np.arccos(np.sqrt((beta+gamma1)/(3*beta+gamma1)))

angle13 = np.arccos(np.sqrt(beta/(beta + gamma1)))

angle21 = np.arccos(np.sqrt((beta+gamma2)/(3*beta+gamma2)))

angle22 = np.arccos(np.sqrt(gamma2/(beta+gamma2)))

angle3 = np.arccos(np.sqrt(beta/(beta+gamma3)))

def kb1dag(qc, q0, q1, anc):

qc.x(q0[0])

qc.x(q1[0])

qc.ccx(q0[0], q1[0], anc[0])

qc.ccx(anc[0], q1[1], anc[1])

qc.ch(anc[1], q1[2])

qc.ccx(anc[0], q1[1], anc[1])

qc.x(q1[1])

qc.ccx(anc[0], q1[1], anc[1])

qc.cu3(-angle13, 0, 0, anc[1], q1[2])

qc.ccx(anc[0], q1[1], anc[1])

qc.x(q1[1])

qc.ccx(q0[0], q1[0], anc[0])

qc.x(q1[0])

qc.ccx(q0[0], q1[0], anc[0])

qc.ch(anc[0], q1[2])

qc.ch(anc[0], q1[1])
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qc.ccx(q0[0], q1[0], anc[0])

qc.x(q1[0])

qc.ccx(q0[0], q1[0], anc[0])

qc.cu3(-angle12, 0, 0, anc[0], q1[1])

qc.ccx(q0[0], q1[0], anc[0])

qc.x(q1[0])

qc.cu3(-angle11, 0, 0, q0[0], q1[0])

qc.x(q0[0])

return kb1dag

print('angle 11:',angle11)

print('angle 12:', angle12)

print('angle 13:', angle13)

#K_b2 dagger

def kb2dag(qc, q0, q1, anc):

qc.x(q0[1])

qc.ccx(q0[0], q0[1], anc[0])

qc.x(q1[0])

qc.ccx(anc[0], q1[0], anc[1])

qc.ch(anc[1], q1[2])

qc.ccx(anc[0], q1[0], anc[1])

qc.x(q1[0])

qc.ccx(anc[0], q1[0], anc[1])

qc.ch(anc[1], q1[2])

qc.ch(anc[1], q1[1])

qc.ccx(anc[0], q1[0], anc[1])

qc.x(q1[0])

qc.ccx(anc[0], q1[0], anc[1])

qc.cu3(-angle22,0,0, anc[1], q1[1])

qc.ccx(anc[0], q1[0], anc[1])

qc.x(q1[0])

qc.cu3(-angle21, 0,0, anc[0], q1[0])

qc.ccx(q0[0], q0[1], anc[0])

qc.x(q0[1])

return kb2dag

print('angle 21:', angle21)
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print('angle 22:', angle22)

#k_b3 dagger

def kb3dag(qc, q0, q1, anc):

qc.ccx(q0[0], q0[1], anc[0])

qc.ch(anc[0], q1[2])

qc.ch(anc[0], q1[1])

qc.cu3(-angle3, 0 ,0, anc[0], q1[0])

qc.ccx(q0[0], q0[1], anc[0])

return kb3dag

print('angle 3:',angle3)

#Controlled Paulli z

def paulliz(qc, q0, q1, anc):

qc.x(q1[0])

qc.x(q1[1])

qc.ccx(q1[0], q1[1], q1[2])

qc.z(q1[2])

qc.x(q1[1])

qc.x(q1[0])

return paulliz

def kb3(qc, q0, q1, anc):

qc.ccx(q0[0], q0[1], anc[0])

qc.cu3(angle3, 0 ,0, anc[0], q1[0])

qc.ch(anc[0], q1[1])

qc.ch(anc[0], q1[2])

qc.ccx(q0[0], q0[1], anc[0])

return kb3

def kb2(qc, q0, q1, anc):

qc.x(q0[1])

qc.ccx(q0[0], q0[1], anc[0])

qc.cu3(angle21, 0,0, anc[0], q1[0])

qc.x(q1[0])

qc.ccx(anc[0], q1[0], anc[1])

qc.cu3(angle22,0,0, anc[1], q1[1])

qc.ccx(anc[0], q1[0], anc[1])
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qc.x(q1[0])

qc.ccx(anc[0], q1[0], anc[1])

qc.ch(anc[1], q1[1])

qc.ch(anc[1], q1[2])

qc.ccx(anc[0], q1[0], anc[1])

qc.x(q1[0])

qc.ccx(anc[0], q1[0], anc[1])

qc.ch(anc[1], q1[2])

qc.ccx(anc[0], q1[0], anc[1])

qc.x(q1[0])

qc.ccx(q0[0], q0[1], anc[0])

qc.x(q0[1])

return kb2

def kb1(qc, q0, q1, anc):

qc.x(q0[0])

qc.cu3(angle11, 0, 0, q0[0], q1[0])

qc.x(q1[0])

qc.ccx(q0[0], q1[0], anc[0])

qc.cu3(angle12, 0, 0, anc[0], q1[1])

qc.ccx(q0[0], q1[0], anc[0])

qc.x(q1[0])

qc.ccx(q0[0], q1[0], anc[0])

qc.ch(anc[0], q1[1])

qc.ch(anc[0], q1[2])

qc.ccx(q0[0], q1[0], anc[0])

#Ry

qc.x(q1[0])

qc.ccx(q0[0], q1[0], anc[0])

qc.x(q1[1])

qc.ccx(anc[0], q1[1], anc[1])

qc.cu3(angle13, 0, 0, anc[1], q1[2])

qc.ccx(anc[0], q1[1], anc[1])

qc.x(q1[1])

qc.ccx(anc[0], q1[1], anc[1])

qc.ch(anc[1], q1[2])

qc.ccx(anc[0], q1[1], anc[1])

qc.ccx(q0[0], q1[0], anc[0])



APPENDIX A. APPENDIX 103

qc.x(q1[0])

qc.x(q0[0])

return kb1

def t2ydag(qc, q0, q1, anc):

qc.x(q0[1])

qc.ccx(q0[0], q0[1], anc[0])

qc.ccx(q0[2], anc[0], anc[1])

qc.cx(anc[1], q1[1])

qc.ccx(q0[2], anc[0], anc[1])

qc.ccx(q0[0], q0[1], anc[0])

qc.x(q0[1])

return t2ydag

def t1ydag(qc, q0, q1, anc):

qc.x(q0[0])

qc.ccx(q0[0], q0[1], q1[1])

qc.ccx(q0[0], q0[2], anc[0])

qc.ccx(anc[0], q1[2], anc[1])

qc.cx(anc[1], q1[1])

qc.ccx(anc[0], q1[2], anc[1])

qc.cx(anc[0], q1[2])

qc.ccx(q0[0], q0[2], anc[0])

qc.x(q0[0])

return t1ydag

def swap(qc, q0, q1):

qc.swap(q0[2], q1[2])

qc.swap(q0[1], q1[1])

qc.swap(q0[0], q1[0])



APPENDIX A. APPENDIX 104

Figure A.1: Circuit corresponding to the T1,y transformation.

Figure A.2: Circuit corresponding to T2,y.
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Figure A.3: K†
b1

circuit.
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Figure A.4: Circuit implementing K†
b2

.
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Figure A.5: Circuit implementing Kb3 .
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Figure A.6: Circuit implementation for Pauli-z operator.
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Figure A.7: Kb3 circuit.
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Figure A.8: Kb2 circuit.
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Figure A.9: Kb1 circuit-
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Figure A.10: T †
2y circuit.

Figure A.11: T †
1y circuit.
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Figure A.12: Swap implementation.
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